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  Accounting for the determinants of banks’ credit ratings  

Abstract 
 

The contribution of the banking industry to the recent financial crisis 2007/8 has raised public concerns 

about the excessive involvement of banks in risky activities. In addition there have been public concerns 

about the ability of credit rating agencies to evaluate these risks in advance. In this context, this study 

uses an ordered logit analysis to examine the determinants of banks’ credit ratings using a sample of US 

and UK banks’ accounting data from 1994 to 2009. Our intention is to examine to what extent banks’ 

ratings reflect banks’ risks. Our analysis shows that a small number of accounting variables, namely: bank 

size, liquidity, efficiency and profitability are able to correctly assign credit rating for approximately 74% 

to 78% the sample banks. Surprisingly, the association between banks’ credit ratings and each of leverage 

asset quality and capital is not robust, suggesting that the rating agency’s models did not pick them up 

despite their importance in the crisis. In addition, the relationship between banks’ credit ratings and 

liquidity is the reverse of that which an adequate early warning system would require. As banks benefit 

from higher credit ratings they will have addressed their determinants rather than taking care of systemic 

factors that affect underlying risk. Policy makers therefore need to intervene to address this market 

failure. 

Key words: banks credit rating; ordered probit model; accounting information. 

 

 

 

 

 



1. Introduction  
 

Credit rating agencies (CRAs) formulate and issue credit ratings for both companies (debt issuers) and 

individual debt instruments.  Issuer’ rating represents a forward-looking assessment of the ability and 

willingness of an issuer, such as a corporation or state or city government, to meet its financial 

obligations in full and on time. Therefore, credit ratings are considered to be important drivers of a firm’s 

cost of finance, its capital structure and ability to continue trading (Gray et al., 2006).  CRAs draw on 

publicly available information, private information and their own judgement to create issuers’ ratings.  

Issuer’s credit ratings are therefore interesting since they represent the judgement of informed and 

sophisticated financial analysts about a firm’s credit worthiness. However, the main drivers and 

assumptions underlying these ratings are not publicly disclosed (Frost, 2007). In addition, there is a dearth 

of prior studies that examines issuers’ credit ratings in general and in the financial service sector in 

particular. Most of studies of ratings focus on determinants of bond ratings, default probablities or the 

reliability of credit ratings. Furthermore, very recent prior studies that focused on banks (e.g., 

Bissoondoyal-Bheenick and Treepongkaruna, 2011; Bellotti et al., 2011a; 2011b; Shen et al., 2012; Öğüt 

et al., 2012) vary in terms of the purpose of the study, the type of credit rating used, the explanatory 

variables included in the model, the statistical analysis used. To date, no generally accepted model exists 

as to what determine CRAs perceptions of banks’ credit worthiness. The current study tries to fill this gap 

in the literature by examining the accounting determinants of credit ratings of banks in two major markets 

where the recent financial crisis of 2007/08 is believed to have started: i.e. the US and the UK.   

During the 2007/8 banking crisis, credit ratings are believed to have played a key role in this crisis (House 

of Commons’ report, May 2009). On one hand, it is argued that CRAs misled market participants by 

failing to reflect the difficulties faced by the banks in their ratings. On the other hand, market participants 

seemed to over-rely on these ratings for investment decision making (Bissoondoyal-Bheenick and 

Treepongkaruna, 2011) as it was assumed they were efficient processors of available information. This 

study tries to explore whether banks’ credit worthiness reflect banks’ basic risk characteristics. Our 

results indicate that banks’ credit ratings rely heavily on bank size, profitability and efficiency as 



indicators of banks’ credit worthiness. However, Barrell et al. (2010) and Haldane and Madouros (2012) 

find that these variables are not associated with either systemic risks or individual bank risks and hence 

the ratings agencies did not in general provide an adequate early warning system. In addition, less liquid 

banks are found to have higher ratings and the results show no robust relationship between banks’ credit 

ratings and each of asset quality, capital adequacy ratios and leverage. These results are surprising since 

inadequate capital, lack of liquidity and poor quality loans led many banks to collapse recently from 2007 

– 2011. These results indicate that the ratings seem to reflect a perception of potential profit rather than 

potential risk and that the ratings agency models did not pick up much of the cause of the crisis   

 If banks’ credit ratings do not in fact reflect risk, a change in regulation might be necessary, with reduced 

reliance on ratings agencies and even on risk weighting, in the policy framework. This may mean it would 

be wise to move away from the arrangements under the Basel II agreement, whereby banks can use credit 

ratings on their assets from approved CRAs when calculating their net regulatory capital reserve 

requirements. The more risky a bank’s portfolio is judged to be, the more reserve assets it must hold, and 

if it is heavily invested in highly liquid and low risk securities, the less it needs to hold as capital in 

reserves. If the ratings were wrong then capital levels may well have been inadequate as a result. 

The remainder of this paper is organised as follows. In section 2, we discuss related literature. Section 3 

develops the ordered logit model that we use to map accounting variables to credit ratings data and the 

construction of our explanatory variables. Section 3 describes the research sample, the results are then 

discussed in section 5 and section 6 provides concluding remarks. 

2.  Literature review  
 

Credit ratings are claimed to be forward-looking opinions about the ability and willingness of an issuer to 

meet its financial obligations in full and on time. CRAs rely on public information such as financial 

statements and non-public information derived from discussions about the management, planning and 

strategy of the company as well as subjective judgements by analysts to assign quality ratings either to 

bonds or issuers. Therefore, CRAs are generally dubious about the ability of economic models to capture 



the details of their credit rating and corporate bankruptcies (Kaplan and Urwitz 1979). However a number 

of prior studies have done a good job in explaining and predicting bond ratings and corporate 

bankruptcies as a function of a relatively small number of historically and publically available 

information (e.g., Altman, 1968; Kaplan and Urwitz, 1979; Holthausen and Leftwich, 1986; Hand et al., 

1992; Altman and Rijken, 2004).  

Prior studies on credit ratings as such can be classified into two main streams. The first stream of research 

(e.g., Altman and Saunders, 2001; Amato and Furfine, 2004; Iannotta, 2006; Shen et al., 2012) tries to 

examine the reliability of ratings. For example, Shen et al. (2012) investigates why rating agencies issue 

different ratings for banks with similar financial performance but from different countries. The second 

stream of research tries to explore determinants of different types of ratings: sovereign ratings (e.g., 

Cantor and Packer, 1996; Afonso, 2003; Bissoondoyal-Bheenick,  2005; Bennell et al., 2006), bond 

ratings (e.g., Kaplan and Urwitz, 1979; Blume et al., 1998; Iskandar-Datta and Emery, 1994; Molinero et 

al., 1996), issuer ratings (Poon et al., 1999; Gray et al., 2006; Bissoondoyal-Bheenick and 

Treepongkaruna, 2011; Bellotti et al. , 2011a , 2011b; Öğüt et al., 2012) and default probabilities (e.g., 

Altman, 1968;  Altman et al., 1977; Shin and Lee,  2002; Ahn and Kim, 2009; Chaudhuri and De,  2011, 

Bonfim, 2009; Liao et al., 2009). Our study is related to the second stream of research that examines 

determinants of issuer (bank) ratings and we discuss it in greater depth in the rest of this section. 

Bellotti et al. (2011a; 2011b) examine the impact of financial variables, the year in which the rating was 

made and country specific dummy variables (89 country dummies), on individual bank ratings produced 

by Fitch using two techniques: a data mining technique (support vector machines (SVM) and multivariate 

techniques (ordered probit and ordered logit models). The main purpose of Bellotti et al. (2011a; 2011b) 

is to compare the ability of ordered choice models and support vector machines in modelling and 

predicting international bank ratings. The financial ratios used include the ratio of equity to total assets, 

the ratio of liquid assets to total assets, the natural logarithm of total assets, the net interest margin, the 

difference between the ratio of operating income to total assets and the ratio of operating expenses to 

assets, the ratio of operating expenses to total operating income and the return on equity. Using data on 

681 international banks’ ratings  between 2000 and 2007, Bellotti et al. (2011a; 2011b) find that ratings 



reflect a bank’s financial position, the timing of rating assignment and a bank’s country of origin. Bellotti 

et al. (2011b) also find that the ordered choice models unambiguously identify the equity to total assets, 

the natural logarithm of total assets and the return on assets to be the most significant determinants of 

ratings. In addition, there is strong evidence that a bank’s country of origin has a significant influence on 

bank ratings. Although SVM are found to produce considerably better predictions of international bank 

ratings than ordered choice models due to its ability to estimate a large number of country dummies 

unrestrictedly, Bellotti et al. (2011b) argue that the ordered choice models are more reliable for this, since 

they yield more consistent results when modelling determinants of individual bank ratings.  

Poon et al. (1999) develop a model to explain bank financial strengths ratings issued by Moody’s using 

accounting variables and financial ratios of the banks. A total of 100 variables and ratios are collected for 

each bank to cover the major measures of profitability, efficiency, asset composition, interest 

composition, interest coverage, leverage and risk. Poon et al. (1999) use factor analysis to identify the 

important underlying constructs that explain bank financial strengths ratings. Three factors are found to 

account for over 50% of the variability in the data set and they are used in the ordered logit model (cross-

section analysis). Using a sample of 130 banks from 30 countries Poon et al. (1999) find that the loan 

provisions is the most important factor to explain bank financial strengths ratings, followed by risk, and 

then profitability. These three factors are able to correctly predict 63.1% bank financial strengths ratings. 

Country risk ratings do not appear to be significant determinant of bank financial strengths ratings. While 

the models achieved good predictive power, the best model includes traditional short-term and long-term 

debt ratings. This suggests that banks’ financial strengths ratings may not be adding very much 

information over and above that contained in traditional debt ratings. 

The current study is also related to the investigation of Shen et al. (2012). Although, Shen et al. (2012) 

investigate why rating agencies issue different ratings for banks with similar financial performance but 

from different countries (the reliability of ratings), they employ an ordered logit model of long-term bank 

ratings issued by S&P for a sample of 3347 bank-year observations from 86 countries during 2002–2008 

using financial ratios, sovereign credit ratings and different measures of information asymmetry.  Their 



model includes financial ratios1 about bank’s profitability, liquidity, capital, efficiency and asset quality. 

It also includes bank size and sovereign credit ratings as control variables. Countries are divided to those 

with low and high information asymmetry. The results demonstrate that without considering the effect of 

the asymmetric information; the five financial ratios show the expected influences on ratings. But when 

employing different measures of information asymmetry, the results show that in countries with low 

information asymmetry, the influences of financial ratios are strengthened, whereas they are weakened in 

countries with serious asymmetry.  This result applies to all financial ratios except for the capital ratio. 

Shen et al. (2012) explain this result by the heavy weight that credit rating agencies assign to the Capital 

ratio even in a country with severe information asymmetry.   

Öğüt et al. (2012) try to forecast bank financial strength ratings for a sample of 18 Turkish banks from 

2003 to 2009 issued by Moody’s using 26 financial and operational ratios.  Öğüt et al. (2012) use 

different techniques: data mining techniques (SVM and Artificial Neural Network) and multivariate 

techniques (multiple discriminant analysis and logit model) to estimate a suitable model and to compare 

the performances of these different techniques in estimating bank financial strength ratings. The purpose 

was to determine the variables that play an important role in assigning the ratings. Öğüt et al. (2012) find 

that the ordered logistic classifier performed better as compared to other classifiers when factor scores are 

used as input variables while multiple discriminant analysis and SVM achieved the highest accuracy rates 

when raw variables are used as input variables. The accuracy rates of all classifiers are higher when 

variables rather than factor scores are used as input.  Öğüt et al. (2012) find that the most important 

financial factors are efficiency, profitability and the proportion of loans in the assets. 

One closely related prior studies to  ours is Bissoondoyal-Bheenick and Treepongkaruna (2011) who 

analyse the quantitative determinants of banks’ ratings, provided by Standard & Poor’s, Moody’s, and 

Fitch for a sample of 49 commercial UK banks and 20 commercial Australian banks for the period 2006 

to 2008.  Using an ordered probit model, Bissoondoyal-Bheenick and Treepongkaruna (2011) find that 

                                                            

1 Profitability: the average ratio of net income to  total assets over the past three years; Liquidity: the average ratio of liquid 
assets to deposits  and short-term funding; Capital: the capital adequacy ratio as defined by the Bank of International 
Settlement; Efficiency : the average ratio of cost to income; Asset Quality: the average  ratio of loan loss provisions to net 
interest revenues. 



asset quality, liquidity risk, capital adequacy and operating performance are the key determinants of 

banks’ ratings across the rating agencies. In addition, market risk and macroeconomic variables such as 

gross domestic product and inflation are found to be insignificant factors in explaining banks’ ratings. 

However the authors use annual financial data to explain both short-term and long-term rating, but these 

data might be less effective in explaining long-term issuer ratings. This is because long-term ratings 

should reflect long-term perspective rather than most recent observations about the bank. In addition, 

these ratings are from different credit rating agencies with different ratings’ methodologies which might 

be captured by different financial variables. This might explain the very low percentage of correct ratings 

calls obtained in Bissoondoyal-Bheenick and Treepongkaruna (2011), when forecasting long-term ratings 

for a sample of banks in 2009. In addition, using a scale for rating from 1 to 21 and from 1 to 9 might 

have affected the results since banks’ ratings tend to be clustered around specific rating region such as 

A+/AA- for S&P.  

In sum, very recent prior studies that focused on banks vary in terms of the purpose of the study, the type 

of credit rating used (the dependent variable), the explanatory variables included in the model and the 

statistical analysis used. To date, no generally accepted model exists as to what determine CRAs 

perceptions of banks’ credit worthiness. The current study tries to fill this gap in the current literature by 

examining the accounting determinants of credit ratings of banks in two in the UK and the US where 

CRAs are believed to have played a key role in this crisis.   

Prior studies suggest a number of company characteristics to influence credit ratings such as: firm size, 

leverage, profitability, liquidity, growth, interest coverage, systematic risk, unsystematic risk. However, 

Philips (1975) and Ross (1976) suggest that credit analysts rely heavily on numbers produced by the 

firm’s accounting system rather than from the stock market. In addition, studies such as Bissoondoyal-

Bheenick and Treepongkaruna (2011) find an insignificant effect of market risk and macroeconomic 

factors on banks’ ratings. We emphasise that macroeconomic variables such as market risk are also 

important factors in determining banks’ ratings but banks cannot control these factors.  The current study, 

however, is interested in exploring banks’ specific characteristics that banks can control in order to 

improve their ratings relative to the other banks operating in the same environment. Therefore, the current 



study relies mainly on accounting information to explain credit ratings of banks in the US and the UK 

markets, namely: bank size, leverage, profitability, efficiency, liquidity, asset quality (risk) and capital 

adequacy. In the following section we explain the nature of a banking business and how banks’ 

characteristics can drive banks’ credit ratings. 

3. The research model 
  
It is useful to look at factors2 that might affect the riskiness of a bank in order to assess whether CRAs are 

taking these factors into account in setting their ratings. Banks take in deposits (D) in some form, on 

which they pay interest at a rate rd, and make loans (L) or enter into other credit provision arrangements 

on which they charge interest rl. Depositors may randomly demand cash and hence some low-risk liquid 

assets (LA with a rate of return rra,) have to be held, with rd- rra the cost of liquidity. The appropriate (on-

book) liquid asset ratios will depend on the variance of deposits (var(D)), their maturity composition and 

on the availability of off-book, or wholesale market, liquidity. We may write the asset side of the bank’s 

balance sheet (AS) as  

  AS = L +LA where LA/D = f(var(D), wholesale)   (1) 

When banks make loans they take risks, and the loan book will face a default rate that will vary over time 

with economic conditions. The expected default rate (b) is included in the spread between borrowing and 

lending rates, which will also include administrative costs (ad) and payment for risk taking (rp):  

  rl =  rd +b+ad+rp       (2) 

We may re-write this as an expression for the Net Interest Margin (NIM) which is the lending rate rl less 

the deposit rate rd 

  NIM =  b+ad+rp       (3) 

                                                            

2 See Table 2 for a summary of the factors included in the research model and their definitions.  



Given that banks may make larger-than-anticipated losses on their loan portfolio in some periods, they 

have to carry both contingency reserves (provisions) and finance some of their loan book with capital (K). 

In the absence of regulation, the amount of capital held by a bank will depend on the variance of loan 

losses (var(BL)) and on the cost of generating capital. The larger the quantity of capital relative to loans 

(K/L), the lower the probability of bankruptcy for a given var(BL) and hence the higher should be the 

CRAs rating. A bank may be concerned with the probability of default, and for a given var(BL) it may 

choose its level of capital to ensure that there is a reasonable distance to default in terms of the number of 

standard deviations the equity base will cover. The classic form of capital is equity. Additional loss-

absorbing capacity can be provided by subordinated debt, (SD with cost rsd  ) although since it is an 

obligation it does not protect against bankruptcy in the way that equity does. Chami and Cosimano, 

(2003) assert that Tier 2 capital in the form of subordinated debt may have positive benefits in terms of 

market discipline. It is argued that unlike equity, there may be alignment of the interests of subordinated 

debt holders with deposit insurers, creating incentives for bankers to disclose information to the market 

and hence the visibility of financial distress signals provided by subordinated debt spreads over the risk 

free rate. However, Levonian (2001) suggests that increasing subordinated debt raises risk in banks, and 

hence the CRAs evaluation should change with the mix of equity and subordinated debt3. The liabilities 

of the bank may be written as  

  LS = EQ + SD + D       (4) 

The gross profits (Πg ) of the bank after allowing for current charge-offs (BL) may be written as  

  Πg  = rl L + rra LA - rsd SD - rd D –BL – ad L    (5) 

If bad loan provisions (bL) exceed charge offs (BL) then the bank can build its provisions P with (bL – 

BL) or pay out some proportion (β) of the gain (or claw back a loss) in current profit. Profits (Π) may 

then be written as  

  Π = Πg + β (bL – BL)- (bL – BL)     (6) 

                                                            

3 See also Evanoff and Wall (2000) 



Hence the higher the gross profit of the bank, the easier it should be to absorb losses and hence the higher 

its credit rating by the CRA should be. The pure capital of the bank (K), all else equal, is its capital base 

plus its provisions, and abstracting from new issues of equity or of subordinated debt, capital evolves in 

relation to profit retentions (γΠ) and excess provisioning (1- β) (bL – BL), with (-1) indicating previous 

period values. 

K = EQ + SD + P   = EQ(-1) +γΠ + SD(-1) + P(-1) + (1- β) (bL – BL)  (7) 

In this context, a failure might emerge either because a bank does not have enough on-book liquidity to 

meet the needs of depositors, and cannot access the wholesale market, or because loan losses have built 

up to the point where capital is expected to be exhausted. The higher is LA/D for a given var(D) the less 

likely is a liquidity crisis, and the higher K/L or (EQ+SD)/L for a given var(BL) the less likely a solvency 

crisis will emerge. Hence their impact on the CRAs rating should be clear. 

The size of a bank may also be taken in to account when setting ratings. If there is an extreme cost 

involved in bankruptcy then the bank will plan to keep expected losses below a floor. Risk may be taken 

on until the distance to default, measured by K/sd(BL) = zf reaches a ceiling, where sd(BL) is the standard 

deviation of loan losses. This is the acceptable risk of catastrophic failure. Let us assume that risks are 

normal and that the acceptable probability is 0.001, much as is discussed in Zhu (2008). Then the bank 

may take on additional more risky loans and assets until its (maximum) expected loss is no higher than 

Xm = zf
* * SD where the target for zf

*
 is approximately 3.3 for a 0.001 probability. We may describe 

expected losses bL as 

bL = h(Xm, size, J)        (8) 

where the derivative with respect to Xm is negative, that with respect to size is negative because of the 

covariance of risks in the portfolio and positive in J which is the set of other factors affecting expected 

losses that will depend on decision making by the bank. This will include both its level of capital and the 

structure of that capital in terms of Tier 1 and Tier 2. In a world of exogenous risk we would expect that 

sd(BL) would decline with size, and hence larger banks could have a lower level of capital for a given 



distance to default (dtd or zf
*), or for a given level of the capital ratio they should have a higher rating 

from the CRAs.  

There is an extensive literature based on Merton (1977) on moral hazard for large banks, where size 

might generate an implicit ‘too big to fail’ guarantee. The implicit insurance from ‘too big to fail’ means 

that large banks have an incentive to lower capital adequacy. Demsetz and Strahan (1997) in a study of 

US banks found that, though larger bank holding companies are better diversified than smaller ones, they 

do not translate this advantage into less total risk. Rather, larger banks use their diversification advantage 

to operate with lower capital ratios and pursue riskier strategies, with greater concentrations of consumer 

and industry loans and exposure to systematic risk. Indeed, as Haldane and Madouros (2012) suggest 

there is no strong evidence to indicate that larger banks are less risky investments, except for the fact that 

they may be too large to be allowed to fail. Size and losses in the recent financial crisis (2007-2008) do 

appear to be positively related though. 

Consistent with prior studies and S&P’s methodology we model credit ratings as a function of a number 

of accounting variables capturing the core features of the analysis above. Therefore we model banks’ 

rating as a function of bank size, leverage, profitability, efficiency, liquidity, asset quality (risk) and 

capital adequacy ratios.  So the research model we are trying to examine in this paper is as follows: 

Long-term bank’s credit rating   =  ƒ (bank size,  leverage,  profitability,  efficiency,  liquidity, risk,  

capital adequacy).     (9) 

A bank’s long-term credit rating in our model is a discrete variable that takes a finite number of values 

ranges from AAA to D. These finite values have a natural ordering. Thus it possesses the characteristics 

of an ordinal scale. For example, AAA rating is higher than AA rating which is higher than A rating and 

so forth. Furthermore, these values are not necessarily evenly spaced. For example, the difference 

between A and BBB ratings does not necessarily equal the difference between BBB and BB ratings.  

These characteristics of the credit rating variable affect the statistical technique that can be used to 

explain and predict it. For example, ordinary least-squares regression estimation (OLS) would be 

inappropriate because the use of an ordinal dependent variable in a regression analysis violates the 



statistical assumptions of OLS.  Therefore a form of an ordered discrete dependent variable technique is 

preferred4 to tackle these problems. This is why we employ the ordered logit model to explain banks’ 

rating in the current study following Kaplan and Urwitz (1979), Blume et al. (1998), Gray et al. (2006), 

Poon et al. (1999) and Shen et al. (2012).  

4. The Research sample 
 

Long-term domestic issuer credit ratings for all UK and US banks rated by Standard & Poor’s over the 

period from 1994 to 2010 (206 banks) constitute the initial sample for this research. Concurrent annual 

financial information for the period 1994 to 2009 was collected from the BankScope database. The 

BankScope database has a standardised format for financial statements which makes data comparable 

over time and between banks that adopt different accounting standards.  We use two information concepts 

with regard to credit rating, with the first being forward looking and the second being backward looking, 

using published information. We define an annual financial report to be contemporaneous with the rating 

if it relates to the financial year-end that occurs within six months after the rating and hence our analysis 

of the ratings reflects forward-looking information. Alternatively if the annual financial report was 

published in the twelve months prior to the rating then our analysis of ratings reflects historical 

information. This is to ensure that any changes based on information released in the annual report are 

captured in the corresponding rating and also to examine the ability of credit ratings to capture financial 

information that are about to be released in the near future. 

We, therefore, create two different variables for banks’ credit worthiness: (i) CR6FOR: credit ratings 

takes place six months before the financial year-end assuming that credit ratings reflect forward-looking 

information, and (ii) CR12BK:  credit ratings obtained within 12 months after the financial year end.  

Both measures of credit ratings are ordered as follows: banks rated [AAA; AA] takes the value of 3. 

Banks rated [AA-; A+; A] takes the value of 2 and banks rated [A-; BBB+; BBB; BBB-] takes the value 

of 1. Banks that are rated less than BBB [from BB+ to D] were few and were dropped from the final 

                                                            

4 See Kaplan and Urwitz (1979, p.236). 



sample, which restricts our sample to banks with ratings that are considered to be investment grade only. 

In addition, credit ratings for which financial information was unavailable were excluded from the final 

sample. This leaves us with a final sample of 85 banks [27 UK banks and 58 US banks]. The number of 

observations per bank ranged from three to nine observations over the period 1994 to 2009 due to missing 

data. 

We created a number of measures for each accounting variable using BankScope database.  This process 

ended up with a total number of 36 measures of the different bank characteristics: five for size, five for 

profitability, five for leverage, four for efficiency, six for liquidity, five for asset quality (risk) and six for 

capital adequacy ratios. In assigning credit ratings, CRAs such as S&P adopt a methodology known as 

‘rating through the cycle’ that takes a long-term perspective about the firm. In particular, when assigning 

long-term credit rating, S&P considers three-year averages of relevant financial ratios rather than just the 

most recent observations. Therefore, all accounting variables in the current study are computed using a 

three-year arithmetic average of the annual data (Blume et al., 1998; Gray et al., 2006).  Given the time 

frame and the number of banks in our sample, a further reduction in the number of variables was 

desirable. This is particularly necessary as the variables within each set are summarising essentially the 

same underlying information and hence are generally strongly collinear. In order to extract the underlying 

structure we applied principal components analysis5 to each set of measures in order to be able to 

summarise their characteristics.  

We can express the concept mathematically as follows. If we take a set of n related variables X available 

over the time period t we can calculate the n*n correlation matrix XX’ which will have n eigenvetors in a 

matrix V associated with n eigenvalues (or weighting factors) λi. Each principal component (or 

eigenvector) summarise an orthogonal component of the correlation matrix, and represent a weighted 

                                                            

5 Principal component analysis is a variable reduction procedure. It is useful when you have data on a number of variables 
which are measuring the same construct, which means that these variables are correlated with one another.   We may wish to 
reduce the observed variables into a smaller number of principal components (artificial variables) that will account for most of 
the variance in the observed variables, or we may wish to find which of the set of raw variables can be seen as summarising the 
others. The principal components or the dominant variables may then be used as predictor or criterion variables in the 
subsequent analysis.  
 



combination of each of the elements. We may judge the importance of the component (ranked form ‘most 

to least) by proportion of the covariance matrix it summarises, and we can judge the importance of each 

variable in the set of data to the vector by its weighting. Table 1 gives the first two principal components 

for each of our seven data sets and excludes the others, and it also reports on the cumulative proportion of 

XX’ that the component explains.  In all cases the first component summarises over a third of the variance 

in the observed variables, whilst the first two summarise over 60 percent. Therefore, we decided to 

investigate two sets of models based on the outcomes of the principal component analysis: a 

parsimonious one based on the highest weighted element of the first principal component only, and a 

more general model that is based on the highest weighted elements in the first two principal components 

as shown below.  

CR= ƒ (Assets1, Assets5, Leverage3, Leverage5, Profit2, Profit3, Efficient4, Efficient1, Liquid1, Liquid3, 
Risk3, Risk5, Capital3, Capital5)      (10) 

Table 2 describes these variables in detail and the expected direction of a relationship between each 

explanatory variable and the dependent variable. 

5. Research results and discussion 
 

The purpose of the current study is to examine to what extent banks’ ratings reflect banks’ basic characteristics 

revealed in its publically available accounting information, and to determine to what extent banks’ ratings 

reflect banks’ risk. We examine our research models using a multivariate ordered logit analysis and then 

look at the predictive capacity of these models. We have two dependent variables, a backward and a 

forward looking rating and two potential time periods (because it is claimed that CRAs raised their 

standards in assigning ratings in mid- 2001), as well as a parsimonious and a general model, giving us 8 

possible models to choose between. There are several criteria we could use for doing this, but we 

emphasise the efficiency in allocating the sample banks correctly into the relevant ratings’ categories, 

with a strong emphasis on the need to be able to correctly classify banks with low ratings. In addition, we 

look to see which variables are significant in our analysis, testing for the deletion of insignificant ones. 

This allows us to evaluate the models in terms of their inclusion of significant crisis driven variables. We 



first describe the data set and the correlations between variables. Then we discuss the results of the 

multivariate analysis. 

5.1 Descriptive analysis 
 

Table 3 shows both the descriptive analysis of each explanatory variable under the two dependent 

variables and for each rating category.  It also shows the descriptive statistics by rating category for a 

number of accounting variables that are found to be relevant to the credit rating process from the principal 

component analysis.  Table 3 shows that banks in the sample vary on average from small (average total 

assets of 15,617 to 447,834 mil USD) to very big banks.  Banks in our sample have average interest-

bearing liabilities divided to average earning assets ratio (Lev5) of 71% but very low leverage ratio 

represented by Lev3. On average, the sample banks have a cost to income ratio of 57% (EFF1) and an 

average ratio of 4.2 % of non-interest expenses to average assets. The sample banks have on average a 

ratio of net loans to total of 61% (LIQ1) but a ratio of loans to customer deposits of 117% (LIQ2).  The 

net charge off or the amount written-off from loan loss reserves less recoveries to gross loans is on 

average 99% (Risk3) but the average growth of gross loans of a bank to the total growth of gross loans of 

the sample banks is 0.01%. Banks in our sample have an average ratio of equity to total assets of 12% 

(CAP3) with a very low subordinated debt to total assets ratio (CAP5) of 2 %. 

5.2 Correlation matrix 
 

Table 4 shows Pearson Correlations results between measures of credit ratings and a number of 

accounting variables which proxy for firm size, liquidity, efficiency, profitability, leverage, risk and 

capital for a sample of US and UK banks. The results show that credit ratings have a significant positive 

association with both measures of bank size (Assets1 and Assets5) as expected, which indicates that larger 

banks have higher credit ratings.  No relationship with leverage3 is found but a negative and significant 

association with leverage5 is documented, which indicates that highly levered banks have lower credit 

ratings. Contrary to our expectations, profitability measures have in general a negative and significant 

relationship with banks’ credit ratings. However this is a univariate analysis, which suffers from potential 

omitted variables. The association with both measures of efficiency is negative and significant, which 



indicates that banks that are able to drive their costs down relative to other banks may be perceived to be 

more efficient and are awarded higher ratings.  

The results also show a negative and significant correlation between bank’s rating and liquid1 which 

indicates that higher rated banks have lower net loans to total assets ratio. Contrary to our expectations, 

the correlation between banks’ ratings and liquidity is positive when we consider the ratio of net loans to 

customers’ deposits (liquid3) but less robust since it is not significant with our measure of forward-

looking ratings.    In general, no association is found between the two measures of banks’ risk and credit 

rating except that Risk3 shows a negative and significant association with backward-looking banks’ 

ratings, which means that lower charge off indicate lower risk for banks and higher ratings.  The correlations 

suggest that the higher the equity to total assets ratio (capital3) of a bank the lower the credit rating but 

the higher the subordinated debts to total assets the higher the banks’ rating. In addition, the correlations 

between the explanatory variables do not indicate that multicollinearity problem forms a significant 

problem for our models. This in part reflects our pre-selection using principal components so that 

variables within a subset should be largely independent of each other. 

5.3 Regression results 
 

We employ the logit regression technique to regress measures of bank size, leverage, profitability, 

efficiency, liquidity, risk and capital on each measure of the dependent variable. In each case we estimate 

a minimal model which includes the highest weighted measure in the first principal component for each 

variable. In addition, we estimate a maximal model that includes the highest weighted measures in the 

first two principal components for each variable. For forward-looking rating the minimal model is: 

βX it=a+b1 Assets1it+ b2 Leverage3 it +b3 Profit2it + b4 Efficient4it +b5 Liquid1it + b6 Risk3it + b7Capital3  

Whilst the maximal model (denoted with a *) is 

β*X* it = a + b1 Assets1it + b11 Assets5it +b2 Leverage3 it + b21 Leverage5 it + b3 Profit2it +b31 Profit3it + 

b4 Efficient4it + b41 Efficient1it + b5 Liquid1it + b51 Liquid3it + b6 Risk3it + b61 Risk5it + 

b7Capital3 it   + b71Capital5 it    



See Table 2 for a summary definition for all the variables. For the backward-looking rating model we change the 

dependent variable to RT12BKit. We run these two regressions for the full sample period [1994 to 2009] and 

for a shorter period [from 2002 to 2009] because it is claimed that CRAs raised their standards in 

assigning ratings in mid- 2001 (Gray et al., 2006; Cheng and Neamtiu, 2009). Each set of results reports 

on the Akaike information criterion (AIC) as well as the pseudo R squared, and contains a table 

summarising the classification of the dependent variable into predicted asset clasess. Although we do not 

set out an explicit cost function for choosing between models, we are looking to maximise the quality of 

the fit, with the percent correct in category 1 (lowest rated banks) and 3 (highest rated banks) carrying 

more weight than category 2 which would anyway be the default in a no information analysis as most 

banks are in that category.  

Table 5 shows the results of four regression models for the full sample period [1994-2009] with both the 

maximum and the minimal regression models for the two dependent variables [backward-looking rating 

and forward-looking rating]. The results suggest a positive and highly significant relationship between 

bank size (Asset1 and Assets5) and bank’s rating as expected and consistent with results from prior 

studies (e.g., Bellotti et al., 2011a; 2011b;  Shen et al., 2012). As discussed above, this may have been a 

misperception of the risks and the strategies undertaken by large banks, and can be considered a 

misclassification of risk by the CRAs. The results also show that leverage does not have a relationship 

with banks’ credit ratings except for the maximum regression model with forward-looking ratings. Again 

the lack of attention to leverage can be seen as a misclassification of risk by the CRAs. Profitability in 

general shows positive and significant relationship with banks’ credit ratings as expected, except that the 

net interest margin before provisions (Profit2) has a significant but negative relationship with banks’ 

backward-looking rating which contradicts our former expectations. The results also show a negative and 

highly significant relationship between banks’ credit rating and banks (lack of) efficiency measured by 

the ratio of cost to income (efficiency 1) as expected and consistent with results from Shen et al. (2012). 

The results for non-interest expenses relative to assets (efficiency4) are generally in line with our 

expectations with the exception that backward rating exhibits a positive and significant relationship. The 



results for bank efficiency indicate that more efficient banks which are able to drive their costs down 

relative to other banks are awarded higher ratings. 

The results also show a negative relationship between banks’ ratings and their liquidity in terms of the 

ratio of net loans to total assets (Liquid1) but this is only significant for the minimal models, consistent 

with results from Bissoondoyal-Bheenick and Treepongkaruna (2011) and Shen et al. (2012).  However, 

contrary to our expectations and to results from prior studies, the results show a positive and highly 

significant relationship between the ratio of net loans to customer deposits (liquid3) and banks’ ratings 

This result indicates that less liquid banks, which might be more profitable in the short run,  were rated 

more highly which is surprising since banks’ lack of liquidity is a major risk and it was an important 

reason for systemic problems which contributed to the recent financial crisis 2007/08 (Barrell et al., 

2010). Finally, the results show no relationship between banks’ credit rating and either bank’s risk or 

capital adequacy ratios. This latter result is surprising as well since capital adequacy forms a buffer 

against loan losses, and it was inadequate capital that led many banks to collapse recently from 2007 – 

2011. These results for liquidity and capital adequacy indicate that the ratings agency models did not pick 

up their importance and hence missed much of the cause of the crisis. In general the ratings seem to 

reflect a perception of potential profit rather than potential risk.  

In addition the results also show that these four models are able to replicate 68 to 77 percent of the 

assigned ratings of our sample banks, but in general, the maximum models perform better than the 

minimum models in terms of the total hit ratio. The default choice category would be category 2, as this is 

where the majority of banks are located, and our maximal model can pick up 44 to 57 percent  of the 

banks that are assigned to category one. This is particularly important for investors as lower graded banks 

require more coverage. The minimal model picks up only 11 to 14 percent of the banks that are allocated 

to the lowest category. If the model user is risk averse then they will have a strong reason to choose the 

maximal model as it picks up weaker banks (in terms of their credit ratings).   

We re-run the analysis for a shorter period [from 2002 to 2009], because it is claimed that CRAs raised 

their standards in assigning ratings in mid- 2001 (Gray et al., 2006; Cheng and Neamtiu, 2009). Table 6 



shows the results of four regression models for the shorter sample period. The results are generally similar 

to those obtained for the full sample period, but the Pseudo R squared is noticeably higher in each case, 

suggesting the model fit is significantly better over the shorter period. In the forward looking maximal 

model the two size related assets variables remain significant, whilst the net interest margin after 

allowances (Profit2) has a negative impact, suggesting the agencies considered high profitability was 

associated with more risk taking. The (lack of) efficiency indicator (costs to income) remains negative 

and significant, as we would expect. The ratings agencies rewarded banks who relied on the wholesale 

market for liquidity (one way of interpreting the Liquidity 3 indicator) with a higher rating, which was 

perhaps unwise as some of the first banks to fail in the 2007-2011 crisis were those, such as Northern 

Rock, who depended heavily on that market. Over this shorter period it becomes clear that ratings 

agencies were taking account of equity in banks and that those with more equity (capital3) were rewarded 

with higher ratings. 

The backward looking model is similar to the forward looking one, but there is no significant role for 

capital in the maximal backward model. The maximal models are noticeably better than the minimal 

models in terms of their hit ratio for the highest and lowest rated banks and this suggest that the ratings 

agencies were using a wider information set to grade these banks, and this is more easily picked up with 

our two principal components model. Between 70 and 80 per cent of the lowest rated banks are picked up 

by this accounting information based model, with 53 or 65 per cent of the highest rated banks being 

picked up. This would suggest that the agencies used non-accounting information in their ratings 

decisions more heavily in the case of good banks (as they perceived them) than bad banks.  

As a robustness check, we test for the inclusion of variables that were consistently insignificant for the 

same model for the same sample period using Wald test as shown in Table 7. If the Wald test is 

significant (the p-value is below .05), then we would conclude that the parameters associated with these 

variables are jointly significantly different from zero, so that the variables should be included in the 

model. The results show that the variables we have tested for the different models are jointly not different 

from zero, therefore we should exclude them from the model. However, these variables are jointly 

different from zero in the Maximum model for the shorter sample period for the forward-looking rating. 



Therefore, dropping these variables from the model would result in a loss of information and affects both 

Pseudo R-squared and the fit ratio of the model. Therefore, we keep them in the model.   

To sum up, our results show a robust significant positive relationship between banks’ credit ratings and 

bank size (Assets1)  consistent with results from Bellottie et al. (2011a; 2011b), indicating that larger 

banks receive higher ratings. The results also show a robust significant negative relationship between 

banks’ ratings and (in) efficiency (Efficiency1) consistent with results from Öğüt et al. (2012). Contrary to 

our expectations, a robust significant but positive relationship between banks’ ratings and lower liquidity 

(Liquid3) is documented. In addition, the results show that banks’ credit ratings do not seem to 

consistently pick up the effect of capital adequacy, leverage, profitability and bank risk. Further tests 

prove that these variables are jointly significant for the process of credit ratings, in particular the forward-

looking ratings. 

6. Concluding remarks  

This study contributes to the current literature on credit risk and on financial institution by examining 

banks’ characteristics that derive banks’ credit ratings for a sample of US and UK banks. Our analysis 

shows that a small number of accounting variables, namely: bank size, liquidity, and efficiency have 

robust association with banks’ credit ratings. The results also show that our model performs better for the 

sample period 2002 to 2009 and is able to correctly assign credit rating for approximately 74% to 78% the 

sample banks. Moreover, our analysis shows that these accounting variables are better able to explain the 

forward-looking ratings for the highest rated banks but the backward-looking ratings equations are best 

for replicating the lowest rated banks ratings. This might indicate that CRAs were more conservative 

when assigning ratings for the lowest rated banks and relied on historical accounting information. Our 

results also show that the maximum models worked better than the minimum models in terms of Pseudo 

R-squared and the hit ratios for the highest and lowest rated banks which suggest that CRAs rely on a 

wider set of information in assessing banks’ creditworthiness. However, this study is limited to the 

publicly available accounting information only, though issuer credit ratings is claimed to capture both 

publicly available and private information both quantitative and qualitative.  



Some interesting and perhaps surprising results are obtained from the current study. The main result is 

the lack of association between ratings and leverage and capital adequacy. In addition, the relationship 

between banks’ credit rating and liquidity is the reverse of that expected, with less liquid banks in terms 

of the ratio of loans to customer deposits being associated with higher ratings, despite the problems of 

wholesale market dependence implied during the 2007-8 crises. We would posit that the CRAs were 

rewarding the efficient use of funds without looking fully at the risks involved.  

The findings of the current study have potential important implications for a wide range of parties who 

use the information provided by CRAs.  These include (Boot et al., 2006) : issuers of debt (in this 

context, banks) who request a rating; investors purchasing short- or long-term debt (‘buy-side’ 

participants); investment banks marketing debt securities (‘sell-side’ participants); trade and commodity 

financiers assessing risk  in individual transactions; and regulators, assessing  the credit risk  associated 

with an institution’s assets and liabilities. The House of Commons’ report (May 2009) indicates that 

market participants seemed to over-rely on these ratings. In this context, the findings of the current study 

indicate that banks’ credit ratings did not pick up major risks such as lack of liquidity and capital 

adequacy. In addition, under the Basel II agreement, banks can use ratings from approved credit rating 

agencies such as Standard & Poor’s when calculating their net capital reserve regulatory requirements. 

However, if banks’ credit ratings do not in fact reflect this risk, a change in regulation might be 

necessary, with reduced reliance on ratings agencies and even on risk weighting, in the policy 

framework. 
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Tables  

Table (1) Results for the principle component analysis 

 

  Size    Leverage    Profitability  Efficiency   Liquidity    Risk   Capital adequacy  

Variable  PC 1    PC 2    PC 1    PC 2    PC 1    PC 2    PC 1    PC 2    PC 1    PC 2    PC 1    PC 2    PC 1    PC 2   

                             

1  0.69  0.09  0.52  ‐0.46  0.47  ‐0.13  0.12  0.95  0.47  ‐0.03  0.49  ‐0.45  0.49  ‐0.03 

2  0.64  0.25  0.18  ‐0.05  0.52  0.03  0.49  ‐0.31  ‐0.40  0.48  0.42  0.48  0.49  0.02 

3  0.34  ‐0.55  0.54  ‐0.45  0.34  0.77  0.59  0.00  0.31  0.63  0.62  ‐0.04  0.50  0.07 

4  ‐0.02  ‐0.34  0.48  0.52  0.51  0.02  0.63  0.05  0.39  0.45  ‐0.45  ‐0.12  0.48  0.22 

5  ‐0.07  0.71  0.43  0.57  0.37  ‐0.62      0.46  0.00  ‐0.02  0.74  ‐0.02  0.73 

6                  ‐0.41  0.40      ‐0.18  0.64 

                             

Cumulative 
Proportion 

0.34  0.61  0.44  0.79  0.73  0.89  0.61  0.86  0.70  0.90  0.41  0.73  0.58  0.78 



Table 2: Variables definition 

Variable  Definition  Expected 
relationship 

Credit ratings 

RT6FOR  Forward‐looking credit rating that takes place 6 months prior to 

the financial year‐end 

 

RT12BK    Backward‐looking Credit rating that takes place within 12 months 

after the financial year‐end 

 

Bank Size 

Asset1  The natural logarithm of a three‐year arithmetic average of total 

assets 

+ 

Asset5  A three‐year arithmetic average of total assets deflated by a 

three‐year arithmetic average of business volume 

+ 

Leverage 

LEV3  A three‐year arithmetic average of the ratio (total long term 

funding minus total equity all deflated by total assets) 

‐ 

LEV5  Average Interest‐Bearing Liabilities divided by Average Earning 

Assets 

‐ 

Profitability 

Profit2  A three‐year arithmetic average of net interest margin. This ratio 

is the net interest income expressed as a percentage of earning 

assets. 

+ 

Profit3  A three‐year arithmetic average of the ratio net interest income 

less loan impairment charges all deflated by average earning 

assets.  

+ 

Efficiency  

EFF1  A three‐year arithmetic average of the ratio cost to income  ‐ 

EFF4  A three‐year arithmetic average of the ratio non‐interest 

expenses to average assets 

‐ 

Liquidity 

LIQ1  A three‐year arithmetic average of the ratio net loans to total 

assets 

‐ 

LIQ3  A three‐year arithmetic average of the ratio Loans to Customer 

Deposits 

‐ 



Risk (asset quality) 

Risk3  A three‐year arithmetic average of the ratio net charge off or the 

amount written‐off from loan loss reserves less recoveries to 

gross loans 

‐ 

Risk5  A three‐year arithmetic average of growth of gross loans of a 

bank deflated by total growth of gross loans of the sample banks 

‐ 

Capital adequacy 

CAP3  A three‐year arithmetic average of the ratio equity / total assets   + 

CAP5  A three‐year arithmetic average of the ratio subordinated 

borrowing to total assets 

‐ 

 

Table (3) Descriptive analysis: 

 

Panel A:  Frequency of ratings:  

 

Rating category  RT12BK  RT6FOR 

1  88  81 

2  264  262 

3  51  58 

Total  403  401 



 

Panel B: RT12BK : Backward‐looking credit ratings 

Rated [AAA; AA]             

   Minimum  Maximum  Mean  STD  Skewness  Kurtosis 

Assets1 [mil USD]  605  1993529  447,834  562940  1.30  0.80 

Assets5  0.61  1.00  0.85  0.11  ‐0.21  ‐0.86 

LEV3  0.00  0.31  0.09  0.08  0.88  0.51 

LEV5  0.02  1.37  0.64  0.25  0.35  0.65 

Profit2  0.08  5.88  2.28  1.68  1.05  ‐0.26 

Profit3  0.40  5.63  2.07  1.80  0.96  ‐0.72 

EFF4  0.12  4.58  2.26  1.19  0.54  ‐0.70 

EFF1  11.86  82.57  55.45  13.99  ‐0.90  2.02 

LIQ1  1.74  96.80  54.06  20.16  ‐0.26  0.47 

LIQ3  75.47  497.00  143.64  96.58  3.02  9.21 

Risk3  0.07  0.94  0.44  0.21  0.43  0.13 

Risk5  0.00  0.00  0.00  0.00  0.14  ‐0.18 

CAP3  1.62  79.48  10.62  16.87  3.12  9.65 

CAP5  0.00  0.04  0.02  0.01  0.46  ‐0.54 

             

RATED [AA‐; A+; A]             

Assets1[mil USD]  258  2540774  103,723  359072  5.49  31.79 

Assets5  0.08  1.00  0.72  0.24  ‐1.22  0.90 

LEV3  0.00  0.90  0.07  0.12  3.38  15.69 

LEV5  0.00  1.24  0.73  0.29  ‐1.10  0.76 

Profit2  ‐0.46  14.26  3.70  2.27  1.36  3.94 

Profit3  ‐0.53  11.40  3.12  1.77  0.91  3.48 

EFF4  0.09  41.34  4.40  5.27  3.45  16.32 

EFF1  3.24  109.75  56.14  17.98  ‐0.42  1.75 

LIQ1  0.00  95.90  62.72  22.47  ‐1.36  1.58 

LIQ3  0.00  513.20  125.34  82.39  2.25  7.01 



Risk3  ‐5.13  6.06  0.80  1.40  1.67  5.85 

Risk5  0.00  0.02  0.00  0.00  2.85  11.86 

CAP3  1.43  95.05  11.36  11.56  3.87  19.39 

CAP5  0.00  0.22  0.02  0.03  4.61  25.68 

             

RATED [A‐; BBB+; BBB; BBB‐]            

Assets1[mil USD]  353  185767  15,617  29656  4.51  22.42 

Assets5  0.08  1.00  0.70  0.29  ‐1.07  ‐0.31 

LEV3  0.00  0.61  0.07  0.13  2.82  7.92 

LEV5  0.07  1.07  0.71  0.20  ‐0.65  0.48 

Profit2  0.54  9.24  3.51  1.80  0.75  1.35 

Profit3  0.15  5.29  2.73  1.31  ‐0.33  ‐0.67 

EFF4  ‐1.29  20.49  4.74  4.44  1.51  2.16 

EFF1  13.68  153.06  67.12  21.20  0.57  4.79 

LIQ1  23.00  89.27  63.79  16.22  ‐0.36  ‐0.31 

LIQ3  47.81  493.00  117.03  67.27  3.65  17.55 

Risk3  ‐0.10  6.89  1.05  1.63  2.00  3.47 

Risk5  0.00  0.01  0.00  0.00  1.04  2.06 

CAP3  2.52  67.65  13.83  12.27  2.94  9.30 

CAP5  0.00  0.05  0.01  0.01  1.21  0.99 



 

Panel C: RT6FOR :Forward‐looking credit ratings 

Rated [AAA; AA]             

   Minimum  Maximum  Mean  STD  Skewness  Kurtosis 

Assets1[mil USD]  258  2448493  512,110  671268  1.40  1.13 

Assets5  0.61  1.00  0.84  0.11  ‐0.02  ‐0.78 

LEV3  0.00  0.29  0.08  0.07  0.90  0.38 

LEV5  0.02  1.09  0.65  0.24  ‐0.12  ‐0.43 

Profit2  0.17  6.14  2.53  1.82  0.86  ‐0.86 

Profit3  0.40  5.63  2.14  1.83  0.85  ‐1.04 

EFF4  0.22  5.17  2.48  1.32  0.57  ‐0.85 

EFF1  9.97  82.57  56.68  13.52  ‐1.18  2.82 

LIQ1  1.93  96.80  54.15  19.27  ‐0.50  0.14 

LIQ3  75.80  459.90  130.95  66.45  3.67  17.34 

Risk3  0.04  1.52  0.52  0.27  1.35  4.32 

Risk5  0.00  0.01  0.00  0.00  ‐0.53  2.36 

CAP3  1.87  95.05  11.92  20.15  3.11  9.30 

CAP5  0.00  0.04  0.02  0.01  0.37  ‐0.55 

             

RATED [AA‐; A+; A]             

Assets1[mil USD]  614  2540774  78,694  282414  6.96  54.44 

Assets5  0.08  1.00  0.70  0.25  ‐1.07  0.30 

LEV3  0.00  0.90  0.08  0.13  3.17  13.47 

LEV5  0.00  1.22  0.71  0.29  ‐1.08  0.64 

Profit2  ‐0.46  14.26  3.85  2.34  1.36  3.54 

Profit3  ‐0.53  11.40  3.12  1.77  1.00  3.91 

EFF4  0.04  31.83  4.69  4.99  2.32  6.40 

EFF1  1.97  105.86  55.97  17.41  ‐0.58  1.83 

LIQ1  0.00  96.26  62.81  22.86  ‐1.38  1.62 

LIQ3  0.00  511.23  128.55  90.09  2.12  5.71 



Risk3  ‐5.13  6.89  1.03  1.66  1.43  3.31 

Risk5  ‐0.01  0.02  0.00  0.00  2.44  10.40 

CAP3  1.43  72.99  11.90  10.77  3.15  12.52 

CAP5  0.00  0.22  0.02  0.04  4.21  20.06 

             

RATED [A‐; BBB+; BBB; BBB‐]            

Assets1[mil USD]  377  188441  13,959  26516  5.82  38.24 

Assets5  0.09  1.00  0.72  0.28  ‐1.19  0.07 

LEV3  0.00  0.58  0.07  0.12  2.83  8.31 

LEV5  0.07  1.01  0.71  0.20  ‐0.74  0.38 

Profit2  0.49  6.85  3.13  1.60  0.11  ‐0.26 

Profit3  0.07  5.36  2.70  1.33  ‐0.39  ‐0.65 

EFF4  ‐1.29  13.10  3.97  3.62  1.17  0.54 

EFF1  13.68  153.06  69.71  22.46  0.40  4.18 

LIQ1  23.00  89.27  62.18  16.85  ‐0.31  ‐0.55 

LIQ3  39.24  513.20  115.87  71.66  3.96  20.20 

Risk3  ‐0.10  4.13  0.69  1.12  2.17  3.72 

Risk5  0.00  0.01  0.00  0.00  0.99  2.39 

CAP3  2.09  67.65  12.90  12.86  3.09  9.86 

CAP5  0.00  0.05  0.01  0.01  1.22  1.29 



Table (4) Correlations results (Values in parentheses are probabilities of significance) 

RT12BK  RT6FOR  ASSETS1   ASSETS5   LEV3  LEVE5  PROFIT2   PROFIT3   EFF4   EFF1   LIQ1   LIQ3   RISK3   RISK5   CAP3   CAP5 

RT12BK  1.000 

(‐‐‐‐‐)  

RT6FOR  0.792  1.000 

(0.000)  (‐‐‐‐‐)

ASSETS1   0.395  0.454 1.000 

(0.000)  (0.000) (‐‐‐‐‐)  

ASSETS5   0.306  0.237 0.094  1.000

(0.000)  (0.001) (0.202)  (‐‐‐‐‐)

LEV3  0.083  0.064 0.391  ‐0.039 1.000

(0.261)  (0.385) (0.000)  (0.604) (‐‐‐‐‐ )

LEV5  ‐0.137  ‐0.205 ‐0.205  ‐0.142 0.099 1.000

(0.064)  (0.005) (0.005)  (0.055) (0.181) (‐‐‐‐‐)

PROFIT2   ‐0.207  ‐0.166 ‐0.352  ‐0.606 0.013 0.333 1.000

(0.005)  (0.025) (0.000)  (0.000) (0.861) (0.000) (‐‐‐‐‐)

PROFIT3   ‐0.059  ‐0.153 ‐0.496  ‐0.252 ‐0.225 0.337 0.809 1.000

(0.424)  (0.038) (0.000)  (0.001) (0.002) (0.000) (0.000) (‐‐‐‐‐)

EFF4  ‐0.289  ‐0.190 ‐0.170  ‐0.812 0.198 0.017 0.708 0.317 1.000

(0.000)  (0.010) (0.021)  (0.000) (0.007) (0.815) (0.000) (0.000) (‐‐‐‐‐ )



EFF1  ‐0.195  ‐0.165 ‐0.055  0.070 ‐0.115 ‐0.278 ‐0.157 ‐0.106 0.122 1.000

(0.008)  (0.025) (0.457)  (0.348) (0.121) (0.000) (0.034) (0.151) (0.099) (‐‐‐‐‐ )

LIQ1  ‐0.148  ‐0.199 ‐0.184  ‐0.153 0.225 0.879 0.384 0.273 0.091 ‐0.316 1.000

(0.044)  (0.007) (0.013)  (0.038) (0.002) (0.000) (0.000) (0.000) (0.221) (0.000) (‐‐‐‐‐ )

LIQ3  0.161  0.112 0.207  ‐0.080 0.608 0.424 0.184 0.023 0.149 ‐0.310 0.546 1.000

(0.029)  (0.130) (0.005)  (0.281) (0.000) (0.000) (0.013) (0.757) (0.043) (0.000) (0.000) (‐‐‐‐‐)

RISK3   ‐0.225  ‐0.050 0.054  ‐0.633 0.263 0.029 0.540 0.032 0.703 ‐0.081 0.166 0.216 1.000

(0.002)  (0.504) (0.467)  (0.000) (0.000) (0.696) (0.000) (0.662) (0.000) (0.276) (0.024) (0.003) (‐‐‐‐‐)

RISK5   0.116  0.089 0.153  ‐0.021 0.128 0.176 ‐0.121 ‐0.048 0.017 ‐0.207 ‐0.054 0.118 ‐0.078 1.000

(0.116)  (0.230) (0.038)  (0.775) (0.084) (0.017) (0.102) (0.520) (0.815) (0.005) (0.468) (0.111) (0.292) (‐‐‐‐‐ )

CAP3  ‐0.228  ‐0.182 ‐0.401  ‐0.403 ‐0.219 0.101 0.244 0.187 0.370 ‐0.170 ‐0.074 ‐0.138 0.166 0.340 1.000 

(0.002)  (0.013) (0.000)  (0.000) (0.003) (0.171) (0.001) (0.011) (0.000) (0.021) (0.318) (0.062) (0.024) (0.000) (‐‐‐‐‐ ) 

CAP5  0.125  0.131 0.259  ‐0.026 ‐0.135 ‐0.040 ‐0.335 ‐0.298 ‐0.266 ‐0.138 ‐0.149 ‐0.128 ‐0.175 0.045 0.068  1.000 

(0.092)  (0.076) (0.000)  (0.726) (0.068) (0.586) (0.000) (0.000) (0.000) (0.061) (0.043) (0.082) (0.018) (0.548) (0.357)  (‐‐‐‐‐)  
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Table (5) Ordered logit regression results for the period 1994‐2009 

 

Dependent Var.    RT12BK            RT6FOR   

    Max  Min  Max  Min 

Assets1  +  0.740***  0.614***  0.724***  0.699*** 

    (0.000)  (0.000)  (0.000)  (0.000) 

Assets5  +  3.902**    5.575***   

    (0.022)    (0.001)   

LEV3  ‐  ‐4.830  0.349  ‐7.152***  ‐0.988 

    (0.100)  (0.832)  (0.009)  (0.562) 

LEV5  ‐  ‐0.563    ‐0.403   

    (0.831)    (0.875)   

Profit2  +  ‐1.319***  0.355***  ‐0.103  0.335*** 

    (0.008)  (0.011)  (0.816)  (0.013) 

Profit3  +  1.478***    0.317   

    (0.001)    (0.414)   

EFF4  ‐  0.342**  ‐0.161**  0.211  ‐0.152** 

    (0.028)  (0.017)  (0.151)  (0.030) 

EFF1  ‐  ‐0.078***    ‐0.055***   

    (0.000)    (0.004)   

LIQ1  ‐  ‐0.021  ‐0.022*  ‐0.033  ‐0.028** 

    (0.551)  (0.079)  (0.345)  (0.024) 

LIQ3  ‐  0.009**    0.007**   

    (0.015)    (0.049)   

Risk3  ‐  0.223  ‐0.165  0.160  0.053 

    (0.493)  (0.299)  (0.591)  (0.739) 
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Risk5  ‐  ‐77.867    ‐0.773   

    (0.516)    (0.995)   

CAP3  +  ‐0.056  ‐0.019  ‐0.014  ‐0.012 

    (0.269)  (0.431)  (0.787)  (0.619) 

CAP5  ‐  7.387    11.917   

    (0.580)    (0.376)   

           

Pseudo R‐squared    0.297  0.176  0.265  0.2017 

Akaike info criterion    1.339  1.468  1.448  1.4706 

N    198  221  188  210 

           

Dep. Value    % Correct  % Correct  % Correct  % Correct 

           

1    57.14  11.36  44.12  13.89 

2    89.55  92.00  88.80  92.14 

3    36.36  25.93  44.83  50.00 

Total    76.77  67.87  73.94  71.91 

           

Values in parentheses are probabilities of significance. * ** Significant at 1% level (two‐tailed).  ** Significant at 5% 

level (two‐tailed). * Significant at 10% level (two‐tailed).  
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Table (6) Ordered logit regression results for the period 2002‐2009 

 

Dependent Var.    RT12BK             RT6FOR      

    Max  Min  Max  Min 

Assets1  +  0.891***  0.792***  1.044***  0.876*** 

    (0.000)  (0.000)  (0.000)  (0.000) 

Assets5  +  3.194    6.207**   

    (0.238)    (0.027)   

LEV3  ‐  ‐1.066  1.579  ‐5.707  0.454 

    (0.771)  (0.344)  (0.116)  (0.805) 

LEV5  ‐  ‐0.635    ‐4.184   

    (0.851)    (0.269)   

Profit2  +  ‐2.947***  0.242  ‐2.073*  0.195 

    (0.012)  (0.141)  (0.075)  (0.265) 

Profit3  +  2.476**    1.598   

    (0.021)    (0.129)   

EFF4  ‐  0.432  ‐0.175*  0.401  ‐0.248** 

    (0.112)  (0.085)  (0.137)  (0.020) 

EFF1  ‐  ‐0.085***    ‐0.070***   

    (0.001)    (0.007)   

LIQ1  ‐  ‐0.023  ‐0.008  ‐0.017  ‐0.019 

    (0.617)  (0.599)  (0.729)  (0.270) 

LIQ3  ‐  0.017***    0.020***   

    (0.013)    (0.003)   

Risk3  ‐  1.342  ‐0.103  1.441  0.506* 

    (0.219)  (0.716)  (0.207)  (0.081) 

Risk5  ‐  ‐130.077    32.584   
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    0.437    0.846   

CAP3  +  0.077  0.009  0.179**  0.009 

    (0.283)  (0.754)  (0.037)  (0.766) 

CAP5  ‐  ‐18.543    ‐19.615   

    (0.338)    (0.336)   

           

Pseudo R‐squared    0.429  0.282  0.481  0.343 

Akaike info criterion    1.355  1.532  1.305  1.450 

N    120  135  113  127 

           

Dep. Value    % Correct  % Correct  % Correct  % Correct 

           

1    82.05  53.66  70.00  50.00 

2    80.30  75.68  82.54  80.00 

3    53.33  35.00  65.00  76.00 

Total    77.50  62.96  76.11  71.65 

           

Values in parentheses are probabilities of significance. * ** Significant at 1% level (two‐tailed).  ** Significant at 5% 

level (two‐tailed). * Significant at 10% level (two‐tailed).  
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Table (7) The P‐values results of Wald test 

 

  Full sample   Shorter sample 

  RT12BK  RT6FOR  RT12BK  RT6FOR 

MIN. Model  C(3)= C(11)= C(13)=0  c(3)=c(5)=c(9)=c(13)=0 

F‐statistic  (0.543)  (0.894)  (0.545)  (0.717) 

Chi‐square  (0.542)  (0.894)  (0.542)  (0.717) 

     

MAX. Model  c(4)= c(9)= c(11)= c(12)= c(13)= c(14)=0  c(3)=c(4)=c(7)=c(9)=c(11)=c(12)=c(14)=0 

F‐statistic  NA  (0.360)  (0.176)  (0.027)** 

Chi‐square  NA  (0.355)  (0.176)  (0.019)** 

Values in parentheses are probabilities of significance. * ** Significant at 1% level (two‐tailed).  ** Significant at 5% 

level (two‐tailed). For presentation purposes: C1: ASSETS1; C2: ASSETS5; C3: LEV3; C4:LEVE5; C5: PROFIT2; C6: 

PROFIT3; C7:EFF4; C8:EFF1; C9:LIQ1; C10:LIQ3; C11:RISK3; C12:RISK5; C13:CAP3; C14:CAP5. 
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