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Abstract

Krawtchouk polynomials appear in many various areas of mathe-
matics starting from discrete mathematics (e.g., in coding theory),
association schemes, and in the theory of graph representations. The
existence/non-existence of integral zeroes of these polynomials is cru-
cial for the existence/non-existence of combinatorial structures in the
Hamming association schemes. The integer zeroes of Krawtchouk
polynomials for k = 4, 5, 6 and 7 have been found using some very re-
cent results on solvability of polynomial diophantine equations. Our
aim is two-fold: Firstly, to verify these results using extensive com-
puter calculations. This requires the solution of some of Pell’s equa-
tions and the use of the symbolic mathematics software mathemat-
ica. Secondly, we numerically investigate a conjecture dealing with
the integer zeroes of the Krawtchouk polynomials Pm2

(m
2 )

(x) and pro-
vide confirmation of the conjecture using a combination of approaches
up to m ≤ 1000, i.e., for the polynomials up to degree of about half a
million.
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1. Introduction

1.1. Historical Background.
Upon checking the free encyclopedia Wikipedia one can find var-

ious transliterations of the name Krawtchouk, originating from the
Ukrainian language Кравчук, also written as Kravchuk. The Krawtchouk
polynomials are a special case of the Meixner polynomials of the first
kind [1]. Meixner polynomials, or the discrete Laguerre polynomials,
are a family of discrete orthogonal polynomials, which are given in
terms of binomial coefficients and the rising symbol of Pochhammer,
as

(1) Mk(x, β, γ) =
k∑
j=0

(
x

j

)(
n

j

)
(−1)jj!γ−j(x− β)(k−j).

In fact, Krawtchouk polynomials were named after Mikhail Krawtchouk
who first designed them in his most famous work published in 1929,
“Sur une generalisation des polynomes d’Hermite”[2]. In this, he in-
troduced a system of discrete orthogonal polynomials associated with
the binomial distribution. In the same year, whilst the first world
financial crisis was in full swing, Krawtchouk was elected a member
of the Ukrainian Academy of Sciences. He taught at the National
Technical University of Ukraine, previously called the Kiev Polytech-
nic Institute, as chair of the mathematics department. Krawtchouk
benefitted immensely from his exposure to famous mathematicians
such as Courant, Hadamard, Hilbert and Tricomi. Some of the most
elementary examples of Krawtchouk polynomials are:

(1) P n
0 (x) = 1;

(2) P n
1 (x) = −2x+ n;

(3) P n
2 (x) = 2x2 − 2nx+

(
n
2

)
;

(4) P n
3 (x) = −4

3
x3 + 2nx2 − (n2 − n+ 2

3
)x+

(
n
3

)
.
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1.2. Motivation for Studying Krawtchouk Polynomials.
Krawtchouk polynomials are very important in combinatorial math-

ematics, and their properties are being continuously revealed in the
literature [3]. Krawtchouk polynomials play a crucial role in various
areas of mathematics, such as combinatorics, modular elliptic curves
and coding theory [4, 5], and in the theory of graph representations
[6, 7]. In particular, binary Krawtchouk polynomials serve a major
role in developing Hamming codes and protocols. They are similarly
important in graph theory and number theory [8].

The existence of integer zeroes is connected with the existence of
combinatorial structures in the Hamming association schemes. In
fact, integer zeroes of Krawtchouk polynomials have received a special
attention due to their relation to several problems in combinatorics,
e.g., the existing of perfect codes, the graph reconstruction problem,
etc (see e.g. Ref. [9]).
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1.3. Definition and Properties of Krawtchouk Polynomials.
Here we follow Ref. [3] to present some important/known properties

of Krawtchouk polynomials. Unless stated otherwise, all the results
mentioned in this paragraph can be found in Ref. [3].

General Krawtchouk polynomials are orthogonal with respect to the
binomial probability measure supported on the set {0, 1, 2, ...., n} =

Zn, defined for 0 ≤ p ≤ 1, by,

(2) µ(x) =

(
n

x

)
px(1− p)n−x.

For p = 1
2
we find the binary Krawtchouk polynomials, P n

k (x),
which can be obtained via the explicit formulas,

(3) P n
k (x) =

k∑
j=0

(
n− x
k − j

)(
x

j

)
(−1)j

(4) P n
k (x) =

k∑
j=0

(
n− j
k − j

)(
x

j

)
(−2)j,

and

(5) P n
k (x) =

k∑
j=0

(
n− k + j

j

)(
n− x
k − j

)
(−1)j2k−j.

The Krawtchouk binary polynomials can be also obtained through
the generating function,

(6) F n
x (z) = (1− z)x(1 + z)(n−x) =

∞∑
k=0

P n
k (x)zk,

and the general Krawtchouk polynomials are also defined by
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(7) P n
k (x, p) =

k∑
j=0

(
n− x
k − j

)(
x

j

)
(−1)k−jpk−j(1− p)j.

The following recurrent relations for Krawtchouk polynomials are
known:

(8) (k + 1)P n
k+1(x) = (n− 2x)P n

k (x)− (n− k + 1)P n
k−1(x),

(9) (n− x)P n
k (x+ 1) = (n− 2k)P n

k (x)− xP n
k (x− 1),

(10) (n−k+1)P n+1
k (x) = (3n−2k−2x+1)P n

k (x)−2(n−x)P n−1
k (x),

(11) P n
k = P n

k (x− 1)− P n
k−1(x)− P n

k−1(x− 1),

(12) P n
k = P n−2

k (x− 1)− P n−2
k−2 (x− 1),

(13) P n
k = P n−1

k (x) + P n−1
k−1 (x),

and

(14) P n
k = P n−1

k (x− 1)− P n−1
k−1 (x− 1),

whilst the following are standard initial conditions:

(15) P n
0 (x) = 1

and

(16) P n
1 (x) = n− 2x.

Krawtchouk polynomials of small degree are also known, taking the
following forms:
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(17) P n
2 (x) =

(n− 2x)2 − n
2

(18) P n
3 (x) =

(n− 2x)((n− 2x)2 − 3n+ 2)

6

Krawtchouk polynomials evaluated at 0 and 1 are also known:

(19) P n
k (0) =

(
n

k

)
and

(20) P n
k (1) =

n− 2k

n

(
n

k

)
.

Very important symmetry properties of Krawtchouk polynomials
are reflected in the following relations and formulae:

(21) P n
k (x)

(
n

x

)
= P n

x (k)

(
n

k

)
, (for nonnegative integer x).

and

(22) P n
k (x) = P n

k (n− x)(−1)k,

That they are symmetric (or antisymmetric) with respect to n
2
leads

to

(23) P n
k (x) = P n

n−k(x)(−1)x, (for integer x, 0 ≤ x ≤ n).

These symmetric properties allow us to only have to deal with integer
zeroes for k ≤ n

2
(in fact, k < n

2
).
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1.4. Coefficients of Krawtchouk Polynomials.
Several coefficients of Krawtchouk polynomials can be calculated

directly.
If P n

k (x) = akx
k + ....+ a0 then,

(24) ak =
−2k

k!
,

(25) ak−1 =
−2k−1n

(k − 1)!
,

(26) ak−2 =
−2k−2(3n2 − 3n+ 2k − 4)

(k − 2)!
,

and

(27) a0 =

(
n

k

)
.
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1.5. Integer Zeroes of Binary Krawtchouk Polynomials.
From now on the term ‘Krawtchouk polynomials’ is restricted for

describing for the binary Krawtchouk polynomials only.
Several infinite families of integral zeroes of Krawtchouk polynomi-

als are known [9]. Evidently, for n even and k odd we always require
integer multiples of n/2 to be zero, known as a trivial zero. The known
values of k for which there exist non-trivial integer zeroes for infinitely
many n are: k = 2, 3, n−3

2
, n−4

2
, n−5

2
, n−6

2
, n−8

2
, provided k is an inte-

ger; For k = 2, 3 the results can be found from equations (16) and (17).

Lemma 1. (see e.g Ref. [9]) Let y = n− 2k. Then

(1) P n
k (2i) = 0⇔

∑y/2
j=o

(
k
i−j

)(
y
2i

)
(−1)j = 0,

(2) P n
k (2i+ 1) = 0⇔

∑(y−1)/2
j=o

(
k
i−j

)(
y

2i+1

)
(−1)j = 0.

Proof. Using equations (4) and (14), one can see that to find even
and odd zeroes of P n

k (x) one should find zero coefficients with even
and odd indices respectively of (1− z)k(1 + z)n−k = (1− z2)k(1 + z)y.
The result now follows from calculating the coefficient at z2i and z2i+1

respectively.

The lemma tells us that for small y the even zeroes can be found
from the following diophantine equation:(see Ref. [9])

(1) y = 3 : 4x− n+ 1 = 0;
(2) y = 4 : 8x2 − 8nx+ n2 − 2n = 0;
(3) y = 5 : 16x2 − 12nx+ 4r + n2 − 4n+ 3 = 0;
(4) y = 6 : 16x2 − 16nx+ n2 − 6n+ 8 = 0,

and for the non-trivial odd zeroes:
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(1) y = 3 : 4x− 3n− 1 = 0;
(2) y = 5 : 16x2 − 20nx− 4r + 5n2 + 3 = 0;
(3) y = 6 : 16x2 − 16nx+ 3n2 − 2n+ 8 = 0;
(4) y = 8 : 8x2 − 8nx+ n2 − 2n+ 16 = 0.

The following two theorems were proven in Ref. [10] and [11], re-
spectively.

Theorem 1. For each fixed k ≥ 4, P n
k (x) can only have non-trivial

integer zeroes for finitely many n.

Theorem 2. Let y > 6 be an odd number, a power of 2, or of the
form 2pq, where p is an odd prime, q is odd, and p does not divide q.
Then for k = n−y

2
, P n

k (x) can only possess non-trivial even zeroes for
finitely many n.

For the cases P n
4 (x) and P n

5 (x) (which will be discussed in detail in
chapter 2) the equations with x = (n− y)/2 will have the form:

(28) P n
4 (x)⇒ y4 − 6y2n+ 8y2 + 3n2 − 6n,

(29) P n
5 (x)⇒ y(y4 − 10y2n+ 20y2 + 15n2 − 50n+ 24).

and can be analysed using Pell’s equation.
The formal solution of P n

4 (x) = 0 is for

(30) x =
1

2
(n+

√
−4 + 3n−

√
2
√

8− 9n+ 3n2,

to be an integer. The outer root

(31) −4 + 3n−
√

2
√

8− 9n+ 3n2

must thus be an integer, which means that the inner root
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(32) 8− 9n+ 3n2

must be a perfect square. To satisfy the last condition we have
to solve Pell’s equations. Then we have to check that the outer root
gives an integer only for a geometrical progression generated by Pell’s
equations.

In this way we can reduce the amount of numbers that need to be
checked with our programme than simply going through the numbers
in a row, n = 1, 2, 3, .....

For k > 5 we find equations of higher degree, e.g., for k = 6,
(33)
P n

6 (x)⇒ y6−15ny4+40y4+45n2y2−210ny2+184y2−15n3+90n2−120n.
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1.6. A Conjecture on Krawtchouk Polynomials.
The coefficients of the following conjecture are precisely Krawtchouk

polynomials in view of the generating function equation (6). That is
here, and in general, the problem of finding integer zeroes is equiva-
lent to the question of zero coefficients in equation (6).

In Ref. [9] the following conjecture is stated:
Let n = m2 and s =

(
m
2

)
, n− s =

(
m+1

2

)
, So

(34)
n∑
i=0

aiz
i = (1− z)(

m
2 )(1 + z)(

m+1
2 )

Then the only zero coefficients for equation (34) are: a2 = 0,

am2−2 = 0, and am2

2

= 0, if m = 2 mod 4.

Let us now show that the coefficients a2, am2−2 and am2

2

if m = 2

mod 4 are indeed zero.
Proof:

Define

f(z) = (1− z)(
m
2 )(1 + z)(

m+1
2 ) =

m2∑
n=0

anz
n.(35)

Coefficient a2:
Taking k derivatives and setting z → 0 yields

f (k)(0) = k!ak ⇒ an =
1

n!
f (n)(0).(36)

The second derivative of f(z) is

f ′′(z) =
m (−1 +m2) z(−2 +mz)

(−1 + z2)2 f(z).(37)
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Since f(0) = 1, we find

1

2
f ′′(0) = 0 = a2.(38)

Expression for an:
We know from the binomial theorem, that

(1 + z)N =
N∑
k=0

(
N

k

)
zk,(39)

so we can write

f(z) =
N∑
k=0

M∑
j=0

(
N

k

)(
M

j

)
(−1)kzk+j,(40)

where we have denoted N =
(
m
2

)
and M =

(
m+1

2

)
. Changing the

order of summation, i.e. setting k + j = n, gives

f(z) =
N+M∑
n=0

zn
n∑

k=n−m

(
N

k

)(
M

n− k

)
(−1)k(41)

= (−1)n−M
m2∑
n=0

zn
M∑
k=0

(
N

n−M + k

)(
M

k

)
(−1)k,(42)

where we also changed the summation variable k → n−M + k and
used the binomial symmetry

(
M
n−k

)
=
(
M
k

)
. Therefore

an = (−1)n−M
M∑
k=0

(
N

n−M + k

)(
M

k

)
(−1)k.(43)
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Zero coefficients:
Consider now

am2−s = (−1)m
2−s−M

M∑
k=0

(
N

m2 − s−M + k

)(
M

k

)
(−1)k(44)

= (−1)s−N
M∑
k=0

(
N

s− k

)(
M

k

)
(−1)k,(45)

where we have used the definitions for N,M and the binomial symme-
try. By changing the summation to run from M to 0 by k →M − k,
we find

am2−s = (−1)s−N
M∑
k=0

(
N

s−M+k

)(
M
k

)
(−1)k−M = (−1)Nas.(46)

Setting s = 2 yields am2−2 = a2 = 0. Setting s = m2/2 for even m2

yields

am2/2 = (−1)Nam2/2.(47)

Then (−1)N = −1 for N = 1
2
m(m− 1) = odd and m = even, i.e. for

m = 4s+ 2 when s is a nonnegative integer, leading to am2/2 = 0.
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1.7. Numerical Investigation of the Conjecture.
We are going to check now for as large an m as manageable that

(1− z)(
m
2 )(1 + z)(

m+1
2 ) has only 3 zero coefficients for m ≥ 3. We shall

use the mathematica software package. We begin by describing an
algorithm to verifying the above conjecture for small values of m. We
start with a straightforward approach which will modified later to a
more efficient method.

There is a problem with verifying the above conjecture for large m
because the degree of those polynomials grows very fast, as m2

2
. An

example is given in Appendix A.
In fact, we do not need to calculate all of the coefficients to check

the validity of the conjecture. Our programme can be modified to
account for the fact that a2 = 0, i.e., we can restrict our calculation
to ai 6= 0 for 3 ≤ i ≤ m2−1

2
. An example is given in Appendix B.

With the above in mind, the values of the smallest coefficients for
the conjecture of Krawtchouk polynomials are shown in the following
table. We present the smallest coefficients between a3 and am2

2
−1
, for

3 ≤ m ≤ 100.
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Table 1. Smallest Coefficients for Krawtchouk conjecture

m Smallest Coefficient m Smallest Coefficient m Smallest Coefficient
3 6 31 9920 59 68440
4 20 32 10912 60 71980
5 40 33 11968 61 75640
6 70 34 13090 62 79422
7 112 35 14280 63 83328
8 168 36 15540 64 87360
9 240 37 16872 65 91520
10 330 38 18278 66 95810
11 440 39 19760 67 100232
12 572 40 21320 68 104788
13 728 41 22960 69 109480
14 910 42 24682 70 114310
15 1120 43 26488 71 119280
16 1360 44 28380 72 124392
17 1632 45 30360 73 129648
18 1938 46 32430 74 135050
19 2280 47 34592 75 140600
20 2660 48 36848 76 146300
21 3080 49 39200 77 152152
22 3542 50 41650 78 158158
23 4048 51 44200 79 164320
24 4600 52 46852 80 170640
25 5200 53 49608 81 177120
26 5850 54 52470 82 183762
27 6552 55 55440 83 190568
28 7308 56 58520 84 197540
29 8120 57 61712 85 204680
30 8990 58 65018 86 211990
87 219472 92 259532 97 304192
88 227128 93 268088 98 313698
89 234960 94 276830 99 323400
90 242970 95 285760 100 333300
91 251160 96 294880
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1.8. Using Modular Arithmetics.
In this section we show how one can extend the preceding calcula-

tions to greater values of m by using modular arithmetics.
No zero coefficients have been found in the range m = 3 to 239, so

the conjecture of Krawtchouk polynomials holds here.
Thus, using mathematica we have checked all m ≤ 239 and the

conjecture is true. (there is insufficient memory for the present code
to check beyond m > 239)

The idea is as follows: Let s = Πk
i=1p

αi
i be the prime factorization

of s (in my programme s = h[n]). We have

(48) s = Πk
i=1p

αi
i ≥ Πk

i=1pi ≥ 2k,

hence k ≤ log2 s, i.e., the number of prime factors k = k(n) which
n can have does not exceed log2 s. The coefficients of (1 − x)(

n
2)(1 +

x)(
n+1
2 ) do not exceed the corresponding coefficients of (1 + x)(

n
2)(1 +

x)(
n+1
2 ) = (1 + x)n

2 , i.e., they are definitely less than 2n
2 .

Thus, h[n] has at most log2 2n
2

= n2 prime factors. This means
that if we take any n2 primes p1, p2, ..., pn2 , then h[n] = 0 iff h[n] = 0

mod pi, i = 1, 2, ..., n2.
It turns out that most values of m can be excluded just by one large

prime p ' 106. Exceptional cases were excluded by using one extra
prime modulo.

An example of the mathematica programme is shown in Appendix
C for the results up tom ≤ 1000, i.e., for the polynomials up to degree
of approximately half a million.
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1.9. Krawtchouk Polynomials Proximity to Zero.
In this section (using mathematica) we attempt to estimate how

close P n
k (x) can approach zero for k = m(m− 1)/2 and n = m2.

Since Krawtchouk polynomials are conjectured to be nonzero at
integer points, we wrote a programme (shown in Appendix D) which
gives these values for normalised Krawtchouk polynomials.

Normalisation: It was conjectured (I. Krasikov, private communi-
cation) that,

(49) Fm(x) =

√
π
2

(
n
x

)
4
√
x(n− x) · P n

(m
2 )

(x)√(
n
k

)
· 2n

behaves as a sinus of some function, i.e., |Fm(x)| � 1 and is almost
an equioscillatory function.

Below are the plots of Fm(x) of degree
(

6
2

)
and

(
7
2

)
corresponding

to m = 6, 7.

Figure 1. Plot of F6(x) of degree
(

6
2

)
.
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Figure 2. Plot of F7(x) of degree
(

7
2

)
.

We calculated the value of Fm(x) at integer points 0, 1, 2, ...,m2 and
found the minima for m = 3 to 225, as given in the following table.

Table 2. The Decreasing Subsequence of m2 · F and
the value of m3 · F

m m2 · F m3 · F
5 2.49 12.45
6 1.46 8.76
7 0.41 2.87
9 0.376 3.384
56 0.321 17.976
69 0.129 8.901
77 0.0468 3.603
137 0.0228 3.123
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We were unable to calculate the data in this table to larger values
of m, so the results are inconclusive. However, it seems plausible that
Fm ·m3 > const. An example is given in Appendix D.
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2. Integer Zeroes of Krawtchouk Polynomials of
Degree 4 and 5

2.1. On Integral Zeroes of Krawtchouk Polynomials of Small
Degree.

In the next sections we study the integral zeroes of Krawtchouk
polynomials of small degree and try to derive them through new
methodology.

It will be convenient to define here non-trivial integral zeroes of
P n
k (x) to be an ordered triple of positive integers (k, x, n), with 4 ≤
k ≤ n/2, x ≤ n/2 and P n

k (x) = 0.
Chihara and Stanton show in Ref. [12] that the integral zeroes for

degree 1,2, and 3 are:

(1) (1, k, 2k), k ≥ 1,

(2) (2, k(k − 1)/2, k2), k ≥ 3, and
(3) (3, k(3k ± 1)/2, 3k2 + 3k + 3/2± (k + 1/2)), k ≥ 2.

The following theorem describes the non-trivial integral zeroes of the
binary Krawtchouk polynomials (see equation (3)) using t and r as
parameters.

Theorem 3. [13] The Krawtchouk polynomials P n
k (x) have inequiva-

lent non-trivial integer zeroes, (k, x, n), for the following values:

(1) for t ≥ 2 and r = 3 + 2
√

2,

k = (rt + r−t − 20)

x = n/2− (rt − r−t)/2
√

2

n = 2k + 4⇒ k = n
2
− 2.

(2) for t ≥ 2 and r = 9 + 4
√

5,

k = ((
√

5± 1)rt + (
√

5∓ r−t))/2
√

5− 3

x = (3k + 7)/4∓ ((
√

5± 1)rt − (
√

5∓ 1)r−t)/8

n = 2k + 5⇒ k = n
2
− 5

2
.



25

(3) for t ≥ 2 and r = 9 + 4
√

5,

k = ((2
√

5± 4)rt − (2
√

5∓ 4)r−t)/2
√

5− 3

x = (3k + 7)/4∓ ((2
√

5± 4)rt + (2
√

5∓ 4)r−t)/8

n = 2k + 5⇒ k = n
2
− 5

2
.

(4) for t ≥ 2 odd and r = 2 +
√

3,

k = ((2
√

3± 1)rt + (2
√

3∓ 1)r−t)/4
√

3− 7/2

x = k + 3− (2
√

3± 1)rt + (2
√

3∓ 1)r−t)/8

n = 2k + 6⇒ k = n
2
− 3.

(5) for t ≥ 2 and r = 3 + 2
√

2,
k = ((5± 2

√
2)rt + (5∓ 2

√
2)r−t)/4− 9/2

x = k + 4− ((5± 2
√

2)rt + (5∓ 2
√

2)r−t)/4
√

2

n = 2k + 8⇒ k = n
2
− 4.
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Here is a list of the some Krawtchouk polynomial inequivalent non-
trivial integer zeroes, (k, x, n), at the first values of t.

k 178 1134 6760 39182
x 19 159 975 5731
n 360 2272 13416 73868

k 230 4178 75022 1346266
x 44 798 14328 257114
n 465 8361 150049 2692537

k 607 10943 196415 3524575
x 116 2090 37512 673134
n 1219 21891 392835 7049155

k 30 463
x 4 62
n 66 932

k 103 622 3647 21278
x 31 138 1069 6233
n 214 1252 7302 42564
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2.2. Pell’s Equation.
Here we describe some classical results of Pell’s equation.

Definition 1. [14] Pell’s equation is a diophantine equation of the
form x2− dy2 = 1, x, y ∈ Z, where d is a given natural number which
is not a square. An equation of the form x2 − dy2 = a for an integer
a is usually referred to as a Pell-type equation.

For d = c2, c ∈ Z, the equation x2 − dy2 = a can be factored as
(x − cy)(x + cy) = a and therefore solved without using any further
theory. So, unless stated otherwise, d will always be assumed to not
be a square.

The equation x2 − dy2 = a can still be factored as

(x+ y
√
d)(x− y

√
d) = a.

In order to be able to make use of this factorisation, we must deal
with numbers of the form x+ y

√
d, where x, y are integers.

Definition 2. [14] The conjugate of the number z = x+y
√
d is defined

as z̄ = x− y
√
d, and its norm as N(n) = zz̄ = x2 − dy2 ∈ Z.

Theorem 4. [14] The norm and the conjugate are multiplicative in
z : N(z1z2) = N(z1)N(z2) and z1z2 = z̄1 · z̄2.

Theorem 5. [14] If z0 is the minimal element of Z[
√
d] with z0 > 1

and N(z0) = 1, then all the elements z ∈ Z[
√
d] with Nz = 1 are

given by z = ±zn0 , n ∈ Z

Corollary 1. If (x0, y0) is the smallest solution of Pell’s equation with
d given, then all natural solutions (x, y) of the equation are given by
x+ y

√
d = ±(x0 + y0

√
d)n, n ∈ N.

Note that z = x+y
√
d determines x and y by the formulae x = z+z̄

2

and y = z−z̄
2
√
d
. Thus, all the solutions of the Pell’s equation are given

by the formulae
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x =
zn0 + z̄n0

2
and y =

zn0 − z̄n0
2
√
d

.
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2.3. Pell-type Equation.
A Pell-type equation (i.e., an equation of the form x2 − dy2 = −1)

may, in general, not have integer solutions. When it does, it is possible
to describe the general solution.

Theorem 6. [14] Equation x2 − dy2 = −1 has an integral solution if
and only if there exists z1 ∈ Z[

√
d] with z2

1 = z0.

Theorem 7. [14] If a is an integer such that the equation N(z) =

x2 − dy2 = a has an integer solution, then there is a solution with
|x| ≤ z0+1

2
√
z0

√
|a| and the corresponding upper bound for y =

√
x2−a
d

.
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2.4. Applying Pell’s Equation to Our Two Cases.
Here we will demonstrate how to use Pell’s equation to solve equa-

tions (80) and (82), which are needed in the subsequent sections.

(1) General remarks
Let us consider a Diophantine equation of the form

(50) Ax2 −By2 = C

with integer A, B, and C. By multiplying both sides with A
one can rewrite it as

(51) A2x2 − ABy2 = AC, t2 − ABy2 = AC, t = Ax.

The solutions of equation (51) are connected with the solutions
of the corresponding Pell’s equation,

(52) t2 − ABy2 = 1

in the following way. Let us assume one knows one solution
t0, y0 of equation (52) and T0, Y0 of equation (51). Then,
multiplying equations (51) and (52) one finds:

AC = (T 2
0 − ABY 2

0 ) · (t20 − ABy2
0) =

= (T0 +
√
ABY0)(T0 −

√
ABY0) · (t0 +

√
ABy0)(t0 −

√
ABy0) =

= [(T0 +
√
ABY0)(t0 +

√
ABy0)] · [(T0 −

√
ABY0)(t0 −

√
ABy0)] =

= [T0t0 + ABY0y0 +
√
AB(t0Y0 + T0y0)] · [T0t0 +

ABY0y0 −
√
AB(t0Y0 + T0y0)] =

= (T0t0 + ABY0y0)2 − AB(t0Y0 + y0T0).

This is equivalent to (remember that T0 = AX0)

(53) A2(X0t0 +By0Y0)2 − AB(t0Y0 + AX0y0)2 = AC
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Comparing this equation with equation (51) one can see that
if X0,Y0 is a solution of equation (50) and t0,y0 is a solution of
Pell’s equation (51) then

(54) X1 = X0t0 +By0Y0, Y1 = t0Y0 + AX0y0

is also solution of equation (50). Equation (54) can be used
recursively.

(2) Solution of Pell’s equation
Pell’s equation

(55) t2 − γy2 = 1, γ = AC

has one trivial solution t = 1, y = 0 (not important) and an
infinite number of non-trivial solutions. It also has a property
that if ti, yi and tj, yj are solutions of equation (55), then

(56) tk = titj + γyiyj, yk = tiyj + tjyi

is also solution of equation (55), whilst

(titj + γyiyj)
2 − γ(tiyj + tjyi)

2 = (titj)
2 +((((

(((2γ(titj)(yiyj) + γ2(yiyj)−

−γ[(tiyj)
2 +���

���(titj)(yiyj) + (yitj)
2] = (t2i − γy2

i ) · (t2j − γy2
j ) = 1

In general, all solutions of equation (55) can be obtained with
successive “multiplication” (56) of the first non-trivial solution
by itself, i.e.,

t1 = t20 + γy2
0, , y1 = 2t0y0

t2 = t1t0 + γy1y0, , y2 = t0y1 + t1y0(57)

tn = tn−1t0 + γyn−1y0, , yn = t0yn−1 + tn−1y0

(58)
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It is convenient to write the solution of equation (55) in the
other form. From equation (57) one can easily see that

(t0 + y0
√
γ)2 = [t20 + γy2

0] + 2t0y0
√
γ = t1 + y1

√
γ

(t0 − y0
√
γ)2 = t1 − y1

√
γ

and this chain can be continued

(t0 + y0
√
γ)3 = (t0 − y0

√
γ)2 · (t0 − y0

√
γ) =

= (t1 + y1
√
γ) · (t0 − y0

√
γ) =

= (t1t0 + γy1y0) + (t0y1 + t1y0)
√
γ = t2 + y2

√
γ

(t0 − y0
√
γ)3 = t2 − y2

√
γ

...etc

(t0 + y0
√
γ)n = (t0 + y0

√
γ)n−1 · (t0 + y0

√
γ) =

= (tn−2 + yn−2
√
γ) · (t0 + y0

√
γ) = tn−1 + yn−1

√
γ

(t0 − y0
√
γ)n = tn−1 − yn−1

√
γ,

Ultimately, one can explicitly express the n−th solution over
the first non-trivial solution as

tn−1 =
1

2
[(t0 + y0

√
γ)n + (t0 − y0

√
γ)n](59)

yn−1 =
1

2
√
γ

[(t0 + y0
√
γ)n − (t0 − y0

√
γ)n](60)

(3) A = 2, B = 3, C = 5

Firstly, substitute A = 3, B = 2 into Pell’s equation (55)
(remember t = Ax),

(61) t2 − 6y2 = 1



33

The first solution is clearly

(62) t0 = ±5, y0 = ±2

(± because of the symmetry t↔ −t,y ↔ −y). Then

tn−1 = ±1

2
[(5 + 2

√
6)n + (5− 2

√
6)n](63)

yn−1 = ± 1

2
√

6
[(5 + 2

√
6)n − (5− 2

√
6)n].(64)

After substitution of A, B, and C into equation (50), we
have to solve

(65) 2x2 − 3y2 = 5.

The first solution is clearly

(66) X0 = ±2, Y0 = ±1

and, after substituting equations (63) and (66) into (54), the
general solution is

(67)

Xn−1 = ±[(5 + 2
√

6)n + (5− 2
√

6)n]± 3

2
√

6
[(5 + 2

√
6)n− (5− 2

√
6)n],

and
(68)

Yn−1 = ±1

2
[(5+2

√
6)n+(5−2

√
6)n]± 1

2
√

6
[(5+2

√
6)n− (5−2

√
6)n].

(4) A = 2, B = 5, C = 27

Following the above route, Pell’s equation is

(69) t2 − 10y2 = 1.

The initial solution is clearly

(70) t0 = ±19, y0 = ±6,
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with the general solution of Pell’s equation being

tn−1 = ±1

2
[(19 + 6

√
10)n + (19− 6

√
10)n](71)

yn−1 = ± 1

2
√

10
[(19 + 6

√
10)n − (19− 6

√
10)n].(72)

The equation to solve is then

(73) 2x2 − 5y2 = 27,

with the initial solution

(74) X0 = ±4, Y0 = ±1.

Finally, substituting equations (63) and (66) into (54) gives
the overall solution

(75)

Xn−1 = ±2[(19+6
√

10)n+(19−6
√

10)n]± 5

2
√

10
[(19+6

√
10)n−(19−6

√
10)n],

and
(76)

Yn−1 = ±1

2
[(19+6

√
10)n+(19−6

√
10)n]± 4√

10
[(19+6

√
10)n−(19−6

√
10)n].
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2.5. Krawtchouk Polynomials of Degree 4.
The quartic equation P n

4 (x) = 0 has a finite number of non-trivial
solutions. This follows from a well-known theorem on hyperelliptic
equations [15]. We can write

(77)
∞∑
k=0

P n
k (x)zk = (1− z2)4(1 + z)n

and

(78)
∞∑
k=0

P n
k (x)zk = (1− 4z2 + 6z4 − 4z6 + z8)(1 + z)n.

Using mathematica, the values of solutions that help us to find the
zeroes of Krawtchouk polynomials of degree 4 are shown in Figure
3. From this, we can say that for degree 4 the equation must be as
follows:

(79) 2(y2 − 3n+ 4)2 − 3(2n− 3)2 = 5

where y = n− 2x, i.e., y = n mod 2.
Also, we can see that by reducing equation (79) to the integer zeroes,

we get the following solutions:
For, n = 0, y = 0, and for, n = 1, y = ±1.

For, n ≥ 2, y = ±
√
−4 + 3n±

√
16− 18n+ 6n2.

To solve these equations we will use the technique to solve Pell’s
equation given in Ref. [16].
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Figure 3. Krawtchouk polynomials of degree 4.
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2.6. Application of Pell’s Equation to Krawtchouk Polynomi-
als of Degree 4.

Firstly, let xi = y2 − 3n + 4 and yi = 2n− 3 so that equation (43)
becomes:

(80) 2x2
i − 3y2

i = 5

Using the solutions of Pell’s equation (67) and (68), all the integer
solutions for equation (80) should follow the following solutions:

let s ∈ Z, such that s ≥ 0

x1 =
1

4
(−4(5−2

√
6)s+

√
6(5−2

√
6)s−4(5 + 2

√
6)s−

√
6(5 + 2

√
6)s),

x2 =
1

4
(4(5− 2

√
6)s −

√
6(5− 2

√
6)s + 4(5 + 2

√
6)s +

√
6(5 + 2

√
6)s),

x3 =
1

4
(4(5− 2

√
6)s +

√
6(5− 2

√
6)s + 4(5 + 2

√
6)s −

√
6(5 + 2

√
6)s),

x4 =
1

4
(−4(5−2

√
6)s−

√
6(5−2

√
6)s−4(5 + 2

√
6)s+

√
6(5 + 2

√
6)s).

and solution for yi are:

y1 =
1

6
(−3(5−2

√
6)s+2

√
6(5−2

√
6)s−3(5+2

√
6)s−2

√
6(5+2

√
6)s),

y2 = −1

6
(−3(5−2

√
6)s+2

√
6(5−2

√
6)s−3(5+2

√
6)s−2

√
6(5+2

√
6)s),

y3 =
1

6
(3(5−2

√
6)s+2

√
6(5−2

√
6)s+3(5+2

√
6)s−2

√
6(5+2

√
6)s),

y4 = −1

6
(3(5−2

√
6)s+2

√
6(5−2

√
6)s+3(5+2

√
6)s−2

√
6(5+2

√
6)s),

Example 1. Let s = 0, in the solutions x1 and y1, then,

x1 =
1

4
(−4 +

√
6− 4−

√
6) = −2

and,

y1 =
1

6
(−3 + 2

√
6− 3− 2

√
6) = −1
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so, from equation (80) we get,

2(−2)2 − 3(−1)2 = 5

Other examples of integer solutions for equation (80):

x2 y2 x2 y2

2 1 1517078 1238689
16 13 15017524 12261757
158 129 148658162 121378881
1564 1277 1471564096 1201527053
15482 12641 14566982798 11893891649
153256 125133 144198263884 117737389437

It may become clearer if we use an alternate form of equation (79),
such as

y4 − 6y2n+ 8y2 + 3n2 − 6n = 0

To find the integer solutions we can follow the proceeding route:
Possible intermediate steps:

3n2 − 6ny2 − 6n+ y4 + 8y2 = 0

Expanding terms on the left hand side:

3n2 + n(−6y2 − 6) + y4 + 8y2 = 0

Solving the quadratic equation by computing the square, then di-
viding both sides by 3:

n2 +
1

3
n(−6y2 − 6) +

1

3
(y4 + 8y2) = 0

Subtracting 1
3
(y4 + 8y2) from both sides:

n2 +
1

3
n(−6y2 − 6) =

1

3
(−y4 − 8y2)
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Adding 1
36

(−6y2 − 6)2 to both sides:

n2 +
1

3
n(−6y2− 6) +

1

36
(−6y2− 6)2 =

1

36
(−6y2− 6)2 +

1

3
(−y4− 8y2)

Factoring the left hand side:

(n+
1

6
(−6y2 − 6))2 =

1

3
(2y4 − 2y2 + 3)

Taking the square root of both sides:

|n+
1

6
(−6y2 − 6)| =

√
2y4 − 2y2 + 3

3
Eliminating the absolute value:

n+
1

6
(−6y2 − 6) = ±

√
2y4 − 2y2 + 3

3
Adding 1

6
(6y2 + 6) to both side:

n =
1

3
(3 + 3y2 ±

√
3
√

3− 2Y 62 + 2y4)

and all the integer solutions n will be found from the following:

n = y2 ±
√

2y4 − 2y2 + 3√
3

+ 1 and y, n ∈ Z

Then we check if xi and yi give an integer solution for equation
(79). In Ref. [17] it was conjectured that the only non-trivial integral
zeroes are (17,7), (66,30), (1521,715), (15043,7476). It was proven in
Ref. [9] that the list is complete.

Using mathematica we have checked up to the 20, 000, 000, 000

integer solution for equation (80). The only integral zeroes for equa-
tion (79) are (17,7), (66,30), (1521,715), (15043,7476) (see Appendix
E).
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2.7. Krawtchouk Polynomials of Degree 5.
The same system that applied to Krawtchouk polynomials of degree

4 can also be applied for degree 5.

Figure 4. Krawtchouk polynomials of degree 5.

It is clear from figure 4 that the equation to be solved will take the
form:

(81) 2(y2 − 5n+ 10)2 − 5(2n− 5)2 = 27.
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By reducing equation (81) to integer zeroes we find the following
solutions:

For, n = 1, y = ±1, and for, n = 2, y = ±2,
For, n ≥ 3, y = ±

√
−10 + 5n±

√
76− 50n+ 10n2.

Applying Pell’s equation, using the substitituion xi = y2 − 5n+ 10

and yi = 2n− 5 in equation (81), we find:

(82) 2x2
i − 5y2

i = 27.

Using the solutions of Pell’s equations given by equations (75) and
(76), the integer solutions for equation (82) are:

Let s ∈ Z such that s ≥ 0 , then

x1 =
1

4
(−8(19−6

√
10)s+

√
10(19−6

√
10)s−8(19+6

√
10)s−

√
10(19+6

√
10)s),

x2 =
1

4
(8(19−6

√
10)s−

√
10(19−6

√
10)s+8(19+6

√
10)s+

√
10(19+6

√
10)s),

x3 =
1

4
(8(19−6

√
10)s+

√
10(19−6

√
10)s+8(19+6

√
10)s−

√
10(19+6

√
10)s),

x4 =
1

4
(−8(19−6

√
10)s−

√
10(19−6

√
10)s−8(19+6

√
10)s+

√
10(19+6

√
10)s),

x5 =
3

4
(−4(19−6

√
10)s+

√
10(19−6

√
10)s−4(19+6

√
10)s−

√
10(19+6

√
10)s),

x6 = −3

4
(−4(19−6

√
10)s+

√
10(19−6

√
10)s−4(19+6

√
10)s−

√
10(19+6

√
10)s),

x7 =
3

4
(4(19−6

√
10)s+

√
10(19−6

√
10)s+4(19+6

√
10)s−

√
10(19+6

√
10)s),

x8 = −3

4
(4(19−6

√
10)s+

√
10(19−6

√
10)s+4(19+6

√
10)s−

√
10(19+6

√
10)s).

and solutions for yi are:

y1 =
1

10
(−5(19−6

√
10)s+4

√
10(19−6

√
10)s−5(19+6

√
10)s−4

√
10(19+6

√
10)s),
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y2 = − 1

10
(−5(19−6

√
10)s+4

√
10(19−6

√
10)s−5(19+6

√
10)s−4

√
10(19+6

√
10)s),

y3 =
1

10
(5(19−6

√
10)s+4

√
10(19−6

√
10)s+5(19+6

√
10)s−4

√
10(19+6

√
10)s),

y4 = − 1

10
(5(19−6

√
10)s+4

√
10(19−6

√
10)s+5(19+6

√
10)s−4

√
10(19+6

√
10)s),

y5 =
3

10
(−5(19−6

√
10)s+2

√
10(19−6

√
10)s−5(19+6

√
10)s−2

√
10(19+6

√
10)s),

y6 = − 3

10
(−5(19−6

√
10)s+2

√
10(19−6

√
10)s−5(19+6

√
10)s−2

√
10(19+6

√
10)s),

y7 =
3

10
(5(19−6

√
10)s+2

√
10(19−6

√
10)s+5(19+6

√
10)s−2

√
10(19+6

√
10)s),

y8 = − 3

10
(5(19−6

√
10)s+2

√
10(19−6

√
10)s+5(19+6

√
10)s−2

√
10(19+6

√
10)s).

Example 2. Let s = 0, in the solutions x1 and y1, then,

x1 =
1

4
(−8 +

√
10− 8−

√
10) = −4,

and,

y1 =
1

10
(−5 + 4

√
10− 5− 4

√
10) = −1,

so, from equation (82) we find,

2(−4)2 − 5(−1)2 = 27

Other examples of integer solutions for equation (82) are given in
the following table.

x2 y2 x2 y2

4 1 8367350944 5291977393
106 67 317738989726 200955781795
4024 2545 12065714258644 7631027730817
152680 96643 458179402838746 289778097989251
5802604 3669889 17398751593613704 11003936695860721
220346146 139359139 660694381154482006 417859816344718147
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Using mathematica we have checked up to the 20, 000, 000, 000 in-
teger solution for equation (82). The only integral zeroes for equation
(81) are (17,3), (36,14), (67,28), (289,133), (10882,5292), (48324,24013)
(see Appendix F).
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3. Integer zeroes of krawtchouk polynomials of degree
6 and 7

Roelof J. Stroker has provided a complete set of integral zeroes of
the binary Krawtchouk polynomials of degree 6 and 7 [18]. The zeroes
of these polynomials correspond to points on certain rational elliptic
curves. The results are obtained by applying estimates of associated
linear forms of elliptic logarithms.

3.1. Krawtchouk Polynomials of Degree 6.
The Krawtchouk polynomial for degree 6 is given by

y6 − 15y4n+ 40y4 + 45y2n2 − 210y2n

−15n3 + 184y2 + 90n2 − 120n = 0.
(83)

This can be dealt with using Diophantine Equations. In this case,
let U = n and V = y2 in equation (83), so that the following binary
diophantine equation emerges:

−15U3 + 45U2V − 15UV 2 + V 3 + 90U2−

210UV + 40V 2 − 120U + 184V = 0.
(84)

Solutions for U and V in equation (84) are given by (withM = −2V 6+

30V 5 − 351V 4 + 620V 3 − 897V 2 + 600V − 400):
U1 = 1

32/3
3

√
2
5
(12V 3 − 15V 2 +

√
3
√
M + 3V )1/3

− (−1350V 2 +1350V −2700)/(135×52/3 3
√

6(12V 3−15V 2 +
√

3
√
M +

3V )1/3 + V + 2,

U2 = − 1
3√562/3

(1 − i
√

3(12V 3 − 15V 2 +
√

3
√
M + 3V )(1/3) + ((1 +

i
√

3)(−1350V 2 + 1350V 2 + 1350V − 2700))/(270 × 52/3 3
√

6(12V 3 −
15V 2 +

√
3
√
M + 3V )1/3) + V + 2,

and
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U3 = − 1
3√562/3

(1 + i
√

3(12V 3 − 15V 2 +
√

3
√
M + 3V )(1/3) + ((1 −

i
√

3)(−1350V 2 + 1350V 2 + 1350V − 2700))/(270 × 52/3 3
√

6(12V 3 −
15V 2 +

√
3
√
M + 3V )1/3) + V + 2.

The first few integer solutions for equation (83) are then:
n = 1, y = 1

n = 2, y = 0, 2

n = 3, y = 1, 3

The zeroes of the Krawtchouk polynomials of degree 6 are then
found from the following route:

Theorem 8. [18] The diophantine equation (84) has integral solu-
tions (U,V) as given in Table 3, below. In addition to the solutions,
corresponding values of x,n,y are also given in the Table. Symmetry
about x=n/2 permits us to reduce the required solutions to x ≤ n/2.

The complete set of integer zeroes for equation (83) was given in
Ref. [18].

Table 3. Solutions of equation (83).

Solutions (U, V ) of (47), U = n, V = y2, x ≤ n/2
(U, V ) x n y (U, V ) x n y (U, V ) x n y
(-14,-56) (3,1) 1 3 1 (9,25) 2 9 5
(-4,-20) (3,9) 0 3 3 (12,4) 5 12 2
(-1,-9) (4,0) 2 4 0 (12,36) 3 12 6
(0,0) 0 0 0 (4,4) 1 4 2 (12,100) 1 12 10
(1,1) 0 1 1 (4,16) 0 4 4 (16,144) 2 16 12
(2,-14) (5,1) 2 5 1 (25,9) 11 25 3
(2,0) 1 2 1 (5,9) 1 5 3 (67,25) 31 67 5
(2,4) 0 2 2 (5,25) 0 5 5 (345,1225) 155 345 35
(3,-5)
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3.2. Krawtchouk Polynomials of Degree 7.
Modified Krawtchouk polynomial for degree 7 is:

y(y6 − 21y4n+ 70y4 + 105y2n2 − 630y2n− 105n3

+784y2 + 840n2 − 1764n+ 720) = 0.
(85)

To deal with this using Diophantine Equations we let U = n − 1

and V = y2 − 1 in equation (85) to find

−105U3 + 105U2V − 21UV 2 + V 3 + 630U2

−462UV + 52V 2 − 840U + 360V = 0.
(86)

Solutions for U and V in equation (86) are then found through the
following route:

Let H = −2V 6 + 58V 5 − 1269V 4 + 6264V 3 − 38175V 2 + 88200V −
294000

U1 = 1
3×52/3

3

√
2
7
(20V 3 − 45V 2 + 3

√
5
√
H − 45V )1/3 − (−4410V 2 +

13230V −132300)/(945×72/3 3
√

10(20V 3−45V 2+3
√

5
√
H−45V )1/3)+

V+6
3
,

U2 = − 1

3 3√7102/3
(1− i

√
3)(20V 3− 45V 2 + 3

√
5
√
H − 45V )1/3 + ((1 +

i
√

3)(−4410V 2 + 13230V − 132300))/(1890× 72/3 3
√

10(20V 3− 45V 2 +

3
√

5
√
H − 45V )1/3) + V+6

3
,

and
U3 = − 1

3 3√7102/3
(1 + i

√
3)(20V 3− 45V 2 + 3

√
5
√
H − 45V )1/3 + ((1−

i
√

3)(−4410V 2 + 13230V − 132300))/(1890× 72/3 3
√

10(20V 3− 45V 2 +

3
√

5
√
H − 45V )1/3) + V+6

3
.

The first few integer solutions for equation (85) are then:
n = 1, y = 0, 1

n = 2, y = 0, 2

n = 3, y = 0, 1, 3

n = 4, y = 0, 2, 4
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The zeroes of Krawtchouk polynomials of degree 7 are found as
follows:

Theorem 9. [18] The diophantine equation (86) has integral solutions
(U,V) as given in Table 4 below. In addition to the solutions, the table
also gives the corresponding values of x,n,y. Similar to the Krawtchouk
polynomials of degree 6, symmetry about x=n/2 permits the restriction
to x ≤ n/2.

The complete set of integer zeroes for equation (85) was given in
Ref. [18].

Table 4. Solutions of equation (85)

Solutions (U, V ) of (49), U = n, V = y2, x ≤ n/2
(U, V ) x n y (U, V ) x n y (U, V ) x n y
(-22,-132) (3,-7) (5,35) 0 6 6
(-6,-42) (3,3) 1 4 2 (8,8) 3 9 3
(-3,-25) (3,15) 0 4 4 (13,15) 5 14 4
(0,0) 0 1 1 (4,0) 2 5 1 (13,63) 3 14 8
(1,3) 0 2 2 (4,8) 1 5 3 (13,143) 1 14 12
(2,-18) (4,24) 0 5 5 (16,80) 4 17 9
(2,0) 1 3 1 (5,3) 2 6 2 (21,255) 4 22 16
(2,8) 0 3 3 (5,15) 1 6 4 (1028,1368) 469 1029 37

The solution process again employs recent developments in the es-
timation of linear forms in elliptic logarithms. Extensive coverage of
this method is given in Ref. [19], [20], & [21]. A detailed proof of
Theorem 8 is found in Ref. [18], whilst the proof of Theorem 9 has an
entirely similar structure.
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Appendices
A. Mathematica programme

Firstly:
We should use the Expand[expr ] to expands out products and pos-

itive integer powers in expr.
Secondly:

The Binomial [n,m] gives the binomial coefficient
(
n
m

)
.

Example:
When m=10 the result will be as follows:

Expand[(1-z)^Binomial[10,2](1+z)^Binomial[11,2]]

(1 + 10z - 330z^3 - 825z^4 + 4752z^5 + 21120z^6 -
34320z^7 - 291060z^8 + 31240z^9 + 2708992z^10 +
2204280z^11 - 18480540z^12 - 29306640z^13 + 95230080z^14 +
233465232z^15 - 365945910z^16 - 1382588460z^17 +
939642880z^18 + 6534277420z^19 - 585397098z^20 -
25482402000z^21 - 9454193280z^22 + 83415992400z^23 +
65482791660z^24 - 230728139928z^25 - 280152829440z^26 +
537151192600z^27 + 932243618020z^28 - 1030675892400z^29 -
2580943314048z^30 + 1528017910320z^31 + 6123319096455z^32 -
1339395298410z^33 - 12640577986560z^34 - 1047608424918z^35 +
22883390635105z^36 + 8025093350560z^37 - 36428580714240z^38 -
22304274057120z^39 + 50888231592792z^40 + 45596171546640z^41 -
61841242383360z^42 - 76943873141520z^43 + 64030757427720z^44 +
111691296518752z^45 - 53669770668800z^46 - 142121681174880z^47 +
30769808424300z^48 + 160003003806360z^49 - 160003003806360z^51 -
30769808424300z^52 + 142121681174880z^53 + 53669770668800z^54 -
111691296518752z^55 - 64030757427720z^56 + 76943873141520z^57 +
61841242383360z^58 - 45596171546640z^59 - 50888231592792z^60 +
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22304274057120z^61 + 36428580714240z^62 - 8025093350560z^63 -
22883390635105z^64 + 1047608424918z^65 + 12640577986560z^66 +
1339395298410z^67 - 6123319096455z^68 - 1528017910320z^69 +
2580943314048z^70 + 1030675892400z^71 - 932243618020z^72 -
537151192600z^73 + 280152829440z^74 + 230728139928z^75 -
65482791660z^76 - 83415992400z^77 + 9454193280z^78 +
25482402000z^79 + 585397098z^80 - 6534277420z^81 -
939642880z^82 + 1382588460z^83 + 365945910z^84 -
233465232z^85 - 95230080z^86 + 29306640z^87 + 18480540z^88 -
2204280z^89 - 2708992z^90 - 31240z^91 + 291060z^92 +
34320z^93 - 21120z^94 - 4752z^95 + 825z^96 + 330z^97 -
10z^99 - z^100)
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B. Modification to the Mathematica programme

We will use the following commands in Mathematica:

(1) For[start, test, incr, body ] – to make the programme run from
3 to 239.

(2) Print[expr1, expr2,..] – to print the expr1, followed by a new
line.

(3) Min[x1, x2, ...] – yields the numerically smallest value for xi
(our case is 0).

(4) Table[expr, imax ] – to tabulate the results.
(5) Abs[z] – to find the absolute value of the real or complex num-

ber z.
(6) Coefficient[expr, form] – gives the coefficient of form in the

polynomial expr.
(7) Expand[].
(8) Binomial[].
(9) Floor[x] gives the greatest integer less than or equal to x.

The programme is as follows:

For[m = 3, m <= 239, m++,
Print[

Min[
Table[

Abs[
Coefficient[

Expand[
(1 - z)^Binomial[m, 2]

(1 + z)^Binomial[m + 1, 2]]
, z^i]], {i, 3,

Floor[(m^2 - 1)/2]}]]]]
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C. Mathematica for Modular Arithmetics

The following mathematica programme shows the results up to
m ≤ 1000. Even if we find h[n] = 0 for some values of n, we have also
checked the results separately using a different prime number.

(* u[n] is a vector of the coefficients of
(1-x^2)^Binomial[n,2];
w[n] is a vector of the coefficients of
f[n]=(1-x^2)^Binomial[n,2]
(1+x)^n=(1-x)^Binomial[n,2] (1+x)^Binomial[n+1,2];
w1[n] is a vector of the coefficients of
w[n] from x^3 to the middle,
namely those we have to check that
they are not zeroes. All the coefficients at each
step of the calculations are reduced mod (pr).
The number h[n] is the minimal coefficient of
w1[n]; m[n] and gr[n] are calculated in advance
to avoid repeated computation of them at each step.*)

Clear[u, w, w1, h, pr, m, gr]
m[n_Integer] := m[n] = Binomial[n, 2];
gr[n_Integer] := gr[n] = (n^2 + Mod[n, 2])/2;
pr = Prime[100000]
1299709
u[n_Integer] := (g = {1};

Do[g = Mod[Join[g, {0, 0}] - Join[{0, 0}, g], pr],
{i, 1, m[n]}]; g)

w[n_Integer] := (g = u[n];
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Do[g = Mod[Join[g, {0}] + Join[{0}, g], pr],
{i, 1, n}]; g)
w1[n_Integer] := Take[w[n], {4, gr[n]}]
h[n_Integer] := Min[w1[n]]
A = 240; B = 1000;
Do[Print[{n, h[n]}], {n, A, B}]
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D. Proximity to Zero Using Mathematica

m2[m_Integer] := m2[m] = m^2
m21[m_Integer] := m21[m] = (m2[m] - m)/2;
m22[m_Integer] := m22[m] = m21[m] + m
q[m_Integer] := q[m] = Expand[(1 - x^2)^m21[m] (1 + x)^m]
b[m_Integer, 0] = 1;
b[m_Integer, k_Integer] := b[m, k] = b[m, k - 1]
(m2[m] - k + 1)/k
u[m_Integer, i_Integer] :=
u[m, i] = Sqrt[b[m, i]]/(i (m2[m] - i))^(1/4)
rn[m_Integer] :=
Sqrt[Pi/2] Min[
Table[N[Abs[Coefficient[q[m], x^i]]/u[m, i], 40], {i, 3,
m21[m]}]]/2^(m2[m]/2) Sqrt[Binomial[m2[m], m21[m]]]
Do[Print[{m, Timing[rn[m] m^2]}], {m, 5, 50}]
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E. Integer zeroes for Krawtchouk Polynomials of
degree 4

Clear[y1, n1, y2, n2, yy1, yy2, n3, y3, yy3]
For [s = 1, s <= 20000000000, s++;

y1 = Simplify[
1/6 (3 (5 - 2 Sqrt[6])^s - 2 Sqrt[6] (5 - 2 Sqrt[6])^s +

3 (5 + 2 Sqrt[6])^s + 2 Sqrt[6] (5 + 2 Sqrt[6])^s)];
n1 = (y1 + 3)/2;
yy1 = Sqrt[-4 + 3 n1 - Sqrt[16 - 18 n1 + 6 n1^2]];
If[IntegerQ[yy1],
Print["INTEGER ZERO (N,Y1) = ", {n1, (n1 - yy1)/2}]];

y2 = Simplify[
1/6 (-3 (5 - 2 Sqrt[6])^s - 2 Sqrt[6] (5 - 2 Sqrt[6])^s -

3 (5 + 2 Sqrt[6])^s + 2 Sqrt[6] (5 + 2 Sqrt[6])^s)];
n2 = (y2 + 3)/2;
yy2 = Sqrt[-4 + 3 n2 + Sqrt[16 - 18 n2 + 6 n2^2]];
If[IntegerQ[yy2],
Print["INTEGER ZERO (N,Y2) = ", {n2, (n2 - yy2)/2}]];

y3 = Simplify[
1/6 (-3 (5 - 2 Sqrt[6])^s - 2 Sqrt[6] (5 - 2 Sqrt[6])^s -

3 (5 + 2 Sqrt[6])^s + 2 Sqrt[6] (5 + 2 Sqrt[6])^s)];
n3 = (y3 + 3)/2;
yy3 = Sqrt[-4 + 3 n2 - Sqrt[16 - 18 n2 + 6 n2^2]];
If[IntegerQ[yy3],
Print["INTEGER ZERO (N,Y3) = ", {n3, (n3 - yy3)/2}]];]
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INTEGER ZERO (N,Y1) = {66,30}

INTEGER ZERO (N,Y3) = {17,7}

INTEGER ZERO (N,Y2) = {1521,715}

INTEGER ZERO (N,Y3) = {15043,7476}
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F. Integer zeroes for Krawtchouk Polynomials of
degree 5

Clear[y1, n1, y2, n2, yy1, yy2, n3, y3, yy3, n4, y4, yy4, n5, y5,
yy5, n6, y6, yy6, n7, y7, yy7, n8, y8, yy8]

For [s = 0, s <= 20000000000, s++;

y1 = Simplify[
1/10 (5 (19 - 6 Sqrt[10])^s - 4 Sqrt[10] (19 - 6 Sqrt[10])^s +

5 (19 + 6 Sqrt[10])^s + 4 Sqrt[10] (19 + 6 Sqrt[10])^s)];
n1 = (y1 + 5)/2;
yy1 = Sqrt[-10 + 5 n1 - Sqrt[76 - 50 n1 + 10 n1^2]];
If[IntegerQ[yy1],
Print["INTEGER ZERO (N,Y1) = ", {n1, (n1 - yy1)/2}]];

y2 = Simplify[-3/
10 (-5 (19 - 6 Sqrt[10])^s + 2 Sqrt[10] (19 - 6 Sqrt[10])^s -
5 (19 + 6 Sqrt[10])^s - 2 Sqrt[10] (19 + 6 Sqrt[10])^s)];

n2 = (y2 + 5)/2;
yy2 = Sqrt[-10 + 5 n2 - Sqrt[76 - 50 n2 + 10 n2^2]];
If[IntegerQ[yy2],
Print["INTEGER ZERO (N,Y2) = ", {n2, (n2 - yy2)/2}]];

y3 = Simplify[
1/10 (5 (19 - 6 Sqrt[10])^s + 4 Sqrt[10] (19 - 6 Sqrt[10])^s +

5 (19 + 6 Sqrt[10])^s - 4 Sqrt[10] (19 + 6 Sqrt[10])^s)];
n3 = (y3 + 5)/2;
yy3 = Sqrt[-10 + 5 n3 + Sqrt[76 - 50 n3 + 10 n3^2]];
If[IntegerQ[yy3],
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Print["INTEGER ZERO (N,Y3) = ", {n3, (n3 - yy3)/2}]];

y4 = Simplify[
1/10 (-5 (19 - 6 Sqrt[10])^s - 4 Sqrt[10] (19 - 6 Sqrt[10])^s -

5 (19 + 6 Sqrt[10])^s + 4 Sqrt[10] (19 + 6 Sqrt[10])^s)];
n4 = (y4 + 5)/2;
yy4 = Sqrt[-10 + 5 n4 + Sqrt[76 - 50 n4 + 10 n4^2]];
If[IntegerQ[yy4],
Print["INTEGER ZERO (N,Y4) = ", {n4, (n4 - yy4)/2}]];

y5 = Simplify[
3/10 (5 (19 - 6 Sqrt[10])^s + 2 Sqrt[10] (19 - 6 Sqrt[10])^s +

5 (19 + 6 Sqrt[10])^s - 2 Sqrt[10] (19 + 6 Sqrt[10])^s)];
n5 = (y5 + 5)/2;
yy5 = Sqrt[-10 + 5 n5 - Sqrt[76 - 50 n5 + 10 n5^2]];
If[IntegerQ[yy5],
Print["INTEGER ZERO (N,Y5) = ", {n5, (n5 - yy5)/2}]];

y6 = Simplify[-3/
10 (5 (19 - 6 Sqrt[10])^s + 2 Sqrt[10] (19 - 6 Sqrt[10])^s +
5 (19 + 6 Sqrt[10])^s - 2 Sqrt[10] (19 + 6 Sqrt[10])^s)];

n6 = (y6 + 5)/2;
yy6 = Sqrt[-10 + 5 n6 - Sqrt[76 - 50 n6 + 10 n6^2]];
If[IntegerQ[yy6],
Print["INTEGER ZERO (N,Y6) = ", {n6, (n6 - yy6)/2}]];

y7 = Simplify[
1/10 (-5 (19 - 6 Sqrt[10])^s + 4 Sqrt[10] (19 - 6 Sqrt[10])^s -

5 (19 + 6 Sqrt[10])^s - 4 Sqrt[10] (19 + 6 Sqrt[10])^s)];
n7 = (y7 + 5)/2;
yy7 = Sqrt[-10 + 5 n7 + Sqrt[76 - 50 n7 + 10 n7^2]];
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If[IntegerQ[yy7],
Print["INTEGER ZERO (N,Y7) = ", {n7, (n7 - yy7)/2}]];

y8 = Simplify[
3/10 (-5 (19 - 6 Sqrt[10])^s + 2 Sqrt[10] (19 - 6 Sqrt[10])^s -

5 (19 + 6 Sqrt[10])^s - 2 Sqrt[10] (19 + 6 Sqrt[10])^s)];
n8 = (y8 + 5)/2;
yy8 = Sqrt[-10 + 5 n8 - Sqrt[76 - 50 n8 + 10 n8^2]];
If[IntegerQ[yy8],
Print["INTEGER ZERO (N,Y8) = ", {n8, (n8 - yy8)/2}]];]

INTEGER ZERO (N,Y1) = {36,14}

INTEGER ZERO (N,Y2) = {67,28}

INTEGER ZERO (N,Y4) = {17,3}

INTEGER ZERO (N,Y3) = {10882,5292}

INTEGER ZERO (N,Y6) = {289,133}

INTEGER ZERO (N,Y1) = {48324,24013}
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