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Abstract 

Telomeres are regions of repetitive DNA bound with a set of specialized proteins 

required to protect chromosomes from fusing with each other and from eliciting DNA 

damage response. Dysfunctional telomere maintenance can lead to premature cellular 

senescence, premature organismal aging and cancer predisposition.  

In the last few years the evidence has emerged indicating a link between 

dysfunctional maintenance of telomeres and defective DNA damage response. 

The objective of this project was to explore further this link by examining effects of 

some DNA damage response proteins on telomeres that have not been examined before 

and examining DNA damage response in cells in which telomeres are dysfunctional as a 

result of alterations in genes not directly involved in DNA damage response. 

We have developed a method, termed IQ-FISH, for accurate identification of average 

telomere length in interphase cells from individuals with defective DNA damage response. 

By applying IQ-FISH we could successfully measure telomere lengths in cell lines from 

patients that are heterozygous (+/-) and cell lines from patients or animals that are 

homozygous (-/-) with respect to mutations in these genes. 

We then analysed telomere length and function, as well as DNA damage response, in 

lymphoblastoid cell lines originating from BRCA1 and BRCA2 carriers (+/-) and also a single 

fibroblast cell line from a patient with bi-allelic mutations in BRCA2 (-/-). In addition we have 

analysed a mouse embryonic stem cell line in which Brca1 was deleted (Brca1-/-) by gene 

targeting. Our results show lack of correlation between DNA damage response and telomere 
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maintenance in heterozygous cell lines (with the exception of one BRCA1+/- cell line) but a 

clear positive correlation in the case of cell lines with homozygous mutations.  

Finally, as a model for telomere dysfunction we have chosen cell lines from 

Dyskeratosis Congenita (DC) patients. DC is a rare progressive congenital disorder which 

results in premature aging. DC is primarily a disorder of dysfunctional telomere maintenance 

and we used cell lines from patients with mutations in DKC1, a gene encoding a protein 

termed Dyskerin which forms a part of the telomerase enzyme complex. Our results indicate 

that DC cells with dysfunctional DKC1 may have a dysfunctional DNA damage response. 
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1.1 - DNA damage: Introduction 

Mammalian cells are constantly exposed to a range of agents that cause damage to 

the genetic material – the DNA molecule. These agents vary from cell’s own metabolic 

products to external agents including various types of radiation and chemicals. As a result of 

constant exposure to these agents, cells have developed numerous mechanisms to deal 

with the resulting DNA damage. The current understanding of some of these mechanisms 

will be outlined below. Furthermore, the interplay between these mechanisms and 

telomeres, specialized structures at chromosome ends, will be examined. A human disease, 

Dyskeratosis congenita (DC), will be used as a model to probe the above interplay. 

As a result of normal metabolic processes and environmental factors, DNA damage 

occurs at a rate of 1,000 to 1,000,000 molecular lesions per cell each day (Hoeijmakers 

2001). Although this amounts to 0.000165% of the human genome, unrepaired lesions in 

critical genes (e.g. tumour suppressor genes) could impede a cell’s ability to carry out its 

function and also appreciably increase the likelihood of tumour formation.  

There are two ways in which the primary structure of the DNA double helix is 

affected: a) chemical modification of DNA bases and b) induction of single strand breaks 

(SSB) or double strand breaks (DSB) in DNA. As these changes occur and repair takes place, 

the regular DNA structure can be changed by the appearance of non-native chemical bonds 

that do not fit in the standard size DNA double helix. 

Because DNA normally lacks tertiary structure, unlike RNA and proteins, DNA 

damage cannot affect the tertiary level of DNA organization. However, DNA is super coiled 
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by histone proteins that package it into chromatin. It is clear that chromatin itself is also 

vulnerable to the effect of DNA damage (Kimura and Suzuki 2009).  

1.1.1 - Source of DNA damage 

DNA damage could be separated into two main types. First type is the so called 

endogenous DNA damage caused by reactive oxygen species resulting from normal 

metabolic byproducts including products of oxidative deamination. This type of damage also 

includes replication errors. Second type of DNA damage is caused by external agents, 

including:  

 Ultraviolet [UV 200-300nm] radiation from the sun (Becker and Wang 1989)    

 Ionizing radiation (IR) including X and gamma rays (Ward 2000) 

 Certain plant toxins (Britt 1996) 

 Human-made mutagenic chemicals, in particular aromatic compounds act as DNA 

intercalating agents (Roulston et al. 1999) 

 Cancer chemotherapeutic agents (Kim et al. 2000) 

 Viruses (Roulston et al. 1999)  

The duplication of damaged DNA in the S-phase of the cell cycle could lead to 

incorporation of wrong bases opposite damaged ones. These wrong bases are source of 

mutations and cells do not have the means of removing mutations once they pass through 

DNA replication process (McGlynn and Lloyd 2002). 
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1.1.2 -  Types of DNA damage 

Several forms of DNA damage are caused by endogenous cellular processes. These 

include: 

 Alkylation of bases such as formation of 7-methylguanine, 1-methyladenine and O 6-

methylguanine (De Bont and van Larebeke 2004). 

 Oxidation of bases and generation of DNA strand interruptions from reactive oxygen 

species (DNA breaks) (De Bont and van Larebeke 2004). 

 Hydrolysis of bases, such as deamination, depurination and depyrimidination.  

 Bulky adduct formation (De Bont and van Larebeke 2004). 

 Mismatch of bases because of errors in DNA replication where the wrong DNA base 

is placed in a newly forming DNA strand, or a DNA base is bypassed or mistakenly 

inserted (De Bont and van Larebeke 2004).  

DNA damage occurring as a result of cell exposure to exogenous agents has various 

forms. Below are some examples: 

 UV-B light causes crosslinking between adjacent cytosine and thymine bases creating 

pyrimidine dimers which is referred to as direct DNA damage (Crespan et al. 2010).  

 UV-A light creates mostly free radicals. Damages in DNA which are caused by free 

radicals, is called indirect DNA damage (De Bont and van Larebeke 2004). 

 IR causes breaks in DNA strands including SSB and DSB (Ward 1988).  

 Thermal disruption at elevated temperature increases the rate of depurination (loss of 

purine bases from the DNA backbone) and SSB. For example, hydrolytic depurination is 

seen in the thermophilic bacteria, which grow in hot springs at 85–250 °C (Ohta et al. 
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2006). The rate of depurination (300 purine residues per genome per generation) is too 

high in these species to be repaired by normal repair processes; hence a possibility of an 

adaptive response cannot be ruled out.  

 Industrial chemicals, vinyl chloride and hydrogen peroxide and environmental chemicals, 

polycyclic hydrocarbons are found in smoke, soot and tar. This creates a huge diversity 

of DNA adducts- ethenobases, oxidized bases, alkylated phosphotriesters and cross 

linking of DNA just to name a few (Brooks 1997).  

1.1.3 -  Response to DNA damage 

Cells exposed to external agents such as IR, UV light or chemicals will suffer various 

types of DNA damage (Figure 1.1) immediately after the exposure. It is also likely that other 

biomolecules such as carbohydrates, lipids, RNA and proteins will be damaged. 

Accumulation of damage in DNA, in particular DSBs or adducts that stall the replication fork, 

will cause activation of a series of molecular processes in the cell collectively known as DNA 

damage response (DDR)(Lord and Ashworth 2012). 

 

 

 



Chapter 1 – General Introduction 

 

                                                                                                                                                           6 
 

 

Figure 1.1 - An outline of cellular response to DNA Damage according to (Friedberg et al. 

1995). 

 

DDR is a process aimed towards the cells own protection and triggers multiple 

pathways of macromolecular repair. A regular effect of DDR is induction of cell cycle arrest 

and cell cycle checkpoints the function of which are to allow DNA repair to take place before 

DNA replication. If repair fails, in particular as a result of high level of DNA damage that a 

cell cannot cope with, it may be more economical for an organism to eliminate such a cell or 

cells by a process known as apoptosis (Enoch and Norbury 1995).  

1.1.4 -  DNA damage checkpoints and DNA repair mechanisms 

Cell cycle checkpoints are activated as a result of DDR (Figure 1.2). The cell cycle is 

paused and this allows the cells to repair DNA damage before the S-phase in which DNA 

replicates. G1/S and G2/M are the cell cycle boundaries in which DNA damage checkpoints 

take place. An intra-S checkpoint also exists. Checkpoint activation is controlled by two 
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master kinases, ATM (Ataxia Telangiectasia Mutated) and ATR (ATM-and Rad3-related 

proteins). ATM responds to DNA DSB and disruptions in chromatin structure (Bakkenist and 

Kastan 2003) whereas ATR primarily responds to stalled replication forks (Lopes et al. 2001) 

These kinases phosphorylate downstream targets in the signal transduction cascade, 

eventually leading to cell cycle arrest. These include checkpoint mediator proteins such as 

BRCA1, MDC1, and 53BP1 (Yoo et al. 2006). These proteins are required for transmitting the 

checkpoint activation signal to downstream proteins. P53 is an important downstream 

target of ATM and ATR, as it is necessary for inducing apoptosis (Roos and Kaina 2006). At 

the G1/S checkpoint, p53 functions by deactivating the CDK2/cyclin E complex. Similarly, 

p21 mediates the G2/M checkpoint by deactivating the CDK1/cyclin B complex (Mikule et al. 

2007). As soon as DNA damage checkpoints are induced this will lead to activation of DNA 

repair processes. Each DNA lesion is repaired by a different mechanism. For example, when 

cells are exposed to IR a large number of DNA DSB will be induced and these are repaired by 

two mechanisms: Non-Homologous End Joining (NHEJ) and Homologous Recombination 

(HR) (Takata et al. 1998). UV induced lesions are usually repaired by Nucleotide Excision 

Repair (NER)(Wood 1997). 
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Figure 1.2 - Mammalian Cell Cycle Checkpoint Pathways (Bartek and Lukas 2001). 

 

1.1.5 -  DNA repair and cancer 

Genetically normal cells or individuals have effective DNA repair mechanisms, which 

eventually eliminate almost all damage from DNA. However, some people are born with 

mutations that affect DNA repair mechanisms and these people have high cancer risk. For 

example, people born with mutations in NHEJ genes are sensitive to IR and have high risk of 

suffering from leukaemia and solid tumours. There are two well characterized human 

diseases resulting from mutations in NHEJ genes: Ligase 4 syndrome and RS-SCID (radio 

sensitive severe combined immunodeficiency) (O'Driscoll et al. 2004).  

Ligase 4 patients are born with mutations in the gene encoding the Ligase 4, an 

enzyme that rejoins broken DNA ends. RS-SCID patients have mutations in the gene 
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encoding Artemis protein which has endonucleolytic activity required for NHEJ (Noordzij et 

al. 2003).  

Other examples of mutations in DNA repair genes that predispose to cancer include 

BRCA1 and BRCA2. These two well-characterized genes, if mutant, confer a significant risk of 

breast cancer on carriers. Both genes are involved in the repair of DNA DSBs through HR 

(O'Donovan and Livingston 2010) 

1.1.6 -  NHEJ pathway  

 Most DSBs in eukaryotic cells are repaired through either NHEJ or HR.  Recent findings 

indicate a third, less characterized repair mechanism named microhomology-mediated end 

joining (MMEJ) as another DNA DSB repair pathway (McVey and Lee 2008). HR occurs in late 

S-G2 phases, while NHEJ takes place throughout the cell cycle, but mainly in the G1 phase 

(O'Driscoll and Jeggo 2006). Core proteins involved in the NHEJ process include Ku dimers 

(Ku70-Ku80), DNA-PKcs, XRCC4, Ligase IV, Artemis, and recently discovered cernunnos-XLF 

(Ahnesorg et al. 2006; Buck et al. 2006). The Ku complex (Ku70/Ku80) is involved in the 

initial detection of DNA DSBs due to its high affinity for DNA ends. Attachment of the Ku 

heterodimmer to the site of DSB attracts DNA-PKcs, a serine/threonine protein kinase. The 

regulatory Ku70/80/DNA-PKcs complex acts as a DNA damage sensor. A purified Artemis 

protein has been shown to possess single-stranded 5’ to 3’exonuclease activity. Artemis is 

phosphorylated by DNA-PKcs and this induces endonucleotytic activity on 5’ and 3’ 

overhangs as well as hairpins (Ma et al. 2002). Artemis provides an essential nucleolytic 

processing activity to prepare DNA ends for re-ligation (Sekiguchi and Ferguson 2006). 

When ends of the DNA are secured, XRCC4 and Ligase IV seal the break, although another 

protein complex such as MRE11/RAD50/NSB1 (MRN complex) may be needed for further 
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processing of the DNA ends before re-ligation. The recently discovered member of NHEJ 

protein family, Cernunnos-XLF, is understood to play a role in DSB end joining alongside 

XRCC4 and Ligase IV. The precise role of this new protein is unknown, but Ahnesorg et al 

(2006) suggested that Cernunnos-XLF might serve as a bridge between XRCC4 and Ligase IV 

and the other NHEJ factors to facilitate the recruitment of the other factors to the ends of 

DSB. Alternatively, it might be involved in the regulation of XRCC4-Ligase IV activity via the 

modulation of active and inactive multimeric states of XRCC4 (Sekiguchi and Ferguson 

2006). Interestingly, some of the NHEJ factors are revealed to be involved in telomere 

maintenance. For example, Ku70, Ku80 and DNA-PKcs associate with telomeric DNA in 

several human cell types (d'Adda di Fagagna et al. 2001). Similar results were seen in mice 

deficient in Ku86 with increased chromosome end-to-end fusion with strong telomeric 

signals at point of fusion thus demonstrating important role of Ku86 (Ku86 is the same as 

Ku80) in telomere end capping in mouse (Samper et al. 2000; Espejel and Blasco 2002; 

Espejel et al. 2002). Equally, DNA-PKcs (catalytic subunit of DNA-PK) was shown to be critical 

in protecting mammalian telomeres (Bailey and Goodwin 2004) and that inhibition of DNA-

PKcs leads to increased levels of chromatid fusions (Bailey et al. 2001; Bailey and Goodwin 

2004). Similar outcomes were observed in DNA-PKcs deficient mice (known as SCID mice) 

with increased levels of telomere fusions indicative of telomere dysfunction through loss of 

telomere end capping (rather than telomere shortening since it has been shown that SCID 

mouse cells have abnormally long telomeres (Hande et al. 1999; Samper et al. 2000; 

Goytisolo et al. 2001).  
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1.1.7 -  HR 

 HR is a different form of the DSB repair operating mostly in late S and G2 phases of a 

cell cycle. HR is a preferred mechanism for DSB repair in simple eukaryotes such as yeast. HR 

is a great deal more precise than NHEJ, in terms of the original DNA sequence restoration, 

since it makes use of a sister chromatid as a template in rejoining DSBs. HR is primarily 

responsible for repairing DSBs that arise as a result of replication fork stalling (in the late S 

phase) and the HR pathway involves nucleolytic processing, strand invasion, Holliday 

junction formation, and branch migration. 

 The proteins involved in HR pathway are: RAD51, RAD52, RPA, CTIP, BRCA1, BRCA2 

XRCC2, XRCC3, RAD54, DNA polymerases, DNA ligases etc. The HR repair follows two 

pathways. A RAD51-dependent pathway, which is an error free and RAD51-independent 

pathway, which is prone to errors in the DNA sequence (Griffin and Thacker 2004). The 

RAD51-dependent pathway involves a homology search and strand invasion to allow the 

restoration of the original DNA sequence based on the undamaged homologous sequence. 

 The RAD52 protein recognizes the broken DNA ends and processes the DNA into a 3’ 

single strand by nuecleolytic activities of the MRN complex. Then formations of a 

nucleoprotein filament onto the 3’ single strand DNA is carried out by RAD51 by 

polymerization and with the aid of a single strand DNA binding protein, replication protein A 

(RPA) and RAD52. The RAD51 nucleoprotein filament searches for homologous duplex DNA 

after which the DNA strand exchange generates a joint molecule between the homologous 

damaged and undamaged duplex. BRCA2 helps to load RAD51 onto the ssDNA molecule, 

whereas BRCA1 is required as a regulatory mechanism. After branch migration and holliday 

junction formation, DNA synthesis takes place where DNA polymerases and accessory 
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factors fill the gap and DNA Ligase IV, XRCC4 relegate the DSB. BRCA1 deficiency confers 

sensitivity to ionizing radiation as well as sensitivity to DNA cross-linking agents such as 

mitomycin C (Powell and Kachnic 2003). Also a BRCA1 deficient human lymphoblastoid cell 

line shows an elevated level of chromosome end-to-end fusion that suggests a role of 

BRCA1 in telomere capping (Al-Wahiby and Slijepcevic 2005). 

 

1.1.8 -  Senescence and apoptosis 

As mentioned above, a high level of DNA damage in a cell can lead to DNA repair 

failure. In such cases tissues usually activate apoptotic pathway which eliminates cells that 

carry extensive amount of DNA damage. In addition to apoptosis, tissues use cell 

senescence mechanisms to eliminate undesired cells. Senescence is a phenomenon in which 

a cell is not able to divide any longer as a result of activated DNA damage response due to 

telomere shortening (Blackburn 2000). Telomeres are long regions of repetitive noncoding 

DNA which cap chromosomes and undergo partial degradation every time a cell divides 

(Braig and Schmitt 2006). In contrast, quiescence is a state of cellular dormancy which is not 

related to genome damage.   

Cell senescence could serve as a functional alternative to apoptosis when physical 

presence of a cell, with activated DNA damage response, within a tissue causes a danger to 

the organism (Lynch 2006). This serves as a last resort to prevent a cell with damaged DNA 

from replicating in the absence of pro-growth cellular signalling. Formation of tumours as a 

result of unregulated cell growth could potentially have a lethal effect on the organism.  
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1.2 -  Telomeres 

Telomeres are regions of repetitive DNA bound with a set of specialized proteins 

required to protect chromosomes from fusing with each other. The name comes from Greek 

words “telos” meaning end and “meros” meaning part.  The enzymes which copy DNA 

cannot carry out DNA replication at the end of chromosome due to the so called “end-

replication problem”(Olovnikov 1971). As a result, a small portion of telomeric DNA will be 

lost after every cell division. Eventually, the loss will become so extensive that the 3D 

organization of telomeres will be affected and they will lose their function (Figure 1.3). 

Telomere loss serves as a mechanism that regulates cell senescence. 

 

 

Figure 1.3 - Schematic model of telomeric loss (T.A.Sciences 2010-2012). 

 

  When telomeres become critically short this will activate DNA damage response and 

will cause block in cell proliferation or cell senescence (Satyanarayana et al. 2004). However, 



Chapter 1 – General Introduction 

 

                                                                                                                                                           14 
 

a specialized enzyme called telomerase is capable of replicating chromosome ends. This 

enzyme is active in germ-line and stem cells but not in most somatic cells. Interestingly, a 

large majority of cancer cells have active telomerase and it has been conclusively 

demonstrated that telomerase activation gives cells the capacity to proliferate indefinitely 

(Piatyszek et al. 1995).  

1.2.1 - Structure of telomeres 

Telomeres are composed of repetitive DNA sequences positioned at the termini of 

linear chromosomes of the majority eukaryotic organisms and a few prokaryotes, bound 

with a set of specialized proteins. A small portion of bacterial chromosomes (such as those 

in Streptomyces and Borrelia) are linear and possess telomeres. These are very different 

from those of the eukaryotic chromosomes in structure and function (Thanbichler et al. 

2005). Structure of bacterial telomeres take form of proteins bound to the ends of linear 

chromosomes, or hairpin loops of single-stranded DNA at the ends of the linear 

chromosomes (de Lange 2004). The length of Telomeres differs greatly amid species, from 

~300-600 bp in yeast to many kilobases (Kb) in humans. The telomeric DNA sequence is 

usually comprised of arrays of 6-8 bp long G-rich repeats. In vertebrates the telomerec DNA 

repeat is (TTAGGG)n. 

 Eukaryotic telomeres normally terminate with a 3' ss (single stranded) DNA overhang 

which is essential for telomere maintenance and capping. Multiple proteins binding single-

and double-stranded telomere DNA have been identified (Blackburn 2001). The DNA 

component of telomeres usually begins with a double-stranded region consisting of 

repeated sequences of five to nine base pairs, where the number of base pairs varies from 

species to species (Figure 1.4). It then ends with a single-stranded region rich in guanine (G) 
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and thymine (T) bases called a 3´ overhang that bends back on itself to facilitate a protective 

t-loop structure. (Figure 1.4) (Hohensinner et al. 2011). 

 

          

       

Figure 1.4 - Molecular structure of telomeres. (A) Electron micrograph of a T-loop. (B) A 

single stranded 3’ overhang in linear form which bends on itself to form a T-loop. Images 

taken from  (Greider 1999).  

 

1.2.2 -  Telomere proteins 

At the very end of the chromosome a T-loop is formed by the action of a single-

stranded portion of telomeric DNA and a set of associated proteins (see Figure 1.4). T-loop is 

A 

B 
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analogous to a 'knot' which stabilizes the telomere thus stopping the telomere ends from 

being recognized as DNA DSBs by the DNA repair machinery. The T-loop is held together by 

six known proteins including TRF1, TRF2, Rap1, POT1, TIN1, and TIN2, collectively referred to 

as the shelterin complex. 

Cancer cells escape telomere loss by switching on a gene that expresses telomerase. 

Telomerase is an enzyme which adds TTAGGG repeats to telomeres in all vertebrates by 

targeting the 3’ end of telomeric single strand. The enzyme is a reverse transcriptase which 

carries its own RNA template (Greider and Blackburn 1985). 

 

Figure 1.5 - Shelterin and telomerase(de Lange 2005). Telomerase and shelterin interact in 

the process of telomere length regulation. 

 

Telomerase consists of several molecules including Telomerase Reverse 

Transcriptase (TERT), Telomerase RNA (hTR or TERC), dyskerin (DKC1) and some others 

(Cohen et al. 2007). 



Chapter 1 – General Introduction 

 

                                                                                                                                                           17 
 

By using TERC, TERT can add a six-nucleotide repeating sequence, 5'-TTAGGG to the 3' 

telomeric overhang (Figure 1.5). The template region of TERC is 3'-CAAUCCCAAUC-5'. 

Telomerase usually binds the first few nucleotides of the template to the last telomere 

sequence on the chromosome, adds a new telomere repeat (5'-GGTTAG-3') sequence, 

detaches from the telomere, realigns the new 3'-end of telomere to the template. This 

process is repeated until a desirable length of telomere is achieved (Figure 1.5). 

1.2.3 -  Telomere function 

Telomere length serves as an intrinsic biological clock regulating the life span of the 

cell. In this scenario, the numbers of underwent cell cycles are “counted” by the cell. This 

mechanism allows regulation of cell senescence. When telomeres became too short, thus 

reflecting high number of cell divisions, DDR becomes activated because short telomeres 

lose a proper T-loop structure and are detected as DNA DSBs by cellular DNA repair 

machinery (see Figure 1.6). Thus, one of telomere functions is to limit the capacity of a cell 

to replicate, by inducing senescence as a sort of a tumour-suppressing mechanism (Figure 

1.6). It is important to note that induction of senescence is a complex process and a number 

of pathways are involved, including p53, p21, and the Rb/p16INK4A cell-cycle checkpoint 

pathway (Reddel 2000). 

Another important function of telomeres is to protect chromosome stability. 

Telomeres act as chromosome “capping” structures that prevent chromosome end-to-end 

fusions. A number of proteins are identified as important in this “capping” function 

including components of shelterin but also some proteins involved in DDR (for details see 

below).   
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1.2.4 -  Telomere dysfunction 

Dysfunctional telomeres cause severe clinical symptoms in affected individuals. A 

human disease Dyskeratosis Congenita is caused by mutations in telomerase genes, or 

genes encoding some of the shelterin proteins leading to telomere dysfunction (Vulliamy 

and Dokal 2008). The key consequence of dysfunctional telomeres in an organismal setting 

is that stem cells, which require telomerase, will not function properly. As a result highly 

proliferative tissues that depend on a high cell turnover, regulated by tissue specific stem 

cells, are regularly affected. For example, DC patients typically show bone marrow failure 

and skin abnormalities (Davidson and Connor 1988). Both failures result from inability of 

stem cells to replenish/regenerate highly proliferative tissues.   

 

Figure 1.6 - Shelterin and telomere dysfunction (de Lange 2005). 
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1.3 -  Relationship between telomere maintenance and DNA damage 

response mechanisms 

In the life of a cell, DNA damage is common and a possibility exists for it to lead to 

mutations, cancer or even cellular or organismal death. As a result of DNA damage, a 

number of cellular responses occur collectively known as DDR (see above). DDR functions to 

allow the cell to manage and cope with DNA damage by activating appropriate repair 

processes or activating mechanisms that eliminate from tissues cells with extensive and 

potentially irreparable DNA damage.  

Chromosomal stability is affected regularly by the failure of any component of DDR 

mechanisms. It should be noted that chromosomal stability is physiologically protected by 

telomeres as mentioned above. It is becoming increasingly clear that shelterin proteins 

interact with a number of proteins involved in DDR (Misri et al. 2008). Interactions between 

shelterin and DDR proteins are discussed in detail below. 

Changes in a growing number of DDR proteins result in telomere dysfunction leading 

to chromosomal instability. This signifies extensive functional connections between 

telomere maintenance and DDR mechanisms. The most likely function of telomere-DDR 

mechanisms interactions is to enable cells to distinguish the natural chromosome ends from 

DSBs (Viscardi et al. 2007). This is probably achieved by interactions between shelterin 

proteins and two key NHEJ proteins: DNA-PKcs and Ku. They are normally found at 

telomeres associated with the shelterin component TRF2 (de Lange 2005). Therefore, 

telomeres can differentiate themselves from internal DSBs and by doing this they protect 

genomic stability. It is not surprising that telomeres which become critically short due to 

either physiological (cell senescence) or pathological (mutations in telomerase, shelterin or 
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DDR genes) reasons bring out extensive cellular responses including cell cycle checkpoint 

activation (Maser and DePinho 2004). In addition to the above two NHEJ proteins many 

more DDR proteins are connected with telomeres and contribute to several aspects of 

telomere metabolism. One of the first proteins to be associated with telomere dysfunction 

was ATM (Ju and Lenhard Rudolph 2008).  ATM is the key DNA damage signaling molecule 

(Metcalfe et al. 1996). Human or mouse cells that lack functional ATM show accelerated 

telomere loss, telomeric fusions and appearance of extra chromosomal telomeric fragments 

(Hande et al. 2001) . The importance of ATM in telomere metabolism is illustrated by the 

observation that one of ATM phosphorylation targets is the shelterin component TRF2 

(Demuth et al. 2008).  

A recent review article focusing on the interplay between telomeres and DDR 

identified a total of 13 additional mammalian DDR proteins involved in telomere 

maintenance (Slijepcevic 2006).  This includes the MRN protein complex which has been 

linked to DNA DSB repair. All three MRN components are encoded by essential genes and 

hypomorphic mutations in any of these genes can result in genome-instability syndromes 

(van den Bosch et al. 2003). MRN is one of the first factors to be localized to the DSBs 

leading some authors to suggest MRN as DSB sensor (van den Bosch et al. 2003) (Figure 1.7).  
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Figure 1.7 - The role of the MRN complex in DDR according to Petrini and Stracker (2003). 

 

Furthermore BRCA1, Rad9 and PARP-1, when dysfunctional, not only affect DDR 

mechanisms but telomeres as well, as exemplified by the presence of telomeric fusions in 

affected cells or by biochemical associations between shelterin and the above three 

proteins. BRCA1 confer genetic predisposition to early onset familial breast and ovarian 

cancer (Moynahan et al. 1999; Hartman and Ford 2002; Zhong et al. 2002; Slijepcevic 2006). 

A checkpoint protein hRad9 is a protein that is phosphorylated by ATM following DNA 

damage. This protein creates a complex with hRad1 and hHus1 proteins which are known as 

9-1-1, and is a clamp like complex important in DNA damage induced cell cycle checkpoint 

response (Chen et al. 2001; Slijepcevic 2006).  

PARP-1 is a molecule that will detect and signals SSBs. This signalling is mediated by 

the instantaneous synthesis of poly ADP-ribose (PAR) produced at the lesion site. PARP is 
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required for the recruitment of XRCC1 which is a critical and important component of the 

base excision repair (BER) and SSB repair pathways. In addition, PARP-1 is involved in 

chromatin remodelling and it interacts with DNA-PKcs, ATM and p53 (Herceg and Wang 

2001; Ame et al. 2004; Slijepcevic 2006). 

Another DDR protein that affects telomeres is Apollo. This protein associates with 

shelterin and it is also known as hSnm1B. Apollo interacts with TRF2 and together they 

protect chromosome termini from being recognized and processed as DNA damage 

(Freibaum and Counter 2006; Lenain et al. 2006; van Overbeek and de Lange 2006). Finally, 

a recent paper implicates BRCA2 in telomere maintenance. BRCA2 associates with 

telomeres during S and G2 phases of the cell cycle and mediates access of RAD51, a 

homologous recombination protein, to telomeres (Badie et al. 2010).  

Taken together the above findings demonstrated extensive functional interaction 

between DDR and telomere maintenance. The objective of my PhD thesis is to explore 

further this relationship by examining effects of a) some DDR proteins on telomeres that 

have not been examined before and b) DDR in cells in which telomeres are dysfunctional as 

a result of alterations in genes not directly involved in DDR. I have chosen BRCA1 and BRCA2 

proteins to address a relevant aspect that has not been explored before. Namely, I will focus 

on the correlation between the degree of DNA damage response defect and telomere 

dysfunction defect by employing cell lines from patients that are heterozygous (+/-) and cell 

lines from patients or animals that are homozygous (-/-) with respect to mutations in these 

genes. As a model for telomere dysfunction I have chosen cell lines from DC patients. DC is a 

disease caused by mutations in genes that directly affect telomere maintenance. These 

include genes encoding Dyskerin, TERC, TERT, NOP10, NHP2 and TIN2 (Kirwan et al. 2011). 
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All these proteins are involved in either the telomerase enzyme complex or the shelterin 

protein complex. It is planned to examine DDR mechanisms in these cells. Given the 

discussed link between DDR and telomeres our hypothesis is that DC cells should show 

deficiency in DDR.  It is hoped that these studies will shed more light on the mechanisms 

that regulate interplay between DDR and telomere maintenance. Given the role of both 

DDR and telomeres in cancer it is possible that these studies will provide useful clues for 

understanding the process of carcinogenesis. In the final section of this literature review a 

brief overview of BRCA1 and BRCA2 proteins will be presented, as well as an overview of the 

current understanding of DC genetics.  

1.4 -  BRCA1 and BRCA2 

Breast Cancer  1 (BRCA1) and BRCA2 are tumor suppressor genes involved in DNA DSB 

repair through HR and some other DDR pathways (Deng and Wang 2003). The absence of 

functional BRCA1 and BRCA2 is associated with an increased risks of breast and ovarian 

cancers (Friedenson 2007). 

BRCA1 combines with other tumor suppressors, DNA damage sensors, and signal 

transducers to form a large multi-subunit protein complex known as the BRCA1-associated 

genome surveillance complex (BASC) (Wang et al. 2000). BRCA1 protein associates with RNA 

polymerase II and it interacts with histone deacetylase complexes through the C-terminal 

domain. Therefore, this protein plays a role in transcription; repair of DNA DSBs, 

ubiquitination, transcriptional regulation, as well as in some other molecular pathways 

(Starita and Parvin 2003; Friedenson 2007). 
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BRCA2 is a protein primarily involved in the FANC (Fanconi anemia) pathway and it 

was previously known as FANCD1 until it was established that these are essentially the same 

proteins (D'Andrea 2003). In the FANC pathway, DNA damage induced by cross-linking 

agents is repaired by a protein complex that includes several FANC proteins which then 

ubiquitinate FANCD2 resulting in its transfer to the site of DNA damage. FANCD1 helps the 

transfer process (Nojima et al. 2005). However, BRCA2 is not confined to the FANC pathway 

as it is also involved in the HR pathway (see below).   

It is interesting that both proteins participate in the HR pathway for DSB repair.  In 

this pathway repair proteins utilize homologous intact DNA sequence from a sister 

chromatid originating from either a homologous chromosome, or the same chromosome 

(depending on cell cycle phase) as a template (Zhang and Powell 2005). BRCA1 and BRCA2 

associate with sites of damaged chromatin in affected parts of the cell nucleus and have a 

common interacting partner in this process - RAD51, one of the key HR proteins (Boulton 

2006). However, BRCA1 and BRCA2 have slightly different roles in HR. BRCA1 is capable of 

binding DNA directly and it has a high affinity for branched DNA structures which is 

consistent with its involvement in HR, a pathway that utilizes these branched structures. The 

DNA binding abilities of BRCA1 contribute to its ability to inhibit the nuclease activity of the 

MRN complex, which most likely acts as a sensor for DSBs (see above), as well as the 

nuclease activity of Mre11 alone (Paull et al. 2001). This can perhaps explain a role for 

BRCA1 to promote a higher fidelity DNA repair by NHEJ (Durant and Nickoloff 2005). BRCA1 

also colocalizes with γ-H2AX (histone H2AX phosphorylated on serine-139) in DNA DSB 

repair foci, indicating that it may play a role in recruiting different repair proteins (Ye et al. 

2001; Starita and Parvin 2003). In contrast, BRCA2 binds single stranded DNA and it helps 
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the recombinase RAD51 to stimulate strand invasion, a vital step in HR (Genois et al. 2012). 

The localization of RAD51 to the DNA DSBs requires the formation of BRCA1-PALB2-BRCA2 

complex (Buisson et al. 2010). During repair of DNA cross links DSBs are also generated and 

it is in this process that BRCA2 can exert its role in the FANC pathway. It is interesting that 

the BRCA2-RAD51 interaction is also involved in telomere maintenance. A recent study 

indicates that BRCA2 interacts with telomeres and this interaction is mediated by RAD51 

(Badie et al. 2010) . 

1.5 -  DC 

DC, also known as Zinsser-Engman-Cole syndrome (Zagorski et al. 2001), is a rare, 

progressive bone marrow failure syndrome. DC is estimated to occur in 1 in 1,000,000 

people (Coulthard et al. 1998). The key molecular pathway affected in this syndrome is 

telomere maintenance (Walne and Dokal 2004). Some patients also show ribosome 

deficiency (Wong and Collins 2006) and protein synthesis dysfunction (Nelson and Bertuch 

2012) but this is probably the result of functional links between telomere maintenance and 

these pathways. Many DC patients die in relatively young age as a result of bone marrow 

failure, fatal pulmonary complications, infections, or malignancy (Jyonouchi et al. 2011). 

DC is characterized by a variety of symptoms including bone marrow failure, 

abnormal skin pigmentation, early greying, leukoplakia of the oral mucosa, dystrophy of the 

nails, anemia resulting from bone marrow failure, continuous lacrimation due to atresia of 

the lacrimal ducts, often thrombocytopenia, testicular atrophy in the male carriers, and 

predisposition to cancer (Buckingham and Klingelhutz 2011). 
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1.5.1 - Genetics 

There are three different types of DC depending of the form of inheritance:  

autosomal dominant, autosomal recessive and the most common form, X-linked recessive 

(Dokal 2000).  

As stated earlier the 7 affected genes are involved in various processes required for 

telomere maintenance. Two key protein complexes involved in telomere maintenance 

include the telomerase enzyme complex and the shelterin protein complex. Telomerase is a 

reverse transcriptase consisting of several subunits including the RNA component (TERC) 

and the cataylitic component (TERT). The human telomerase assembles in Cajal bodies when 

the above two components join each other and require other proteins to function fully 

(assembly, trafficiking, regulation) including Dyskerin (DKC1) which associates with smaller 

proteins including NHP2, NOP10 and GAR1, as well as the telomerase Cajal body protein 

(TCAB1) also known as WRAP53 (Li et al. 2011). The shelterin protein complex consists of 6 

proteins: TRF1, TRF1, RAP1, TIN2, TPP1 and POT1 (de Lange 2005). 

To date mutations in the following genes have been identified in DC patients: DKC1 

(Knight et al. 1999), TERC (Vulliamy et al. 2004), TERT (Vulliamy et al. 2005; Marrone et al. 

2007), TINF2 (Savage et al. 2008), NHP2 (Vulliamy et al. 2008), NOP10 (Walne et al. 2007), 

and TCAB1 (Zhong et al. 2011).  

1.5.2 -  Autosomal recessive DC 

The severity of phenotype in DC individuals may depend upon which protein has 

incurred a mutation. One documented autosomal recessive mutation in a family that carries 

DC has been found in the NOP10 gene (Walne et al. 2007). This mutation changes a cytosine 
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to thymine in a highly conserved region of the NOP10 sequence leading to a change from 

arginine to tryptophan. Homozygous recessive individuals show severe DC symptoms 

including much shorter telomeres compared to age matched control individuals. Given that 

NOP10 is required for the TERC normal function, the above mutation leads to a reduction in 

TERC levels resulting in much lower telomerase activity and extremely short telomeres. 

Since telomerase activity is required for proper functioning of stem cells highly proliferative 

tissues that depend on tissue specific stem cells for a high cell turnover, including bone  

marrow and skin, will be highly affected (Walne et al. 2007). 

Similarly, NHP2 and TCAB1 mutations, which also cause autosomal recessive form of 

DC, will cause similar phenotypic features in patients. This is understandable as both 

proteins are required for proper functioning of the telomerase RNA component, TERC 

(Vulliamy et al. 2008). 

1.5.3 -  X-linked recessive DC 

The best-characterized and the most common form of DC is the X-linked recessive 

DC caused by mutations in the DKC1 gene located in the long arm of the X chromosome 

(Heiss et al. 1998; Vulliamy et al. 2001). Before DC was recognised as a disease of 

dysfunctional telomeres and in the absence of genetic knowledge (i.e. 15 years ago), X-

linked recessive DC was clinically diagnosed as a rare bone marrow failure disorder linked to 

Xq28 (Connor et al. 1986; Arngrimsson et al. 1993). There are some variations in severity of 

symptoms in X-linked DC. The most severe form of X-linked DC is also known as Hoyeraal-

Hreiderasson syndrome and it was named at the time when there was no knowledge of 

which genes are affected in DC. 
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DKC1 or Dyskerin is a protein that is an integral part of the telomerase enzyme 

complex. It binds the H/ACA box RNA structural motif within TERC and it is required for TERC 

stability and telomerase activity in vivo (Armanios and Blackburn 2012). Mutations affecting 

DKC1 will result in dysfunctional telomerase with all clinical consequences discussed above. 

1.5.4 -  Autosomal dominant DC 

This form of DC is caused by mutations in TERT, TERC and TIN2 genes (Armanios and 

Blackburn 2012). Given the clinical complexity of DC and the lack of genetic knowledge in 

the past some of DC patients with TERC mutations have been diagnosed as aplastic anemia 

patients. In addition, there are some patients with TERC mutations that would probably be 

not classified as DC patients clinically (Armanios and Blackburn 2012). In total, 

approximately 30% of all DC patients have mutations in TERC (Armanios and Blackburn 

2012). TERT and TIN2 mutations are comparatively lower in frequency.  

In terms of its phenotypic effects dysfunctional TERT and TERC will lead to 

dysfunctional telomerase and relevant clinical features that result from this. It is interesting 

that TIN2 is the only gene that do not belong to the telomerase enzyme complex and that 

leads to DC symptoms. This indicates that shelterin is equally important for telomere 

maintenance. Given that there are some DC patients that have not been classified 

genetically it is possible that other shelterin components may be affected in DC.     

1.6 -  Aims of the study 

As indicated above the overal aim of this thesis is to examine further the relationship 

between DNA damage response and telomere maintenance. Therefore, the work carried 

out in this project was divided in three parts: 
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 Development of Interphase Q-FISH (I Q-FISH). In order to be able to accurately assess 

telomere length in cell lines from individuals with defective DNA damage response 

and cell lines from DC patients all characterised by poor proliferative phenotype it 

was necessary to develop a method that can measure telomere length in this type of 

cells. 

 Investigation of DNA damage response and telomere maintenance in cell lines from 

patients with mutations in BRCA1 and BRCA2, as well as in relevant animal cell lines. 

 Investigation of DNA damage response in cell lines from DC patients. 
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2.1 - Cell lines and cell culture methodology 

2.1.1 - Primary human fibroblasts 

Primary human fibroblast cell lines GM08399, VU0423-F, GM1787 114 and GM1774 

A (Table 2.1), were cultured in Dulbecco’s modified eagle medium (DMEM) supplemented 

with 15% fetal calf serum at 37°C and antibiotics in the atmosphere of 10% CO2. The 

VU0423-F cell line, originating from a patient with a biallelic mutation in BRCA2, has been 

obtained from Dr Hans Joenje, University of Amsterdam. The VU0423-F patient has initially 

been characterized as a Fanconi anemia patient. All other fibroblast cell lines have been 

obtained from the Coriell Cell Repository. 

2.1.2 -  Human B-lymphocytes 

Human B-Lymphoblast cell lines GM00893, GM13705, GM14090, GM14622 and 

GM14090 (Table 2.1) were cultured in RPMI 1640 medium (Gibco/invitrogen) and 10 % fetal 

calf serum and antibiotics at 37⁰C in the atmosphere of 5 % CO2. All these cell lines have 

been obtained from the Coriell Cell Repository. 

2.1.3 -  Mouse lymphoma cell lines 

Mouse lymphoma LY-R (radio-resistant) and LY-S (radio-sensitive) cells (Table 2.1) 

were cultured in RPMI 1640 medium (Gibco/invitrogen) supplemented with 10 % fetal calf 

serum and antibiotics at 37⁰C in the atmosphere of 5 % CO2 and were used as a reference 

for cytological testing telomeric measurements using interphase Q-FISH (IQ-FISH) technique. 
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Table 2.1 – Description of cell lines used during the course of this project 

Cell Line Origin and gene 
affected 

Cell Type Age at 
sampling 

Sex Clinically 
affected 

GM08399 Healthy 
individual 

Fibroblast 19YR Female No 

GM1787 114 Dyskeratosis 
Congenita 

carrier, X-linked; 
DKC1 +/- 

Fibroblast 78YR Female No 

GM1774 A Dyskeratosis 
Congenita 

carrier, X-linked; 
DKC1 +/- 

Fibroblast 7YR male Yes 

VU0423-F Patient with 
biallelic mutation 

in BRCA2 

Fibroblast   Yes 

GM00893 Healthy 
Individual 

B-Lymphocyte 32 YR Female No 

GM13705 BRCA1 carrier 
(BRCA1+/-) 

B-Lymphocyte 38 YR Female Yes 

GM14090 BRCA1 carrier 
(BRCA1+/-) 

B-Lymphocyte 43 YR Female Yes 

GM14622 BRCA2 carrier 
(BRCA1+/-) 

B-Lymphocyte 39 YR Female Yes 

GM14170 BRCA2 carrier 
(BRCA1+/-) 

B-Lymphocyte 46 YR Female Yes 

CB17 Normal Mouse Fibroblast Unknown   

SCID SCID Mouse 
(DNA-PKcs-/-) 

Fibroblast Unknown   

E14 Normal Mouse 
embryonic Stem 

cells 

Stem cell Unknown  No 

408 Mouse 
Embryonic Stem 

cells with 
mutation in 

Brca1 (Brca1-/-) 

Stem Cells Unknown  Yes 

LY-R Mouse 
Lymphoma, 

Normal 
radiosensitive 

Lymphoma Unknown   

LY-S Mouse 
Lymphoma, 

radiosensitive 

Lymphoma unknown   

Hela Human Cervical 
Carcinoma 

Epithelial 
adherent cells 

31 YR Female Yes 

U2OS Human 
Osteosarcoma 

Mesnchymal 
adherent cells 

15 YR Female Yes 

2093, 1823, 
1866, 1879 

Fannconi 
Anemia, FANCD2 
complementation 

group 

Fibroblast 8±5 YR  Yes 

C1,C2,C3,C4 Healthy 
Individual 

Fibroblast   No 
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2.1.4 - Mouse fibroblast cell lines 

Mouse fibroblast cell lines CB17 and SCID (Table 2.1) were grown in Wymouth 

medium (Gibco) and 10% fetal calf serum and antibiotics at 37⁰C in the atmosphere of 10 % 

CO2. 

2.1.5 -  Mouse embryonic stem cells 

Mouse embryonic stem cell lines E14 and 408 (Table 2.1), were obtained from Dr 

Beverly Koller, University of Duke University, US. They represent undifferentiated embryonic 

stem cells and were cultured at 37⁰C in the atmosphere of 5% CO2 on gelatine coated 

dishes in KnockOut DMEM medium supplemented with 20% KnockOut serum replacement, 

2 mM L-glutamine, 0.001% b-mercaptoethanol (Sigma- Aldrich, St. Louis, MO), 1000 U/ml 

ESGRO (Chemicon, Temecula, CA), 10 U/ml penicillin, and 10 mg/ml streptomycin (all 

purchased, except where stated, from Gibco/Invitrogen). Medium was changed every 3 

days, and cells were subcultured initially at the ratio 1:2. The ratio progressively increased 

up to 1:8.  

 

2.1.6 -  Human adherent cell lines 

The U2OS cell line (Table 2.1), originally derived from a 15 years old female with 

osteosarcoma, exhibit epithelial adherent morphology. U2OS cells were grown in McCoy’s 

5a medium (Sigma), supplemented with 10% FBS (Gibco/Sigma) and 2mM glutamine (Gibco) 

at 37˚C in the atmosphere of 10% CO2. In order to avoid contamination, Penicillin and 

Streptomycin were added (1µl per 100ml medium) to both media. The HeLa cell line (Table 

2.1) was originally established from a patient with cervical cancer. HeLa cells were grown in 
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Dulbecco’s modified Eagle medium (DMEM) (Gibco/Sigma), supplemented with 10% foetal 

bovine serum (FBS) (Gibco/Sigma) at 37°C in the atmosphere of 10% CO2. 

2.1.7 -  Tissue culture procedure 

All cell lines were kept frozen in liquid nitrogen. When required vials of frozen cells 

were thawed (see below) and set up in either a 25cm2 flask or 75cm2 flasks with filter head 

(Nunc) to avoid fungus contamination. All primary fibroblast cell lines were subcultured 1:3 

by gentle trypsinization with trypsin-EDTA (Gibco/invitrogen) for five minutes at least every 

three to four days at 80 percent confluence. Prior to trypsinization the cells were washed 

with 3ml of D-PBS (Gibco/invitrogen). After trypsinization the cells were spun down in a 

centrifuge (Megafuge 1.0, Heraeus) at 1200rpm for five minutes. All solutions were brought 

to room temperature prior to trypsinising using a waterbath (Techne) with a monitor 

(Tempette Junior TE-8J) to keep the temperature constant 37ºC. The waterbath was 

constantly cleaned and disinfected alongside the incubator and the hood to avoid spreading 

of any fungus or bacterial infection.  

Supernatants were removed and the cell pellets were re-suspended by gentle 

flicking in the fresh medium. One ml of suspended cells was then put in a new flask with the 

fresh medium.  

All human and mouse lymphoma cell lines were grown in suspension under tissue 

culture conditions as mentioned above. Cells were sub-cultured at the ratio of 1:10 every 

two or three days, preferably before the medium colour changed to yellow.  
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2.1.8 -  Cryopreservation of cells 

Cells were preserved in liquid nitrogen to avoid aging and contamination. After 

checking cells for contamination, cells were trypsinized as described above. Cell suspension 

was mixed with 1ml of freezing medium containing 90 % fetal calf serum (Gibco/invitrogen) 

and 10 % DMSO (dimethylsulfoxide, Sigma). The cell suspension was aliquoted into 

cryogenic vials for storage in liquid nitrogen. Prior to storage in liquid nitrogen the vials were 

kept in a Nalge nunc cooler for 24 hours. This plastic holder was filled with Isopropyl alcohol 

(IPA). The specific heat of the coolant in the base insulates the container and gives a cooling 

rate of ~1º/min in the cryotube. Finally the ampoules with cells were transferred into liquid 

nitrogen for long-term storage. 

 

2.1.9 - Thawing of cryopreserved cells 

The medium was aliquoted and warmed inside the incubator before the ampoule 

with frozen cells was taken out of the liquid nitrogen. The cryopreserved cells were handled 

with great care. The ampoules were thawed for two to three minutes and the content 

immediately put into the pre-warmed medium. Cells were transferred into appropriate 

flasks. After 24 hours the medium in flasks was changed to wash away any residual DMSO. 

 

2.1.10 -  Irradiation of cells 

A Cobalt-60 source was used to irradiate cells with ionising radiation. Adherent cells 

were grown up to 80-90% confluence either in non-filtered tissue culture flasks (Nunc, 

Fisher) for metaphase preparation, or on polyprep slides (Sigma) for assays that required 

use of antibodies. Datasheets provided by the physicist in charge of this facility were used to 
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calculate dosages of radiation measured in Gray (Gy) per minute. In our studies cells were 

only subjected to relatively low doses of radiation i.e. mostly 0.5 Gy and 1.0 Gy with a 

maximum dose of 2.0 Gy.  

 

2.2 -  Cytogenetic Analysis 

2.2.1 - Metaphase Preparation using fibroblast cell lines 

A high mitotic index is important in scoring a large number of metaphases in a short 

time and it is also important to get high quality metaphase spreads. Twenty-four hours after 

irradiation (i.e. one cell cycle in the case of human cells), a flask with the semi-confluent 

cells (80-90%) was treated with colcemid (10μg/ml) (Sigma-Aldrich). Colcemid was used to 

arrest cells in metaphase by inhibiting the mitotic spindle formation. Initially cells were 

treated for three hours with colcemid (10μg/ml) prior to trypsinization and harvesting. This 

method gave a low mitotic index when using primary fibroblast cell lines and it was time-

consuming if a large number of metaphases were needed for the analysis. The following 

changes were implemented to yield a higher mitotic index in primary fibroblast cell lines: 

1.  Colcemid time was increased from three hours to twelve hours of treatment. This 

ensured that most cells reached M-phase of cell cycle, therefore increasing the mitotic 

index. 

2.  A mock flask was used without adding colcemid as a control to check the number 

of dividing cells. This method gave us a rough idea of when to stop the colcemid’s action. 

3.  During harvesting, culture supernatant were retained to collect mitotic cells in 

suspension and spun down in a centrifuge at 1000rpm for five minutes and before each spin  

a fresh fixative solution was added. This ensured that metaphases were not lost. 
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4.  Greater care was taken in handling the cells in the culture. For instance, cells were 

sub cultured when reaching 60-70% confluence rather than 80-90% as in previous 

experiments. This ensured that cells were kept healthy and in the exponential growth 

phase. 

After roughly twelve hours of treatment with colcemid, cells were washed in PBS, 

trypsinized, and spun down at 1000rpm for five minutes. Cells were then treated with 10ml 

of hypotonic buffer (75mM of KCl) for 15 minutes in a 37oC water bath and this will cause 

cells to increase their fluid intake. Cells were then fixed in a solution consisting of methanol 

and glacial acidic acid (3:1) solution. The process of fixation was carried out two more times 

and each time 1ml of fresh fixative was added drop wise, followed by the addition of 2ml of 

extra fixative. The cells were left at room temperature for 10 minutes and 30 minutes 

respectively. Finally, the cell pellets were re-suspended in fresh fixative and 15μl of cell 

suspension was dropped onto pre-cleaned slides. The fresh fixative ensured that mitotic 

cells were spread over the surface of slide effectively. Once the slides were dried they were 

checked under a phase contrast microscope. 

 

2.2.2 -  Metaphase preparation of other cell lines 

Preparations of metaphases from other cell lines (mouse embryonic stem cells, 

mouse LY-R and LY-S cells and human lymphoblasts) were performed as described above 

(2.2.1) but with maximum colcemid (10μg/ml) (Sigma-aldrich) incubation of 4 h only. These 

cell lines grow at a faster rate than human primary fibroblasts and therefore did not require 

changes described above (2.2.1). The remaining protocol was the same as described above. 
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2.2.3 -  Giemsa Staining 

Slides were stained with 8% (v/v) Giemsa (Sigma-Aldrich) for ten minutes in 50ml of 

ddH20. Giemsa stain was filtered to achieve better purity using standard filter paper (3MM 

Watman paper). After staining, slides were rinsed quickly with ddH20 and left to air dry 

while covered with paper to prevent dust settling onto the slides. Slides were mounted with 

DPX mountant (BDH laboratories), covered with cover slips, and left overnight to dry. DPX is 

a neutral solution of Polystyrene Plasticizer in Xylene. By applying this solution the 

coverslips were permanently attached onto the slides. A clean dust free and evenly stained 

slide with high mitotic index was selected for analysis using conventional microscopy (Zeiss 

Axioplan 2) equipped with CCD camera and MetaSystem software (Altlussheim, Germany). 

 

2.3 -  Interphase Quantitative Fluorescent in situ hybridization (I-QFISH) 

2.3.1 - Pre Hybridization washes 

Samples for I-QFISH were produced as standard cytogenetic samples (see above) 

with the exception of colcemid treatment. Microscope slides containing samples were 

washed with PBS for 5 min on the shaker. After that the samples were treated with 4% 

formaldehyde for 2 minutes and washed in PBS for 3x5 minutes. In order to remove 

unwanted proteins, 500 μl of pepsin (10 % pepsin; Sigma Co.) was mixed with 50 ml of 

acidified dH2O of pH2 (49.5 ml of deionized water added to 0.5 ml HCL) and then added to 

50 ml PBS and incubated at 37°C in water bath for 10 minutes. After 2x washing with PBS for 

2 minutes on the shaker, the slides were fixed again with 4% Formaldehyde for about 2 

minutes. Subsequently, the samples were washed three times with PBS for 5 minutes and 
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then dehydrated in the ethanol series (70%, 90%, 100%) and left to dry at room 

temperature.  

2.3.2 -  Hybridization 

A total of 20μl of the synthetic oligonucleotide PNA (peptide nucleic acid) specific for 

the telomeric DNA sequence (CCCTAA)3, labeled with FITC, was added to the slides. The 

slides were then placed on the heating block for 2 minutes at 70-75oC. Samples were left in 

a dark humidified chamber for 2 hours to allow for hybridization. 

2.3.3 -  Post Hybridization Washes 

The samples were washed twice in 70% Formamide solution for 15 minutes, 

followed by washing the slides 3 x with PBS for 5 minutes each time. Samples were then 

dehydrated in ethanol series (70%, 90%, and 100%). A total of 15μl of Vectra-shield anti- 

fade (DAPI) mounting medium was added to each slides before they were sealed with a 

clear nail varnish. 

2.3.4 -  Image Capture and Telomere length analysis 

Images of interphase cells have been acquired using the Smart Capture software 

(Digital Scientific, Cambridge, UK) and telomere fluorescence analyzed using the IP Lab 

software adapted for this purpose by Digital Scientific. Details of this procedure (Figure 2.1) 

are described in Chapter 3. 
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Figure 2.1 - An overview of Q-FISH (Authors’ own adaptation) 

 

2.4 -  Chromosome Orientation Fluorescence in situ Hybridization (CO-FISH) 

CO-FISH technique is based on standard FISH which also has further ability to 

determine the absolute 5`- to -3` orientation of DNA sequence relative to the short arm(q) 

to long arm(p) of the chromosome. This technique was originally termed COD-FISH 

(Chromosome Orientation and Direction FISH). Basically, the various applications of CO-FISH 

include: distinction between telomeres produced by leading-versus lagging- strand DNA 

synthesis, detection of interstitial blocks of telomere sequence that result from unsuitable 

fusion to double-strand breaks (telomere-DSB fusion), measuring the rate of mitotic 

recombination at telomeres through counting telomeric-sister chromatid exchanges (T-

SCEs) and replication timing (controlling) of mammalian telomeres during the S-phase 

(Bailey et al. 2010). Thus, the main difference between the CO-FISH and standard FISH is in 
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the capacity of CO-FISH to produce signals only in single chromatids as can be seen in 

(Figure 2.2). 

  

 

Figure 2.2 - The CO-FISH procedure according to (Falconer et al. 2010). In our protocol we 

used only a 5’ probe resulting in only one signal/pair of sister chromatids. 

 

After sub-culturing, cells were incubated for 20 hours with 3μl of 5‟-bromo-2-deoxyuridine 

at the concentration of 1x10-5M (Sigma Co.). This was followed by metaphase preparation 

as mentioned above. In the next step the slides were made and were aged overnight at 54°C 

in order to fix the chromosomes and making their structure resistance to the subsequent 

DNA denaturing.  

2.4.1 - Washing, digestion and fixation 

The slides were washed with PBS for 15 minutes and then stained with 2.5 μl of 

Hoescht 33258 (0.5 μl/ml) which was mixed gently with standard saline citrate (2x SSC) for 

15 minutes. After exposing the slides to 365 nm UV light for 30 min, 100 μl of Exonuclease III 

(Promega Co.) (1.5 μl Exonuclease III + 10 μl buffer + 88.5 μl H2O) was added to each slide 
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and covered with cover slip at room temperature for 10 minutes. Samples were then 

washed twice with PBS for 5 minutes on the shaker. Subsequently, the slides were treated 

with the Ethanol series for about 5 minutes for dehydration (70%, 90%, 100% ethanol 

respectively) and left to dry at room temperature. 

2.4.2 -  Hybridization 

A total of 20 μl of the PNA probe specific for the telomeric DNA sequence (CCCTAA)3, 

and labeled with Cy3, was added on the slides followed by transfer to the heating block for 

about 2 minutes at 70-75°C. The slides were placed for 2 hours in darkness at room 

temperature to allow for hybridization. 

2.4.3 -  Post hybridization wash 

The slides were washed twice with 70% formamide dissolved in the SSC buffer in a 

coupling jar, protected against light by foil, for 15 minutes. The slides were then washed 

three times with PBS and dehydrated in ethanol series (70%, 90%, and 100% respectively) 

for 5 minutes each. A total of 15 μl of vecta-shield anti-fade (DAPI) was added to each slide 

and covered with a cover-slip. The cover slips were sealed with a nail varnish. 

2.4.4 -  Image analysis 

Digital images were acquired using a Zeiss fluorescence microscope equipped with a 

CCD camera and the ISIS captures software (in situ imaging system “ISIS”, Meta Systems, 

Altlussheim, Germany) 
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2.5 -  Immunocytochemistry (γ-H2AX assay) 

DNA damage in cells can be detected by different methods. One of the most popular 

methods is the γ-H2AX assay which detects sites of DNA damage in interphase nuclei using a 

monoclonal antibody against the above protein. All adherent cells were grown on poly-prep 

slides (Sigma-Aldrich) for 24 hours before fixation in 4% formaldehyde in PBS for 15 

minutes. Cells were then permeabilized in 0.5% Triton-X 100 (Sigma-Aldrich) for 10 minutes 

at 4°C. Cells are then blocked with 0.5% BSA (Bovine Serum Albumin) in PBS for 30 minutes 

and covered in parafilm in humid containers. Primary antibody (γ-H2AX; Milipore) is added 

at the relevant concentration (1:500), for 1 hour in humid containers covered with parafilm. 

Slides were washed twice for five minutes each in TBST. Secondary antibody was added at 

relevant concentrations (1:1000) for one hour in a dark and humid container. Finally slides 

were washed in TBST for five minutes three times and dehydrated with serial ethanol as 

previously mentioned. The DAPI vectashield mounting medium was added and cover slides 

are sealed with nail varnish. 

2.6 -  γ-H2AX assay using the Imagestream 

DNA damage in non-adherent cells, like lymphoblastoid cells, cannot be measured 

using the above protocol. In order to detect DNA damage in lymphoblastoid cell lines we 

used the Imagestream apparatus (Amnis, Seattle) which is capable of analysing fluorescence 

in all cells types grown in suspension. 

For each individual sample seven flasks of cells grown to confluence were labelled as 

follows 

 Untreated Control 

 30 minutes after irradiation 
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 5 hours after irradiation 

 24 hours after irradiation 

 48 hours after irradiation 

 PE Compensation (Phycoerythin) 

 Draq 5 Compensation  

The PE compensation samples will only be stained with the primary antibody ( -H2AX) 

and secondary antibody (Phcoerythyrin),  while the Draq 5 compensation sample will only 

be stained with the Draq-5 nuclear stain whilst all other samples will be stained with both 

markers. This will allow the analysis software to compensate for any signal overlap of the 

two markers.  

When required samples were rinsed with 10mL of PBS and the cells detached with 1mL 

of Trpysin, Cells were then washed in 10mL of PBS twice and centrifuged at 1500rpm for 5 

minutes in a table top centrifuge (Haraeus, GMBH) between each wash. Cells were then fixed 

in 1mL of Methanol: Acetone (50:50 v/v) and transferred to Eppendorf tubes. They were 

incubated at 4oC overnight. All samples were centrifuged at 5000 rpm for 2 minutes. The 

fixative was aspirated and the cell pellet was resuspended in 1mL of permeabilisation buffer 

[0.5% Triton X-100 (Sigma Aldrich) in PBS]. This allows the cell membrane to become 

permeable, making antibody staining more effective. Samples were left on the shaking 

platform for 5 minutes at room temperature. Samples were centrifuged at 5000rpm for 2 

minutes. The permeabilisation buffer was aspirated and the cell pellet was resuspended in 

1mL of blocking buffer (0.2% non fat milk powder) (Premier International Food Ltd, Spalding 

Licolnshire UK), 0.1% Triton X-100 in PBS)). The samples were left on the rotary wheel for 1 

hour at room temperature. 
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Samples were centrifuged at 5000 rpm for 2 minutes. The blocking buffer was aspirated 

and the cell pellet was resuspended in 1mL of -H2AX antibody (Millipore UK Ltd, Hampshire 

UK). The Draq-5 compensation sample was resuspended in 500µL of blocking buffer. The 

samples were incubated at 4oC overnight. 

The following day, the samples were washed 3 times in wash buffer; centrifuged at 5000  

rpm for 2 minutes in between each wash. The cell pellet was resuspended in 100µL of 

secondary antibody (Phcoerythyrin, Sigma Aldrich) for all samples apart from the Draq 5 

comp sample, which was resuspended in 500µL of blocking buffer. They were placed on the 

rotary wheel for 1 hour, which was covered in foil to prevent degradation of the fluorescent 

signal. 

They were washed twice in wash buffer; centrifuged at 5000 rpm for 2 minutes in 

between each wash. The cell pellet was resuspended in 150µL of Accumax flow cytometry 

buffer (PAA). 0.5µL of Draq-5 nuclear stain (Biostatus Ltd, Leicestershire UK) was added to 

all samples with the exception of the PE compensation sample.  Samples were incubated in 

a water bath at 37oC for 30 minutes. Samples were then kept at 4oC until processing on the 

Imagestream took place. 
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2.6.1 - Imagestream analysis 

The Imagestream is a multispectral imaging flow cytometer, which counts cells and 

enables visualisation of each individual cell. It can take up to 6 simultaneous images of every 

cell including 

 Brightfield which provides information about cell size, structure and morphology 

 Darkfield which measures the light scattered by the cell 

 Fluorescence is detected by a 488nM laser, which locates and measures the level of 

signal being emitted by the biomarker of interest.  

There are four different channels that can be used for fluorescent markers at different 

wavelength. In this experiment: 

 Channel 3 was used for the detection of the Phcoerythrin staining 

 Channel 5 was used for the detection of the Draq-5 staining  

Samples were processed using the InspireTM software (Figure 2.3). Individual images 

of cells were captured using Brightfield to determine morphology and a 488nm laser set at 

100mv to ascertain localisation and intensity of Phycoerythin and Draq-5. Cells were 

counted at an approximate rate of 30 -70 cells per second. A total of 10000 cells were 

counted per sample. 
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Figure 2.3 - A screenshot image of the Inspire software, showing each individual cell in 

Brightfield (Ch 1), PE staining (Ch 3), Draq-5 staining (Ch 5) and side scatter (Ch 6). 

 

 

The images captured on the Inspire software were analysed using the IDEASTM 

software (Figure 2.4). The analysis comprises a multi-step process and it is initiated by pre-

defined “building blocks”. Once all unwanted images such as debris, doublet cells and 

unfocussed images have been excluded from the population of cells being analysed (Figure 

2.5), a series of masks are created. This defines regions of interest and directs the software 

to the area of the cell you are interested in (in this case the nucleus). Finally, based on the 

masks created, histograms are generated to provide statistical information such as the 

average number of foci in a cell and the average intensity of signal generated in a particular 

sample.  
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Figure 2.4 - Individual images of all cells captured as seen in the IDEAS software. 

 

2.6.2 -  Cell gating 

The raw data was first sorted using the ‘building blocks’ provided with the software. 

The images were gated for a number of parameters as described below. 

 

 

 

 

 

 

 



Chapter 2 – Materials and Methods  

 

                                                                                                                                                           49 
 

 

1) Single cells 

 

          

Figure 2.5 - Single cells are gated within the entire population that was counted. This is done 

to ensure only single cells are used in the analysis and eliminates debris as well as doublet 

cells. 

 

 

2) Cells in focus 

 

          

Figure 2.6 - The single cell population (Figure 2.5) is then sorted to remove cells that are out 

of focus (A) as it is not possible to determine the number of foci accurately unless cells are 

in focus (B). 

 

 

 

 

 

A B 
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3) Cells that have been stained with both secondary antibody and Draq 5  

 

           

Figure 2.7 - Cells that are double stained will usually form a cluster as seen above. Only 

double stain cells including in analysis. 

 

 

2.6.3 -  Creating Masks 

The next step entailed creating a series of masks to allow for quantification of -

H2AX foci. A mask defines a region of interest within the cell. Initially a nuclear morphology 

mask (Figure 2.6) was created which identified the nucleus of each individual cell. This 

enables to direct the ensuing masks that are created to focus only on the nucleus. This is 

done as -H2AX foci will only appear in the nucleus and thereby eliminates false or 

cytoplasmic staining. 
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Figure 2.8 - Creating morphology mask using the Mask wizard. 

 

An intensity mask was then created to determine overall PE intensity in the nucleus 

and therefore overall levels of DNA damage. When creating this mask, the Morphology 

mask created earlier was used to define the region that the Intensity mask will analyse 

(Figure 2.8). This mask was then applied to all cells that fell within the parameters set out 

earlier. 
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Figure 2.9 - Creating intensity mask using the Mask wizard. 

 

 

A spot mask was also created to allow accurate quantification of the number of foci 

formed in each individual cell. 

In order to create a spot mask, first a truth population of cells was selected. This 

population only contains images in which the number of foci can be clearly visualised and 

cells with a range of foci numbers are selected. The spot mask was then created (Figure 2.9) 

using these images as validation to ensure that the parameters set for the spot mask 

accurately masked only the foci within the nucleus.  
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Figure 2.10 - Truth population shown in Ch03. 

 

 

Figure 2.11 - Creating spot mask using the Mask Wizard. 

 

In order to ascertain the accuracy of the mask created, a new feature is created 

using the spot mask (Figure 2.11) and a histogram was plotted using only the truth 

population (Figure 2.12). By clicking on the individual bins, it is possible to check whether 

the feature has accurately identified the number of foci in the cells as you are able to detect 

the number of foci visually.   
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Figure 2.12 - Histogram generated to test the accuracy of the spot mask. 

 

 

Once the accuracy of the spot mask feature was validated using the truth 

population, this was applied to the population of cells that fell within the criteria listed 

earlier. 

 

2.7 -  H2AX Assay using Cytospin 

As an alternative method for the Imagestream analysis we used a simple cytospin 

procedure. This procedure spreads non-adherent cells onto microscope slides using gentle 

fixative reagents to allow subsequent immune-cytochemical analysis. Cells were grown in 

T25cm2 flasks (Nunc) and attached to polyprep slides (Sigma-Aldrich) using a cytospin 

centrifuge at 1000 rpm for 5 min. All the procedures were performed at room temperature. 

Cells were fixed with 2% paraformaldehyde for 10 min, washed with PBS for 5 min, 

permeabilized with 0.2% Triton X-100 in PBS for 10 min, and washed with PBS for 5 min. At 

this point cells were ready for immunocytochemical staining as described in the section 2.5. 
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2.8 -  Telomere dysfunction-induced foci (TIF) Assay 

The TIF assay described here is based on the combination of antibody detection and 

hybridization with synthetic telomeric PNA. The original TIF technique was first described in 

2003 by (Takai et al. 2003) in which co-localization between two antibodies was analyzed. 

One antibody binds to a DNA damage response protein such as 53BP1 and the second 

antibody binds to a telomere repeat binding protein (TRF1). A co-localization between the 

two antibodies was then detected and the site of co-localization represents DNA damage at 

a telomere and it is called a TIF. In our protocol detection of telomeres was performed 

through hybridization with telomeric PNA as described above. DNA damage was detected 

using the γ-H2AX antibody. This was essentially an immuno-FISH protocol which is described 

below. 

Cells were seeded in tissue culture flasks two days prior to experiments and after 

cells reached 80-90 % confluence, they were trypsinized and 1ml of cell suspension 

(containing roughly 50,000 cells) was added onto poly-prep slides (Sigma-Aldrich) and 

placed inside a petri dish (to minimize the infection risk). Cells were left to grow for 24 hours 

at 37⁰C in the atmosphere of 10% CO2. If irradiation of cells was required 5 ml of pre-

warmed medium was added into petri dishes before transferring the cells to the irradiation 

room. All of the procedure was done at room temperature unless stated otherwise. After 

cells were irradiated with the required dose, slides were incubated for between 30 minutes 

and 24h at 37⁰C before further processing. After that slides were rinsed in PBS and fixed in 

4% formaldehyde for 15 minutes. Cells were then permeabilized in 0.2%Triton-X in ddH2O at 

+4.0oC for 10 minutes followed by blocking with 0.5% BSA (Bovine Serum Albumin) in PBS 

for 30 minutes and covered with parafilm. One hundred μl of γ-H2AX antibody (Upstate) 
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solution was added (dilution of 1:500 with 0.5% BSA) for one hour in dark, damp conditions 

after which slides were washed with TBST (Tris-buffered saline tween-20) for 3 minutes 

twice on a shaker. Then, 100μl FITC secondary anti-mouse antibody was added (diluted 

1:400 with 0.5% BSA) for one hour in dark, damp conditions and washed with TBST for five 

minutes, three times in a dark coplin jar and on an orbital shaker. Cells were fixed again with 

4% formaldehyde for 20 minutes with no shaking in a dark place and this second fixation 

prevents bleaching of the fluorescence signals. At this point the slides can be analysed for 

the presence of γ-H2AX signals if necessary, or the protocol can be continued to detect 

telomeres. For telomere detection slides were dehydrated with an ethanol series (70%, 90% 

and 100% concentration) for five minutes each and then air dried. After this, slides were 

hybridized for two to three minutes at 70° C with PNA telomeric oligonucleotides 

(CCCTAA)3, labeled with Cy-3 (Applied Biosystems), and left for two hours in dark and damp 

conditions. Post hybridization washes were performed using 70% formamide for 10 

minutes, twice, and then finally washed with TBST for 10 more minutes before adding 15μl 

Vecta-shield anti-fade DAPI mounting medium (Vector Laboratories). The slides were 

analysed using the computerized Axioskop 2 Zeiss fluorescence microscope equipped with a 

CCD camera and MetaSystems software. 
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2.9 -  Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) Analysis 

2.9.1 - RNA extraction 

RNA extraction was performed using an RNeasy 

Plus kit (QIAGEN), which provided fast processing and 

effective purification of RNA from cells. The procedure 

was carried out according to the manufacturer’s 

instructions (Fig. 2.13 summarises the process). Briefly, 

approximately 80% confluent cells were trypsinized and 

collected as a pellet prior to lysis. Cells were disrupted 

by adding the RLT buffer (guanidium thiocyanate lysis 

buffer), followed by homogenisation. The homogenised 

lysate was transferred to a gDNA elimination spin 

column and centrifuged for 30 second at 1000rpm. One 

volume of 70% RNA free ethanol was added to the flow-

through. The sample was transferred to an RNeasy spin 

column and centrifuged for 15 second at 1000rpm.  

Different buffers were added while centrifuging after each addition and discarding 

the flow-through. Finally, 30µl of RNA-free water was added to the spin column membrane 

that was centrifuged for 1 minute at 1000rpm.  The RNA quantity was measured using the 

spectrophotometer NanoDrop 2000C (Thermo Fisher Scientific), which enables measuring of 

0.5 - 2 µl samples with high accuracy and reproducibility.  

Figure 2.13 - RNA extraction 
procedure. 
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The spectrophotometer was blanked using the reference RNA free solution that was 

placed onto the measurement pedestal, and a reading was taken at 260nm wavelength. The 

measurement of RNA absorbance took place afterwards. The following table (Table 2.2) 

demonstrates an example of the reading from the total RNA extraction of one of the 

experiments. 

 

 

Table 2.2 - Sample reading from total RNA extraction 

Cell line A260/280 nm ratio A260/230 ratio  RNA concentration 
(ng/µl) 

HeLa 2.06 2.20 2056.1 

U2OS 2.03 2.15 594.1 

 

2.9.2 -  First-strand cDNA synthesis with SuperScript III (life technolodgy)  

The following components were added to a nuclease-free microcentrifuge tube: 

1µg of total RNA (0.49 µl for Hela and 1.68 µl for U2OS) 

1µl 0f DNAse I reaction buffer 

1 µl of DNAse I Amp grade 

RNA-free water (7.51 µl for Hela and 6.32 µl for U2OS) 

----------------------------------- 

Final volume 10µL reaction mix 



Chapter 2 – Materials and Methods  

 

                                                                                                                                                           59 
 

The final mixture volume was incubated at room temperature for 15 minutes. A total 

of 1 μl of EDTA was added to each sample. The final mixture volume (11 μl) was heated to 

65˚C for 10 minutes using a thermal cycler (PTC-225 Peltier). One μl of Random primer and 1 

μl of dNTP were added for each sample and the final mixture volume (13 μl) was heated for 

5 minutes at 65˚C. 

The following components were added to the collected 13 µl reaction mix: 

4µl of 5x first strand buffer 

1µl of 0.1 M DTT (Dithiothreitol) 

1µl of RNAseOUTTM Recombinant RNase Inhibitor (40 units/µl) 

1µl of superScriptTM III RT (200 units/µl) 

---------------------------------------------------- 

Final volume 20µl reaction mix 

The 20µl reaction mix was mixed gently and was heated at 25˚C for 5 minutes. This 

was followed by incubation for 60 minutes at 50˚C for random primer, followed by 15 

minutes at 70˚C to inactivate the reaction. The cDNA sample is now ready to be used as a 

template for amplification by PCR. 

 

2.9.3 -  Primer Design 

The DKC1 primers (Table 2.3) were designed using NCBI primer blast software.  The 

GAPDH primers (Table 2.3) were kindly provided by Dr.Mark Pook, Brunel University.  
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 Table 2.3 - Primer sequences for RT-PCR and real-time PCR 

   Gene Name          Sequence (5' - 3')                         Product length    

 

      DKC1 (Forward)                       GGCGAGTTGTTTACCCTTTGG                           102 bp 

      DKC1 (Reverse)                        GCATAATCTTGGCCCCATAGC                            

 

      GAPDH (Forward)                    GAAGGTGAAGGTCGGAGT                               226 bp 

      GAPDH (Reverse)                     GAAGATGGTGATGGGATTTC                           

 

2.9.4 -  RT- PCR 

Optimizing primer concentration 

Conventional PCR reaction was used in order to test the specificity of the primers. Three 

different concentrations (10μM, 5μM and 2.5μM) of forward and reverse primers were 

tested to find the optimized primer concentration. 

One to 5 µl of cDNA can be used for PCR amplification using PCR Master Mix (Thermo 

Scientific) (consisting of 15Mm MgCl2). For 21µl reaction the following reagents were 

added: 

1µl of cDNA 

1µl of forward primers according to the gene of interest 

1µl of Reverse primers according to the gene of interest 

18µl of Master Mix 
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-------------------------------- 

Final volume 21µl 

The sample was gently mixed and was placed into a thermal cycler PCR machine that was 

configured with the following program (Table 2.4): 

Table 2.4 - PCR cycle temperature 

 Temperature (˚c) Time Cycles number 

Denaturation 94 2 minutes 1 cycle 

Denaturation 94 30 seconds 

35 cycles Annealing  61 30 seconds 

Extention 72 30 seconds 

Extention 72 10 minutes 1 cycle 

 

2.9.5 -  Agarose gel electrophoresis 

Two percent agarose gel was made using agarose dissolved in  1x Tris acetate EDTA 

(TAE) buffer solution (Sigma-Aldrich). Before setting the moltened gel into an agarose gel 

electrophoresis tank, 5µl ethidium bromide (10 mg/ml) was added. The gel was covered 

with 1x TAE and the PCR samples were loaded into the gel wells. In order to determine the 

PCR product size accurately, a 1kb ladder was used. The gel was run at 65 V for 

approximately 1.5 hours. To visualise the PCR results, An Alphaimager under  U.V. light was 

used. 
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2.9.6 - Real-Time quantitative RT-PCR (Real-Time qRT –PCR) 

After the RT-PCR primer optimization was completed, the next step was to test the 

primer concentration using qRT-PCR. This technique is used to amplify cDNA and 

simultaneously quantify the cDNA products by utilising the SYBR Green I dye.  SYBR Green 

binds directly to double stranded DNA. Therefore, it is possible to measure the fluorescence 

emission of the DNA-dye complex and quantify the amount of DNA produced.  

The optimal concentration yields the lowest threshold cycle (Ct), determined by the 

intersection between the amplification curve and the threshold line, and maximum Rn, 

which is the reported signal of normalised fluorescence. Both Hela and U2OS cell lines were 

used to test for DKC1 optimal primers. Three different primer concentrations were 

examined: 10μM, 5μM and 2.5μM. (Figure 2.14) shows the results obtained while testing 

the primers optimal concentrations. 
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Figure 2.14 - Optimisation of DKC1 and GAPDH primers concentration.  The graphs show the 

amplification curves obtained at three concentrations  of DKC1 primers: 10μM, 5μM and 

2.5μM (A) Amplification curve for DKC1 primers at three concentrations 10μM, 5μM and 

2.5μM using U2OS cell line. (B) Amplification curve for GAPDH primers at 10μM, 5μM and 

2.5μM using U2OS cell line. 

 

2.10 - Small interfering RNA (siRNA) 

Small interfering RNA (SiRNA) also known as short interfering RNA is a class of 

double-stranded RNA molecules that interferes with the expression of a specific gene. Since 

the discovery of RNAi (RNA interference) in 1998 by Fire and Mello using C. Elegans (Fire et 

al. 1998), a whole range of small RNA molecules have been identified including microRNA 

(miRNA), (siRNA), and Piwi-interacting RNA (piRNA) (Ghildiyal and Zamore 2009). Each class 

of these RNAs differ in their modes of target regulation, their biogeneses, and in the 

biological pathways they regulate. RNAi was described by Fire and Mello to be a form of 

post-transcriptional gene silencing, whereby a ds (double stranded) RNA induces the 

degradation of homologous endogenous transcript, either reducing or totally inactivating 

the mRNA transcript of a specific gene (Fire et al. 1998). This method of post-transcriptional 

A B 
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gene silencing is transient and the expression of the specific mRNA will revert back to 

normal in human cells within 7 to 10 days post transfection. 

2.10.1 - Effective controls for RNAi Experiment 

The selection of the proper controls in any RNAi experiment with an analysis of loss 

of function (LOF) of a target gene is key to the reliability and effectiveness of the specific 

RNAi experiment (Huppi et al. 2005). There are several criteria that should be met for an 

acceptable LOF analysis through RNAi experiment for publication that editors of Nature Cell 

Biology suggested in 2003. 

In short these criteria are as follows: 

1. Mismatched or scrambled RNA (Also known as non-targeting siRNA) 

2. Basic controls: Reduction in the expression level must be measured at the mRNA and 

protein levels, as well as the functional read outs whenever possible. 

3.  Quantitative control: A titration of siRNA is recommended to detect the lowest 

minimal concentration of siRNA for the required effect. 

4. Multiplicity control: To be confident in the RNAi data is to demonstrate that the 

desired effect can be achieved with two or more siRNAs targeted to different sites in 

the message (mRNA) under study (Hannon 2002; Chen and Xie 2012). 

2.10.2 -  Re-suspension of siRNA 

 
The siRNA oligonucleotides were purchased from Dharmacon (Thermo Scientific) and 

were re-suspended according to the manufacturer’s recommended protocol. All siRNA 
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oligonucleotides were delivered in a dry powder form and re-suspended in a siRNA re-

suspension buffer provided by the manufacturer (Table 2.5). 

 Table 2.5 - Summary of controls in RNA Inhibition experiments 

       Control Type                                             Function                                            Product Used 

 

       Positive Control           Optimizes and monitors efficiency                   ON-TARGET GAPDH 

                                                     of siRNA delivery into cells       Control Pool (Silencing GAPDH) 

 

       Negative Control            Distinguish between sequence-specific                 None-Targeting  

                                                       silencing to non-specific effect                         (Scrambled RNA) 

 

 

      Untreated Control             Determine the base level of gene       Cells cultured without any 

                                         expression, as well as viability and phenotype          siRNA treatment 

  

 All siRNAs were briefly centrifuged in a tube to collect the siRNA pellet at the 

bottom. According to the amount of siRNA, all the siRNA stock was diluted to a final 

concentration of 5μM/μl in 5x siRNA re-suspension buffer (Dharmacon), containing 

20mMKCl, 6mM HEPES-pH 7.5, and 0.2 mM MgCl2, diluted down to a 1x siRNA buffer with 

RNase free water (Dharmacon). A total of 1000 μl of 1x siRNA buffer was added to 5nmol 

siRNA tube to give a final concentration of 5 μm/μl. The solution was resuspended with a 

pipette three to five times to avoid introducing any bubbles. The solution was left on an 

orbital shaker set at 200rpm/minute for 30 minutes at RT. Then the solution was briefly 

centrifuged and the SiRNA concentration was verified using the spectrophotometer 



Chapter 2 – Materials and Methods  

 

                                                                                                                                                           66 
 

NanoDrop 2000C (Thermo Fisher Scientific). (Table 2.6) summarizes the purity, quality, and 

total concentration of all siRNAs used in our experiments. 

 Table 2.6 - Summary of short interfering RNA used in RNAi experiments 

siRNA                    Company                     Stock                           Working                          A260/280                                                                            
                                                                     Quantity                     Quantity                   (>2.0 is pure) 
                                                                   Concentration 

GAPDH                 Dharmacon                      5 μM                             5 nM         2.19 

None-Target                   

(Scrambled)         Dharmacon                      5 μM                            5 nM                                  2.29 

         

DKC1                     Dharmacon                      5 μM                            5 nM                                  2.19 

 

2.10.3 -  Procedure 

U2OS and Hela adherent cells were seeded in T25 flasks. A total of 400,000 cells 

were added to each flask containing 5ml medium. U2OS and HeLa cells were seeded for 24 

hours prior to SiRNA addition.  After 24 hours, the medium was replaced. Cells were 

harvested 48 hrs, 72hrs, 96hrs and 7 days after treatment. This was followed by RNA 

extraction, cDNA synthesis and knockdown measurement using real-time qRT –PCR. When 

DKC1 expression was at its lowest level, H2AX and TIF assay was performed.  The schematic 

below (Figure 2.15) represent the exact experimental procedure used in all siRNA 

experiments. 
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     Cell Seeding             Change Medium  

 

 

           

  

Figure 2.15 - Summary of experimental plan. The long line represents time in hours. 

 

2.11 -  Western Blot 

Western blot is a technique used to specifically detect and quantify protein from a 

tissue or cell samples. It uses gel electrophoresis to separate proteins according to size and 

mobility. Proteins are then transferred to a Polyvinylidene Fluoride (PVDF) membrane in a 

wet blot conditions. An appropriate primary antibody is used to detect a specific target. 

Enhanced Chemiluminescent dye is used to detect the Horseradish peroxidase (HRP) 

conjugated secondary antibody that is bound to the specific primary antibody and the 

protein of interest is detected on an X-ray film. 

 

2.11.1 - Protein Sample Preparation 

Cells were grown to 80-90 percent confluence and the plate was rinsed six times 

with cold PBS. All the excess liquid was removed and 200μl of RIPA buffer 

   0            24           48          72         96                       168 
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RNA and Protein Extraction 

-24 
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(Radioimmunoprecipitation assay buffer) and 10μl of 25x protease inhibitor were added for 

at least 5 minutes onto the plate. Samples were thawed and mechanically sheared ten times 

using a 1ml syringe and a 23g needle. Samples were collected into Eppendorf tubes and 

spun at 13,000rpm for 15 minutes. The supernatant was aliquoted and transferred to clean 

Eppendorf tubes and stored at -20°C. 

 

2.11.2 -  Protein Quantification 

Each protein in the sample was quantified using a Pierce® BCA Protein Assay Kit 

(Thermo scientific). Pierce BCA Protein Assay is a detergent-compatible formulation based 

on bicinchoninic acid (BCA) for the colorimetric detection and quantitation of total protein. 

The assay was performed according to manufacturer’s recommended protocol (Table 2.7). 

In short, a serial dilution of 0.025mg/ml – 1.5mg/ml of protein standard was made using 

bovine serum albumin (BSA). This was used to construct a standard curve (Figure 2.16), 

where all unknown sample protein concentrations were measured against the standard 

curve. 
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 Table 2.7 - Preparation of diluted BSA standards for BCA analysis 

Tube                     Volume of dH2O                    Volume of BSA              Final BSA concentration 

A                                        10µl                                       30µl                                   1500µg/ml 

B                                         20µl                                      20µl                                   1000µg/ml 

C                                         20µl                                  20µl of A                               750µg/ml 

D                                         20µl                                  20µl of B                               500µg/ml 

E                                          20µl                                 20µl of D                               250µg/ml 

F                                         20µl                                  20µl of E                                125µg/ml 

G                                         30µl                                  10µl of E                               25µg/ml 

H                                         40µl                                       –                                        0µg/ml 

 

A total of 200μl of Working Reagent (BCA protein assay reagent A/B diluted 1:49) 

was prepared for each sample/standard and added to a new eppendorf tube. A total of 10μl 

of protein lysate, diluted 1:20 with dH2O, was added to the tubes, followed by a gentle mix. 

The plate was incubated at 37° C for 30min in an incubator and then allowed to cool at 

room temperature. The A562 of the standards and protein lysates was then measured using 

a plate reader (BP800, BioHit). A standard curve was prepared by plotting the blank-

corrected measurement for each BSA standard against its concentration. The standard curve 

was then used to determine the protein concentration of each study sample. 
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Figure 2.16 - Standard curve used in protein quantification.  

 

 

2.11.3 -  Protein Gel Electrophoresis 

Protein lysates were prepared from Hela and U2OS cell lines and the protein 

concentration determined using BCA assay as previously described. For each sample, 

approximately 40μg of protein was prepared in 1x working sample buffer to a total volume 

of 20μl. The lid of the eppendurf tube was pierced and samples were placed at 100°C for 

10min to denature the globular structure of the proteins and then put on ice. 

Twenty μl of the prepared samples and 10μl of a Precision plus ProteinTM standard 

(Bio-Rad) were added to each well of a ready-made 10% precast gel (Bio-Rad). The lower the 

molecular weight of a protein of interest, the higher the percentage of gel that is required. 

For example, a 10% gel will be sufficient for the separation of protein of 250 KDalton (kDa) 

or less. The gel was bought ready-made or was made using the following ingredients: 

-3.3ml distilled water (DW) 

-4.0ml 30 percent acrylamide mix (protogel EC890) 
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-2.5ml 1.5M Tris pH 8.8 (36.3g Tris/200ml) 

-100μl 10 percent SDS 

-100μl 10 percent ammonium persulphate (APS) freshly made 

-4.0μl TEMED 

The above formula will give a 12% gel that is poured into the gel tank plate. The gel 

tank plate was set up following the manufacturer’s protocol. The above gel was loaded 

immediately onto the gel plate, topped with water for even distribution, and left for 30 

minutes to set. The stacking gel was then made with the following reagents: 

-1.4ml DW 

-330μl 30 percent Acrylamide mix 

-250μl 1M Tris pH 6.8 (24.2g Tris/200ml) 

-20μl 10 percent SDS 

-20μl 10 percent APS 

-2μl TEMED 

The stacking gel was poured onto the gel (the excess water was blotted off first) and 

left to set for at least 15 minutes with a separation comb in place. Eventually the comb was 

removed and 20μl of prepared protein sample was loaded carefully onto each well. The 

protein marker was normally loaded on the first and last wells. The interior and exterior of 

the tank was filled with 1x running buffer made with 3.0g (w/v) of tris base, 14.4g (w/v) of 

glycine, 1g of SDS, and distilled water to 1 litter. The samples were initially run at 100V until 

proteins were evenly located in the gel and the power was switched to 150V for  

approximately 45 minutes. The samples were checked regularly to prevent running off of 

the protein samples. 
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2.11.4 -  Blotting and transfer 

Once proteins were separated in the gel based on their size and mobility (heavier 

proteins move slower and hence were at the top of the gel, whereas smaller proteins move 

faster and were found near the bottom of the gel), proteins were transferred onto a blotting 

paper. Polyvinylidine fluoride (PVDF) is a non-reactive membrane that has a non-specific 

affinity to amino acids. PVDF was activated by soaking in 100% methanol for 10 seconds. A 

sandwich of filter pad, 3mm filter paper, activated PVDF membrane, gel, 3mm filter paper, 

and filter pad was assembled according to the manufacturer’s protocol (Bio-Rad). A small 

magnetic stirrer was placed in the tank, topped with 1x transfer buffer made with 11.25g 

(w/v) of glycine, 2.42g (w/v) of tris base, 200ml (v/v) of methanol and distilled water to 1 

liter. The blotter was placed inside the tank and the tank was run at 60V for 45 minutes on a 

magnetic stirrer to create an even distribution of the electrolysis. An ice pack was also 

placed inside the tank to prevent overheating of the buffer solution. 

           

2.11.5 -  Blocking and antibody incubation 

Once the transfer of protein from gel onto the PVDF membrane was complete the 

proteins were blocked with 5% blocking reagent containing 5g (w/v) of semi-skimmed milk 

(Marvel) in 100ml of Tris buffer saline-Tween (TBST) made with 16g (w/v) of NaCl, 0.2g (w/v) 

KCl, 3g (w/v) of Tris base, 0.1% (v/v) Tween-20 added to 800ml of distilled water adjusted 

pH to 7.6, and distilled water added to 1 liter. The membrane was left in 30ml of blocking 

solution for about one hour on a shaker at room temperature. The milk mixture blocks the 

unspecific binding of an antibody with the membrane. After one hour of blocking, the 

membrane was rinsed with TSBT and the primary antibody was added. The primary 
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antibody was diluted down according to the manufacturer’s recommendation and was 

further optimized by the user. (Table 2.8) below shows all antibodies used in our experiment 

with optimized dilution ranges. 

 

 Table 2.8 - Primary and secondary antibodies used in western blot experiments 

Antibody                        Manufacturer                  Source                 Clonality                Dilution  
 

DKC1 Primary                      Abcam                         Rabbit                  Polyclonal               1:1000 

DKC1 Secondary                 DAKO                           Rabbit                  Polyclonal               1:2000     

Beta-actin Primary             SIGMA                         Rabbit                  Polyclonal               1:1000 

Beta-actin Secondary        DAKO                           Rabbit                  Polyclonal               1:2000     

 

Primary antibodies were diluted in one in five dilutions in 5% blocking buffer in 1x 

TBST and added to the membrane overnight on a shaker set at medium pace 

(200rpm/minute) at 4°C. The following day the membrane was washed four times with 1x 

TBST for 15 minutes each and incubated with a secondary antibody diluted in one in five 

dilutions of 5 % blocking buffer on a shaker at RT for a minimum of one hour. 

 

2.11.6 -  Protein detection with chemiluminescence 

After 1 hour incubation with a secondary antibody the membrane was washed four 

times in 1x TBST for 15 minutes. Meanwhile ECL plus (Enhanced chemiluminescence) kit (GE 

Healthcare) was taken out of the fridge and left at RT to warm up. The amount of ECL 

required for detection was based on the size of the membrane and was recommended by 

the manufacturer to be of a final volume of 0.125m/cm2 of membrane. The manufacturer’s 
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protocol was consulted for the exact mixture of chemical A and chemical B. As a rule of 

thumb, 2ml of reagent A was mixed with 50μl of reagent B. That is 1 part of reagent A mixed 

with 40 parts of reagent B. The ECL mixture was added onto the membrane and covered 

with Saran wrap for 5 minutes in a dark room. The excess of the ECL was tipped off onto a 

paper towel, wrapped in the membrane facing down onto a piece of clean Saran wrap and 

placed in an x-ray cassette. 

Unexposed ECL plus hyperfilm (GE healthcare) was put on top of the membrane and 

the cassette closed and left for exposure for 5 minutes. The x-ray films were developed 

using an automatic machine (Xograph). The exposure time was assessed accordingly 

depending on the size of the exposed bands. If the protein bands were faint and could not 

be visualized then a second film was exposed for a longer period. The ECL 

chemiluminescence was active for at least one hour. 

 

2.12 -  Statistical Analysis 

Basic statistical analysis such as descriptive measurements and graphical display 

were done using Microsoft Excel 2007 software. All t-tests were done at 95 percent 

significance with α set at 0.05.
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3.1 -  Introduction  

Mammalian chromosomes are complex structures, which require specialized 

functional elements for their accurate segregation. One such essential element is the 

telomere (Blackburn 2000). Telomeres consist of conserved DNA sequences (TTAGGG) and 

specific proteins. Telomeric DNA sequence and telomeric proteins form a unique structure 

at the chromosome end that helps preserving chromosomes as single entities. Therefore, all 

eukaryotes must have appropriate mechanisms to maintain functional telomeres in both 

somatic and germ line cells (Wong and Slijepcevic 2004).  

The main function of telomeres is to protect chromosome integrity and stability. 

Non-functional telomeres cause end-to-end chromosome fusion and subsequent breakage-

fusion-bridge cycles leading to genomic instability (Slijepcevic et al. 1996). During the 

lifetime of a cell, telomeres undergo significant changes. The most important indicator of 

correct telomere function is telomere length maintenance within the range typical for each 

species. Telomere length regulation is a complex process that involves interaction of 

telomeric proteins with telomerase or telomerase-independent mechanisms to maintain 

telomere length at species-specific levels. Telomere function, which is governed by its 

structure, most likely requires a specific telomere length (Slijepcevic 2001). To fully 

understand mechanisms of telomere dynamics and the role of individual molecules that 

regulate this dynamics, it is necessary to be able to measure telomere length with a high 

degree of accuracy.  

The first method used for telomere length measurements was based on southern 

blot analysis and it will be referred to as the classical method. The classical method is 

relatively crude and it can provide an estimate of average telomere length only (Harley 
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1991). The main uncertainty with measuring telomere length using the classical method 

comes from the fact that degenerate, telomere-like DNA sequences in the sub-telomeric 

regions of chromosomes hybridize with the telomeric DNA leading to inaccurate assessment 

of telomere length. Nevertheless, the classical method was sufficient to provide a rough 

assessment of average telomere length in the case of human chromosomes (Kipling and 

Cooke 1990). However, the classical method was non-informative in the case of mouse 

chromosomes due to large size of mouse telomeres (Blasco et al. 1997). Therefore, 

alternative methods for telomere length measurements had to be invented to overcome 

disadvantages of the classical analysis.  

The best alternative method is quantitative fluorescence in situ hybridization (Q-

FISH) and its modification based on flow cytometry, known as flow-FISH (Zijlmans et al. 

1997; Rufer et al. 1998). The Q-FISH method uses peptide nucleic acid (PNA) telomeric 

oligonucleotides as a probe (O'Sullivan et al. 2004). PNA probes generate stronger and more 

specific hybridization signals than the same DNA probes thus eliminating the problem of 

non-specific hybridization (Zijlmans et al. 1997). Furthermore, Q-FISH provides accurate 

estimate of telomere length in individual chromosome, irrespective of species of origin, with 

the resolution of 200 bp, while the classical method can be used to estimate average 

telomere length in some species only. The flow FISH method uses the same principle as the 

Q-FISH but only measures telomere length in interphase cells and thus it provides an 

accurate assessment of average telomere length (Volpi and Bridger 2008).  

While Q-FISH and flow FISH methods are accurate they have some disadvantages. Q-

FISH requires metaphase cells for the analysis. This is not a problem for most cell lines which 

possess normal growth properties and have a good mitotic index that warrants sufficient 
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amount of good quality metaphase cells required for Q-FISH. However, cell lines derived 

from patients with defects in DNA damage response mechanisms show poor growth 

characteristics in vitro and have low mitotic indices which precludes use of Q-FISH for 

telomere length assessment. Furthermore, the dependence of Q-FISH on metaphase cells 

makes this method unsuitable for telomere length assessment in tissues. The main 

disadvantage of the flow-FISH method is associated with the problem of auto-fluorescence. 

During the flow cytometry analysis each cell type generates a specific degree of auto-

fluorescence. This is negligible in the case of lymphocytes and flow-FISH works best with this 

cell type. All other cell types generate higher degrees of fluorescence, including fibroblasts 

and epithelial cells, thus complicating the telomere length estimate (Zimonjic et al. 2001). 

Finally, flow-FISH cannot be used for assessment of telomere length in tissue samples.  

The easiest approach to eliminate the above problems would be to apply Q-FISH 

hybridization principles on interphase cells and use digital microscopy to assess telomere 

length. The use of interphase cells eliminates the Q-FISH metaphase cell requirement. The 

use of microscopy eliminates the problem of auto-fluorescence specific to flow-FISH. 

Furthermore, the method based on interphase cells would allow assessment of telomere 

length in tissues. In this chapter we describe development of our own method to assess 

telomere length in interphase cells. We will refer to this method as interphase Q-FISH (IQ-

FISH). The primary motivation for development of IQ-FISH is the fact that this project is 

focused on the link between telomere maintenance and DNA damage response. Therefore, 

the project depends on the use of cell lines from individuals with defective DNA damage 

response (see next chapters). As indicated above, neither Q-FISH nor flow-FISH can be used 

for assessment of telomere length in such cell lines. In order to be able to accurately assess 

telomere length in the above lines, development of IQ-FISH is essential. 
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3.2 -  Results 

3.2.1 - Description of cell lines for IQ-FISH development and the rationale 

 The key requirement for development of IQ-FISH is the availability of cell lines with 

well defined telomere lengths that can serve as calibration standards. Dr Slijepcevic’s group 

has previously described two mouse cell lines with well defined telomere lengths: L5178Y 

(LY-R) and L5178Y-S (LY-S) (McIlrath et al. 2001). Both cell lines are lymphoblastoid in origin. 

The LY-R cell line is the parental cell line and it has telomere length of 49 kb as assessed by 

Q-FISH (McIlrath et al. 2001). The LY-S cell line was derived from the LY-R cell line after 

prolonged in vitro culturing and it shows sensitivity to ionizing radiation due to an unknown 

molecular defect. Telomere length in the LY-S cell line is estimated by Q-FISH to be in the 

region of 7 kb (McIlrath et al. 2001). Typical metaphase LY-R and LY-S cells after 

hybridization with telomeric PNA oligonucleotides are shown in (Figure 3.1). 

 

          

Figure 3.1 - Digital images of metaphase cells derived from mouse cell lines LY-R (A) and LY-

S (B) after hybridization with telomeric PNA oligonucleotides. 

 

A B 
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 Dr Slijepcevic’s group has previously described a modified Q-FISH protocol for 

assessment of telomere length using these two cell lines as calibration standards (Wong and 

Slijepcevic 2004). Q-FISH typically requires the calibration procedure in order to ensure 

reproducibility of results. The main variables in Q-FISH experiments include variability in 

microscope fluorescence bulb intensity which changes over time and the length of exposure 

time required to acquire images of telomeric signals which will be subject to fluorescence 

intensity measurement using appropriate software packages. To be able to control these 

variables the originally described Q-FISH protocol used fluorescence beads of defined size as 

internal calibration standards for each microscopy session (Zijlmans et al. 1997). Instead of 

fluorescence beads LY-R and LY-S cell lines were used as calibration standards (Wong and 

Slijepcevic 2004). Fluorescence intensity of LY-R and LY-S telomeres were measured on five 

different dates and statistically analysed to test for reproducibility of measurements. The 

resulting data-set constituted historical telomere fluorescence values for the calibration 

protocol.  Each time telomere fluorescence was measured in a new sample, telomere 

fluorescence in LY-R and LY-S cells were also measured and compared the resulting LY-R/LY-

S values against LY-R/LY-S historical values to generate correction factors. These correction 

factors were applied to the values of telomere fluorescence intensity of samples under 

investigation (Wong and Slijepcevic 2004). It has been shown that this approach works well 

using different cell lines (Wong and Slijepcevic 2004). Therefore, we reasoned that a similar 

approach, based on the LY-R/LY-S interphase cell ratios as calibration standards may be 

appropriate for developing the IQ-FISH protocol. 

 The rationale for development of IQ-FISH, consisting of 4 tasks, is shown in Figure 

3.2. In brief, the starting point is identification of the suitable software package for telomere 

fluorescence intensity measurement in interphase cells (Task 1), followed by comparison of 
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this software against the already verified software for metaphase Q-FISH (TFL TELO) (Task 2) 

and extensive measurement of telomere fluorescence using LY-R and LY-S cells to determine 

optimal conditions and calibration correction factors (Task 3). Finally, the software will be 

tested using a set of human and mouse cell lines with known telomere length (Task 4). Each 

task is described in detail below. 

 

 

  Figure 3.2 - The rationale for development of IQ-FISH.  

 

3.2.2 -  Task 1: Identify suitable software 

 The aim of Task 1 was to identify a suitable software package that can accurately 

measure telomere fluorescence intensity in interphase cells. This was a major task and we 

could not do this without external help. In order to fulfil this task we approached Mr 
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Michael Elis from Digital Scientific, Cambridge, UK. This company has a track record in 

developing software packages for various FISH applications. Mr Elis recommended the IPLab 

software package, which has extensive analysis and measurement options and provided 

basic instructions as to how to measure fluorescence intensity in interphase cells. We then 

carried out extensive testing of various functions of this software to confirm that it is 

suitable for our purpose.  

 We started with testing the so called “image segmentation” function. This function 

defines the area of the image in which fluorescence intensity will be measured. In practice 

this means selecting exclusively cell nuclei as areas of interest and ignoring the rest of the 

image. A typical segmented image with cell nuclei stained in green is shown in (Figure 3.3). 

 

 

Figure 3.3 - A typical segmented image with cell nuclei stained in green. 
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 This analysis has shown that the “segmentation function” is appropriate and that it 

always accurately selects the cell nuclei as areas of interests. The selection tool is adjustable 

and it allows a precise definition of area of interest. 

 We assessed other functions of the software including the “background removal” 

option, “measurement” options and display of results. The “background removal” option is 

important as it allows subtracting the fluorescence background noise from the actual 

fluorescence values. This function is performed using the so called “Pixel arithmetic” 

procedure which is shown below (Figure 3.4). Our analysis has shown that the “Pixel 

arithmetic” option shows a good degree of reliability and reproducibility. 

 

 

Figure 3.4 - A snapshot of the mathematical manipulations behind the process of telomere 

fluorescence intensity measurement. 

 

 Finally, we examined the “measurement” function and whether results of 

fluorescence intensity measurements are presented in an appropriate manner. The 
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software option called “Set Measurements”, which is shown below (Figure 3.5), provides a 

range of statistical parameters that completely describe results. Signal intensity 

measurement in most software packages is carried out through densitometry analysis. IP-

Lab provides this analysis (see Figure 3.7) in the form of “mean” values or “sum” values. The 

“mean” value represents an average telomere fluorescence intensity value for each 

analysed cell, whereas “sum” values represent the sum of all pixels due to telomeric signals 

in a single cell. For our purpose the “mean” values are probably most suitable as this is 

equivalent to average telomere length. The “sum” values cannot distinguish between 

diploid and polyploidy cells. Nevertheless, in the analysis below (see Task 3) we will provide 

values for both “mean” and “sum”.  Therefore, the assessment of various options within the 

IP-Lab software indicates that this software package is suitable for IQ-FISH. 

 

 

Figure 3.5 - Snap shot of the software option called set measurements, which provides a 

range of statistical parameters that completely describe results. 
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3.2.3 -  Task 2: Compare with TFL TELO (Golden Standard) 

 The next task (see Figure 3.2) was to compare the accuracy of fluorescence intensity 

measurement using the IP-LAB software against the software that can be considered “the 

golden standard” for Q-FISH. The software in question is TFL-TELO developed by Prof. Peter 

Lansdorp and his colleagues (Zijlmans et al. 1997). This is the most extensively used piece of 

software for metaphase Q-FISH. Using this software and the classical Q-FISH calibration 

procedure relying on fluorescence beads, Dr Slijepcevic’s group estimated that telomeres in 

LY-R cells are 7 times longer than in LY-S cells (49 kb and 7 kb respectively) (McIlrath et al. 

2001). Furthermore, using a calibration protocol relying on LY-R/S cells, Dr Slijepcevic’s 

group estimated that the difference in telomere fluorescence intensity between the same 

cell lines is 6.9 times (Wong and Slijepcevic 2004) which is in good agreement with the initial 

measurement.  

 In order to determine whether the IP-Lab software shows a similar resolution we 

used two approaches. The first approach aimed to analyse telomere fluorescence intensity 

in LY-R and LY-S cells using the IP-LAB software and compare the resulting LY-R/LY-S ratio 

against ratios already published by us using the TFL TELO software for these cell lines 

(McIlrath et al. 2001; Wong and Slijepcevic 2004). The second approach aimed to analyse 

telomere fluorescence using the IP-LAB software in a set of human fibroblast cell samples 

from Fanconi anemia patients and corresponding control patients. A previous study 

indicated that cells from Fanconi anemia patients show significantly shorter telomeres than 

cells from corresponding control patients when analyzed by the TFL TELO software (Callen et 

al. 2002), suggesting that this could be a good test for the accuracy of the IP-LAB software.  
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 In both approaches, that will be described below, we used a single exposure time of 

0.5 sec and analysed telomere fluorescence intensity in a single microscopy session for LY-

R/LY-S cells and human fibroblast samples respectively to reduce the chances of microscope 

lamp variability. On recommendation of Mr Michael Elis we used a 63 X objective for 

acquiring images of interphase cells. This objective was used throughout the course of this 

project for the purpose of telomere fluorescence intensity measurements. Telomere 

fluorescence was expressed as unmodified fluorescence. The term “unmodified 

fluorescence” refers to the fact that no internal control was used to correct for variations 

associated with fluorescence microscopy. The proper procedure for internal controls and 

calibration will be described in Task 4. It is important to stress that if the measurements are 

carried out in a single microscopy session variations between samples due to microscope 

lamp variability will be negligible.   

 Representative images of LY-R and LY-S interphase cells are shown in (Figure 3.6). As 

can be seen below there is a clear difference in the strength of fluorescence signals between 

LY-R and LY-S cells.  
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Figure 3.6 - Digital images of LY-R (A, B) and LY-S (C, D) interphase cells after hybridization 

with telomeric PNA oligonucleotides. 

 

 

 Results of the telomere fluorescence intensity measurement in LY-R and LY-S cell 

lines using the IP-LAB software are shown in (Figure 3.7). 
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Figure 3.7 - Mean Unmodified Telomere Fluorescence Intensity measurements in LY-R and 

LY-S per cell (A). SUM Telomere Fluorescence Intensity measurements in LY-R and LY-S per 

cell. ***=P<0.001, Error bars represent SEM. 

 

 Our analysis revealed that the average telomere fluorescence, expressed as the 

mean unmodified fluorescence in IP LAB is 6.6 times greater in LY-R than in LY-S cells (Figure 

3.7 A). This is in good agreement with the ratios of 6.9 and 7 observed earlier for these cell 

lines using the TFL TELO software (McIlrath et al. 2001; Wong and Slijepcevic 2004). As 

stated above, we have also analyzed the sum unmodified fluorescence in both cell lines. This 

analysis revealed that LY-R cells have 9.9 times greater fluorescence than LY-S cells (Fig 3.7 

B). This was expected as the “sum” measurement option cannot distinguish between diploid 

and polyploid cells and therefore resulting fluorescence represents an overestimate in 

comparison with the results generated using the “mean” measurement option. 

 We next analyzed telomere fluorescence in samples from Fanconi anemia which is a 

rare, inherited blood disorder that lead to bone marrow failure and control patients. 

Samples represented fibroblast cell cultures and they were provided by Dr Gordana Joksic, 

Vinca Institute, Belgrade, Serbia. Fanconi anemia samples were from 4 children diagnosed 

with Fanconi anemia, complementation group D2 (FANCD2) with average age 8±5 years. 

Samples from healthy age-matched children were used as controls (Joksic et al. 2012). 
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Analysis of individual samples revealed a tendency of control samples to show greater 

telomere fluorescence than Fanconi anemia samples (Figure 3.8). When the average 

fluorescence for each group of patients was calculated it was clear that cells from Fanconi 

anemia patients showed lower telomere fluorescence (21.20) than cells from control 

individuals (40.70). Thus, our results are in line with the previous study employing the TFL 

TELO software (Callen et al. 2002).       

  

                 

Figure 3.8 - Telomere fluorescence in control and Fanconi anemia patient cells. C1-4 are 

samples representing control patients. Samples 2093, 1823, 1866 and 1879 are cells from 

children diagnosed with Fanconi anemia FANCD2 complementation group (Joksic et al. 

2012). *=P<0.05, Error bars represent SEM. 

 

 Therefore, based on the above two approaches, we conclude that the IP-Lab 

software shows a similar resolution as the TFL-TELO software and that we can proceed to 

Task 3 in development of the IQ-FISH protocol. 
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3.2.4 -  Task 3: Data generation using the new software (calibration) 

 The next task was to determine the optimal conditions for measuring telomere 

fluorescence intensity in interphase cells and generate a data-set of measurements which 

will serve as the basis for creating correction factors. These factors will provide the basis of 

our calibration procedure the purpose of which is to ensure consistency of fluorescence 

intensity measurements.  

 Since the major variable in measuring telomere fluorescence by microscopy is 

exposure time during image acquisition, we selected three exposure times including 0.1, 0.2 

and 0.5 sec, in order to determine which exposure time will give us the difference between 

the two cell lines, LY-R and LY-S, that is closest to the difference between the same cell lines 

obtained by the TFL-TELO software (McIlrath et al. 2001; Wong and Slijepcevic 2004).  

Furthermore, we performed measurements on 5 different occasions in order to ensure 

reproducibility of results. Each measurement was done in a single microscopy session lasting 

no longer than 1 h. Results of this analysis are shown in (Figure 3.9). As explained above, we 

measured 2 parameters: the “mean” and the “sum”.  
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 D: Session 4     

 

            

                                    

 E: Session 5 

 

          

 

 F: Average     

 

          

 

Figure 3.9 - (A–E) Unmodified Telomere fluorescence in mouse lymphoma LY-R and LY-S 

cells observed at five different sessions. (F) Unmodified Mean and Sum telomere 

fluorescence values in LY-R and LY-S cells at five different sessions. 
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As can been seen from (Figure 3.9) the fluorescence intensity generally increases 

with the length of exposure time. This is an additional confirmation of the IP-Lab accuracy as 

the good quality software is expected to detect the dependence between the fluorescence 

signal intensity and the length of exposure time.  

 

          

          

Figure 3.10 - Ratios between telomere fluorescence in LY-R and LY-S cells at 0.1(A), 0.2 (B), 

0.5(C) exposure time and total average (D). 

 

Analysis of ratios between telomere fluorescence in LY-R and LY-S cells at each 

exposure time is shown in (Figure 3.10). The lowest ratio was observed at the exposure time 

of 0.1 second (A) and the highest ratio at the exposure time of 0.5 sec (C). The ratio of 6.5 

observed at the exposure time of 0.5 sec (D) corresponds well with the published ratios of 

6.6 and 7 generated using metaphase Q-FISH based on the TFL-TELO software. Therefore, 

we conclude that the optimal exposure time for IQ-FISH is 0.5 sec and this exposure time 

will be used in all future experiments.   
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To provide information about variability of telomere fluorescence between 

individual cells a histogram is presented in (Figure 3.11). This histogram indicates a greater 

degree of variation in LY-R cells relative to LY-S cells which is in line with published 

information (Cabuy et al. 2005), thus further indicating the accuracy of the IP-LAB software. 

 

          

          

          

Figure 3.11 - Histogram indicates a greater degree of variation in LY-R cells relative to LY-S 

cells. 
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lamp intensity. We thought that correction factors based on ratios between fluorescence 

intensity observed in LY-R and LY-S cells will serve our purpose well. The basic idea is to use 

the 5 measurements presented in (Figure 3.9) as a standard against which all measurements 

will be compared. For example, each time a new sample is analyzed by Q-FISH, fluorescence 

intensity of LY-R and LY-S cells will be measured again and compared against the standard 

based on 5 measurements presented in (Figure 3.9). This will generate correction factors 

that will be applied on unmodified fluorescence of the sample under investigation. The full 

procedure for generating correction factors is outlined below. 

The values of telomere fluorescence in LY-R and LY-S cells generated during the 5 

measurement sessions, which represent the standard for generating correction factors 

(CFs), are labelled FLLY-R and FLLY-S. Each time a new sample is analysed images of at least 25 

LY-R and LY-S cells will be acquired in order to obtain internal controls and these are labelled 

FLLY-R(exp) and FLLY-S(exp). The correction factors will be generated using the following formulas: 

CF1 = FLLY-R/ FLLY-R(exp) 

CF2 = FLLY-S/ FLLY-S(exp). 

The final correction factor, CF, is the mean of CF1 and CF2. To express telomere 

fluorescence of a sample under investigation we will use the following formula: 

CCFL = CF x FLX. 

In this formula CCFL represents Corrected Calibrated FLuorescence and FLX 

represents unmodified fluorescence of the sample under investigation. 
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3.2.5 -  Task 4: Testing the method using a set of cell lines with known telomere 

lenght 

 Having established the accuracy of the IP-LAB software (Task 2), the optimal 

exposure time and calibration procedure including the procedure for generating CFs (Task 

3), we next tested the above protocol on 4 cell lines with relatively well characterized 

telomere length.  

First, we used two human cell lines: HeLa and U2OS. HeLa is a frequently used cell 

line and it is originating from the cervical carcinoma (Van Simaeys et al. 2010). It is known 

that the HeLa cell line has the robust telomerase activity (Harrington et al. 1997). The U2OS 

cell line is also a cancer cell line originating from a sarcoma. The U2OS cell line belongs to a 

group of cell lines that lack telomerase activity and maintains telomere length by the 

alternative mechanisms also known as ALT (Alternative Lengthtening of Telomeres) most 

likely based on recombination (Zhu et al. 2004). Telomerase positive cancer cell lines like 

HeLa usually have stable average telomere length that is significantly shorter than the 

average telomere length in the ALT positive cell lines like U2OS (Fan et al. 2009). ALT 

positive cell lines are characterized by a highly variable telomere length with some 

chromosomes showing almost complete lack of telomeric DNA sequences but other 

chromosomes having unusually long telomeres, significantly exceeding the maximum 

telomere length observed in human cells (Cesare and Reddel 2008).  
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Figure 3.12 - Telomere length analysis of Hela and U2OS cell lines (A) Unmodified 

fluorescence observed in HeLa and U2OS cells (B) Unmodified fluorescence relative to LY-R 

and LY-S internal controls (FLLY-R(exp) and FLLY-S(exp)) (C) CCFL for the Hela and U2OS cell lines. 

**=P<0.01, ***=P<0.001, Error bars represent SEM. 

 

 

Results of this analysis are presented in (Figure 3.12). (Figure 3.12A) shows 

unmodified fluorescence observed in HeLa and U2OS cells, (Figure 3.12B) shows this 

unmodified fluorescence relative to LY-R and LY-S internal controls (FLLY-R(exp) and FLLY-S(exp)) 

and (Figure 3.12C) shows CCFL for the two cell lines. As expected, U2OS cells showed 

significantly greater telomere fluorescence than HeLa cells. It is interesting to note that LY-S 

cells, previously estimated to have telomere length of 7 kb (McIlrath et al. 2001), have 

almost exactly the same unmodified fluorescence as HeLa cells (Figure 3.12B). Telomere 

length of 7 kb is a typical average telomere length for a human cell line (McIlrath et al. 

2001). Therefore, these results are in line with published observations. Furthermore, U2OS 

cells show approximately 60% greater telomere fluorescence than HeLa cells (Figure 3.12B), 
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which is again in line with published information indicating that ALT cells have significantly 

longer telomeres than telomerase positive cells (Cerone et al. 2001). 

          

 

Figure 3.13 - Telomere length analysis of CB17 and SCID cell lines (A) unmodified telomere 

fluorescence in the CB17 and SCID ell lines (B) Unmodified fluorescence relative to LY-R and 

LY-S internal controls (FLLY-R(exp) and FLLY-S(exp)) (C) CCFL for the CB17 and SCID cell lines. 

***=P<0.001, Error bars represent SEM. 
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our IQ-FISH protocol based on the use of the IP-LAB software and the described calibration 

procedure shows a resolution and consistency comparable to the classical Q-FISH protocol.  

 

3.3 -   Discussion 

 Telomere replication and chromosome end protection are crucial for maintenance of 

genome integrity (Blackburn 1991; van Heek et al. 2002). Telomere maintenance is closely 

linked with cellular and organismal ageing and it appears to be a key determinant of the 

replicative capacity in vertebrate somatic cells. In addition, evidence exists to show that 

telomere shortening is an early contributor to human tumorigenesis. (O'Sullivan et al. 2002). 

This is consistent with the hypothesis that telomere dysfunction provokes chromosomal 

instability which in turn promotes carcinogenesis (Artandi et al. 2000; Hackett et al. 2001). 

Finally, there is increasing evidence that telomere maintenance is linked with DNA damage 

response mechanisms (Yasaei and Slijepcevic 2010). In order to understand the role of 

telomeres played in these three biological processes, namely ageing, carcinogenesis and 

DNA damage response, it is essential to develop accurate methods for measuring telomere 

length, as this is a robust indicator of telomere function. A number of methods for 

measuring telomere length have been described including Southern blot, Q-FISH, Flow-FISH, 

q-PCR and STELA (single telomere length analysis) (Lansdorp et al. 1996; Oexle 1998; Rufer 

et al. 1998).  

Of all these methods Q-FISH is probably the most sensitive technique for measuring 

telomere length. Q-FISH explores the advantage of PNA based probes in terms of 

hybridization efficiency over their DNA equivalents. As a result, Q-FISH can measure 

telomeres in each individual chromosome with the resolution of 200 bp (Zijlmans et al., 
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1997), something that cannot be achieved by any other technique. The most common 

protocol for Q-FISH is based on the calibration procedure employing plasmids, which carry 

variable numbers of telomeric TTAGGG repeats and fluorescence beads of specific size 

(Zijlmans et al. 1997; Samper et al. 2000; Goytisolo et al. 2001; McIlrath et al. 2001). In this 

protocol telomere fluorescence is expressed in telomere fluorescence units (TFUs) where 

each unit corresponds to approximately 1 kb of telomeric DNA. It has been shown 

previously that telomere length in LY-R and LY-S cells is ~ 48 and ~ 7 kb, respectively as 

measured by the above Q-FISH protocol (McIlrath et al. 2001).  

The aim of this project is to investigate the link between telomere maintenance and 

DNA damage response. In order to achieve this it is essential to use human or mouse cell 

lines with defective DNA damage response pathways. Such cell lines usually have defective 

proliferative potential and are characterized by various problems in cell cycle regulation 

leading to a poor mitotic index which precludes the use of Q-FISH as a way of measuring 

telomeres in these cell lines. The alternative would be to use Flow-FISH, a modified Q-FISH 

method based on flow cytometry that measures average telomere length in interphase 

cells. However, Flow-FISH works poorly with all types of adherent cells such as fibroblasts or 

epithelial cells because of the problem associated with auto-fluorescence in these cell lines 

(Baerlocher et al. 2006). It is important to note that most DNA damage response defective 

cell lines used in this project are adherent cell lines. Therefore, we needed to develop a 

protocol for telomere length measurement in DNA damage response defective cell lines that 

will not be affected by their poor proliferative potential. We could not rely on other 

methods such as q-PCR or STELA (only measures telomeres in one chromosome at a time). 

We reasoned that a microscopy-based method capable of accurately measuring 

telomere fluorescence, which is equivalent to telomere length, in interphase cells would be 
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a suitable solution. This would eliminate (a) the problem associated with the poor mitotic 

index in DNA damage response defective cell lines which precludes the use of Q-FISH and (b) 

the problem of auto-fluorescence in adherent cell lines which precludes the use of Flow 

FISH. We call this method IQ-FISH. The method only requires a small number of virtually any 

cell type (<100) and it has the resolution typical of Q-FISH i.e. it is able to detect as little as 

200 bp of telomeric DNA repeat sequence. 

We have developed and verified the IQ-FISH techniques in 4 steps described earlier 

(see Figure 3.2). The initial tests using two mouse lymphoma cell lines, LY-R and LY-S, have 

shown that IQ-FISH is able to detect the difference in average telomere length between 

these lines to a similar degree as the conventional Q-FISH method (Figure 3.7). The 

difference in telomere length reported for these two cell lines was either 6.9 or 7 times 

depending on the Q-FISH calibration method used (McIlrath et al. 2001; Wong and 

Slijepcevic 2004).  Our IQ-FISH method generated the difference of 6.6 times between the 

lines which is in good agreement with Q-FISH results (Figure 3.7). It is important to stress 

that telomere lengths in LY-R and LY-S cells vary to a certain degree, typically 5-10%, with 

each cell cycle (Cabuy et al. 2004). Therefore, the small difference between Q-FISH and IQ-

FISH results is expected. Furthermore, we have shown that IQ-FISH is capable of detecting 

subtle differences in telomere length between fibroblast cell lines originating from Fanconi 

anemia and control patients (Figure 3.8) that was reported in an earlier study (Callen et al. 

2002). This is probably the best criterion for accuracy of our IQ-FISH method as the 

differences between individual human cells lines are much subtler than between mouse cell 

lines.  

In these two initial verification steps we have not used any calibration method. The 

FISH based fluorescence intensity measurements require calibration in order to ensure 
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reproducibility of results over time. For example, the microscope fluorescence bulb, which 

typically has a 200 h lifespan, will generate much higher telomere fluorescence values when 

fresh installed than when it reaches the end of its operational time. The difference can be in 

the region of 50% or more (Slijepcevic, unpublished observations). However, the relative 

difference between telomere fluorescence of, for example, LY-R and LY-S cell lines remains 

the same. Therefore, calibration serves to eliminate differences in measurements over time. 

In the original Q-FISH protocol calibration was performed using fluorescence beads of 

constant size (Zijlmans et al. 1997). Alternatively, Wong and Slijepcevic (2004) used LY-R and 

LY-S cells as calibration standards as these cell lines show reproducible differences in their 

telomere fluorescence intensities over time (Cabuy et al. 2005). We have decided to use LY-

R and LY-S cell lines for our calibration method in the same way as reported by Wong and 

Slijepcevic (2004). Using this method we have also determined the optimal exposure time 

for IQ-FISH which was 0.5 sec (Figure 3.10). Overall, this procedure allowed us to generate 

CCFL for each sample and ensured that results of telomere fluorescence measurements will 

be the same irrespective of the age of microscope fluorescence bulb owing to the fact that 

LY-R and LY-S cells are measured simultaneously with each sample and generated values for 

these lines corrected against historical values typical for these lines (see pages 20-21 for 

details). 

In the last verification step (Figure 3.12 and Figure 3.13) we have put our IQ-FISH method to 

the full test using 2 human cell lines and 2 mouse cell lines that had known relative telomere 

lengths, including the above calibration protocol (Figures 3.12 and Figure 3.13). The human 

HeLa cell line has telomere length typical of human carcinoma cell lines which is in the 

region of 2-3 kb (Zhu et al. 2004). On the other hand, the U2OS cell line, which is a human 

osteosarcoma cell line that maintains telomere length by the ALT mechanism (as opposed to 
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telomerase in HeLa cells) shows, on average, longer telomeres than typical human 

carcinoma cell lines (Jegou et al. 2009). This difference is clearly identifiable by IQ-FISH (Fig 

3.12). Furthermore, the difference between the two mouse cell lines, CB17 and SCID, 

observed by IQ-FISH (Fig 3.13) is similar to the published difference between these lines 

which is approximately 40% (Wang and Slijepcevic 2004).  

 Another test that can be used to assess the accuracy of IQ-FISH is the comparison 

between human and mouse cell lines. The CB17 mouse cell line has telomere length typical 

of human cells i.e. in the region of <10 kb (Wong and Slijepcevic 2004). This is clearly the 

case as evidenced by similarity in telomere fluorescence between the CB17 and HeLa cell 

lines which differ only by 20% (Figs 3.12 and 3.13). Similarly, mouse LY-S cells have telomere 

length typical of human cells lines (McIlrath et al. 2001).  This is clearly evident in Figs 3.12 

and 3.13 in which LY-S cells show telomere fluorescence similar to HeLa and CB17 cell lines. 

 In conclusion, we have developed a method, termed IQ-FISH, for accurate 

identification of average telomere length in interphase cells. This method requires a small 

number of cells (<100) and it is a method of choice for estimating telomere length in cell 

lines with a poor proliferative capacity as explained above. 
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4.1 - Introduction 

In the previous chapter we have described development of IQ-FISH method with a 

view of studying the interplay between telomere maintenance and DNA damage response. 

There is a strong body of evidence suggesting that telomere maintenance mechanisms and 

DNA damage response mechanisms are functionally related. At least 17 proteins involved in 

DNA damage response have been reported to affect telomere maintenance either through 

effects on telomere length or function (for review see Slijepcevic 2006). Selected examples 

include proteins such as Ku and DNA-PKcs involved in DNA double strand break (DSB) repair 

by non-homologous end joining (NHEJ) (Bailey et al. 1999), a protein involved DNA damage 

signalling, ATM (Hande et al. 2001), the MRN complex consisting of MRE11, RAD50 and NBS 

proteins responsible for DSB sensing (Zhu et al. 2000) and the ERCC1/XPF protein 

responsible for nucleotide excision repair (NER) (Zhu et al. 2003).  It is essential to 

understand the interplay between telomere maintenance and DNA damage response as this 

may be helpful for understanding the role of telomeres played in clinically relevant 

processes such as carcinogenesis and ageing (Aubert and Lansdorp 2008). The key to this is 

the analysis of human or murine cell lines that have specific defects in DNA damage 

response genes. In general, any such cell line will show some sort of defect related to the 

cell cycle regulation that eventually lead to an altered proliferative potential in comparison 

with relevant normal control cell lines. Assessing telomere length, as one of the key marker 

of telomere function, by techniques such as Q-FISH, which requires a reasonable mitotic 

index for high quality metaphase preparation essential for this technique, is practically 

impossible because of the altered cell cycle regulation in DNA damage response defective 

cells. Therefore, development of IQ-FISH was essential for this project as this enables us to  
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assess average telomere length, quickly and accurately, even in the cell lines with the most 

severe growth delays. Other advantages of IQ-FISH from the perspective of this project are 

discussed in the previous chapter. 

Having established a method for an accurate assessment of telomere length in DNA 

damage response defective cells (Chapter 3) we are now in the position to combine this 

analysis with the analysis of DNA damage response mechanisms in the same cell lines with a 

view of assessing the degree of functional interplay between telomere maintenance and 

DNA damage response. In this project DNA damage response in any cell line will be analysed 

using a well established DNA damage marker, a phosphorylated form of histone H2AX or γ-

H2AX (Yuan et al. 2010). Furthermore, a technique called TIF (Telomere dysfunction Induced 

Foci) assay enables the direct assessment of DNA damage at telomeres by combining 

simultaneous visualization of sites of DNA damage (through γ-H2AX) and telomeres 

(through either telomeric PNA sequence or an antibody that binds telomeric proteins) in 

interphase cells. This technique will also be combined with IQ-FISH and the classical γ-H2AX 

assay to examined telomere maintenance in DNA damage response defective cells. 

The aim of this chapter is to focus on BRCA2, a DNA damage response protein 

involved in the HR (homologous recombination) pathway (Venkitaraman 2001). 

Interestingly, recent studies have revealed that BRCA2 affects telomere maintenance (Badie 

et al. 2010; Sapir et al. 2011; Bodvarsdottir et al. 2012). BRCA2 interacts with telomeres 

during S and G2 phases of the cell cycle and this mediates access of RAD51, an HR protein, 

to telomeres (Badie et al. 2010). An array of telomere dysfunction phenotypes was noted in 

the presence of defective BRCA2. This includes telomere shortening, telomere fragility, TIFs 

and increased frequencies of T-SCEs (Telomere Sister Chromatid Exchanges) (Badie et al. 

2010; Bodvarsdottir et al. 2012). Therefore, BRCA2 is probably the first major protein that 
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has a direct involvement in human cancer with a clear role in telomere maintenance. This 

could be relevant for understanding the role of BRCA2 in breast tumorigenesis and also 

developing novel therapeutic approaches. 

BRCA2 and telomere dysfunction are both associated with chromosome instability 

and cancer susceptibility. Cells which carry mutated BRCA2 protein are genetically unstable, 

display structural chromosome abnormalities such as triradials and quadriradials and show 

poor proliferative potential (Yu et al. 2000; Desmaze et al. 2003). This point effectively 

illustrates the validity of the approach to develop a technique that can effectively measure 

telomere length in poorly proliferating cells i.e. IQ-FISH (Chapter 3).  

We analysed telomere length and function, as well as DNA damage response, in 

lymphoblastoid cell lines originating from BRCA2 carriers (+/-) and also a single fibroblast 

cell line from a patient with bi-allelic mutations in BRCA2 (-/-). Our results show lack of 

correlation between DNA damage response and telomere maintenance in heterozygous cell 

lines but a clear positive correlation in the homozygous cell line.  

 

4.2 -  Results   

4.2.1 - Interphase Quantitative Fluorescent in situ hybridization (I-QFISH) analysis 

of normal and heterozygous BRCA2 cell lines 

We started by analysing telomere length in lymphoblastoid cell lines from two 

BRCA2 mutation carriers. Both cell lines were purchased from the Coriell Cell Repository.  

The GM14622 cell line was from a patient with a constitutive BRCA2 mutation 

(frameshift mutation 6503delTT in exon 11), leading to a truncation at codon 2099 (Coriell 
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2009). The GM14170 cell line was from a patient with a constitutive BRCA2 mutation (1bp 

deletion at nucleotide 6174 in exon 11) resulting in a frameshift beginning at codon 1982 

and terminating at codon 2003 (Coriell 2009). The GM0893 lymphoblastoid cell line from a 

normal individual was used as a control. A total of 50 interphase cells per cell line were 

analysed by IQ-FISH to determine the mean telomere length of each cell line as described in 

the previous chapter. Our analysis revealed that both BRCA2 defective cell lines (GM14622 

and GM14170) showed shorter telomeres than the control cell line (GM00893) (Figure 4.1). 

GM14622 cells showed ~ 1.5x shorter telomeres relative to the control cell line (P=0.13) and 

GM14170 cells showed ~ 3x shorter telomere (P<0.001) compared to the control cell line. 

The GM14170 cell line had shortest telomeres (Figure 4.1).  

 

Figure 4.1 - Corrected calibrated fluorescence (CcFl) in BRCA2 defective cell lines relative to 

the control cell line. *** = P<0.001, Error bars represent SEM. 
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4.2.2 -  DNA damage kinetics in normal and heterozygous BRCA2 cell lines using 

Image stream 

Given the significantly shorter telomeres in cell lines from two BRCA2 carriers 

relative to the control cell line (Figure 4.1) there is a chance that this could affect telomere 

function and thus indirectly affect DNA damage response in these cell lines. Therefore, we 

next analysed DNA damage response mechanisms in the above three cell lines with a view 

of assessing whether any potential DNA damage response defect could be related to 

telomere dysfunction.  

DNA damage can be assessed by a variety of methods in mammalian cells. The most 

commonly used method for this purpose in our laboratory is the γ-H2AX test. 

Phosphorylated H2AX (γ-H2AX) facilitates recognition and repair of DNA double strand 

breaks (DSBs) which occur as a result of exposure to DNA damaging agents such as ionizing  

radiation. Staining of irradiated cells by the γ-H2AX specific antibody reveals nuclear foci 

that are readily observable microscopically in a dose response manner. This test requires 

adherent cells which are typically grown on coated microscope slides prior to induction of 

DNA damage. Induced DNA damage is then assessed by immunocytochemical analysis over 

time to construct DNA repair kinetics curves. However, lymphoblastoid cell lines grow in 

suspension and they are not suitable for the classical γ-H2AX test. Instead, we used a 

relatively new approach to analyse DNA repair kinetics in these cell lines based on the 

ImageStraem apparatus (for details see Material and methods). The Amnis ImageStraem is 

essentially an apparatus that combines features of a flow cytometer and a low power 

fluorescence microscope. Amnis' imaging flow cytometry automatically and objectively 

accumulates high number of individual cell images (in their thousands), quantifies the foci 
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due to DNA damage detectable by the γ-H2AX-specific antibody in these cells and 

determines dose response kinetics faster and easier than the conventional microscopy 

(Bourton et al. 2012). 

Irradiated cells were analysed by ImageStream using advanced masking techniques 

that identify the punctate staining of DNA damage foci. Morphological measurements 

involved in this analysis include object shape, size, and punctate fluorescence spot counting 

emphasizing the advantages of quantitative multiparametric image analysis on large 

numbers of cells provided with the ImageStream.  
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A                   Control                                                              B               30 Min      

                                 

 

C                  5 hrs                                                            D              24hrs 
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Figure 4.2 - Histograms and graph generated by Inspire software TM using the Spot Mask 

feature on the GM00893 cell line. 

 

(Figure 4.2) shows results generated using the Spot Mask software on the control 

GM00893 cell line. Following irradiation with 1.0 Gy these cells have been analysed 30 min, 

5 hrs and 24 hrs later in order to generate a DNA repair kinetics curve. The 30 min and 5 hrs 

samples seen in (Figure 4.2 B & C), show a small shift to the right in comparison to the 

control sample shown in (Figure 4.2 A).  This represents an increase in the number of DNA 

damage foci and it is indicative of the induction of DNA damage.  At the 24 hrs point, the 

number of foci is at similar levels to the untreated control, thereby indicating that the DNA 

repair process has been completed (Figure 4.2 D). The same analysis performed with the 

Inspire software is shown in (Figure 4.3).  
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A                 Control                                                           B                30 Min 
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Figure 4.3 – Histograms and graph generated by Inspire software TM using the Spot Mask 

feature on the GM14622 cell line. 

 

However, the ImageStream analysis was associated with significant problems. Firstly, 

the cell count was too low in order to do a type of analysis recommended by the 

manufacturer of the apparatus. We only managed to analyse ~ 5000 cells in the majority of 

samples in a time-span of 20 minutes. The ImageStream can typically process up to 1000 

cells/second according to the manufacturer website (Bourton et al. 2012). It is likely that the 

steps required for the preparation of cell for the analysis contributed to significant cell loss 

as our starting cell population was in line with the recommended protocol.  

Secondly, the morphology of cells changed significantly after preparatory treatment. 

This treatment involved incubation of cells with a number of agents (see Material and 

methods) that could alter the cell morphology unless the protocol has been carefully 

optimized. Cells contained physical damage that could be easily identified on brightfield 

images (Figure 4.4). 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

Control 0.5 hrs 5 hrs 24 hrs 

Fo
ci

/C
e

ll 

Repair Time  

Mean 



Chapter 4– Effects of BRCA2 Protein on Telomere  

 

                                                                                                                                                           115 
 

 

 This also questions reliability of results given the fact that some forms of this 

damage probably cannot be distinguished from IR-induced DNA damage. Furthermore, IR 

treated cells without the ImageStream preparatory steps looked fine morphologically under 

the microscope. 

Thirdly, the problem persisted after several attempts suggesting that a lot of work 

dedicated to method development and optimisation would have to be involved in order for 

us to be able to produce reliable results from this analysis. Furthermore, even though 

ImageStream can analyse DNA damage quickly the fact remains that preparatory steps for 

the analysis are time consuming and on the whole there is not much difference in time 

required to analyse DNA damage kinetics by ImageStream and the conventional microscopy-

based γ-H2AX assay. The final problem was that ImageStream was frequently out of action 

as a result of various hardware and software problems.  Therefore, we decided to analyse 

DNA damage in lymphoblastoid cells by an alternative method. One such method is a simple 

and non-expensive cytospin based spreading of lymhoblastoid cells onto microscope slides 

which then can be used for immunocytochemical analysis such as the γ-H2AX assay.  
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4.2.3 -  DNA damage kinetics in normal and heterozygous BRCA2 cell lines using a 

cytospin-based method 

Spreading cells on to a microscope slide by the Cytospin machine (Shandon) is an 

uncomplicated technique by which a single layer of cells is deposited onto a clearly defined 

part of a glass microscope slide. The design of the slide allows the filter card to absorb the 

excess fluid from the cells. This technique deposits the cells onto slides in a way that 

physical damage is minimal as evidenced by a subsequent microscope analysis. In order to 

exclude the possibility that the cytospin procedure induces DNA damage in centrifuged cells 

we have performed a series of tests which also served to adapt the γ-H2AX assay for this 

technique (not shown). Typical images of cells after the cytospin procedure are shown in 

(Figure 4.5). Well-preserved cell morphology is evident and the fluorescence signal 

produced by the γ-H2AX antibody is comparable to that produced by the classical γ-H2AX 

assay that we use for adherent cells. 

 

                  

Figure 4.4 - Examples of images of cells after immunocytochemical procedure using 

cytospin. Green fluorescence represents DNA damage foci. 
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These results indicate that imunocytochemistery procedure using cytospin does not 

(i) affect cell morphology and (ii) induce DNA damage in investigated cells. 

Having established that the cytospin-based protocol is suitable for our purpose we 

exposed the above 3 cell lines to 1.0 Gy of IR (gamma rays) and monitored frequencies of γ-

H2AX foci 30 min, 5 hrs, 24 hrs and 48 hrs post-irradiation. Results of this analysis are shown 

in (Figure 4.6). It is important to note that we have done statistical analysis in two ways. 

First we compared two BRCA2 defective cell lines against the control cell line at each 

individual point (control, 0.5 hrs, 5 hrs, 24 hrs and 48 hrs) and the result of this analysis are 

represented by stars placed immediately above bars in (Figure 4.6). The table incorporated 

in (Figure 4.6) contains results of the statistical comparison between control (spontaneous) 

frequencies of DNA damage foci and their counterparts at each time point post-irradiation 

(0.5 hrs, 5 hrs, 24 hrs and 48 hrs) for each individual cell line. For example, in most cases 

frequencies of DNA damage foci 0.5 hrs and 5 hrs after exposure will be significantly higher 

relative to spontaneous frequencies as these time intervals are insufficient for the repair 

processes to remove large amounts of induced DNA damage. However, significant 

differences between frequencies of DNA damage foci 24 hrs and 48 hrs post-exposure 

relative to spontaneous frequencies in the same cell line is indicative of unrepaired DNA 

damage and therefore it could represent a DNA damage defect. We have considered a cell 

line defective in DNA damage response if it showed a significant difference between 

frequencies of spontaneous DNA damage foci and those observed 48 hrs post-exposure. The 

general format of the (Figure 4.6) regarding the results of statistical analysis was used 

throughout this thesis.    

The control GM00893 cell line had a significantly lower spontaneous frequency of γ-

H2AX foci than two BRCA2 defective cell lines (Figure 4.6). Analysis of repair kinetics after IR 
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revealed that both cell lines from BRCA2 carriers repaired DNA damage effectively judging 

by the lack of statistical differences between DNA damage 48 hrs after exposure and 

spontaneous DNA damage (Figure 4.6). Surprisingly, the normal cell line showed statistical 

difference in this regard (Figure 4.6) but this is likely to be a chance event judging by its 

repair proficiency observed in later experiments (see Figures 4.7 and 4.8). These results 

suggest that shorter telomeres observed in two cell lines from BRCA2 carriers do not lead to 

a defective DNA damage response. 

            

 

Figure 4.5 – Frequencies of DNA damage foci in normal and BRCA2 defective cell lines after 

exposure to 1.0 Gy of gamma rays. Statistical analysis is explained in the text. *=P<0.05, 

**=P<0.01, ***=P<0.001, Error bars represent SEM.  

 

We next analysed responses of the above cell lines to additional DNA damaging 

agents including Mitomycin C (MMC) and Bleomycin (BLM). MMC is an antibiotic isolated 

from Streptomyces caespitosus (Lee et al. 2006). It is classified as an alkylating agent 
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capable of covalently binding DNA and inducing inter- and intra-strand cross-links. The 

presence of such cross-links results in inhibition of DNA synthesis primarily during late G1 

and S phases, although it is not cell-cycle specific (Kopp and Seregard 2004). All cell lines 

were treated with 60 ng/mL of MMC for 2 hours and DNA damage repair kinetics followed 

as above. Our analysis revealed that, with the exception of a weak significance observed in 

the case of the GM14170 cell line (Figure 4.7), there were no significant differences 

between spontaneous γ-H2AX foci and those observed 48 hrs after treatment (P>0.05) 

(Figure 4.7).  

    

Figure 4.6 – Frequencies of DNA damage foci in normal and BRCA2 defective cell lines after 

MMC treatment. *=P<0.05, **=P<0.01, ***=P<0.001, Error bars represent SEM. 

 

Next, we used BLM to induce DNA damage in the above cell lines and compared 

frequencies of γ-H2AX foci up to 48 hrs after treatment. BLM is a radiomimetic drug which 

efficiently induces DSBs in treated cells (Tomilin et al. 2001). Briefly, confluent cells were 
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treated with 8µg/ml of BLM for 1 hour and frequencies of γ-H2AX foci counted. Our results 

revealed that all cell lines repair DNA damage effectively, further supporting the notion that 

short telomeres observed in cell lines from BRCA2 carriers do not cause defective DNA 

damage responses (Figure 4.8).  

 

   

Figure 4.7 - H2AX analysis between normal and BRCA2 defective cell lines after BLM 

treatment. **=P<0.01, ***=P<0.001, Error bars represent SEM. 

 

4.2.4 -  Telomere dysfunction-induced foci (TIF) Assay analysis in normal and 

heterozygous BRCA2 cell lines 

Next, we used the TIF assay to assess whether induced DNA damage localizes within 

telomeric sequences. As indicated earlier DNA damage occurring within telomeric DNA can 

be visualized using the TIF assay. Markers of DSBs, γ-H2AX or 53BP1 (Wang et al. 2002), 
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colocalize with damaged telomeres and constitute telomere dysfunction-induced foci (TIFs) 

(Takai et al. 2003). The presence of these TIFs is the signature of telomere dysfunction in 

cells. A representative example of a TIF observed in the cell line from a BRCA2 carrier is 

shown in (Figure 4.9).  

 

 

            

Figure 4.8 – An example of a TIF indicated by an arrow. 

 

Our analysis revealed that BRCA2 defective cells showed higher spontaneous 

frequencies of TIFs compared to normal cells (Figures 4.10 - 4.12). However, after treatment 

with IR frequencies of TIFs returned to spontaneous levels as there were no significant 

differences between control values and values of TIFs observed 48 hrs after IR. A very 

similar situation was encountered after treatment of cells with MMC and BLM (Figures 4.11 

and 4.12). Taken together these results suggest that telomere function in the above cell 

lines is normal in spite of shorter telomeres observed in BRCA2 defective cell lines.  
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Figure 4.9 - Average number of TIF per cell in irradiated cell lines after 30 minutes, 5 hrs, 24 

hrs and 48 hours post irradiation. *=P<0.05, **=P<0.01, ***=P<0.001, Error bars represent 

SEM. 

 

 

   

Figure 4.10 - Average number of TIF per cell in irradiated cell lines after MMC treatment. . 

*=P<0.05, **=P<0.01, ***=P<0.001, Error bars represent SEM. 
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Figure 4.11 - Average number of TIF per cell in irradiated cell lines after BLM treatment. 

*=P<0.05, **=P<0.01, ***=P<0.001, Error bars represent SEM. 

 

4.2.5 -  Analysis of telomere length in cells from a patient with bi-allelic mutations 

in BRCA2 

The fact that cell lines from BRCA2 carriers have a functional copy of BRCA2 suggests 

that this copy is sufficient to provide a functional DNA damage response. Therefore, it is 

possible that if mutations affect both copies of BRCA2 cells would have a more severe DNA 

damage response defects and this would allow us to assess more critically contribution of 

telomeres to such defects. To explore this possibility we used the primary fibroblast cell line 

from a patient diagnosed with Fanconi anaemia, VU0423-F, who had bi-allelic mutations in 

the FANCD1 gene, which is in fact the BRCA2 gene (Howlett et al. 2002). We started by 

analysing telomere length in the VU0423-F cell lines and the corresponding control cell line 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

Control 0.5 hrs 5 hrs 24 hrs 48 hrs 

TI
F 

/ 
C

e
ll 

Repair Time 

GM00893 

GM14622 

GM14170 

*** 

* 

** 

** 

* 
*** 

Cell lines 0.5 hrs 5  hrs 24 hrs 48 hrs 

GM00893 *** ** P>0.05 P>0.05 

GM14622 ** * P>0.05 P>0.05 

GM14170 ** P>0.05 P>0.05 P>0.05 

 



Chapter 4– Effects of BRCA2 Protein on Telomere  

 

                                                                                                                                                           124 
 

(primary fibroblast) GM08399. This analysis revealed that VU0423-F cells had significantly 

shorter telomeres than control cells (Figure 4.13).   

                

Figure 4.12 - Corrected calibrated fluorescence (CcFl) in normal and cells with homozygous 

BRCA2 mutations. *** = P<0.001, Error bars represent SEM. 

 

 

4.2.6 -  DNA repair kinetics in the cell line with bi-allelic mutations in BRCA2 

We next analysed DNA repair kinetics in GM08399 and VU0423-F cell lines in the 

same way as in lymphoblastoid cell lines with the only exception that the current two cell 

lines were adherent cell lines and we did not need the cytospin-based protocol. Cells were 

irradiated with 1.0 Gy of gamma rays and harvested 0.5 hrs, 5hrs, 24 hrs and 48hrs after 

irradiation. Representative examples of images of cells after immunocytochemical 

procedure designed to detect γ-H2AX are given in (Figure 4.14). 
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Figure 4.13 - H2AX foci images after 0 (A), 30 min (B), 5 hrs (C) and 48 hours post irradiation 

in BRCA2 defective cells. 

 Frequencies of H2AX foci in untreated GM08399 and VU0423-F cell lines revealed 

that GM08399 cells have lower spontaneous frequency of DNA damage. Spontaneous 

frequencies of H2AX foci usually tend to go up with cell age (Medvedeva et al. 2007). 

However, both cell lines underwent similar population doublings and the possibility that 

endogenous DNA damage in VU0423-F cells is higher because of cells age can be excluded.  

 Analysis of repair kinetics after IR revealed that VU0423-F cells show much higher 

level of H2AX foci / cell than GM08399 cells 48 hrs after IR (Figure 4.15). This finding is 

consistent with the view that VU0423-F cells show abnormal repair kinetics after IR because 

both copies of BRCA2 are mutant. While normal cells repair almost all DNA damage 48 hrs 

after IR, as indicated by the presence of only ~ 0.4 H2AX foci / cell (P>0.05), VU0423-F cells 
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show persistence of DNA damage 48 hrs after IR as indicated by the observed ~3  / foci per 

cell 48 hrs after IR (Figure 4.15). The statistical analysis revealed that these differences are 

significant (P<0.001) (see table in Figure 4.15). These results clearly show a defective DNA 

damage response in the cell line with dysfunctional copies of BRCA2 alleles in contrast to 

the situation in cells from BRCA2 carriers. The next task for us was to determine 

contribution of dysfunctional telomeres to this phenotype. 

         

Figure 4.14 - Frequencies of γH2AX foci in GM08399 and VU0423-F cell lines. *=P<0.05, 

**=P<0.01, *** = P < 0.001, Error bars represent SEM. 

 

4.2.7 -  TIF Assay analysis of cells with bi-allelic mutations in BRCA2 

Next, we employed the TIF assay to assess whether DNA damage accumulates 

preferentially at telomeres. Our analysis revealed that VU0423-F cells showed slightly higher 

spontaneous frequencies of TIFs compared to normal cells (Figure 4.16). However, this 

difference was not statistically significant (P=0.35). IR induced some TIFs in both cell lines as 

evidenced by the increase in their values 30 min after exposure. However, these values have 

0 

2 

4 

6 

8 

10 

12 

14 

16 

Control 0.5 hrs 5 hrs 24 hrs 48hrs 

Fo
ci

 /
 C

e
ll 

Repair Time 

GM08399 

VU0423-F 

*** * 

Cell lines 0.5 hrs 5 hrs 24 hrs 48 hrs 

GM08399 *** *** ** P>0.05 

VU0423-F *** *** *** *** 

 

*** 

*** 



Chapter 4– Effects of BRCA2 Protein on Telomere  

 

                                                                                                                                                           127 
 

fallen to the normal levels in both cell lines 48 hrs after exposure.  Based on these results we 

conclude that dysfunctional telomeres do not contribute to dysfunctional DNA damage 

response in cells with homozygous mutations in BRCA2, at least using the TIF assay as a 

method of assessment.  

      

Figure 4.15 - Average number of TIF per cell in normal and homozygous BRCA2 cell lines 

after 30 minutes, 5, and 24 and 48 hours post irradiation. P>0.05, Error bars represent SEM. 
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total of 30 metaphase cells per cell line were analyzed by CO-FISH to delineate frequencies 

of T-SCEs in each cell line.  Examples of T-SCEs are shown in (Figure 4.17). 

The difference was statistically significant (P<0.001), showing increased T-SCE levels 

in the VU0423-F cell line relative to the control cell line (Figure 4.18). Normal, control cell 

line showed 0.9 T-SCE/cell. In contrast, VU0423-F cells had 4.6 T-SCEs/cell which is a five-

fold increase.  

 

 

Figure 4.16 - T-SCE detected by CO-FISH. T-SCE events as observed through a fluorescence 

microscope (Olympus BX41) using the SmartCapture image acquisition software. A) In 

GM08399 cells T-SCE is a very rare event (No T-SCEs). B) VU0423-F cells showed multiple T-

SCEs events indicated by arrows. For details of CO-FISH and how T-SCEs are detected see 

Materials and methods. 

 
 

These results suggest that the BRCA2 defect affects recombination rates at 

telomeres and therefore this could be a contributory factor to the defective DNA damage 

response observed in these cells. However, this hypothesis is difficult to test because IR, as 

the most commonly used experimental DNA damaging agent in our laboratory, is a weak 

inducer of recombination events as evidenced by its inability to induce sister chromatid 

exchanges (Gutierrez et al. 1999).  
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Figure 4.17 - Frequencies of T-SCEs (event/metaphase) in GM08399 and VU0423-F cell lines.  

Error bars represent SEM. *** = P<0.001. 
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mitotic cells in these preparations without the conventional chromosome preparation 

procedure. Even though these cells show poor chromosome morphology that precludes an 

accurate analysis of chromosome aberrations we were able to identify clearly anaphase cells 

containing so called anaphase bridges. These bridges represent rearranged chromosomes 

including those resulting from IR induced chromosome breakage such as dicentric 

chromosomes. Some of these rearranged chromosomes may occur as a result of 

chromosome rearrangements resulting from dysfunctional telomeres (Gilson and Londono-

Vallejo 2007). Anapahse bridges due to dysfunctional telomeres can easily be identified by 

applying the telomeric PNA probe which will then identify telomeric DNA within the 

chromatin bridge, a clear indication of telomere dysfunction. We therefore decided to scan 

large number of VU0423-F and control cells after exposure to IR and focus exclusively on 

anaphase cells with a view of identifying anaphase bridges indicative of dysfunctional 

telomeres. An example of an anaphase bridge due to dysfunctional telomeres is shown in 

(Figure 4.19). Interestingly, telomeric signals within the anaphase bridges did not colocalize 

with H2AX (Figure 4.19). This is in line with the observed lack of TIFs (Figure 4.16) thus 

suggesting that telomere dysfunction in BRCA2 defective cells manifests in a TIF 

independent manner.   
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Figure 4.18 – An anaphase bridges in the VU0423-F cell line. Note the presence of red 

fluorescence within the chromatin bridge. Red fluorescence represents telomeres. Green 

fluorescence is due to H2AX. 

  

It was clear from this analysis (Figure 4.20) that VU0423-F cells show significantly 

elevated frequencies of anaphase bridges due to dysfunctional telomeres relative to control 

cells (P<0.001). While there was no statistically significant difference between frequencies 

of anaphase bridges due to dysfunctional telomeres in control untreated and IR exposed 

cells, the VU0423-F cells showed statistically significant difference between untreated 

samples and IR exposed samples at all observation points (0.5 hrs, 5 hrs and 24 hrs after IR) 

(Figure 4.20). Based on these results we can conclude that dysfunctional telomeres directly 

contribute to a defective DNA damage response observed in VU0423-F cells as anaphase 

bridges due to dysfunctional telomeres are clearly inducible by IR in this cell line but not in 

the control cell line.  
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Figure 4.19 - Analysis of anaphase bridges in BRCA2 defective and control cells. **=P<0.01, 

***= P<0.001. Error bars represent SEM. 

 

4.3 - Discussion 

 There is increasing evidence that telomere maintenance is functionally linked with 

DNA damage response mechanisms (Slijepcevic 2006). Based on numerous observations of 

dysfunctional telomeres in DNA damage response defective cells due to mutations in many 

relevant genes it has been hypothesized that telomere maintenance may be an integral part  

of DNA damage response mechanisms (see Slijepcevic 2006). With a view of testing this 

hypothesis further, in this chapter we focused on a well-known protein, BRCA2, that plays 

an important role in DNA damage response. Interestingly, several recent studies (Badie et al. 

2010; Sapir et al. 2011; Bodvarsdottir et al. 2012) showed that BRCA2 affects telomere 

maintenance. Of particular interest to us is the observation that BRCA2 directly interacts 

with telomeres and helps another DNA damage response protein, RAD51 access telomeres 

(Badie et al. 2010). This is directly in line with the hypothesis that telomeres are directly 
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involved in DNA damage response (Slijepcevic 2006) as at least two proteins, BRCA2 and 

RAD51, involved in HR, a key pathway for repair of DNA DSBs, directly interact with 

telomeres (Badie et al. 2010). The observed telomere dysfunction phenotype in BRCA2 

defective cells was consistent with the involvement of telomeres in HR. For example, it has 

been shown that BRCA2 defective cells have increased frequencies of T-SCEs; events 

indicative of elevated recombination at telomeres (Sapir et al. 2011; Bodvarsdottir et al. 

2012). In addition to this finding, it was shown that BRCA2 defective cells exhibit other 

telomere maintenance defects including abnormal telomere length regulation.  

Our results clearly confirm above findings. We observed a several-fold increase in 

the frequency of T-SCEs in the VU0423-F cell line relative to the control cell line (Figure 

4.18). Furthermore, we observed significantly shorter telomeres in VU0423-F cells relative 

to control cells (Figure 4.13) suggesting alterations of telomere length regulation resulting 

from dysfunctional BRCA2. It is important to address that we have used only one control cell 

line (GM00893) in the case of our lymphoblastoid experiments as GM00893 cells were only 

control that were growing well without any problem. However, in our experiments we were 

more concerned with the heterozygoys vs. homozygoys mutations. So we had BRCA1 or 

BRCA2 +/+ (normal control), BRCA1 or BRCA2 +/- (heterozygous) and BRCA2-/- homzigous 

and this covers whole spectrum. 

However, our main aim was to examine whether dysfunctional telomere 

maintenance contributes to the defective DNA damage response observed in BRCA2 

deficient cells. Interestingly, in our result we have shown that happloinsufficiency cells 

showed defective repair. Based on our results we can conclude that when one copy of 

BRCA2 is functional in human cells, these cells do not show altered DNA damage response 
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(Figures 4.6-4.8). This is not in line with some published studies, which suggest that even 

cells from BRCA2 carriers show somewhat defective DNA damage response. Some of these 

studies used a different method for assessing DNA damage from ours and the difference 

could be due to this. Because of the observed lack of defective DNA damage response in 

cells from BRCA2 carriers we could not examine the possibility that telomeres directly 

contribute to dysfunctional DNA damage response in cells with heterozygous mutations in 

BRCA2 (Figures 4.10-4.12). Nevertheless, we have shown that cells from BRCA2 carriers 

have significantly shorter telomeres than control cells (Figure 4.1). This is in line with a 

previous study (Martinez-Delgado et al. 2011). However, this finding suggests two 

possibilities. First, even though telomeres are shorter in cells from BRCA2 carriers than in 

control cells (Figure 4.1) they might not be critically short to cause the dysfunction 

phenotype that could contribute to defective DNA damage response. Second, even if there 

is a telomere dysfunction in these cells directly caused by telomere shortening, such a 

dysfunction is not able to alter the overall DNA damage response in cells with heterozygous 

mutations in BRCA2. We cannot specifically exclude either of these possibilities, as we have 

not directly tested them. Based on TIF results (Figure 4.10-4.12), the later option seems 

plausible, but there are some problems with interpretation of TIF results that will be 

explained below. 

However, it is clear from our results that when both copies of BRCA2 are 

dysfunctional, as in the case of VU0423-F cells, this leads to both dysfunctional DNA damage 

response (Figure 4.15) and dysfunctional telomere maintenance (Figure 4.16). This scenario 

allows us to test whether dysfunctional telomeres contribute to the defective DNA damage 

response observed in BRCA2 defective cells. The main problem in testing for this possibility 

was the poor proliferative potential of VU0423-F cells. This was probably the slowest 
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growing primary fibroblast cell line that we had in our laboratory. The easiest test to assess 

contribution of telomeres to dysfunctional DNA damage response in these cells, 

chromosome aberration analysis after exposure to IR, could not be performed in this cell 

line because of extremely poor proliferative potential. A good quality chromosome 

preparation requires a reasonable mitotic index. We thought we could rely on the TIF assay 

to assess contribution of telomeres to dysfunctional DNA damage response. The TIF assay 

does not depend on the mitotic index and can be performed on slow growing cells. After 

exposure to IR we did observed some increase in TIF frequencies in both cell lines 30 min 

and 5hrs post exposure even though this was not statistically significant (Figure 4.15) 

suggesting that IR can induce TIFs. However, the problem was a very low frequency of TIFs 

observed – maximum of 0.25/cell (Figure 4.15). Given that TIFs are identified in interphase 

cells by the overlap of staining between telomeric PNA and the H2AX positive signal (Figure 

4.8) a low frequency of events in this situation is always associated with the chance finding. 

Therefore, we could not reasonably rely on TIF analysis to test for the above possibility.  

Instead, we explored the fact that when large numbers of cells are scanned (virtually 

thousands) even slow growing cells such as VU0423-F cells will yield some mitotic cells that 

can be analysed microscopically. We focused exclusively on anaphase cells identified in this 

way and applied FISH with the telomeric PNA probe to identify anaphase bridges that 

contain telomeric signals (Figure 4.20). The presence of telomeric signals within anaphase 

bridges is an indication that either two dysfunctional telomeres fused together or that one 

dysfunctional telomere fused with a non-telomeric DSB. The fact that frequencies of 

anaphase bridges due to dysfunctional telomeres were inducible by IR in VU0423-F cells but 

not in control cells (Figure 4.19) leads us to conclude that dysfunctional telomeres directly 

contribute to dysfunctional DNA damage response observed in these cells. However, to 
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substantiate this conclusion further, faster growing cell lines with dysfunctional copies of 

both BRCA2 alleles are required. It is interesting to mention in this regard that an earlier 

study using murine BRCA2-/- cells have identified numerous chromosomal aberrations after 

exposure to genotoxic stress (Yu et al. 2000). Some of these aberrations resembled 

chromosome aberrations due to dysfunctional telomeres (chromosome end-to-end fusions) 

(Yu et al. 2000). However, no telomeric FISH was used in the study and this possibility 

should be tested directly in the future. 

In conclusion, our results show that cells from a patient with bi-allelic mutations in 

BRCA2 show telomere dysfunction abnormalities including alterations in telomere length 

regulation and elevated frequencies of recombination at telomeres. Following exposure of 

these cells to IR, the observed telomere dysfunction contributed to defective DNA damage 

response observed in these cells in the form of elevated frequencies of anaphase bridges 

involving dysfunctional telomeres. 
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5.1 - Introduction 

In the previous chapter we have shown that the BRCA2 protein affects telomere 

maintenance and that dysfunctional telomeres resulting from mutations in both copies of 

BRCA2 contribute to a defective DNA damage response observed in affected cells. These 

results are consistent with the view that telomere maintenance is functionally linked with 

DNA damage response mechanisms (Slijepcevic 2006). The aim of this chapter is to focus on 

the BRCA1 protein and probe its role in this functional link.  

Mutations in the breast cancer susceptibility gene, BRCA1, confer genetic 

predisposition to early-onset familial breast and ovarian cancer (Welcsh et al. 2000). Even 

though the BRCA1 protein has been shown to play a role in the maintenance of genome 

integrity, transcriptional regulation and chromatin remodelling, the precise mechanism 

underlying its tumour suppressor function remains unknown (Welcsh et al. 2000; Starita and 

Parvin 2003). It is interesting that telomere maintenance mechanisms also act as a tumor 

suppression mechanism (Cesare and Reddel 2008). Therefore, analysis of telomere 

maintenance in cells with mutant BRCA1 could potentially shed light on how this protein 

exerts its tumour suppression properties. It is interesting that BRCA1 co-localizes with 

numerous DNA damage response factors and there is a likelihood that this protein 

participates in DNA double strand break (DSB) repair through homologous recombination 

(Powell and Kachnic 2003). Cells from carriers of BRCA1 mutations show sensitivity to 

ionizing radiation (IR), which suggests that genomic instability could be triggered even when 

a single copy of BRCA1 is mutated (Foray et al. 1999; Trenz et al. 2002).  

It has been shown previously by Dr Slijepcevic’s group that BRCA1 affects telomere 

maintenance (Cabuy et al. 2008). The expression of BRCA1 was knocked down by RNAi in 
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the breast epithelial cell line MCF10 and the breast adenocarcinoma cell line MCF7 (Cabuy 

et al. 2008). The affected cell lines exhibited increase in anaphase bridge frequencies due to 

dysfunctional telomeres, but no changes in telomere length (Cabuy et al. 2008). Two 

additional studies have confirmed that BRCA1 plays a role in telomere maintenance. (French 

et al. 2006) demonstrated that the expression of a dominant negative mutation in BRCA1 in 

breast epithelial cells leads to changes in telomere length (elongation) and increase in 

chromatin bridges in anaphase. Using mouse Brca1-/- cells (McPherson et al. 2006) 

demonstrated accelerated telomere loss and increased frequencies of telomeric fusion in 

these cells relative to control cells. Earlier observations that BRCA1 acts as a negative 

regulator of telomerase (Xiong et al. 2003) and that BRCA1 interacts with APB (ALT 

[Alternative lengthening of telomeres]) Promyelocytic leukemia Bodies) in ALT positive cells 

(Wu et al. 2003) also strongly indicate the role of BRCA1 in telomere maintenance.  

The aim of this chapter was to examine the contribution of dysfunctional telomeres 

due to mutations in BRCA1, either in human or mouse cell lines, to dysfunctional DNA 

damage response in these cells. We have carried out similar experiments like in the previous 

chapter, namely analysis of telomere length by IQ-FISH, analysis of DNA damage response 

by the γ-H2AX assay and analysis of telomere function by the TIF assay. Furthermore, we 

carried out, in some cases, chromosomal aberration analysis after exposure of cells to IR. 
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5.2 -  Results 

5.2.1 - IQ-FISH analysis of cell lines from BRCA1 carriers 

We started by analysing telomere length in two lymphoblastoid cell lines established 

from carriers of different BRCA1 mutations. Both cell lines have been purchased from Coriell 

Cell Repositories. The GM13705 cell line had the 3875del4 mutation in exon 11 (Castilla et 

al. 1994) and the GM14090 cell line had the 185delAG mutation in exon 2 causing a 

premature termination codon at position 39 (Struewing et al. 1995). As a control we used 

the lymphoblastoid GM00893 cell line established from a normal individual. The analysis of 

telomere length by IQ-FISH revealed that the GM14090 cell line had, on average, the 

shortest telomeres (Figure 5.1). For example, GM14090 cells showed ~ 1.9x shorter 

telomeres (P<0.001) than normal control cells (Figure 5.1). The GM13705 cell line showed ~ 

1.4x shorter telomeres relative to the control cell line (P<0.001) (Figure 5.1). These results 

suggest that cells from BRCA1 carriers show alterations in telomere length regulation in 

comparison to control cells. Alterations in telomere length regulation could potentially lead 

to telomere dysfunction. 
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Figure 5.1 - Corrected calibrated fluorescence (CcFl) in BRCA1 defective cell lines relative to 

the control. ***=P<0.001, Error bars represent SEM. 

 

 

5.2.2 -  DNA damage kinetics in cell lines from BRCA1 carriers 

Next, we analysed DNA damage response in the above cell lines using the γ-H2AX 
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observed in the above cell lines using the cytospin-based protocol for cell spreading are 

shown in Figure 5.2. Results of DNA damage response analysis are shown in Figure 5.3. All 

cell lines showed some spontaneous DNA damage, which was significantly higher in BRCA1 

defective cell lines (Figure 5.2). In GM00893 and GM13705 cell lines repair of DNA damage 

was efficient as no difference in frequencies of γ-H2AX positive cells was observed between 

spontaneous values and values observed 24 hrs and 48 hrs after exposure to 1.0 Gy of 

gamma rays (Figure 5.3).  In contrast, the GM14090 cell line showed some residual DNA 

damage (significantly higher relative to spontaneous values in this cell line; P<0.001) 24 hrs 
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and 48 hrs after exposure to IR (Figure 5.3). This suggests that DNA damage response in the 

GM14090 cell line is defective.  

 

                                              

Figure 5.2 - Examples of DNA damage foci observed in BRCA1 carriers using the 

cytospin-based protocol for cell spreading. 

 

 

 

Figure 5.3 - H2AX analysis in normal and BRCA1 defective cell lines after 1.0 Gy. 

***=P<0.001, Error bars represent SEM. 
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We also exposed the above cell lines to other DNA damage inducing agents including 

MMC and BLM. Results of this analysis are shown in (Figures 5.4 and 5.5). Interestingly, all 

cell lines have shown normal response to MMC as the differences in frequencies of γ-H2AX 

positive cells were not statistically significant 24 hrs and 48 hrs after exposure, relative to 

control values, in any of the cell lines used (Figure 5.4). However, it was surprising that a 

similar response was observed after treatment of cells with BLM (Figure 5.5). BLM is a 

radiomimetic agent and the expectation was that the GM14090 cell line will show some 

residual DNA damage 24 hrs and 48 hrs as in the case of IR exposure (Figure 5.3). The only 

explanation we can offer is that the dose of BLM used was not sufficient to induce enough 

DNA damage that could lead to the defective response becoming obvious. This view is 

supported by the fact that immediately after the exposure (30 min) IR treated GM14090 

cells showed approx. 4 DNA damage spots/cell (Figure 5.3) whereas BLM treated GM14090 

cells showed approx. 1.5 DNA damage spots/cell (Figure 5.5) which is a 2.5-fold difference.   

 

Figure 5.4 - H2AX analysis in normal and BRCA1 defective cell lines after MMC treatment. 

***=P<0.001, Error bars represent SEM. 
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Figure 5.5 - H2AX analysis in normal and BRCA1 defective cell lines after BLM treatment. 

**=P<0.01, ***=P<0.001, Error bars represent SEM. 
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was not significant at the 48 hrs point (Figure 5.7). The other two cell lines, GM00893 and 

GM13705, showed higher TIF values, relative to untreated controls, only immediately after 

exposure (30 min) (Figure 5.7). These results suggest that dysfunctional telomeres 

contribute to the dysfunctional DNA damage response observed in the GM14090 cell line. 

To further support this view we compared (Figure 5.3) and (Figure 5.7) to determine the 

approximate contribution of dysfunctional telomeres to this defective DNA damage 

response. From (Figure 5.3) it is clear that frequencies of γ-H2AX foci in the GM14090 cell 

line were as follows: 

30 min after exposure – 3.9 / cell 

5 hrs after exposure – 2.1 / cell 

24 hrs after exposure – 1.79 /cell 

48 hrs after exposure – 1.32 / cell 

 On the other hand, frequencies of TIFs (Figure 5.7) were as follows: 

30 min after exposure – 2.2 / cell 

5 hrs after exposure – 1.2 / cell 

24 hrs after exposure – 0.9 / cell 

48 hrs after exposure – 0.6 / cell 

 When the values representing γ-H2AX/cell are compared with values representing 

TIF/cell then it is clear that TIFs contribute 50% to total DNA damage sites represented by γ-

H2AX foci in the GM14090 cell line. If the figure of 50% γ-H2AX foci/cell is taken away from 
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each post-exposure point in the case of GM14090 cells, this would bring the GM14090 in 

line with the other two cell lines that showed a normal DNA damage response. From this 

brief analysis one can conclude that dysfunctional telomeres directly cause a dysfunction in 

DNA damage response observed in the GM14090 cell line.  

 

          

Figure 5.6 - Examples of TIFs observed In BRCA1 Carriers. 

 

 

Figure 5.7 - Average number of TIF per cell in irradiated cell lines after 30 minutes, 5 hrs, 24 

hrs and 48 hours post irradiation. ***=P<0.001, Error bars represent SEM. 
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We also exposed lymphoblastoid cell lines to other DNA damaging agents including 

MMC and BLM (Figures 5.8 and 5.9).  However, these results were not as clear-cut as those 

obtained in the case of exposing cells to IR. The MMC exposed cells showed no difference in 

TIF frequencies between control values and values observed at 24 hrs and 48 hrs after 

exposure in any of the cell lines analysed (Figure 5.8). Similarly, the exposure of cells to BLM 

resulted in no difference between spontaneous and post-exposure TIF values at most points 

apart from marginal (but not significant) difference observed in the case of the GM14090 

cell line at 48 hrs post-exposure (Figure 5.9). Therefore, we can conclude that the GM14090 

cell line shows a defective DNA damage response when exposed to IR and that telomere 

dysfunction contributes significantly to this defective response (Figures 5.3 and 5.7).  

 

 

Figure 5.8 - Average number of TIF per cell after MMC treatment. ***=P<0.001, Error bars 

represent SEM. 
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Figure 5.9 - Average number of TIF per cell after BLM treatment. *=P<0.05, ***=P<0.001, 

Error bars represent SEM. 
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compared to the control Brca1+/+ cells (E14). Therefore, these results are similar to those 

observed in cell lines from BRCA1 carriers (Figure 5.1). 

 

 

Figure 5.10 - Corrected calibrated fluorescence (CcFl) in mouse embryonic stem cell 

lines.*=P<0.05, Error bars represent SEM. 
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in which cells are positioned on top of each other. In spite of changes in washing conditions 

after antibody staining the fluorescence background remained high. Therefore, we used 

various options in the image acquisition software to remove non-specific background in 

order to make sure that only true DNA damage sites are taken into account.     

 Frequencies of γ-H2AX foci in untreated mouse embryonic stem cell lines revealed 

that Brca1+/+ cells have a lower spontaneous frequency of γ-H2AX foci than Brca1-/- cells 

(Figure 5.12). Analysis of repair kinetics after IR exposure (1.0 Gy) revealed that Brca1-/- cells 

show significantly higher frequencies of γ-H2AX foci/cell than their untreated counterparts 

24 hrs and 48 hrs after exposure to IR (P<0.001) (Figure 5.12). In the case of Brca1+/+ cells 

the difference between γ-H2AX foci in untreated cells and treated cells at 24 hrs and 48 hrs 

post-treatment points was not statistically significant (P=0.10) (Figure 5.12).  Therefore, 

these results show that mouse Brca1-/- embryonic stem cells show dysfunctional DNA 

damage response.  

 As above, we next wanted to establish potential contribution of dysfunctional 

telomeres to this defective response. However, in spite of several attempts the TIF assay in 

mouse embryonic stem cells did not work. We believe that specific conditions under which 

embryonic stem cells grow in culture have contributed to this. These cells typically form 

“islands” in which they do not grow in a single layer but rather form a 3 D shape in which 

some cells are on top of each other. This has made even the γ-H2AX assay difficult (see 

above), but we resorted to analysing exclusively cells on the edges of these islands that 

clearly had a 2 D shape. The problem with TIF was an extremely high degree of fluorescence 

background when both required fluorochromes (red and green) were applied. This made 

TIFs non-specific and completely prevented any meaningful analysis. The use of high 
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stringency washing after hybridization, or application of similar measures, did not improve 

the protocol. Therefore, we had to rely on different methods to assess contribution of 

telomeres to dysfunctional DNA damage response in mouse Brca1 -/- cells. Since these cells 

grew relatively well in culture we thought that a cytological analysis of chromosome end-to-

end fusions, events indicative of telomere dysfunction, would be a suitable method for this 

purpose.    

 

 

                

Figure 5.11 - Examples of DNA damage foci in mouse embryonic stem cells after exposure to 

IR. 
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Figure 5.12 - Frequencies of γH2AX foci in mouse embryonic stem cells after 1.0 Gy of 

gamma rays. ***=P<0.001, Error bars represent SEM. 

 

5.2.6 -  Analysis of chromosome end-to-end fusions in mouse embryonic stem cells 

Next, we irradiated mouse embryonic stem cell lines with 2.0 Gy of gamma rays and 

analysed exclusively end-to-end chromosome fusions after FISH with the telomeric PNA 

probe in irradiated and control cells. Examples of end-to-end chromosome fusions are 

shown in (Figure 5.13). It is important to note that we have only counted end-to-end 

chromosome fusions that showed the presence of telomeric signal at the fusion points. 

Results of our analysis are shown in (Figure 5.14). Mouse Brca1-/- cells had higher 

spontaneous frequencies of chromosome end-to-end fusions relative to control cells. 

Interestingly, we have also observed a significantly higher frequency of γ-H2AX foci in these 

cells relative to control cells (Figure 5.12). The dose of 2.0 Gy of gamma rays was not able to 

induce end-to-end chromosome fusions in control cells as evidenced by the lack of statistical 

difference in frequencies of end-to-end chromosome fusions in irradiated and non-

irradiated control cells (Figure 5.14). In contrast, Brca1-/- cells showed a statistically 
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significant difference between frequencies of end-to-end chromosome fusions in treated 

and untreated cells (Figure 5.14). It is therefore likely that some of the DNA damage foci 

observed in Brca1-/- cells after the γ-H2AX assay are due to dysfunctional telomeres. 

Unfortunately, we have not been able to quantify contribution of dysfunctional telomeres 

to the global DNA damage response in this cell line due to problems with the TIF assay.  

 

         

         

Figure 5.13 - Examples of telomeric fusions in mouse embryonic stem cells. (A) Untreated 

cells with no telomeric fusions. (B,C,D) Telomeric fusion in treated cells indicated by arrows. 
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Figure 5.14 - Chromosome fusion analysis in mouse embryonic stem cells. *=P<0.05, 

***=P<0.001, Error bars represent SEM. 

 

5.3 -  Discussion 
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was due to those DNA damage foci located at telomeres (see page 146). Also, an 

examination of DNA damage kinetics suggested that damage at telomeres, in forms of TIFs, 

was significantly higher at all time points (5 hrs, 24 hrs and 48 hrs) post-exposure in the 

GM14090 cell line than in the other two cell lines (Figure 5.5).  

 In the case of mouse Brca1-/- we observed a similar but less clear-cut situation 

mainly because we have not been able to carry out the TIF assay as a result of problems 

specific to embryonic stem cells (see above). Nevertheless, we have been able to show that 

mouse Brca1-/- cells (i) possess shorter telomeres than control cells (Figure 5.10), (ii) have 

unrepaired DNA damage up to 48 hrs after induction (Figure 5.12) and (iii) have increased 

frequencies of spontaneous and radiation induced end-to-end chromosome fusions (Figure 

5.14). Taken together, these results argue that telomere dysfunction mediated by 

dysfunctional Brca1 also contributes to defects in the global DNA damage response in these 

cells.  

 There are several potential mechanisms through which BRCA1 can exert its effects 

on telomeres and through this on DNA damage response. It was shown that BRCA1 

participates in the regulation of telomerase activity (Xiong et al. 2003). It is therefore 

possible that dysfunctional BRCA1 may alter the normal telomerase function and lead to 

telomere shortening similar to that observed in (Figure 5.1 and 5.10). Alternatively, BRCA1 

may affect telomeres independently of telomerase. A recent study suggests that BRCA1 

interacts with components of shelterin, TRF1 and TRF2, and that another DNA damage 

response protein, RAD50, is required for this interaction (Ballal et al. 2009). Furthermore, 

BRCA1 regulates the length of single strand 3’ telomeric overhang with the help of RAD50 

(Ballal et al. 2009). From these observations it is clear that BRCA1 exerts its effects on 
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telomeres via its role in DNA damage response, thus providing further evidence for the 

hypothesis that DNA damage response and telomere maintenance are functionally linked. 

Another potential mechanism through which BRCA1 could affect telomere maintenance is 

through its interaction with the protein involved in the ALT mediated maintenance of 

telomeres (Wu et al. 2003). However, this possibility seems least likely because only a very 

small proportion of tumour cells maintain their telomeres by ALT. 

 The obvious involvement of BRCA1 in telomere maintenance is interesting from the 

cancer treatment perspective. A tumour suppressor role of BRCA1 is well documented (Zhu 

et al. 2011). Telomere maintenance is also considered a tumour suppressor mechanism 

(Hahn 2003). When telomeres become critically short, typically in cells that come to the end 

of their proliferative lifespan, DNA damage response is activated in affected cells and they 

are usually eliminated from tissues by apoptosis (Gu et al. 2008). Thus, telomere length acts 

as a regulator of tissue homeostasis and it constitutes a powerful tumour suppressor 

mechanism. Given that both BRCA1 and telomeres are involved in two different tumour 

suppressor pathways the question is whether this scenario could be exploited for clinical 

interventions in the case of cancer therapy. One strategy would be to manipulate BRCA1 in 

order to make telomeres dysfunctional in tumour cells and at the same time inhibit 

telomerase activity in the same cells by one of the well-publicized telomerase inhibitors, 

which are currently under clinical testing (Xiong et al. 2003). This targeting of two tumour 

suppressor pathways via the link that the both share, namely the role in telomere 

metabolism, could potentially deprive tumour cells from the pathway, which essentially 

makes them immortalized. Such cells, once unable to maintain telomeres through the 

conventional telomerase-mediated mechanisms, would resort to alternative pathways such 

as ALT. However, given the documented role of BRCA1 in the ALT pathway it is possible that 
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this pathway could also be manipulated in order to fully achieve the aim of completely 

depriving tumour cells from a vital mechanism that provides unlimited proliferative capacity 

for them, namely telomere maintenance. One of the points for future research would be to 

examine in more detail the role of BRCA1 in ALT with a view of exploiting this pathway for 

cancer therapeutics. 
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6.1 - Introduction 

In previous chapters we have shown that defects in BRCA1 and BRCA2 proteins 

cause alterations in telomere maintenance and that, in some cases, these alterations 

contribute directly to defects in DNA damage response in affected cells. This is in line with 

the hypothesis that DNA damage mechanisms and telomere maintenance mechanisms are 

functionally linked (Slijepcevic 2006).  

In order to test this hypothesis we have, so far, relied on using cell lines with 

defective DNA damage response genes such as BRCA1 and BRCA2 with a view of assessing 

their effects on telomere maintenance and also when such effects exist, whether they exert 

effects on the global DNA damage response. For example, in the case of a cell line from a 

carrier of a BRCA1 mutation we have been able to show that the defective DNA damage 

response observed is exclusively due to dysfunctional telomeres (see page 146).  

Another way of testing the functional link between telomeres and DNA damage 

response would be to probe the efficiency of DNA damage response mechanisms in cells in 

which telomeres are dysfunctional, but all DNA damage response genes are normal. A 

human disease DC is a rare progressive heritable disorder that is caused by mutations in 

genes that regulate telomere maintenance (Bessler et al. 2010). At least seven different 

genes are affected in this disease including genes associated with telomerase and RNA 

processing, as well as genes that encode some telomere binding proteins. These include: 

DKC1 (Knight et al. 1999), TERC (Vulliamy et al. 2004), TERT (Vulliamy et al. 2005; Marrone 

et al. 2007), TINF2 (Savage et al. 2008), NHP2 (Vulliamy et al. 2008), NOP10 (Walne et al. 

2007), and WRAP53 (Zhong et al. 2011). As a result, DC patients show shorter telomeres 

than age matched control individuals and measurement of telomere length is used to 



Chapter 6 – DNA Damage Response in Dyskeratosis Congenita  

 

                                                                                                                                                           160 
 

confirm DC diagnosis in some laboratories (Vulliamy et al. 2001). Therefore, in order to test 

the functional link between telomeres and DNA damage response further, cells from DC 

patients can be used as a suitable model for assessing the efficiency of DNA damage 

response in the context of dysfunctional telomeres. 

 A number of studies published in the past have examined the response of cells from 

DC patients to genotoxic agents including IR. For example, (DeBauche et al. 1990) showed 

that DC fibroblasts had several times higher frequencies of radiation-induced chromatid 

breaks than control cells. In addition, lymphocytes from a Hoyeraal-Hreidarsson patient, the 

most severe form of X-linked DC, showed sensitivity to radiation and alkylating agents 

(M'Kacher et al. 2003). It was also reported independently that a DC patient showed 

hypersensitivity to radiation therapy (Cengiz et al. 2004). However, a recent study suggested 

that DC cells have a normal DNA damage response (Kirwan et al. 2011). This view was based 

on a simple comparison of etoposide-induced γ-H2AX foci in lymphocytes from DC and 

control patients immediately after the exposure, which resulted in similar frequencies of 

DNA damage foci in both cell types (Kirwan et al. 2011). Crucially, no repair of DNA damage 

was analysed after the exposure in the study by (Kirwan et al. 2011). This type of analysis is 

the standard procedure in our experiments. For example, we normally monitor DNA 

damage frequencies 30 min, 5 hrs, 24 hrs and 48 hrs following treatment with genotoxic 

agents (see previous chapters). Defective DNA damage response will become apparent only 

if non-repaired DNA damage persists long time after its induction. Therefore, the conclusion 

of the (Kirwan et al. 2011) study that DC cells have a normal DNA damage response, is 

somewhat weak in light of their failure to analyse DNA damage kinetics. Another weakness 

of this study is that no other DNA damaging agent apart from etoposide was used in spite of 

published studies indicating sensitivity of DC cells to ionizing radiation (see above). 
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Importantly, (Kirwan et al. 2011) showed that DC cells have increased apoptosis, cell cycle 

abnormalities and increased spontaneous TIF frequencies in lymphocytes and increased 

spontaneous γ-H2AX frequencies in fibroblasts. All these phenotypic features can potentially 

cause defects in DNA damage response mechanisms. Interestingly, a mouse study 

contradicts (Kirwan et al. 2011) conclusines. Pathological Dkc1 mutations in mouse cause 

defective DNA damage response after exposure to etoposide (Gu et al. 2008). 

In this chapter we examined DNA damage response in cells from DC patients 

belonging to the X-linked subtype using the γ-H2AX and TIF assays. This genetic subtype of 

DC is characterized by mutations in the gene encoding Dyskerin (DKC1), an integral 

component of telomerase (Gardano et al. 2012). Furthermore, we carried out RNAi to 

knock-down the expression of DKC1 in two different human cell lines. Our results indicate 

that DC cells show a defective response to ionizing radiation.  

6.2 -  Results 

6.2.1 - Telomere length analysis in DC cell lines 

 We started by measuring telomere length in fibroblast cell lines from DC patients 

that have defective DKC1. One cell line originated from a DC patient with a heterozygous 

DKC1 mutation, and the other cell line originated from a DC patient with homozygous DKC1 

mutations. The third cell line was used as a control and it originated from a normal 

individual. The analysis was performed before we finalized our IQ-FISH protocol and as a 

result telomere fluorescence values shown in (Figure 6.1) represent unmodified telomere 

fluorescence. In line with numerous published studies (see above) DC cells showed 

significantly shorter telomeres than control cells (Figure 6.1).  It was also clear that the rate 

of telomere shortening was more dramatic in DC cells with a heterozygous mutation than in 
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control cells judging by the slope of curve representing telomere loss over time (Figure 6.1). 

For example, we calculated that normal cells lose 0.5 fluorescence units due to telomeric 

DNA/cell passage, whereas DC cells with a heterozygous DKC1 mutation lose 2.5 

fluorescence units due to telomeric DNA/cell passage. DC cells with homozygous mutations 

grew slowly and we only managed 4 tissue culture passages (Figure 6.1). This precluded a 

meaningful calculation of telomere loss that was calculated in other cell lines over a period 

of 12 passages (Figure 6.1). Overall, these results confirm telomere shortening in DC cells 

relative to control cells.  

        

Figure 6.1 - Average telomere length in normal and DC cell lines. Error bars represent SEM. 
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Interestingly, 30 min and 5 hrs after the exposure to 1.0 Gy of gamma rays there was no 

difference in frequencies of DNA damage foci between cell lines (Figure 6.2). However, the 

cell line with the homozygous DKC1 mutation showed persistence of DNA damage 24 and 48 

hrs post-exposure with the levels of γ-H2AX foci significantly higher than in control non-

exposed cells (P<0.001), or control exposed cells with normal DKC1 (P<0.001) (Figure 6.2). 

The presence of unrepaired DNA damage in DC cells with homozygous DKC1 mutations 24 

hrs and 48 hrs after induction is indicative of a defective DNA damage response. While in 

normal cells and cells with a heterozygous DKC1 mutation frequencies of γ-H2AX foci return 

virtually to the level observed before exposure, at 24 hrs and 48 hrs points, DC cells with 

homozygous mutations showed approximately 2-fold frequencies of γ-H2AX foci in 

comparison to the same cells before exposure (Figure 6.2). 

 

Figure 6.2 - H2AX analysis in normal and DC cell lines after 1.0 Gy of gamma rays. *** = 

P<0.001. Error bars represent SEM. 
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6.2.3 -  Telomere dysfunction-induced foci (TIF) Assay analysis in Fibroblast DC cell 

lines 

Next, we carried out TIF analysis in the above three cell lines. Our analysis revealed 

that DC cells showed higher spontaneous frequencies of TIFs compared to normal cells 

(Figure 6.3). However, there were no significant differences between control values and 

values of TIFs observed at any point after exposure to IR. The TIF values were low like in the 

case of BRCA2 defective cells (see Chapter 4) suggesting that assays other than TIF should be 

employed to investigate whether dysfunctional telomeres contribute to the observed 

defective DNA damage response in the GM1774A cells. 

 

 

Figure 6.3 - Average number of TIF per cell in irradiated cell lines after 30 minutes, 5, and 24 

and 48 hours post irradiation. *=P<0.05, **=P<0.01, Error bars represent SEM. 
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6.2.4 -  Analysis of chromosomal aberrations in DC cell lines 

We have attempted to analyse radiation induced chromosomal aberrations in DC 

and control cells. Unfortunately, the GM1774A cell line, originating from a patient with 

homozygous DKC1 mutations showed a too low mitotic index in order to allow preparation 

of good quality metaphases. So, we have been able to analyse only two remaining cell lines. 

These analyses have shown no difference in frequencies of radiation induced chromosome 

aberrations between the cell lines (Figure 6.4).  

 

 

Figure 6.4 - Chromosomal aberration analysis in control (GM08399) and DC heterozygous 

(GM1787 114) cells. *=P<0.05. Error bars represent SEM. 
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we have not been able to observe enough GM1774A mitotic cells to have sufficient number 

of cells in anaphase to satisfy a minimal requirement for the statistical analysis. Results of 

anaphase bridge analysis for the remaining two cell lines are presented in (Figure 6.5). 

Overall, we could not find any statistical differences between control and IR, MMC or BLM 

treated cells (Figure 6.5). Differences between cell lines were inconsistent. For example, 

frequencies of spontaneous anaphase bridges/cell in the GM08399 ranged from 0.045-0.09 

(Figure 6.5). In the case of treatment the variation was between 0.09-0.155 (Figure 6.5). 

Similarly, spontaneous anaphase bridges/cell in the GM1787114 cell line ranged from 0.09 – 

0.19 (Figure 6.5). In the case of treatment the range was 0.135 – 0.205 anaphase 

bridges/cell (Figure 6.5). Because of the clear overlap between spontaneous anaphase 

bridge/cell values and those observed after treatment the statistical analysis did not result 

in significant differences with the exception of BLM treatment (Figure 6.5 C).  
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Figure 6.5 - Analysis of anaphase bridges between DC and control cells after exposure to IR 

(A), MMC (B) and BLM (C). ** = P<0.01, *** = P<0.001. Error bars represent SEM. 
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Telomeres) pathway. The reasoning behind this choice of cell lines was that the knock-down 

of DKC1 will not have any phenotypic effects on ALT positive cells which usually lack 

telomerase activity (Grobelny et al. 2001). As indicated earlier, DKC1 is an integral 

component of telomerase.  

To carry out the knock-down experiments we used the Dharmacon Smart Pool siRNA 

approach as this approach worked well before in our laboratory. The complete protocol for 

knock-down has been described fully in chapter 2. Details of four siRNA oligonucleotides 

within the Smart Pool specific for the DKC1 gene are listed in (Table 6.1). 

 

 

Table 6.1 - All four sequences of siRNA used in knock-down of DKC1 gene  

   Dharmacon Smart Pool siRNA                                                       Target Sequence 

      Human DKC1 Sequence 1                                                    CAAGGUGACUGGUUGUUUA 

      Human DKC1 Sequence 2                                                    GCAGGUAGUUGCCGAAGCA 

      Human DKC1 Sequence 3                                                    UCUCAUAAACGGCUGGUUA 

      Human DKC1 Sequence 4                                                    GGACAGGUUUCAUUAAUCU 

 

Before the actual knock-down experiments,  we needed to carry out some important 

quality control steps in order to ensure that the verification of the RNAi procedure is robust 

enough. These included optimization of primers for DKC1 and the control GAPDH gene by 

conventional PCR and optimization of primer concentrations for quantitative RT-PCR and 
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establishment of dissociation curves. The results of primer optimization for DKC1 and 

GAPDH genes are shown in (Figure 6.6). A typical dissociation curve showing clear 

amplification products without non-specific amplification is shown in (Figure 6.7) 

 

 

    

  

Figure 6.6 – Primer optimization. Lane 1 is a molecular weight marker. Lane (2-4) shows the 

DKC1 (dyskerin) gene product in the Hela cell line. Lane (5-7) shows the GAPDH gene 

product in the U2OS cell line. Lane 8 and 9 are negative controls. 
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Figure 6.7 - Dissociation curve analysis confirms only one amplification product without any 

non-specific amplification or primer dimmer. 

 

 

Having completed important preparatory steps we started the knock-down protocol 

with the control GAPDH gene. Choosing proper controls is an important feature of any study 

design. One important control that ensures an efficient delivery of the siRNA 

oligonucleotides into the cells was the knock-down of the housekeeping gene GAPDH. 

Results of the GAPDH knock-down are shown in (Figure 6.8). It is clear that the knock-down 

was efficient as the expression of GAPDH was reduced to between 20% and 40% and the 

effect lasted up to 72 hrs depending on the cell line (Figure 6.8). 
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Figure 6.8 - Knock-down of the GAPDH gene in Hela and U2OS human cell lines. 
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Figure 6.9 - Knock-down of the DKC1 gene in Hela and U2OS human cell lines. Graph 

showing relative percentage of DKC1 mRNA in the two cell lines. A 52 % knock-down was 

achieved in the Hela cell line (72 hrs after transfection) and 51 % in the U2OS cell line (48 hrs 

after transfection). 
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Figure 6.10 - Western blot analysis of DKC1 expression following transfection with siRNA 

oligonucleotides. 
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The next step for us was to check the DNA damage response phenotype in both cell 

lines at post-transfection points that showed the lowest expression of DKC1. In the case of 

HeLa cells the lowest expression was 52% and this expression was observed 72 hrs after 

transfection with siRNA oligonucleotides (Figure 6.9).  In the case of U2OS cells the lowest 

expression was 51% and it was observed 48 h after transfection (Figure 6.9). We have 

selected exclusively the above time points in each cell line respectively and examined DNA 

damage response using γ-H2AX and TIF assays. Since we observed unrepaired DNA damage 

in DC cells 48 hrs after irradiation (Figure 6.2) which is potentially indicative of a defective 

DNA damage response we decided to plan the experiment to take into account this point. 

The outline of the experimental plan is presented in (Figure 6.11) and examples of cell 

images with DNA damage foci observed are shown in (Figure 6.12). In brief, we transfected 

cells with siRNA oligonucleotides and waited for 48 hrs (U20S) or 72 hrs (Hela) at which 

point we have irradiated these cells with 1.0 Gy of gamma rays. Exactly 48 hrs after 

irradiation we carried out γ-H2AX and TIF assays. The controls included (i) unexposed HeLa 

and U2OS cells, (ii) HeLa and U2OS cells transfected with scrambled oligonucleotides and 

(iii) irradiated HeLa and U2OS cells without any transfection analysed for the presence of 

DNA damage 48 hrs after exposure to radiation (see Figures 6.11). 
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Figure 6.11 - The outline of the experimental plan in order to check the DNA damage 

response phenotype in Hela and U2OS cell lines at post-transfection points. 

 

                

Figure 6.12 - Examples of cell images with DNA damage foci and TIF post transfection. 

 

Results of our analysis are shown in (Figures 6.13 and Figure 6.14). Both cell lines 

have shown some residual DNA damage 48 hrs after exposure to IR which was marginally 

significant (see table, second column, in Figure 6.13). Cells transfected with scrambled 

oligonucleotides showed similar levels of γ-H2AX foci as control non-exposed cells (Figure 

6.13). Most importantly, HeLa and U2OS cells transfected with DKC1 specific siRNA 

oligonucleotides and exposed to radiation at relevant time points (see Figure 6.13) showed 

γ-H2AX TTAGGG Merged 

 -24          0            24           48          72         96           120            

 

    Cell Seeding Change Medium 

siRNA Addition 

 Irradiate Hela cells  

Irradiate U2OS cells 

γ-H2AX and TIF 

Assay for U2OS 
cells 

 

γ-H2AX and TIF 

Assay for Hela  



Chapter 6 – DNA Damage Response in Dyskeratosis Congenita  

 

                                                                                                                                                           175 
 

higher frequencies of γ-H2AX foci relative to all three controls used, some of which have 

yielded significant differences (Figure 6.13). This suggests that, even though the DKC1 

expression was only reduced by 50%, DNA damage response was affected in both cell lines. 

Unexpectedly, U2OS cells with reduced DKC1 expression showed unrepaired DNA damage 

48 hrs after irradiation (Figure 6.13) suggesting that DKC1 may affect DNA damage 

independently of its role in telomerase. However, we would like to note that the experiment 

described above needs to be sufficiently repeated before we draw any definitive conclusion. 

Because of time constrains the DNA damage analysis described above was performed only 

once and should be considered preliminary. 

 

Figure 6.13 - Frequencies of γ-H2AX foci/cell in Hela and U2OS cells before and after DKC1 

knock-down.*=P<0.05, *** = P < 0.001, Error bars represent SEM. 
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telomeres potentially contribute to defects in DNA damage response (Figure 6.14). As stated 

above these results need to be repeated before the conclusion that elevated TIF frequencies 

observed contribute to defects in DNA damage response can stand.    

 

Figure 6.14 - Frequencies of TIF foci per cell in Hela and U2OS cell lines. * = P<0.05, Error 

bars represent SEM. 

 

6.3 -  Discussion  

 

 Results presented in this chapter indicate that DC cells show a defective DNA 

damage response. Cells from a DC patient with homozygous mutations in DKC1 showed 
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from a DC patient with a heterozygous DKC1 mutation (Figure 6.2). The presence of 

unrepaired DNA damage in affected cells long time after induction of genotoxic stress is 

consistent with a defective DNA damage response. To test this possibility further we 

knocked-down DKC1 in a telomerase positive cell line (HeLa) and in an ALT positive cell line 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

Control 1.0 GY Scrambled siRNA 72/48hrs 

TI
F 

/ 
C

e
ll 

Hela 

U2OS 

* 

 * 

Cell lines 1.0 Gy Scrambeled 72/48 hrs 

Hela * P>0.05 * 

U2OS * P>0.05 * 

 



Chapter 6 – DNA Damage Response in Dyskeratosis Congenita  

 

                                                                                                                                                           177 
 

(U2OS) and examined their DNA damage response. Our preliminary experiments suggest 

that DKC1 knock-down causes a defective DNA damage response in both cell lines (Figure 

6.11) thus providing further support for the possibility that DC cells may have a defective 

DNA damage response. 

 Taken together our results argue against conclusion of a recent study that DC cells 

have a normal DNA damage response (Kirwan et al. 2011). As stated in the introductory 

section for this chapter the study by (Kirwan et al. 2011) had, in our view, a significant 

weakness. They only compared frequencies of etoposide-induced γ-H2AX foci immediately 

after treatment and observed essentially similar values of DNA damage foci in DC and 

control cells (Kirwan et al. 2011). This is clearly in line with our results. At the time points 30 

min and 5 hrs after exposure to radiation we have not observed significant differences in 

frequencies of γ-H2AX foci between control and DC cells (Figure 6.2). Differences in γ-H2AX 

foci frequencies between DC cells with homozygous mutations in DKC1 on one sides and 

normal control cells and cells with a heterozygous mutation in DKC1 become apparent 24 

hrs and 48 hrs after exposure (Figure 6.2). (Kirwan et al. 2011) have not analysed DNA 

damage in their samples beyond the single time point and because of this we think that 

their conclusion in order to be valid requires a full study of DNA damage kinetics beyond 

that single point. Furthermore, conclusion by (Kirwan et al. 2011) that DC cells have a 

normal DNA damage response is contradicted by a mouse study. (Gu et al. 2008) used a 

mouse DC model to analyse DNA damage response. They copied a 2 kb deletion mutation 

found in an X-linked DC family into the mouse genome. This mutation removes the last exon 

(exon 15) from the DKC1 gene. This mouse model exhibited phenotypic features similar to 

DC patients including telomere shortening (Gu et al. 2008). Furthermore, (Gu et al. 2008) 

showed that DNA damage induced by etoposide in mouse embryonic fibroblasts (MEFs) 
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with the above Dkc1 mutation was significantly higher than in control cells. Similarly to 

(Kirwan et al. 2011) no DNA damage repair kinetics in these cells was carried out (Gu et al. 

2008) and this is a potential weakness of the study.  However, given that several other 

published studies indicate that DC cells may have a dysfunctional DNA damage response, in 

particular the response to ionizing radiation we believe that the conclusion by (Kirwan et al. 

2011) cannot be justified unless results of DNA damage kinetics are carried out in the same 

samples.  

The most interesting question for us is why Dyskerin affects ALT cells? Even though 

our results presented in (Figures 6.10 and 6.11) are still preliminary and require further 

validation we are tempted to speculate that, if these results are upheld, Dyskerin may have 

a role in DNA damage response independently of telomerase. It is well established that most 

ALT positive cells lack detectable telomerase activity (Zhu et al. 2004) and we assume that 

the U2OS cell line follows this pattern. However, to be on the safe side it is important to 

verify this and one of the points for future studies is to assess the status of telomerase 

activity in U2OS cells. In rare cases it happens that ALT cells may also have detectable 

telomerase activity (Grobelny et al. 2001) and it is essential to clarify this point. If, after all 

clarification steps, turns out that Dyskerin is indeed involved in DNA damage response 

independently of telomerase mechanisms of its action need to be identified. It is interesting 

in this context that some other components of telomere metabolism have roles that deviate 

from their expected roles. For example, telomerase plays a role in processes other than 

telomere length regulation (Greider 1993). One of the shelterin components, a telomere 

binding proteins TRF2, plays a direct role in DNA damage response independently of its role 

in telomere stability maintenance or telomere length regulation (Huda et al. 2009).  
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In conclusion, based on our results we believe that DC cells have a dysfunctional DNA 

damage response. Our DKC1 knock-down experiments require further validation as 

discussed earlier and this is project is continued by another PhD student.    
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7.1 - General discussion 

In the last 10-15 years a substantial body of evidence has emerged to suggest a link 

between dysfunctional maintenance of telomeres and defective DNA damage response. The 

first clear indication for this link was the observation of dysfunctional telomere maintenance 

in the human syndrome Ataxia telangiectasia (AT) characterized by a defective DNA damage 

response due to mutations in the ATM (AT mutated) gene (Metcalfe et al. 1996). This 

observation has been taken further over the years and numerous human cell lines or mouse 

models characterized by a variety of DNA damage response defects have been examined for 

the presence of abnormalities in telomere maintenance. At least 17 genes involved in DNA 

damage response have been shown to affect telomere maintenance so far (Slijepcevic 2006) 

thus providing supporting evidence for the functional interplay between these two 

pathways, namely telomere maintenance and DNA damage response. A strong proof for this 

functional interplay comes from a study that a telomere binding protein, TRF2, which has 

not been assigned any role in DNA damage processing before, actually interacts with photo-

induced DNA DSBs immediately after their induction (Bradshaw et al. 2005). The work 

presented in this thesis was aimed at probing the above further. It is essential to understand 

the interplay between telomere maintenance and DNA damage response as this may be 

helpful for understanding the role of telomeres played in clinically relevant processes such 

as carcinogenesis and ageing (Aubert and Lansdorp 2008).  

This thesis generated three novel sets of results. Firstly, we developed a new method 

for measuring telomere length in interphase cells, termed IQ-FISH (Chapter 3). The method 

is essential for measuring telomere length in cell lines that have poor proliferative potential 

as a result of defects in various DNA damage response genes. Secondly, we have shown that 
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defects in BRCA1 and BRCA2 proteins cause alterations in telomere maintenance and these 

alterations, in some cases, contribute directly to defects in DNA damage response in 

affected cells (Chapters 4 and 5). Thirdly, we have shown that cells from a DC patient, with 

homozygous mutations in the DKC1 gene, have a dysfunctional DNA damage response 

(Chapter 6). 

 As previously mentioned telomere maintenance is closely linked with cellular and 

organismal ageing and it appears to be a key determinant of replicative capacity in 

vertebrate somatic cells. Additionally, evidence shows that telomere shortening is an early 

contributor to human tumorigenesis (O'Sullivan et al. 2002). Therefore, our results are 

useful for understanding details of telomere maintenance mechanisms in the context of 

ageing and tumorigenesis. 

 It was essential to develop an accurate method for measuring telomere length in 

poorly proliferating cells. A number of methods for measuring telomere length have been 

described including Southern blot, Q-FISH, Flow-FISH, q-PCR and STELA (single telomere 

length analysis) (Lansdorp et al. 1996; Oexle 1998; Rufer et al. 1998) Of all these methods Q-

FISH is probably the most sensitive technique for measuring telomere length. However, Q-

FISH requires a good mitotic index, typical of rapidly proliferating cells, for high quality 

metaphase preparation which is essential for this technique. In the past we have attempted 

to measure telomere length by Q-FISH in DC cells described in Chapter 6, VU0423 cells 

described in Chapter 3 and some other cells characterized by a dysfunctional response to 

DNA damage. However, the mitotic index in all cell lines was low thus precludeing 

metaphase cell preparation. This was the key reason we have resorted to development of 

IQ-FISH in the context of this project. Based on the analysis of cells lines with defective DNA 
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damage response (Chapters 4-6) we can conclude that the IQ-FISH method is a fast and 

accurate method for assessing telomere length in any sample with low cell numbers. We 

believe that >100 cells are sufficient to obtain accurate telomere length information in any 

sample. No other telomere length measuring technique can compete with IQ-FISH in this 

sense. Q-FISH is inferior for the reasons discussed in Chapter 3. Southern blot, RT-PCR and 

STELA rely on extraction of DNA from samples and the quantity of cells required is likely to 

be in the region of thousands at least, if not a degree of magnitude higher as DNA extraction 

procedure usually results in the significant loss of the DNA (Svenson et al. 2011). Flow-FISH 

also requires a significant number of cells/sample, probably in the region of 100,000, and it 

is inferior to IQ-FISH (Slijepcevic 2001) in terms of cell numbers required to complete the 

analysis.  

The IQ-FISH technique allowed us to focus on cells with defective DNA damage 

response genes, such as BRCA1 and BRCA2, with a view of assessing their effects on 

telomere maintenance. Several recent studies (Badie et al. 2010; Sapir et al. 2011; 

Bodvarsdottir et al. 2012) showed that BRCA2 affects telomere maintenance. In this thesis 

we have been able to link the DNA damage response defect in the cell line from a patient 

with bi-allelic mutations in BRCA2 with defects in rates of telomere recombination (Chapter 

4). The observed telomere dysfunction phenotype in BRCA2 defective cells was consistent 

with the involvement of telomeres in HR. These results are consistent with the view that 

telomere maintenance is functionally linked with DNA damage response mechanisms. 

However, we have also shown lack of correlation between DNA damage response and 

telomere maintenance in cell lines from BRCA2 mutation carriers (+/-) (Chapter 4) 

suggesting that a single functional copy of BRCA2 is sufficient to provide an efficient DNA 

damage response in human cells. 
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We have also examined the role of BRCA1, either in human or mouse cell lines, and 

have shown that even the presence of a heterozygous mutation in human lymphoblastoid 

cells is able to confer dysfunctional DNA damage response which is caused by dysfunctional 

telomere maintenance (Chapter 5). We have also been able to show the effect of 

homozygous Brca1 mutations on DNA damage response and telomeres in mouse embryonic 

stem cells (Chapter 5).   

Perhaps the most interesting result in this thesis is demonstration of a DNA damage 

response defect in DKC1-/- cells from a DC patient (Chapter 6). Cells from this patient show 

unrepaired DNA damage 24 and 48 hrs after its induction by IR whereas normal control cells 

are able to repair this damage efficiently. We have also carried out RNAi experiments to 

prove that DKC1 is indeed responsible for this defective DNA damage response. Our 

preliminary results support the initial view (Chapter 6) but the experiments require further 

validation currently carried out by another PhD student.  

7.2 - Future research 

Overall, our results are supportive of the functional inter-dependence between the 

two pathways. One of the points for the future research would be to probe details of the 

mechanisms between this inter-dependence. The guiding principle here is perhaps the study 

by Bradshaw et al. (2005) which clearly demonstrated the involvement of TRF2, a telomeric 

protein without any formally assigned role in DNA damage response, in processing phot-

induced DSBs in human cells. We believe that biochemical experiments aimed at probing 

the direct involvement of various telomere binding proteins or component of telomerase in 

DNA damage response may be justified. Telomerase is a complex enzyme consisting from 

many different components including DKC1. Given our demonstration that DKC1 defective 
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cells have a dysfunctional response to DNA damage it may be appropriate to probe the 

potential role of this protein in DNA damage response. It is important to stress that 

telomerase activity is unregulated after many forms of DNA damage. For example, exposure 

of human cells to ionizing radiation leads to an observable increase in telomerase activity 

which is independent of telomere length regulation (Moriarty et al. 2002) suggesting the 

role of telomerase in DNA damage response. 

Another point for future research would be the exploration of translational 

possibilities that stem from our research. Cancer therapy is an avenue that can be explored 

here. BRCA1 and BRCA2 are well characterized tumour suppressors (Lee and Muller 2010). 

Telomere maintenance is essentially a tumour suppressor pathway (Gu et al. 2005). 

Manipulating the inter-dependence between the protein players that are functionally linked 

through different pathways, namely DNA damage response and telomere maintenance, and 

play roles in both of them, may provide a strategy for better definition of these pathways in 

carcinogenesis and open some avenues for clinical intervention. One such possibility is 

briefly discussed on page 156 and recent publications (Sapir et al. 2011) provide further 

support for it. 
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