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Abstract 
 

A novel algorithm for fingerprint template formation and matching in automatic fingerprint 

recognition has been developed.  

At present, fingerprint is being considered as the dominant biometric trait among all other 

biometrics due to its wide range of applications in security and access control. Most of the 

commercially established systems use singularity point (SP) or ‘core’ point for fingerprint 

indexing and template formation. The efficiency of these systems heavily relies on the 

detection of the core and the quality of the image itself. The number of multiple SPs or 

absence of ‘core’ on the image can cause some anomalies in the formation of the template 

and may result in high False Acceptance Rate (FAR) or False Rejection Rate (FRR).  Also 

the loss of actual minutiae or appearance of new or spurious minutiae in the scanned image 

can contribute to the error in the matching process. A more sophisticated algorithm is 

therefore necessary in the formation and matching of templates in order to achieve low FAR 

and FRR and to make the identification more accurate. 

The novel algorithm presented here does not rely on any ‘core’ or SP thus makes the structure 

invariant with respect to global rotation and translation. Moreover, it does not need 

orientation of the minutiae points on which most of the established algorithm are based. The 

matching methodology is based on the local features of each minutiae point such as distances 

to its nearest neighbours and their internal angle. 

Using a publicly available fingerprint database, the algorithm has been evaluated and 

compared with other benchmark algorithms. It has been found that the algorithm has 

performed better compared to others and has been able to achieve an error equal rate of 3.5%.  
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Introduction 

In recent years, biometrics has become a potential authentication tool which can address the 

inherent weaknesses of the traditional knowledge-based (e.g., password) and possession based (e.g., 

key or token) recognition systems in terms of authenticating genuine users. The uniqueness and 

permanence of biometric features such as ridge and valley structure on fingerprint, geometry of 

hand, facial thermogram or iris structure have made it possible to replace the traditional knowledge 

and token based authentication system by more reliable, robust and effective biometric system. 

Each biometric attribute has its strengths and weaknesses and the choice typically depends on the 

feasibility of its use, characteristics of the application and cost. In some applications, the biometric 

works as a deterrent; in others, it is central to system operation. Whatever the application, the 

common elements of any biometric system are [1] 

 The biometric can offer a high degree of certainty regarding an individual’s identity. 

 The benefits lead directly or indirectly to cost savings, enhanced security or to reduced risk 

of financial losses for an individual or institution. 

 

1.1 Benefits of biometrics 

There are many benefits of using biometrics as an authentication tool over traditional knowledge-

based or token-based tools that includes increased security, increased convenience, reduced fraud 

or delivery of enhanced services. Access to personal computers, networks and applications, access to 

secured areas of a building, authorisation at automatic teller machine (ATM) and transaction in 

online banking are some common applications of knowledge-based autehtication systems. Handheld 

tokens such as cards and key fobs are used mainly for building access but they have replaced 

passwords in some high security applications. The generation of personal identification number ( 

PIN)s using  key generator for online banking is an example of this. However, passwords, PINs, 

tokens or cards have a number of weaknesses that may raise concern about their suitability in 

modern applications, especially high-security applications such as acess to online financial accounts 

or medical data.  

The authentication mechanism can be implemented by any of the followings or combination of 

these 

 Something you know such as passwords and PINs. 

 Something you have such as smart cards, keys or tokens. 

 Soemthing you are, which refers to biometrics- the measurement of physical characteristics 

or personal traits.  

The knowledge based system which is based on passwords and PINs is still most widely used  

authentication system but the shortcomings of the knowledge-based or token based authentication 

can be overcome by the introduction of biometrics and the benefits it can bring are 
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a) Increased Security: Biometrcis can provide an enhanced level of security to the traditional 

authentication methods by allowing access only to authorised users and restrict access or 

protect data from unautorised users. Although password is meant to be confidential, should 

be hard to guess and should not be written down; in practice, people often forgot their 

passwords, sometimes share it with their friends and colleagues. Many users use obvious 

words or numbers to make passwords and PINs  that can be easily guessed so unauthorised 

users can break into account with little effort. “ Good passwords” , i.e. long passwords with 

numbers and symbols, are  difficult to remembr for most users and rarely enforced.  

On the other hand, biometric data cannot be guessed or stolen in the same way as password or 

token. Although some biometric systems can be broken under certain conditions, todays biometric 

systems are highly unlikely to be fooled by a picture of a face, an impression of a fingerprint or 

recording of a voice. This assumes, of course, that the imposter has been able to gather these 

physiological characteristic- which is unlikely in most cases. 

b) Increased convenience: Most of the time, ordinary users choose simple words as their 

passwords so they are not forgotten. As computer users are forced to manage a number of 

passwords, the likelyhood of passwords being forgotten increases unless the user choose to 

use a universal password for every login, which in effect reduces the security. Tokens and 

cards can sometimes be forgotten or lost.  

Because biometrics are always attached with the person and so there is nothing to forgot. It offers a 

greater convenience than systems based on remembering multiple passwords or on keeping 

possession of an authentication token. For PC applications, where users can have access to multiple 

resources, biometric can simplify the authentication process by replacing multiple passwords and 

thus reduce the burden on both the user and the system administrator. Applications such as point of 

sale transactions have also begun to see the use of biometrics to authorise purchases from 

prefunded accounts, eliminating the need for cards. 

Biometric authentication can also be used to allow users to access higher level of rights and 

privileges. Highly sensitive and critical information can be readily available on a biometrically 

protected network than on  one protected by passwords. This can increase user and enterprise 

conveniences, as users can access otherwise protected information without the need for human 

intervention. 

c) Increased accountability: The increased awareness of security in the enterprise and service 

industry has put a huge demand on auditing and reporting capabilities. Biometrics can be a 

very useful tool to secure computers and facilities and offer a high degree of certainity as to 

what an user has accessed in which computer at what time. Although the auditing and 

reporting capability of a computer system is rarely used, the presence of such system can be 

an effective deterrent for fraudstars.  

 

Until now, a number of biometric technologies has been developed and deployed in different 

industries and some are still in the development process.  Each biometric technology has its own 
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advantages and disadvantages but they should be considered and evaluated giving full consideration 

to the following characteristics [2]: 

 

Universality: Every person should have the characteristic. People who are mute or does not have a 

fingerprint will need to be accommodated in some way.  

Uniqueness: Generally, no two people have identical characteristics. However, identical twins are 

hard to distinguish.  

Permanence: The characteristics should not vary with time. A person's face, for example, may 

change with age.  

Collectibility: The characteristics must be easily collectible and measurable.  

Performance: The method must deliver accurate results under varied environmental circumstances.  

Acceptability: The general public must accept the sample collection routines. Nonintrusive methods 

are more acceptable.  

Circumvention: The technology should be difficult to deceive.  

 

Figure1.1: Different Biometric features that can be used to generate uniqueness [3]. 

Some biometric features that can be used to generate uniqueness for a person are shown in Figure 

1.1. Not all of them have gained the same level of acceptance in the industry due to their cost and 

viability in deployment. Table 1.1 has summarised some of the existing biometric technologies and 

their advantages and disadvantages [4]. 

 

Technology Advantages Disadvantages 
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Fingerprint  Very high accuracy 

 Is the most economical 

biometric PC user 

authentication technique 

 It is one of the most developed 

biometrics 

 Easy to use. 

 Small storage space required 

for the biometric template, 

reducing the size of the 

database memory required 

 It is standardized.  

 

 For some people it is very 

intrusive, because is still related 

to criminal identification 

 It can make mistakes with the 

dryness or dirty of the finger’s 

skin, as well as with the age (is 

not appropriate with children, 

because the size of their 

fingerprint changes quickly) 

 Image captured at 500 dots per 

inch (dpi). Resolution: 8 bits per 

pixel. A 500 dpi fingerprint 

image at 8 bits per pixel 

demands a large memory space, 

240 Kbytes approximately → 

Compression required (a factor 

of 10 approximately).  

Facial 

recognition 

 

 Non intrusive or no contact 

required 

 Commonly available sensors 

 Large amounts of existing data 

to allow background and/or 

watch list checks 

 Easy for humans to verify 

results 

 

 Face can be obstructed by hair, 

glasses, hats, scarves etc 

 Sensitive to changes in lighting, 

expression and pose 

 Faces change over time 

 Propensity for users to provide 

poor-quality video images yet to 

expect accurate results 

Hand 

geometry 

 Easy to capture 

 Believed to be a highly stable 

pattern over the adult lifespan 

 User requires some training 

 Not sufficiently distinctive for 

identification over large 

databases; usually used for 

verification of a claimed 

enrolment identity 

 System requires a large amount 

of physical space 

Voice 

recognition 

 Public acceptance 

 No contact required 

 Difficult to control sensor and 

channel variances that 
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 Commonly available sensors 

(telephones, microphones) 

 Cheap technology 

significantly impact capabilities 

 Not sufficiently distinctive over 

large database 

Retinal 

scanning 

 Very high accuracy.  

 There is no known way to 

replicate a retina.  

 The eye from a dead person 

would deteriorate too fast to be 

useful, so no extra precautions 

have to been taken with retinal 

scans to be sure the user is a 

living human being.  

 Very intrusive.  

 It has the stigma of consumer's 

thinking it is potentially harmful 

to the eye  

 Comparisons of template 

records can take upwards of 10 

seconds, depending on the size 

of the database. 

 Very expensive. 

 

Iris 

Recognition 

 Very high accuracy.  

 Verification time is generally 

less than 5 seconds.  

 The eye from a dead person 

would deteriorate too fast to be 

useful, so no extra precautions 

have to been taken with retinal 

scans to be sure the user is a 

living human being.  

 Intrusive.  

 A lot of memory for the data to 

be stored.  

 Very expensive  

 

Signature 

Recognition 

 Non intrusive 

 Little time of verification (about 

five seconds) 

 Cheap technology 

 

 Signature verification is designed 

to verify subjects based on the 

traits of their unique signature. 

As a result, individuals who do 

not sign their names in a 

consistent manner may have 

difficulty enrolling and verifying 

in signature verification 

 Error rate: 1 in 50 

DNA  Very high accuracy 

 It impossible that the system 

made mistakes 

 Extremely intrusive.  

 Very expensive 
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 It is standardized.  

Table 1.1: Advantages and disadvantages of different biometric technologies. 

 

1.2 Advantages of fingerprint biometrics 

Among all biometrics, fingerprint biometrics has proved itself the most promising and cost-effective 

solution in security systems. It’s lower cost and accuracy has brought itself in the leading position of 

all biometric solutions as can be seen from Figure 1.2. Although other biometric technologies are 

gaining popularity, fingerprint is likely to maintain its leading position in the near future. At present, 

nearly half of the biometic solutions are being implemented using fingerprint biometrics [1]. 

 

Figure 1.2: Global Biometric Market Projections by Technology, 2005-2012 (BCC Research) [5]. 

 

In recent years, government and commercial organisations have substantially increased their own 

deployment of fingerprint based recognition systems in non forensic applications, including physical 

and logical access control due to rising concerns about security and fraud. Automatic fingerprint 

recognition systems performs reliably well as far as recognition is concerned [6]. 

Over the last two decades, research in fingerprint recognition has seen tremendous growth. Several 

automatic fingerprint identification systems (AFIS) have been developed for civil, military and 

forensic applications. FBI-AFIS, US border security and EU passport/ID system are few examples of 

large scale applications of fingerprint biometrics [1]. 

The main reasons for the popularity of fingerprint recognition are [1] 

 Its success in various applications in the forensic, government, and civilian domains 

 The fact that criminals often leave their fingerprint at crime scenes 

 The existence of large legacy databases and 
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 The availability of compact and relatively inexpensive fingerprint readers. 

 

1.3 Challenges in automatic fingerprint recognition 

Although significant progress has been made in automatic fingerprint identification in recent years, 

there are still a number of issues that need to be addressed to improve systems performance and 

accuracy. Most of the shortcomings in the accuracy of an automatic fingerprint identification system 

can be attributed to the acquisition process: 

 

1.3.1 Inconsistent contact 

Human finger is not a rigid object and if projection of the finger surface onto the image acquisition 

surface is not precisely controlled, different impressions of a finger can be created by various 

transformations. Determined by the pressure and contact of the finger on the glass platen, the 

three-dimensional shape of the finger gets mapped onto the two-dimensional surface of the glass 

platen. The result of inconsistent contact of finger with the sensor can result in elastic distortion 

where different portions of the finger are displaced by different magnitudes in different directions. 

 

1.3.2 Non-uniform contact 

In an ideal case, only the ridge lines make contact with the sensing surface and valleys remain 

untouched to make a prefect impression of the fingerprint.  However, the dryness of the skin, 

shallow or worn-out ridges (due to aging or genetics), skin disease, sweat, dirt, and humidity in the 

air all confound the situation, resulting in a non-ideal contact situation. In the case of inked 

fingerprints, an additional factor may include inappropriate inking of the finger and may results in 

noisy, low contrast images, which leads to either spurious or missing minutiae. 

 

1.3.3 Irreproducible contact 

Sometimes accidents, manual work, burn etc. inflict injuries to the finger and can permanently 

damage the ridge structure of the finger.  Further, each impression of a finger may possibly depict a 

different portion of its surface, which may introduce additional spurious minutiae. 

 

1.3.4 Small overlapping area and nonlinear distortion 

Fingerprint sensors embedded in consumer electronic devices seem to have small sensing area and 

the improper placement of user’s finger on the sensor in unsupervised condition may result in a 

limited overlapping area between two impressions of the same finger. Given that a very small 

number of minutiae in the overlapping area, it is difficult to determine if two fingerprints are from 

the same finger.  
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1.3.5 Latent fingerprint 

Latent fingerprints generally suffer from low image quality, small overlapping area, and nonlinear 

distortion as well as the presence of a complex background. To overcome this problem, current 

automated system needs extensive manual intervention in latent encoding and in verifying a 

candidate list returned by the system [1].  
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1.3.6 Altered/Fake fingerprints 

Any unauthorised user may use a fake finger that imitates a legitimate user’s fingerprint to access a 

computer system or pass security checks. Rouges can cover their fingerprints by artificial fingerprints 

made of glue like substance or they can mutilate their fingers to avoid being identified by automated 

systems. To identify fake fingerprints, the hardware based liveness detection technique can be 

adopted by measuring and analysing various vital sign of the live finger such as pulse, perspiration 

and deformation [1].  To deal with mutilated finger, a mutilation detector can be added, and, when 

mutilation is detected, effort should be made to identify the subject either by restoring the original 

fingerprints or using the only unaltered areas of the fingerprint. The use of multibiometrics can be a 

solution to tackle altered fingerprint [1].  

 

1.3.7 Interoperability 

Interoperability is a big issue in a multivendor environment and it can occur in any module of an 

AFIS: sensor, feature extractor and matcher. Different sensor types such as Optical, Capacitive, RF 

can produce images that shows variations in resolution, size, distortion, contrast, background noise 

and so many. The difference in encoding the image into binary may result in varying definition of the 

same feature. This diversity makes it difficult to build a fingerprint system with principal components 

sourced from different vendors. 

To improve the interoperability among multiple fingerprint systems, international standardisation 

organisations have established standards for sensors, templates and systems testing- for example, 

image quality specifications for fingerprint sensors and data exchange formats for minutiae 

templates [1]. However the superiority in matching accuracy of proprietary templates compared to 

standard templates in NIST MINEX testing has shown that existing standards must be improved by, 

for example, including extended features. 

1.3.8 Feature extraction artefacts 

The feature extraction algorithms are not always perfect and introduce measurement errors as 

discussed in sensor interoperability. Various image processing operations might introduce 

inconsistent biases to perturb the location and orientation estimates of the reported fingerprint 

structures from their gray-scale counterparts. 

 

1.4 Security issues 

The security of biometric data is of paramount importance and must be protected from external 

attacks and tampering as when the biometric data is lost, it is lost forever. We cannot change our 

face or fingerprint as we can easily change our PIN if our card is lost. Ratha et al. [7] characterize 

common attacks in biometric systems as coercive attack, impersonation attack, replay attack, and 

attacks on feature extractor, template database, matcher, and matching results. Some key security 

issues have also been explored in [8].  Attacks can alter the contents of biometric images or 

templates and can degrade the performance of a biometric system. It is therefore required to 

protect the biometric templates (fingerprint template) of individuals at all times. 
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While system-on-device technology such as built-in sensor, storage and processing modules on a 

card is a useful measure in verification application, fingerprint ID systems require centralised storage 

of fingerprint information (template) in large enrolment databases. The unauthorised release of such 

fingerprint template information from the database poses a serious security and privacy threat. The 

stolen fingerprint template can be reverse-engineered to construct a fake finger or replayed into the 

system or it can be used for cross matching across different databases to covertly track people 

without their consent, thereby compromising their privacy [1]. 

Two strategies have been proposed in the literature to protect fingerprint templates. One such 

method is to apply a noninvertible mathematical transformation to the original template to generate 

a cancellable template and to store the cancellable template only in the database. Therefore, even if 

the template is lost, the original fingerprint cannot be regenerated. A user can be issued a new 

cancellable template in case his/her first template is lost or stolen. In the second method, a 

cryptographic key is generated using the biometric sample such as fingerprint. 

The problem with both approaches is that there is some loss of information during the 

transformation/key generation process that adversely affects the fingerprint recognition system’s 

accuracy [9].       

 

1.5 Research aims and objectives 

In this research, an effort will be made to develop and test a novel algorithm for template formation 

and matching in automatic fingerprint recognition using Level 2 features. The main objectives of this 

research will be to 

 Optimise  image enhancement to extract level2 features. 

 Optimise the distance between adjacent minutiae using heuristic rules to minimise the 

number of false or spurious minutiae. 

 

 Develop and test the novel algorithm to create a fingerprint template using 

multidimentional feature vector. 

 

 Compare and contrast the performance of novel algorithm with other benchmark algorithms 

such as Cefar, Cept, Utwe, Diti and Ncmi [10]. 

Some publicly available fingerprint image database in which fingerprints are captured in various 

environmental conditions using different sensors will be suitable for the evaluation of the novel 

algorithm in terms of checking its performance and testing sensor interoperability. The performance 

of any fingerprint matching algorithm is usually determined by two parameters namely False 

Acceptance Rate (FAR) and False Rejection Rate (FRR). False acceptance occurs when an 

unregistered finger is falsely matched with a registered finger and false rejection occurs when an 

already enrolled finger is not recognised by the system. A matching threshold should be carefully 

chosen to allow the maximum percentage of false minutiae in the match. The optimum threshold of 



xxii 
 

a system is determined by Equal Rate (EER) when FAR and FRR become equal. To calculate FRR, the 

images from the same finger captured in different times and environmental conditions will be 

checked against each other and to calculate FAR, different images will be checked against each other 

to find any false match. The algorithm will be implemented in Matlab as it offers a wide range of 

image processing tools and a suitable platform for developing and testing algorithm using C 

programming language. 

 

1.6 Contributions to knowledge 

This section provides an overview of the algorithm developed to accomplish the above mentioned 

research objectives. 

 

Optimising the image enhancement technique to extract level2 features (minutiae). 

In a well-defined fingerprint image, the ridge and valley structure stands out in an alternate fashion 

with their smooth flow lines. This regularity facilitates the detection of ridge endings and bifurcation 

and consequently, allows minutiae to be precisely extracted from the thinned ridges. However, in 

practice, a fingerprint image may not always be well defined due to elements of noise that corrupts 

the clarity of the ridge structures. This corruption may occur due to variations in skin and impression 

conditions such as scars, humidity, dirt, and non-uniform contact with the fingerprint capturing 

device [9]. Therefore, image enhancement techniques are often employed to reduce the noise and 

enhance the definition of ridges against valleys.  

To optimise the enhancement process, the methodology proposed by Hong et al. [11] has been 

applied, which is based on the convolution of the image with Gabor filters [12] tuned to the local 

ridge orientation and ridge frequency. The enhancement is implemented in several stages namely 

normalisation, ridge orientation estimation, ridge frequency estimation and filtering.  

The normalisation has been implemented by the method proposed by Hong, Wan, and Jain (1998) 

with zero (0) mean and unit (1) standard deviation to bring all the pixels of the image in the range of 

0-255. To identify ridge like regions, the image was segmented in square blocks and a carefully 

chosen threshold value was used. The region outside the ridge like regions does not contain any 

feature and should be discarded before the extraction process begins. After optimising the region of 

interest, an estimation of orientation of the ridge lines was completed by the method proposed by 

Hong et al. Although pixel wise processing could provide more accurate estimation of the orientation 

of ridge lines, it demands a lot of computation and therefore a block wise estimation was 

implemented to reduce the processing time by 36 times (apx) in my          pixel fingerprint 

image.  

To estimate the ridge frequency across the whole image, the oriented image was passed to the ridge 

frequency function. Al last, both the ridge oriented image and the ridge frequency image were 

passed to ridge filter function to smooth the ridge lines. A scale factor of 0.5 for sigma in the x 

direction and a value of 0.5 for sigma in the y direction have been used to generate the filtered 

image. The sigma in the x direction which is along the filter controls the bandwidth of the filter and 

the sigma in the y direction control the orientation selectivity of the filter. 
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The enhancement with Gabor filtering [12] has made it possible for the algorithm to extract features 

(valid minutiae) from low quality images.    

 

Optimising the distance between adjacent minutiae using heuristic rules to minimise the number 

of false or spurious minutiae. 

 

In feature extraction process, the location of valid minutiae should be figured out as accurately as 

possible. In the feature extraction process of the novel algorithm, only termination and bifurcation 

were considered as valid minutia points and all other distinguisable features such as crossover, 

island and spikes generated from image enhancement were discarded.  

To achieve this false minutiae rejection technique, a number of trial and error have been 

implemented and an optimum distance of 6 pixels has been set for removing all invalid minutiae. 

Therefore, any valid minutie after the image enhacement must be 7 or more pixel away from its 

neighbour. 

 

Develop and test the novel algorithm to create a fingerprint template using multidimensional 

feature vector. 

 

The efficiency of many of the commercially established systems heavily relies on the detection of the 

core and the quality of the image itself. The number of multiple SPs or absence of core on the image 

can cause some anomalies in the formation of the template and may result in high false acceptance 

or false rejection. The novel algorithm does not rely on any core or singularity point thus makes the 

structure invariant to global rotation and translation. Moreover, it does not need orientation of the 

minutiae points on which most of the established algorithm are based. The matching methodology is 

based on the local features of each minutiae point such as distances to its nearest neighbours and 

their internal angle. 

The novel algorithm has been tested and evaluated on a publicly available database and has shown 

some good results with a low FAR and FRR.   

 

1.7 Thesis outline 

Chapter 2 discusses in detail the background of template formation and matching in AFRS. The 

development of the novel algorithm, its performance with results and evaluation are discussed in 

chapter 3. Finally conclusion and future work are suggested in chapter 4. 
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Fingerprint Biometrics 

2.1 Introduction 

Fingerprint of an individual is considered as unique and it remains unchanged over a lifetime if it 

does not have any severe damage, cut or bruise. Even fingerprints are unique in twins. A fingerprint 

impression is formed by the ridge and valley structure on a fingertip epidermis. A ridge is defined as 

a single curved segment, and a valley is the region between two adjacent ridges. The ridge and valley 

structure on every fingerprint creates some distinguishable features, which are depicted in Figure 

2.1. 

 

 

Figure 2.1: A typical fingerprint with its features [13] 

 

A number of features can be extracted from a processed fingerprint image at three different levels 

[14]. At level1, the whole ridge and valley structure constitutes a global pattern, which can be 

classified as one of the five major classes as ‘left loop’, ‘right loop’, ‘whorl’, ‘arch’ and ‘tented arch’ 

(see Figure 2.2). 

 

 

Figure 2.2: Fingerprints of five major classes [14] 

Left Loop Right Loop Whorl Arch Tented Arch 
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At level2, ridge line discontinuities found on any fingerprint are used to construct distinguishable 

features. The point where the ridge line ends is called a Termination and the point where a ridge line 

forks out into two lines is called a Bifurcation. Apart from termination and Bifurcation, there are 

some other features such as island, bridge, lake and crossover, which are considered as level2 

features although these features are not very common in every image.  The minutiae, which are the 

local discontinuities in the ridge flow pattern, provide the features that are used for identification. 

Details such as the type, orientation, and location of minutiae are taken into account when 

performing minutiae extraction [9]. 

Level3 features are actually pores, their shape, size, distribution and width of ridges. Pores are very 

small openings distributed on ridge lines to discharge sweat. While level1 and level2 features are 

currently used in commercially available automatic fingerprint recognition systems (AFRSs), level3 

features are still under research and development stage as they require high resolution image 

capturing device to extract pores [14]. American National Standard for Information System (ANSI) 

has defined four different types of features (minutiae) on a fingerprint in its ANSI/NIST-ITL 1-2007 

standard [15], which is shown in Table 2.1. 

Type Description 

A Ridge ending 

B Bifurcation 

C Compound (trifurcation or crossover) 

D Others/Type undetermined 

Table 2.1: Minutiae types at Level2 in ANSI/NIST standard. 

 

Figure 2.3: Ridge Ending and  Bifurcation  on a fingerprint [16] 
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In most proprietary AFRS at present, only termination and bifurcation as shown in Figure 2.3 have 

been recognised as valid minutiae as these two are more than 95% of all level2 features in a typical 

fingerprint. Such systems first detect the minutiae on a fingerprint image and then match the input 

minutiae set with minutiae in the stored template [16, 17].  

 

Figure 2.4: Minutiae matching at level2 [16] 

Figure 2.4 shows the corresponding minutiae in two impressions from the same fingerprints. Two 

minutiae are to be matched if they fall within the tolerance with same location and orientation after 

the alignment. These are called corresponding minutiae on two templates. The process of fingerprint 

enrolment and matching are implemented in several stages that include post scanned image 

enhancement, image processing, feature extraction, template formation and matching. The key 

stages in a typical fingerprint identification or verification process can be realised from Figure 2.5.  

As can be seen from Figure 2.5, the matching is performed not on two direct greyscale images but 

on an intermediary stage called template, which is created using distinctive features at level1, level2 

and level3 or combination of these.   
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Figure 2.5: A typical fingerprint identification/verification process 

Two different scenario can be arised when one fingerprint template is compared with another 

template in an AFRS. These are verification and identification. Verification is a 1:1 (one to one) 

matching process where a user provides a token such as ID number or Card and the system checks if 

the user is genuine that he/she claims to be. On the other hand, in identification process, the user’s 

fingerprint template (query template) is checked against every template stored in the database to 

identify who the user is. This is a 1:M (one to many) matching process. 

Whether it is identification or verification, the image quality is always a major factor in system’s 

reliability. Image quality can vary due to changes in physical and environmental conditions.  They 

may be degraded and corrupted with elements of noise due to many factors including variations in 

skin and impression conditions. Different types of scanner can also render significantly different 

impressions based on its resolution and the technology used (such as optical, capacitive or radio 

frequency (RF)). This degradation can result in a significant number of spurious minutiae being 

created and genuine minutiae being ignored. A critical step in the process of fingerprint enrolment 

and matching is to reliably extract minutiae from fingerprint images. Thus, it is necessary to employ 

image enhancement techniques prior to minutiae extraction to obtain a more reliable estimate of 

minutiae locations (see Figure 2.5). 

Any AFRS’s operational performance depends on several factors such as sensor characteristics, the 

number of demographic distribution of the population enrolled in the system, the type of sensing 

media and various environmental factors- indoor versus outdoor, temperature, humadity and so 

many. Also, the quality of an AFRS is measured on how efficiently it can recognise a genuine finger 

and how good it is rejecting an unauthorised finger. The parameters are quantised as False 

Acceptance Rate (FAR, the ratio of the number of false match to the total number of comparison 

Scanned Image 
Image 

Enhancement 
Feature 

Extraction 

Template 
Formation 

Matching 
Decision 

(Match or no 
Match) 
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when different fingerprint images are checked against each other) and False Rejection Rate (FRR, the 

ratio of the number of non- match to the total number of comparison when different impression 

from the same fingerprint are checked against each other).  

Depending on the application, the FAR and FRR can be adjusted to suit users’ needs [1] - for 

example, Disney World’s fingerprint-based entry system operates on low FRR at the expense of high 

FAR as they do not want to upset paying customer. On the other hand, an ATM fingerprint 

verification system may have very low FAR at the expense of higher FRR. 

Although the sensing technology has been improved significantly in recent years; in some cases,  a 

fingerprint recognition system may fail to capture the user’s fingerprint. Failure to Enrol (FTE) and 

Failure to Acquire (FTA) [1] refer to the fraction of users who cannot be enrolled or processed by a 

particular system due to the poor quality of their fingerprints as discussed above. The insufficient 

number of minutiae present of their finger actually results in the FTA or FTE. 

As discussed before, the performance of any AFRS is haviely relied upon the quality of the fingerprint 

image as well as the efficiency of the feature extraction and matching algorithm. Many commercially 

available systems use singularity point (SP) or core point for fingerprint indexing and template 

formation as can be seen from Figure 2.6. 

 

Figure 2.6: Singular regions (white boxes) and core points (small circles) in fingerprint images [9]. 

 

These systems use the coordinates and orientation of each minutia on the fingerprint. The accurate 

detection of the core and the quality of the image itself are critical in these systems’ performance. 

The number of multiple SPs or absence of core on the image can cause real problem in the 

formation of the template and may result in high FAR and FRR. Also any translation or rotation of the 

image require an alignment process between the stored template and the query template thus put 

an overhead on the matching process and the complexity may result in higher FAR or FRR. The 

absence of real minutiae or presence of spurious or false minutia can also degrade the systems 

performance. Hence, there is a real case of developing a new algorithm to extract level2 features 

with minimum error, form a template and match with another template, which is invariant to 

translation and rotation and can accommodate the loss of real minutiae or occurrence of false or 

spurious minutiae in the query template. 

2.2 Fingerprint template formation and matching 



xxix 
 

In a well-defined fingerprint image, the ridge and valley structure stands out in an alternate fashion 

with their smooth flow lines. This regularity facilitates the detection of ridge endings and bifurcation 

and consequently, allows minutiae to be precisely extracted from the thinned ridges. However, in 

practice, a fingerprint image may not always be well defined due to elements of noise that corrupts 

the clarity of the ridge structures. This corruption may occur due to variations in skin and impression 

conditions such as scars, humidity, dirt, and non-uniform contact with the fingerprint capturing 

device [9]. Therefore, image enhancement techniques are often employed to reduce the noise and 

enhance the definition of ridges against valleys.  

This chapter provides discussion on the methodology and implementation of a fingerprint image 

enhancement, image binarisation, thinning or skeleton of the image and finally minutiae extraction. 

All 1680 images in FVC2006 database had been enhanced utilising all these stages prior to minutiae 

extraction process. The results of the experiments involving each stage of the fingerprint 

enhancement algorithm and minutiae extraction are then presented and discussed. 

2.3 Image enhancement 

One of the most widely cited fingerprint enhancement techniques proposed by Hong et al. [11] is 

based on the convolution of the image with Gabor filters [12] tuned to the local ridge orientation 

and ridge frequency. The enhancement is implemented in several stages namely normalisation, 

ridge orientation estimation, ridge frequency estimation and filtering. 

As a result of poor image capture, which may result from non-uniform ink intensity or non-uniform 

contact with the fingerprint capturing device, a fingerprint image may exhibit distorted levels of 

variation in gray-level values along the ridges and valleys. To correct this variation, a normalisation is 

employed to bring the intensity to a pre-specified mean and variance.  

The next important step in fingerprint image enhancement is ridge orientation. Orientations are 

directional vectors representing the ridge flow direction at each location (block) in the image. The 

most popular gradient-based approach is used to calculate the orientation [18, 19, 20], which makes 

use of the fact that the orientation vector is orthogonal to the gradient. Firstly, the image is 

partitioned into square blocks and the gradient is calculated for every pixel, in the x and y directions. 

Then the orientation vector for each block is derived by performing an averaging operation on all the 

vectors orthogonal to the gradient pixels in the block. Sometimes noise and corrupted elements in 

the image may result in incorrect ridge orientation. Assuming that the ridge orientation varies slowly 

in a local neighbourhood, the orientation image is then smoothed using a low-pass filter to reduce 

the effect of outliers [21]. 

After calculating the ridge orientation for each block and smoothing the image with low-pass filter, 

the image is then processed for frequency estimation. Firstly, the image is divided into square blocks 

and an oriented window is calculated for each block. For each block, an x-signature signal is 

constructed using the ridges and valleys in the oriented window. The x-signature is the projection of 

all the gray level values in the oriented window along a direction orthogonal to the ridge orientation. 

Consequently, the projection forms a sinusoidal-shape wave in which the centre of a ridge maps 

itself as a local minimum in the projected wave. The distance between consecutive peaks in the x-

signature can then be used to estimate the frequency of the ridges [21]. 
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A well defined ridge orientation and ridge frequency are important characteristic of a fingerprint 

image, which can be enhanced by a bandpass filter. In recent times, such enhancement is 

implemented by using a Gabor filter [12]. Gabor filters are bandpass filters that have both 

frequency-selective and orientation-selective properties, which mean the filters can be effectively 

tuned to specific frequency and orientation values. So far, It has been widely used to facilitate 

various application in fingerprint matching [22, 23] and fingerprint classification [24]. Based on the 

local orientation and ridge frequency around each pixel, the Gabor filter is applied to each pixel 

location in the image. The effect is that the filter enhances the ridges oriented in the direction of the 

local orientation, and decreases anything oriented differently. Hence, the filter increases the 

contrast between the foreground ridges and the background, whilst effectively reducing noise. 

A different approach to fingerprint image enhancement technique that has been employed by 

Sherlock [25] is called directional Fourier filtering. The Gabor filter approach that can be 

computationally expensive involves spatial convolution of the image with filters. Alternatively, 

operating in the frequency domain allows one to efficiently convolve the fingerprint image with 

filters of full image size. 

In directional Fourier filtering, a set of 16 equispaced directions are used to calculate the 

orienrtation [21]. An image window is centred at a point in the raw image, which is used to obtain a 

projection of the local ridge information. The image window is then rotated in each of the 16 equally 

spaced directions, and in each direction a projection along the window’s y axis is formed. The 

projection with the maximum variance is used as the dominant orientation for that point in the 

image. This process is then repeated for each pixel to form the orientation image. 

After the orientation stage computation, the image is passed through a set of bandpass filters tuned 

to match the ridge orinetation. Fourier transformation is used to convert the image from special 

domain to frequency domain. Then, it is filtered using a set of 16 Butterworth filters with each filter 

tuned to a particular orientation. The number of directional filters corresponds to the set of 

directions used to calculate the orientation image [21]. To get the image back into special domain, 

an inverse Fourier Transform is used after each directional filter has been independently applied to 

the image in frequency domain, which produces a set of directionally filtered images called pre-

filtered images. These pre-filtered images are used with ridge orientation at each pixel of the original 

image to construct the final image. Each point in the final image is actually computed by selecting, 

from the pre-filtered images the pixel value whose filtering direction most closely matches the actual 

ridge orientation. An enhanced version of the image is obtained from the filtering stage that has 

been smoothed in the direction of the ridges. 

After the directional filtering stage, the image is put for an adaptive thresholding in which each pixel 

in the gray level image is set as complete black or complete white depending on its gray level 

intensity above or below the threshold level. Now the gray level image is converted into a binary 

image where ridge lines are set as black lines whereas valleys are white. 

Although both Hong et al [11] and Sherlock’s [25] approach take ridge orientation into account, only 

Hong et al’s enhancement method accounts ridge frequency variation whereas Sherlock’s method 

considers ridge frequency as constant. By using both the orientation and ridge frequency 

information, it allows for accurate tuning of the Gabor filter parameters, which consequently leads 
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to better enhancement results. Therefore, the Gabor filtering approach by Hong et al. has been 

utilised to perform fingerprint image enhancement. 

2.3.1 Methodology 

The methodology for fingerprint image enhancement proposed by Hong et al [11], which has been 

adopted in the experiment, consists of four main stages such as: 

 normalisation, 

 orientation estimation, 

 ridge frequency estimation, and 

 Gabor filtering. 

In order to detect the minutiae, the enhanced image is processed in three additional stages that 

include: 

 segmentation, 

 binarisation, and 

 thinning. 

In this section, the methodology for each stage of the enhancement algorithm has been discussed, 

which includes modifications to the original techniques. 

2.3.2 Normalisation 

It is a process that changes the range of pixel intensity values. The purpose of normalisation is 

usually to bring the image, or other type of signal, into a range that is more familiar or normal to the 

senses, hence the term normalization. 

Normalization is a linear process. If the intensity range of the image is 50 to 180 and the desired 

range is 0 to 255, the process entails subtracting 50 from each of pixel intensity, making the range 0 

to 130. Then, each pixel intensity is multiplied by 255/130, making the range 0 to 255. 

The normalisation approach used by Hong, Wan, and Jain [11] determines the new intensity value 

  [   ] of each pixel in an image as: 

  [   ]  

{
 

    √( [   ]   )  
  

 ⁄        [   ]   

   √( [   ]   )  
  

 ⁄           

                                             (2.1) 

where m and v are the image mean and variance and m0 and v0 are the desired mean and variance 

after the normalisation. 
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As can be seen from Figure 2.7, the pixel intensity of the image in (a) is changed to the desired range 

(0-255) (image b) that provides a balanced distribution for white and dark pixels hence better output 

for further processes. 
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(a) Before normalisation (b) After normalisation 

Figure 2.7: An example of normalisation with zero (0) mean and unit (1) standard deviation. Images 

before (a) and after (b) normalisation. 

 

2.3.3 Identification of ridge like region 

Identifying ridge like regions thus seperating large variating foreground area from the background is 

an important part in image enhancement. Firstly , the image is broken up into blocks and the 

standard deviation is calculated for each block.  If the standard deviation is above the threshold, it is 

deemed part of the fingerprint. During the enhancement process, all the images have been 

normalised to have zero mean, unit standard deviation prior to the identification of ridge like region 

process so that the threshold specified was relative to a unit standard deviation. A block of       

pixels and a threshold of 0.1 have been used to identify ridge like regions in the enhancement 

process. 
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(a) Image with large space that does not 

contain any information  

(b) Area where ridges and valleys are 

presented 

Figure 2.8: Identifying ridge like region with reliability factor of 0.5 in a typical fingerprint. 

As can be seen from Figure 2.8 (a) and (b), the region covered by the ridges only has been identified 

by using a threshold value of 0.1. Any part of the image where the pixel intensity is less than 10% has 

been considered as the region of no interest.  

2.3.4 Orientation estimation 

The orientation field actually defines the direction of the ridge lines. Figure 2.9 shows the orientation 

of a ridge pixel on a fingerprint. The method proposed by Hong et al [11], sometimes called least 

mean square method is an established method to calculate orientation estimation. In this method, 

the image can be processed either block wise or pixel wise.  

 

Figure 2.9: Orientation of a ridge pixel. 

The steps for calculating the orientation at pixel (   ) are as follows [21]: 

1. Firstly, a block of size     is centred at pixel (   ) in the normalised fingerprint image. 

2. For each pixel in the block, compute the gradients   (   ) and   (   ), which are the 

gradient magnitudes in the   and   directions, respectively. The horizontal Sobel operator 

[26] is used to compute   (   ): 
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 (
    
    
    

) (2.2) 

And the vertical Sobel operator is used to compute   (   ): 
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)  (2.3) 

3. The local orientation at pixel (   ) can then be estimated using the following equations: 
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where  (   ) is the least square estimate of the local orientation at the block centred at pixel (   ). 

4. Smooth the orientation field in a local neighbourhood using a Gaussian filter. The 

orientation image is firstly converted into a continuous vector field, which is defined as: 

  (   )     (  (   ))  (2.7) 

  (   )     (  (   )) (2.8)  

where    and    are the   and   components of the vector field, respectively. After the vector field 

has been computed, Gaussian smoothing is then performed as follows: 
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where G is a Gaussian low-pass filter of size      . 

5. The final smoothed orientation field O at pixel (   ) is defined as: 

 (   )  
 

 
       

 (   )

  
 (   )

   (2.11) 

A       pixel block wise estimation is done on a finger image that can be seen from Figure 2.10, in 

which the arrows are pointing to the direction of the ridge flow.  
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(a) Original Image (b) Image after normalisation with ridge line 

orientation 

Figure 2.10 Block wise orientation estimation on a typical fingerprint. 

2.3.5 Ridge frequency estimation 

In the construction of a Gabor filter, local ridge frequency is required in addition to the orientation 

of the image. The frequency image represents the local frequency of the ridges in a fingerprint. The 

first step in the frequency estimation stage is to divide the image into blocks of size     pixels. 

The next step is to project the gray-level values of all the pixels located inside each block along a 

direction orthogonal to the local ridge orientation [21]. This projection forms an almost sinusoidal-

shape wave with the local minimum points corresponding to the ridges in the fingerprint. An 

example of a projected waveform is shown in Figure 2.11 where intensity varies in a sinusoidal 

manner and gradually decreases across pixels. 
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(a) 

 

(b) 

Figure 2.11: The projection of the intensity values of the pixels along a direction orthogonal to the 

local ridge orientation. (a) A       block from a fingerprint image.  (b) The projected waveform of 

the block. 
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The original frequency estimation stage used by Hong et al [11] can be improved by including an 

additional projection smoothing step prior to computing the ridge spacing [21]. This involves 

smoothing the projected waveform using a Gaussian lowpass filter of size     to reduce the 

effect of noise in the projection. The ridge spacing  (   ) is then computed by counting the median 

number of pixels between consecutive minima points in the projected waveform. Hence, the ridge 

frequency  (   )for a block centred at pixel (   ) is defined as: 

 (   )  
 

 (   )
  (2.12)  

Ideally the ridge frequency values should fall within a certain range given that the fingerprint is 

scanned at a fixed resolution. However, there are cases where a valid frequency value cannot be 

reliably obtained from the projection. Examples are when no consecutive peaks can be detected 

from the projection, and also when minutiae points appear in the block. For the blocks where 

minutiae points appear, the projected waveform does not produce a well-defined sinusoidal shape 

wave, which can lead to an inaccurate estimation of the ridge frequency. Thus, the out of range 

frequency values are interpolated using values from neighbouring blocks that have a well-defined 

frequency. 

2.3.6 Gabor filtering 

Once the ridge orientation and ridge frequency information has been determined, these parameters 

are used to construct the even-symmetric Gabor filter. A two dimensional Gabor filter consists of a 

sinusoidal plane wave of a particular orientation and frequency, modulated by a Gaussian envelope 

[12]. Gabor filters are employed because they have frequency-selective and orientation-selective 

properties. These properties allow the filter to be tuned to give maximal response to ridges at a 

specific orientation and frequency in the fingerprint image. Therefore, a properly tuned Gabor filter 

can be used to effectively preserve the ridge structures while reducing noise. The even-symmetric 

Gabor filter is the real part of the Gabor function, which is given by a cosine wave modulated by a 

Gaussian envelop as seen by Figure 2.12.  
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Figure 2.12: An even-symmetric Gabor filter in the spatial domain 

An even symmetric Gabor filter in the spatial domain is defined as [27]: 

 (       )     { 
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               (2.14) 

                (2.15) 

where   is the orientation of the Gabor filter,   is the frequency of the cosine wave,    and    are 

the standard deviations of the Gaussian envelop along the x and y axes, respectively, and    and    

define the x and y axes of the filter coordinate frame, respectively. 

The Gabor filter is applied to the fingerprint image by spatially convolving the image with the filter. 

The convolution of a pixel (   ) in the image requires the corresponding orientation value  (   ) and 

ridge frequency value  (   ) of that pixel. Hence, the application of the Gabor filter G to obtain the 

enhanced image E is performed as follows [21], 

 (   )   ∑ ∑  (     (   )  (   )) (       ) 
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where   is the orientation image, F is the ridge frequency image, N is the normalised fingerprint 

image, and    and    are the width and height of the Gabor filter mask, respectively. 

The filter bandwidth, which specifies the range of frequency the filter responds to, is determined by 

the standard deviation parameters    and   . Since the bandwidth of the filter is tuned to match the 

local ridge frequency, then it can be deduced that the parameter selection of    and    should be 

related with the ridge frequency. However, in the original algorithm by Hong et al [11],    and    

were empirically set to fixed values of 4.0 and 4.0, respectively. 

A drawback of using fixed values is that it forces the bandwidth to be constant, which does not take 

into account the variation that may occur in the values of the ridge frequency. For example, if a filter 

with a constant bandwidth is applied to a fingerprint image that exhibits significant variation in the 

frequency values, it could lead to non-uniform enhancement or other enhancement artefacts. Thus, 

rather than using fixed values of    and     these can be a defined as functions of the ridge 

frequency parameter, which are defined as  

      (   )   (2.17) 

      (   )   (2.18) 

where   is the ridge frequency image,    is a constant variable for   , and    is a constant variable 

for   . This allows a more adaptable approach to be used, as the values of    and   can now be 

specified adaptively according to the local ridge frequency of the fingerprint image. 
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Furthermore, in the original algorithm, the width and height of the filter mask were both set to fixed 

values of 11. The filter size controls the spatial extent of the filter, which ideally should be able to 

accommodate the majority of the useful Gabor waveform information. However, a fixed filter size is 

not optimal in that it does not allow the accommodation of Gabor waveforms of different sized 

bandwidths. Hence, to allow the filter size to vary according to the bandwidth of the Gabor 

waveform, the filter size has to be a function of the standard deviation parameters: 

         (2.19) 

         (2.20) 

where    and    are the width and height of the Gabor filter mask, respectively. In the above 

equation, the width and height of the filter mask are both specified as 6σ due to most of the Gabor 

wave information being contained within the region [-3σ, 3σ] away from the y axis. Hence, this 

selection of parameters allows the filter mask to capture the majority of the Gabor waveform 

information. 
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(a) 

Original Image 

 

(b) 

Enhanced Image 

  

  

Figure 2.13: Results of applying a Gabor filter with kx = 0.5 and ky = 0.5 to a good quality, medium 

quality and poor quality fingerprint image. 

As can be seen from Figure 2.13, the broken ridge lines have been smoothed and some noises have 

been removed in particular with poor images where ridge and valley structures are not well defined. 

Although smoothing ridge lines using Gabor Filtering is a great benefit to poor quality images, on 

some images it can also remove valuable identifying features such as permanent bruise or cut.    

Image enhancement 

with Gabor filtering to 

a good quality image 

Image enhancement 

with Gabor filtering to 

a medium quality 

image 

Image enhancement 

with Gabor filtering to 

a poor quality image 
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2.3.7 Binarisation 

Binarisation is the process in which a grayscale image is converted into a pure black and white 

image. In most minutiae extraction algorithms, there are two levels of interest: the black pixels that 

represent ridges and the white pixels that represent valleys. This improves the contrast between the 

ridges and valleys in a fingerprint image, and consequently facilitates the extraction of minutiae. 

2.3.8 Thinning 

The last stage implemented before the minutiae extraction process is thinning. Thinning is a 

morphological operation that successively erodes away the foreground pixels until they are one pixel 

wide resulting in a skeleton image as shown in Figure 2.14. A standard thinning algorithm [28], which 

performs the thinning operation using two sub-iterations, was implemented in Matlab. The skeleton 

is the final image in the enhancement process, from which minutiae are extracted. 

 
(a) 

 

(b) 

 

(c) 

Figure 2.14: (a) A fingerprint gray-scale image; (b) the image obtained after binarisation of the image 

in (a); (c) skeleton image obtained after a thinning of the image. 

2.4 Minutiae extraction 

Using the skeleton image, the most commonly employed method that is used for minutiae 

extraction is the Crossing Number (CN) concept [19, 29, 30]. In this method, a window of 3x3 pixels is 

used to examine the local neighbourhood of each pixel in the image and the CN value is computed as 

half the sum of the differences between pairs of adjacent pixels in the eight- neighbourhood. Using 

the properties of the CN as shown in Table 2.2, the ridge pixel can then be classified as a ridge 

ending, bifurcation or non-minutiae point [21]. For example, a ridge pixel with a CN of one 

corresponds to a ridge ending, and a CN of three corresponds to a bifurcation. 

CN Property 

0 Isolated Point 

1 Ridge Ending Point 

2 Continuing Ridge Point 
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3 Bifurcation Point 

4 Crossing Point 

Table 2.2: Properties of the Crossing Number (CN). 

The CN for a ridge pixel P is given by [31]: 

        ∑     
 
                           (2.21) 

where Pi is the pixel value in the neighbourhood of P. For a pixel P, its eight neighbouring pixels are 

scanned in an anti-clockwise direction as follows: 

 

 

P4 P3 P2 

P5 P P1 

P6 P7 P8 

Table 2.3: Orientation of neighbouring pixels around the central pixel. 

The CN value for a pixel on the ridge is used to identify whether it is a ridge ending or ridge 

bifurcation. A CN value of 1 can corresponds to a ridge ending or termination and a value of 3 

corresponds to a ridge bifurcation as can be seen from Figure 2.15. 

  

(a) CN=1 (b) CN=3 

Figure 2.15: Examples of a ridge ending and bifurcation pixel. (a) A Crossing Number of one 

corresponds to a ridge ending pixel. (b) A Crossing Number of three corresponds to a bifurcation 

pixel. 
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Figure 2.16: Ridge ending and ridge bifurcation on a skeleton image 

 

2.5 Removal of false minutiae 

False minutiae on the skeleton may appear due to factors such as noisy images, and image artefacts 

created by the thinning process. Hence, after the minutiae are extracted, it is necessary to employ a 

post processing stage in order to validate the minutiae. Figure 2.17 illustrates some examples of 

false minutiae structures, which include the spur, hole, triangle and spike [32]. It can be seen that 

the spur structure generates false ridge endings; whereas both the hole and triangle structures 

generate false bifurcations. The spike structure creates a false bifurcation and a false ridge ending 

point. 

 

(a) Spur (b) Hole (c) Triangle (d) Spike 

Figure 2.17: Examples of typical false minutiae structures. 

 

Spurious or false minutiae 
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Figure 2. (b) 

Figure 2.18 Removal of spurious minutiae. (a) Typical fingerprint with some false or spurious 

minutiae. (b) Real minutiae after the false or spurious minutiae have been removed. 

 

Most of the proposed method to remove the false or spurious minutiae is based on a series of 

structural rules [21]. One such approach proposed by Ratha et al. [18], which performs the validation 

of minutiae based on a set of heuristic rules. For example, a ridge ending point that is connected to a 

bifurcation point should have a certain distance threshold, below which it is eliminated as an invalid 

minutia. This heuristic rule corresponds to removal of the spike structure shown in Figure 2.17(d). 

Additional heuristic rules are then used to eliminate other types of false minutiae. Furthermore, a 

boundary effect treatment is applied where the minutiae below a certain distance from the 

boundary of the foreground region are deleted. 

A novel approach to the validation of minutiae is the post processing algorithm proposed by Tico and 

Kuosmanen [33]. Similar to the above techniques, this algorithm operates on the skeleton image. 

However, rather than employing a different set of heuristics each time to eliminate a specific type of 

false minutiae, this approach incorporates the validation of different types of minutiae into a single 

algorithm. It tests the validity of each minutiae point by scanning the skeleton image and examining 

the local neighbourhood around the minutiae. The algorithm is then able to cancel out false 

minutiae based on the configuration of the ridge pixels connected to the minutiae point. Rather than 

using a set of ad hoc techniques to validate the minutiae, the algorithm employed by Tico and 

Kuosmanen [33] has been used in the experiment. Figure 2.18 shows an example of a typical 

fingerprint with spurious minutiae before removal and the image with actual minutiae after these 

have been removed.  

2.6 Fingerprint matching 

A fingerprint matching algorithm takes two fingerprints as input and returns either a degree of 

similarity (percentage of match) between them or a binary decision (1 or 0 for matched or non-
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matched respectively). Instead of direct grayscale matching between two images based on their 

features, most of the algorithms compare intermediary stage of two fingerprints called template, 

which is formed through a feature extraction stage as discussed in the previous sections.  

Due to the large variability in different impressions of the same finger (i.e., large intra-class 

variations), it is a very complex process to match two fingerprint images. The main factors 

responsible for intra-class variations are summarized below [16]. 

Displacement: the same finger may be placed at different locations on a touch sensor during 

different acquisitions resulting in a (global) translation of the fingerprint area. A finger displacement 

of just 2 mm (imperceptible to the user) results in a translation of about 40 pixels in a fingerprint 

image scanned at a resolution of 500 dpi. 

Rotation: the same finger may be rotated at different angles with respect to the sensor surface 

during different acquisitions. In spite of the finger “guide” mounted in certain commercial scanners, 

involuntary finger rotations of up to ±20° with respect to vertical orientation can be observed in 

practice. 

Partial overlap: finger displacement and rotation often cause part of the fingerprint area to fall 

outside the sensor’s “field of view,” resulting in a smaller overlap between the foreground areas of 

the template and the input fingerprints. This problem is particularly serious for small-area touch 

sensors. 

Non-linear distortion: the act of sensing maps the three-dimensional shape of a finger onto the two-

dimensional surface of the sensor. This mapping results in a non-linear distortion in successive 

acquisitions of the same finger due to skin plasticity. Often, fingerprint matching algorithms 

disregard the characteristic of such a mapping, and consider a fingerprint image as non-distorted by 

assuming that it was produced by a correct finger placement; a finger placement is correct when: (i) 

the trajectory of the finger approaching the sensor is orthogonal to the sensor surface; (ii) once the 

finger touches the sensor surface, the user does not apply traction or torsion. However, due to skin 

plasticity, the components of the force that are non-orthogonal to the sensor surface produce non-

linear distortions (compression or stretching) in the acquired fingerprints. Distortion results in the 

inability to match fingerprints as rigid patterns. 

Pressure and skin condition: the ridge structure of a finger would be accurately captured if ridges of 

the part of the finger being imaged were in uniform contact with the sensor surface. However, finger 

pressure, dryness of the skin, skin disease, sweat, dirt, grease, and humidity in the air all confound 

the situation, resulting in a non-uniform contact. As a consequence, the acquired fingerprint images 

are very noisy and the noise strongly varies in successive acquisitions of the same finger depending 

on the magnitude of the above cited causes. 

Noise: it is mainly introduced by the fingerprint sensing system; for example, residues are left over 

on the glass platen from the previous fingerprint capture. 

Feature extraction errors: the feature extraction algorithms are imperfect and often introduce 

measurement errors. Errors may be made during any of the feature extraction stages (e.g., 

estimation of orientation and frequency images, detection of the number, type, and position of the 

singularities, segmentation of the fingerprint area from the background, etc.). Aggressive 
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enhancement algorithms may introduce inconsistent biases that perturb the location and 

orientation of the reported minutiae from their gray-scale counterparts. In low-quality fingerprint 

images, the minutiae extraction process may introduce a large number of spurious minutiae and 

may not be able to detect all the true minutiae. 

Figure 2.19 shows how different physical and environmental conditions can result in false rejection 

irrespective of the algorithm used for feature extraction and matching. The pairs of images in each 

row in Figure 2.19 show the high variability (large intra-class variations) between two different 

impressions of the same finger. On the other hand, the images in each row in Figure 2.20 look very 

similar in terms of global structure (small inter-class variation) and have shown match by many 

algorithms submitted to FVC 2002 [16]. The reason for these false acceptances is certainly indicating 

the ineffectiveness of the algorithm used for feature extraction and matching. 

 

 

Very small common area 

between the two 

impressions which has 

resulted in false rejection. 

The second image is 

highly distorted from the 

first one (caused by elastic 

distortion) and has resulted 

in false rejection.  

The second image from 

the same finger is of a very 

poor quality, which is 

caused by skin condition 

and resulted in false 

rejection.  
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Figure 2.19: Falsely matched fingerprints. Each row shows a pair of impressions of the same finger. 

The main cause of difficulty is a very small overlap in the first row, high non-linear distortion in the 

second row, and very different skin conditions in the third row [16]. 
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Figure 2.20: Falsely accepted fingerprints. Each pair of impressions in a row is from different fingers, 

which were falsely matched by some of the algorithms submitted to FVC2002 [16].  

 

Although, many AFIS algorithm performs very well in matching good quality images, it still remains a 

challenge for any algorithm in matching low-quality and partial latent fingerprints. The quality of the 

fingerprint can be checked during the enrolment if it is a human-assisted AFIS but human 

intervention is not feasible in unattended on-line fingerprint recognition systems, which are being 

increasingly deployed in commercial applications. Moreover, many algorithms require a high level of 

image processing, which might not be feasible for much smaller stand alone system to 

accommodate.  

The evidence from FVC2000 showed that most errors were made on about 20% poor quality 

fingerprints [16]. In recent years, the state-of-the-art of fingerprint recognition technology has been 

perceived throughout different editions of the Fingerprint Verification Competition.  Although a 

direct comparison across different competitions is not possible due to the use of databases of 

unequal difficulty, the performance of the top algorithms on database DB2 of FVC2006 (which was 

collected under realistic operating conditions with a large area sensor) are extremely good [16]. 

However, there is still a need to continually develop more robust systems capable of properly 
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processing and comparing poor quality fingerprint images; this is particularly important when 

dealing with large scale applications or when small area and relatively inexpensive low quality 

sensors are employed. 

Jain et al have classified fingerprint matching into three families [16]. 

Correlation-based matching: two fingerprint images are superimposed and the correlation between 

the corresponding pixels is computed for different alignments (e.g., various displacements and 

rotations).  

Minutiae-based matching: this is the most popular and widely used technique, being the basis of 

the fingerprint comparison made by fingerprint examiners. Minutiae are extracted from the two 

fingerprints and stored as sets of points in the two dimensional plane. Minutiae-based matching 

essentially consists of finding the alignment between the template and the input minutiae feature 

sets that result in the maximum number of minutiae pairings.  

Non-Minutiae feature-based matching: minutiae extraction is difficult in extremely low-quality 

fingerprint images. While some other features of the fingerprint ridge pattern (e.g., local orientation 

and frequency, ridge shape, texture information) may be extracted more reliably than minutiae, 

their distinctiveness as well as persistence is generally lower. The approaches belonging to this 

family compare fingerprints in terms of features extracted from the ridge pattern. In principle, 

correlation-based matching could be conceived of as a subfamily of non-minutiae feature-based 

matching, inasmuch as the pixel intensities are themselves features of the finger pattern.  

It has been found that minutiae-based methods perform better than correlation based methods 

[34]. In the development of the novel algorithm, minutiae-based method in template formation and 

matching was adopted.  

 

2.7 Minutiae based fingerprint matching 

2.7.1 Introduction 

Fingerprint features can be analysed at both global and local level. When analyzed at the global 

level, the fingerprint pattern exhibits one or more regions where the ridge lines assume distinctive 

shapes (characterized by high curvature, frequent termination, etc.). These regions (called 

singularities or singular regions) may be classified into three typologies: loop, delta, and whorl (see 

Figure 2.2). 

Singular regions belonging to loop, delta, and whorl types are typically characterized by ∩, Δ, and O 

shapes, respectively [35]. Several fingerprint matching algorithms pre align fingerprint images 

according to a landmark or a centre point, called the core. The core corresponds to the centre of the 

north most loop type singularity. For fingerprints that do not contain loop or whorl singularities i.e., 

those belonging to the arch class in Figure 2.2, it is difficult to define the core. In these cases, the 

core is usually associated with the point of maximum ridge line curvature. Unfortunately, due to the 

high variability of fingerprint patterns, it is difficult to reliably locate a registration (core) point in all 

the fingerprint images [35]. 



li 
 

Minutiae-based matching is basically a point pattern matching problem that is generally intractable 

because it encounters the minutiae correspondence problem. It can be quite difficult to obtain the 

minutiae correspondence because the new image can be subject to transformation such as rotation, 

translation or even deformation. The location and direction errors of the detected minutiae as well 

as presence of spurious minutiae or absence of genuine minutiae can cause a lot of incongruity in 

the minutiae correspondence. 

2.7.2 Problem formulation 

Let S and Q represent the stored template and the query template respectively in an AFRS. If we 

consider S and Q as feature vectors then each minutia is an element of the feature vector. Each 

minutia can be described by a number of attributes such as its location on the image, orientation 

and the type. Most common minutiae matching algorithms consider each minutia as a triplet m = 

{x,y,θ} that indicates the x,y minutia location coordinates and the minutiae angle θ [16]: 

  {          }          {        }            (2.22) 

  {  
    

     
 }         

  {  
    

    
 }            (2.23) 

where m and n denote the number of minutiae in S and Q respectively. 

A minutia   
  in Q and a minutia    in S are said to be ‘matching’ if the spatial distance (sd) between 

between them is smaller than a given tolerance    and the direction difference (dd) between them is 

smaller than an angular tolerance    : 
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Equation (2.25) takes the minimum of |  
    |        

  |  
    | because of the circulatory 

nature of the angles. The tolerance boxes (or hyper-spheres) defined by           are required to 

accommodate the unavoidable errors made by feature extraction algorithms and to count for the 

small displacement that cause the minutiae position to change. 

In many algorithms, alignment of the stored and query templates is mandatory to maximise the 

number of matching minutiae in terms of their corresponding position and orientation. When two 

fingerprints are correctly aligned, the displacement (in x and y) and rotation (θ) are recovered and it 

likely to compensate other geometrical transformations: 

 If two fingerprint images have been taken by scanners operating at different resolutions 

then scaling needs to be done. 

 Other distortion-tolerant geometrical transformations could be useful to match minutiae in 

case one or both of the fingerprints is affected by severe distortions.  

In designing a matching algorithm, the tolerance box should be carefully calculated as adjustment 

for any other geometrical transformations beyond translation and rotation may results in additional 

degrees of freedom to the minutiae matcher thus lead to a huge number of new possible alignments 



lii 
 

which significantly increases the chance of incorrectly matching two fingerprints from different 

fingers.  

If map( ) is a function that maps a minutia   
  (from Q) into   

    according to a given geometrical 

transformation; for example, by considering a displacement of [Δx, Δy] and a anticlockwise rotation 

θ around the origin: 

          (  
  {  

    
    

 }   
   {  

     
     

   }),  (2.26) 

where [
  
  

  
  ]  [         
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Let mm( ) is an indicator function that returns 1 in the case where the minutiae    
   and    match 

according to equations (2.24) and (2.25):  

  (  
     )  {
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     )    

            
 (2.28) 

Then, the matching problem can be formulated as 

        
         

 ∑   ( 
             (  ( )

 )   )  (2.29) 

 

where P(i) is an unknown function that determines the pairing between Q and S minutiae; in 

particular, each minutia has either exactly one mate in the other fingerprint or has no mate at all. 

The constraints are 

1. P(i)=j indicates that the mate of the    in S is the minutia   
  in Q. 

2. P(i)=null indicates that minutia    in S has no mate in Q. 

3. A minutia   
  in Q has mo mate in S if P(i)≠j  i=1.....m. 

4.   i=1.....m, k=1.....m, i ≠ k   P(i) ≠ P(k) or P(i) = P(k) = null (this means that each minutia in Q 

is associated with a maximum of one minutia in S, that is P is a bijective function). 

Note that, in general, P(i) = j does not necessarily mean that minutiae   
  and    match in the sense 

of Equations (2.24) and (2.25) but only that they are the most likely pair under the current 

transformation. 

Expression (2.29) requires that the number of minutiae mates be maximized, independently of how 

strict these mates are; in other words, if two minutiae comply with Equations (2.24) and (2.25), then 

their contribution to expression (2.29) is made independently of their spatial distance and of their 

direction difference. Alternatives to expression (2.29) may be introduced where the residual (i.e., the 

spatial distance and the direction difference between minutiae) for the optimal alignment is also 

taken into account. 
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Solving the minutiae matching problem (expression (2.29) is trivial when the correct alignment (Δx, 

Δy, θ) is known; in fact, the pairing (i.e., the function P) can be determined by setting for each i = 

1...m: 

  ( )         
              (  

 )                                     

{  
              (  

 )              (  
     )   }. 

  ( )       if    k=1.....n, mm(          (  
 )   ) = 0. 

To comply with constraint (4) above, each minutia   
   already mated has to be marked, to avoid 

mating it twice or more. Figure 2.21 shows an example of minutiae pairing given a fingerprint 

alignment. 

 

Figure 2.21: Minutiae of Q mapped into S coordinates for a given alignment. Minutiae of S are 

denoted by os, whereas minutiae of Q are denoted by xs. Note that Q minutiae are referred to as 

   , because what is shown in the figure is their mapping into coordinates of S. Pairing is performed 

according to the minimum distance. The dashed circles indicate the maximum spatial distance. The 

gray circles denote successfully mated minutiae; minutiae    of S and minutiae   
   of Q have no 

mates. Minutiae    and   
   cannot be mated due to their large orientation difference [36]. 

 

To achieve the maximum pairing, a slightly more complicated scheme should be adopted: in fact, in 

case when a minutia of Q falls within the tolerance box of more than one minutia of S, the optimum 

assignment is that which maximises the number of mates (see Figure 2.22). Hungarian assignment 

algorithm (Ahuja, Mananti and Orlin 1993 [37]) with polynomial time complexity has been used for 

this purpose (See Jea and Govindraj 2005 [38]; Wang et al 2006b [39]). 



liv 
 

 

Figure 2.22: In this example, if    was mated with   
    (the closest minutiae),    would remain 

unmated; however, pairing    with    
   , allows    to be mated with   

  , thus maximising equation 

(2.29) [36]. 

 

The maximisation in (2.29) can be easily solved if the function P (minutiae correspondence) is 

known; in this case, the unknown alignment (Δx, Δy, θ) can be determined in the least square sense 

(Umeyama 1991[40]; Chang et al. 1997 [41]). Unfortunately, in practice, neither the alignment 

parameters nor the correspondence function P are known in advance and, therefore, solving the 

matching problem is hard. A brute force approach that is, evaluating all the possible solutions 

(correspondences and alignments) is prohibitive as the number of possible solutions is exponential 

in the number of minutiae (the function P is more than a permutation due to the possible null 

values). A few brute force approaches have also been proposed in the literature; for example, 

Huvanandana, Kim, and Hwang (2000) [42] proposed coarsely quantizing the minutiae locations and 

performing an exhaustive search to find the optimum alignment. He et al. (2003b) [43] suggested a 

coarse-to-fine search of the discretized parameter space to determine the alignment, and used 

Hausdorff distance to evaluate minutiae correspondences. 
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2.7.3 Similarity score 

Unlike in manual matching performed by forensic experts where the number of matching minutiae is 

itself the main output of the comparison, automatic matching systems must convert this number 

into a similarity score. This is often performed by simply normalizing the number of matching 

minutiae (here denoted by k) by the average number (m + n)/2 of minutiae set in S and Q [36]: 

      
  

   
 (2.30) 

However, further information can be exploited, especially in case of noisy images and limited 

overlap between S and Q, to compute a more reliable score; in fact: 

 Minutiae quality can be used to weight differently reliable and unreliable minutiae pairs: the 

contribution from a pair of reliable minutiae should be higher than that from a pair where at 

least one the two minutiae are of low quality (Chen, Chan, and Moon, 2007 [44]). The quality 

of a minutia (and of a minutia pair) can be defined according to the fingerprint quality in the 

region where the minutia lies and/or by keeping into account other local information. 

 The normalization in Equation (2.30) tends to excessively penalize fingerprint pairs with 

partial overlap; a more effective normalization considers the number or minutiae belonging 

to the intersection of the two fingerprints after the optimal alignment have been 

determined [38]. 

In general, the definition of optimal rules for combining various similarity contributions  into a single 

score can be complex; some researchers (Jea and Govindaraju (2005) [38]; Srinivasan et al. (2006) 

[45]; Jia et al. (2007b) [46]; Feng (2008) [47]; Lumini and Nanni (2008) [48]) propose to apply 

learning- based techniques where the rule and its parameters are  optimized to best separate 

genuine from impostor scores. Supervised classification is central also in the method proposed by 

Mansukhani, Tulyakov, and Govindaraju (2007) [49] and by Mansukhani and Govindaraju (2008) [50] 

where a Support Vector Machine (SVM) is trained to distinguish between genuine and false minutiae 

pairs. Finally, methods based on the computation of the likelihood ratio to assess the evidential 

value of comparisons with an arbitrary number of minutiae are quite popular in forensic 

identification (see Neumann et al. (2006) [51]; Bazen and Veldhuis (2004) [52]). 

2.7.4 Point pattern matching 

The point pattern matching techniques are well established and can be approached from any of the 

established classes such as Algebraic Geometry, Hough Transform, Relaxation, Operations Research 

Solutions, Energy-Minimization and so on [16]. 

Algebraic Geometry: Several methods have been proposed in the literature for different versions of 

the problem. Bishnu et al. (2006) [53] proposed an algorithm to perform an inexact partial point 

pattern matching with O(m2 × n2 × log m) time complexity. However, this algorithm makes some 

simplifying assumptions that are not always fulfilled by minutiae points; in fact, the algorithm 

requires that: (i) all the points in query template Q have a mate in stored template S, even if some 

points in S can have no mate in Q, and (ii) the tolerance boxes around the points do not intersect 

each other or, equivalently, that the points in S are not too close to each other. Since, general 

purpose algebraic geometry methods do not fit the peculiarity of minutiae matching; some ad-hoc 
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algorithms have been designed for fingerprints such as the algorithm proposed by Udupa, Garg, and 

Sharma (2001) [54]. 

 

Hough Transform: The generalized Hough transform-based approach (Ballard (1981) [55]; Stockman, 

Kopstein, and Benett (1982) [56]) converts point pattern matching to the problem of detecting peaks 

in the Hough space of transformation parameters. It discretizes the parameter space and 

accumulates evidence in the discretized space by deriving transformation parameters that relate 

two sets of points using a substructure of the feature matching technique. A hierarchical Hough 

transform-based algorithm may be used to reduce the size of the accumulator array by using a multi-

resolution approach. Hough transform-based approaches, also known as “voting-based approaches” 

are quite popular for minutiae matching. One such method has been proposed by Ratha et al.(1996) 

[57]. 

Relaxation: The relaxation approach (e.g., Rosenfeld and Kak (1976) [58]; Ranade and Rosenfeld 

(1993) [59]) iteratively adjusts the confidence level of each corresponding pair of points based on its 

consistency with other pairs until a certain criterion is satisfied. At each iteration r, the method 

computes m × n probabilities pij (probability that point i corresponds to point j): 

   
(   )

 
 

 
∑ [    { (       )    

( )
}]                      

                  (2.31) 

where c(i,j;h,k) is a compatibility measure between the pairing (i,j) and (h,k), which can be defined 

according to the consistency of the alignments necessary to map point j into i and point k into h. 

Equation (2.22) increases the probability of those pairs that receive substantial support by other 

pairs, and decreases the probability of the remaining ones. At convergence, each point i may be 

associated with the point j such that pij = maxs{pis}, where s is any other point in the set. Although a 

number of modified versions of this algorithm have been proposed to reduce the matching 

complexity (Ton and Jain, 1989) [60], these methods are inherently slow due to their iterative 

nature. 

Operations Research solutions: Tree-pruning approaches attempt to find the correspondence 

between the two point sets by searching over a tree of possible matches while employing different 

tree-pruning methods (e.g., branch and bound) to reduce the search space (Baird, 1984) [61]. To 

prune the tree of possible matches efficiently, this approach tends to impose a number of 

requirements on the input point sets, such as an equal number of points (n = m) and no outliers 

(points without correspondence). These requirements are difficult to satisfy in practice, especially in 

fingerprint minutiae matching. Solutions to point pattern matching may also be derived from some 

problems which are known in the field of Operations Research as assignment problems, bipartite 

graph matching (Murty (1992) [62]; Gold and Rangarajan (1996) [63]). A minutiae matching 

algorithm based on minimum spanning tree matching was proposed by Oh and Ryu (2004) [64].  

Energy Minimization: these methods define a function that associates an energy or fitness with each 

solution of the problem. Optimal solutions are then derived by minimizing the energy function (or 

maximizing fitness) by using a stochastic algorithm such as the Genetic algorithm (Ansari, Chen, and 

Hou (1992) [65]; Zhang, Xu, and Chang (2003) [66]) or simulated annealing (Starink and Backer, 

1995) [67]. Le, Cheung, and Nguyen (2001) [68] and Tan and Bhanu (2006) [69] provided specific 
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Genetic algorithm implementations for global minutiae matching. It has been shown that pure 

Genetic Algorithms are not well suited to fine-tuning the search in complex search spaces, and that 

hybridization with other local-searches techniques (called Memetic algorithms) can improve their 

efficiency. A Memetic algorithm for minutiae matching has been recently proposed by Sheng et al. 

(2007) [70]. In general, the methods belonging to this category tend to be slow and are unsuitable 

for real-time minutiae matching. 

 

2.8 Minutiae based template formation 

There has been proposed several minutiae-based fingerprints matching techniques can be found in 

the literature. These include methods based on structure matching (Chen and Kuo, 1991 [71]; 

Hrechak and McHugh, 1990 [72]; Jiang and Yau, 2000 [73]; Wahab et al., 1998 [74]), alignment 

matching (Jain et al., 1997 [75]; Ratha et al., 1996 [57]; Ross et al., 2003 [23]), non-linear 

transformation (Almansa and Cohen, 2000 [76]; Bazen and Gerea, 2002 [77]). The principle of all this 

methods is to obtain the minutiae correspondence accurately. The method proposed by Jain et al., 

1997 [75]; Ratha et al., 1996 [57]; Ross et al., 2003 [23] make use of ridges associated with each 

minutiae to get the correspondence. However, this method may result in inaccurate matching as 

local ridge information cannot be considered discriminatory feature because the ridges from 

different fingers or different positions in the same fingerprint may be very similar. The local 

structure composed of several minutiae close to each other is the basis of the minutiae 

correspondence in Chen and Kuo, 1991 [71]; Hrechak and McHugh, 1990 [72]; Jiang and Yau, 2000 

[73]; Wahab et al., 1998 [74]; Almansa and cohen, 2000 [76]; Bazen and Gerea, 2002 [77]. It is found 

that the representation of local structure based on a group of minutiae is not very reliable because it 

relies on the interdependencies between minutiae details, which can be missed or erroneously 

detected by a minutiae extraction algorithm [34]. Moreover, it is difficult to detect the similarity of 

local structure because the correspondence between the elements of the local structure cannot be 

always known. 

Dabbah, Woo and Dlay, 2005 [10] have suggested a computationally efficient algorithm in which 

they formed the template by considering each minutiae as a vector of three elements as distance of 

each minutia point from the core/SP, orientation with respect to SP and type of minutia point (either 

Termination or Bifurcation). Each stored template denoted by ‘T’ is made of a set of minutiae points 

‘M’ such that 

  {              },      (2.32)    

    {              }             (2.33) 

And each query template denoted by ‘I’ can be made of ‘N’ minutiae points such that 

  = {  
 
 
  

    
     

 },        (2.34) 

  
  {              }             (2.35) 

Where     and     are minutiae points in ‘T’ and ‘I’ respectively. For two minutiae to be matched, 

both minutiae vectors have to be within the same tolerance box (hyper-spheres) defined by    and 

   which means that  
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            -               (2.36) 

and     -               (2.37) 

Where                      are the Euclidean distances and the orientation differences of the 

minutiae    and     from the SP respectively. 

One of the important aspects in Dabbah et al.’s [10] matching algorithm is the introduction of the 

type matching of minutiae points from both stored and query templates. By using the type matching 

as the third element of each vector, they have increased their matching performance, which has 

resulted in significant improvement in Equal Error Rate (EER) to 4.9% [10].      

Although M A Dabbah et al. [10] has shown a better performance compared to some other 

benchmark algorithm, their algorithm is heavily relying on the accurate detection of the core point 

or SP. As discussed previously, it is sometimes difficult to detect the SP or core point accurately or 

even they might be absent on some fingerprint. 

Qi, Yang and Wang, 2005 [34] have proposed a matching algorithm where they have embedded 

global orientation field with each minutiae. They have defined the feature vector F of each minutiae 

M that describes its structure characteristics with global fingerprint orientation field as 

  {{  
 }    

  }
   

 
        (2.38) 

Where   
  is the relative direction between minutiae M and the sampling point   

 . 

They have defined the similarity level  (   ) between two structure feature vectors            , 

feature vector from query fingerprint and stored template respectively, as 

 (   )  {
  |     |

 
    |     |   

           
      (2.39) 

Where   is the defined threshold and |     | is the Euclidean distance between these two feature 

vectors. As the dimensions of the two feature vectors may be different, the Euclidean distance is 

only computed only using the corresponding components between them. Therefore, if there is no 

corresponding counterpart of some feature vector, the element will be discarded. As the similarity 

level  (   ) (   (   )   )  describes a matching certainty level between two feature vectors 

instead of simply match or not match, the matching score is highly depending on the threshold level 

T. A not carefully chosen threshold level T may result in a higher FRR or FAR. 

Another recent template formation technique is proposed by Chengfeng Wang and Marina L. 

Gavrilova [78], in which they have used Delauney Triangulation structure using minutiae to form 

Fingerprint Template. The key characteristics of the Delaunay triangulation of a set of points are that 

it is unique. Also, it can be computed efficiently in O(NlogN) time [78]. But the real problem with this 

technique is that it is very vulnerable to distortion and noise. One misplaced minutiae or a new 

spurious minutia can change all the neighbouring triangles instead of just one triangle. In real life 

scenario where it is likely to always have some noise and distortion on the scanned image, the 

efficiency of any algorithm based on Delauney Triangulation will be subject to the ability of the 

image processing technique to eliminate any false/ spurious minutia and to detect real minutiae. 
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2.9 Summary 

Image enhancement is considered as a pre processing step before feature extraction implemented in 

most AFIS. A considerable amount of literature has been reviewed in image processing techniques 

and template formation using level2 features. Minutia based matching technique has also been 

adapted due to its higher success rate. In the development of the novel algorithm and during the 

evaluation, all images in the database had been enhanced before passed on to the feature 

extraction stage. The block sizes have been carefully chosen (16×16 pixels) in identifying ridge like 

regions and orientation estimation. The technique proposed by Hong et al, [11] which is based on 

the convolution of the image with Gabor filters tuned to the local ridge orientation has been 

adopted to enhance images prior to feature extraction stage. The removal of false minutiae was also 

an important step as it has rendered only the valid termination and bifurcation to the template 

formation process. Some processed images from the database during the image enhancement and 

feature extraction process have been presented in previous sections. 
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Novel Structure for Template Formation and Matching 

 

3.1 Introduction 

In general, feature vector of      detected minutiae from a fingerprint can be described as: 

   (        )  where (     ) is its Cartesian coordinate and    is the local ridge direction (known as 

orientation).  

where   {       } and   is number of minutia points in the fingerprint. Due to translation and 

rotation, the coordinates and orientation changes and therefore, alignment between the stored 

template and the query template needs to be performed for calculating the matching score. Instead 

of using the coordinates and the orientation of the minutia, we use the first   nearest neighbours to 

form a feature vector; in particular,     minutiae   and its feature vector is defined as: 

   (         ) (3.1)  

where 

    [             (   )     ]   (3.2) 

    [   [   ]    [   ]      [(   )  ]    [   ]] (3.3) 

and    {              

  (            )  (           )  (                         )   (     )} 

 (3.4) 

     is the Euclidean distance between the     minutia and its     nearest neighbour, and    [(   )   

is the angle between lines connecting     minutia and it’s (   )   and     nearest neighbour. This 

feature vector is illustrated in Figure 3.1. 

 

Figure 3.1: Schematic of feature formation of     minutiae.  

Each stored template denoted by     is made of a set of minutiae     such that 
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  {              } (3.5)  

and each query template denoted by     can be made of a set of minutiae such that 

Q={              },   (3.6) 

For two minutiae to be matched, both minutiae vectors have to be within the tolerance defined by 

                                  and                    which means that 

      (3.7) 

 [   ( )  -   ( )] AND [  ( )  -   ( )]   [   ( )  -   ( )]     (3.8)  

and [  ( )      ( )]    [  ( )      ( )]     (3.9)  
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The number of nearest neighbours to construct the feature vector is limited by the total number of 

minutiae on a fingerprint. Jea and Govindaraju [38] have suggested a five element vector for a 

minutiae Mi (xi, yi, θ) using two of its nearest neighbours N0 (xn0, yn0, θn0) and N1 (xn1, yn1, θn1) as 

shown in Figure 3.2. The secondary feature vector Si (ri0, ri1, φi0, φi1, δi) in which ri0 and ri1 are the 

Euclidean distances between the central minutia Mi and its neighbours N0 and N1 respectively. φik is 

the orientation difference between Mi and Nk, where k is 0 or 1. δi represents the acute angle 

between the line segments MiN0 and MiN1. 

 

 

Figure 3.2: Feature vector construction suggested by Jea and Govindaraju [38]. Secondary feature of 

a minutiae Mi. ri0 and ri1 are the Euclidean distances between central minutia Mi and its neighbours 

N0 and N1 respectively.  
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3.2 Tolerance areas 

Distortions are inevitable when a 3-dimensional fingertip is mapped onto a 2-dimensional plane. The 

main causes are vertical pressure, shear forces and varying impression conditions. In Figure 3.2, as 

the values of ri0 and ri1 increase, the secondary feature, Si (ri0, ri1, φi0, φi1, δi), has larger distortions of 

φi0, φi1 and δi. Kovács-Vajna [79] has demonstrated that small local deformations can result in a large 

global distortion. Thus, they have made the assumption that the distortions of distance are less 

when the values of ri0 and ri1 are small. However, the distortions of the angle and orientation tend to 

be larger when ri0 and ri1 are small.  

 

Figure 3.3: Dynamic tolerance areas around a minutia for the novel architecture. The gray areas 

around the two nearest neighbours set the threshold. 

 

Due to these factors, it is reasonable to adjust the tolerance areas according to the values of ri0 and 

ri1. In the novel structure as shown in Figure 3.3 where two nearest neighbour distances and their 

internal angle have been used, the angle tolerance θ0 is a factor of distance tolerance r0. The 

distance thresholds (ri1 and ri2) should be more restrictive (smaller) when d1 and d2 are smaller and 

more flexible when d1 and d2 are larger. On the other hand, the thresholds on angles should be 

larger in order to allow large distortions when d1 and d2 are small, but smaller when d1 and d2 are 

large. 

As the novel architecture is constructed by using the two nearest neighbours, their internal angle 

and the type of minutia, the actual feature for a single minutia is a four element vector such as Fi (d1, 
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d2, θ, τ). Tolerance area is determined by three functions as Distance Threshold (r0), Angle Threshold 

(θ0) and Type (τ). In case of match, both the first and second nearest neighbours of corresponding 

minutiae should fall inside the tolerance box unless there is not much distortion. But if one of the 

nearest neighbours is missing or if there is any spurious minutia that comes inside the gray box, the 

algorithm will less likely to consider the corresponding minutiae as a match. Therefore, any loss of 

actual minutia or appearance of spurious minutia will have an impact on the net matching score 

between Q and S.     

 

3.3 Matching score 

The matching score can be found by calculating the similarity between two feature vectors in terms 

of their corresponding nearest neighbour distances and their internal angles. As formulated in 

equation (3.2, 3.3 and 3.4), the match count is increased by one if all the corresponding distances 

and their internal angles match on a particular minutia. In real life scenario, it is highly unlikely that 

for each corresponding minutiae, all the distances and their internal angles will fall inside the 

tolerance. The percentage matching (PM) between two templates S and Q can be calculated by the 

total number of match on their corresponding feature vectors, which is defined as  

   
                         

                                        
      (3.10) 

The final decision between match or no match between the query template Q and the stored 

template S is determined by PM and the threshold, TH. As discussed in chapter 1, the threshold TH 

can be set according to the sensitivity of the application. In highly secure applications such as 

financial transaction, a very low value of FAR is required whereas less secure application such as 

entry log in a theme park may not require a very low value of FAR. The balance between FAR and 

FRR can be optimised by statistical observation as these two parameters are inversely proportional 

to each other. In general, a matching algorithm is evaluated by Error Equal Rate (EER), where FAR 

and FRR are equal (point of intersection when FRR and FAR are plotted against PM). 

As can be seen from Figure 3.4, the matching process of the four elements feature vectors starts 

with reading the templates as (Mx4) and (Nx4) vectors; one from the query template Q and another 

from the stored template S. The algorithm first compares the size of these two templates and takes 

size of the smaller template as the outer control for the iteration where each vector of the smaller 

template is compared with each vector of the bigger template element by element. If the fourth 

elements (type of minutia) of the corresponding vectors match then only the three remaining 

elements are checked. To be a full match, the remaining three elements must be within the 

tolerance. As soon as there is a full match between two vectors, the program control exits the inner 

loop and takes the next vector from the smaller template and start checking with the vectors in the 

bigger template.  When there is a match found, the vector is marked so it cannot be checked again. 

The program continues until all the vectors in the smaller template are checked with the vectors in 

the bigger template. 
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3.4 Matching of the feature vectors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Matching algorithm of two feature vectors in the novel architecture. 
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Although it is highly unlikely, in some cases there can be multiple matches between the vectors from 

query and stored templates. The algorithm takes this into account and it considers the match as a 

true match in its first instance and rejects the rest.   

 

3.5 Research methodology 

The novel algorithm for the formation of fingerprint template and matching using minutiae at level2 

has been developed and tested on publicly available fingerprint database FVC- 2006. A total of 1680 

fingerprints (140 fingers with 12 impressions per finger, many of which are of a poor quality) have 

been used to evaluate the algorithm. The performance of any fingerprint matching algorithm is 

normally determined by Error Equal Rate (EER) when FAR and FRR are equal. To evaluate the FRR, 

the images from the same finger were matched against each other and a total of 9,240 checks (66 

checks on 12 images from the same finger from 140 users) were performed.  The FAR was calculated 

on cross match result, i.e., a total of 9,730 matching was performed among different finger images 

where the first sample from each set was taken and checked with others. The algorithm was 

implemented with Matlab 7.11.0.    

Some of the limitations in already established minutiae-based algorithms, which requires accurate 

detection of singularity region or core on a fingerprint has been overcome as the novel algorithm 

does not rely on any singularity region or core. Also the alignment between the query template and 

the stored template is not required during the matching process thus made the novel algorithm 

more efficient and eliminates lots of computation overhead and saves time.  

3.6 Evaluation of the novel algorithm 

In previous chapters, automatic fingerprint identification systems have been discussed in detail. Also 

formation of the template and matching using level2 features has been defined in the novel 

algorithm. The novel algorithm is defined as Transformation Invariant Algorithm for Automatic 

Fingerprint Recognition (TIAAFR). In this chapter the performance evaluation of the developed 

system described in detail and obtained results are presented. The algorithm has been implemented 

in Matlab 7.11.0.    

 

The publicly available database FVC 2006 (DB2) has been used to evaluate the novel algorithm.  The 

reason for choosing this database is its diversity of enrolled users and wider acceptability among 

developers. This database has been used in the Fourth International Fingerprint Verification 

Competition where 53 (27 industrial, 13 academic, and 13 independent developers) participants 

tested and evaluated their algorithms [80]. The full database also includes images scanned by 

capacitive and thermal sensors, which creates an opportunity to test any algorithm across platforms 

and check their interoperability. FVC 2006 (DB2) comes with 1680 images in which 140 fingers have 

been scanned with 12 impressions per finger. The images were scanned by an optical sensor with 

the resolution of 400x560 pixels at 569 dpi.  Each image is available in BMP, 256 grey level formats. A 

heterogeneous population including manual workers and elderly people has been used to create the 

database. There was no constraint such as minimum quality of the image on the users during the 

enrolment. Figure 3.5 shows some sample images from the database. It can be clearly seen from 
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these images that their orientation, type and quality varies significantly and these variations are 

necessary to rigorously test the efficiency of any fingerprint matching algorithm. 

 

    

    

    

 

Figure 3.5: Some images from FVC 2006 (DB2). Each row corresponds to the impressions from same 

finger [16]. 

 

 

3.7 Minutiae extraction process 

The images from the database were of varying quality as can be seen from Figure 3.5. The first row 

shows a set of good quality images whereas the last row shows the images with lots of cuts and 

scars. Each image has been enhanced before it was forwarded to the feature (minutiae) extraction 

process. Figure 3.6 is showing all the steps through which a sample image is processed.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
(e) 

 

(f) 

 

Figure 3.6: Stages of extracting minutiae at Level2, (a) Original fingerprint, (b) Normalised image, (c) 

Binarised image, (d) Thinned binary image with minutiae (termination and bifurcation) , (e) 
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Extracting actual minutiae after applying ROI (region of interest), (f) Original image with actual 

minutiae at level2.  
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Impression Number of 

Termination 

Number of Bifurcation Total number of 

Minutiae 

1  

10 19 29 

2  

10 14 24 

3  

7 14 21 

4  

9 14 23 

 

Figure 3.7: Varying number of minutia in different impression from the same finger, which differ in 

orientation and position. 

 

As can be seen from Figure 3.7 the number of valid minutiae from the same finger is varying on 

numbers and types for different impressions. Any difference in the total number of extracted 

minutiae results in non match between the corresponding minutiae of the query and stored 

template. When the difference between the total number of extracted minutiae in query and stored 

template is higher, the percentage match (PM) is likely to be lower as the distribution of the 

minutiae in a fingerprint is considered uniform. Figure 3.8 is showing the normal distribution of 
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minutiae in the FVC 2006 (DB2) extracted by the novel algorithm in which 140 optically scanned 

fingerprints have been used.  

 

Figure 3.8: Normal distribution of extracted minutiae in finger images from FVC 2006(DB2). 

 

3.8 Performance evaluation 

The performance of the novel algorithm has been evaluated by calculating FRR and FAR. The FRR is 

the fraction of genuine fingerprints which are rejected and is calculated as follows 

 

     
                                       

                      
   (3.11) 

 

To calculate FRR, each image is checked against different impressions from the same finger. A total 

of 9,240 checks have been made for FRR. If a fingerprint ‘x’ was checked against another fingerprint 

‘y’, the symmetric check, i.e., ‘y’ against ‘x’ was not executed to avoid correlation in the score.  

The FAR is the fraction of imposter or false fingerprint match out of total number of checks and is 

defined as 

     
                                        

                      
  (3.12) 
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Figure 3.9 shows a snapshot of the Matlab function used to calculate FAR and FRR in evaluation of 

the algorithm. 

 

Figure 3.9: Matlab function to calculate FAR and FRR 

To calculate FAR, the first sample from each finger was checked against the first sample of remaining 

fingerprint images in the database and a total of 9,730 checks (fingerprint images) were made.  

Again the symmetric match was not executed to avoided correlation in the matching score. 

A range of tolerances have been used to observe the performance of the algorithm against 

difference thresholds. Table 3.1 summarises the result for EER (%) on different tolerances (α). It can 

be seen that the tolerance of 0.15 offers the optimum performance of the novel algorithm with the 

minimum EER. 

Tolerance, α (%) 5.0 10.0 15.0 20.0 

EER (%) 18.2 4.0 3.5 4.6 

Threshold (%) 4.8 10.0 25.0 41.0 

 

Table 3.1: EER for a range of tolerances. 
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If the tolerance is decreased to make the matching more accurate, the number of false rejection 

increases. On the other hand, a higher value of tolerance increases the number of false match. As 

can be seen from Figure 3.10, the TIAAFR has performed best at α =15% with an EER of 3.5%. 

 

 

 

Figure 3.10: Performance of TIAAFR. 

 

 

 

 

Algorithm TIAAFR Cefar Cetp Utwe Diti Ncmi 

EER(%) 3.50 4.90 5.06 7.98 23.64 49.11 

 

 

Table 3.2: Comparison of TIAAFR with other benchmark algorithms [10]. 
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Table 3.2 shows a comparison of the novel algorithm to other benchmark algorithms. It performs 

better than other algorithms and further research is underway to improve EER.  

 

3.9 Performance evaluation of TIAAFR across images from different sensors 

 

In order to evaluate the performance of TIAAFR in terms of sensor interoperability, another publicly 

available fingerprint database, ATVS-FFp DB [79], has been used. This database contains fingerprint 

samples of the index and middle fingers of both hands of 17 users. Four samples of each fingerprint 

have been captured by optical using Biometrica Fx2000 @ 512 dpi, capacitive using Precise 100SC @ 

500 dpi and thermal using Yubee with Atmel’s Fingerchip @ 500 dpi sensors. This way the dataset 

comprises a total of 816 real images (68 fingers x 4 samples/finger x 3 sensors). 

Figure 3.11 shows a comparison of images and their extracted minutiae scanned by three different 

scanners (capacitive, optical and thermal). As can be seen from this figure, there is a clear difference 

between the finger impressions and the number of minutiae. A comparative analysis is also done by 

measuring the processing time for minutiae extraction and template formation for each type of 

sensor image that can be seen in Table 3.3. 
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Sensor Type Average time for minutiae 

extraction from an image 

Average time for template 

formation of an image 

Capacitive 1.79 sec 08.56 msec 

Optical 3.67 sec 40.59 msec 

Thermal 3.03 sec 19.72 msec 

   

Table 3.3: Comparison of processing times in TIAAFR for images scanned by different sensors 

(Capacitive, Optical and Thermal) 
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Figure 3.11: Comparison of images scanned by different sensors with their processed versions and 

extracted minutiae.  

 

 

As can be seen from Table 3.3 and Figure 3.12, the TIAAFR has performed best on images scanned by 

optical sensor and worst on images scanned by thermal sensors. The image quality and the number 

of extracted minutiae are the key factors in template formation and matching. A substantial 

difference in extracted minutiae, their numbers and corresponding positions can be realised from 

Figure 3.12.  

 

(a) Capacitive 

 

(b) Optical 

(c) Thermal 

 

 

Figure 3.12: Comparison of matching performance of TIAAFR across images scanned by different 

sensors. 
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Although TIAAFR has performed very well with equal to or less than 3.5% EER on optical and 

capacitive images, a result of 10% EER on thermal images is likely to make TIAAFR unacceptable for 

thermally scanned images. The poor quality of the thermal images and the presence of lots of noises 

have contributed to the higher EER.  

 

Original Image Processed image with 

extracted minutiae 
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Figure 3.13: Difference in image quality and the number of extracted minutiae on images from the 

same finger scanned by capacitive, optical and thermal sensors.
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Figure 3.14: Performance of TIAFFR in sensor interoperability (capacitive, optical and thermal).  

 

Another performance check of TIAAFR has also been carried out to see the sensor interoperability 

performance of the algorithm. From ATVS-FFp database, 45 images (15 different images with 3 

impressions per image (1 optical, 1 capacitive and 1 thermal)) has been randomly picked to form a 

small database and matching has been performed across images. Figure 3.14 shows the result of FAR 

and FRR in cross platforms in which the EER has resulted at 8%, which is reasonably high. As can be 

seen from some good quality sample images in Figure 3.13, there are huge differences in common 

areas and the number of valid minutiae across the images. Any appearance of new minutiae or loss 

of real minutiae contributes to the low matching scores that are discussed in section 3.8. The 

difference between the numbers of minutiae on the same finger has also contributed to the lower 

matching score in the calculation of FAR and FRR.  

3.10 Summary 

 

The novel algorithm has been designed and tested with publicly available databases to evaluate its 

performance. The four element feature vector for each minutia in a fingerprint is constructed using 

the attributes of the minutiae and its neighbours. Only the first two nearest neighbour distances and 

their internal angle have been taken into consideration as higher number of neighbouring distances 

and their internal angles will result into to a higher degree of uncertainty (mismatch) if any of the 

higher order distances or angles does not fall in the tolerance box. The other local attributes such as 

number of ridge lines between its neighbours as suggested by Jiang and Yau, 2000 [73] have not 
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been taken into consideration because any false or spurious minutia will result in an incorrect 

number of ridge lines between two real minutiae. As this novel algorithm is taking only the first two 

nearest neighbour distances into account, it is not affected by the distant neighbours and even if 

there is a false or missing minutia in any part of the image, it will only affect the limited locality 

which is a greater advantage over other algorithm based on structural matching such as template 

formed by Delauney Triangulation or the template which uses the core as a reference. In case of non 

linear or elastic distortion, the internal angle is likely to be unaffected when the neighbouring 

distances are not very small.  If the first two nearest neighbours are at the same distance then the 

neighbour with the smaller ‘x’ coordinate is considered as the first nearest neighbour.  

 

It has been found that the algorithm has reduced the computation time significantly as it does not 

align the query and stored template during the matching process. Any translation or rotation also 

does not have any impact on its performance unless the scanned image is unevenly distorted due to 

inconsistent contact. Although the simple structure of the novel algorithm saves a lot of 

computation time by avoiding image processing overhead, the accuracy might be affected by the 

quality of the image where the relative positions of minutiae are severely altered. Also the big 

difference in minutiae numbers between the stored and the query template may result in false 

match. A number of distance and angle tolerances have been set to optimise the threshold at which 

it performs best.    

 

Although this algorithm has performed very well with a 3.5% or less EER on optical and capacitive 

images, the performance of the algorithm is not satisfactory on thermal image due to the poor 

quality and presence of noise in images. It has also not given a satisfactory result when images on 

cross platform have been used to check its interoperability performance. Possible reasons are big 

differences in image quality, presence or noise and disparity in image resolution.  

However, the usefulness of the algorithm on optical and capacitive images is confirmed in the tests 

conducted, which shows a very good performance. The image quality plays an important part in the 

quality of the template formation and therefore consistency in fingerprint enrolment, image 

resolution and other environmental conditions are suggested for better performance. 
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Conclusion and Recommendation for Future Work 

 

4.1 Conclusion 

The main focus of this work has been to develop and test an automated fingerprint recognition 

algorithm based on level2 features (minutiae), which can address some issues in some existing 

algorithms.  As a pre processing step, image enhancement has been performed on all images before 

they are passed onto feature extraction stage. The most popular Gabor Filtering technique has been 

used in the enhancement process with optimised block size for image orientation and ridge 

frequency estimation.  The invalid or false minutiae have been removed using some heuristic rules 

before the template has been formed.  

 

The test run on 1680 images have shown that the Gabor filter has been able to effectively enhance 

the clarity of the ridge structures while reducing noise when accurate estimation of ridge orientation 

is combined with ridge frequency. However, for low quality images that exhibit high intensities of 

noise, the filter was less effective in smoothing ridge lines due to inaccurate estimation of the 

orientation and ridge frequency parameters. Overall, the results have shown that the implemented 

enhancement algorithm is a useful step to employ prior to minutiae extraction. 

 

To extract minutiae at level2, the Crossing Number method has been implemented on the skeleton 

image. Tests have shown that this method is able to accurately detect all valid bifurcations and ridge 

endings from the thinned image. However, there were cases where the extracted minutiae did not 

correspond to valid minutia points. Hence, image post processing stage was implemented to validate 

the minutiae. The test results from the minutiae validation algorithm indicate that this additional 

post processing stage has been effective in eliminating various types of false minutiae structures. 

 

In this novel algorithm the template has been formed using the local attributes of each minutia. The 

tolerance for both the distance and the angle has been optimised to address non linear and elastic 

distortion. The avoidance of some other local characteristics such as ridge numbers between 

adjacent minutiae has made the structure more robust against any spurious minutia that may arise 

from noise. Also the computation requirement is reduced significantly as the matching process does 

not require any pre alignment between the stored and the query template. 

 

Unlike other geometry based template, this novel structure does not store the actual coordinates 

and the orientation of the minutiae, which may pose a threat to identity loss if the template is lost or 

stolen. The multidimensional feature vector completely based on local attributes has made the 

template cancellable, which is another key advantage of this algorithm in security enhancement. 
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In cross platform environment, this algorithm has performed well, in particular for optical and 

capacitive scanned images. However, the performance on thermal scanned images was not 

satisfactory due to poor image qualities and disparity in image resolution. Also the difference in 

threshold for optical and capacitive scanned images indicates that its effectiveness can be affected 

by the number of valid minutiae on the image itself.  
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4.2 Recommendation for future work 

In order to enhance the efficiency of the novel algorithm for more accurate fingerprint identification, 

further work needs to be carried out as follows: 

 

Although the Gabor filter has been successfully used to enhance all the images, in particular, it has 

been very useful in enhancing poor quality images, but any error in local frequency estimation or 

ridge orientation will result in false or spurious minutiae and consequently results in high FAR and 

FRR.  Therefore, an investigation is required into a filter whose primary aim is to specifically enhance 

the minutiae along with the ridge structure. 

 

In the design of the novel algorithm, the global feature such as finger type has not been taken into 

consideration. Global pattern such as loop, whorl, arch etc are used for fingerprint indexing and they 

can reduce the search time substantially during identification process. A number of established 

algorithms have embedded the global feature in the matching process to improve their matching 

score. It would have given a better matching score and significantly reduced the false matching (FAR) 

had the global features embedded into the feature vector to categorise the template. 

 

The elastic or non linear distortion can always affect the performance of any algorithm so it has done 

on the novel algorithm. Inconsistent pressure on the scanner by the user can result in   incoherent 

stretching or contraction, which may cause uneven scaling on neighbouring distances and their 

internal angles. Further work needs to be done to accommodate the non linear and elastic distortion 

in the formation of the feature vector. 

 

The algorithm has been tested on the images scanned by optical sensors but to evaluate its 

performance more it can be tested on images scanned by other types of sensors such as capacitive, 

thermal or radio frequency sensors. Images taken at different resolution and different size can also 

be an issue for this algorithm. Therefore, more research needs to be done if the novel algorithm is to 

work across multi vendor platforms where images are taken using different sensors with different 

image resolution.  
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