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Abstract 

This paper reports on the energy performance evaluation of a displacement ventilation (DV) 

system in an airport departure hall, with a conventional DV diffuser and a diffuser 

retrofitted with a phase change material storage heat exchanger (PCM-HX). A TRNSYS-CFD 

quasi-dynamic coupled simulation method was employed for the analysis, whereby 

TRNSYS® simulates the HVAC and PID control system and ANSYS FLUENT® is used to 

simulate the airflow inside the airport terminal space. The PCM-HX is also simulated in CFD, 

and is integrated into the overall model as a secondary coupled component in the TRNSYS 

interface. Different night charging strategies of the PCM-HX were investigated and 

compared with the conventional DV diffuser. The results show that: i) the displacement 

ventilation system is more efficient for cooling than heating a space; ii) the addition of a 

PCM-HX system reduces the heating energy requirements during the intermediate and 

summer periods for specific night charging strategies, whereas winter heating energy 

remains unaffected; iii) the PCM-HX reduces cooling energy requirements, and; iv) 

maximum energy savings of 34% are possible with the deployment of PCM-HX retrofitted 

DV diffuser. 
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Nomenclatures: 

λ Thermal conductivity (W/mK) 

α Gray Radiation absorptivity 

ε Gray Radiation emissivity 

τ Gray Radiation transmissivity 
β Liquid fraction 

ρ Density (kg/m3) 

cp Specific heat capacity (J/kgK) 

 ̇ Heat flux (W/m2) 

φ Cell parameter 

Vi Cell Volume 

A Area (m2) 

G Solar irradiation (W/m2) 

hc Convective heat transfer coefficient (W/m2K) 

L Latent heat capacity (J/kg) 

t Time (s) 

 

Subscripts: 

fl Floor 

gl Glazing 

ro Roof 

amb Ambient 

surf Surface 

sky Sky parameter 

ext Exterior wall 

rad Radiation 

exh Exhaust 

m Mixed 

f Feedback 

r Return 

s Supply 

 

 

 

 

 



1.0 Introduction 

Phase change materials (PCM) are materials with enhanced heat storage capabilities arising 

from their latent heat capacity at a specific phase change temperature. The use of these 

materials in different forms and applications such in building wallboards and PCM plates for 

the thermal control of relatively small and thermally lightweight spaces have been 

extensively studied in the literature [1-6].  The aim has mainly been to provide additional 

thermal mass to lower the indoor temperature swing and prevent overheating in the space, 

as well as reduce the energy demand in air-conditioned spaces.   

PCM systems can be classified into passive and active systems. Passive systems are regarded 

as systems which do not require the input of additional energy to operate them. They 

usually take the form of PCM embedded into the building fabric such as plasterboards or 

concrete to increase thermal mass. Active systems are systems requiring an auxiliary 

mechanical system for its operation [7]. Due to the poor heat transfer properties of PCMs, 

the choice of PCM system to be used is thus very dependent on its application. The thermal 

load of the building and its diurnal variation, the required heat transfer rates, the type of 

auxiliary heating, ventilation and air-conditioning (HVAC) systems used, are some of the 

important parameters to be considered in the selection of an appropriate PCM system.  

Active systems are generally preferred in situations where a greater control of the system 

and higher heat transfer rates are required [1, 3, 7], such as is in airport terminal buildings. 

PCMs can be integrated as PCM-plates [2] or PCM nodules [8] in the HVAC system for ‘free’ 

air-conditioning, or in storage tanks [9] where water or brine can be used as secondary heat 

transfer media for air-conditioning. In all cases, the PCM has to be regenerated (re-charged) 

and the regeneration method will depend on the application. In cooling applications, the 

PCM can be recharged using cold night air, while in heating application this can be done 

using waste heat or solar energy.  Examples of ‘active’ PCM products developed in recent 

years are the Monodraught Cool-Phase® [10] or the Trox Type FSL-B-PCM® [11] systems. 

These are low-energy ventilation systems, with applications aimed at spaces having fairly 

uniform thermal loads such as offices and schools.  

Airport terminal buildings are normally: very large open plan spaces with high ceiling, and in 

many cases large glazing areas; with highly variable thermal loads influenced by passenger 



traffic; and high lighting and equipment loads [12, 13]. Other complexities in the thermal 

control of terminal buildings are the different thermal comfort requirements in different 

parts of the terminal and the relatively low thermal mass of the envelope due to the large 

glazing areas [14]. As a result, the HVAC system employed in airports plays a significant role 

in satisfying the diverse thermal comfort requirements in the various spaces, and in the 

overall energy requirements of the indoor environment.  

Thermal environment control in large open plan airport spaces is normally provided either 

through the use of long-throw nozzles [15] or displacement diffusers [13]. Long-throw 

nozzles, as employed in Terminal 1 of Chengdu Shuangliu International Airport [15] or 

Barcelona International Airport, supply conditioned air at relatively high levels and high 

velocities into the space, generating mixing. Conversely, displacement diffusers, as 

employed at the New Bangkok International Airport [13] or London Heathrow Terminal 5 

[16], rely on buoyancy effects to provide air movement in the space.  

In recent years, displacement cooling has been extensively applied for the thermal control 

of large spaces [17]. With this method, conditioned air at relatively low temperature is 

blown horizontally into the space at floor level. Upon reaching a heat source, the warm air 

plume rises due to buoyancy effects, displacing the heat to higher regions where it is 

removed. This method reduces the conditioned volume with respect to mixed ventilation 

systems, and improves the ventilation effectiveness with respect to heat transfer [18]. 

Heating can be provided with the same method but due to the buoyancy of warm supply air, 

the air in the building space becomes mixed very quickly, reducing the stratification benefits 

of displacement diffusers.   

The term ‘displacement ventilation’ is normally used when fresh supply air is used to 

displace (push) the older air away, without mixing it with the supply air [17]. In this study, 

the term ‘displacement ventilation’ will refers to the application of the displacement 

principle to provide both cooling and heating of a large space.  

This paper explores the application of PCM to a large airport terminal building. The 

geometry is very similar to that of the departure hall of London Heathrow Terminal 5, UK, 

the airport HVAC system in the departure hall employs the displacement principle. For this 

study, it was assumed that a PCM-heat exchanger system (PCM-HX) was retrofitted into the 



displacement diffusers, and the thermal performance of this active PCM-HX system and its 

impact on the overall response of the building and main air-conditioning (AC) unit was 

assessed using a coupled TRNSYS-CFD simulation. TRNSYS was used to simulate the air 

conditioning system whereas CFD was used to simulate the building air-flow and PCM  

The following sections elaborate on the simulation tools and the coupling strategy 

employed.  

 

2.0 Numerical Considerations 

Zonal or multi-zonal energy simulations (ES) and computational fluid dynamics (CFD) models 

have been extensively used as design tools. The information extracted from them allows 

energy performance comparisons of different systems, as well as optimisation of the 

building services systems, building orientation, lighting and various controls to minimise 

energy requirements. Common simulation tools such as TRNSYS®, EnergyPlus® and ESP-r® 

employ zonal or multi-zonal models to simulate buildings and HVAC systems [19]. Zonal 

models comprise of one air-node in each zone, representing an air volume with uniform 

properties, i.e. a fully mixed zone. This approach eliminates the necessity to model the 

airflow distribution in the zone, considerably simplifying the model through the use of 

empirical equations to mimic air-flow. These simulation tools have been more focused on 

the simulation of building services systems than the air flow and temperature variation in 

the space. In doing so, the simulation times and computer costs are kept low, at the 

expense of accuracy in the determination of air flow and temperature in the building.  

CFD tools such as ANSYS FLUENT® or CFX® have been mainly developed as general purpose 

simulation software, where major importance is given to accuracy and details of the results. 

These tools employ the finite volume simulation principle, which requires the generation 

and discretisation of the building volume and solution of the approximate form of the 

Navier-Stokes equations. The simulation results can be of high accuracy, at the expense of 

high computing time and costs.  

Some commercial simulation packages such as Integrated environmental Solution Virtual 

Environment® (IES-VE) [20] and Design builder® [21] have introduced CFD components to 



their interface. The CFD capability on these tools, however, is simpler than that of 

commercial CFD solvers, but the resulting simulation outputs are more detailed than those 

of zonal models. Limitations of these packages are: i) the grids are uniform hexahedral cells, 

suited mainly to rectangular geometries; ii) there are limitations in the turbulence models 

employed; and iii) the coupling between the building space and the control systems is done 

at the end of the simulations.  

In this study, the advantages of ES and CFD modelling are utilised through the development 

of a coupling code that dynamically links the ES tool TRNSYS to the CFD package FLUENT.  

2.1 ES tool – TRNSYS® 

TRNSYS (TRaNsient SYstem Simulation) is a modular simulation program that allows the 

modelling of various energy systems, including HVAC analysis, multi-zone airflow analyses, 

electric power simulation, solar design, building thermal performance, analysis of control 

schemes, etc [22]. It consists of a Graphical User Interface, a simulation kernel and different 

simulation components (Types). After appropriately linking all components, TRNSYS 

produces solutions based on the successive substitution method, which is the process 

where the outputs of a component are fed/ substituted as the inputs to another 

component. A component is called only if its inputs change during a particular time-step, 

and convergence is reached when the outputs vary within the tolerance limits defined by 

the solver.  

The incorporation of weather files, control systems, HVAC systems, scheduling strategy and 

the modelling of multi-zone buildings makes TRNSYS a flexible tool in the evaluation of 

building energy systems.  

 

2.2 CFD tool – ANSYS FLUENT® 

FLUENT is a general purpose CFD tool which solves the approximate form of the governing 

equations in order to provide different solution fields for a particular domain. The potential 

of CFD extends into many disciplines, and has been validated in various research studies, 

ranging from oxygen generation [23], thermal comfort in buildings [24] and atmospheric 



simulations [25]. The level of precision in the simulation varies depending on the level of 

refinement in the model discretisation, and the more refined the model, the longer the 

simulation times. In the case of buildings, CFD applications include predictions of CO2 

concentration, thermal comfort, smoke/fire propagation, ventilation and contaminant 

transport. Furthermore, FLUENT allows for phase change simulations of PCM through the 

enthalpy porosity method [5].  

Previous studies on the application of CFD to buildings have identified that the turbulence 

models have a major influence on the final solution, depending on the type of air-flow in the 

space (e.g. forced, buoyant or mixed forced/buoyant flows). Zhang et al. [26] investigated 

eight turbulence models for different geometries, and concluded that LES offers the most 

accurate and detailed results, but required much higher computing time compared to the 

RANS models. The RNG k-ε and the modified V2-f models also provided accurate 

performance for the cases studied. Gebremedhin and Wu [27] simulated a ventilated cattle 

facility using five RANS models, and concluded that the RNG k-ε model provided the most 

suitable flow field modelling. Rohidin et al. [28] employed the standard, RNG and realizable 

k-ε models to simulate a large packaging facility equipped with a forced ventilation system. 

They found the RNG k-ε model to provide a good accuracy compared to experimental data. 

Hussain et al [29] investigated six RANS models, including the one-equation model (Spallart–

Allamaras), together with the discrete transfer radiation model (DTRM) for the simulation of 

in the natural and forced ventilation of atria. In comparison with experimental results, they 

concluded that the two equation models (the standard k-ε, RNG k-ε, realizable k-ε, standard 

k-ω and SST k-ω) provided better results compared to the one-equation model, with the SST 

k-ω model providing the best prediction accuracy.  Zhai et al [30] studied turbulence models 

for different enclosed indoor environments. They concluded that each turbulence model 

has its advantages and limitations, and there is no single universal turbulence model for 

indoor airflow simulations.  

In general, RANS models have been more popular for building simulations compared to 

Large Eddy Simulation (LES) because of their more favourable computing times. The results 

from the literatures suggest that the RNG k-ε model produces adequate flow fields for 

simulations involving buoyant, forced or forced/buoyant flows [31, 32], similar to the 

simulations in this study. The modifications to the RNG k-ε turbulence model may lead to 



improvements in the modelling of separating and near-wall flows [33], compared to the 

standard model. 

2.3 COUPLED Simulations 

As elaborated in section 2.0, the benefits provided by one tool are missing in the other tool, 

such that an ‘optimum’ model would be the complement of both tools, requiring a coupling 

strategy [34]. At the moment, because of the respective architecture of the softwares, it is 

simpler to allow TRNSYS to control the whole coupling; as it is easier to integrate new 

components in TRNSYS than to modify the FLUENT kernel. This coupling can be done via a 

script and results file [35, 36].  

A script file is a *.in file, created by TRNSYS that is read by FLUENT. It contains the journal 

file with all the inputs to the CFD simulation: specific models to be used, updated boundary 

conditions, and which outputs to be produced. A results file is a *.txt file, created by FLUENT 

containing the outputs from the CFD tool. These outputs can be localised or mean values.  

Zhai and Chen [34] generally classified the coupling methods as either static or dynamic. A 

static coupling consists of ‘one-step’ or ‘two-step’ data exchange between the CFD and the 

ES simulation tools. This is suitable for cases where the solution is not very sensitive to the 

data being exchanged. Alternatively, a dynamic coupling strategy is proposed, which refers 

to a continuous exchange of data for each time-step in the simulation. The latter strategy 

can be further sub-divided into quasi-dynamic and fully-dynamic coupling.  

A quasi-dynamic coupling involves no iterations between ES and CFD at each time-step. 

Instead CFD receives the boundary conditions from the previous ES time-step (tth), and 

returns the results to the ES for the next (t+1)th time-step. Conversely, a fully-dynamic 

coupling iterates ES and CFD a number of times during each time-step, until a converged 

coupled solution is reached, before moving to the next time-step. The latter method is more 

time-consuming because of the relatively higher number of coupled iterations between the 

ES and CFD tools during one time-step.   

2.4 Simulation models  

2.4.1 PCM-HX system 



The PCM-HX system investigated in this study consists of the Rubitherm CSM® plates (Fig. 

1(a)) placed inside the displacement diffuser in the departure hall shown in Fig. 1(b). The 

plates are symmetrically arranged as shown in Fig. 1(c). 

 
Fig. 1(a). Rubitherm CSM plate ®  

 
 

 
Fig. 1(b). Actual Heathrow Terminal 5 diffuser 

 

 
Fig. 1(c). Schematic of DV diffuser, ducts and CSM plate arrangement inside diffuser 



Due to the large air volume flow rate supplied by each diffuser to the space, the surface 

area of the diffusers has to be large in order to satisfy the low velocity requirements of 

displacement ventilation system [37]. The volume inside the diffuser is mainly empty space, 

providing the opportunity to retrofit the PCM-HX system within this space.  In this paper, 

the DV diffuser with the PCM-HX unit will be referred to as the ‘DV-PCM-HX’ system, while 

the unmodified DV diffuser will referred to as ‘DV-only’. 

The convective heat transfer coefficient between the air and the CSM plate is the crucial 

parameter in the effective performance evaluation of the PCM plate heat exchanger [38]. In 

this study, a 2D CFD analysis of the plate and air system was performed using the enthalpy 

porosity method. This method uses a liquid fraction parameter (β) to represent the amount 

of liquid present in the PCM, instead of explicitly tracking the solid-liquid interface [39]. The 

liquid fraction enables the determination of the change in enthalpy from the governing 

energy equation Eq. (1) during phase change as follows.  
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Where; 
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        - Eq. (3) 

The solver constantly iterates between Eqs. (1), (2) and (3) to determine the temperature of 

each cell [27].  

2.4.2 Radiation model 

A number of different radiation models are available in FLUENT. In this study, the Discrete 

Ordinates (DO) radiation model is employed to model the radiation heat exchange between 



the airport terminal building surfaces, as it is a more generic radiation model available in 

FLUENT, and is more accommodating to complex geometries [33]. The model solves the 

radiative heat transfer equation Eq. (4) for a finite number of discrete solid angles.  
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All surfaces in the airport terminal building are treated as opaque and diffuse in CFD. The 

effect of external solar radiation entering the space is represented by heat fluxes in the 

building envelope, as described in the IEA Task 12 Report [40]. This is mainly done because 

applying the solar radiation directly using the DO radiation model will result in the 

inappropriate representation of long-wave radiation at night [40]. Thus, Kirchhoff’s Law is 

used to account for solar load heat fluxes in the building envelope, while radiation inside the 

space is considered with DO gray modelling.  

The radiative heat exchange between the external surface and the sky is determined 

through a fictive sky temperature, obtained from TRNSYS Type 69b. The sky energy 

exchange ( ̇    , W/m2) is then obtained through Eq. (5) in FLUENT. 
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3.0 Model Design  

3.1 TRNSYS-FLUENT Coupling strategy 

Referring to the coupling methods outlined in section 2.3, a quasi-dynamic simulation is 

adopted for this study. The flow of information is shown in Fig. 2.  

 

 

 

 

Fig. 2. Generic flow of information in TRNSYS-FLUENT coupling 

A 2D transient model of the airport was built in FLUENT. The ‘inputs’ to FLUENT at time tth, 

from TRNSYS, comprise of the external weather data, heat gains and ventilation supply air 

temperature, used as boundary conditions. The ‘outputs’ from FLUENT at tth are then 

passed to the PID controller which controls the HVAC system. The outputs from the HVAC 

system ‘updated ventilation conditions’ at t+1th are then fed back to TRNSYS for the 

repetition of the cycle.  

This quasi-dynamic coupling approach provides a good representation of the HVAC control 

system, but requires a small enough time-step so that the switching effects of the PID 

control are captured by the simulation. The time-step for the controller in TRNSYS, is based 

on specifications for commercial PID temperature controllers such as the Siemens REV200® 

or REV23RF®, which normally operate with switching cycles between 6 and 12 minutes, 

depending on the size and thermal response of the space. The maximum time-step for the 

CFD simulation was determined from an L2 norm study for temperature and velocity, 

described in section 3.2.1. 

3.2 Airport CFD Model 

A 2D model of the airport is chosen for this study based on the constant cross-section of the 

airport terminal and to reduce the simulation times to practical levels. The simulated 2D 

geometry contains a fully glazed surface at the extremity, a partially glazed roof and tiled 
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floor, shown in Fig. 3. For completeness, the solid envelope domains are also discretised in 

CFD to account for their thermal inertia. The glazed surfaces are externally bounded to the 

ambient by convection and radiation conditions (Eq. (8)), while the floor outer surface is 

adiabatic. The external convective heat transfer coefficient is taken to be 25 W/m2K, based 

on the empirical ‘equation-3.6’ for hc obtained from CIBSE guide A [14] for a mean wind 

speed of ~5 ms-1 at London Heathrow [41]. The external emissivity of 0.16, transmittance of 

0.55 and internal emissivity of 0.2 were chosen for the external glazed surfaces based on the 

specifications of commercially available structural glazing units such as ClimaGuard® [42] 

and from ref. [43]. The roof transmittance is based on the assumption that it is 25% glazed, 

with a fritted structure of transmittance value of 0.035 [43].  

 The 2D domain is supplied by a constant volume displacement diffuser, defined by a 

constant mass flow rate of 0.5 kg/s, with its temperature controlled by the main AC unit in 

TRNSYS. The ‘return’ is defined as an ‘outwards-mass flux inlet’ of 0.125 kg/s, to balance the 

mass flow in the ducting system. Infiltration is neglected, assuming that the space is fully air-

tight. Each square (0.25 m2) mimics the internal occupancy heat gains, bounded by uniform 

heat fluxes defined in Fig. 7. For the case of the actual 3D Heathrow Terminal 5, each 

diffuser would serve an area equivalent to 12 times the 2D cross-section (i.e. 12m) shown in 

Fig. 3, perpendicular to the drawing, with 6 kg/s air supply per diffuser. Thus, the input 

boundary parameters: internal heat gains, solar heat gains and mass flow rates, are passed 

from TRNSYS to the airport CFD model as heat and mass fluxes, in order to account for the 

appropriate representation of the airport terminal space in 2D (with a cross-sectional 

thickness of 1m). 

 

Fig. 3. Schematic of 2D airport geometry and HVAC ducts 



The material properties are given in Table 1. (Kirchhoff’s law applies to emission and 

absorption of radiation in the airport envelope) 

 

 
Thickness 

(mm) 

ρ 

(kg/m3) 

λ 

(W/mK) 

cp 

(J/kgK) 
εext εint τ 

External hc 
(W/m2K) 

Floor 13 1700 0.8 850 - 0.5 - - 

Glazing 30 140 0.03 840 0.16 0.2 0.5 25 

Partly-

glazed Roof 
30 140 0.03 840 0.16 0.2 0.01 25 

Table. 1. Material properties [14, 43]  

 

3.2.1 Spatial and Temporal dependency study 

When CFD is employed for building simulations, the computing time is a crucial parameter 

in the effectiveness of the overall performance evaluation method; whereby an optimum 

simulation would provide adequate computing times and satisfactory error levels. This 

therefore requires the comparison of different CFD models and an assessment of their 

associated errors. 

In such coupled simulation studies, where the input parameters to the CFD model are 

dynamically controlled by a separate control unit (such as a PID controller in TRNSYS), final 

quantifiable parameters (such as the actual building energy demands) can be used to 

directly evaluate the errors in the coupled simulation (with both CFD and PID controller) for 

different models. However, because of the unavailability of such quantifiable experimental 

data, an alternative approach to determining the sensitivity and accuracy of the coupled 

models is employed in this study. The determinant component in this simulation coupling 

relates to the temperatures in the building environment. Hence, instead of directly 

evaluating the coupled simulation errors; a relaxation of only the CFD models is 

systematically performed in reference to a benchmark, and the differences in the results 

(temperature and velocities) compared to the uncertainty limits of real-life sensors. In this 

way, the unpredictability associated with the inputs from the PID controller is eliminated as 

the inputs to the CFD models are kept the same for all the investigated models, hence 



abiding to the similitude and comparative nature of error assessments. These inputs 

represent typical values for airport terminal buildings [12, 43], and are shown in Fig. 4.  

Thus, the errors are quantified in this study based on an L2 norm study for temperature and 

velocity. The L2 norm quantifies errors based on the difference between the exact solution 

of the governing differential equations and the solution of the discrete equations, as shown 

by Eq. (6) [44]. 

L2 norm = [
∑  [                      

 
 ]

∑  
]
   

   - Eq. (6) 

In this case, the results of a simulation with very fine-uniform mesh (307,000) and time-step 

(10s) are taken as the benchmark [45]. Air is modelled as an ideal gas to account for 

buoyancy effects. The body-force weighted scheme was used for the pressure discretisation, 

the RNG k-ε model non-slip wall conditions were used for turbulence and the SIMPLE 

algorithm was used for the pressure-velocity coupling.  The enhanced wall treatment is used 

to model the near-wall flows, because the enhanced-wall function in FLUENT allows an 

adequate representation of the velocity and thermal profiles in the buffer region (3 < y+ < 

10) [33]. This benchmark model employs the second-order discretisation scheme (as 

proposed by ref. [46]), has a mean y+ value of 3.2 and a global Courant number of 1.55. The 

scaled residuals resulting from this benchmark model simulation are found to be 10-4 for 

continuity; 10-5 for x/y velocities, k and ε; and 10-7 for energy and DO intensity, as shown in 

Fig. 5(a). The results obtained from this benchmark model were used as the basis for the 

error comparisons of the different ‘relaxed’ model, as described by Eq. (6). 

  



 
Fig. 4(a). External temperatures schedule input for L2 norm study 

 
 

 
Fig. 4(b). Heat gains schedule input for L2 norm study 

 
 

 
Fig. 4(c). Ventilation input schedule input for L2 norm study 

 

 



The ‘relaxed’ models evaluated in this model independence study constitute of the 

following setups: three meshes - Coarse (26,000 cells), Medium (40,000 cells) and Fine 

(61,000 cells); and four time-steps - 60 s, 120 s, 360 s and 720 s. The mesh refinement was 

performed by varying all mesh sizes by the same ratio, and the default FLUENT residual 

convergence criteria and first-order discretisation schemes were employed for the ‘relaxed’ 

models. All other inputs are similar to the benchmark model. The mean errors from the L2 

norm study shown in Figs. 5(b-d) are determined from 36 uniformly distributed points in the 

comfort zone at heights of 0.3 m, 1.2 m, and 2 m, and time intervals of 1 hour.  

 

 

Fig. 5(a). Scaled residuals for the benchmark model only, over the course of the simulation 

 
Fig. 5(b). L2 norm for Temperature 

 



 
Fig. 5(c). L2 norm for x-velocity 

 

 
Fig. 5(d). L2 norm for y-velocity 

 

The error requirements are taken to be 0.5K for the temperature values (similar to errors in 

K-type thermocouples) and 0.15 m/s for the velocity values (similar to errors in the TSI 

VelociCalc 8386® Pitot-tube velocity meter). Figs. 5(b-d) generally show that refining the 

mesh sizes from ‘Coarse’ to ‘Fine’ gradually reduce the temperature and velocity errors for 

each time-step, and that the L2 norm errors are more prominent at large time-steps. In this 

regard, the velocity error requirement is satisfied with the Coarse-60s/120s, and all the 

Medium and Fine configurations, whilst, the temperature error requirement is only satisfied 

with the Coarse-60s/120s, Medium-60s/120s/360s and Fine-60s/120s/360s configurations. 

As a result, the medium mesh with 360 s time-step was chosen for the airport CFD model, 

on the basis of a temperature error level < 0.5K, velocity errors <0.15 m/s  and the relatively 

lower computing times.  



Furthermore, although first-order discretisation schemes are used in the ‘relaxed’ models, 

as opposed to second-order discretisation schemes proposed by the CFD best practice 

guidelines [46], the temperature and velocity errors for the different mesh sizes and time-

steps are still within the error limits considered in this study. It should be noted that first-

order discretisation schemes are mainly used in this study due to the improved convergence 

stability for the ‘relaxed’ models. Thus for the case of the simulated models, the time-steps 

for both the CFD component and the controller in TRNSYS were taken to be 360s (6 

minutes). It is used in TRNSYS because this time-step also suitably accounts for the PID 

switching cycles described in section 3.1, and allows both TRNSYS and FLUENT to progress 

with the same time-scales. 

 

3.2.2 Grid Description 

The resulting grid from the L2 norm study is shown in Fig. 6.  

 
Fig. 6. Grid description for Airport CFD model 

The mesh is designed using the in-built ANSYS® design modeller meshing algorithm, and 

consists of mainly hexahedral cells. The air domain is made of unstructured mesh: with a 

face cell size of 5 cm and growth rate of 1.1 at the internal gains; a face cell size of 10 cm 

and growth rate of 1.05 at the envelope surfaces, producing a first inflated layer of 4 cm; 



and a face cell size at the inlet and outlet of 6 cm. The mesh gradually increases towards the 

bulk of the air domain producing a maximum cell size of 75 cm. The roof, glazing and floor 

domains are made of structured hexahedral cells ranging from 3 cm to 10 cm, with the 

finest meshes in the floor domain to appropriately account for the solar heat fluxes, defined 

by Eq. (7). 

It should be noted that although an actual experimental validation of the coupled simulation 

would be preferred, no actual temperature measurements were available in this study. 

However, the Airport CFD model errors were quantified by the L2 norm study using the 

widely validated RNG k-ε turbulence model for buildings. The PCM plate model was 

developed from validated works [38] and the input parameters were obtained from the 

CIBSE and AHSRAE guides. The coupling strategy is similar to the validated models used in 

the works of ref. [34, 36]. Furthermore, the results were used as a comparative measure 

between different DV systems, rather than the characterisation of their absolute 

performances in the airport terminal building.  

 

4.0 Thermal Simulation Models 

The impact of the PCM-HX system in the DV diffuser was obtained by comparing its results 

to a normal DV diffuser. The following sub-sections explain the methodology employed to 

evaluate the PCM-HX system and present the results. Due to extensive simulation times, the 

simulations were performed for separate 100 hour intervals for discrete weather conditions 

for London-UK. The annual energy results were evaluated based on the concept of Heating/ 

Cooling Degree Days (HDD/CDD).  

4.1 Model conditions 

The Meteonorm C-37790 weather files for London were used for the simulations, and the 

weather data values for the 360s time-steps employed in this study are linearly interpolated 

between the hourly values. The internal heat gains in the domain follow the schedule 

adapted from the works of Parker et al. [12], with heat fluxes obtained from ref. [43], shown 

in Fig. 7. These inputs are calculated in TRNSYS and passed as boundary conditions to the 

FLUENT model, where the building is simulated. 



 

 
Fig. 7. Internal heat gains schedule 

Based on the radiation absorptivity for the floor of 0.5, only 50% of the solar load 

transmitted by the roof and glazing is absorbed by the floor. The other 50% is assumed to be 

reflected back to the outside. The heat flux on the floor due to solar radiation is therefore 

obtained from Eq. 7. 

     ̇              [(       )           ]                                              

The heat gains at the building envelope due to ambient conditions are obtained from Eq. 8. 

 ̇                       (    
       

 )                               

 

4.1.1 HVAC System 

The AC unit is the constant air volume system shown in Fig. 3. 0.2 kg/s of fresh air [14] is 

mixed with 0.3 kg/s of return air for the 2D geometry, with the ratio of fresh to return air 

remaining constant. The total supply mass flow rate abides to the velocity comfort criteria 

of 0.1 - 0.4 m/s in the conditioned zone from ASHRAE 55-2004 [47].  

In the actual diffuser shown in Fig. 1(b), the total mass flow rate would be 12 times that of 

the 2D geometry (equivalent to the total area served by one diffuser), i.e. 6 kg/s. The PID 

controller respectively adjusts the amount of cooling and heating provided based on the 

temperature feedback (Tf), from a sensor located at an important location in the passenger 
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zone [15] as shown in Fig. 3.  As a result, the TRNSYS HVAC component adjusts the diffuser 

inlet temperature in FLUENT, for each time-step, as shown in Fig. 8.  

 

 

 

 

 

 

 
Fig. 8. Schematic of AC unit 

A comfort temperature range of 18-23 oC [14] was used with the PID controller; calling for 

heating/cooling if Tf is outside this temperature range. Within the comfort temperature 

range, the supply temperature Ts is equal to the mixed temperature Tm in the DV-only case, 

or the PCM-conditioned temperature in the DV-PCM-HX case, in order to portray the free-

conditioning potential of the space and to reduce energy consumption. The PID set point 

temperature is 21 °C, and the integral, derivative and gain constants are 0.1 hour, 0.1 hour 

and 10% respectively. The PID set point temperature is maintained constant for all seasons, 

as it can be considered a mean optimum thermal comfort temperature condition [48]. This 

was verified for the case of an airport terminal space in the UK, based on: 1.15 clo, 1.4 met 

and air velocity of 0.15 ms-1 for winter conditions; and 0.65 clo, 1.4 met and air velocity of 

0.15 ms-1 for summer conditions [14]; whereby a temperature of 21 °C is found to provide 

an adequate PMV of ±0.5 for the occupants in both seasons, using the Fanger’s equation of 

thermal comfort [49].  

 The capacity of the terminal heating and cooling units was assumed to be 4 kW each, 

producing a maximum air ΔT of 8 K across the units, with a constant mass flow rate of 0.5 

kg/s. These parameters were maintained for both the DV-only and the DV-PCM-HX 

simulations. The AC unit was assumed to be operational during the occupied hours between 

04:00 and 24:00. During the non-occupied hours for the DV-only case, the AC system was 

assumed to be shut down with no external air entering the space. For the DV-PCM-HX 

system case, different PCM night charging strategies were investigated.  
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4.2 Case of DV-only system - Results 

Due to extensive simulation times, three discrete weather conditions were used to evaluate 

the performance of the DV systems: summer, intermediate and winter. All simulations were 

initialised at the optimum comfort temperature of 21 oC, and the results are depicted in Fig. 

9. A time-step of 360 s with an average of 40 iterations per time-step was employed for the 

CFD simulation. The overall actual simulation time for each season was 13 hours with a 

3GHz i7 processor. 

 

Fig. 9(a). Zone  temperature (Tf) profiles for three distinct seasons in ‘DV-only’ Case 

 

 

Fig. 9(b). Heating (+ve) and Cooling (-ve) Load on AC unit in ‘DV-only’ case for 2D geometry  

During the intermediate period, the AC unit successfully controls Tf within the comfort 

temperature range of 18-23 oC. The majority of the energy requirement is for cooling, with a 

relatively small amount for heating during the early hours of the morning. During the 

summer period, the zone temperature is less effectively controlled compared to the 

intermediate season, where the temperature reaches ≈26oC at mid-day. Similar to the 



intermediate season, the majority of the load is for cooling, but heating is also required on a 

small number of occasions when the ambient temperature is low during the early morning. 

During winter, only heating is required. However, Fig. 9(a) shows that based on the control 

strategy used, the AC unit is unable to satisfy the comfort requirements in winter and the 

zone temperature varies between 15 oC and 18oC.  

 
Fig. 10(a). Temperature contour (

o
C) still-frame during the AC unit cooling mode 

  

 
Fig. 10(b). Temperature contour (

o
C) still-frame during the AC unit heating mode 



Fig. 10 further demonstrates why DV is more suitable for cooling, rather than heating large 

spaces. During the cooling mode (Fig. 10(a)), the buoyancy effects of the DV system enhance 

cooling in the space as the cold air spreads on the floor until it reaches a heat source. This 

enables the cooling potential of the system to be specifically directed to the occupied space, 

and avoid unnecessary conditioning of unoccupied areas. Furthermore, the temperature 

stratification effect in the space prevents further heat gains from the higher level in the 

building envelope by reducing the temperature difference with the external conditions. In 

the case of heating, the DV system behaviour resembles a mixed ventilation system. Fig. 

10(b) shows that the warm air supplied by the displacement diffuser due to the dominant 

buoyancy effects rises very quickly and mixes with the air in the space, failing to establish 

temperature stratification in the space.  

4.3 Case of DV-PCM-HX system 

The PCM heat exchanger (PCM-HX) is accommodated inside the DV diffuser, at the end of 

the air-conditioning duct, just before the supply into the airport space, as shown in Fig. 1(c). 

As a result, the control of the system becomes more complex due to the uncertainty in 

supply temperature (Ts) as the air passes through the PCM. The control system is therefore 

slightly modified to allow for the conditioned air to only pass through the PCM-HX when the 

zone temperature is within comfort; 18 oC < Tf < 23 oC. For conditions where Tf is outside the 

comfort range, the conditioned air from the heating/cooling unit bypasses the PCM-HX unit, 

and directly enters into the airport space, as depicted in Fig. 1(c). This concept maintains 

‘free-conditioning’ of the space with PCM-HX used only when Tf is within comfort. 

4.3.1 PCM-HX simulation model 

As mentioned in section 2.4.1, due to the different interactions in this system, the PCM-HX 

is also simulated in FLUENT. This is done through a separate custom-built TRNSYS 

component that links the appropriate inputs to FLUENT, resulting in a secondary quasi-

dynamic coupling within the same simulation. The flow of information between TRNSYS and 

FLUENT is thus modified as shown in Fig. 11.  

 

 



 

 

 

 

 

 

Fig. 11. Modified information flow for DV with PCM-HX 

Owing to the successive substitution method in TRNSYS, the components are solved 

sequentially, such that the simulation time for each TRNSYS-FLUENT coupled component is 

additive. 

Due to the symmetrical nature of the PCM-HX system, a 2D CFD model for the CSM plate 

arrangement is employed (Fig. 12(a)). The protrusions of the plate surface into the air 

stream, shown in Fig.1(a), is incorporated in the simulations as a surface roughness of 0.25 

mm [38]. In addition to the ‘boundary conditions-1’ employed in the section 3.1, the 

‘boundary conditions-2’, referred to in Fig. 11, are also employed and comprise of the inlet 

air mass flow rate and temperature to the PCM plate. ‘CFD output-2’ are the air 

temperature exiting the PCM-HX and the PCM mean temperature. 

The mesh employed in the CSM plate model consists of structured 1*3mm hexahedral cells 

in the PCM domain, and hexahedral cells with a face size of 2mm with growth ratio of 1.2 in 

the air domain, as shown in Fig. 12(a). The RNG k-ε turbulence model was used as it is 

adaptable to both high and low turbulence scenarios [50]. The phase change process was 

modelled with the enthalpy porosity method. The properties of the PCM used are: λ = 0.2 

W/mK; ρ = 820 kg/m3; cp = 2100 J/kgK; phase change range = 16 - 25 oC; and latent enthalpy 

= 180 kJ/kg.  

To allow for appropriate residual convergence, a time-step of 20 s was employed. Hence, for 

one time-step in the FLUENT Airport and TRNSYS models, 18 sub time-steps were performed 

for the PCM plate to ensure that all the simulation components were at the same time. 
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Fig. 12(a) Model description of CSM Plate 

 

 
Fig. 12(b). Heat transfer rates of PCM-HX unit for different air-gaps between plates at a total mass flow rate of 

6 kg/s (i.e. 0.5 kg/s/m in 2D *12m served by 1 diffuser). ΔT is the temperature difference between the 
incoming air and the PCM plate.  

 

Considering the results in Fig. 9(b), the average load on one DV diffuser over the three 

seasons was found to be 32 kW (i.e. 12 × average load from Fig. 9(b)). Hence, based on the 

data from Fig. 12(b), obtained from the simulation of the model in Fig. 12(a), an air gap of 16 

mm between the PCM plates was used. This produces a maximum heat transfer rate 

equivalent to the 32 kW capacity required by the DV system at a ΔT of 7 K. This amounts to 

125 rows, with 12 CSM plates in each row, uniformly arranged as shown in Fig. 1(c), 

resulting in a mass flow rate of 0.048 kg/s per row and a total latent energy of 133 MJ for 

one diffuser. At this mass flow rate, the static pressure drop across the PCM plates is 10 Pa 

with a heat transfer coefficient of 14.3 W/m2K, obtained using the CFD model described in 

Fig. 12(a). Although this sizing method is relatively simple and assumes that the air reaches 

the PCM temperature at the PCM-HX outlet, it only serves as an approximation for system 

sizing. The actual performance is evaluated in the following sections.  



 

4.3.2 DV-PCM-HX Charging Strategy 

As elaborated in various studies [1-5], the energy stored when the PCM is charged, has to be 

discharged in order to allow the appropriate and repetitive functioning of the energy 

storage system. The most common PCM charging method involves passing cold night air to 

solidify the PCM and restore its cooling potential.  

In this study, three different charging strategies are investigated when the airport terminal 

building is closed between 24:00 and 04:00 as follows: i) no night ventilation; ii) non-stop 

full ventilation; and iii) a limiting ventilation control. During the intermediate and summer 

periods, cold ambient air is used for charging. The limiting control is done by monitoring the 

PCM temperature, and ending night ventilation when the PCM temperature drops below 18 

oC, the lower comfort level. During the winter period, the return air from the airport is re-

circulated through the PCM-HX to store the extra heat from the space. In this case, the 

limiting control is performed by monitoring the difference between the return air 

temperature and the PCM temperature, such that night ventilation is active only when there 

is a net positive heat transfer into the PCM.  

4.3.3 DV-PCM-HX system – Results 

Similar to the DV-only case, three discrete weather conditions were used for performance 

evaluation of the DV-PCM-HX system. The time-step used was 360 s, with an average of 40 

iterations per CFD time-step. The overall total simulation time for each season was 19 hours.  

 
Fig. 13(a). Zone temperature (Tf) profiles for three distinct seasons in ‘DV-PCM-HX’ Case 



 
Fig. 13(b). Heating (+ve) and Cooling (-ve) Load on AC unit in ‘DV-PCM-HX’ case for 2D geometry 

 

Fig. 13 shows the behaviour of the DV-PCM-HX system to be similar to the DV-only system. 

The DV-PCM-HX system is able to satisfy the comfort conditions only during the 

intermediate season. There is slight overheating during the summer, whilst the temperature 

during the winter drops outside the comfort region. With regards to energy demand, it can 

be seen that full ventilation control increases the heating demand during both the 

intermediate and summer periods due to space over-cooling, relative to the other 

strategies. The winter heating loads are similar for all control strategies. The overall 

temperature progression of the three control strategies is very similar.  

During the intermediate and summer season, Tf and Tamb fluctuate within the PCM phase 

change range, while during the winter, Tf tends to stay below the lower limit of the phase 

change range. This accounts for the varying impact of the control strategy on the energy 

demand. A detailed comparison between the DV-only and the DV-PCM-HX cases are given in 

section  4.4.1. 

4.4 Yearly energy demand  

4.4.1 Heating / cooling energy demand 

The yearly thermal energy demand was determined using the Heating and Cooling Degree 

days (HDD/CDD) concept, as proposed by CIBSE TM-41 [51]. Degree days are a measure of 

how much (in degrees), and for how long (in days), the external air temperature was lower 

than a specific base temperature in the case of heating or above a specific base temperature 

in the case of cooling. They are used for calculations relating to the energy required to heat 

or cool buildings [52, 53]. 



The base temperatures were obtained from the results of the DV-only case in Fig. 9(a) for 

the intermediate season, where the heating and cooling demands are relatively uniform. It 

can be observed that heating is required when the ambient temperature is below 15 oC, 

while cooling is required for ambient temperatures above 18 oC. These two temperatures 

were thus taken as the base temperatures for HDD and CDD, respectively.  

Seasons HDD CDD 

Simulated Winter 46.35 0.00 

Simulated Summer 0.29 13.79 

Simulated Intermediate 2.49 6.27 

Entire Year 1859.12 120.10 

Table. 2. Simulated and yearly Degree days for 15oC and 18oC base temperatures 

Due to extensive computing times, the simulations were run for 100 hours in each typical 

summer, winter and intermediate conditions. The HDD and CDD for these three periods in 

Table 2 therefore refer to the individually simulated 100 hours. The total HDD and CDD for 

the entire year are then used to extrapolate for the yearly energy demand based on these 

typical simulated conditions. The limitations of such extrapolation concepts have been 

identified in ref. [51], however HDD and CDD have been employed in several studies in the 

prediction of building energy consumption [52, 53]. This is due to its simplicity and speed of 

use, as well as the possibility to easily estimate the building performance for different 

weather conditions. This concept is hence adopted as an adequate design estimation option 

for simulations requiring long computing times.  



 
Fig. 14. HVAC energy demand per Degree Day (DD) over the three simulated seasons for different DV 

configurations (+ve is heating demand) 

In order to avoid initialisation errors, the first day of the simulations was not included in the 

energy analysis. Fig. 14 shows that the addition of the PCM-HX in the DV diffuser has a 

greater effect on the heating energy requirement than the cooling energy requirement. It 

can be seen that reducing night ventilation to charge the PCM, reduces the heat demand in 

the intermediate and summer periods as overcooling in the morning is reduced. The use of 

the PCM-HX has little effect on the heating demand in winter, due to the fact that the 

temperature of the air (Tm or Tr) passing through the PCM-HX is lower than the PCM phase 

change temperature range of 16-26 °C, as shown in Fig. 13(a). The latent storage capacity of 

the PCM is therefore inefficiently used during winter.  

On the other hand, the cooling demand in both the summer and intermediate periods are 

reduced with the addition of the PCM-HX, relative to the DV-only system. However the 

different ventilation charging strategies do not affect the performance. Previous studies 

have primarily shown that PCM systems can reduce cooling demand or temperature swing 

in intermittently occupied buildings [1-6]. However, as the airport schedule is less uniform 

and different to intermittently occupied buildings, this study shows that the PCM-HX has a 



higher impact on the heating demand of the space during the intermediate and summer 

periods.  

 
Fig. 15(a). Zone temperatures (Tf) and PCM temperatures during one day in the Intermediate period 

 

 
Fig. 15(b). Heating (+ve) and cooling (-ve) energy demand for one day in the intermediate period 

 

Fig. 15(a) shows that during the early hours of the morning, the zone temperature is less 

than the lower comfort limit of 18oC, with the space requiring heating. Employing a full 

ventilation charging strategy implies that the temperature being supplied to the space from 

the PCM-HX is lower compared to the other configurations, hence increasing the heating 

requirement. Preventing night ventilation or limiting the PCM temperature to 18oC will 

reduce the need for heating in the early hours (at 4564 hr) of the morning. Fig. 15(b) shows 

that the use of the PCM-HX shifts the occurrence of high space temperature from the 



morning hours towards mid-day, reducing cooling energy requirements in the morning. The 

overall cooling energy requirement of the space is also reduced with the use of the PCM-HX.  

4.4.2 Pressure Drop Calculations 

The different ventilation configurations studied in this paper have an impact on the air 

pressure drop in the system and energy consumption. To determine the effect of pressure 

drop in the different ventilation strategies, the system boundary in Fig. 3 was used for the 

calculations.  

The sizing of the ducts was based on the velocity criteria provided by CIBSE [37] and 

equations given in ref. [54] assuming a constant air volume system. A velocity of 15 m/s was 

used for the main ducts giving a diameter of 0.65 m and a velocity of 10 m/s with a duct 

diameter of 0.45 m for the final duct run to the diffuser. The pressure drop across the PCM-

HX was 10 Pa, as discussed in section 4.3.1.  

4.4.3 Total yearly energy demand 

The total energy demand of the space is the sum of the thermal energy requirement of the 

HVAC system and the energy consumption of the fans to overcome pressure losses.  For this 

case study, 24 DV diffusers were present in the airport terminal building.  

 
Fig. 16. Total yearly energy demand for the entire airport departure hall 

 



The total annual energy consumption of the conventional DV system and the DV-PCM-HX is 

shown in Fig. 16.  It can be seen that when no night ventilation and limiting control 

ventilation strategies are used, the DV-PCM-HX system can result in 34% and 22% energy 

savings, respectively, compared to the conventional DV system. The full night ventilation 

strategy for the DV-PCM-HX system will result in 20% higher energy consumption compared 

to the DV-only system. This higher energy results from higher HVAC energy due to 

overcooling of the space and higher fan power.  

5.0 Conclusions 

This study evaluates the energy impact of a PCM-HX retrofitted into an airport DV diffuser. 

The evaluation was performed using a TRNSYS-CFD coupled simulation and comparing the 

energy demands of a DV-only system with that of a DV-PCM-HX system under different 

charging strategies for the PCM. The results show that: 

 displacement ventilation is more appropriate for cooling rather than heating 

applications as it relies on buoyancy effects to provide stratification and reduce the 

volume of air in the space that needs to be cooled compared to mixing HVAC 

systems.  

 the addition of the PCM-HX in the DV diffuser reduces the energy requirement for 

heating in the intermediate and summer periods when ‘no-night-ventilation’ and 

‘limiting-control-ventilation’ night charging strategies for the PCM are used. These 

PCM charging strategies lead to annual energy demand reductions for the airport 

terminal building of 1060 MWh (34%) or 680 MWh (22%), respectively. During 

winter, the DV-PCM-HX system does not have much effect as the zone temperature 

during the unoccupied hours can fall outside the phase change temperature range of 

the PCM. 

 during the intermediate and summer seasons, the DV-PCM-HX shifts the cooling load 

from the early hours in the morning to later in the day and reduces the overall HVAC 

energy requirement for cooling compared to the DV-only system.  

Further work will consider the effect of a wider comfort temperature band, more 

sophisticated control strategies and alternative PCM-HX configurations.  
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