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DYNAMIC ASSET (AND LIABILITY) MANAGEMENT UNDER
MARKET AND CREDIT RISK

NORBERT J. JOBST, GAUTAM MITRA, AND STAVROS A. ZENIOS

ABSTRACT. We introduce a modelling paradigm which integrates credit risk and market
risk in describing the random dynamical behaviour of the underlying fixed income assets.
We then consider an asset and liability management (ALM) problem and develop a mul-
tistage stochastic programming model which focuses on optimum risk decisions. These
models exploit the dynamical multiperiod structure of credit risk and provide insight
into the corrective recourse decisions whereby issues such as the timing risk of default is
appropriately taken into consideration. We also present a index tracking model in which
risk is measured (and optimised) by the CVaR of the tracking portfolio in relation to the
index. Both in- and out-of-sample (backtesting) experiments are undertaken to validate
our approach. In this way we are able to demonstrate the feasibility and flexibility of
the chosen framework.
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1. INTRODUCTION

1.1. Credit Markets. Credit markets have undergone significant changes over the last
few years in Europe and in the US. The size of outstanding corporate bonds increased
tremendously; this is mainly due to

(i) increased competition in the banking sector,
(ii) increased competition in the corporate world and the explosion in European Merg-
ers & Acquisition,
(iii) institutional investors looking for additional yields due to the low (European)
government bond yield environment,
(iv) and rapid increase of cash held by pension and mutual funds.

This growth in the underlying instruments of the credit market led as well to an increase
in the credit derivatives®’ market. Traditionally, credit risk exposure was managed by
trading the underlying assets, whereas nowadays, credit derivatives are frequently used
to transfer, replicate and hedge credit risk.

The BAA Credit Derivatives Report 2002 estimated the size of the global market (ex-
cluding asset swaps) over one trillion $ by the end of 2001. They also estimate it to grow
to $1952 billion in 2002 and $4.8 trillion by 2004, with London being the dominant cen-
ter in global credit derivative markets. Clearly, the credit derivative market is becoming
increasingly important with the main demand driven by institutional investors, banks
and other financial companies. Some of the reasons for this trend can be argued in the
following way:

(i) Institutional investors and asset managers can participate in the loan market,
whereas direct participation would often be not possible. This offers new diversi-
fication possibilities and new asset classes to consider.

(ii) Banks and financial institutions can transfer credit risk off their balance sheet
without physically selling the underlying assets. Apart from diversification ar-
guments, it has advantages with respect to lending relationships with important
clients.

(iii) Buying default protection leads to reductions in capital requirements (”regulatory
capital arbitrage”).

This strong increase in demand for credit (derivative) securities lead to an explosion of
research efforts both, in academia and industry. Most of this work is devoted to securities
valuation and credit risk measurement at a portfolio level.

1.2. Credit Risk Modelling. Two alternative approaches have been developed to price
credit risky securities; (1) structural models and (2) reduced form models. Structural
models date back to Black and Scholes (1973) and Merton (1974) and focus on determining
the default time by an underlying diffusion process describing the value of the firm. Credit

'For a detailed introduction to the most important credit derivatives, see O’Kane (2001).
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events of a particular firm are determined (or triggered) by the movements of the firm’s
value relative to some (stochastic or deterministic) threshold or barrier. Given such a
setup, credit events are linked to the firms economic fundamentals and capital structure.
Equity and debt prices as well as (implied) default probabilities are derived using option
pricing theory. Corporate liabilities are modelled as contingent claims on the firms assets.

Reduced-form approaches on the contrary model the time of default as a totally inacces-
sible stopping time capturing the idea that the timing of default takes the bondholders
by surprise. This approach does not define the default event based on the firm’s value,
but derives instead the default probability as the instantaneous likelihood of default, fre-
quently called the hazard rate. These models were developed by Jarrow and Turnbull
(1995), Duffie and Singleton (1999), Lando (1998) and Schénbucher (1998), amongst oth-
ers. A unified exposition of reduced form models, including intensity and rating based
models, can be found in Jobst and Schonbucher (2002). Both, structural and reduced
form models are rigorously treated in Bielecki and Rutkowski (2002).

Recently most research is devoted to the modelling of default dependency. Examples
are the copula approaches of Li (2000) and Schénbucher and Schuberth (2001), or the
contagious default approaches of Davis and Lo (2001) and Jarrow and Yu (2001). These
approaches extend portfolio credit risk models such CreditMetrics (RiskMetrics group
(1997)) or KMV’s approach (KMV-Corporation (1997)) to model the dynamics of default
risk at an individual asset level more accurately while capturing also default dependency
in a model consistent way.

1.3. Credit Risk Management. Modern credit risk management approaches incorpo-
rate many of these features that are important for security valuation. An example is
the timing of defaults that lead to a liquidation of positions if default seems unavoidable
under a given set of scenarios. Hence, modern credit risk management tools need to go
beyond the traditional risk controlling approaches that limit (arbitrarily) the investment
in bonds or shares of a specific corporation or the exposure to certain sectors. Quanti-
tative approaches to credit risk management that allow portfolio managers to quantify
the overall risk in their positions, and in particular optimisation models (e.g. portfolio
optimisation models under credit risk) are still at the early stages of their development.
Clearly, the tail of the overall credit loss distribution of a portfolio of obligors is critical.
Practical estimation of tail risk measures or downside risk measures is challenging, but
becoming increasingly important considering the growth in credit markets and complex
credit products. According to Ramaswamy (Spring 2002) diversification of credit risk is
much more difficult than in a market risk context, especially due to the risk of overex-
posure to a particular issuer or industry (concentration risk). To avoid this, one could
consider including a large number of issuers in the portfolio. However, such a strategy is
not based on any efficient quantitative framework and implies considerable transactions
costs.

The literature on portfolio optimisation under credit risk is not extensive and only re-
cently practitioners and academics have started to investigate a number of alternative
approaches. Some of these methods build on the Markowitz’ idea of mean-variance anal-
ysis where the mean and variance refer to the actual loss distribution of the portfolio (e.g.
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Kealhofer (March/April 2002), Ramaswamy (Spring 2002), or Dynkin et al. (2001)).
However, measuring the risk of downgrading and default by the standard deviation (of
losses) does not allow any statement about the worst losses or the severity of losses at a
certain percentile of the return/loss distribution. Such a model only reduces the standard
deviation, hoping that the chance of catastrophic events is reduced, too. It is well known
that standard deviation penalizes positive as well as negative deviations equivalently and
is less suitable for asymmetric distributions. These approaches may have an immediate
appeal to practitioners who are familiar with the mean-variance framework, however, op-
timisation methods based on downside risk and tail measures (especially CVaR) are much
more adequate given the nature of credit risk.

Zagst et al. (2002) consider an asset and liability management problem in which they
maximise the expected final value of the portfolio and risk as measured by lower par-
tial moments (LPM) is introduced as a set of constraints. The model incorporates LPM
constraints of order m = (0, 1,2) which is reformulated as a mixed-integer linear prob-
lem. The authors claim that these models can be rather easily solved by commercial
optimisation tools.

Andersson et al. (2000) consider a single period (anticipative) model that minimizes the
conditional value at risk of a emerging market bond portfolio. For a discrete and finite
sample distribution, the CVaR minimization model is formulated as a linear program (see
Rockafellar and Uryasev (2000)). Linear programming algorithms are very efficient and
hence, large scale real world models can be tackled. Furthermore Andersson et al. (2000)
show that given a specific initial portfolio, optimisation leads to reductions in many risk
measures, such as CVaR, VaR, expected loss, and standard deviation of the losses.

Jobst and Zenios (2001a) investigate the adequacy of different risk metrics in a credit risk
optimisation context. Single period Mean-Absolute-Deviation (MAD) and CVaR models
are investigated. In Jobst and Zenios (2001b) we investigate a single period tracking model
and report extensive backtesting results based on real-world data. We tackle the problem
of tracking bond-indices under market and credit risk and consider the importance of
alternative risk factors.

1.4. Ex Ante and Ex Post decision making: A two-phase modelling paradigm.
The previous two sections highlight the complexity of active and quantitative risk man-
agement as applied to the credit risk of fixed income assets.

Our choice of stochastic programming as the underlying approach allows us to combine
two important modelling paradigms in the following ways. Multistage stochastic pro-
gramming with recourse brings together (a) models of dynamical random behaviour with
(b) models of optimum decision making and resource allocation under constraints. The
random dynamical behaviour is represented by scenarios which are also part of descriptive
simulation. The initial (minimal) set of scenarios generated to create a hedged optimisa-
tion model are often called in-sample scenarios and are necessary to create the decision
model. These sample scenarios are necessary to obtain a predictive (forward looking)
representation of the state of the world, hence it can be viewed as ex ante approach to
decision making here and now responding to possible states of the future world.
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The existence of a dependable scenario generator, however, allows us to pursue the de-
scriptive model as an evaluation tool. Thus the optimum hedged decision (or for that
matter any other decision) can be validated by creating a large number of out-of-sample
scenarios for which the performance of any given credit planning decision can be evaluated
and validated. Thus historical backtesting and out-of-sample (simulation) testing are seen
to be the ex poste approach and form the back bone of our validation procedure.

We also see the very important bridging role of scenario based SP recourse models.
Whereas optimum decision models are valuable the decision makers see these as opaque
black boxes. On the other hand simulation models are transparent and give clear eval-
uation of a given plan and gain decision maker’s confidence. The simulation models,
however, are not designed to provide optimum decisions. Our two phase ex ante and
ex poste approach provides a very attractive combined framework for this class of prob-
lems which require decision making in a dynamic volatile environment and validating the
decision to gain the confidence and acceptance of the problem owners.

1.5. Guided tour. In the next two sections we discuss the requirements on a quantitative
risk management framework for portfolios of credit risky fixed-income assets. In section 2
we briefly investigate the structure of credit risk and provide insight into the importance
of incorporating multiple risk factors in a simulation paradigm. In section 3 we provide
further insight into the desirable features of a credit risk optimisation framework. That
is, optimisation models can be only applied successfully if adequate simulation or scenario
generation methods are introduced and combined with an adequate metric that captures
the nature of credit risk. In section 4 we develop dynamic stochastic optimisation models
for asset (and liability) management. These models extend the (single period) anticipative
models to introduce recourse actions at future points in time (stochastic programming
recourse models) and therefore specifically address the dynamic, multiperiod structure of
credit risk. In section 5, we present in-sample and out-of-sample backtesting results that
illustrate the feasibility of the chosen framework and conclusions are set out in section 6.

2. MuLTIPLE RISK FACTORS AND RISK MEASUREMENT

Modern risk measurement systems are designed to supply portfolio managers and traders
with adequate risk numbers and, ultimately, assist within hedging or portfolio (re-)structuring
processes.

The adequacy of a risk measure depends on many factors, in particular the class of
financial instruments and the time horizon of risk exposure under consideration. For short
horizons (e.g. a few days), traders and risk managers frequently measure the sensitivity of
a financial instrument or derivative to small changes in the price of the underlying asset
(the delta of a financial instrument). These risk measures (first, second order sensitivity
measures) based on small market movements and short time horizons prove very useful
in practice; see Zagst (2002) (chapter 6) for an excellent overview. However, managing a
portfolio or trading book by using first and second order sensitivity measures means that
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one has to continuously rebalance the portfolio, or accept small risks and rebalance the
portfolio only if the measures exceed certain limits.

Most portfolio managers are also interested in the risk due to large movements over longer
time horizons. Especially the latter is true in the presence of credit risk as it may take a
considerable amount of time to liquidate certain positions (Jarrow and Turnbull (2000)).
The usual time horizons may be a few months or even years. Frequently we are also
concerned about the performance of a portfolio compared to given benchmark, hence the
risk of the portfolio return falling below the benchmark, known as downside risk is also
incorporated in such models.

The complexities of modeling credit risk, in particular when integrating market and credit
risk in a unified framework, prevent the use of simple analytic approximations and we
therefore have to employ Monte-Carlo simulation methods and scenario analysis to calcu-
late portfolio profit and loss statistics over different risk horizons. These simulation models
have to be tailored according to the application at hand. Because of the diverse context
no single model has been developed that can be employed across the whole spectrum of
credit applications.

In Jobst and Zenios (?7) we discuss the requirements on an integrated market and credit
risk simulation framework and investigate the nature of credit risk in the simulation
setting of Figure 1 (further details are presented in the case study of section 5). This
way of integrating default, recovery, migration, spread and interest rate risk allows the
investigation of these factors to different credit quality instruments and portfolios of debt.
Figure 2 (left panel) presents results on the increase of CVaR (at a 99% confidence level)

Market data

Yields Simulation
spreads Outcome I
prices

at / C_Jbscrve new/ Portl'o!io Risk analysis
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for scenario

leve.l Future loss
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/_» Simulation sccuritics +

Outcome IT f under given
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probabilities, # rating g

. . d
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FIGURE 1. Risk analysis: A descriptive (simulation) modelling paradigm.

for portfolios of different credit quality when considering rating migrations and defaults
(RD), RD and spread uncertainty (RD+S) and RD+S and interest rate risk (RD+S+1I)
in the simulations. We can observe that for portfolios (200 exposures, equally weighted)
of high quality corporate bonds, spread and interest rate uncertainty increase the overall
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FIGURE 2. The structure of credit risk: spread and interest rate uncertainty
and sensitivity to changes in asset correlation.

portfolio risk significantly. Conversely, not considering all risk factors underestimates the
portfolio risk significantly.

The right panel of Figure 2 illustrates the impact of asset correlation between the under-
lying exposures on portfolio risk for different simulation models (RD, RD+S, RD+S+1)
and different credit quality exposures.? As we can see, for high quality debt when con-
sidering all risk factors, increasing the asset correlation has no significant impact on the
overall portfolio risk (factors close to 1). However when ignoring market and spread risk,
asset correlation seems to be highly significant; hence ignoring all risk factors may lead to
wrong conclusions about the structure of credit risk. On the other hand, for lower quality
portfolios, an increase in asset correlation increases the overall portfolio risk across all
simulation models. For a portfolio of B rated bonds, increasing asset correlations from
ten to thirty percent approximately doubles the CVaR of the portfolio.

In summary, Figure 2 clearly indicated that modelling credit risk is highly complex and
specific to the underlying class of credit risky securities. Monte-Carlo simulation ap-
proaches seem to be the only dependable approach to build many models that go even
beyond the complexities of the approach presented in this paper. Such approaches (e.g.
Schénbucher and Schubert (2001), Jarrow and Yu (2001) or Davis and Lo (2001)) allow a
joint specification of default timing issues and dynamic aspects of default risk and spread
changes. Default timing (and hence temporal) aspects may be extremely important for
certain asset classes such as n'’-to-default baskets or CDOs. The timing risk leads there-
fore to a dynamic, multi-period risk assessment that captures not only the probability of
defaults but also clustering effects of events within certain intervals. Also, one may think
of extensions including regime-switching characteristics or multiple defaults and restruc-
turing activities. Given that these temporal aspects are important for risk assessment, a
quantitative risk management framework needs to capture such structures.

>These asset correlations denote the correlation between the latent random variables that drive joint
default and migration events within a latent variable portfolio credit risk model. These correlations are
therefore linked to the credit event correlation through a model structure that will be discussed in section
5.1.
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3. AN OrpTiMUM DECISION MAKING PERSPECTIVE

From earlier argument we can say consequently that

(i) a scenario based optimisation model is desired and also fits in our two-phased
modelling framework,
(i) alternative risk metrics should be potentially captured,
(iii) timing risk (and hence temporal aspects) may have to be incorporated.

Managing large portfolios using standard industry solutions (such as the model proposed
by KMV-Corporation (1997), the CreditMetrics model proposed by the RiskMetrics group
(1997), or the CreditRisk™ model proposed by Credit Suisse Financial Products (1997))
are based on Value-at-Risk calculations. However, as Frey and McNeil (2002) point out,
the conceptual weaknesses of VaR (e.g. the lack of subadditivity in the framework of
coherent risk measures) is exploited if one tries to maximise the expected return of a
portfolio subject to some constraints on VaR. For an example of the inconsistency of VaR
in credit portfolios and the dangers of mean-VaR portfolio optimisations, see Frey and
MecNeil (2002).

Hence, when developing optimisation approaches for credit risk management, we have to
choose an adequate risk metric and carefully assess the problem and develop adequate
simulation models that provide input to the optimisation models. We investigate these
issues further in the following discussion (also see figures 3 and 4). The left panel of Fig-
ure 3 reports efficient frontiers from a MAD optimisation when applied to two different
scenario sets; one set includes only interest rate and spread simulations (frontier obtained
without simulated tails) whereas the other set explicitly simulates migrations and defaults
as well (frontier obtained with simulated tails). The underlying portfolio was of mixed
quality (for details, see Jobst and Zenios (2001a)) and the figure indicates that a mis-
specification of the underlying simulation model leads to a significant underestimation of
the total portfolio risk. The importance of integrating alternative risk factors is further
illustrated in Figure 4 where backtesting results with real world data are reported (see
Jobst and Zenios (2001b)). The figure shows the performance of a portfolio optimisation
tracking model (tracking the Merrill Lynch Eurodollar index) when the underlying sce-
nario sets include defaults, migrations, spreads and interest rate simulations (left panel)
and when we omit interest rate and spread scenarios (resulting in CreditMetrics type
scenarios). The good tracking performance diminishes when specifying the scenario sets
inadequately (the Eurodollar index is an investment grade index which requires the con-
sideration of spreads and interest rate uncertainty as indicated in Figure 2). However as
Jobst and Zenios point out, an adequate simulation model is not the only requirement
to successfully develop quantitative credit risk management tools. In addition we need
to choose an adequate risk metric as revealed in the right panel of Figure 3. The fig-
ure reports the mean-CVaR efficient frontier (solid line) for the same portfolio that is
reported in the left panel. We also report the CVaR of the MAD-optimal portfolio (.99
CVaR(MAD*)). We can clearly see that the output of the MAD optimisation leads to
highly inefficient portfolios in a CVaR perspective. Hence, given the importance of tails
in the presence of credit risk, MAD optimisation models seem to be unsuitable.
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FIGURE 3. Performance of the tracking model vs the index and corresponding tracking
errors when the scenario generation does not include uncertainty in interest rates and
credit spreads.
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FIGURE 4. Performance of the tracking model vs the index and corresponding tracking
errors when the scenario generation does not include uncertainty in interest rates and
credit spreads.

So far, we have motivated the choice of simulation and optimisation models for quantita-
tive credit risk management and pointed out the significance of adequate simulation and
optimisation paradigms. Inline with most other approaches to credit risk optmisation® the
models are single period in nature, hence failing to incorporate dynamic aspects in both,
the simulation and decision (optimisation) process. In a credit risk context, dynamic
aspects such as the default timing can be extremely important and should be adequately
addressed.* For example, the optimisation models should be able to make corrective deci-
sions such as liquidation of positions if defaults seem unavoidable under certain scenarios.

3An exception is Zagst et al. (2002) who consider a multi-timeperiod structure in the scenario represen-
tation. However the optimisation paradigm is still anticipative, hence, allowing only for one decision here
and now.

4An example are CDQO’s where the timing of cashflows is mainly driven by the performance of the
underlying collateral through time.



ALM UNDER CREDIT RISK 9

We develop such multistage stochastic programming models that incorporate recourse
decisions (such as buying and selling at future periods) and hence provide a step forward
in developing successful quantitative credit risk management (optimisation) tools.

4. DYNAMIC ASSET AND LIABILITY MANAGEMENT MODELLING UNDER CREDIT RISK

For real world applications it is meaningful to study multi-time period models which
capture the dynamical aspects of both pricing as well as the ALM investment decisions.
Multistage stochastic programming in particular is well applied to process ALM models,
for instance see Mulvey and Vladimirou (1992), Ziemba and Mulvey (1998), Consigli and
Dempster (1998) and Kouwenberg and Zenios (2001).

We develop credit risk optimisation models within a stochastic programming framework
and present a generic multistage stochastic ALM model that maximises the expected value
of terminal wealth under limited CVaR risk constraints. These constraints are imposed
on the portfolio value at future points in time, and in a liability matching context.

4.1. Model structure and model development. We show how the portfolio compo-
sition can be optimised by maximizing the expected final value or return of the portfolio
under given constraints that ensure coverage of the liabilities of a company at a maxi-
mum tolerated risk. One set of restrictions is due to a minimum required cashflow per
period to cover liabilities, the second set limits the risk of portfolio wealth. Both risks are
measured by the conditional value at risk (CVaR) to account for the downside risk and
extreme losses. These CVaR based reformulation of liability restrictions are essential in
the presence of credit risk due to the default events which imply a stop in coupon income.

We consider a discrete time formulation with a planning horizon of T' € [0, 7*]. We divide
the interval into my time periods, that is we define a set 7 = {to, t1, ..., tyy }, With g := 0
and t,,, := T, and denote the price of bond i € U, U = {1,...,n} by Pi(t) := P,(t,T;),
where n denotes the number of bonds and 7T; denotes the maturity of bond 7. We consider
a benchmark portfolio value or return and limit the risk of falling significantly below the
benchmark at times t € Tz = {T°,...,T,; .} C 7, where mp denotes the number of
timesteps at which we measure and restrict the risk. In addition, we consider liability
payments at times t € 7;, = {Tf}, ..., TnﬁL} C 7T, which have to be covered by cashflows
such as coupon payments. In the presence of default risk, these coupon payments may
not be available, hence risk based liability constraints are introduced.

Anticipative versus multistage recourse models

Throughout this section we develop several multi-time period optimisation models; we
distinguish particularly between simple anticipative and more sophisticated multi-stage
recourse formulations.

Anticipative models take into consideration stochasticity in future prices and model pa-
rameters. Despite the multi-period stochastic (data) structure decisions are only possible
initially, at time ¢y = 0, which is illustrated in the left panel of Figure 5. The dots rep-
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FIGURE 5. Anticipative and Multi-stage recourse decision tree structure.

resent the (scenario dependent) data (e.g. prices) and the D(¢,7) denotes the decision at
time ¢ in node 7. Hence, the initial decision is not changed throughout the model horizon.

A generalization of this model is the multi-stage recourse formulation, where additional
recourse decisions are taken into consideration at the preceeding time periods. In partic-
ular, a set of scenarios that share the same history up to a certain point in time, share
also the same decision. This is known as non-anticipativity and is visualized in the right
panel of Figure 5.

A special case of this multistage recourse formulation is a two stage model, with the
corresponding decision tree represented in the left panel of Figure 6. This two-stage tree

D(1,1)

D, 1)

D(2.2)

D(2,3)
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FIGURE 6. Two-stage recourse decision trees: A natural two stage model and an
approximation of multi-stage structure.

presents an approximation of the multi-stage recourse model of Figure 5 (right panel)
in such a way that non-anticipativity is relaxed for latter periods. Hence, the model is
simpler in its decision structure, however, more efficient algorithms for solving two-stage
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models exist that make two-stage models more tractable from a computational viewpoint.
This description of the two-stage formulation can be seen as a two-stage approximation
of the (true) multi-stage model, where the difference is only in the decision structure in
later periods.

Of course, an alternative two-stage formulation can be constructed by allowing for only
one set of recourse decisions at ¢t > 0. An example is presented in the right panel of Figure
6 where we allow one set of recourse decisions at ¢ = 1 and assume that the first-stage
decision and recourse variables are fixed from that time-period onwards. This model is of
course more flexible than the anticipative model and less flexible the multi-stage recourse
model (or its two-stage equivalent), due to the number or possible recourse actions.

Cashflows and recovery payments
Coupon payments F;(t) between liability dates and time periods are put into a cash
account, and reinvested at a continuous interest rate r®, that is

(1) Ey(t ty) = Fy(t) - D e (g 4]

In the scenario generation, we handle recovery payments Y;(7) in a similar way. Given
default at time 7 € (t;_1, 1), we assume to receive a cashflow

(2) Ti(Ta tk) = TZ(T) : GTCE(T,tk)(tk—T),

where T;(7) either specified as a constant amount, a random variable or a fraction of the
pre-default value of the bond. Hence, in the scenario generation we use indicator functions
to denote the cashflow at time ¢t € (¢5_1, %], that is

(3) F(t,te) == Lon Filt, te) + Lraoy Tilt, th).

Multiple cashflows of bond 7 in the interval (¢x_1, tx] are treated correspondingly, that is

(4) Fy(ty) = Z Lirsep Filtig, te) | + Loy Talt 1),

j:l...ni,ti]- G(tkfl,tk]

where ¢;; denotes the time of the j’s coupon payment of bond ¢, and n; denotes the number
of scheduled coupon payments (see figure 7).

Given default at time 7 € (tx_1,tx] and the corresponding cash recovery payment, we
assume that no further cashflows F;(t), for t > 7 will be received. We assume that the
recovery payment is put into the cash account, and furthermore P,(¢,7;) := 0, t > 7.
Hence, the value of the cash account given portfolio cash inflows between t;_; and #j is
given by

(5) U(tk) _ ,U(tk_l)e’r‘ca(tk—l,tk)(tk—tk—l) + Z-szz(tkz) _ Liab(tk),
i=1
where Liab(t;) denotes the desired liability payments and x; denote the portfolio holding

in asset 4, which is assumed to be constant throughout this planning horizon in the
anticipative model, i.e. z; := z;(to).

In the numerical implementation, we assume that that r°® is given by the short interest rate r.
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recovery amount

v

to t

scheduled coupon payments

FIGURE 7. Cashflow handling in discrete time-period setup.

In the multistage recourse models, we also need to include the corresponding rebalancing
decisions, which amounts to recourse actions, that is, (5) has to be replaced by

V(tr) = v(tgy)e "ttt | Z%(tkq)pi(tk) — Liab(ty,)

=1
(6) —|—Zx ) Pi(te, Th) (1 — tc) Zx ti) Pi(te, T,) (1 + tcb),

where z¢ denotes the units of bond ¢ sold and 2! denote the units of bond i bought, and
where we assume constant transaction costs tc; and tc? as a fraction of the bonds value.®

Scenario index

In the anticipative as well as multistage recourse model we use w to denote scenario index
which is identified as one of many enumerations of the stochastic data paths which are
presented as a set € such that w € Q and || the total number of datapaths in this
collection (set).

In section 5 we explain in detail our scenario generation procedure that incorporates (i)
economic (interest rate and credit spread) as well as (ii) credit (defaults, rating migrations
and recovery rates) scenarios. The anticipative model includes an initial decision x;(to)
which is fixed from time 0 to the end of the planning horizon T

Portfolio wealth
Then, the future portfolio wealth, given price scenarios P¥(t,T;), t € (ty_1, tx], is given in
the anticipative model by

(7) Wi = ai(to) PP (t, Ti) + vf,
€U

6 Alternative transaction cost assumptions could be easily introduced. If, for example, an fixed amount
should be charged as soon as a transaction takes place, we can employ binary variables following the
modelling principles presented in Jobst et al. (2001).
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where v is given according to equation (5) as
W w1t (B —te—1)
vy = e xz (to) F, — Liaby,

In the corresponding multistage recourse model, we assume that the portfolio wealth is
given as

(8) W= S )P T) + v e ) LS g )RR (1),
€U €U

which corresponds to the value just before portfolio rebalancing takes place at time .
After rebalancing, the portfolio value is given by

(9) W= () PP (t, Th) + 0.

iU
It is easily seen that (8) and (9) are equivalent, if no transaction costs are considered.
Risk constraints
In both, the anticipative and the recourse models downside risk constraints are introduced.
To restrict the downside risk of the future portfolio value at times ¢t € 7, we consider

CVaR constraints with respect to a specific benchmark B(t) € R.” Hence, the portfolio
loss under a given scenario is given by

(10) LOSS%(tk) = B(tk) — Ww(tk),
or in relative terms

B(ty) — W*(tx)
B(tx) ’

where W*(t;) is defined by (7) in the anticipative model and by (8) in the multistage
recourse model. We introduce a set of auxiliary variables, y% (y% > 0), as

yi(t) > Lossp(t) — ¢,
and define the set of CVaR constraints as

(11) RLoss5(ty) ==

TYL(t
gg + Zwiﬂ_ O:ZB( ) S BCVaR(t)

Y

where BYVE(t) denotes the maximum level of risk (CVaR) tolerated, and ap is the
percentile. For further details, see Rockafellar and Uryasev (2000).

To restrict the risk in the liability stream we introduce Loss%(t) and variables y¢(t),
t € 7;. The loss at time t € 77, is defined by

(12) Lossy(t) :==0—v“(t) = —v“(t).

"If we are given a benchmark return r?(t) for the period (0,t], the corresponding benchmark value is
given by B(t) = Wo(1 +r°(t)).
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The following constraints are added

(13) yi(t) > Lossi(t) — ¢

(14) yr(t) >0,
ZUJEQ ﬂ'wyf (t) a

(15) CtL + T < LEV R(t),

where LEV4E(t) denotes the maximum allowed tolerance risk of not matching the liabili-
ties. These restrictions are not necessary when only market risk is considered, in particular
when treasury coupon bonds are used to finance the liabilities. In that case, the problem
relaxes to exact cashflow matching. However, give the risk of default the restrictions
ensure that liabilities will be covered up to some probabilistic tolerance (confidence level).

Non-anticipativity constraints

In the multistage recourse model, we need also a set of constraints that ensure that
scenarios sharing a common history up to any point in time must also share common
decisions up to that point in time. This requirement is known as non-anticipativity,
and greatly complicates the processing of SP models as it ties together optimisation
problems pertaining to separate scenarios. In order to ensure consistency of the solution,
if two scenarios w, and w,, a # b, are indistinguishable up to a given time period ¢,
then, the related decisions up to that period must be the same. In order to define these
constraints we need the information embodied in the scenario structure. Let S, be the
bundle of scenarios passing through node o and let N; define the set of all notes at time
t, t = ty,...,7. Then, non-anticipativity constraints for a decision vector x;, t € 7, can
be formalised as

(16) xt,wu - It,wm a 7£ bavwaawb S SO?
withoe N, t =1,..,T — 1.

4.2. The optimisation models. We can now state the anticipative as well as the re-
course model after introducing the relevant sets and indices.

Sets and Indices

i index defining each bond (i = 1,..,n)
w  scenario index w € (2

7  discrete time steps 7 = {to,t1, ..., tmy }, With tg := 0 and ¢,,,,, :=T

U  universe of n bonds: U = {1,...,n}

Tp set of timesteps with benchmark restrictions7p = {T}%,....T5 } C T
7. set of timesteps with liability restrictions 7, = {T},...,TL } C T
N; set of nodes at time ¢ in scenario tree

D, bundle of scenarios passing through node o € Ny, t = t4,....,T — 1
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Data Parameters

find probability of scenario w

re holding period return of bond 7 under scenario w
Bi, (B9) weight of security ¢ in the index (in class ¢)
I¥, (I¢)  index (asset class index) return under scenario w

b; initial face value holding of bond

P, initial price of bond i

Py price of bond i at time ¢ under scenario w, Py = P¥(t,T;)

ry riskless rate of return under scenario w

tes, te? transaction costs for selling, buying of security ¢

Wo initial portfolio wealth

W« (W) portfolio wealth under scenario w (at time t)

T discrete time steps 7 = {to, t1, ..., tymy }, With tg := 0 and t,,,,, :==T
T; the maturity of bond ¢

ret continuous cash rate

Fi(t,ty)  default adjusted cashflow (multiple coupons / recovery) at time tg, t € (t_1, tx]
Liab®(t)  liability at time ¢ under scenario [

B(t) value of benchmark at time ¢ with benchmark return r2(¢)

BCVaE(t)  tolerated benchmark CVaR (right hand side) at time ¢

LEVeR(t)  tolerated liability CVaR (right hand side) at time ¢

Decision Variables

Co initial cash holding

x; weight of (or face value holding in) security ¢ in the portfolio
v (vy) amount invested in cash (at time ¢ under scenario w)

x? face value purchased of security ¢

xs face value sold of security

¢ Value-at-Risk

CB(¢h) Value at Risk at time ¢ for benchmark (liability) risk

y4(t) (y$(t)) auxiliary variable in CVaR calculation for benchmark (liability) risk
ag (ar) confidence level in benchmark (liability) risk restrictions
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Anticipative (ALM) model

(17) Max > Wy

weN
s.t.
(18) ;= bi+altal, icU
(19) Vg = Gy + Z (25 Py (1 — tc§) — 2Py, (1 + tc))
eU
(20) U;”; = U%‘;_leTflf—l(tkitkil) + leF’;k — Liabtk, w € Q, k= 1, mr
€U
(21) Wy = Zl’if’{;’k—l—v;‘;, weLk=1,...,mp
€U
(22) Y, > v =, weQitreTs
7.‘.0.) w
(23) LtC]:VaR > CtI; + ZWEQ thL’ t; € T—L
1-— ag,
" B(tg) — W
(24) Yty = B(—tB)tB — Cg, weNtgeTp
7.[_&) w
(25) BgvaR > ng i Zweﬂ thB7 tp €Ty
1-— ap
(26) Y, = 0, weQit el
(27) ygtB > 07 w e Q7tL € ,]-L
(28) vy = Vg, w €S
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Multistage recourse (ALM) model

(29)  Max
s.t.
(30) xito
(31) Uy,
(32) =3,
Vi
(33)
(34) Wy
(35) yftL

(36) LtC;VaR

(37) ygtB

BCV&R

)

) yft L
40) ygt B

) vg

) Tio

)y

44) xie

it

T

(Y

v

AVARAY,

Z Wy

wef

b+l + a5, i€U
ctO + Z Zto te; ) xztopto(l + 262 ))
€U
':L"Ltk 1+xltk+xztk’ CUGQ ZEU,k:]_,7m
Utk 1€rtk 1(tk te—1) +sztk ) ztk Lzabtk
€U
+ (x50 Py (1—tc)) —abe Py (1+t))) weQk=1,..m
ztk zt;C ) it * ity 7 ) XS} T
zeU
T’tk 1(tk—tk—1) O k=1
xltk 1 ’Ltk Ztk)_'_vtk 16 ) w € yv=L,...,Mmr
eU
v =L, wet eT,

CtLL‘i‘—Z - Tt e T,
1—OéL
B(tB)_Wtu]jg B
PR T Tt B e Oty e T
Bltp) Gt BB
gi—l——z cQ BtB, tBETB
1—043

0, weQt,eT

0, weQt,eT

Vg, w E S

Tity,, w €

xftib, a# b Vwg,wp € S0 €Ny k=1,...,mp — 1

i a # b Vwg,wy € Sp,0 €Ny k=1,...,mp — 1

ity 0

Equations (43) and (44) define the non-anticipativity constraints for the buying and selling
variables, which implies also non-anticipativity to the portfolio holding variables.
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Remarks:

(i)

In the following case studies, we have implemented a small modification of this
model. We assume that (5) and (6) are given by

’U(tk) :U(tk_l)erca(tk_l’tk (tr—tk—1) ZZE F tk

U(tk) _ U<tk71)€r““(tk717tk)(tk*tk71) + Z Q?i(tk—l)pi(tk)

=1
+ Zx t) Pyt T, Z:z: tr) Pilt, T)) (1 + tb),

respectively, i.e. we do not assume that the hablhtles are paid out directly. We
define the loss function (12) correspondingly as

Loss$(t) := Liab%(t) —v*(t), teTg.

The two formulations are (almost) identical , when Liab%(t) in the latter formu-
lation incorporates the actual liability in period ¢ plus reinvestment of cash which
match the liabilities from pervious periods.

In the multistage recourse context, the model and CVaR constraints can be seen
as a path-independent (regulator’s) view of risk, that is, risk is defined from the
initial state over multiple time periods, which is illustrated in the right panel
of Figure 8 Alternatively, we could have a short term view (traders view) and
employ risk restrictions depending on the state of the world at future time periods
(path-dependent), which is shown in the left panel of Figure 8.

CVaR ! CVaR restriction
< 7777777777 QYQqustrlctlon
CVaR restriction

to t, t, ty ) t, t, ty
FIGURE 8. Left Panel: Path-dependent (traders) view on risk constraints (short

term state dependent) - Right panel: path-independent (regulators) view on risk con-
straints(long term view).

5. CASE STUDY

5.1. Multi-stage scenario generation: Integrating market and credit risk. We
employ the simulation model of Jobst and Zenios (?) and develop multi-stage event tree
extensions next. We consider a filtered probability space (or stochastic basis) (2, F,F,P)
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where P denotes the real probability measure and the filtration F = (F})o<;<7+ describes
the information flow, and JF; represents the information available at time ¢. We consider
n firms simultaneously. The migration process x? describes the evolution of the credit
rating of firm j, where x/ € S given the state space S = {1,2,..., K}, with K denoting
the default state. Given this setup, we develop a simulation model where the risk of the
future value of a credit risk sensitive instrument can be decomposed into

(i) the risk that a firm’s rating changes (including the risk of default)
(ii) the correlation between credit events
(iii) the risk that changes occur in the average spread of exposures with the same final
rating as the firm®
(iv) the effect of interest rate uncertainty.

5.1.1. Chredit events: Rating migrations and defaults. The future credit rating ks € S of
each bond is simulated according to the actual migration process under P. We assume that
the probability of changes from rating [ to rating m over one time period is a constant
Tm and let the migration matrix be denoted by @ := [mmn]imes. These matrices are
published on a regular basis by rating agencies, such as Standard and Poor’s or Moody’s.
Defaults are modelled when the process hits the absorbing state K, hence, my; = 0, [ =
1,...,N—1,and myny = 1. Figure 9 illustrates the branching scheme between the rating
classes. Since our primary concern is in the simulation of a portfolio of credit exposures

AAA

AA

BBB

FIGURE 9. Transitions between different rating classes.

(corporate bonds), we are also interested in the joint distribution of multiple exposures.
We incorporate correlation between migrations and defaults following the latent variable
approach employed in the CreditMetrics methodology of JP Morgan (1997). This method
was also applied in empirical studies, such as Nickel et al. (2000) and Kiesel et al. (2001).
The approach is based on latent factors 2/ for firm j, which are assumed to be standard
normally distributed, driving the transitions of a single exposure. To capture dependence

8We don’t model the risk that the gap between the idiosyncratic spread and the average spread changes.
A similar assumption is taken in Kiesel et al. (2001). Given a certain exposure in rating I, we apply the
OAS methodology to match market prices and assume the same OAS forward in time if the bond stays
in the same rating class. Given a rating change, we assume the bond is priced at the average spread of
the new rating class (fair market value).
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between the transitions of different exposures, we introduce correlation between the latent
normal random variables. Conditional on the initial rating [ € S, we let Z;,, m =
1,..., N — 1 represent cut-off points (or barriers) such that

mx = P2 <Zik ]| =9(Zik),
Tik—1 = P2 <ZixanNZ > Zig | = (Zik-r) — ©(Zik)

m o= PlF<Zun >Zp] =1-0(Z),

where ¢ denotes the standard normal distribution function. Given the probabilities 7,,,
then Z;,, can be easily derived by solving the above equations recursively. Hence, rating
transitions and default events can be simulated by sampling the multivariate latent ran-
dom factors 2/ and determining whether or not the process crosses one of the calibrated
barriers. We denote simulated scenario sets as credit or rating scenarios. CreditMetrics
suggests using the correlation coefficients of the firms equity or asset returns.’ Given
the distribution of ratings at the risk horizon T, the value of a given bond is derived by
adding the distribution of interest rates and credit spreads for the new rating class. JP
Morgan suggests using currently observable forward interest rates and credit spreads, and
hence, assumes a deterministic interest rate and spread environment. In our approach,
we employ and simulate a dynamic term structure model of credit spreads (and inter-
est rates), as developed in the reduced form modelling literature for pricing credit risk
sensitive securities.

5.1.2. The term structure of interest rates and credit spreads. Interest rates and credit
spread processes are modelled via correlated stochastic processes of the form

(45) dz(t) = fip(z, t)dt + op(z, )dW,(t)

where dW,(t) denotes the standard Brownian motion under the real measure P. The risk
neutral dynamics (under the measure Q) can be obtained by introducing a market price
of risk v, (t) with fi,(x,t) = p.(x,t) +v.(t)o.(x,t). The risk-neutral process is then given
as

(46) dx(t) = pg(x, t)dt + o (z, t)dW,(t),

with dW,(t) = dW,(t) + v (t)dt.

Such a process is considered for the short interest rate, i.e., x = r, and for the credit
spreads, i.e., x = h; of each rating class £k = 1,..., K — 1, where 1 denotes the highest

(Aaa) and K — 1 denotes the lowest pre-default rating (Caa-C'). Correlation between the
processes can be captured by correlating the Wiener terms, i.e.

where 7,5 € {r,hy, ..., hx_1}.
9CreditMetrics does not employ the actual equity correlation, instead it constructs pseudo equity returns

and correlation coefficients based on weighted averages of national and sector equity indices. The weights
have to be attached on a judgemental basis.
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Given these specifications for the short rate and the credit spread process with a given
short spread h(t) := hy(t), we follow Duffie and Singleton (1999) and Schénbucher (2000)
to derive the value of credit risky bonds, in particular, zero-coupon bonds. The price
p(t,T) of a defaultable zero-coupon bond n at time ¢ in rating x} = k € {1,..., K — 1}
with maturity T is given as

(48) 7 (t,T) = E° [e—./;T<r<s>+hk<s>>ds] 7

where the bond face value of 1 is discounted with a risk adjusted short rate r; + hj.'°
The corresponding price of a risky coupon bond is given as

(49) Pr(0,T),) ZF P(0,7)

where F,(t) denotes the coupon payments (plus principal at maturity ¢ = T,,). If the
model price is not equal to the observed bond price, as the bond trades above or below
the average spread of the rating class, we can employ the option adjusted spread (OAS)
methodology to correct for risk factors that were not explicitly taken into consideration.
Hence, we introduce a firm or bond specific factor that gives insight into the relative value
of a specific bond with respect to a (hypothetical) bond that is priced at the average spread
of the corresponding rating class.

5.1.3. Clurrent and future portfolio valuation. Given the dynamics of the risk free rates
and spreads above we define the present value of the portfolio as

N
(50) Wo =Y w, P5(0,T,),
n=1

where w,, denote the holdings of bond n in the portfolio. PSS(O, T,) denotes the current
price of bond n

Similarily, the value of the portfolio at a risk horizon T is given as

(51) Wy = ZN:wn P (T, T,)

n=1

where T < max,,T,,. P, (T,T,) now denotes the price of coupon bond n at time 7' and
is given as

(52) Prr(T ZF e (T, b).

The corresponding zero coupon bond price o’ (T, T,) depends on the level of interest
rates r(T") and credit spreads h, . (T') at the risk horizon T', the further evolution of r(t)
and h,.(t) under Q after T and untll maturity, i.e. T' <t < T,, and the credit rating

10The bond index superscript n for ki is dropped when there is no ambiguity.
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of bond n at the risk horizon T'. This price is given for h(t) := h,_(t) as in equation (48)
as

(53) _ZT (T, Tn) = E’% [ e f%"n 7(8)+h(s)ds

If a bond matures before the risk horizon T (i.e. T}, < T'), we need to impose an assump-
tion on reinvesting the received cashflows, such as reinvesting in a default free money
market account.

These steps are summarized as follows: Given input data on the individual securities,
term structures of default free and defaultable bonds of different ratings and the rating
transition probabilities, we simulate a set of economic scenarios for interest rates and
credit spreads. In addition we simulate a set of rating and default scenarios reflecting
migrations. Given that bond n at time T is in rating k¢ we need to obtain the price of
this bond conditional on the state of the economic scenarios at 7' and according to the
evolution of the state variables under the risk neutral measure Q from time T onwards.

5.1.4. Multi-period extensions and Multi-stage event trees. In order to apply the model
in a multi-stage stochastic programming context, we need to generate a corresponding
(credit) event tree. In order to generate a multi-period event tree, we need to sample
many subtrees, conditional on the state of the risk factors in each root node.

Generating the interest and spread scenarios according to a multi-stage event tree is
straightforward, when we sample from the underlying diffusion processes. We start in the
root note and sample the first stage scenarios. We then move on to the next time period
and conditionally on the state of the world in a give node, we sample the next subtree.
We repeat this setup, until the overall event tree is generated.

Generating an event tree from the CreditMetrics migration and default model is slightly
more complex. Firstly, we have to calculate time-dependent migration matrices from the
historical (usually one year) transition matrix. In a multi-period setup, considering K
periods, we consider the time horizon [to, t1, ..., t z]. Hence, at time ¢, we need to calculate
the corresponding transition matrix over the next t;,, — ¢, years. Secondly, we need to
extend the calibration of the migration barriers into a multi-period setting. We have
developed two different approaches, a discrete extension and a diffusion driven extension,
which are based on the default model extensions presented in Finger (2000).

Time dependent transition matrices
Given the one year constant historical transition matrix, we generate time dependent
matrices in the following way (assuming that the historical matrix ) can be diagonalised).
We assume that a nonsingular transformation matrix M and a diagonal matrix Dg =
diag{dy, ...,dk} exist, such that

Q=MDoM™".
This diagonalisation is possible if () has a complete set of distinct eigenvalues. Assuming
that @ can be diagonalised, then a time dependent transition matrix Qy := Q(tx_1, tx)
can be stated as follows,

Q(tr_1,tx) == MD(ty_y, tp) M,
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where D(tg_1,t;) = diag{d, - (tx —tg—1), ..., dx - (tx —tx—1)}. Note that the diagonalisation
also allows us to derive the generator matrix A as

A= M"1DyM,

where Dy = diag{lnd, ...,Indk} in a computationally cheap way.

Discrete CreditMetrics extension

In the discrete extension, we assume that migrations in consecutive periods are driven
by independent random variables zik, k =1,.., K for company j (independent through
time). This corresponds to the simplest possible extension, where the one period model is
simply repeated. For the first time period, we assign standard normal random variables

2] to each exposure j, with a correlation between two distinct exposures zi and 2z given
b CM
Y Pij -

For the assets that survive the first period, we assign a second set of standard normal
variables z3, such that the correlation between 2% and zJ is again pg-M . The variables are
independent from one period to the next.

Given Q)1 := Q(to,t1), the migration and default thresholds for the first period can be
obtained for each initial rating [ € S by iteratively solving the following system of equa-
tions:

me = P2 <2k ] =2(Z)),
7511(—1 = P [Z{ < Zle—1 Nz > Zle } = (I)(lel(—l) - (I)(leK)

o= Pl <Zinz>Zy] =1-3(Zp).
For example, default happens for company j initially rated [ when z{ < Z{K For the
next period, the Markov property implies that given the time ¢; rating of asset j, the
probability of the next migration depends only on the current state and is independent
of the history. Hence, firm j, initially rated [ that survives the first period in the same

rating will migrate to a rating [ over the second period with probability 7Tl1l—2, [ € S, where
712 denotes the elements of Q% := Q(t,t2). Hence, given the simulated standard normal
random factors z3 and the current rating [, the migrations after the thresholds are derived

from the following set of equations:
mi = P[5 < Zj ] =0(Zk),
T = Pl <Zh N2> Zi | = 0(Zig,) — 2(Z)

me = Pl <Zhinz>Z5]=1-3(Z}).

An extension to further periods is straightforward, given the assumed Markov chain dy-
namics.

Diffusion driven CreditMetrics extension
The discrete CreditMetrics extension does not allow for any correlation of migration and
default rates through time. For example, if a high default rate is realized in the first
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period, this has no bearing on the default rate in the second period since the drivers z%
are independent of the first period. Intuitively this behavior is not expected in the market.
A high default rate in one period is likely to cause at least a decrease in credit quality to
those obligers that did not default. The implication would then be that the default rates
for the second period would have high tendency, too. In order to capture this behavior, we
introduce a CreditMetrics extension where defaults in consecutive periods are not driven
by independent random variables, but rather by a single diffusion process. Our diffusion
driven extension is described by

(i) default migration threshold Z} ..., ZE I.m e S, '
(ii) to each obligor j, assign a Wiener process W7, W = 0, where the instantaneous

correlation between distinct W, W7 is p{M,

(iii) obligor j migrates in the first year according to W] and the barrier Z | given the
initial rating [ € S. For example, default happens if WJ < leK,

(iv) for time t, obligor i migrates in the period [ty_1,%x] to rating [, if it survives the
previous f;—y periods, i.c. Wi > Zhe,.. Wi, | > Z*, and it W] < Z}* and
wi > Z'* . where Z* is the migration threshold as seen from today (time ) for

U+17
a bond 1n1t1ally rated [ € S.

k—1

At time tg, given an exposure j with initial rating [ € S, the migration probabilities over
the next interval are given directly from the migration matrix Qg := Q(to, 1), i.e

mx = P[W] <Zj ]
mko1 = P[W] <Z  nW > Z} ]

m o= P[W{<ZinW|>Zy]=1-P[W] >Z,].

For subsequent periods, we can derive similarly the probability for a bond j initially rated
[ to migrate to rating [ at time ¢, given no default before t;. For time period two, we
have

P[Wi<ZinWi>2Zt nW|>2Z\] = Zwlm ri2

K
(54) = Z Mm it — TUK TR

Given the absorbing default state in our Markov Chain representation, we obtain the
following description for the probability of a migration to rating / in time period two
given survival in the first period, i.e.

A 02 ]
(55) P[W]<ZQHWJ>Z121+1HW1]>ZZ1K}Z{Zioﬁz_ﬁm %ig
l
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Similarly, we can show that for subsequent periods (k > 2),
P{WI<ZinW]>2ZF nWi_,>Z n..nW>Z) ]
{ W?Z—k [+ K

Ok _ _Ok—1 7 _
T — T =K

(56) =

Given these probabilities, we can derive the migration boundaries of all future periods
iteratively. The boundaries for time period one, given a bond initially rated [ can be
derived given oy as in the original single period model, i.e.

W?}( = P [Wf < Zle} = (IJ(Z}K/\/E),
7T?11<—1 = P [Wf < Zle—1 N Wf > leK ] - CI)(ZIIK—I/\/E) - q)(leK/\/E)

m = P [Wf < Zin W1] > Zpy ] =1-®(Z5/Vh).

To calibrate the model to the second threshold at time t5, we start once more with the
default boundary, that is

P[Wj<ZiknWi>Z]
=P [W)<Zh]-P[W]<Z2nW <Z}]
(57) = Tk — Tk

Since W/ is a Wiener process, we know the standard deviation of th is v/t, and that for
s < t, the correlation between W/ and W/ is /2. Thus, given Z};, we can find Z such

that
72 Zk 732 t
(2K ) — @, (2L UK —1):71'02—71'01,
(@) 2(\/5 Viz' Vb e

where ®y(+) denotes the distribution function of a bivariate standard normal variable.
Z%: can be found numerically, e.g. by applying the Newton-Raphson method. Given zZl
l,m € S, and Z%, we can solve for Z%. ;. Generally, for | # K, we get

e = P[W<ZinWi>Z: nWi>Z ]

l+1
= P[Wi<zi]-P[Wi<Zp,]
(58) — P[(WI<ZInW]{<Z |+P[Wi<Zp nW]<Z].

2 2
m € S, and Zj, ..., Zjp 4,

72 72
W?I_Q — (2L o 41
V2 Vi

2
(59) — B, (ilK Z_lzf t_l) + D, Z;IK Ziip 2%
ViVt NN A

2 .
for Z;; numerically.

Therefore, given Z} we can solve

Im>

For subsequent periods t; > t9, we can calibrate the model by solving

P[W]<ZhoWl >Z2n..oWl>Z] =npk—ak?



26 NORBERT J. JOBST, GAUTAM MITRA, AND STAVROS A. ZENIOS

for ZF., given Z lkn: Y., ZL . m € S, where we utilize the properties of the Wiener processes
W7 to compute the probability on the left hand side. Similarly, for [ # K, given in addition

the thresholds Z} ..., Zfy, we can calibrate Z by solving

P{Wi<ZinWl>2ZF nWi_,>Z n..nW>Z)] =

5.1.5. Implementation details. Details on the actual data, the stochastic processes and
estimation can be found in Jobst and Zenios (7). A typical transition matrix regularly
published by rating agencies is employed. The extended Vasicek model of Hull and White
(1990) is estimated for the short term interest rate and credit spread processes (see also
Kijima and Muromachi (2000)). Given this dynamics, closed form solutions for simple
security prices can be obtained at the nodes in the tree. The simple discrete CreditMetrics
extension is employed throughout this case study.

5.2. Ex ante decision making: An illustrative ALM model. In this section we
implement the generic model for asset and liability management and investigate the be-
haviour of the model. We have chosen a planning horizon of T = 18 month starting
on the June 30, 2001. We also consider 16 (hypothetical) coupon bonds with annual
coupon payments and a notional of 100. We have considered 4 investment grade rat-
ings and 4 bonds in each of these rating classes leading to altogether 16 bonds. Ta-
ble 1 contains summary details of these bonds. With respect to the time horizon, we

Rating | Maturity | Coupon | Rating | Maturity | Coupon

Aaa 30 Jun 2002 | 5.0% | A 30 Jun 2002 | 7.0%
31 Dec 2002 | 5.0% 31 Dec 2002 | 7.0%
30 Jun 2004 | 5.0% 30 Jun 2004 | 7.0%
31 Dec 2006 | 5.0% 31 Dec 2006 | 7.0%

Aa 30 Jun 2002 | 6.0% | Baa 30 Jun 2002 | 8.0%
31 Dec 2002 | 6.0% 31 Dec 2002 | 8.0%
30 Jun 2004 | 6.0% 30 Jun 2004 | 8.0%
31 Dec 2006 | 6.0% 31 Dec 2006 | 8.0%

TABLE 1. Bond details used throughout the asset and liability case studies.

set Tg = Ty, = {6m,9m,12m,18m} and choose timesteps of 3 months, hence 7 =
{0,3m,6m,9m, 12m, 15m,18m}. In the liability stream we set minimum limits to the
cash account at times ¢ € 77, in particular we require to hold (5,10,20,40) at times
t € 7, given an initial budget of ¢y = 100. We also assume a short cash rate r**(t,T)
to be given by the short interest rate, i.e. r*(t,7) = r - (T —t), and we don’t consider
transaction costs, i.e. tc? = tci = 0, for all i € U. We have chosen a total of 1000
scenarios, with the following number of nodes leaving a parent node at each time step
t € T. At time ty = 0 we have 10 branches, at t; we have 1 branch, at ¢ we have 10
branches, at t3 we have 1 branch, at 4, we have 10 and finally at 5 we have 1 branch
leaving each parent node at the previous time step.!! In the scenario generation, we as-
sume a correlation of 20% between the latent random variables. Furthermore, we choose

UWhen 10 branches are considered, we sample 2 economic and 5 credit scenarios.
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a benchmark return 7 = 4%, ap = ag = 99%, LyV*" =0, t;, € T, and BfV % = 0.5%,
tg € 7. This choice of scenarios and parameters is for illustrative purposes, aiming
to show the potential (effectiveness) of the developed ALM model, and giving insights
into multi-stage versus anticipative models. However, in order to employ the model in a
real world setting, a much larger number of scenarios is required to obtain stable results,
leading to very large models which are challenging from a computational point of view
(curse of dimensionality).

5.2.1. Anticipative models. The following four examples correspond to the anticipative
(or no-recourse) model introduced earlier.

Example 1: Anticipative, unconstrained

In the first example, we do not consider any risk constraints and simply maximize the
expected value of terminal wealth at the planning horizon, that is the dirty price of the
portfolio plus the value of the cash account at 7" = 18m. The model invests entirely in the
Baa rated, longest maturity (December 31, 2006) bond, leading to an expected value of
108.69. The simulated value of the portfolio and the value of the cash account compared
to the desired cash amounts (liability stream) are shown in Figure 10. We observe that

No-recourse model: unconstrained No-recourse model: unconstrained
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FIGURE 10. Left Panel: Portfolio value under different scenarios. Right Panel: Cash
account under different scenarios (marked lines) compared to the desired cash amounts
(horizontal bars) at times 7.

the optimal portfolio is hit hard under some scenarios after 12 month, leading to severe
losses in the portfolio. We also observe that the liability stream (amount of cash required
in the cash account) is not covered. In the following, we gradually add constraints in
order to meet the targets.

Example 2: Anticipative, liability constrained

In this example, we add CVaR constraints on covering the liabilities as times t € 7;,.
To hold the liability constraints the optimal portfolio shifts some of the long maturity
Baa bonds to shorter maturity Baa bonds and a small initial cash holding. The asset
and maturity allocation is displayed in Figure 11. This portfolio has an expected value
of 108.25. The corresponding portfolio value and cash account evolution are displayed in
Figure 12. We observe that all liability (cash account) requirements are met. The first
requirement of 5 at time f, = 6m is mainly covered by the initial cash holding, the t3
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O Aaa B1y
B Aa 1.5y
OA O3y
OBaa 05.5y
B Cash B Cash

FIGURE 11. Asset class and maturity allocation in the no-recourse (anticipative)
model with liability constraints.
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FIGURE 12. Left Panel: Portfolio value under different scenarios. Right Panel: Cash
account under different scenarios (marked lines) compared to the desired cash amounts
(horizontal bars) at times 77,.

requirement of 10 is covered by coupon payments and the remaining two cash requirements
at months 12 and 18 are covered by the cashflow received at maturity (and subsequent
re-investment in cash) of the 1 year Baa bond. It is somewhat surprising that the model
invests in the short Baa rated bond, leading to a large cash holding after one year. We
also see that the portfolio is still hit quite severely under some scenarios, with the value
deteriorating to just above 40. The given portfolio, however, satisfied all constraints.

Example 3: Anticipative, wealth constrained

For the third example, we add CVaR constraints to the portfolio value at times ¢t € 7g
to the model of Example 1. Hence, we control the wealth growth of the portfolio without
restrictions on liabilities. The expected value of the optimal portfolio is 107.68, and in
order to satisfy the CVaR constraints, parts of the investment in Baa rated bonds is shifted
to slightly less risky A rated bonds. We can also observe that none of the initial capital is
invested in cash (see Figure 13). If we take a closer look at the portfolio evolution (Figure
14), we observe that the portfolio wealth shows less volatility. In particular extreme loss
scenarios are eliminated as a result of the CVaR restrictions. On the other hand, the
cash account does not capture the desired level for the liability payments at times 6m and
9m, as shown in the right panel. This is a result of not considering any constraints on
liabilities. The coverage of the 12 and 18m cash levels are a result of the high expected
value of the 1 year bond, leading to principal repayment at maturity ¢4 = 12m.
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FIGURE 13. Asset class and maturity allocation.

No-recourse model: wealth constraints No-recourse model: wealth constraints
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FIGURE 14. Left Panel: Portfolio value under different scenarios. Right Panel: Cash
account under different scenarios (marked lines) compared to the desired cash amounts
(horizontal bars) at times 7.

Example 4: Anticipative, liability and wealth constrained

In this example, we add CVaR constraints on portfolio wealth and liability targets to the
model of example 1. The optimal portfolio invests 37.72% in A rated 1.5 year maturity
bonds, 49.77% in Baa rated 1 year bonds and 6.89% in cash. Figure 15 shows the portfolio
value and cash account evolution. This results in a expected portfolio value of 105.58 at

No-recourse model: wealth and liability constraint: No-recourse model: wealth and liability constraint:
70

60 ’—_ﬂ—si
50

40 /

30

20 /

96 10 @« —_8&—
94 T T T T T T 0 T T T T
0 3 6 9 12 15 18 0 3 6 9 12 15 18
Time periods in month Time periods in month

FIGURE 15. Left Panel: Portfolio value under different scenarios. Right Panel: Cash
account under different scenarios (marked lines) compared to the desired cash amounts
(horizontal bars) at times 77..

the end of the planning horizon. We also observe that extreme loss situations are omitted
and that all liability requirements (desired cash account levels) are covered in all periods.
This is due to a significant initial cash investment, coupon payments and bond maturity.
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Overall, these four examples highlight the behaviour of the model and its capability of
controlling portfolio value as well as liability risk. In particular in the presence of credit
risk, these CVaR constraints on liabilities are important and essential for risk control.

5.2.2. Multistage recourse models. The multistage recourse model is more sophisticated
than the simple anticipative model. In our investigation we repeat the above analysis in a
more general six stage implementation of the multistage stochastic recourse model. Hence,
these models allow for corrective decisions (recourse decisions). The aim is to highlight
the application of CVaR constraints in a multistage framework and to gain some insight
into multistage stochastic programs. In this six stage model, we allow for rebalancing
decisions at all times t € 7.

Example 5: 6-stage model, unconstrained

Example 5 assumes like Example 1 no risk constraints on either liabilities or portfolio
wealth. The portfolio wealth is 118.72 and considerably higher than in the previous
example. The model invests all the capital in the Baa rated 1 year bond, with scenario
dependent recourse decisions thereafter. Hence, given the current scenario set, the 1 year
Baa bond has the highest expected value over the first three month period. Figure 16
(left panel) shows that the portfolio value almost never drops below 95, however in some
scenarios, the portfolio is hit and the value drops to just above 85. The cash account

Six-stage model: unconstrainec Six-stage model: unconstrainted
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FIGURE 16. Left Panel: Portfolio value under different scenarios. Right Panel: Cash
account under different scenarios (marked lines) compared to the desired cash amounts
(horizontal bars) at times 7p,.

statistic is shown in the right panel of Figure 16. The desired cashflow stream is not
covered, and under some scenarios we observe that the model chooses to sell all bonds (at
month 3) and invest it in cash, before re-investing it in bonds thereafter.

Example 6: 6-stage model, liability constrained

Example 6 generates the results for the six-stage liability constrained model. The capital
is initially invested entirely in the Baa, 1 year bond, leading to an expected portfolio
wealth of 117.19. We observe in Figure 17 that the liability stream is covered under all
scenarios.

Example 7: 6-stage model, wealth constrained
In this example we consider wealth constraints, only. Initially, the optimal solution is
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Six-stage model: liability constraints Six-stage model: liability constraint:
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FIGURE 17. Left Panel: Portfolio value under different scenarios. Right Panel: Cash
account under different scenarios (marked lines) compared to the desired cash amounts
(horizontal bars) at times 77,.

to invest the entire capital in the risky Baa, 1 year bond, leading to an expected value
of 118.70 at the end of the planning horizon. Figure 18 shows the portfolio and cash
account value under the scenarios, prevailing a portfolio that is limited in the downside
risk, however without covering the desired cash account stream.

Six-stage model: wealth constraints Six-stage model: wealth constraints
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FIGURE 18. Left Panel: Portfolio value under different scenarios. Right Panel: Cash
account under different scenarios (marked lines) compared to the desired cash amounts
(horizontal bars) at times 7r,.

Example 8: 6-stage model, liability and wealth constrained

This final example shows the results for the six-stage model when both, portfolio value
and liability constraints are added. The initial investment does not change to the previous
models, and the expected portfolio wealth is 117.17. Figure 19 shows that all cashflows
are covered and the portfolio value prevails limited downside risk.

5.2.3. Remarks and Summary.

(i) We have studied a flexible dynamic multistage stochastic recourse model in which
anticipativity and risk constraints are progressively introduced. We have shown
the ability of these multistage models to constrain the two types of risk using a
small set of (in-sample) scenarios. A distinguishing feature of the model is the use
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Six-stage model: wealth and liability constraint Six-stage model: wealth and liability constraint
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FIGURE 19. Left Panel: Portfolio value under different scenarios. Right Panel: Cash
account under different scenarios (marked lines) compared to the desired cash amounts
(horizontal bars) at times 77,.

of CVaR (risk constraints) on liabilities in addition to the constraints on portfolio
wealth. These are required in the presence of credit risk as the investor is faced
with the chance of default, and the corresponding losses in coupon payments (and
notional).

(ii) In order to highlight the effect of recourse actions, we summarize in Table 2 the
observed results. We also add results for a 3-stage implementation, where recourse
decisions are possible at times t5 and t4. Overall we observe an increasing objective

Example | Constraints | E[ Wr | Init Port. Comment
1 no 108.69 Baa severe loss scenarios
cashflows (CFs) not covered
2 L 108.25 cash 4+ Baa significant losses still present,
CF's covered
3 W 107.68 A + Baa significant loss scenarios eliminated,
CF's not covered
4 W+L 105.58 | A + Baa + cash | significant loss scenarios eliminated,
CFs covered
5 no 118.72 Baa no severe loss scenarios,
CF's not covered
6 L 117.19 Baa no significant losses,
CF's covered
7 W 118.70 Baa no significant loss scenarios ,
CF's not covered
8 W+L 117.70 Baa no significant loss scenarios,
CFs covered
3-stage no 112.10 Baa no severe loss scenarios,
CF's not covered
3-stage L 111.10 Baa no significant losses,
CFs covered
3-stage W 111.14 A + Baa no significant loss scenarios ,
CF's not covered
3-stage W+L 110.25 A + Baa no significant loss scenarios,
CF's covered

TABLE 2. Summary results of no-recourse and recourse models.
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function values with increasing number of stages. This indicates that flexibility
pays, and stems from higher yielding investments in subperiods where the initial
portfolio choice performs poorly. We also see that the rebalancing decisions elimi-
nate portfolios with initial holdings in cash to cover early liabilities. These results,
however, were obtained without considering transaction costs and for a very small
illustrative scenario set.

(iii) These simple examples highlight also the importance of scenario generation. In
the multistage context, the model goes for an investment strategy that heavily
depends on the small scenario set under consideration. These high return, low risk
strategies over different subperiods may not exist under larger sample sets. Such
experiments need to be conducted and require significantly higher computational
costs.

5.3. Ex post decision analysis: A bond index tracking experiment. Whereas
the last section investigated the behaviour of the multistage asset and liability model
conceptually, we present a case study based on real market data in this section. We
consider the problem of index tracking at an asset allocation level and compare a no-
recourse formulation with a two-stage implementation of the model.

We develop a model to determine the allocation in certain asset classes in order to track
the Merrill Lynch Eurodollar index. We represent these asset classes by synthetic bonds,
approximated from the index data. In particular, we consider the four investment grade
ratings and four different maturity buckets; thus for each rating, we aggregate bonds in
four groups with 1-3 years, 3-5 years, 57 years and 7+ years of maturity. For example,
on January 31, 1999 we obtain the following asset class details which correspond to the
market weighted average of all bonds belonging to each asset class (Table 3). Instead of

Rat. Mat. Mat.Bucket | CPN | Dur. | Yield | OAS | Hold. | Price | HPR
Aaa | 12/4/00 1 6.24 | 1.69 | 5.29 58.44 | 11.85 | 102.62 | 0.00
11/16/02 2 6.05 3.34 5.21 52.45 19.16 | 104.08 | -0.01
2/24/05 3 6.56 | 4.91 | 5.30 53.04 6.13 | 109.28 | -0.02
2/7/08 4 5.99 | 6.90 | 5.36 40.38 6.48 | 107.34 | -0.03
Aa 12/14/00 1 6.47 1.71 5.45 74.17 13.01 | 102.61 | 0.00
9/12/02 2 6.48 | 3.14 | 5.45 73.21 | 19.50 | 105.83 | -0.01
12/23/04 3 6.59 | 4.80 | 5.51 73.60 5.18 | 106.04 | -0.02
11/27/07 4 6.48 | 6.62 | 5.67 71.76 6.72 | 106.73 | -0.03
A 11/22/00 1 6.77 1.65 5.66 94.13 3.11 103.18 | 0.00
10/30/02 2 6.50 | 3.25 | 5.70 97.95 5.39 | 104.26 | -0.01
9/12/05 3 6.84 | 5.24 | 6.16 | 136.88 | 0.96 | 106.26 | -0.02
9/19/07 4 6.91 | 6.31 | 7.86 | 298.18 | 0.37 96.67 | 0.01
Baa 3/3/01 1 7.68 | 1.94 | 7.89 | 322.80 | 0.34 | 102.75 | 0.01
1/11/03 2 6.82 | 3.36 | 7.45 | 27597 | 1.24 98.25 | -0.01
3/1/06 3 8.44 | 5.09 | 10.16 | 533.19 | 0.15 94.96 | 0.01
10/4/08 4 7.48 6.68 7.52 255.31 0.42 102.14 | -0.02

TABLE 3. Asset class details (synthetic bonds) on January 31, 1999. The holding
period return (HPR) corresponds to the return over the next one month.

using the quoted prices we use the exact prices implied from the current term structures
and assume that these asset classes or synthetic bonds are priced in the market at the fair
value. In the backtesting experiment we will however use the real, observed holding period
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return for each of these synthetic bonds to assess the model performance. Similarly, we
can obtain such statistics for the index one month later, on February 28, 1999. Of course
the details may differ significantly from the previous month, which also implies different
prices. Hence at the end of the month the price for an asset class differs from the price
at the beginning of the next month. We adjust the next month holding after pricing the
synthetic bonds such that the total market value in each asset class at the beginning of
the new month is equal to the end of the month market value from the previous month.

Figure 20 plots the quoted option adjusted spreads (OAS) for the shortest and longest
maturity buckets in every rating class over a period of 2.5 years. We can observe a
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FIGURE 20. OAS of eight asset classes from January 31, 1999 to December 31, 2001.

period of spread widening (especially for all long maturity bonds) between December
1999 and November/December 2000, and a long period of spread tightening afterwards
until July /August 2001.

5.3.1. The CVaR-Index Tracking Model. Portfolio value or loss distributions of a given
portfolio in the presence of credit risk exhibit fat tails and non-normality. When we are
tracking a bond index, we are less interested in the absolute risk, but more concerned
about the relative risk, that is, losses with respect to the performance of a bond index,
which is a random variable itself. The following Figure 21 plots the loss distribution (at a
risk horizon of one year) for an investment grade portfolio when we overweight Baa rated
bonds. We observe that the downside risk is significantly higher, compared to the upside
potential (indicating a maximum loss of 10%). We therefore need to develop optimisation
models that account for the tail events in the tracking context. We have chosen once more
the CVaR methodology. Instead of defining the losses with respect to the initial portfolio
value or expected value or with respect to a pre-specified (deterministic) benchmark (as
in the previous section) we define the losses in this section with respect to the random
index, that is

(60) ILossy =17 =Wy, teT,we,
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Distribution of losses (w.r.t. an investment grade
index) by overweighting BBB
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FIGURE 21. Distribution of losses with respect to the index.

or in relative terms as
w w

(61) RILossy = It]—wvvt, teT,weq,

t
where I}” denotes the index value and W} denotes the value of the tracking portfolio
(including reinvested cash payments) at time ¢ under scenario w. In the following case
study, we only consider one set of constraints at the end of the horzion T' = 6m. Given
this loss definition, and the definitions of section 5.2, we derive the tracking models from
the ALM models introduced in the previous section.

We can derive the anticipative CVaR tracking model from the ALM model of the previ-
ous section by setting Liab,, equal to zero and deleting the corresponding liability risk
constraints (22, 23 and 26) in the Anticipative ALM model. We also have to adjust
constraints (24, 25 and 27) and replace yz, by yrr where
yrr 2 ]TTVVT — {r.
T

These constraints model the CVaR of the portfolio with respect to the index at the end
of the horizon T

Similar adjustment can be made to the MS-recourse model, equations (29) to (44), re-
sulting in the multi-stage recourse index tracking (asset allocation) model.

5.3.2. Empirical investigation. In the following we investigate the tracking performance of
the Merrill Lynch Eurodollar index when we implement the suggested optimal portfolio
suggested by the anticipative and the two-stage model (7 = {0,3m,6m}). Of course,
in the two-stage model, we only implement the first stage decision. We also investigate
the tracking of a government bond index with US Treasury securities, only. Finally, we
extend the government bond investment universe by corporate bonds and conduct the
experiments once again.
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Firstly, we present backtesting results and highlight some interesting results. In the
following we consider transaction costs which are rating class dependent, that is 5 bp for
Aaa, 10 bp for Aa, 20 bp for A and 40 bp for Baa.'? We implement the CVaR constraint
at a 95% level and allow for 100bp CVaR (I$VeF = 1%), that is, the expected losses
with respect to the index below the 95%—VaR have to be less than one percent. The
anticipative model allows for only one decision at time ¢, = 0, whereas the two-stage
model also allows for portfolio rebalancing at ¢; = 3m. The backtesting is conducted by
implementing the suggested portfolio and re-running the simulation/optimisation models
after one month.

Scenario Sets We generate all scenarios with a 20% correlation between the latent
random variables triggering default. We simulate 12000 scenarios over a 6 month period.
The event tree has 200 branches in the root node (10 economic and 20 credit scenarios),
and 60 branches (6 economic and 10 credit scenarios) at time step 3m at each parent
node.*?

Case study 1: Corporate bond index tracking

Example 1: Anticipative AA model

In this example, we study the tracking of the Eurodollar index by investing in the asset
classes according to the optimal solution of the anticipative model. Figure 22 plots the
portfolio value versus the index value over the backtesting period of January 1999 to
December 2001. We also plot the implemented or optimal asset allocation by rating class,
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FIGURE 22. Backtesting results anticipative model: Portfolio value versus the index
value (Eurodollar). Investment in corporate bonds is possible, only.

as suggested by the model (right panel).

Overall we observe a good tracking performance with a large holding in high quality, Aaa
rated bonds. Surprisingly, apart from the first few months, hardly any capital is invested
in Aa rated bonds.

12This transaction costs assumption stems from discussions with market participants.
138olving the two-stage model with 12000 scenarios on a Pentium 4 2GHz processor, 512 MB RAM, using
FortMP (2002), takes approximately 20 min to 1 hour.
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FExample 2: Two-stage recourse AA model

We now repeat the previous example, however we allow for recourse decisions at month 3
in the model. We plot the portfolio value evolution compared to the index, and the first
stage investment decision in Figure 23.
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FIGURE 23. Backtesting results two-stage model: Portfolio value versus the index
value (Eurodollar). Investment in corporate bonds is possible, only. Backtesting results:
Asset allocation according to the optimal first stage solution of the two-stage stochastic

program.

We observe a significantly larger final portfolio value compared to the one stage model.
Especially interesting is to take a closer look at the implemented optimal portfolio. We
observe overall a significant holding in Aaa rated bonds. In particular, during the period
of spread widening (December 1999 to November 2000), the model shifts the investment
out of Baa rated bonds to Aaa assets, which was the right decision as Baa spreads
widened more compared to Aaa spreads. After that period, we can observe a shift of a
significant part of the portfolio value to Baa rated securities (going long credit), during
the period of spread tightening. Overall, the model does what a portfolio manager should
have done. Knowing that the model can correct initial decisions in subsequent periods,
leads to portfolios that differ more significantly from the index structure, however as
explained above, this does not always imply more risky portfolios. In both examples, we
observe as good tracking performance and especially in the two-stage implementation we
observe a good reaction to market developments. Overall this supports the choice of our
simulation and optimisation paradigm.

Case study 2: Tracking a government bond index

Example 3: Anticipative AA model

In this example, we aggregate the Merrill Lynch Government Bond index into six differ-
ent maturity buckets, with 1-3, 3-5, 57, 7-9, 9-21, and 21-30 years of maturity. We
implement the CVaR tracking model with no recourse decisions first. Figure 24 plots the
portfolio value and asset allocation through time.

Example 4: Two-stage recourse AA model
We conduct the same experiment as in example 3 by applying the two-stage model. Figure
25 plots the portfolio value and first stage asset allocation decisions through time.
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FIGURE 24. Backtesting results anticipative model: Portfolio value versus the index
value (Government Index). Investment in treasury bonds is possible, only. Backtesting
results: Asset allocation according to the optimal solution of the anticipative model.
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FIGURE 25. Backtesting results two-stage model: Portfolio value versus the index
value (Government Index). Investment in treasury bonds is possible, only. Backtesting
results: Asset allocation according to the optimal first stage solution of the two-stage
stochastic program.

The performance of the model is very similar to the anticipative model, which is a result
of similar asset allocation decisions. Only during the first few months, the decisions are
slightly different, and indeed, the anticipative model performs better ex-post.

Overall we observe that the models invest mainly in long and short bonds throughout the
period, leading to a good tracking performance, however without generating significant
extra value.

Example 5: Anticipative AA model

In this example, we re-run the anticipative model of example 3 with an enlarged portfolio
universe. We add the 16 synthetic corporate bonds representing investment grade assets.
Figures 26 plots the portfolio performance and asset allocation throughout the backtesting
period.

Overall, we observe once more a good tracking performance, with a very significant holding
of 70%-80% in high quality (mainly Aaa) corporate bonds. This is somewhat surprising,



ALM UNDER CREDIT RISK 39

—*—Tracking Portfolio —#— Index ‘

100% .
90% 1

130

[ ]

125 S0 GOVIE
120 /,,-/:T‘ 70% 1 UBBB
Z 60% |
15 & o OAAA

M 50%
- J 40% | A
105 M(‘/. - 30% | DA
O Nttt - 20% )
&= e oy
10% |
95 :!_ - L

0% +
Jan-99  Jul-99 Jan-00 Jul-00 Jan-01 Jul-01

90 T T T T T
Jan-99 Jul-99 Jan-00 Jul-00 Jan-01 Jul-01

FIGURE 26. Backtesting results anticipative model: Portfolio value versus the index
value (Government Index). Investment in treasury and corporate bonds is possible.
Backtesting results: Asset allocation according to the optimal solution of the anticipative

model.

however consistent with market practice. Also, over the short risk horizon and given
the nature of the transition matrix employed, default events are extremely rare for the
high rating class exposures. Therefore, all constraints can still be satisified. We can also
observe a complete shift to corporate products at the end of the backtesting period, which
makes sense due to the extreme tightening in corporate spreads.

Example 6: Two-stage recourse AA model

In this example, we re-run the previous experiment by applying the two-stage model,
that is, allowing for a corrective recourse decision after 3 months. Figures 27 reports
the portfolio performance and asset allocation throughout the backtesting period, which
shows a significantly improved performance with respect to final portfolio wealth.
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FIGURE 27. Backtesting results two-stage model: Portfolio value versus the index
value (Government Index). Investment in treasury and corporate bonds is possible.
Backtesting results: Asset allocation according to the optimal first-stage solution of the
two-stage model.

Particularly interesting is once more that the flexibility of recourse decisions leads to a
portfolio that differs more significantly from the index structure, while satisfying all risk
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constraints. This flexibility leads to decisions that respond to market developments by
rebalancing (or recourse) actions. We observe that during the spread widening period
(beginning of 1999 to the end of 2000), the model suggests significant investment in gov-
ernment bonds, whereas in the spread tightening periods (before and after the widening),
the model invests almost entirely in corporate products. Once more, the model reacts to
the market developments in an intuitive way.

5.3.3. Stability of results. In order to get some insight into the stability of these results, we
repeated ten times Experiment 1 with alternative scenario sets. These scenario sets differ
only in the initial random seeds, hence keeping the input data and branching structure
unchanged. We observe an average monthly return of 61bp with an average standard
deviation of 85bp. This compares favourably to the corresponding index statistic of 57bp
and 90bp. A closer examination of the individual runs reveal that in eight out of ten
runs the performance is extremely close. The underperformance under the remaining two
scenario sets highlights and reveals the presence of some sampling error that needs to
be considered and investigated further. Preliminary results along these lines are given in
Jobst (2002) and go beyond the scope of this paper.

6. CONCLUSION AND FURTHER RESEARCH

We have considered an important problem of financial planning involving fixed income
assets which are subject to credit risk. In this paper we have introduced a number of
innovations which we list below:

(i) We have integrated models of credit risk and market risk which makes our gen-
eration of time varying prices of the fized income assets relatively more accurate
compared to other approaches which do not jointly take into account these multiple
sources of risk.

(ii) Within the decision making perspective we extend our earlier work and those of
other researchers based on a simulation only paradigm of prices. We use a multi-
stage decision making framework which fully takes into consideration (a) dynami-
cal behaviour of the assets and (b) recourse decisions which respond appropriately
to the timing of default.

(iii) Finally, our framework reveals one of the most powerful aspects of stochastic
optimisation, that is, bringing together the optimum decision models with the
descriptive approach of simulation models. This topic is discussed in section 1.4
and their application in the case studies is described in section 5 underline the
value of this approach.

(iv) Future research needs to address the interaction and incorporation of modern
default risk models with the optimisation paradigm as well as further investigation
of the stability of the optimisation/simulation results; hence, methods of limiting
the inherent model risk need further development.
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