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Abstract

Bayesian subset selection suffers from three important difficulties: assigning

priors over model space, assigning priors to all components of the regression

coefficients vector given a specific model and Bayesian computational efficiency

(Chen et al., 1999). These difficulties become more challenging in Bayesian quantile

regression framework when one is interested in assigning priors that depend on

different quantile levels. The objective of Bayesian quantile regression (BQR), which

is a newly proposed tool, is to deal with unknown parameters and model uncertainty

in quantile regression (QR). However, Bayesian subset selection in quantile regression

models is usually a difficult issue due to the computational challenges and non-

availability of conjugate prior distributions that are dependent on the quantile level.

These challenges are rarely addressed via either penalised likelihood function or

stochastic search variable selection (SSVS). These methods typically use symmetric

prior distributions for regression coefficients, such as the Gaussian and Laplace, which

may be suitable for median regression. However, an extreme quantile regression

should have different regression coefficients from the median regression, and thus the

priors for quantile regression coefficients should depend on quantiles.

This thesis focuses on three challenges: assigning standard quantile dependent

prior distributions for the regression coefficients, assigning suitable quantile dependent

priors over model space and achieving computational efficiency. The first of these

challenges is studied in Chapter 2 in which a quantile dependent prior elicitation

scheme is developed. In particular, an extension of the Zellners prior which allows

for a conditional conjugate prior and quantile dependent prior on Bayesian quantile

regression is proposed. The prior is generalised in Chapter 3 by introducing a ridge

parameter to address important challenges that may arise in some applications, such

as multicollinearity and overfitting problems. The proposed prior is also used in

Chapter 4 for subset selection of the fixed and random coefficients in a linear mixed-

effects QR model. In Chapter 5 we specify normal-exponential prior distributions

for the regression coefficients which can provide adaptive shrinkage and represent an
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alternative model to the Bayesian Lasso quantile regression model.

For the second challenge, we assign a quantile dependent prior over model space

in Chapter 2. The prior is based on the percentage bend correlation which depends

on the quantile level. This prior is novel and is used in Bayesian regression for the

first time. For the third challenge of computational efficiency, Gibbs samplers are

derived and setup to facilitate the computation of the proposed methods.

In addition to the three major aforementioned challenges this thesis also

addresses other important issues such as the regularisation in quantile regression

and selecting both random and fixed effects in mixed quantile regression models.
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Chapter 1

Introduction

Decades after its introduction by Koenker and Bassett (1978), the technique of

quantile regression (QR) has been the subject of great theoretical interest as well as

numerous practical applications in a number of fields such as, ecology, econometrics,

biology, finance, social sciences and survival analysis; see Koenker (2005), Yu

et al. (2003) and Cade and Barry (2003) for an overview. Like standard mean

regression models, dealing with parameter and model uncertainty as well as updating

information is of great importance for QR and its applications. One of the attractions

of QR over its standard mean regression counterpart lies, in its ability to give a

more strong investigation of the entire distribution of the relationship between an

outcome of interest and its independent variables. To this end, QR is a very important

technique and has steadily spread as a comprehensive extension to standard mean

regression (Koenker, 2005). To highlight the importance of QR and demonstrate its

application, by way of illustration we consider the US girls weight data (Cole, 1988),

studied by Yu and Jones (1998). This data describes the relationship between the

weight and age of 4011 individuals. In this section, we model the weight as a function

of age using the following cubic model

yi = β0 + β1xi + β2x
2
i + β3x

3
i + εi, (1.1)

1
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Figure 1.1: The panel depicts the relationship between weight and age of girls.
QR curve estimates from the highest to the lowest quantiles are plotted for p ∈
{97%, 90%, 75%, 50%, 25%, 10%, 3%}. The fitted standard mean regression curve is
illustrated by the solid red curve.
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where yi is the ith outcome (weight) in kg, xi is the ith age in years, εi is the ith

residual term. Here, β0, β1, β2 and β3 are the QR coefficients. The relationship

between weight and age is plotted in Figure 1.1 with seven fitted QR curves together

with standard mean regression curve. The seven fitted QR curve estimates are fitted

using the rq() function (Koenker, 2011).

From Figure 1.1 one can clearly indicate that the weight of girls tends to

increase as age increases. Furthermore, we can see that the spacing of QR curves

decreases from the highest (p = 0.97) to the lowest (p = 0.03) quantiles indicating

that the distribution of y|x is askew to the right, where p denotes the quantile

level. Owing to potential outliers present near age 17 and the inherent right skewed

conditional distribution, it can be observed that the conditional median (the 0.50

quantile) and mean curves are different and the standard mean regression estimate is

insufficient to estimate the relationship between weight and age. Additionally, Figure

1.1 demonstrates that different quantiles, such as the 25th and 75th percentile of the

weight, perhaps depend on the age of girls in a different form from the mean or the

median. In summary, Figure 1.1 demonstrates that a group of quantiles provides a

comprehensive tool to describe the relationship between weight and age compared

with the standard mean regression. Moreover, as noted by Yu et al. (2003), the

highest and lowest QR curves in Figure 1.1 can respectively be used as a proxy to

identify the obesity and weight loss of girls, respectively. Furthermore, QR models are

flexible models and insensitive to heteroscedastic errors and outliers in the outcome

variable, which are popular in many real world applications (Koenker and Bassett,

1978; Koenker, 2005).

There are two techniques to estimate the QR coefficients of independent

variables of the linear QR model. Both techniques of QR are considered in the

next section.
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1.1 Estimation

1.1.1 Classical quantile regression

Let (x′
1, y1), · · · , (x′

n, yn) represent a sample of observations. Then, the pth QR

equation can be denoted as

Qyi|xi
(p) = x′

iβp, p ∈ (0, 1), (1.2)

where yi is the outcome of interest, x′
i is a 1 × k vector denoting the ith row of the

n × k design matrix X , the unknown quantity βp is a vector of k QR coefficients

and Qyi|xi
(·) = F−1

yi|xi
(·) is the inverse distribution function. Koenker and Bassett

(1978) indicated that the unknown QR coefficients vector βp can be evaluated as the

solution to

min
βp

n∑

i=1

ρp(yi − x′
iβp), (1.3)

where

ρp(ε) =





pε if ε ≥ 0,

−(1− p)ε, if ε < 0.
(1.4)

Equivalently, (1.4) is sometimes expressed as

ρp(ε) =
|ε|+ (2p − 1)ε

2
. (1.5)

Figure 1.2 shows the check function at three different quantiles, namely 0.30, 0.20

and 0.10. Since the empirical check function, which is defined in (1.3), is not

differentiable at 0, a closed-form solution is not available for the QR parameters vector

βp (Koenker, 2005). However, the minimisation of (1.3) can be achieved through

an algorithm proposed by Koenker and D’Orey (1987). From a computational

perspective, many well known statistical packages such as STATA and SAS can

accommodate the estimation of the QR parameters and confidence intervals. In this
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Figure 1.2: The panel shows the check function at p = 0.30 (red line), p = 0.20
(blue line) and p = 0.10 (green line).

thesis, the estimators are implemented using the rq() function in the R package

quantreg (Koenker, 2011), and further information and explanations are given in

Koenker (2005).

Alternatively, Koenker and Machado (1999) observed that minimising the

empirical loss function of Koenker and Bassett (1978) is closely related to maximising

the likelihood of the Asymmetric Laplace Distribution (ALD) and consequently the

unknown quantile coefficients vector βp can be estimated through exploiting this link.

This observation, discussed in the proceeding subsection, opens new avenues when

dealing with QR and its application.
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1.1.2 Bayesian quantile regression (BQR) based on ALD

Following Yu and Zhang (2005), a random variable ε has an ALD(µ, τ, p) with µ = 0,

τ > 0 and 0 < p < 1 if its pdf is given by

f(ε;µ = 0, τ, p) =
p(1− p)

τ
exp{−ρp(ε)}, (1.6)

where ρp(ε) = (|ε| + (2p − 1)ε)/(2τ). Here, µ and τ represent the location and scale

parameters, respectively. It is known that when p = 0.5 the probability density

function in (1.6) is reduced to the standard symmetric form of the Laplace density,

that is

f(ε;µ = 0, τ, p = 0.5) =
1

4τ
exp{−|ε|

2τ
}. (1.7)

It is known that the expected value, variance, skewness (Sk) and kurtosis (Ku) of ε

are respectively given by (Yu and Zhang, 2005)

E(ε) =
τ(1 − 2p)

p(1− p)
,

Var(ε) =
τ2(1− 2p+ 2p2)

p2(1− p)2
,

Sk =
2(p3 − (1− p)3)

((1− p)2 + p2)3/2
,

Ku =
9p4 + 6p2(1− p)2 + 9(1 − p)4

(1− 2p + 2p2)2
.

Yu and Moyeed (2001) suggested a BQR approach where the errors are independently

ALD distributed. This framework is developed by the parity of the maximum a

posteriori estimator under the ALD and the check function estimator of Koenker

and Bassett (1978); (see, Koenker and Machado, 1999). Later, this Bayesian

framework has been extended by a number of researchers, and the evidence indicates

that the ALD is simply a working model with artificial assumptions (Yuan and

Yin, 2010). For example, Yu and Stander (2007) developed a Bayesian estimation

procedure for a left censored QR, Geraci and Bottai (2007) proposed a Bayesian QR
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framework for a random-intercept model using the ALD for the errors, Yuan and Yin

(2010) implemented Bayesian mixed-effects QR for correlated data, Benoit and Poel

(2011) considered binary QR from a Bayesian perspective, Lee and Neocleous (2010)

proposed a Bayesian framework for QR for count data and Härdle et al. (2011) who

developed an adaptation method for local QR based on the ALD, among others.

One of the attractive properties of the ALD is that it can be written as a

member of the location-scale mixture of normals family; see Kozumi and Kobayashi

(2011) and Reed and Yu (2009) who have independently shown that any variable that

is ALD distributed can be expressed as

w =d 1− 2p

p(1− p)
τw1 +

√
2w1τ

p(1− p)
w2, w2 ∼ N(0, 1), (1.8)

where w1 is called the mixing variable with the standard exponential distribution,

Exp(1). Here, N(0, 1) denotes the density function of a standard Gaussian

distribution and the variables w1 and w2 are supposed to be independent. This

approach connects the linear QR model for the outcome variable to the classical

normal linear regression model. In addition, under this representation, the regression

coefficients of independent variables, the scale parameter (τ) and the mixing variable

(w1) have desirable conjugacy features for constructing a simple Markov chain Monte

Carlo (MCMC) technique for fitting the model to the data. This MCMC algorithm

is implemented in an R function called MCMCquantreg() (Martin et al., 2011). The

mixture representation appeared in papers by Li et al. (2010), Yue and Rue (2011),

Burgette and Reiter (2012), Ji et al. (2012), Lum and Gelfand (2012), among others,

to conduct Bayesian QR methods via Gibbs sampler. Recently, Khare and Hobert

(2012) showed that the Gibbs sampler algorithm defined by Kozumi and Kobayashi

(2011) and Reed and Yu (2009) converges at a geometric rate.

Another perspective of Bayesian QR appeared in papers by Reich et al. (2010)

and Kottas and Krnjajić (2009), among others. For example, Kottas and Krnjajić

(2009) proposed a semiparametric formulation based on the Dirichlet process and
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Reich et al. (2010) considered a mixture model by assuming the errors are defined by

a mixture of two Gaussian distributions.

1.2 Subset selection

Finding the significant independent variables plays the most crucial role in building

a multiple regression model in many real world applications. Owing to removing

irrelevant independent variables, the selection process provides a very good prediction

performance as well as highlighting those independent variables, which are most

important in fitting the model to the data (Griffin and Brown, 2010). However,

classical subset selection methods, such as AIC (Akaike, 1973), Mallow’s Cp (Mallows,

1973) and BIC (Schwarz, 1978) are often highly time consuming and maybe suffer

from instability (Breiman, 1996). Recently, MCMC-based computation techniques

for subset selection using stochastic search variable selection (SSVS) algorithms have

become widely used in linear regression, generalised linear models, QR models and

other modeling frameworks (George and McCulloch, 1993; Lee et al., 2003; Kinney

and Dunson, 2007; Meligkotsidou et al., 2009; Reed et al., 2009; Fahrmeir et al.,

2010; Ji et al., 2012, among others). However, SSVS consumes a lot of time in some

applications, such as chemometrics or bioinformatics, and consequently the method

suffers from computational difficulties (Griffin and Brown, 2010). Despite these

undesirable properties, in practice SSVS produces good promising models compared

to other approaches.

Subset selection by shrinkage and selection of the coefficients of independent

variables has attracted much interest in recent years; see for instance, Lasso

(Tibshirani, 1996), fused Lasso technique (Tibshirani et al., 2005), SCAD (Fan and

Li, 2001), the elastic net method (Zou and Hastie, 2005), group Lasso method (Yuan

and Lin, 2005b) and the graphical Lasso (Yuan and Lin, 2007), among others. From

a Bayesian point of view, Park and Casella (2008) proposed Lasso-based model, Sun

et al. (2010) suggested Bayesian regression with the adaptive version of Lasso penalty,
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and Polsen and Scott (2011) considered and developed the global-local regularised

technique.

With regard to QR, Koenker (2004) introduced an l1-regularisation QR

approach for clustered data to shrink the random coefficients towards the origin

and Geraci and Bottai (2007) developed a Bayesian QR approach for clustered

dataset using an automatic technique to shrink the random coefficients to the origin.

Additionally, Wang et al. (2007) proposed the least absolute deviation technique,

Zou and Yuan (2008) introduced the idea of the composite QR and the authors have

shown the composite QR with adaptive version of the Lasso penalty enjoys the oracle

properties, Li and Zhu (2008) studied the QR with l1 penalty, Wu and Liu (2009)

developed regularised QR using the SCAD penalty and the adaptive version of the

Lasso penalty. Recently, Yuan and Yin (2010) introduced an l2 norm check function to

shrink the random effects towards the origin and Li et al. (2010) developed Bayesian

shrinkage techniques for QR.

1.3 Thesis outline

In Chapter 2, we suggest a modification of Zellners g-prior in QR as well as presenting

the Bayesian MCMC estimation procedure. For subset selection, we propose a novel

prior based on percentage bend correlation over model space. Most of Chapter 2 has

been published in Alhamzawi and Yu (2012b).

The focus of Chapter 3 is on Bayesian subset selection and coefficient estimation

in Tobit QR model. In this chapter, the modified g-prior has been used and

generalised by introducing a ridge parameter inside the variance covariance matrix to

deal with some problems such as multicollinearity and overfitting problems that may

arise with left-censored data. Some possible extensions of the proposed technique are

also considered and outlined, including the continuous and binary responses in QR.

The performance of the proposed techniques are examined via simulation scenarios

and using leukemia dataset described in subsection 1.4.2. This Chapter is a revised
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manuscript in Alhamzawi and Yu (2013).

In Chapter 4, the selection of both fixed and random coefficients in quantile

mixed effects models is presented from Bayesian framework. Some possible extensions

of the proposed technique are also considered. Several advantages of the proposed

approach over existing approaches are discussed. Simulation studies and an age-

related macular degeneration data are given to demonstrate the methodology. Most

of Chapter 4 has been published in Alhamzawi and Yu (2012a).

Chapter 5 addresses the QR with the adaptive version of the Lasso penalty

from Bayesian framework. In particular, we propose Bayesian adaptive Lasso QR

(BALQR) using an ALD-based model. The performance of the BALQR is considered

via simulation scenarios and using prostate cancer data described in subsection 1.4.4.

This chapter has been published in Alhamzawi et al. (2012).

Finally, Chapter 6 summaries the thesis and providing recommendations for

future researches in the QR area.

Each chapter of this thesis is presented in the form of an article, thus

enabling the reader to clearly understanding the aims, techniques, main findings and

conclusions of each chapter.

1.4 Real Data

This section provides brief descriptions of the real data sets that will be used in this

thesis to illustrate the applications of the proposed methods throughout the thesis.

1.4.1 Air pollution data

Data measured by the Public Roads Administration in Norway is used to test the

behavior of the proposed methods in Chapter 2. Specifically, a subsample consisting

of 500 observations on 7 independent variables plus an outcome variable, collected

between October 2001 and August 2003 are used. The outcome variable is hourly
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values of the log(concentration of NO2) and the dataset is available in the R package

truncSP reported by Lindmark and Karlsson (2012).

1.4.2 Leukemia data

The popular leukemia data (Golub et al., 1999), which can be retrieved from

http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi, is used to test

the behavior of the proposed method in Chapter 3. This dataset contains 7129 gene

expression values taken over 72 leukemia patients and was previously analysed using

various Bayesian and non Bayesian approaches (Golub et al., 1999; Bae and Mallick,

2004; Yang and Song, 2010, among others).

1.4.3 Age-related macular degeneration (ARMD) data

To test the performance of the proposed method in Chapter 4, we use ARMD which

has been previously analysed by Chaili (2008). The data has a total of 203 patients

who were randomly selected from three cities in the United Kingdom (70 patients

from London, 84 from Belfast and the remaining from Southampton) to measure the

treatment effects of teletherapy on the loss of vision. The outcome of interest in this

study is the change in Distance Visual Acuity (DVA) which was measured four times

for each patient over a period of 24 months.

1.4.4 Prostate cancer data

In Chapter 5, we analyse prostate cancer data available in the R-package “bayesQR”

(Benoit et al., 2011) to test the performance of the proposed method. This data

reported by Stamey et al. (1989) and analysed by many authors (see for example,

Tibshirani, 1996; Yuan and Lin, 2005a). A number of clinical measures were recorded

based on 97 male patients who were suffering from prostate cancer. The outcome



1.4. Real Data 12

variable in this dataset is the level of prostate-specific antigen [PSA] (also called

gamma-seminoprotein) which is commonly used as an indicator of prostate cancer.



Chapter 2

Conjugate priors and variable

selection for Bayesian QR

Bayesian subset selection in quantile regression (QR) models is usually a difficult

issue due to the computational challenges and non-availability of conjugate prior

distributions that depend on the quantile level. These challenges are rarely addressed

via either penalised likelihood functions or stochastic search variable selection (SSVS).

These methods typically use symmetric prior distributions such as normal or Laplace

distributions for regression coefficients, which may be suitable for median regression.

However, an extreme QR should have different regression coefficients from the median

regression, and thus the priors for QR should depend on the quantile. In this chapter

an extension of the Zellner’s prior that allows for a conditional conjugate prior and

quantile dependent prior on Bayesian QR is proposed. Secondly, a novel prior based

on the percentage bend correlation for model selection is also used in Bayesian

regression for the first time. Thirdly, a MCMC-based computation algorithm is

developed to facilitate the calculations. The proposed approaches are illustrated

with both simulation scenarios and air pollution data.

13
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2.1 Introduction

Bayesian subset selection in standard mean regression suffers from the following three

difficulties: assigning a prior p(S) for each subset S in the model space, assigning a

prior p(βS |S) for βS given a specific model S and Bayesian computational efficiency

(Chen et al., 1999). These difficulties become more challenging in QR framework

when one is interested in assigning prior distributions characterised by a p-dependent

parameter. As mentioned in Chapter 1, from a Bayesian point of view, Yu and

Moyeed (2001) suggested a BQR aproach assigning the ALD-based working model and

sampling the unknown quantile coefficients vector βp using a MCMC algorithm. The

authors assigned flat priors for all components of the unknown quantile coefficients

vector βp. A serious challenge in Bayesian QR lies in specifying a quantile dependent

prior for βp. It is well known that a conjugate prior distribution that depends on

the quantile level is not available for regression coefficients in QR models (Yu and

Moyeed, 2001; Yu and Stander, 2007). Thus, Bayesian quantile inference models,

including Bayesian parametric, semiparametric and nonparametric models, either set

priors independently of the values of the quantiles, or assume the prior to be the

same for modelling different order of quantiles. In doing so, this approach may result

in inflexibility in quantile modelling. For example, a 95% QR model should have

different parameter values from the median quantile, and thus the priors used for

modelling the quantiles should be different. It is therefore more reasonable to set

different priors for different quantiles.

A second serious challenge in QR lies in Bayesian variable selection, due to the

challenge in specifying a quantile dependent prior over model space. At the present

time, all Bayesian variable selection approaches in QR set priors independent of the

value of quantiles over model space (see, Meligkotsidou et al., 2009; Reed et al., 2009;

Ji et al., 2012, among others). Finally, another serious challenge encountered in

modelling with Bayesian QR lies in computational efficiency.

These three challenges are addressed in the rest of this chapter. For the first,
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it is crucial to elicit a prior distribution for QR coefficients that is as informative

as possible, and more crucially, that depends on the quantile level. To address this

challenge a quantile dependent conjugate prior distribution is proposed. For the

second, the percentage bend correlation is used to find suitable prior distributions

over subset space and to address the third difficulty a MCMC-based computation

algorithm is derived to facilitate the computations.

The rest of this chapter is organised as follows. Section 2.2 introduces a

modification of Zellner’s g-prior in QR as well as presenting the Bayesian MCMC-

based computation estimation. An outline of the prior assumptions and a simple

MCMC algorithm for model selection are addressed in Section 2.3, and in Section 2.4

simulation scenarios are implemented to test the behavior of the proposed techniques

for subset selection and estimation. Section 2.5 provides an illustration of the

proposed methods using the air pollution data described in subsection 1.4.1. A

chapter summary follows in Section 2.6.

2.2 Methods

2.2.1 Zellner’s informative g-prior

It is well known that conjugate priors play very crucial roles in Bayesian probability

theory as it is attractive to have conditional distributions that have a closed form

under sampling (Chen and Ibrahim, 2003). In standard mean regression, various

approaches for assigning prior distributions for regression coefficients of independent

variables and variance in the nature of closed form under sampling have been proposed

over the years. However, it is not easy to assess the prior covariance matrix for

regression coefficients (Zellner, 1983; Agliari and Parisetti, 1988).

Zellner (1983, 1986) proposed a procedure for evaluating a conjugate prior

distribution referred to as Zellner’s informative g-prior, or simply g-prior. The g-prior

has been vastly used in the situation of Bayesian analysis for the mean regression
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models, due to the verity that analytical results are more readily available, better

computational efficiency and its simple interpretation (Krishna et al., 2008).

Let y = (y1, · · · , yn)′ be a vector of outcomes, x′
i a 1 × k vector denoting the

ith row of the n× k matrix of predictors X. A standard linear regression model can

be denoted as

y = Xβ + e, e ∼ N(0, τ2In),

with a vector of regression coefficients β, Zellner’s informative g-prior based on a

sample of n observations and k regression coefficients of independent variables can be

written as (Zellner, 1983)

p(β, τ |βa, τa,y,X) ∝

τ−(n−k+1) exp{−(n− k − 2)τ2a/2τ
2}

× τ−k exp
{
−(β − βa)

′X ′X(β − βa)/2gτ
2
}
, (2.1)

where βa and τa are anticipated values, and g > 0 is a known scaling factor. The

choices of the scaling factor g are discussed later in subsection 2.2.3. Agliari and

Parisetti (1988) proposed an extension of g-prior by allowing different possible weights

for different independent variables. This extension can be written as (Agliari and

Parisetti, 1988)

p(β, τ |βa, τa,y,X,C) ∝

τ−(n−k+1) exp{−(n − k − 2)τ2a/2τ
2}

× τ−k exp
{
−(β − βa)

′CX ′XC(β − βa)/2gτ
2
}
, (2.2)

where C = diag[cj ≥ 0], j = 1, · · · , k.

In the next subsection, we suggest a modification of Zellner’s informative g-

prior in QR to take into account different priors for different quantile levels.
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2.2.2 Conditional conjugate prior distribution

In this thesis, we assume an ALD-based working model such that εi ∼ ALD(0, τ, p),

with a likelihood given by

ℓ(ε|τ) ∝ τ−n exp{−
n∑

i=1

|εi|+ (2p − 1)εi
2τ

}, (2.3)

where ε = (ε1, · · · , εn)′. Following Reed and Yu (2009) and Kozumi and Kobayashi

(2011), the likelihood function (2.3) can be written as a member of the scale mixture

of normals family as follows. For any a1, a2 > 0, we have (Andrews and Mallows,

1974)

exp{−|a1a2|} =

∫ ∞

0

a1√
2πv

exp{−1

2
(a21v + a22v

−1)}dv. (2.4)

If we assume a1 = 1/
√
2τ , a2 = ε/

√
2τ and multiplying by exp{−(2p − 1)ε/2τ}

yields

τ−n exp{−
n∑

i=1

|εi|+ (2p− 1)εi
2τ

}

=

n∏

i=1

∫ ∞

0

1

τ
√
4πτvi

exp{−(εi − ξvi)
2

4τvi
− ζvi}dvi,

∝
n∏

i=1

∫ ∞

0
N(εi|ξvi, 2τvi)Exp(vi|ζ)dvi (2.5)

where ξ = (1− 2p) and ζ = p(1− p)/τ . Here, N(x1|µ1, σ21) and Exp(x2|θ) denote the

densities of a Gaussian distribution with mean µ1 and variance σ21 and an exponential

distribution with rate parameter θ, respectively. Following Zellner (1983), we consider

an imaginary sample, y0 = (y01, y02, ..., y0n)
′, generated by

y0i = x′
iβp + ε0i, i = 1, 2, ..., n, (2.6)

and we assume that errors ε0i are asymmetric Laplace distributed such that

ALD(0, gτ, p). For simplicity of notation, henceforth we will omit the quantile level
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p in the unknown quantile coefficients vector, βp. Then, the conditional posterior

distribution of p(β, τ |v1, · · · , vn,y0,X) based on (2.6) and a prior distribution

p(β, τ) ∝ τ−1 is given by

p(β, τ |v1, · · · , vn,y0,X)

∝ (
1

τ
)
3n
2
+1 exp

{
−

n∑

i=1

[
(y0i − x′

iβ − ξvi)
2

4gτvi
+ ζvi]

}
,

∝ (
1

τ
)
3n
2
+1 exp

{
−

n∑

i=1

[
(y0i − x′

iβ0 − ξvi)
2 + (x′

iβ − x′
iβ0)

2

4gτvi
+ ζvi]

}
.

= (
1

τ
)
3n−k

2
+1 exp

{
−

n∑

i=1

(y0i − x′
iβ0 − ξvi)

2 + 4gp(1− p)v2i
4gτvi

}

× (
1

τ
)
k
2 exp

{
−(β − β0)

′X ′V X(β − β0)

4gτ

}
, (2.7)

where

β̂0 = (X ′V X)−1X ′V (y0 − ξv), (2.8)

and β̂0 is the estimated value of β0. Here, V = diag(v−1
1 , · · · , v−1

n ) and v =

(v1, · · · , vn)′. Similar to Zellner (1983) and Agliari and Parisetti (1988), conditional

conjugate prior distribution in the normal-inverse gamma family form for the

unknown quantile coefficients vector β and the scale parameter τ can be obtained

by substituting βap = β̂0 and (3n − k − 2)τap =
∑n

i=1[(y0i − x′
iβ0 − ξvi)

2 + 4gp(1 −

p)v2i ]/(2gvi), where βap and τap are anticipated values at a given quantile level for β

and τ , respectively. That is,

p(β, τ |v,y0,X) ∝ (
1

τ
)
3n−k

2
+1 exp

{
−(3n− k − 2)τap

2τ

}

×(
1

τ
)
k
2 exp

{
−
(β − βap)

′X ′V X(β − βap)

4gτ

}
. (2.9)

Given p and v, the prior mean vector of β in (2.9) is E(β|v) = βap and the

covariance matrix of QR coefficients β is Cov(β|v) = 2gτap(X
′V X)−1. Thus, given

p, v, τap and βap, the standard conditional prior distribution for β and τ in (2.7) is
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readily available. As in Zellner (1986), we suggest a conjugate normal-inverse gamma

distribution at a given quantile level p for β and τ given by

β|τ,V ,X ∼ N(0, 2gτ(X ′V X)−1), p(τ) ∝ τ−1. (2.10)

This choice for the regression coefficients of independent variables β has several

attractive features. First, under this setting this prior has the very attractive property

that is dependent on the quantile level. Thus, we have different priors for different

quantiles. Second, the prior (2.10) is conditionally conjugate prior, a feature that is

employed in constructing an efficient MCMC-based computation technique. Third,

in the case of 0.5τV = τ2In, the proposed prior is reduced to the original g-prior,

i.e. p(β|τ2,X) = N(0, gτ2(X ′X)−1). Finally, as g −→ ∞, the modified g-prior

distribution for β converges to Jeffrey’s prior of the form p(β|τ,V ,X) ∝ |X ′V 0X|1/2,

where V 0 = diag((2τv1)
−1, · · · , (2τvn)−1).

2.2.3 Choices of g

Various values of g have been assigned in the context of estimation of the regression

coefficients of independent variables and subset selection. For instance, Kass and

Wasserman (1995) proposed the idea of the unit-information by assuming the scaling

factor g is equal to the sample size, that is g = n. Smith and Kohn (1996) considered

Bayesian subset selection using splines and suggested that the reasonable value of the

scaling factor g is in the range 10 ≤ g ≤ 1000. Following this suggestion, a number

of authors set g = 100 (see for example, Lee et al., 2003; Gupta et al., 2007; Chen

et al., 2011, among others). Although for normal linear regression, placing an Inverse

Gamma prior on the scaling factor g, g ∼ InvGa(1/2, n/2), produces a Cauchy prior

on β, which is a robust prior for regression coefficients (Clyde and George, 2004;

Zellner and Siow, 1980; Kinney and Dunson, 2007), the marginal likelihood of the

data f(y|γ) has no closed form, where γ is a latent k-vector with binary entries:

γj = 1 if the jth independent variable (xj) is active in the regression equation and
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γj = 0 otherwise. Owing to this undesirable property, Liang et al. (2008) suggested

the idea of the hyper-g prior which has attracted much interest in recent years. Celeux

et al. (2012) suggested a Jeffrey’s prior on the scaling factor g. In this thesis, we follow

the suggestion given by Smith and Kohn (1996) and choose g = 100.

2.2.4 Posterior inference

The conditional posterior distribution, combining the likelihood function of the data

ℓ(y|β, τ,v), and the proposed prior for β and τ (2.10) is given by

p(β, τ,v|y) ∝ ℓ(y|β, τ,v)p(β|τ,v)p(v|τ)p(τ). (2.11)

A MCMC based computation technique is constructed to update the parameters β, τ,

and v from their full conditional distributions. Let Nk, InvGa and GIG denote a k-

dimensional multivariate normal, Inverse Gamma and generalised inverse Gaussian

distributions, respectively.

• Updating β

The full Conditional Distribution (CD) of β is Nk(µ,Σ), where

Σ =
2τg

(g + 1)
(X ′V X)−1 and µ =

g

g + 1
(X ′V X)−1X ′V (y − ξv).

• Updating τ

τ |β,v ∼ InvGa((3n + k)/2,
1

4
(y −Xβ − ξv)′V (y −Xβ − ξv)

+
1

4g
β′(X ′V X)β + p(1− p)

n∑

i=1

vi).

• Updating v

Each vi, i = 1, · · · , n, has a full CD proportional to

v−1
i exp

{
−1

2
(v−1

i ̺21 + vi̺
2
2)

}
,
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where ̺21 = ((yi−x′
iβ)

2+β′xix
′
iβ/g)/2τ and ̺22 = 1/2τ , which can be expressed

as a GIG (ν, ̺1, ̺2). Recall that if x ∼ GIG (ν, ̺1, ̺2) then the pdf of x is given

by (Barndorff-Nielsen and Shephard, 2001)

f(x|ν, ̺1, ̺2) =
(̺2/̺1)

ν

2Kν(̺1̺2)
xν−1 exp

{
−1

2
(x−1̺21 + x̺22)

}
,

where x > 0, −∞ < ν <∞, ̺1, ̺2 ≥ 0 and Kν(.) is so called “modified Bessel

function of the third kind”.

2.3 Stochastic search variable selection (SSVS)

The Bayesian SSVS reported in George and McCulloch (1993) opens an avenue to

subset selection by using higher posterior probability to identify promising models.

Meligkotsidou et al. (2009), Reed et al. (2009) and Ji et al. (2012) extend this

approach for subset selection in QR models. However, all these QR methods had

the disadvantages of depending on prior distributions that are independent of the

value of quantiles. These methods may lead in an inflexibility in QR modelling. Our

goal in this chapter is to use the modified g-prior (2.10) in a subset selection problem.

In particular, we extend the idea of Bayesian subset selection in QR reported in Reed

et al. (2009) by assigning quantile dependent priors on the subset space and a quantile

dependent prior distribution on the regression coefficients given a specific subset.

In order to perform the subset selection for the QR equation (1.2) we begin by

defining an indicator vector γ′ = (γ1, ..., γk) with jth element γj such that γj = 1 if

the jth independent variable (xj) is active in the regression (βj 6= 0), and γj = 0 if

the jth independent variable (xj) is not active in the regression (βj = 0). Given the

binary vector γ, let kγ = γ ′1 and βγ and xi,γ are kγ × 1 vectors corresponding to

all the components of β and xi such that the corresponding γj’s are equal to 1.

Given the quantile level p, we consider the following prior assumptions for

β, τ,v, and γ:
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1. βγ |τ,v ∼ N(β0, 2gτ(X
′
γV Xγ)

−1), where β0 = 0, g > 0, p(τ) ∝ τ−1 and each

vi ∼ Exp{p(1− p)/τ}.

2. Yuan and Lin (2005a) proposed a prior distribution over model space given by

p(γ|π) ∝ πkγ (1− π)k−kγ |X∗′
γ∗X∗

γ∗ |1/2, 0 ≤ π ≤ 1, (2.12)

whereX∗′
γ∗X∗

γ∗ is the correlation matrix. Here, Xγ∗ have been standardized,

referred to as “X∗

γ∗”, and γ∗ is the model of γ without an intercept. We

assume kγ = γ∗′1+ 1 if the intercept is included in the model γ and kγ = γ∗′1

otherwise. Under the prior (2.12), the prior odds ratio is given by

p(γj = 1|γ−j)

p(γj = 0|γ−j)
=

π

(1− π)
r0, r0 =

|X∗′
γ∗−j,γj=1X

∗

γ∗−j,γj=1|1/2

|X∗′
γ∗−j,γj=0X

∗

γ∗−j,γj=0|1/2
.

Here, γ∗
−j is the binary vector of γ∗ without γj . As pointed out by Yuan and

Lin (2005a), r0 is small when xj is strongly correlated with X∗

γ−j,γj=0 and

consequently xj can effectively be excluded from the whole model. However,

it is known that the usual correlation coefficient is highly nonrobust (Wilcox,

1994). Additionally, with regards to QR, |X∗′
γ∗X∗

γ∗ |1/2 does not depend on

the quantile level. To this end, we remedy these two undesirable properties by

employing robust correlation coefficients as well as incorporating the quantile

level into a prior of γ such that we have different priors for different quantiles

over model space. In this respect, we suggest the following prior over subset

space:

p(γ|π) ∝ πkγ (1− π)k−kγ |X∗′
γ∗

pb
X∗

γ∗

pb
|1/2,

whereX∗′
γ∗

pb
X∗

γ∗

pb
is the percentage bend correlation matrix. The percentage

bend correlation, rpb, between t1 and t2 is given by the following equation
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(Wilcox, 1994)

rpb =

∑
AiBi√∑
A2

i

∑
B2

i

where Ai = ψ(U1i), Bi = ψ(U2i), ψ(x) = max[−1,min(1, x)], Uli = (tli −

φptl)/htl , and p(|tl−φptl | < htl) = 1−ϕ for l = 1, 2. Here, φptl and htl represent

the percentage measure of location and scale for the variable tl, respectively.

Following Wilcox (1994) and Shoemaker and Hettmansperger (1982), we set

ϕ = 0.1.

3. π ∼ Beta(b01, b02). We set b01 = b02 = 1
2 . In this case, E(π) = 1

2 , and the

anti-mode at the center of the distribution.

Following Smith and Kohn (1996), George and McCulloch (1993), we adopt

an efficient MCMC-based computation technique for computing posterior model

probabilities (PMP) in QR. Given γ,v, and X, the marginal likelihood of y is given

by

p(y|γ,v,X) ∝
∫ (∫

p(y|βγ ,γ, τ,v,X)p(βγ |γ, τ,v)p(v|τ)dβγ
)
p(τ)dτ.

Thus, we have

p(y|γ,v,X) ∝ (1 + g)−kγ/2S(γ)−3n/2,

S(γ) =
1

4
(y − ξv)′V (y − ξv)

− g

4(g + 1)
(y − ξv)′V X(X ′

γV Xγ)
−1X ′

γV (y − ξv) + p(1− p)

n∑

i=1

vi.

Then, our MCMC-based computation method can be easily implemented to generate

samples of

p(γ|v,y,X) ∝ p(y|γ,v,X)p(γ|π). (2.13)
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To build an efficient Gibbs sampler, as recommended by Lee et al. (2003), instead of

updating γ as a vector from (2.13), we update an element γj from p(γj |γ−j,v,y,X).

Hence, we have

p(γj|γ−j,v,y,X) ∝ p(y|γ,v,X)p(γj |π),

where

p(γj = 1|γ−j,v,y,X) =
1

1 + hj
,

hj =
√

1 + g

(
S(γj = 0)

S(γj = 1)

)−3n/2 (1− π) |X∗′
γ∗

pb−j
,γj=0X

∗

γ∗

pb−j
,γj=0|1/2

π|X∗′
γ∗

pb−j
,γj=1X

∗

γ∗

pb−j
,γj=1|1/2

.

Since π ∼ Beta(b01, b02), then, under model γ the full conditional distribution of π is

Beta(kγ + b01, k − kγ + b02).

2.4 Simulations

2.4.1 Example 1 (Inference)

In this example, we consider our Bayesian QR approach (BQRg) and semiparametric

Bayesian approach (FBQR) assuming that the errors come from a mixture of Gaussian

densities reported in Reich et al. (2010). The R code for FBQR can be obtained from

the Web location “http://www4.stat.ncsu.edu/~reich/Code/”. These approaches

were compared with the standard QR approach (RQ) using the rq() function in the

R package quantreg (Koenker, 2011). Our simulation design follows the setting of

Reed and Yu (2009)

yi = β0 + β1xi + (1 +
xi
11

)εi, i = 1, · · · , 200,

where xi ∼ Uniform(0, 10) and we set β0 = 10, β1 = 5000. The residuals εi are

simulated from three distributions: N(0,1), a t3 and a χ2
3 distribution. Here, t̺0 and
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χ2
̺0 denote the densities of a Student’s t-distribution and a Chi-squared distribution

respectively, where ̺0 denotes the number of degrees of freedom. In this example, we

consider two choices of g: 100 and 10000.

For each residual distribution under consideration, 1000 replications are

simulated assuming the number of observation is n = 200 and the models are fitted

at three different quantiles p = 0.50, 0.25 and p = 0.05. Methods are evaluated based

on the relative average bias

b̂ias(β̂m0
) =

1

M

M∑

r=1

β̂rm0
− βm0

| βm0
| ,

and the estimated relative efficiency

êffmodel(β̂m0
) =

S2
model(β̂m0

)

S2
BQRg(β̂m0

)
,

where M denotes the number of replications, β̂rm0
,m0 = 1, 2, is the QR coefficient

estimate for the rth replication, βm0
is the true value, S2(β̂m0

) = 1
M

∑M
r=1(β̂

r
m0

−β̄m0
)2

and β̄m0
= 1

M

∑M
r=1 β̂

r
m0

.

The simulation results for β0 and β1 are presented in Table 2.1, including the

estimated relative bias and the efficiency. Across the three error distributions, the

absolute bias obtained from our proposed method (BQRg=10000) is much smaller at

extreme quantiles than the competing approaches (RQ and FBQR). It can be observed

that the semiparametric Bayesian model performs poorly for extreme quantiles, which

is an undesirable situation when attention is focused on the extreme quantiles. In

addition, as the quantiles become more extreme, the RQ and the semiparametric

Bayesian approach yield high bias. Although, RQ and BQRg=10000 perform better

than BQRg=100 in terms of bias, but BQRg=100 is significantly better than RQ,

BQRg=10000 and FBQR in terms of efficiency. For instance, when the residual follows

the normal distribution, the loss of efficiency for the RQ approach increased from

5.34% for β0 when p = 0.50 to 14.72% when p = 0.05. It can also be observed that
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Table 2.1: Estimated relative bias and relative efficiency for simulated data in
Example 1 using three different error distributions. .

Error Model p bias efficiency bias efficiency
β0 β0 β1 β1

ε ∼ N(0, 1) RQ 0.50 -0.0003 1.0534 0.0000 1.0018
FBQR 0.50 -0.0168 1.1849 -0.0392 1.5223

BQRg=100 0.50 -0.0107 1.0000 -0.0099 1.0000
BQRg=10000 0.50 -0.0003 1.0144 -0.0001 1.0118

RQ 0.25 0.0005 1.1197 0.0000 1.1233
FBQR 0.25 -0.0328 2.3014 -0.0003 1.2336

BQRg=100 0.25 -0.0093 1.0000 -0.0097 1.0000
BQRg=10000 0.25 0.0005 1.0200 -0.0001 1.0150

RQ 0.05 0.0009 1.1472 0.0000 1.2585
FBQR 0.05 -0.0832 1.2137 -0.0098 2.7928

BQRg=100 0.05 -0.0096 1.0000 -0.0097 1.0000
BQRg=10000 0.05 0.0003 1.0036 -0.0001 1.0202

ε ∼ t3 RQ 0.50 0.0005 1.0458 0.0000 1.0863
FBQR 0.50 -0.0167 1.5160 -0.0792 1.8483

BQRg=100 0.50 -0.0094 1.0000 -0.0099 1.0000
BQRg=10000 0.50 0.0004 1.0193 -0.0001 1.0325

RQ 0.25 0.0007 1.0052 0.0000 1.0011
FBQR 0.25 -0.0213 1.3118 -0.0095 2.0775

BQRg=100 0.25 -0.0097 1.0000 -0.0099 1.0000
BQRg=10000 0.25 0.0002 1.0097 -0.0001 1.0209

RQ 0.05 -0.0050 1.0864 0.0000 1.0653
FBQR 0.05 -0.0256 2.4654 -0.0188 2.4852

BQRg=100 0.05 -0.0167 1.0000 -0.0099 1.0000
BQRg=10000 0.05 -0.0042 1.0186 -0.0001 1.0286

ε ∼ χ2

3
RQ 0.50 0.0000 1.0129 0.0000 1.0894

FBQR 0.50 -0.0491 1.7054 -0.0082 2.4614
BQRg=100 0.50 -0.0101 1.0000 -0.0099 1.0000
BQRg=10000 0.50 -0.0001 1.0205 -0.0001 1.0207

RQ 0.25 0.0024 1.0453 0.0000 1.0349
FBQR 0.25 -0.0282 1.5351 -0.0072 1.4793

BQRg=100 0.25 -0.0073 1.0000 -0.0099 1.0000
BQRg=10000 0.25 0.0025 1.0195 -0.0001 1.0136

RQ 0.05 0.0009 1.2059 0.0000 1.2684
FBQR 0.05 -0.0511 2.1311 -0.0284 1.9357

BQRg=100 0.05 -0.0081 1.0000 -0.0095 1.0000
BQRg=10000 0.05 0.0007 1.0201 0.0000 1.0465
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the loss of efficiency for the RQ approach when the error follows the t distribution

increased from 4.58% for β0 when p = 0.50 to 8.64% when p = 0.05.

The results of bias and relative efficiency clearly show that based on the

simulated scenario BQRg generally behaves well than the other methods (RQ and

FBQR). As highlighted by Li et al. (2010), these results indicate that the reluctancy of

the modeller in assuming an asymmetric Laplace residual distribution in the context

of a nonparametric setting may be minimised and eliminated by the fact that the

Bayesian techniques based on ALD are insensitive to the assumptions of the residual

distribution. Furthermore, it can be argued that our simple Gibbs sampler via the

modified g-prior contributed towards improvements of the QR results.

2.4.2 Example 2 (Subset selection)

In this example we compare our approach for Bayesian variable selection (BVSg)

presented in Section 2.3 with the stochastic search variable selection reported in

Reed et al. (2009) using the SSVSquantreg() function in the R package MCMCpack

(Martin et al., 2011). The proposed method (BVSg) is also compared with the AIC

and BIC methods using the least squares approximation (LSA) method reported in

Wang and Leng (2007). The R code for the LSA method is available in the Web

location “http://www4.stat.ncsu.edu/~boos/var.select/LSA.R.txt”. Data are

simulated from two model designs:

• Design I: β = (5, 0, 0, 0, 0, 0, 0, 0)′ and the rows of X follow a Nk(0,Σx) with

(Σx)j1j2 = 0.5|j1−j2|, where j1j2 refers to the (j1, j2)
th entry of the matrix Σx.

• Design II: Same as the first design except that β=(3, 1.5, 0, 0, 2, 0, 0, 0)′ .

In each design, we investigate four different distributions for the residuals εi, i =

1, ..., n = 200:

1. Normal distribution so that εi ∼ N(0, 9).



2.4. Simulations 28

2. Mixture normal distributions so that εi ∼ 0.25N(0, 1) + 0.75N(0, 4).

3. Student’s t-distribution so that εi ∼ t(3).

4. Chi-squared distribution so that εi ∼ χ2
(3).

Subset selection is carried out at three different quantiles, p ∈ {0.50, 0.25, 0.05},

across the four error distributions. SSVSquantreg and BVSg are evaluated based on

the average number of times for which the best candidate subset was chosen as the

subset with highest Posterior Probability (PP) over 100 simulations, referred to as

“%S”. The results of SSVSquantreg and BVSg are presented in Tables 2.2 and 2.3.

The tables also list the best subset selected, based on LSA. For each design and choice

of the residual distribution, one can observe how often the proposed method selects the

correct subset. Most noticeably, from Design II we observe that the SSVSquantreg

tends to choose the whole model and attach very low PP to the correct subset.

Alternatively, our proposed method BVSg almost always chose the true subset and

gives high PP to the true subset. Additionally, we can observe that for Design II

corresponding to the normal errors and p = 0.50, our proposed method and the LSA

method using BIC and AIC criteria identify the correct subset 89%, 61% and 29% of

the time, respectively. On the other hand, we can see that SSVSquantreg approach

identifies the whole model 78% of the time.



2
.4
.
S
im

u
la
tio

n
s

2
9

Table 2.2: Comparing four approaches, corresponding to Design I: SSVSquantreg, BVSg, LSA.bic and LSA.aic based on the average
posterior model probabilities (APMP) and the number of times each subset was chosen as the best subset over 100 simulations, referred
to as “%S”.

p Error SSVSquantreg SSVSquantreg BVSg BVSg LSA.bic LSA.bic LSA.aic LSA.aic
Distribution subset APMP (%S) subset APMP(%S) subset (%S) subset (%S)

0.50 normal x1 0.20 (60) x1 0.94 (98) x1 (82) x1 (36)
0.50 normal mixture x1 0.54 (99) x1 0.93 (99) x1 (71) x1 (26)
0.50 t(3) x1 0.49 (99) x1 0.94 (99) x1 (80) x1 (41)
0.50 χ2

(3) x1 0.16 (41) x1 0.89 (81) x1 (70) x1 (24)

0.25 normal x1 0.20 (52) x1 0.93 (65) x1 (58) x1 (15)
0.25 normal mixture x1 0.56 (99) x1 0.93 (99) x1 (64) x1 (26)
0.25 t(3) x1 0.45 (96) x1 0.90 (99) x1 (55) x1 (21)
0.25 χ2

(3) x1 0.23 (95) x1 0.92 (93) x1 (92) x1 (51)

0.05 normal x1, x2, x3, x4, 0.20 (59) x1 0.77 (72) x1, x2, x3, x4, (6) x1, x2, x3, x4, (13)
x5, x6, x7, x8 x5, x6, x7, x8 x5, x6, x7, x8

0.05 normal mixture x1 0.46 (95) x1 0.93 (93) x1, x2, x3, x4, (7) x1, x2, x3, x4, (18)
x5, x6, x7, x8 x5, x6, x7, x8

0.05 t(3) x1 0.38 (88) x1 0.91 (99) x1 (4) x1, x2, x3, x4, (14)
x5, x6, x7, x8

0.05 χ2
(3) x1 0.34 (99) x1 0.95 (99) x1 (43) x1 (8)
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Table 2.3: Comparing four approaches, corresponding to Design II: SSVSquantreg, BVSg, LSA.bic and LSA.aic based on the APMP and
the number of times each subset was chosen as the best subset over 100 simulations, referred to as “%S”.

p Error SSVSquantreg SSVSquantreg BVSg BVSg LSA.bic LSA.bic LSA.aic LSA.aic
Distribution subset APMP (%S) subset APMP(%S) subset (%S) subset (%S)

0.50 normal x1, x2, x3, x4, 0.19 (78) x1, x2, x5 0.64 (89) x1, x2, x5 (61) x1, x2, x5 (29)
x5, x6, x7, x8

0.50 normal mixture x1, x2, x5 0.31 (99) x1, x2, x5 0.85 (100) x1, x2, x5 (76) x1, x2, x5 (42)
0.50 t(3) x1, x2, x5 0.26 (96) x1, x2, x5 0.85 (99) x1, x2, x5 (82) x1, x2, x5 (48)
0.50 χ2

(3) x1, x2, x3, x4, 0.23 (96) x1, x2, x5 0.77 (56) x1, x2, x5 (43) x1, x2, x5 (24)
x5, x6, x7, x8

0.25 normal x1, x2, x3, x4, 0.25 (89) x1, x2, x5 0.59 (63) x1, x2, x5 (33) x1, x2, x5 (17)
x5, x6, x7, x8

0.25 normal mixture x1, x2, x5 0.28 (99) x1, x2, x5 0.83 (98) x1, x2, x5 (59) x1, x2, x5 (19)
0.25 t(3) x1, x2, x5 0.22 (89) x1, x2, x5 0.84 (92) x1, x2, x5 (59) x1, x2, x4 (27)
0.25 χ2

(3) x1, x2, x3, x4, 0.14 (74) x1, x2, x5 0.78 (79) x1, x2, x5 (74) x1, x2, x5 (49)
x5, x6, x7, x8

0.05 normal x1, x2, x3, x4, 0.28 (96) x1, x2, x5 0.56 (27) x1, x2, x3, x4, (14) x1, x2, x3, x4, (25)
x5, x6, x7, x8 x5, x6, x7, x8 x5, x6, x7, x8

0.05 normal mixture x1, x2, x5 0.21 (77) x1, x2, x5 0.70 (82) x1, x2, x5 (7) x1, x2, x3, x4, (17)
x5, x6, x7, x8

0.05 t(3) x1, x2, x5 0.24 (67) x1, x2, x5 0.81 (90) x1, x2, x3, x4, (10) x1, x2, x3, x4, (22)
x5, x6, x7, x8 x5, x6, x7, x8

0.05 χ2
(3) x1, x2, x3, x4, 0.13 (54) x1, x2, x5 0.80 (97) x1, x2, x5 (44) x1, x2, x5 (13)

x5, x6, x7, x8
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2.5 Air pollution data

In this section, we consider the air pollution data which is available in the R package

“truncSP” (Lindmark and Karlsson, 2012). There are 500 observations, 7 independent

variables and one outcome variable, which is the log (concentration of NO2 per hour).

Independent variables include the log (number of cars per hour) (x1), temperature at

a height of two meters above the ground (x2), wind speed in meters per second (x3),

the temperature difference between a height of 25 meters and a height of 2 meters

above ground (x4), wind direction (x5), time of day in hours (x6), and day number

(x7). We assume a QR model between the outcome log (concentration of NO2 per

hour) and the 7 independent variables, plus an intercept.

In Table 2.4, we compare three methods: the standard frequentist QR using

the rq() function (RQ) (Koenker, 2011), the semiparametric Bayesian model, and

our approach. The approaches are assessed based on 95% intervals for three different

choices of p, 0.50, 0.25 and 0.05. It can be observed that our estimates are very close

to the standard QR estimated and our credible intervals are much narrower than

the intervals given by the standard frequentist QR and the semiparametric Bayesian

model. This indicates that the model in (2.5) is a working model with artificial

assumptions, employed on the outcome variable to achieve the equivalence between

maximising ALD and minimising the check function of Koenker and Bassett (1978)

(Yuan and Yin, 2010).

In Table 2.5 we compare the PMP using our method BVSg to those obtained

using SSVSquantreg. Table 2.5 also reports the mean absolute deviation (MAD) along

with the standard deviation of AD (SD) for the top subset based on SSVSquantreg,

BVSg and LSA method using BIC and AIC criteria. From the table, in general

one can observe that the best subset chosen by our approach has lower MAD and

standard deviation than those of the models chosen by the SSVSquantreg, LSA.aic

and LSA.bic. The comparison between the four methods indicates that our Bayesian

subset selection BVSg produces promising subsets and behaves well compared to
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Table 2.4: Estimates and 95% intervals for the 0.50, 0.25 and 0.05 QR parameters of the air pollution data. The proposed approach
(BQRg) is compared with two other approaches: the semiparametric Bayesian approach (FBQR) and the frequentist QR approach (RQ).

RQ FBQR BQRg

p Parameters Mean (lower bd, upper bd) Mean (95% CrI) Mean (95% CrI)
0.50

β0 1.79755 (0.88164, 2.10382) 1.35451 (0.76992, 1.93767) 1.48084 (1.47788, 1.48376)
β1 0.25865 (0.19716, 0.34333) 0.31113 (0.22730, 0.39439) 0.28870 (0.28828, 0.28913)
β2 0.00393 (-0.00847, 0.01485) -0.00616 (-0.01812, 0.00584) 0.00248 (0.00242, 0.00254)
β3 -0.11806 (-0.15096, -0.07518) -0.12157 (-0.16645, -0.07898) -0.11152 (-0.11171, -0.11131)
β4 0.01130 (-0.05877, 0.10029) 0.04645 (-0.04152, 0.13355) 0.03227 (0.03183, 0.03268)
β5 0.00002 (-0.00125, 0.00068) 0.00003 (-0.00085, 0.00091) -0.00024 (-0.00024, -0.00024)
β6 -0.00176 (-0.01277, 0.01085) 0.00014 (-0.01294, 0.01318) 0.00202 (0.00195, 0.00208)
β7 0.00018 (-0.00013, 0.00052) 0.00036 (0.00000, 0.00073) 0.00022 (0.00022, 0.00022)

0.25
β0 0.39446 (-0.48486, 1.12769) 0.62862 (-0.03797, 1.28096) 0.30376 (0.29993, 0.30758)
β1 0.37566 (0.29279, 0.49844) 0.35504 (0.26011, 0.44775) 0.36815 (0.36760, 0.36872)
β2 -0.00768 (-0.02370, 0.00898) -0.01481 (-0.02916, 0.00044) -0.01103 (-0.01111, -0.01095)
β3 -0.13303 (-0.15924, -0.05856) -0.14073 (-0.19212, -0.09015) -0.11623 (-0.11647, -0.11598)
β4 0.02011 (-0.13018, 0.12646) 0.05368 (-0.06065, 0.16697) 0.01743 (0.01688, 0.01798)
β5 -0.00007 (-0.00063, 0.00138) 0.00010 (-0.00088, 0.00102) 0.00014 (0.00013, 0.00015)
β6 0.00127 (-0.01474, 0.01031) -0.00695 (-0.02136, 0.00772) -0.00291 (-0.00300, -0.00282)
β7 0.00045 (-0.00004, 0.00082) 0.00048 (0.00007, 0.00087) 0.00049 (0.00048, 0.00049)

0.05
β0 -0.69138 (-2.01104, -0.16466) -0.17800 (-0.91368, 0.51518) -0.85225 (-0.86316, -0.84179)
β1 0.49462 (0.36635, 0.60326) 0.37920 (0.27051, 0.48615) 0.45317 (0.45182, 0.45453)
β2 -0.03992 (-0.06891, -0.01210) -0.02639 (-0.04685, -0.00386) -0.03105 (-0.03134, -0.03075)
β3 -0.21045 (-0.24345, -0.08480) -0.17865 (-0.26177, -0.10325) -0.14944 (-0.15024, -0.14861)
β4 -0.08316 (-0.19286, 0.26049) 0.05641 (-0.09780, 0.21364) 0.02156 (0.01922, 0.02392)
β5 0.00060 (-0.00036, 0.00206) 0.00012 (-0.00130, 0.00146) 0.00070 (0.00069, 0.00072)
β6 -0.03201 (-0.05794, -0.00765) -0.01688 (-0.03684, 0.00396) -0.02612 (-0.02636, -0.02589)
β7 0.00064 (0.00001, 0.00149) 0.00070 (0.00008, 0.00129) 0.00060 (0.00059, 0.00061)
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SSVSquantreg and LSA.
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Table 2.5: Comparing MAD and SD for the best subset of the air pollution data. The PMP for the best subset of the air pollution data
using SSVSquantreg and BVSg are also attached.

SSVSquantreg BVSg LSA.aic LSA.bic

p model PMP MAD (SD) model PMP MAD (SD) model MAD (SD) model MAD (SD)

0.50 Inter., x1, 0.63 0.63 (0.51) Inter., x1, 0.87 0.62 (0.51) Inter., x1, 0.63 (0.51) Inter., x1, 0.63 (0.51)

x3 x3 x3 x3

0.25 x1 0.54 0.77 (0.58) x1, x3 0.83 0.78 (0.58) Inter., x1, 0.77 (0.58) x1, x3, 0.79 (0.59)

x2, x3, x7 x6

0.05 x1 0.49 1.46 (0.74) x1, x2, 0.26 1.33 (0.71) Inter., x1, 1.36 (0.81) x1, x2, 1.37 (0.77)

x3 x2, x3, x3, x6

x4, x6,

x7
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2.6 Chapter summary

In this chapter, we developed Bayesian techniques for subset selection and estimation

of the independent variables coefficients in QR models based on conditional quantile

dependent prior distributions. In particular, we assigned a quantile dependent prior

distribution on the subset space and a quantile dependent prior distribution on

the regression parameters given a specific subset. For regression coefficients, we

developed a conditional conjugate prior distribution based on the familiar g-prior. In

addition, the percentage bend correlation was used to find suitable prior distributions

over subset space. MCMC-based computation algorithms are outlined based on the

modified quantile dependent prior to generate samples from the posterior distributions

over model space. Simulation studies and air pollution data show that, in comparison

with existing Bayesian and non-Bayesian QRmethods, the Bayesian QRmethod using

a quantile dependent prior distribution generally perform better.



Chapter 3

Bayesian Tobit QR using g-prior

distribution with ridge

parameter

This chapter introduces the idea of the modified g-prior in the Tobit QR model. The

prior is generalised by introducing a ridge parameter to address important challenges

that may arise with left-censored data, such as multicollinearity and overfitting

problems. Then, a simple MCMC-based computation technique is developed for

Tobit QR based on the modified g-prior. We have developed an expression for

the hyperparameter g to calibrate the modified g-prior with a ridge parameter to a

corresponding g-prior. Some possible extensions of our approach are also presented,

including the continuous and binary responses in QR. The techniques are illustrated

using several simulation scenarios and the popular Leukemia data set.

3.1 Introduction

Tobit QR technique provides an active and crucial method of dealing with left-

censored data and can be formulated as a QR model where the data on the outcome

36
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of interest is not observed completely. A great body of work exists on Tobit QR

methods and we refer to Powell (1986), Bilias et al. (2000), Yu and Stander (2007)

and Wang and Fygenson (2009) for an overview. Consider the censoring model,

y∗i = x′
iβ + εi, and yi = max{y0, y∗i }, i = 1, · · · , n, (3.1)

where yi is the outcome of interest, y0 is a known fixed point, y∗i is the corresponding

latent unobserved outcome of the ith observation, xi is a k × 1 vector of predictors

for the ith observation, β is a vector of unknown quantities of interest evaluated at

pth quantile, and the residuals εi are restricted so that
∫ 0
−∞ fp(εi)dεi = p. Following

Powell (1986), it can be shown that the Tobit QR estimator β̂ of β can be estimated

through the empirical check function

min
β

n∑

i=1

ρp(yi −max{y0, y∗i }), (3.2)

Yu and Stander (2007) observed that the posterior estimator of β obtained by

assigning a likelihood that is based on the ALD-based working model at specific

value of p, serves as the pth Tobit QR estimate. The authors assigned flat priors,

independent of the value of p, for the Tobit QR coefficients vector and sampling

β using the Metropolis-Hastings (MH) method. It is well known that flat priors

could be useful for coefficient estimation in Tobit QR and other models but they

cannot be used in subset selection techniques, owing to the fact that proper priors are

needed to evaluate Bayes factors (Ibrahim and Chen, 2000). Yu and Stander (2007)

also suggested families of symmetric prior distributions on the Tobit QR coefficients

vector, such as normal and Laplace priors. Although these priors may lead to proper

posterior, they are independent of the values of quantiles. That is, the prior is the

same for modelling different order of quantiles. In this chapter, we use the modified

g-prior to develop the Bayesian analysis of the Tobit QR model. Then, we generalised

the g-prior by introducing a ridge parameter to address some issues that may arise

with left-censored data such as, multicollinearity and overfitting problems. We also
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developed an expression for the hyperparameter g to calibrate the modified g-prior

with a ridge parameter to a corresponding g-prior.

The rest of this chapter is presented in the following way. Section 3.2 introduces

our hierarchical Bayesian Tobit QR model, an extension of the modified g-prior is

suggested and Bayesian MCMC steps are also outlined. Our Bayesian SSVS approach

using the modified g-prior is presented in subsection 3.2.3. Section 3.3 extends the

proposed technique to QR with continuous and binary outcome variables. Section 3.4

evaluates the methods using simulation examples and Section 3.5 applies the proposed

technique to the popular Leukemia data set. A chapter summary follows in Section

3.6.

3.2 Methods

3.2.1 Hierarchical Bayesian modelling

At the pth quantile, we model conditional Tobit quantiles of the outcome yi by

assuming that εi|vi, τ ∼ N((1 − 2p)vi, 2τvi) and vi|τ ∼Exp(p(1− p)/τ), which is

equivalent to assigning an ALD for εi, i = 1, 2, ..., n. To complete the prior

specification, we assign a quantile dependent prior for β such that

β|τ,V ,X ∼ N(0, 2gτ(X ′V X)−1), p(τ) ∝ τ−1. (3.3)

In summary, our hierarchical Bayesian Tobit QR modelling is given by

yi = max{y0, y∗i }, i = 1, · · · , n,

y∗i |β, τ, vi ∼ N(x′
iβ + ξvi, 2τvi),

β|τ,V ,X ∼ Nk(0, 2τg(X
′V X)−1),

vi ∼ Exp(
p(1− p)

τ
),

p(τ) ∝ τ−1.
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This hierarchical modelling produces an efficient MCMC algorithm by updating the

latent variables y∗i and vi as well as the other parameters β and τ from their full

conditional distributions.

• Updating y∗i

Let Υ(.) denotes to a degenerate distribution, then the latent variable y∗i , i =

1, · · · , n, has a conditional distribution (CD) given by

y∗i |yi,β, τ,V ∼





Υ(yi), if yi > y0;

N(x′
iβ + ξvi, 2τvi)I(y

∗
i ≤ y0), otherwise,

(3.4)

• Updating β

The full CD of β is Nk(µ,Σ), where

Σ =
2τg

g + 1
(X ′V X)−1 and µ =

g

g + 1
(X ′V X)−1X ′V (y∗ − ξv). (3.5)

Here, y∗ = (y∗1 , · · · , y∗n)′.

• Updating τ

τ |y∗,β,v ∼ InvGa((3n + k)/2,
1

4
(y∗ −Xβ − ξv)′V (y∗ −Xβ − ξv)

+
1

4g
β′(X ′V X)β + p(1− p)

n∑

i=1

vi).

• Updating vi

For i = 1, ..., n, each vi ∼ GIG(ν, ̺1, ̺2), where ν = 0, ̺21 = ((y∗i − x′
iβ)

2 +

β′xix
′
iβ/g)/(2τ) and ̺

2
2 = 1/(2τ).

During MCMC iteration we sampled the latent variable y∗i , i = 1, ..., n, using the

truncnorm package (Trautmann et al., 2010) and we sampled vi, i = 1, ..., n, using

the rgig() function (Luethi and Breymann, 2012).

Since our target in the SSVS approach required computation of the marginal

distribution of the data p(y∗|τ,v), the following lemma gives the closed-form of
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p(y∗|τ,v) under the proposed prior.

Lemma 1. Under the quantile dependent prior (3.3), the marginal CD of the data

p(y∗|τ,v) is given by

p(y∗|τ,v) = (1 + g)−k/2

(4π)n/2
(

n∏

i=1

(τvi)
−1/2)

× exp{−(y∗ − ξv)′(
V

4τ
− gV X(X ′V X)−1X ′V

4(1 + g)τ
)(y∗ − ξv)}. (3.6)

The proof of Lemma 1 is straightforward and can be accomplished by integrating out

the quantile coefficients vector β as in Smith and Kohn (1996).

3.2.2 Introducing a ridge parameter

In the original g-prior, the matrixX ′X suffers from singularity in case of multicollinearity

or overfitting problems (k >> n). For this reason, Gupta and Ibrahim (2007)

proposed a modification of the original Zellner’s g-prior, motivated by the ridge

parameter λ0 which comes from ideas of ridge regression to deal with multicollinearity

and overfitting problems. The authors showed that their technique allows consistent

subset selection and coefficient estimation for overfitting problems. Baragatti and

Pommeret (2012) considered the influence of λ0 on the subset selection and suggested

a technique to select the scaling factor. Similar to Gupta and Ibrahim (2007), in the

situation of singularity of the matrix X ′V X, we modified our prior with the ridge

parameter (λ0 > 0). More specifically, we propose the following prior for β:

β|τ,V ,X ∼ N(0, 2τgλ0
(X ′V X + 2λ0Ik)

−1), (3.7)

where gλ0
> 0 is a known scaling factor characterised by the parameter λ0 and Ik is

the k × k identity matrix. In this chapter, we assume gλ0
6= g.

Clearly in order for the conditional distribution (CD) of the quantile coefficients

vector β under the prior (3.3) and the CD of β under the prior (3.7) to have

identical CDs, we need g(X ′V X)−1 = gλ0
(X ′V X+2λ0Ik)

−1. The following lemma
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characterises the relationship among the three parameters g, gλ0
and λ0.

Lemma 2. The conditional distribution (CD) of the quantile coefficients vector

β under the prior (3.3) and the conditional distribution of β under the prior (3.7)

are identical distributions if and only if

gλ0
Ik = g[Ik + 2λ0(X

′V X)−1]. (3.8)

This lemma provides a technique to elicit gλ0
and the proof of Lemma 2 is

straightforward. By taking the expectation and trace of the second side of (3.8),

we obtained

ĝλ0
=

1

k
E[gk +

2gλ0
tr(X ′V X)

], (3.9)

where the expectation in Equation (3.9) is taken with respect to V . In this chapter,

similar to the previous chapter, we set the scaling factor to g = 100. We choose

λ0 = 1/k as suggested by Baragatti and Pommeret (2012) which lies between 0 and

1 as recommended for Bayesian robustness (Gupta and Ibrahim, 2007). Under the

prior (3.7), the full CD of β is Nk(µ,Σ), where

Σ = 2τ [
gλ0

+ 1

gλ0

X ′V X +
2λ0
gλ0

Ik]
−1 and µ = (2τ)−1ΣX ′V (y∗ − ξv). (3.10)

During MCMC iteration, we updated gλ0
using gλ0

= k−1[gk+2gλ0/tr(X
′V X)]

where g = 100 and λ0 = 1/k. In the situation of nonsingularity of the matrix X ′V X ,

we set λ0 = 0 and gλ0
= g.

3.2.3 Subset selection

This section extends the idea of Bayesian subset selection in Tobit QR reported in

Ji et al. (2012) by using different priors for different quantiles. Given p ∈ (0, 1) and

τ = 1, we consider the following prior distribution assumptions:
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• The prior distribution of βγ is taken as βγ |V ,Xγ ∼ N(0, 2gλ0
(X ′

γV Xγ +

2λ0Ikγ )
−1), where vi ∼ Exp(p(1− p)) for i = 1, ..., n.

• The prior of γ is taken as p(γ|π) ∝ πkγ (1 − π)k−kγ (George and McCulloch,

1993, 1997), where π ∼ Beta(b01, b02).

Under prior assumptions, we are able to use a MCMC based computation technique

to update y∗,βγ ,V and π from the posterior:

• Updating y∗i

Under γ, the full CD of y∗i , i = 1, · · · , n, is reduced to

y∗i |yi,βγ ,V ∼





Υ(yi), if yi > y0;

N(x′
i,γβγ + ξvi, 2vi)I(y

∗
i ≤ y0), otherwise,

(3.11)

• Updating βγ

The full CD of βγ is Nkγ (µγ ,Σγ), where

Σγ = 2[
gλ0

+ 1

gλ0

X ′
γV Xγ +

2λ0
gλ0

Ikγ ]
−1,

and µγ = 2−1ΣγX
′
γV (y∗ − ξv).

• Updating v

The full CD of each vi can be obtained from the full CD of vi in the subsection

3.2 by setting τ = 1 and replacing x′
i and β everywhere with x′

i,γ and βγ ,

respectively.

• Updating γj

Each γj , j = 1, · · · , k, has a full CD given by

p(γj = 1|y,y∗,βγ ,v,γ−j) =
1

1 + hj
,

hj =
p(y∗|y,βγ ,v, γj = 0,γ−j)p(βγ |γj = 0,γ−j)p(γj = 0,γ−j)

p(y∗|y,βγ ,v, γj = 1,γ−j)p(βγ |γj = 1,γ−j)p(γj = 1,γ−j)
.
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• Updating π

The full CD of π is the same as in Section 2.3 of Chapter 2.

3.3 Model extensions

3.3.1 Subset selection in QR

The proposed method in subsection 3.2.3 can be used, with some modifications, to

find subset selection in QR with continuous outcome variable. By ignoring the link

function yi = max{y0, y∗i } and replacing y∗ everywhere with y, our approach offers

an alternative way for subset selection in QR model with continuous outcome to deal

with multicollinearity and overfitting problems.

3.3.2 Subset selection in Binary QR

In this subsection, we show that our technique reported in subsection 3.2.3 can be

extended to subset selection for binary QR model. Binary QR models have received

considerable interest in the literature and we refer to Manski (1975, 1985), Kordas

(2006) and Benoit and Poel (2011) for an overview. Suppose yi is a binary outcome

variable (e.g. normal and cancer), then the binary QR takes the form of (Manski,

1985)

y∗i = x′
iβ + εi, (3.12)

yi = 1 if y∗i ≥ 0, yi = 0 otherwise.

Under the above model, the proposed method in subsection 3.2.3 can be used to find

promising subset in binary QR by using the link function yi ∼ 1(y∗i ≥ 0) and sampling
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y∗i , i = 1, · · · , n, as follows

y∗i |yi = 1, vi,βγ ∼ N(x′
i,γβγ + ξvi, 2vi) truncated at the left by 0,

y∗i |yi = 0, vi,βγ ∼ N(x′
i,γβγ + ξvi, 2vi) truncated at the right by 0.

3.4 Simulations

3.4.1 Example 1 ( Inference)

In this example, we consider our Bayesian Tobit quantile regression approach using

g-prior (BTQRg) and Bayesian Tobit quantile regression approach (BTQ) using a

symmetric prior distribution, β ∼ Nk(0, 100I), as reported by Kozumi and Kobayashi

(2011). These approaches were compared with the standard Tobit QR approach (crq)

using the crq() function employing Powell’s method in the R package quantreg

(Koenker, 2011). Our simulation design follows the setting of Bilias et al. (2000) and

Yu and Stander (2007), among others. We simulate data from the model

yi = max{0, y∗i }, i = 1, ..., n,

y∗i = β0 + β1x1i + β2x2i + εi,

where x1i ∼ Bernoulli(0.5) centered at zero, x2i ∼ N(0, 1) and (β0, β1, β2) = (1, 1, 1).

The residuals εi are simulated from three distributions: N(0,1), (1 + x2)N(0, 1) and

0.75N(0, 1) + 0.25N(0, 4). For each residual distribution, 250 data sets are simulated

assuming the number of observations are n = 100 and the models are fitted at three

different quantiles, p = 0.50, 0.75 and p = 0.95. BTQRg and BTQ algorithms are

run for 17000 iterations and the first 2000 were removed as burn in. Methods are

evaluated based on the estimated relative average bias and efficiency which are defined

in Section 2.4 of Chapter 2.

Clearly from Table 3.1, the biases due to BTQRg, BTQ and crq are more or

less the same. However, BTQRg generally behaves much better than BTQ and crq in
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Table 3.1: Estimated bias and relative efficiency for different error distributions.
The proposed approach (BTQRg) is compared with two other approaches: the
frequentist Tobit QR approach (crq) and the Bayesian approach using symmetric
prior distribution for the regression coefficients (BTQ).

Model p bias (eff.) bias (eff.) bias (eff.)
β0 β1 β2

ε ∼ N(0, 1)
crq 0.50 -0.01466 (2.15047) 0.03376 (2.18275) 0.01217 (2.06735)
BTQ 0.50 0.00597 (1.14267) 0.00996 (1.06784) -0.00789 (1.01235)
BTQRg 0.50 0.00640 (1.00000) -0.01036 (1.00000) -0.05614 (1.00000)
crq 0.75 -0.01052 (1.72184) -0.00405 (1.32100) -0.01455 (1.59715)
BTQ 0.75 -0.02690 (1.35108) 0.06365 (1.57798) 0.09263 (1.85198)
BTQRg 0.75 0.00284 (1.00000) -0.05996 (1.00000) -0.01000 (1.00000)
crq 0.95 0.01208 (1.13496) -0.02656 (1.21129) -0.12986 (0.97514)
BTQ 0.95 0.09551 (0.91855) 0.05976 (1.03759) 0.07646 (1.09315)
BTQRg 0.95 0.00201 (1.00000) 0.00079 (1.00000) -0.04465 (1.00000)

ε ∼ (1 + x2)N(0, 1)
crq 0.50 -0.15563 (9.78132) 0.16054 (21.48298) 0.01826 (2.33432)
BTQ 0.50 -0.07266 (1.32119) 0.09796 (2.85943) 0.05578 (1.22709)
BTQRg 0.50 0.07632 (1.00000) -0.01073 (1.00000) -0.01023 (1.00000)
crq 0.75 -0.01138 (1.21019) 0.05568 (2.65549) -0.07541 (1.62722)
BTQ 0.75 -0.05331 (1.30429) 0.28926 (2.96351) 0.03059 (1.67248)
BTQRg 0.75 0.04686 (1.00000) -0.04863 (1.00000) -0.01050 (1.00000)
crq 0.95 0.08300 (1.32362) -0.01790 (1.18841) -0.31592 (1.98608)
BTQ 0.95 0.18887 (0.89628) 0.27505 (1.01940) -0.21792 (1.40077)
BTQRg 0.95 0.13293 (1.00000) -0.00770 (1.00000) -0.14665 (1.00000)

ε ∼ 0.75N(0, 1)
+0.25N(0, 4)
crq 0.50 -0.02559 (2.81012) 0.00989 (2.73070) -0.00652 (1.82914)
BTQ 0.50 -0.01951 (1.49375) 0.00640 (1.36406) -0.00642 (0.90888)
BTQRg 0.50 0.00207 (1.00000) -0.00570 (1.00000) -0.01228 (1.00000)
crq 0.75 -0.13335 (1.42499) 0.01562 (1.54906) -0.01233 (1.78678)
BTQ 0.75 -0.14603 (1.86671) 0.08703 (1.85623) 0.10127 (1.89332)
BTQRg 0.75 -0.09073 (1.00000) -0.04322 (1.00000) -0.00878 (1.00000)
crq 0.95 -0.18130 (1.58685) -0.05828 (1.15029) -0.11391 (0.99865)
BTQ 0.95 -0.10930 (1.08060) 0.05055 (0.95292) 0.10552 (1.05016)
BTQRg 0.95 -0.10797 (1.00000) -0.00999 (1.00000) -0.02471 (1.00000)
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terms of the absolute bias. Most noticeably, when p = 0.95 the absolute bias generated

by BTQRg for all parameters is much smaller than the absolute bias generated by

BTQ and crq. In addition, BTQRg appears more efficient than the BTQ and crq.

For example, when the error is standard normal and estimating the median, the loss

of efficiency of the standard Tobit QR (crq), with respect to BTQRg, was 107% for

β2 and larger for the other parameters. We may also investigate the estimation of

β0, β1 and β2 compared to the true QR coefficients βtrue, which are presented in

Table 3.2. The results suggest that BTQRg works well compared with the BTQ and

crq. The posterior histograms of quantile coefficients β0, β1 and β2 in Figure 3.1 also

support this conclusion.

3.4.2 Example 2 ( Subset selection for left-censored response with k < n)

Data are simulated from 2 model designs:

• Design I: β = (1, 5, 0, 0, 0, 0, 0, 0, 0)′ , including the intercept value, and the rows

of X follow a N8(0,Σx) with (Σx)j1j2 = 0.5|j1−j2|.

• Design II: Same as Design I except that β=(1, 3, 1.5, 0, 0, 2, 0, 0, 0)′ .

For Designs I and II, 250 datasets are generated each with n = 200 observations from

the true censoring model

y∗i = x′
iβ + εi, and yi = max{0, y∗i }, i = 1, · · · , n, (3.13)

The residuals εi, i = 1, · · · , 200, are simulated from three distributions: N(0,1), t3 and

χ2
3 distribution. In this example, we compare our Bayesian subset selection for Tobit

QR using quantile dependent priors (BTQRg) with Bayesian variable selection in

Tobit quantile regression (BVST) using a symmetric prior distribution as reported by

Ji et al. (2012). The results of the standard Tobit QR approach (crq) are also reported.

BTQRg, BVST and crq are evaluated based on median of mean absolute deviations,

referred to as “MMAD”. In other words, MMAD=median(mean(|x′
iβ̂ − x′

iβ
true|)),
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Table 3.2: True parameter values and their estimates for Example 1. The results
are averaged over 250 independent simulations.

Error Method p β̂0 β̂1 β̂2

N(0, 1) βtrue 0.50 1.0000 1.0000 1.0000
crq 0.50 0.9831 1.0016 1.0201
BTQ 0.50 1.0128 0.9826 0.9999

BTQRg 0.50 1.0006 0.9897 1.0060

βtrue 0.95 2.6449 1.0000 1.0000
crq 0.95 2.6247 0.9548 0.8892
BTQ 0.95 3.0503 1.0807 1.1221

BTQRg 0.95 2.6503 1.0241 1.0896

(1 + x2)N(0, 1) βtrue 0.50 1.0000 1.0000 1.0000
crq 0.50 0.9060 1.0847 1.0091
BTQ 0.50 0.9392 1.0687 1.0404

BTQRg 0.50 0.9889 1.0193 1.0034

βtrue 0.95 2.6449 1.0000 2.6449
crq 0.95 2.9249 1.0253 1.8588
BTQ 0.95 3.3334 1.3619 2.1223

BTQRg 0.95 2.7790 1.0191 2.1547

0.75N(0, 1) βtrue 0.50 1.0000 1.0000 1.0000
+0.25N(0, 4)

crq 0.50 0.9848 1.0253 1.0147
BTQ 0.50 1.0032 1.0063 1.0052

BTQRg 0.50 0.9993 1.0105 1.0014

βtrue 0.95 3.0560 1.0000 1.0000
crq 0.95 2.4880 0.9602 0.8669
BTQ 0.95 2.9183 1.0863 1.1503

BTQRg 0.95 2.9737 1.0107 1.0197
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Figure 3.1: Posterior histograms of β0, β1 and β2 at quantiles 0.50 and 0.95 for
Example 1 using our Bayesian method.
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where the median is calculated over the total number of replications. MMAD is a

good technique of producing significant information about how well BTQRg, BVST

and crq perform, where a lower MMAD suggests a better performance.

The results of the MMADs and SD of the MADs are listed in Table 3.3. For the

MMADs and SD criteria, the proposed method (BTQRg) generally performs better

than BVST and crq for all the distributions under consideration. In addition, BTQRg

selects a highest average number of actual zeros than BVST. We can see that as the

quantiles become more extreme, the BVST method yields a low average number

of actual zeros compared with BTQRg, suggesting a good performance of BTQRg.

Moreover, from Table 3.4, we observe that both methods BTQRg and BVST choose

the true subset. However, we can observe that BTQRg tends to behave better in

terms of average posterior model probability (APMP) for the correct subset than

the BVST, especially for the most extreme quantile (p = 0.95). Hence, the modified

g-prior plays a good role in finding the correct subset, even for extreme quantiles.

3.4.3 Example 3 (Subset selection for left-censored response with k > n)

The setup in Example 3 is the same as Example 2, except we set k = 250 (including the

intercept value) and β = (1, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, · · · , 0︸ ︷︷ ︸
236

)′ to investigate

the performance of BTQRg and BVST in the case k > n. From Table 3.5, the

performance of BTQRg appears quite well compared to the BVST. We observe that

the MMAD produced using the BVST method is much higher than BTQRg. We also

see that BTQRg tends to produce lower standard deviations than BVST, suggesting

a good performance of the proposed method.

3.4.4 Example 4 (Subset selection for continuous response with k > n)

The setup in this example is the same as Example 3 but we ignore the link function

(i.e., continuous response) and we set n = 50. In this example, we use one dataset

to compare our approach reported in subsection 3.3.1, refereed to as “SSVSQ”,
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Table 3.3: MMADs, SD and the average number of actual zeros (correct) for the simulated data in Example 2, where p = 0.50, 0.75 and
0.95.

ε ∼ N(0, 1) ε ∼ t3 ε ∼ χ2
3

Model p MMAD (SD) correct MMAD (SD) correct MMAD (SD) correct

Des. I
crq 0.50 0.327 (0.112) - 0.336 (0.191) - 0.415 (0.289) -
BVST 0.50 0.158 (0.083) 6.88 0.177 (0.105) 6.84 0.552 (0.386) 6.96
BTQRg 0.50 0.094 (0.082) 6.96 0.142 (0.094) 6.88 0.347 (0.264) 7.00

crq 0.75 0.311 (0.119) - 0.363 (0.157) - 0.444 (0.287) -
BVST 0.75 0.267 (0.254) 6.84 0.322 (0.318) 6.80 0.357 (0.360) 6.68
BTQRg 0.75 0.146 (0.112) 7.00 0.184 (0.162) 6.96 0.297 (0.271) 6.92

crq 0.95 0.366 (0.189) - 0.404 (0.280) - 0.450 (0.520) -
BVST 0.95 0.383 (0.318) 6.88 0.359 (0.393) 6.60 0.386 (0.388) 6.20
BTQRg 0.95 0.223 (0.168) 7.00 0.223 (0.217) 6.92 0.343 (0.290) 6.89

Des. II
crq 0.50 0.296 (0.095) - 0.343 (0.120) - 0.408 (0.271) -
BVST 0.50 0.159 (0.084) 4.84 0.315 (0.301) 4.64 0.371 (0.357) 4.46
BTQRg 0.50 0.149 (0.080) 4.96 0.221 (0.121) 4.84 0.296 (0.253) 4.99

crq 0.75 0.294 (0.092) - 0.350 (0.121) - 0.286 (0.263) -
BVST 0.75 0.283 (0.211) 4.68 0.320 (0.299) 4.72 0.381 (0.338) 4.66
BTQRg 0.75 0.172 (0.081) 4.96 0.218 (0.111) 4.92 0.338 (0.257) 4.96

crq 0.95 0.345 (0.132) - 0.386 (0.293) - 0.477 (0.435) -
BVST 0.95 0.384 (0.311) 4.76 0.390 (0.374) 4.66 0.437 (0.425) 4.36
BTQRg 0.95 0.234 (0.175) 5.00 0.258 (0.291) 4.96 0.381 (0.384) 4.96
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Table 3.4: Top subsets in Example 2 for Tobit QR.

ε ∼ N(0, 1) ε ∼ t3 ε ∼ χ2
3

Des. Model p Variables APMP Variables APMP Variables APMP

I BVST 0.50 Inter., x1 0.90 Inter., x1 0.87 Inter., x1 0.85
BTQRg 0.50 Inter., x1 0.97 Inter., x1 0.96 Inter., x1 0.91

BVST 0.75 Inter., x1 0.85 Inter., x1 0.84 Inter., x1 0.74
BTQRg 0.75 Inter., x1 0.97 Inter., x1 0.96 Inter., x1 0.90

BVST 0.95 Inter., x1 0.82 Inter., x1 0.76 Inter., x1 0.60
BTQRg 0.95 Inter., x1 0.97 Inter., x1 0.96 Inter., x1 0.87

II BVST 0.50 Inter., x1, x2, x5 0.89 Inter., x1, x2, x5 0.89 Inter., x1, x2, x5 0.86
BTQRg 0.50 Inter., x1, x2, x5 0.93 Inter., x1, x2, x5 0.93 Inter., x1, x2, x5 0.91

BVST 0.75 Inter., x1, x2, x5 0.85 Inter., x1, x2, x5 0.88 Inter., x1, x2, x5 0.85
BTQRg 0.75 Inter., x1, x2, x5 0.92 Inter., x1, x2, x5 0.93 Inter., x1, x2, x5 0.91

BVST 0.95 Inter., x1, x2, x5 0.84 Inter., x1, x2, x5 0.81 Inter., x1, x2, x5 0.52
BTQRg 0.95 Inter., x1, x2, x5 0.93 Inter., x1, x2, x5 0.93 Inter., x1, x2, x5 0.91
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Table 3.5: MMADs and SD for the simulated data in Example 3, where p = 0.50,
0.75 and 0.95.

ε ∼ N(0, 1) ε ∼ t3 ε ∼ χ2
3

Model p MMAD (SD) MMAD (SD) MMAD (SD)
BVST 0.50 0.192 (0.089) 0.323 (0.235) 0.473 (0.358)
BTQRg 0.50 0.183 (0.093) 0.211 (0.155) 0.337 (0.294)

BVST 0.75 0.325 (0.339) 0.361 (0.289) 0.552 (0.403)
BTQRg 0.75 0.258 (0.278) 0.328 (0.293) 0.369 (0.413)

BVST 0.95 0.529 (0.363) 0.631 (0.346) 0.670 (0.619)
BTQRg 0.95 0.497 (0.321) 0.589 (0.334) 0.611(0.680)

with the stochastic search variable selection reported in Reed et al. (2009) using

the SSVSquantreg() function (Martin et al., 2011). SSVSQ and SSVSquantreg

were compared using marginal inclusion probabilities (MIP) at two quantiles, these

were 0.50 and 0.95. We ran both algorithms SSVSQ and SSVSquantreg for 17000

iterations, removing the first 2000 as burn in. The results of the marginal inclusion

probabilities are plotted in Figures 3.2, 3.3, 3.4 and 3.5. Clearly, one can observe

that our approach (SSVSQ) tends to perform better than SSVSquantreg, especially

for p = 0.95.
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Figure 3.2: MIP for the simulated data in Example 4 at the median (p = 0.50) by
using SSVSquantreg function.



3.4. Simulations 54

ε = N(0, 1)

Regressors (p=0.50)

P
os

te
rio

r 
P

ro
ba

bi
lit

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ε = t3

Regressors (p=0.50)

P
os

te
rio

r 
P

ro
ba

bi
lit

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ε = χ3
2

Regressors (p=0.50)

P
os

te
rio

r 
P

ro
ba

bi
lit

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3.3: MIP for the simulated data in Example 4 at the median (p = 0.50) by
using SSVSQ.
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Figure 3.4: MIP for the simulated data in Example 4 when p = 0.95 by using
SSVSquantreg function.
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Figure 3.5: MIP for the simulated data in Example 4 when p = 0.95 by using
SSVSQ.

3.5 Leukemia data set

The proposed technique in subsection 3.3.2 for subset selection in binary QR is

illustrated using the popular leukemia dataset reported in Golub et al. (1999). This

data describes 7,129 human genes in 72 patient samples labelled: ALL and AML.

Here, ALL referred to as “acute lymphoblastic leukemia” which consists of 47 samples

of 72 and the remaining are AML, which are referred to as “acute myeloid leukemia”.
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ALL further splits into 27 training and 11 testing samples, while AML splits into 20

training and 14 testing samples (Golub et al., 1999).

Table 3.6 lists the top 10 most significant genes selected by the proposed model

in Subsection 3.3.2 for p ∈ {0.25, 0.50, 0.75}. Table 3.6 also shows the active genes

chosen by Yang and Song (2010), Lee (2009) or Golub et al. (1999), when p = 0.50.

The stronger gene is Zyxin which is also chosen as an active gene by Golub et al.

(1999), Lee (2009), Bae and Mallick (2004), and Yang and Song (2010), among others.

The crucial role of this gene in classification has been shown by Bae and Mallick (2004)

who used only this gene for classification of testing dataset and got only three errors

in classification, while Golub et al. (1999) applied 50 genes for classification and got

five errors in classification. Our method identifies this gene (Zyxin) as the leading

gene based on the posterior gene inclusion probabilities, which indicates that our

method performs well.

A more complete view of gene effects can be supplied by the first and third

quartiles, i.e, p = 0.25 and p = 0.75. From Table 3.6, it can be observed that the

stronger gene is Macmarcks when p = 0.25, while the stronger gene is CST3 Cystatin

C (amyloid angiopathy and cerebral hemorrhage) when p = 0.75. From Table 3.6, it

can be seen that both genes are also identified by Golub et al. (1999), Lee (2009) and

Yang and Song (2010). The simulation studies and the leukaemia dataset example

indicate sturdy support for the apply of our method.
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3.6 Chapter summary

In this chapter, we developed a method for Bayesian subset selection in Tobit

QR based on a modification of Zellner’s informative g-prior to take into account

different priors for different quantile levels. The proposed prior is firstly developed

for settings in which k < n, and then extended to deal with multicollinearity and

over-fitting problems. Some extensions of our technique are also discussed, including

the continuous and binary responses in quantile regression. We have also presented

an expression for the hyperparameter g to calibrate the modified g-prior with a ridge

parameter to a corresponding g-prior. Clear advantages over approaches proposed by

Reed et al. (2009) and Ji et al. (2012) include quantile dependent priors and efficiency

of Bayesian computation. The advantage of the method is that the prior distribution

changes automatically when we change the quantile. Thus, we have different priors

for different quantiles.
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Table 3.6: The top 10 significant genes selected by the proposed model.

p Rank Index Gene description

0.25 1 804 Macmarcks

2 1685 Termianl transferase mRNA

3 3847 HoxA9 mRNA

4 2354 CCND3 Cyclin D3

5 1779 MPO Myeloperoxidase

6 4847 Zyxin

7 2402 Azurocidin gene

8 760 CYSTATIN A

9 1882 CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)

10 6041 APLP2 Amyloid beta (A4) precursor-like protein 2

0.50 1 4847 Zyxin a,b,c

2 760 CYSTATIN Ab,c

3 804 Macmarcks a,b,c

4 4052 Catalase (EC 1.11.1.6) 5′flank and exon 1 mapping to chromosome 11, band p13 a,c

7 1882 CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)a,b,c

6 1144 SPTAN1 Spectrin, alpha, non-erythrocytic 1 (alpha-fodrin)b

5 1745 LYN V-yes-1 Yamaguchi sarcoma viral related oncogene homolog

8 1630 Inducible protein mRNAb

9 2288 DF D component of complement (adipsin)b

10 1953 Fc-epsilon-receptor gamma-chain mRNA

0.75 1 1882 CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)

2 4377 ME491 gene extracted from H.sapiens gene for Me491/CD63 antigen

3 1834 CD33 CD33 antigen (differentiation antigen)

4 760 CYSTATIN A

5 4336 ARHG Ras homolog gene family, member G (rho G)

6 4847 Zyxin

7 6041 APLP2 Amyloid beta (A4) precursor-like protein 2

8 3847 HoxA9 mRNA

9 1953 Fc-epsilon-receptor gamma-chain mRNA

10 4328 PROTEASOME IOTA CHAIN

a Golub et al. (1999), b Lee (2009), c Yang and Song (2010)



Chapter 4

Bayesian subset selection for

fixed and random effects in QR

models

In many clustered applications, analysts are interested in identifying the coefficients of

independent variables that may vary across a set of clusters to build good prediction

models. This chapter considers the idea of Bayesian subset selection for both fixed and

random coefficients in quantile mixed models (QMM) using an ALD-based working

model. Some extensions are outlined and discussed, including the selection process

in binary and Tobit quantile mixed-effects models. Illustrative examples involving

age-related macular degeneration data are given to demonstrate the methodology.

4.1 Introduction

Clustered data is encountered in a wide variety of applications, including agriculture,

education, finance, ecology, geology, medicine and social repeated measures studies.

Since being introduced in Laird and Ware (1982), the mixed model with Random

Effects (REs) has become a popular and effective technique to deal with clustered

60
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data. This model consists of fixed and REs, the fixed coefficients of independent

variables give the data intercept and slopes, while the REs account for the correlation

and the heterogeneity among a set of clusters. One of the serious challenges in the

linear-mixed model (LME) lies in selecting both fixed and REs. To solve this problem,

AIC and BIC have been used over the years to select these effects. Recently, MCMC-

based computation techniques have been proposed in traditional mean regression

framework for selecting the fixed and REs (see, Chen and Dunson, 2003; Kinney and

Dunson, 2007; Saville and Herring, 2009; Bondell et al., 2010; Ibrahim et al., 2011).

In this chapter a Bayesian approach for finding promising subsets of fixed and

REs in the QR model is developed using a MCMC-based computation technique.

This approach is related to the earlier approaches reported by Chen and Dunson

(2003) and Kinney and Dunson (2007), but for mixed quantile regression (QR)

models including: continuous, binary and left-censored responses. A key step in this

approach is introducing a hierarchical Bayesian model to shrink the REs towards zero

by proposing an l1 penalty in the empirical check function of Koenker and Bassett

(1978). This helps identify the exact prior distribution for the variances of the random

effects (REs). Another key step is using a robust quantile dependent prior for subset

selection and estimation in Bayesian QR. To author’s knowledge, this is the first work

discussing selecting both fixed and REs in QR models. Our motivating example is

an analysis of age-related macular degeneration (ARMD) data, which was previously

analysed by Chaili (2008). This study had a total of 203 patients who were randomly

chosen from three cities (centres) including London, Belfast and Southampton. The

goal of this study is to find the relationship between the distance visual acuity (DVA)

and a subset of covariates. The change in DVA of each patient was measured four

times over a 24 month period, where data was measured on the 3th, 6th, 12th and

24th months; see Chaili (2008) for more details. In this chapter we are interested in

finding the most significant independent variables and random effects (REs) for the

QR model, relating to the change in distance visual acuity (DVA).

The rest of this chapter is presented in the following way. In Section 4.2, the
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re-parameterisation in linear mixed models are reviewed and an l1-penalised check

function for mixed QR models is proposed in Section 4.3. In Section 4.4, the prior

specification and Bayesian MCMC technique are presented and Section 4.5 discusses

some extensions of the method, including selection of both fixed and REs in binary

and Tobit quantile mixed-effects models. The proposed methods are examined using

simulation studies in Section 4.6 and using the ARMD data in Section 4.7. A chapter

summary follows in Section 4.8.

4.2 Linear mixed models

Suppose yit denotes the outcome variable for the ith cluster measured at the tth time

point, x′
it is a 1 × k vector of predictors, z′

it is a 1 × q vector of predictors, and x′
it

and z′
it are rows of the design matrices Xi and Zi, respectively, where i = 1, ..., N

and t = 1, ..., ni. Then, according to Laird and Ware (1982), the LME model can be

denoted as

yit = x′
itβ + z′

itαi + εit, εit ∼ N(0, σ2), (4.1)

where β and αi are k and q-dimensional unknown fixed coefficients and REs,

respectively, Xi is ni×k, Zi is ni×q, αi ∼ N(0,Σα), and εit is the residual term. We

further assume that σlr denote the (l, r)th element of Σα, for l, r = 1, · · · , q, where

σll is the lth RE variance.

Chen and Dunson (2003) suggested a technique for finding active REs by re-

parametrisation of the covariance matrix of the REs Σα such that Σα = A∆∆′A and

z′
itαi = z′

itA∆hi. Here, A = diag(a1, ..., aq)
′ such that al is proportional to

√
σll, ∆

is a q×q lower triangular matrix such that δlr is describing the correlation between the

lth and rth random effects, diag(∆) = (1, . . . , 1)′ and hi ∼ N(0, I). The authors show

that the parameters in A and ∆ have the conjugacy feature that allows to improve

mixing and create an efficient MCMC-based computation technique for fitting the
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LME (Chen and Dunson, 2003). Recently, Kinney and Dunson (2007) rewrite Σα

such that Σα = F∆Ω∆′F , where Ω = diag(ω1, ..., ωq)
′ is a diagonal matrix and

F = diag(f1, ..., fq)
′ is a diagonal matrix, whose fl element is proportional to al.

Setting fl = 0 is equivalent to reducing the model by removing the irrelavant lth

random effect from the model. Thus, the authors replaced the model in (4.1) with

yit = x′
itβ + z′

itF∆bi + εit, εit ∼ N(0, σ2), (4.2)

where bi = (bi1, ..., biq)
′ and bi ∼N(0,Ω).

4.3 Linear mixed QR

Following the re-parametrisation given by Chen and Dunson (2003) and Kinney and

Dunson (2007), we propose the following l1-penalised check function,

min
βp,bp

N∑

i=1

ni∑

t=1

ρp(yit − x′
itβp − z′

itF∆bip) + r1

N∑

i=1

q∑

l=1

|bilp|, (4.3)

where bp = (b′1p, ..., b
′
Np)

′ and r1 is a nonnegative regularisation parameter. In this

chapter, r1 is restricted to being 1. For simplicity of notation, we will omit the

subscript p from βp, bp, bip and bilp in the remainder of the chapter.

If a Laplace prior (1/2) exp{−|bil|} is employed on bil and assumed that the

residuals εit follow an ALD(0, τ, p), then the density of (y, b) is given by

f(y, b|β, τ,X ,Z,F ,∆) ∝ exp{−
N∑

i=1

(

ni∑

t=1

|εit|+ (2p− 1)εit
2τ

+

q∑

l=1

|bil|)}, (4.4)

where y = (y11, . . . , yNnN
)′, b = (b′1, . . . , b

′
N )′, X = (X ′

1, . . . ,X
′
N )′, Z =

diag(Z ′
1, . . . ,Z

′
N )′ and εit = yit−x′

itβ−z′
itF∆bi. In the clustered data, the mixture
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representation of the ALD is given by

τ−1 exp{−|εit|+ (2p − 1)εit
2τ

}

∝
∫

N(εit; ξvit, 2τvit)Exp(vit; ζ)dvit. (4.5)

4.4 Priors specification and Bayesian sampler

4.4.1 Priors specification

In this chapter, the prior (2.10) is assigned for the fixed effects such that

βγ |τ,γ, Ṽ ,Xγ ∼ Nkγ (0, 2gτ(X
′
γṼ Xγ)

−1), (4.6)

p(τ) ∝ τ−1, (4.7)

vit|τ ∼ Exp(ζ), (4.8)

γ|π ∼ πkγ (1− π)k−kγ , (4.9)

where Ṽ =diag(v11
−1, ..., vNnN

−1) and π ∈ (0, 1). According to Andrews and Mallows

(1974), the Laplace prior (1/2) exp{−|bil|} on bil, l = 1, ..., q, can be written as:

1

2
exp{−|bil|} =

∫ ∞

0
N(bil; 0, ωl)Exp(ωl;

1

2
)dωl, (4.10)

It should be noted that Kinney and Dunson (2007) assumed that bil ∼N(0, ωl) and

ωl ∼InvGa(ωl; 1/2, n/2), but from (4.10) it can be observed that the exact prior

(knowledge) for ωl is Gamma(ωl; 1, 2). Although, in theory, any prior for ωl could

be used, it is crucial to elicit a prior for ωl that is as informative as possible of the

investigators idea.

The prior distributions for fl, l = 1, ..., q, and δ = (δlr : l = 2, · · · , q; r =

1, · · · , l−1)′ are specified in a same way as Chen and Dunson (2003) and Kinney and

Dunson (2007). Thus, a standard half normal distribution truncated at the left by
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zero ZI-N+(pl0, 0, 1) is specified for fl, where pl0 = p(fl = 0). For δ, it is assumed that

p(δ|f) = N(0,Rδ).1(δ ∈ Rf ), where 1(.) is an indicator function and Rf restricted

the components of δ to be zero such that the corresponding fl’s, l = 1, ..., q, are equal

to zero (Kinney and Dunson, 2007).

4.4.2 Bayesian sampler for variable selection

Under the specified prior distributions and following Chen and Dunson (2003)

and Kinney and Dunson (2007), it is possible to simulate all parameters from

their full conditional distributions. Let yi = (yi1, ..., yini
)′, ṽ = (v11, ..., vNnN

)′,

Ṽ i = diag(ṽ−1
i ), ṽi = (vi1, ..., vini

)′, Tit = z′
itF∆bi, T = (T11, · · · , TNnN

)′, o1it =

(bilfmzitm : l = 1, ..., q,m = l+1, ..., q)′, o2it = (zitl(bil +
∑l−1

m=1 bimδml) : l = 1, ..., q)′,

n =
∑N

i=1 ni and kγ denote the size of the γth subset model.

• Updating βγ

The full conditional distribution (CD) of βγ is Nkγ (µβγ ,Σβγ ), where

µβγ =
g

g + 1
(X ′

γṼ Xγ)
−1X ′

γṼ (y − T − ξṽ),

and

Σβγ =
2τg

(g + 1)
(X ′

γṼ Xγ)
−1.

• Updating γ

The full CD of each γj, p(γj |γ−j , ṽ,y,X ,T ), is Bernoulli (π1), where

π1 =

(
1 +

(1− π)S(γj = 0,γ−j)
√
1 + g

πS(γj = 1,γ−j)

)−1

,
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and

S(γ) = (
1

4
(y − T − ξṽ)′Ṽ (y − T − ξṽ)

− g

4(g + 1)
(y − T − ξṽ)′Ṽ Xγ(X

′
γṼ Xγ)

−1

×X ′
γṼ (y − T − ξṽ) + p(1− p)

N∑

i=1

ni∑

t=1

vit)
−3n/2.

• Updating bi

The full CD of bi, p(bi|βγ , τ,γ, ṽ,y,Xγi,Zi,F ,∆), is Nq(µbi ,Σbi), where

Σbi = (
∆′FZ ′

iṼ iZiF∆

2τ
+Ω−1)−1,

and

µbi =
Σbi∆

′FZ′
iṼ i

2τ
(yi −Xγiβγ − ξṽi).

• Updating δ

The full CD of δ, p(δ|βγ , τ, ṽ,γ,y,Xγ ,Z,F , b), is given by N(µδ,Σδ).1(δ ∈

Rf ) where

Σδ = (

N∑

i=1

ni∑

t=1

o1ito
′
1it

2τvit
+Rδ

−1)−1,

and

µδ = Σδ(

N∑

i=1

ni∑

t=1

o1it(yit − x′
γitβγ − ξvit)

2τvit
).

• Updating τ

p(τ |βγ ,γ, ṽ,y,Xγ ,T )

= InvGa(
3n + kγ

2
,
1

4
(y −Xγβγ − T − ξṽ)′Ṽ (y −Xγβγ − T − ξṽ)

+
1

4g
β′
γ(X

′
γṼ Xγ)βγ + p(1− p)

N∑

i=1

ni∑

t=1

vit).
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• Updating ṽ

The full CD of each vit is GIG(ν = 0, ̺1, ̺2), where

̺21 =
(
(yit − x′

γ itβγ − z′
itF∆bi)

2 + β′
γxγ itx

′
γ itβγ/g

)
/(2τ) and ̺22 = 1/(2τ).

For i = 1, ..., N and t = 1, ..., ni, we update vit using the rgig() function in

the R package ghyp (Luethi and Breymann, 2012).

• Updating ωl, l = 1, ..., q.

The full CD of each ωl is GIG(ν, ̺1, ̺2), where ν = −(N + 2)/2, ̺21 =
∑N

i=1 b
2
il

and ̺22 = N . For l = 1, ..., q, we update ωl using the rgig() function.

• Updating fl, l = 1, ..., q.

The full CD of fl is given by ZI −N+(p̂l, f̂l, σ̃
2
fl
) where

σ̃2fl = (

N∑

i=1

ni∑

t=1

o22itl
2τvit

+ 1)−1,

f̂l = σ̃2fl(

N∑

i=1

ni∑

t=1

o2itl(yit − x′
γitβγ −∑s 6=l o2itsfs − ξvit)

2τvit
),

and

p̂l =

(
1 +

(1− pl0)N(0; 0, 1)(1 − Φ(0; f̂l, σ̃
2
fl
))

pl0N(0; f̂l, σ̃
2
fl
)(1− Φ(0; 0, 1))

)−1

.

Here, Φ(.) is the normal cumulative distribution function.

4.5 Model extensions

The l1 penalised check function with random effects in (4.3) can be extended in

several ways. In this section, some extensions for binary and Tobit mixed-effects QR

are described.
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4.5.1 Binary mixed QR

Here, it is shown that the l1 penalised check function with REs in (4.3) is directly

extended to subset selection for fixed and REs in Binary mixed-effects QR models.

Binary mixed-effects QR can be considered as a linear mixed-effects QR with a

latent outcome that is not observed completely. We suppose that the outcome yit

is generated according to the link function

yit =





1, if y∗it ≥ 0,

0, if y∗it < 0,
(4.11)

where

y∗it = x′
itβ + z′

itαi + εit. (4.12)

Thus, the l1 penalised check function in (4.3) can be written as

min
β,b

N∑

i=1

ni∑

t=1

ρp(yit − η(x′
itβ + z′

itF∆bi)) +
N∑

i=1

q∑

l=1

|bil|, (4.13)

where η(x′
itβ + z′

itF∆bi) = I{x′
itβ + z′

itF∆bi ≥ 0}. To conduct Bayesian subset

selection in mixed effects binary QR models, it is supposed that the priors are the

same as those given in subsection 4.4.1. Under γ and the mixture representation

(4.5), the full CD of y∗it is given by

y∗it|yit = 1, vit, τ,βγ ,γ,xγit,zit,F ,∆, bi

∼ N(x′
γitβγ + z′

itF∆bi + ξvit, 2τvit) left truncated at 0,

y∗it|yit = 0, vit, τ,βγ ,γ,xγit,zit,F ,∆, bi

∼ N(x′
γitβγ + z′

itF∆bi + ξvit, 2τvit) right truncated at 0.

All parameters in binary mixed-effects QR can be easily obtained as in subsection

4.4.2 by replacing yit everywhere with y∗it.
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4.5.2 Tobit mixed QR

Under the pth quantile, the penalised check function in (4.13) can be assumed as

penalised check function for mixed-effects Tobit QR if it is assumed that the outcome

yit is generated according to

yit = max{y0, y∗it}, (4.14)

and

y∗it = x′
itβ + z′

itαi + εit, (4.15)

where y0 is a known fixed point, y∗it denotes the left-censored jth outcome of the

ith cluster and η(x′
itβ + z′

itF∆bi) = max{y0, y∗it}. Under the specified priors in

subsection 4.4.1, it is straightforward to find that the full CD of y∗it is

y∗it|yit, vit, τ,βγ ,γ,xγit,zit,F ,∆, bi

∼ Υ(yit), if yit > y0,

y∗it|yit, vit, τ,βγ ,γ,xγit,zit,F ,∆, bi

∼ N(x′
γitβγ + z′

itF∆bi + ξvit, 2τvit)I(y
∗
it ≤ y0) otherwise.

Again, all parameters in mixed effects Tobit QR can be easily updated as in subsection

4.4.2 by replacing yit everywhere with y∗it.

4.6 Simulation study

To test the behavior of the proposed method in Section 4.3, we simulate data from

the model

yit = β0 + β1xit1 + β2xit2 + β3xit3 + αi1 + αi2zit1 + αi3zit2 + αi4zit3 + εit, (4.16)
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where xitj ∼ Uniform(−2, 2) for j = 1, ..., 8, and zitl̃ ∼ Uniform(−2, 2) for l̃ = 1, 2, 3.

We set β = (1, 1, 1, 1, 0, 0, 0, 0, 0)′ and αi = (αi1, αi2, αi3, αi4)
′ ∼ N(0,Σα), where

Σα =




0.90 0.40 0.06 0

0.40 0.70 0.10 0

0.06 0.10 0.10 0

0 0 0 0




The residuals εit, i = 1, · · · , 30, t = 1, . . . , 5 are simulated from three distributions:

N(0,1), a t3 and a χ2
3 distribution. For each residual distribution, 200 data sets were

simulated from the model (4.16) assuming there were 30 clusters and 5 observations

per cluster. Then subset selection in mixed effects QR was carried out at three

quantiles, namely 0.50, 0.75 and 0.95. Each generated data set is analysed using four

methods: the proposed method (MQR) as described in subsection 4.4.2, stochastic

search variable selection in QR (SSVSquantreg) for fixed effects in the R package

MCMCpack (Martin et al., 2011), model selection for fixed effects in QR using AIC

criteria in the R package quantreg (Koenker, 2011) and fixed and REs selection in

linear regression model (FRES) as reported by Kinney and Dunson (2007). The R

code for FRES can be obtained from theWeb location “http://www.stat.duke.edu/

~sk11/pubs.html”. We set Rδ = 0.5Iq, π = 0.5 and the same prior specifications as

those in Section 4.4 is followed.

In binary and Tobit mixed effects QR, the model (4.16) was used to simulate

y∗, and using the link functions (4.11) and (4.14) observed outcomes y, respectively.

The proposed method for binary mixed effects QR (BMQR) was compared with the

Bayesian variable selection in Binary quantile regression (BVSB) for fixed effects as

reported in Ji et al. (2012), and fixed and the REs selection in logistic regression

model (LFRES). The proposed method for Tobit mixed effects QR (TMQR) was

compared with Bayesian variable selection in Tobit quantile regression (BVST) for

fixed effects, reported in Ji et al. (2012).
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Table 4.1: Comparing average numbers of actual and wrong zero fixed effects of
independent variables in simulation study using three different distributions for the
errors. The proposed method MQR is compared with 3 methods: the SSVS in QR
for fixed effects (SSVSquantreg), AIC for fixed effects and fixed and REs selection in
linear regression models (FRES).

p Error QR Mean regression
Distribution MQR SSVSquantreg AIC FRES

0.50 N(0, 1) correct 4.93 4.69 3.63 4.84
wrong (0.00) (0.01) (0.01) (0.00)

0.75 N(0, 1) correct 4.86 4.65 3.42 -
wrong (0.00) (0.00) (0.00) -

0.95 N(0, 1) correct 4.77 4.49 2.06 -
wrong (0.00) (0.01) (0.01) -

0.50 t3 correct 4.83 3.93 3.64 4.51
wrong (0.00) (0.00) (0.02) (0.00)

0.75 t3 correct 4.71 3.89 3.40 -
wrong (0.00) (0.01) (0.00) -

0.95 t3 correct 4.56 3.28 2.12 -
wrong (0.00) (0.01) (0.03) -

0.50 χ2
3 correct 4.52 1.94 3.57 4. 31

wrong (0.00) (0.05) (0.03) (0.02)
0.75 χ2

3 correct 4.61 1.79 3.36 -
wrong (0.01) (0.07) (0.01) -

0.95 χ2
3 correct 4.33 1.70 2.16 -

wrong (0.00) (0.12) (0.11) -

4.6.1 Results

From Table 4.1, it can be observed that the Bayesian subset selection for fixed and REs

(MQR) was more efficient compared to SSVSquantreg, AIC and FRES. As expected,

the AIC and SSVSquantreg did not perform well because they ignore the random

effects. It can be observed that MQR produced a higher average number of actual

zeros compared with SSVSquantreg, AIC and FRES. Instead of looking at the average

number of actual and wrong zeros, we may also look at the coefficients estimation

and 95% intervals in Table 4.2. We can observe that the MQR performs well when

comparing the estimates of βj , j = 1, ..., k, and σll, l = 1, ..., q, with the true values

of βj and σll, respectively. It can be seen that the RQ procedure does not perform

well for p = 0.75 and 0.95. It is easy to observe that the true value of β0, for

p = 0.75 and 0.95, lies outside the confidence interval (95% C.I) obtained using the

RQ procedure because it ignores the random effects (REs) entirely. We also see that
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the credible intervals (95% CrI) obtained using the MQR are generally shorter than

the confidence intervals (95% C.I) obtained using the RQ procedure and the credible

intervals obtained using FRES, suggesting an efficiency gain and stable estimation

from the posterior distributions. For example, the interval width of β0 using the MQR

for p = 0.50 is 0.20 compared to the interval width of 0.55 for the RQ procedure and

the interval width of 0.41 for the FRES procedure. These differences in the interval

widths are more apparent for εit ∼ t3 and εit ∼ χ2
3, the results for which are not

shown here. Finally, given a coefficient of an independent variable, MQR and FRES

give very similar marginal inclusion probabilities at the median. This indicates that

the MQR performs well compared to the FRES.

From Table 4.3, we can see that the behavior of the BMQR, in terms of selecting

actual zeros is better than the other approaches. The performance of BMQR is

quite similar to logistic model, but the gap between BMQR and BVSB is very large

especially in extreme quantiles. A similar conclusion can be observed in the Tobit

mixed effects QR.
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Table 4.2: Posterior mean (Pm), 95% intervals and marginal inclusion probabilities (MIP) for both the fixed and REs when the error is
normal.

p True MQR RQ FRES
Parameter value Pm (95% CrI) MIP Pm (95% C.I) Pm (95% CrI) MIP

0.50 β0 1.00 1.08 (0.91, 1.11) 1.00 1.00 (0.72, 1.27) 1.15 (0.94, 1.35) 1.00
β1 1.00 0.99 (0.88, 1.12) 1.00 0.99 (0.76, 1.24) 0.94 (0.85, 1.17) 1.00
β2 1.00 0.99 (0.94, 1.05) 1.00 1.00 (0.75, 1.23) 1.03 (0.96, 1.13) 1.00
β3 1.00 1.03 (0.98, 1.09) 1.00 0.98 (0.74, 1.22) 0.96 (0.81, 1.16) 1.00
β4 0.00 0.00 (0.00, 0.01) 0.09 0.01 (-0.23, 0.25) 0.01 (-0.05, 0.21) 0.05
β5 0.00 0.00 (-0.01, 0.00) 0.03 0.00 (-0.24, 0.24) 0.00 (-0.07, 0.10) 0.03
β6 0.00 0.00 (-0.01, 0.00) 0.09 0.00 (-0.25, 0.24) 0.09 (-0.13, 0.19) 0.07
β7 0.00 0.01 (-0.01, 0.02) 0.08 0.01 (-0.24, 0.25) 0.05 (-0.01, 0.25) 0.09
β8 0.00 0.00 (0.00, 0.01) 0.04 0.00 (-0.24, 0.24) -0.08 (-0.14, 0.07) 0.04
σ11 0.90 0.92 (0.73, 1.17) 1.00 - 0.99 (0.65, 1.31) 1.00
σ22 0.70 0.67 (0.51, 0.88) 1.00 - 0.76 (0.43, 1.16) 1.00
σ33 0.10 0.18 (0.08, 0.31) 0.91 - 0.23 (0.06, 0.38) 0.78
σ44 0.00 0.00 (0.00, 0.00) 0.06 - 0.00 (0.00, 0.00) 0.02

0.75 β0 1.67 1.66 (1.49, 1.83) 1.00 2.09 (1.81, 2.42) -
β1 1.00 1.07 (0.95, 1.17) 1.00 0.98 ( 0.74, 1.27) -
β2 1.00 0.99 (0.91, 1.08) 1.00 1.03 (0.73, 1.27) -
β3 1.00 0.98 (0.89, 1.12) 1.00 0.99 (0.73, 1.27) -
β4 0.00 0.00 (-0.08, 0.00) 0.05 0.00(-0.27, 0.26) -
β5 0.00 0.00 (-0.01, 0.02) 0.06 0.03 (-0.27, 0.27) -
β6 0.00 0.01 (-0.07, 0.24) 0.12 0.00(-0.26, 0.28) -
β7 0.00 0.00 (0.00, 0.03) 0.04 0.01 (-0.26, 0.27) -
β8 0.00 0.01 (-0.02, 0.05) 0.10 -0.01 (-0.27, 0.26) -
σ11 0.90 0.95 (0.61, 1.32) 1.00 - -
σ22 0.70 0.76 (0.41, 1.13) 1.00 - -
σ33 0.10 0.09 (0.05, 0.17) 0.84 - -
σ44 0.00 0.00 (0.00, 0.00) 0.08 - -

0.95 β0 2.64 2.69 (2.41, 2.96) 1.00 3.74 (3.35, 4.35) -
β1 1.00 0.98 (0.91, 1.11) 1.00 0.99 (0.48 1.49) -
β2 1.00 1.07 (0.93, 1.22) 1.00 1.03 (0.49 1.51) -
β3 1.00 1.01 (0.91, 1.12) 1.00 1.01 (0.48 1.51) -
β4 0.00 0.00 (-0.11, 0.13) 0.07 0.00 (-0.51 0.51) -
β5 0.00 0.00 (0.00, 0.00) 0.02 0.01 (-0.50 0.52) -
β6 0.00 0.01 (0.00, 0.02) 0.08 0.01 (-0.50 0.50) -
β7 0.00 -0.08 (-0.17, -0.03) 0.04 0.00 (-0.51 0.52) -
β8 0.00 0.00 (0.00, 0.00) 0.09 0.01 (-0.51 0.51) -
σ11 0.90 1.01 (0.58, 1.35) 1.00 - -
σ22 0.70 0.78 (0.33, 1.27) 1.00 - -
σ33 0.10 0.14 (0.03, 0.26) 0.71 - -
σ44 0.00 0.00 (0.00, 0.00) 0.14 - -



4.6. Simulation study 74

Table 4.3: Comparing average numbers of actual and wrong zero fixed coefficients
of independent variables in simulation study using three different distributions for
the errors. The proposed method for binary data (BMQR) is compared with the
SSVS in binary QR models for fixed effects (BVSB) and fixed and REs selection
in logistic regression models (LFRES). Also, the proposed method for Tobit mixed
effects quantile (TMQR) is compared with the SSVS in Tobit QR models for fixed
effects (BVST).

p Error Binary QR Logistic Tobit QR
Distribution BMQR BVSB LFRES TMQR BVST

0.50 N(0, 1) correct 4.23 3.12 4.34 4.76 3.45
wrong (0.01) (0.11) (0.05) (0.00) (0.17)

0.75 N(0, 1) correct 4.15 3.04 - 4.39 3.62
wrong (0.01) 0.09 - (0.0) (0.09)

0.95 N(0, 1) correct 4.09 2.81 - 4.33 2.41
wrong (0.05) 0.12 - (0.01) (0.27)

0.50 t3 correct 4.01 2.87 3.88 4.15 2.39
wrong (0.02) (0.10) (0.03) (0.02) (0.23)

0.75 t3 correct 3.78 2.61 - 4.17 2.11
wrong (0.06) (0.34) - (0.03) (0.61)

0.95 t3 correct 3.92 2.33 - 3.88 2.17
wrong (0.08) (0.59) - (0.08) (1.01)

0.50 χ2
3 correct 3.82 1.98 3.81 3.97 2.21

wrong (0.04) (0.73) (0.12) (0.05) (0.37)
0.75 χ2

3 correct 3.61 1.63 - 3.55 1.92
wrong (0.09) (1.02) - (0.08) (0.92)

0.95 χ2
3 correct 3.45 1.35 - 3.61 1.05

wrong (0.13) (1.72) - (0.09) (1.45)
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4.7 Analysis of ARMD data

In this section, the suggested methodology was applied to the ARMD data, previously

analysed in Chaili (2008). This study had a total of 203 patients which were randomly

chosen from the UK to investigate the treatment effects of teletherapy on the loss of

vision. The sample consists of 70, 84 and 49 patients from London, Belfast and

Southampton, respectively. The sample was divided into 2 groups with one group

consisting of 101 patients randomly assigned to a treatment group and the remaining

102 assigned to a control group. Data was collected on the 3rd, 6th, 12th and 24th

months from 203 patients and there is potential for heterogeneity across visits.

In this chapter, we fit a linear mixed QR model with a seven independent

variables. The independent variables used were: x1 = the actual time of the visits of

each patient, x2 = age, x3 = sex, x4 = centre (city), x5 = whether or not the patient

received teletherapy, x6 = index eye, x7 = both or one eye affected by the treatment.

We set Z = X and bi ∼ Nq(0, I). Similar to Section 4.6, the same priors were used

and three choices of p are considered, p = 0.50, 0.75 and 0.95.

From Table 4.4, MQR appears quite good compared with SSVSquantreg and

FRES. The results indicate that the SSVSquantreg method does not select the top

model for p = 0.50 and it also selects the intercept only model as the top model for

p = 0.95. Perhaps, this is due to the truth that SSVSquantreg does not consider

the REs entirely and only focus on the fixed effects. On the other hand, it can be

observed that MQR performs similar to FRES for p = 0.50 but with higher posterior

model probability (PMP) for the top subset. It can be concluded from the analysis of

the ARMD data that there are situations in which the MQR can perform well while

the other criteria can perform poorly.
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Table 4.4: Top two models selected for the age-related macular degeneration data.

MQR SSVSquantreg FRES
p Model PMP Model PMP Model PMP

0.50 Intercept, x1, x5, z1 0.73 False choice - Intercept, x1, x5, z1 0.64
Intercept, x1, x5, z1, z5 0.08 False choice - Intercept, x1, x5, z1, z5 0.11

0.75 Intercept, x1, x2, x5, z1, z5 0.63 x1, x5 0.41 -
Intercept, x1, x5, z1 0.16 Intercept, x1, x5 0.23 -

0.95 Intercept, x1, x3, x5, x6, z1 0.43 Intercept 0.35 -
Intercept, x1,,x5, x6, z1 0.23 Intercept, x1 0.22 -
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4.8 Chapter summary

We have considered a Bayesian framework for selecting the mixed effects in mixed

effects QR models. We have used the idea of different priors for different quantiles to

improve the Bayesian sampler. The approach has been extended for subset selection

of mixed effects in binary and Tobit mixed effect QR models. Some extensions

of the subset selection approach have been discussed, namely, model selection in

binary mixed QR and Tobit mixed QR. The simulation studies and the age-related

macular degeneration data have demonstrated the superiority of the methods for

subset selection over the existing methods.



Chapter 5

Bayesian adaptive Lasso QR

Recently, variable selection and shrinkage of the coefficients of independent variables

has attracted great interest in building good prediction models. In this chapter,

we propose Bayesian adaptive Lasso quantile regression (BALQR). The method

extends the Bayesian Lasso quantile regression (QR) reported in Li et al. (2010)

by using different shrinkage weights for different quantile coefficients of independent

variables. Inverse gamma priors with unknown hyperparameters are placed on the

shrinkage weights, and then similar to Sun et al. (2010), the hyperparameters are

considered as unknown quantities and estimated with other parameters. An MCMC-

based computation technique with an additional MH update is developed to simulate

the parameters of BALQR. Through simulation scenarios and analysis of a prostate

cancer dataset, we compare the behavior of the BALQR with seven existing Bayesian

and non-Bayesian methods. The simulation scenarios and the prostate cancer data

analysis indicate that the BALQR method performs well in comparision to the other

seven approaches.

78
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5.1 Introduction

Lasso models (Tibshirani, 1996) are widely used regularisation and shrinkage models

for coefficient estimation in regression problems. As we highlighted in Chapter 1,

a flexible approach to the Lasso model has been proposed by Zou (2006), which

is based on assigning different shrinkage weights for different regression coefficients,

rather than a single one, as in the Lasso model. Further, Zou (2006) indicated that the

flexibility version of Lasso, which is called adaptive Lasso, has oracle properties (OP)

as reported in Fan and Li (2001), which the Lasso method estimators do not achieve.

In the Cox model, Zhang and Lu (2007) considered a flexibility version of the Lasso

estimator by penalising log partial likelihood and proved that their estimator has the

OP. For clustered data, Bondell et al. (2010) suggested a penalised joint log-likelihood

with adaptive shrinkage weights for subset selection and coefficient estimation in

linear mixed-effects (LME) models and proved that their estimator enjoys the OP.

Additionally, Huang et al. (2008) proved that the flexibility version of Lasso has

the OP under some conditions in which some of the important and unimportant

independent variables are weakly correlated. However, as pointed out by Sun et al.

(2010), some of the important and unimportant independent variables are usually

highly correlated, which is typical in areas such as chemometrics or bioinformatics.

In this chapter, our motivating example is prostate cancer data reported by

Stamey et al. (1989) and analyzed by Yuan and Lin (2005a) and Tibshirani (1996),

among others. The data set contains an outcome variable log(prostate specific

antigen), which is used as a measure for testing prostate cancer in addition to 8

independent variables. Nowadays, significant effort is made in finding candidate

independent variables that relate to prostate cancer. In this data set, certain

correlations are present between the independent variables which are an argument

to use the adaptive Lasso because the procedure deals with correlated independent

variables by assigning adaptive shrinkage weights for the different coefficients of the

independent variables. It could be expected that the conditional mean function is
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inaccurate in representing the relationship between the independent variables and

the level of prostate specific antigen.

In this chapter, we propose Bayesian adaptive Lasso QR (BALQR). In

particular, we extend the Bayesian Lasso QR reported in Li et al. (2010) by

allowing different shrinkage weights for different regression coefficients of independent

variables. Inverse gamma priors with unknown hyperparameters are placed on the

shrinkage weights, and then similar to Sun et al. (2010) and Yi and Xu (2008),

the hyperparameters are considered as unknown quantities and estimated with other

parameters. A Gibbs sampler with an additional MH update is developed to simulate

the parameters of BALQR. Using both simulation studies and prostate cancer data

we compared the behavior of the BALQR method with six existing Bayesian and

non-Bayesian methods, which are already used in Li et al. (2010) to investigate the

performance of the Bayesian regularised QR methods compared to other approaches.

These methods encompass Bayesian Lasso QR (BLQR) and Bayesian elastic net

QR (BQRnet). Also, non-Bayesian methods including the Lasso (Lasso), Lasso QR

(RQL), the elastic net (Enet) and the frequentist QR (RQ) are used. Bayesian QR

using the g prior approach (BQRg), reported in subsection 2.2.4 of Chapter 2 is also

included in the comparison. Both our simulation studies and prostate cancer dataset

analysis indicate that BALQR performs well and this method may be preferred over

most existing methods that it is compared against.

The rest of this chapter is presented in the following way. In Section 5.2, we

review BLQR and propose the adaptive version. A Gibbs sampler with an additional

MH update is outlined to simulate the parameters of BALQR in Section 5.3. In

Section 5.4, we implement simulation scenarios to test the behavior of the BALQR and

in Section 5.5, we illustrate the performance of BALQR via analysis of the prostate

cancer data set. A chapter summary follows in Section 5.6.
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5.2 Bayesian QR with adaptive Lasso penalty

Lasso QR (Li and Zhu, 2008) is a regularisation and shrinkage technique for quantile

coefficients of independent variables. The Lasso QR (Li and Zhu, 2008) estimate is

denoted as

min
β

n∑

i=1

ρp(yi − x′
iβ) + λ‖β‖1, (5.1)

for some λ ≥ 0, where λ‖β‖1 is called the l1 penalty which is used to impose sparsity

and improve the efficiency in estimation of the coefficients of independent variables

(Tibshirani, 1996). This shrinkage and selection penalty plays the most important

role in the Lasso method (see, Tibshirani, 1996; Zou, 2006, among others). As

the shrinkage weight λ in (5.1) increases, the l1-penalised check function estimate

is able to perform continuous variable selection and shrinkage for QR coefficients

of independent variables towards zero. From a Bayesian framework, Li et al.

(2010) employed a Laplace prior distribution p(βj |τ, λ) = (τλ/2) exp{−τλ|βj |} on

βj, βj ∈ β and assumed that the residuals εi follow the ALD. Specifically, Laplace

prior distributions with a single shrinkage weight λ are assigned on the k quantile

coefficients of independent variables.

In this chapter, we extend this idea to BALQR by assigning different shrinkage

weights on the different coefficients of independent variables. Thus, we suggest a

Laplace prior on βj taking the form

p(βj |τ, λj) =
1

2
√
τλj

exp{− |βj |√
τλj

}, (5.2)

which can be represented as (Andrews and Mallows, 1974)

p(βj |τ, λj) =
∫ ∞

0

1√
2πsj

exp{−
β2j
2sj

} 1

2τλ2j
exp{− sj

2τλ2j
}dsj . (5.3)

This two-level prior can provide flexible shrinkage weights for βj , j = 1, · · · , k, and

represent an alternative model to the Bayesian Lasso model. Equation (5.3) motivates
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us to assign an inverse gamma prior on the shrinkage weight λ2j , j = 1, · · · , k, of the

form

p(λ2j |ς, ι) =
ις

Γ(ς)
(λ2j )

−ς−1 exp{− ι

λ2j
}, (5.4)

where ς and ι are positive hyperparameters. These hyperparameters (ς and ι)

determine how much shrinkage is needed in the prior and thus play a significant

role in estimation of the coefficients of independent variables (Yi and Xu, 2008; Sun

et al., 2010). Sun et al. (2010) suggest a joint improper prior on the parameters ι

and ς of the form p(ι, ς) ∝ ι−1, which is used in this chapter. The posterior density

function of the shrinkage weight λ2j , j = 1, · · · , k, combining the prior 5.4 with 5.3,

is inverse gamma distribution (InvGa) with shape 1 + ς and scale sj/(2τ) + ι. We

also assume that the prior of τ takes the form of p(τ) = τ−a01−1 exp {−a02/τ}, where

a01 = a01 = 0.1. The procedure of BALQR is quite different from Bayesian Lasso QR

reported in Li et al. (2010), in the sense that each quantile coefficient has a Lasso-type

of a positive shrinkage weight which controls the complexity of the model. In other

words, we added flexibility due to employment of multiple positive shrinkage weights

rather than a single one as in Li et al. (2010).

To summarise, BALQR is a Bayesian hierarchical model given by

p(yi, vi|β, τ) ∝
1

τ
√
τvi

exp{−(yi − x′
iβ − ξvi)

2

4τvi
− ζvi}, (5.5)

p(βj , sj |τ, λ2j ) =
1√
2πsj

exp{−
β2j
2sj

} 1

2τλ2j
exp{− sj

2τλ2j
}, (5.6)

p(λ2j |ς, ι) =
ις

Γ(ς)
(λ2j )

−ς−1 exp{− ι

λ2j
}, (5.7)

p(τ) ∝ τ−a01−1 exp {−a02
τ

}, (5.8)

p(ι, ς) ∝ ι−1. (5.9)

Then, the joint posterior distribution for β, τ,v, s = (s1, ..., sk)
′ and λ2 = (λ21, ..., λ

2
k)

′
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is given by

p(β, τ,v, s,λ2|y,X)

∝
n∏

i=1

1

τ
√
τvi

exp{−(yi − x′
iβ − ξvi)

2

4τvi
− ζvi}

×
k∏

j=1

1
√
sj

exp{−
β2j
2sj

} 1

2τλ2j
exp{− sj

2τλ2j
},

×
k∏

j=1

ις

Γ(ς)
(λ2j )

−ς−1 exp{− ι

λ2j
},

×τ−a01−1 exp{−a02
τ

}ι−1. (5.10)

5.3 Posterior inference

The joint posterior distribution (5.10) allows for improved mixing and creates an

efficient MCMC-based computation algorithm that works as follows:

• Updating v−1

The full conditional distribution (CD) of each v−1
i for i = 1, . . . , n, is

IG(µ′i, λ
′), where µ′i = 1/

√
(yi − x′

iβ)
2 and λ′ = 1/(2τ). Here, IG refereed to

the Inverse Gaussian density which is given by (Chhikara and Folks, 1989)

f(x|λ′, µ′) =
√
λ′

2π
x−3/2 exp{−λ

′(x− µ′)2

2(µ′)2x
}, x > 0. (5.11)

We use the rinvGauss() function in the R package SuppDists (Wheeler,

2009) to sample from the inverse Gaussian distribution.

• Updating βj

The full CD of each βj for j = 1, . . . , k, is N(β̃j , σ̃
2
j ), where σ̃2j =

(
∑n

i=1 x
2
ij/(2τvi) + s−1

j )−1, and β̃j = σ̃2j
∑n

i=1 xij(yi −
∑

l 6=j xilβl − ξvi)/(2τvi)

• Updating s−1
j
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The full CD of each s−1
j for j = 1, . . . , k, is IG (µ′j, λ

′
j), where µ′j =

√
1/(τλ2jβ

2
j ) and λ

′
j = 1/(τλ2j ).

• Updating τ

The full CD of τ is InvGa(G1, G2), where G1 = 3n/2 + k + a01, and

G2 =

n∑

i=1

(
(yi − x′

iβ − ξvi)
2

4vi
+ p(1− p)vi) +

k∑

j=1

sj
2λ2j

+ a02.

• Updating λ2j

The full CD of λ2j is InvGa(1 + ς, sj/(2τ) + ι).

• Updating ι

The full CD of ι is Gamma (kς,
∑k

j=1 λ
−2
j ).

• Updating ς

Because the full CD of ς is p(ς| λ2j , ι) ∝ (Γ(ς))−kιkς
∏k

j=1 λ
−2ς
j , there is no

closed form solution for ς. Since p(ς| λ2j , ι) is log-concave (Sun et al., 2010), the

adaptive rejection sampling algorithm Gilks (1992) is used to update ς.

5.4 Simulation studies

We compare the performance of BALQR with six existing methods, including BLQR,

BQRnet, Lasso, RQL, Enet and RQ. These six methods have been compared and

evaluated in (Li et al., 2010) who showed that the Bayesian methods BLQR and

BQRnet often outperform the other methods. Our method BQRg in subsection

2.2.4 of Chapter 2 is also added to the comparison. The simulation setup is same

to the simulation studies 1, 2 and 3 in Li et al. (2010) with different parameter

values for the error distributions. In addition, we further test the methodology of the

eight methods with two alternative error distributions. Specifically, we simulate 20

training observations, 20 validation observations and 200 testing observations from
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yi = x′iβ + εi where the true values for the β’s are set as follows:

Design I: β = (3, 1.5, 0, 0, 2, 0, 0, 0)′ ,

Design II: β = (0.85, 0.85, · · · , 0.85︸ ︷︷ ︸
8

)′,

Design III: β = (5, 0, 0, 0, 0, 0, 0, 0)′ ,

Design IV: β = (5, 5, 5, 0, 0, · · · , 0︸ ︷︷ ︸
15

)′.

We have set up Design IV as a sparse recovery problem in which k = 18, with

most coefficients of independent variables being set to zero, except βj = 5, where j =

1, 2, 3. We fit the linear QRmodel using the simulated dataset and select the shrinkage

weights in the non-Bayesian methods (Lasso, Enet and RQL) via an independent

validation set. The rows of X follow a Nk(0,Σx) with (Σx)j1j2 = 0.5|j1−j2|, where the

outcome variable is centered around zero and the columns of design matrix X have

been standardised. In each simulation study and for each p ∈ {0.50, 0.75, 0.95}, the

residuals εi, i = 1, · · · , n are simulated from the following six distributions, where

the parameter µ in the normal distributions and Laplace distributions is selected so

that the pth quantile is zero:

1. N(µ, 1).

2. Mixture of 2 normal distributions: 0.1N(µ, 1) + 0.9N(µ, 9).

3. Laplace distribution: Laplace(µ, 1).

4. Mixture of 2 Laplace distributions: 0.1Laplace(µ, 1) + 0.9Laplace(µ, 3).

5. t(3).

6. χ2
(3).
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Figure 5.1: Boxplots summarising the MMADs and the standard deviations of
MADs (SD) for the eight methods using the six error distributions in Design I.
Overlaid are the normal error (▽), normal mixture (△), Laplace (�), Laplace mixture
(◦), t3 (⋄) and χ2

3 (•).

For each Design and quantile level p ∈ {0.50, 0.75, 0.95} a total of 150

replications are considered. A number of observations can be considered from

Figures 5.1, 5.2, 5.3, and 5.4. For the MMAD and the standard deviation criteria

(SD), BALQR generally performs better than the other seven methods for all the

distributions under consideration. Most noticeably, when p = 0.75 and p = 0.95,

BALQR was significantly more efficient than the other seven methods. Secondly,

from Table 5.1 we see that BALQR performs well when comparing the estimates of
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Figure 5.2: Boxplots summarising the MMADs and the standard deviations of
MADs (SD) for the eight methods using the six error distributions in Design II.
Overlaid are the normal error (▽), normal mixture (△), Laplace (�), Laplace mixture
(◦), t3 (⋄) and χ2

3 (•).

βj, j = 1, · · · , 8, with the true values of βj (βtruej ).
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Figure 5.3: Boxplots summarising the MMADs and the standard deviations of
MADs (SD) for the eight methods using the six error distributions in Design III.
Overlaid are the normal error (▽), normal mixture (△), Laplace (�), Laplace mixture
(◦), t3 (⋄) and χ2

3 (•).

5.5 Prostate cancer data (PCD) analysis

This section considers the performance of the BALQR in the PCD reported by Stamey

et al. (1989) and analysed by Tibshirani (1996) and Yuan and Lin (2005a), among

others. This study had a total of 97 male patients who suffer from prostate cancer and

is available in the R package “bayesQR” (Benoit et al., 2011). The outcome of interest

is the level of prostate antigen (lpsa). The dataset consists of eight independent
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Figure 5.4: Boxplots summarising the MMADs and the standard deviations of
MADs (SD) for the eight methods using the six error distributions in Simulation IV.
Overlaid are the normal error (▽), normal mixture (△), Laplace (�), Laplace mixture
(◦), t3 (⋄) and χ2

3 (•).

variables. These independent variables are the logarithm of cancer amount (x1),

logarithm of the weight of prostate (x2), age of male patient (x3), logarithm of the

volume of benign enlargement of the prostate (x4), vesicular glands invasion (x5),

logarithm of Capsular penetration in prostate cancer (x6), Gleason score in male

patient (x7) and percentage of Gleason scores 4 or 5 (x8). We estimate a QR model

between the response lpsa and the 8 independent variables without an intercept. Here,

the outcome variable is centered around zero and the columns of design matrix X
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have been standardised. In this section, we set p ∈ {0.50, 0.75, 0.95} and the shrinkage

weights in the non-Bayesian regularised methods are tuned by 5-fold cross-validation.

Table 5.2 summarises the results of the 5-fold cross-validation technique for

BALQR and the other seven methods. The results in Table 5.2 show that the BQRnet

outperforms the other seven methods when p = 0.50. However, the performance of

the BALQR is very close to the performance of the BQRnet method. Moreover, for

the quantiles p = 0.75 and p = 0.95, the BALQR performs better than the other

seven methods. Also, the results show that BLQR has a poor performance when p=

0.50 and p = 0.95 due to the high pairwise correlations between some of variables.

Thus, the proposed method attempts to remedy the shortcomings of BLQR by using

adaptive weights for different quantile coefficients of independent variables.

Table 5.3 summarizes the posterior estimates for the prostate cancer data set

using the Bayesian regularised quantile regression methods (BALQR, BLQR and

BQRnet) for p = 0.50 and p = 0.75. We can see that our method gives very

similar posterior mean estimates compared to the other Bayesian methods. However,

more importantly, it can be observed that the credible intervals for our approach are

narrower than the alternative Bayesian methods. Hence, the analysis shows strong

support for the use of the proposed method to inference for quantile regression.

5.6 Chapter summary

In this chapter, we proposed Bayesian adaptive Lasso QR (BALQR) for subset

selection and quantile regression coefficient estimation. This method extends

Bayesian QR with Lasso penalty by allowing different shrinkage weights for different

coefficients of independent variables. Independent inverse gamma priors with

unknown hyperparameters are assigned on the shrinkage weights of Laplace priors.

We developed Bayesian hierarchical model for BALQR as well as a Gibbs sampler

with an additional MH update to simulate the parameters of BALQR. The simulation

studies and prostate cancer data (PCD) analysis both indicate that the BALQR
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behaves quite well and perhaps preferred over current existing Bayesian and non-

Bayesian approaches.
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Table 5.1: Posterior means for the simulated data in Designs I-III when the error is
normal and p=0.95.

Design Method β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8

I βtrue 3.000 1.500 0.000 0.000 2.000 0.000 0.000 0.000
BALQR 2.988 1.469 0.002 0.013 1.994 0.001 -0.006 0.011
BLQR 2.937 1.446 -0.024 0.046 1.964 0.054 -0.019 0.037
BQRg 2.931 1.461 -0.042 0.031 1.966 0.036 -0.021 0.048
BQRnet 2.922 1.472 -0.030 0.049 1.957 0.040 -0.033 0.065
Lasso 2.811 1.357 0.000 0.000 1.782 0.000 0.000 0.000
Enet 2.796 1.453 0.000 0.000 1.774 0.000 0.000 0.000
RQ 2.960 1.462 -0.053 0.038 2.000 0.034 -0.049 0.057
RQL 2.915 1.392 0.000 0.000 1.810 0.000 -0.001 0.000

II βtrue 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850
BALQR 0.835 0.852 0.849 0.865 0.858 0.860 0.846 0.863
BLQR 0.811 0.820 0.774 0.865 0.851 0.877 0.790 0.878
BQRg 0.812 0.822 0.798 0.836 0.867 0.834 0.813 0.862
BQRnet 0.800 0.831 0.775 0.872 0.854 0.879 0.783 0.887
Lasso 0.805 0.836 0.788 0.834 0.849 0.837 0.747 0.873
Enet 0.710 0.814 0.897 0.889 0.915 0.913 0.808 0.731
RQ 0.838 0.820 0.786 0.857 0.865 0.853 0.790 0.897
RQL 0.463 0.753 0.691 0.522 0.765 0.429 0.784 0.555

III βtrue 5.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BALQR 4.971 0.004 -0.024 0.008 0.012 0.007 -0.010 0.056
BLQR 4.883 0.010 -0.047 0.033 0.035 0.035 -0.031 0.058
BQRg 4.871 0.017 -0.041 0.023 0.028 0.043 -0.033 0.054
BQRnet 4.869 0.020 -0.055 0.045 0.042 0.048 -0.025 0.062
Lasso 4.591 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Enet 4.614 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RQ 4.934 -0.019 -0.053 0.018 0.026 0.054 -0.049 0.067
RQL 4.936 0.003 -0.020 0.000 0.000 0.000 0.000 0.001
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Table 5.2: Cross validation results with standard errors in parentheses for the
prostate cancer data analysis.

Test error
Method p = 0.50 p = 0.75 p = 0.95

BALQR 0.26754 (0.05448) 0.26722 (0.04798) 0.26743 (0.04857)
BLQR 0.29061 (0.05952) 0.26979 (0.05803) 0.28289 (0.07249)
BQRg 0.27353 (0.05222) 0.27618 (0.05232) 0.27534 (0.05137)
BQRnet 0.26416 (0.05214) 0.28537 (0.07039) 0.27455 (0.05701)
Lasso 0.27990 (0.05902) 0.27719 (0.06380) 0.27719 (0.06380)
Enet 0.27938 (0.05897) 0.27876 (0.06002) 0.27876 (0.06002)
RQ 0.27618 (0.05218) 0.27618 (0.05218) 0.27618 (0.05218)
RQL 0.30146 (0.06471) 0.28493 (0.07208) 0.29032 (0.07216)
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Table 5.3: Estimates and 95% intervals for the 0.50 and 0.75 QR parameters of the prostate cancer data.

BALQR BALQR BLQR BLQR BQRnet BQRnet
Parameter Mean (95% CrI) Mean (95% CrI) Mean (95% CrI)

p = 0.50
β1 0.53078 (0.38274, 0.66123) 0.52309 (0.37570, 0.68599) 0.51705 (0.37220, 0.67497)
β2 0.21302 (0.06615, 0.34062) 0.20503 (0.06285 0.35521) 0.21070 (0.07437, 0.35645)
β3 -0.13750 (-0.25283, -0.01722) -0.12493 (-0.23960, 0.00256) -0.13886 (-0.25110, -0.01036)
β4 0.17268 (0.03419, 0.28174) 0.15847 (0.01500, 0.29417) 0.17282 (0.02901, 0.30591)
β5 0.26972 (0.10117, 0.39785) 0.24593 (0.07156, 0.40071) 0.26862 (0.09171, 0.41762)
β6 -0.10503 (-0.28424, 0.01720) -0.07359 (-0.27000, 0.08943) -0.09756 (-0.26894, 0.07100)
β7 0.07309 (-0.07209, 0.19336) 0.06678 (-0.06616, 0.20894) 0.07767 (-0.06654, 0.21280)
β8 0.09697 (-0.04403, 0.24801) 0.08070 (-0.04848, 0.26103) 0.09526 (-0.04671, 0.26796)

p = 0.75
β1 0.52711 (0.38137, 0.65933) 0.52205 (0.37392, 0.68092) 0.51980 (0.37012, 0.67187)
β2 0.21207 (0.06682, 0.33181) 0.20270 (0.05545, 0.35561) 0.21098 (0.08045, 0.35721)
β3 -0.13779 (-0.25122, -0.01309) -0.12092 (-0.24227, 0.00577) -0.14071 (-0.25083, -0.01436)
β4 0.17069 (0.03506, 0.29005) 0.15440 (0.01508, 0.29312) 0.17244 (0.02852, 0.30042)
β5 0.26928 (0.09577, 0.41174) 0.24605 (0.06719, 0.39534) 0.26999 (0.08897, 0.41257)
β6 -0.09946 (-0.28306, 0.06293) -0.07532 (-0.24954, 0.07862) -0.09781 (-0.28021, 0.07059)
β7 0.07525 (-0.07353, 0.21173) 0.06542 (-0.07091, 0.20112) 0.08085 (-0.06850, 0.22461)
β8 0.09332 (-0.05461, 0.24219) 0.08338 (-0.04382, 0.26263) 0.09457 (-0.05122, 0.26255)



Chapter 6

Conclusions and Future

Research

This thesis has proposed several Bayesian hierarchical models for subset selection and

coefficient estimation in QR models. Clear advantages over existing methods include

a quantile dependent prior, efficient MCMC-based computation techniques and use

of data augmentation to allow binary and left-censored outcome variables. The main

contributions and future research topics are listed below.

6.1 Main Contributions

Bayesian QR methods for subset selection and coefficient estimation are proposed

in chapter 2. These approaches rely on quantile dependent priors for regression

coefficients and over model space. For regression coefficients, an extension of the

familiar g-prior distribution is suggested to allow a quantile dependent prior. For

the model space, novel priors based on percentage bend correlation are used. Our

proposed approaches are advantageous in that different quantiles have different priors,

which are automatically selected. In particular, the quantile dependent priors and the

proposed MCMC algorithm represent a quite useful alternative to existing methods.
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In chapter 3, the modified g-prior is generalised by introducing a ridge

parameter to address important challenges that may arise in many applications, such

as multicollinearity and overfitting problems. An expression for the hyperparameter g

to calibrate the modified g-prior with a ridge parameter to a corresponding g-prior is

proposed. Possible extensions to the proposed approach are also discussed including

the continuous and binary responses in QR. Then, MCMC based computation

techniques are proposed based on g-prior to facilitate the computation of the posterior.

In chapter 4, Bayesian subset selection method for fixed and REs in QR mixed

effects model is proposed. This approach is related to earlier approaches reported in

(Kinney and Dunson, 2007) and (Chen and Dunson, 2003) for linear mixed models.

Some possible extensions of the proposed approach are also presented, including

binary and left-censored outcome variables. Several advantages of the proposed

approach over existing methods are discussed.

In chapter 5, Bayesian adaptive Lasso QR (BALQR) is proposed for subset

selection and estimation. The method allows different shrinkage weights for different

regression coefficients of independent variables. An MCMC-based computation

technique with an additional MH update is developed to simulate the parameters

of BALQR.

6.2 Recommendations for Future Research

The work considered in chapter 2 opens the door to new research directions for

subset selection and coefficient estimation in QR models by using the modified g-

prior. One of these directions has already been studied by Dortet-Bernadet and

Fan (2012) who adapts an auxiliary variable approach to fitting QR curves using

the modified g-prior. There are many other possible extensions such as using the

modified g-prior in Bayesian single index QR or Bayesian nonparametric QR. The

idea of Bayesian model selection for fixed and REs reported in Chapter 4 can be

extended to Bayesian QR with single index. One can also extend the idea of Bayesian
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adaptive Lasso QR in Chapter 5 to other models such as Bayesian adaptive Lasso

Tobit QR, Bayesian adaptive Lasso binary QR, Bayesian adaptive Lasso single index

QR, and many others.

All of the approaches proposed in this thesis can be extended to the Bayesian

QR models with right-censored or interval censored responses.
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