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1 Introduction

In this article, identification and identifiability are assumed to be nonlinear in
nature, which differentiates this work from Johansen (1995) and Boswijk (1996).
Generic identification follows from the existence of at least one solution relating the
long-run parameters matrix (Π) to the cointegrating vectors (β) and the loadings
matrix (α). Firstly, the restrictions are checked using a systems wide test, which
has degrees of freedom based on the degree of over-identification of the system.
Secondly, the existence of a solution to the system, depends on two rank conditions.
Should such conditions fail, then the part of Π selected to identify is invalid. The
latter test provides confirmation that the generic solution is empirically valid.

The approach can be extended to handle any number of sub-systems. As a
result, the existence of cointegrating or weakly exogenous variables can be used
to identify the system to a sub-block (section 3). The approach is applied to a
model of the UK effective exchange rate (section 4).

2 Identifying Long-run Behaviour

This section addresses the question of long-run identification and identifiability,
firstly in terms of satisfying the generic conditions and then via an empirical test of
the restrictions and the conditions required for identifiability. Prior to any testing
a solution is found to link the well defined parts of Π to the unrestricted elements
of α and β, this is equivalent to one of the approaches adopted by Sargan (1983) to
identify non-linear parameters. Failure of the test of over-identifying restrictions
is sufficient to reject the solution to the generic problem, whereas acceptance of
the test is only necessary, but not sufficient for identification. Should the test of
over-identifying restrictions be satisfied, then the sufficient conditions for generic
identification are tested via a pair of rank conditions. Existence of a solution to
the generic problem is sufficient for identification, while the invertability of two
r × r sub-matrices (A and B) is necessary and sufficient for the existence of a
solution.

Let Π represent the matrix of long-run parameters for an n equation system
(omitting deterministic terms and lags)

∆xt = Πxt−1 + εt, (1)

where the usual conditions for cointegration hold: rank(Π) = r, Π=αβ′,
rank(α) = rank(β) = r, and α and β are n × r dimensioned matrices (see e.g.
Johansen, 1991). It follows from the definition of cointegration, that there is a
set of r linearly independent row vectors (Πi) and column vectors (Π.j), which are
r×n and n×r dimensioned sub-matrices of Π. If α and β are stacked into a vector
θ = vec[α : β], then this vector has 2nr− r elements, assuming β is normalized by
setting an element in each column to unity. Since Π has 2nr− r2 free parameters,
relative to 2nr − r in θ, the order condition for the identification of θ is:

j ≥ r2 − r, (2)

where j is the number of systems wide restrictions on α and β.
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Subject to the order condition that precludes possible over-parameterisation,
the following theorem provides sufficient conditions for the existence of a unique
solution to a vector function relating the identifiable elements of Π, that is ξ =
vec(Πr), where Πr = [πij ∈ Πi ∪ Π.j ], to the unknown parameters in α and β,
encapsulated in θ.

Theorem 1 In the cointegration case a sufficient condition for a solution to the
vector function θ = g(ξ) is the existence of two r × r dimensioned non-singular
sub-matrices A and B, in α and β respectively.

Proof: Rank(α) = r is equivalent to the existence of a sub-matrix A such that
rank(A) = r. There are n!

(n−r)!r! possible alternative combinations of rows of α
from which A might be formed. It follows that each A has a related sub-matrix
Πi of Π such that rank(A) = r ⇔ rank(Πi) = r and Πi = Aβ′. Vectorising Πi

implies that vec(Πi) = vec(Aβ′) = (In ⊗ A)vec(β′). Following the argument in
Sargan (1983; p282-283), β is identifiable when A has full rank as firstly a unique
solution results:

vec(β′) = (In ⊗ A)−1vec(Πi), (3)

and secondly rank( ∂vec(β′)
∂vec(Πi)′ ) = nr, if the normalisation is ignored. By similar

argument, α is identifiable when there exists two matrices Π.j and B for which
Π.j = αB′ and B is non-singular. As a result, a unique solution for α exists of the
form:

vec(α) = (B ⊗ In)−1vec(Π.j). (4)

�
The existence of one or more solutions to (??) and (??) is sufficient for identi-

fication given (??). Finding such solutions negates the need to undertake the test
in Johansen (1995).

Johansen (1995) considers a stochastic system of linear equations β′xt = ηt

subject to a number of linear restrictions R′
iβi = 0 or βi = Hiφi for i = 1, ..r,where

Ri is a known n × ri matrix or rank ri, βi is column i of β, Hi is a n × si (with
si = n − ri) selection matrix such that H ′

iRi = 0, and φi a si × 1 vector of
unrestricted parameters. Such restrictions are identifying for each cointegrating
vector when Theorem 3 in Johansen (1995) is satisfied. Each block of restrictions
Ri, for i = 1, ..r, identifies a cointegrating vector if and only if

rank(R′
iHi1 R′

iHi2 ... R′
iHik) ≥ k (5)

for each k = 1, ..., r − 1 and any set of indices 1 ≤ i1 < i2 < ... < ik ≤ r not
containing i. In Johansen’s approach, the rank condition must be checked to
confirm the ‘linear independence’ of the restrictions applied to each cointegrating
vector in turn. The test is linear in nature as it relates to homogenous restrictions
applied to β alone. If joint restrictions on α and β are considered, then the linear
result breaks down.

Linearity or the need to consider α and β does not present a problem for the
condition in Theorem 1 that may be applied sequentially to α and β to yield a
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sufficient set of solutions. Empirical verification of the generic result follows from
a direct test of the over-identifying restrictions:

(I) Hβ : φβ + Rβvec(β) = 0
Hα : Rαvec(α) = 0

Now φβ is a jβ × 1 vector of known constants (normalisations), Rβ and Rα are
jβ × nr and jα × nr matrices, which select all the jβ and jα restrictions on β
and α respectively, and j = jβ + jα.1 The degrees of freedom of the test are
calculated from the number of solutions to (??) and (??). If (I) is rejected, then
this is sufficient for non-identification, which requires a different set of restrictions.
However, acceptance is only necessary for identification as their may be a sequence
of models, that accept either the over-identifying restrictions or Johansen’s test
(Johansen, 1995).

To solve this problem, Boswijk (1996) provides two further conditions for what
he terms identifiability. According to Boswijk β is non-identifiable when the nor-
malisation fails or some of the remaining parameters are not significant:

H02 : β ∈ B3 ∪ B4 = {β : rank(R∗′
1 β) ≤ r − 1},

where R∗′
1 is the restriction matrix including the normalisation and B3 ∪ B4 de-

fines the null associated with non-identifiability. Consider the following example,
developed from Boswijk (1996), n = 3, r = 2 and (2) is satisfied when j = 2 =
r2 − r restrictions identify β:

β′ =


 a 0 b

c d 0


 and H2 =


 a 0

c d


 .

Subject to a normalisation, a = 1 and d = 1, then following Boswijk (1996),
the first vector in β′ is identifiable when a matrix H2 has full rank.2 However,
given acceptance of the Johansen condition (rank(β′) = r), β is identifiable as r
linearly independent cointegrating vectors exist and given acceptance of the over-
identifying restrictions (I), then the first vector is identified when I(0) variables
are precluded. Here, it is suggested that the choice of normalisation must hang
on the exogeneity conditions of variables in the system; exogeneity is discussed
in more detail in the next section. Following Boswijk, should the first vector be
identifiable, then further rank conditions are tested for each vector.

In this article an alternative approach follows from the sufficient conditions for
a solution to (??) and (??) given in Theorem 1:

(II) Test identifiability : rank(B) = r and rank(A) = r.

1In the case where more complex restrictions apply, then the general restriction condition and
procedure in Doornik and Hendry (1997) apply.

2To discriminate between failure of normalisation and other types of failure, a further rank
test is applied to an r − 1 dimensioned sub-matrix:

H03 : β ∈ B4 = {β : rank(R′
1β) ≤ r − 2}

For the example rank failure implies a = 0 (normalisation) or d = 0. Here, H03: d = 0.
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The existence of a solution to (??) and (??) implies the system is generically iden-
tified. As Boswijk, suggests on empirical grounds identification may fail due to
insignificance of certain parameters. Here, identifiability follows from the existence
of sufficient information in certain rows and columns of Π to identify α and β (Sar-
gan, 1983). Clearly, many such orientations related to particular over-identifying
restrictions may exist. However, it is sufficient to find one such orientation of
the system to empirically accept the generic solution. Consider the above exam-
ple, where for comparison with Boswijk B = H2. When rank(H2) = r,3 then
the necessary and sufficient condition for the existence of a solution to (??) and
(??) is satisfied. From Theorem 1, the rank condition identifies α based on the
restrictions in (I). Therefore, discovery of one such matrix (B) is sufficient for
identification.

If the variable chosen for normalisation is invalid (a = 0 and rank(H2) < r),
then failure of the rank condition yields an additional restriction on the set of
cointegrating vectors (β′). Therefore α is identified based on a new orientation:

β′ =


 0 0 b

c d o


 and B =


 0 b

d 0


 .

The system is overidentified as j = 3 > r2 − r. Given acceptance of the Johansen
rank condition |B| = 0 only occurs when d = 0 and x1and x3 are both stationary
variables.4

Boswijk and Johansen emphasize a limited information approach associated
with linear restrictions, that can only be applied to α and β in turn. In this
article restrictions can be applied to both α and β, they can be non-linear and
they apply to the system as a whole.

In the next section, the results are extended further to take account of exo-
geneity.

3β is identifiable for the restrictions in (I) when the selected columns of Π yield a matrix A
of rank r, but for expositional reasons it is assumed at this point.

4For n = 4, the approach discussed above can be shown to identify. Let:

β′ =

[
a 0 b c

d e f 0

]
and B = H2 =

[
a 0

d e

]
.

Following Boswijk (1996), identifiability is lost when a normalisation is invalid (i.e., a = 0 ⇒
rank(H2) < r), but with this new restriction [α : β] is overidentified as j = 3 > r2 − r. Selecting
a new orientation, ensuring the generic result associated with Theorem 1 holds, then:

β′
(1) =

[
0 0 b c

d e f 0

]
and B(1) =

[
b c

f 0

]
.

This orientation is rejected when xt ∼ I(1) and f = 0. Now α is not identifiable, but for the
following orientation:

β′
(2) =

[
0 0 b c

d e 0 0

]
, B(2) =

[
0 b

e 0

]

and rank(B) = r. Hence, [α : β(2)] is always empirically identified and identifiable.

5



3 Exogeneity and Identification

Traditional econometric methodology assumes the existence of a set of exogenous
variables, where as the notion of cointegration and Vector Auto-Regressive (VAR)
modelling negates this. Cointegration is multi-causal and the VAR treats all vari-
ables as endogenous, but within such a system, it is feasible to test a number
of notions of long-run exogeneity. The interested reader is directed to Ericsson
and Irons (1994) and Ericsson et al (1998). To help motivate the example in the
next section, some further discussion of long-run exogeneity and identification is
required.

Let us partition the system (??) into two sub-models, corresponding to a par-
tition of xt into yt and zt, of dimensions n1 and n2, respectively, and conformable
partitioning of α and β:5

∆yt = (α11β
′
11 + α12β

′
12)yt−1 + (α11β

′
21 + α12β

′
22)zt−1 + ε1t (6)

∆zt = (α21β
′
11 + α22β

′
12)yt−1 + (α21β

′
21 + α22β

′
22)zt−1 + ε2t, (7)

where (ε′1t ε′2t)
′ ∼ N(0,Ω), independently over t = 1, ..., T . It is well known that

when [α21 : α22] = [0 : 0], then zt is weakly exogenous for β (Johansen, 1992).
However, such restrictions do not directly assist in the identification of the

long-run parameters as they apply to a part of α which is non-informative. In
terms of the requirement to find a solution to (??) and (??), weak exogeneity is
of direct use when there are n− r weakly exogenous variables as the only basis for
a choice of A is the matrix [α11 : α12], which is then by definition of rank r.

Otherwise, one might consider weak exogeneity associated with a sub-block of
cointegrating vectors. To discuss issues of exogeneity it is useful to look at the
conditional model for yt given zt (Johansen, 1992):

∆yt = [(α11β
′
11 + α12β

′
12) − ω(α21β

′
11 + α22β

′
12)]yt−1 + ω∆zt

+ [(α11β
′
21 + α12β

′
22) − ω(α21β

′
21 + α22β

′
22)]zt−1 + ε1t − ωε2t

(8)

where ω = Ω12Ω−1
22 . One set of sufficient conditions for weak exogeneity of zt for

β′
.1 = [β′

11 : β′
21] is α12 − ωα22 = 0 and α21 = 0, see Lemma 2 in Ericsson et

al (1998). Combining, (??) with (??) yields a system, which to a non-singular
transformation matrix is equivalent to the original VAR. If (α12 = 0, α21 = 0) is
applied to (??) and (??), then the VAR has a quasi-diagonal long-run structure
(Hunter, 1992). For weak exogeneity additional restrictions may apply as α12 −
ωα22 = 0. Should α12 = 0, then ωα22 = 0 is sufficient for weak exogeneity. This
result can be associated with three possible conditions: i) ω = 0, ii) α22 = 0 or
iii) ω is a left hand side annihilation matrix of α22. Under cointegration (ii) does
not apply as rank(α22) = r2. Case (i) is consistent with Lemma 2 in Ericsson
et al (1998). For case (iii), the quasi-diagonality restriction (α12 = 0, α21 = 0)
combined with ωα22 = 0 is sufficient for weak exogeneity of zt for β.1.

5The matrices αij and βij have the dimensions ni × rj , for i = 1, 2 and j = 1, 2. For example,
the matrix β is partitioned into two blocks of columns, β.1 of dimensions n × r1, and β.2 of
dimensions n × r2, then each block is itself cut into two blocks of rows.
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Weak exogeneity for a sub-block implies that analysis may be undertaken at
the level of the sub-system. More specifically, identification conditions now apply
at the level of the sub-system, as previously at the level of the full system. Let Π1

denote an n1 × n sub-matrix of Π for which rank(Π1) = r1 and n1 > r1 ≥ 1. If
Π1(r1) defines an r1 ×n sub-matrix of Π1 for which the maximum rank is given by
its smallest dimension, then an equivalent column matrix exists which is n1 × r1

and has full column rank. Given the quasi-diagonality restriction, it follows that:

Π1 = α11β
′
.1 and Π1(r1) = A1β

′
.1, (9)

where A1 is a square matrix of full rank r1 suitably extracted from α11 (by selecting
r1 rows). To identify α11 and β.1 subject to a standard normalisation (i.e. r1

restrictions) the following sub-system order condition is now applicable:

r1n + r1n1 − r1 ≤ r1n + r1n1 − r2
1 ⇔ r2

1 − r1 ≤ j1,

where j1 is the number of restrictions associated with the sub-system. Now, r1−1
restrictions apply to each equation in the first sub-block as compared with r − 1
when the full system condition is used. Hence, r2 variables are viewed as exogenous
to the sub-system.

Theorem 2 A sufficient condition for the existence of a solution to the vector
sub-system: vec(β′

.1) = (In ⊗ A1)−1vec(Π
1(r1 ))) is the existence of a matrix A1 of

full rank r1 constructed by selection of r1 rows of α11.

Proof: By analogy with the proof of Theorem 1, vec(β.1), which follows from
vectorising (??), is identifiable when A1 has full rank. �

A special case arises when r1 = 1 and excepting the choice of normalisation
no further restrictions are required to identify β.1.

Corollary 1 If r1 = 1, then subject to a normalisation, weak exogeneity is suf-
ficient for identification of the long-run parameters β.1 associated with the first
sub-block.

If in addition, r2 = 1, then weak exogeneity is sufficient for the identification
of β when r1 + r2 = r. It follows from weak exogeneity that identification is a
natural consequence of the partition. In more general sub-systems, the type of
conditions derived in the previous section are relevant.

It can readily be shown that a similar result to Theorem 2 applies to any sub-
sequent sub-system. Hence, vec(β.2) is identified when a sub-matrix A2 of α2 has
full rank. There are now at least two sub-systems which can be separately esti-
mated and identified based on the above conditions. However, the quasi-diagonal
form of weak exogeneity implies that while y is dependent in the long-run on z in
the first sub-block, then z is also dependent on y in the second block. The latter
statement does not appear to be consistent with the idea that in the long-run the
notions of exogeneity and causality are coherent.

To address the above concern, attention is focused on cointegrating exogeneity,
the restrictions β12 = 0 combined with α21 = 0 imply that z is not long-run
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caused by y and as a result Π21 = 0 (Hunter, 1992). Restrictions associated with
cointegrating exogeneity direct attention towards the identification of the long-
run parameters in a sub-block. However, such restrictions only identify β to the
sub-block as (β12 = 0) implies that the same restrictions are applied to all the
rows of β.2. However, the order condition per sub-block is now less onerous (r2−1
restrictions). And when r2 = 1, then β22 is identified via a normalized coefficient.
When compared with the impact of quasi-diagonalising the system, cointegrating
exogeneity applies only to the set of identified sub-system relationships. In terms
of identifying that sub-block, the following relationship is of interest:

Π22 = α22β
′
22.

If rank(Π22) = r2, then there is a sub-matrix Π2(r2) of dimension r2 × n2, and a
matrix of column vectors dimensioned n2 × r2, both of rank r2. Now the order
condition for this sub-system is:

r2n + r2n2 − r2 ≤ r2n + r2n2 − r2
2 ⇔ r2

2 − r2 ≤ j2.

Even with all of the zero restrictions in the second block of cointegrating vectors,
the number of relevant restrictions in the order condition for the sub-block remains
unchanged at the level of the sub-block. Subject to an appropriate number of
identifying restrictions, then a sufficient condition for the existence of a solution
to the system associated with β22 is the existence of A2, an r2 × r2 sub-matrix of
α22. By analogy with the result in Theorem 2, the following relationship exists
for β22:

vec(β′
22) = (In2 ⊗ A2)−1vec(Π1(r2 )).

Further, when zt is also cointegrating exogenous, then the long-run behaviour of
the sub-system for zt does not depend on the endogenous variables. If zt is both
weakly exogenous for β.1 and zt is not long-run caused by yt, then zt is termed
long-run strongly exogenous for β.1. Therefore, strong exogeneity combines the
restrictions associated with weak exogeneity and the restrictions appropriate for
cointegrating exogeneity.

In the next section, identification and identifiability of a model involving weak,
cointegrating and strongly exogenous variables is addressed.

4 An empirical example

To motivate the analytic solution and empirical results discussed in this article, the
method is applied to the data set analyzed by Johansen and Juselius (1992) and
Hunter (1992).6 The system of equations associated with Theorem 1 is observed to
have a number of solutions, which directly relate to the correct degrees of freedom

6A VAR(2) was estimated using the same method and period as Johansen and Juselius (1992).
The model involved the following variables: (e12) the UK effective exchange rate, (po) a real oil
price, (p1) UK prices, (p2) foreign prices, (i1) a home interest rate, (i2) a foreign interest rate
(all data series are in logarithms). See Hunter (1992) for more detail.
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for the test of over-identifying restrictions. Emphasis is placed on a model, that
is identified via restrictions on α discussed in section 3.

For generic identification of a system with r = 2 cointegrating vectors r2−r = 2
restrictions are required with normalisation and r2 without. The following α
imposes the quasi-diagonal structure, discussed above:

α′ =


 α11 α21 α31 0 0 0

0 0 0 α42 α52 α62


 . (10)

The only restrictions applied to β are those associated with the normalisation
(β41 = −1, β52 = 1).

po p1 p2 e12 i1 i2

β′ =


 β11 β21 β31 −1 β51 β61

β12 β22 β32 β42 1 β62


 .

Now consider the orientation of the system or the selection of the appropriate
r-dimensioned square matrices A and B. A valid choice for A is based on the 3rd
and 6th rows from α. A solution is required for:

vec(β′) = (I6 ⊗ A)−1vec(Π3), (11)

where:

A =


 α31 0

0 α62


 and Π3 =


 π31 π32 π33 π34 π35 π36

π61 π62 π63 π64 π65 π66


 .

A possible choice of B is based on the fourth and fifth columns of Π, so that:

vec(α) = (B ⊗ I6)−1


 vec(π′

.4)

vec(π′
.5)


 and B′ =


 −1 β42

β51 1


 (12)

where π′
.j = [π1jπ2j ...π6j ] for j = 4, 5. The following solution is derived from (??)

and (??).7

θ = [ α11 α21 α31 α42 α52 α62 β11 β21 β31 β51 β61 β12

β22 β32 β42 β62 ]

= [ 1
δ π14 − β51

δ π15
1
δ π24 − β51

δ π25
1
δ π34 − β51

δ π35 −β51

δ π44 − 1
δ π45

−β51

δ π54 − 1
δ π55 −β51

δ π64 − 1
δ π65 α−1

31 π31 α−1
31 π32 α−1

31 π33

α−1
31 π35 α−1

31 π36 α−1
62 π61 α−1

62 π62 α−1
62 π63 α−1

62 π64 α−1
62 π66 ]

= g−1(ξ), where δ = −1 − β42β51.

7See the Appendix.
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The discovery of 4 valid solutions implies that the model has 4 over-identifying
restrictions.

To test the over-identifying restrictions and identifiability, the likelihood ratio
test discussed in Johansen and Juselius (1992) and implemented in Doornik and
Hendry (1997) are used.

Using the results in the section 3, α and β can be identified via a normalisation
and the restrictions associated with quasi-diagonal α. The necessary conditions
are met as: i) six restrictions are imposed (j ≥ r2 − r = 2) and ii) the test of
over-identifying restrictions is accepted at the 5% level (see the p-value in Table
1, I). Furthermore, the restrictions associated with weak exogeneity (α12 = ωα22

and α21 = 0) are also accepted (Table 1, Ia). If α12 = ωα22 and α12 = 0, then
the quasi-diagonal system and that satisfying the weak exogeneity conditions are
observationaly equivalent. Hence the condition discussed in the previous section
(ωα22 = 0) is satisfied and in this case quasi-diagonality is sufficient for the interest
rates and exchange rate to be weakly exogenous for β.1.

Theorem 2 implies that a sufficient condition for the existence of a solution to
the vector system associated with the first r1 cointegrating vectors is the existence
of a matrix A1 such that:

vec(β′
.1) = (I6 ⊗ A1)−1vec(Π1(r1 )).

From Corollary 3, when r1 = 1, then the existence of a block of weakly exogenous
variables is a sufficient condition for identifiability of the cointegrating vectors
in the first block. By analogy the second block is also identified, when r2 = 1.
The system is sequentially identifiable from the restrictions on α alone and the
selection of the normalisation. In this case, the long-run is partitioned into two
sub-systems for which ri = 1 and consequently each vector is identified by the
normalisation alone.

The sufficient conditions for a solution are accepted when A and B have an
inverse. These tests are formulated as non-identifiability tests and they imply
non-singularity of A and B. To test the orientation, identifiability is tested prior
to any restriction (see Table 1, II) and after the imposition of weak exogeneity
(Table 1, IIa). Under the null the determinant of B is set to zero, the test is
χ2(1) and from the critical value non-identifiability can be rejected at the 5%
level, whether or not weak exogeneity is imposed. Hence, no further testing is
required to identify α.

Now consider β. As discussed in section 2, identifiability of β depends on the
rejection of the condition |A| = 0 that occurs when α31=0 or α62=0. Both of these
tests are applied under a null of non-identifiability of β (Table 1, IIb and IIc),
the tests are χ2(1) and the null is rejected at the 5% level.

If α12 = ωα22 = 0 and cointegrating exogeneity is combined with either
weak exogeneity or quasi-diagonality, then the interest rates and exchange rate
are strongly exogenous for β.1 (Table 1, Ib).

5 Conclusion

The procedure outlined can be applied using standard packages and identifiability
is a product of the conditions required for generic identification. The procedure
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requires identification to be checked on an a priori basis. The test of the exis-
tence of the sufficient conditions associated with Sargan (1983) stems from the
application of restrictions to both α and β, and the whole approach can be made
operational with a plethora of non-linear restrictions.

The method was applied to data well known in the cointegration literature.8

The discovery of a solution to the vector conditions associated with Theorem
1, verifies the restrictions as over-identifying and determines the degree of over-
identification. Identifiability of α is accepted on the basis of a test similar to the
H02 in Boswijk (1996). However, this test confirms that it is appropriate to solve
the system using the selected rows and columns of Π. Hence, the orientation of
the system and the solution uncovered are empirically identified. Identifiability
of β follows from restrictions on α that relate to the exogeneity of the variables
selected. The question of which variables are exogenous would appear to be of
importance when normalisation is at issue.

Based on the results in section 4, the system was identified by imposing a quasi-
diagonality restriction on α and by normalising with respect to r coefficients in
β. It is shown that quasi-diagonality, subject to additional covariance restrictions,
implies weak exogeneity for a sub-block of β. Finally the joint acceptance of weak
exogeneity and cointegrating exogeneity tests for the interest rates implies that
they are long-run strongly exogenous for the first cointegrating vector.

Appendix

From (??), which can be written as:



vec(β11β12)

vec(β21β22)

vec(β31β32)

vec(β41β42)

vec(β51β52)

vec(β61β62)




=




A−1vec([π31π61])

A−1vec([π32π62])

A−1vec([π33π63])

A−1vec([π34π64])

A−1vec([π35π65])

A−1vec([π36π66])




, A−1 =


 1

α31
0

0 1
α62


 ,

and upon using the restrictions embodied in (??), we obtain:

βi1 = α−1
31 π3i, for i = 1, 2, 3, 5, 6, βi2 = α−1

62 π6i, for i = 1, 2, 3, 4, 6,

1 = α−1
31 π34, 1 = α−1

62 π65.

8The original source of the data is the National Institute of Economic Research, that has been
kindly passed on to us by Paul Fisher and Ken Wallis.
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Similarly for (??):



vec(α11α12)

vec(α21α22)

vec(α31α32)

vec(α41α42)

vec(α51α52)

vec(α61α62)




= (B−1⊗I6)


 vec(π14π24...π64)

vec(π15π25...π65)


 and B−1 =


 1

δ
−β51

δ

−β42

δ
−1
δ




where δ = −1 − β42β51. Solving the former equation, subject to the restrictions
on α:

α11 =
1
δ
π14 −

β51

δ
π15, α21 =

1
δ
π24 −

β51

δ
π25, α12 = −β42

δ
π14 −

1
δ
π15 = 0,

α22 = −β42

δ
π24 −

1
δ
π25 = 0, α31 =

1
δ
π34 −

β51

δ
π35,

α41 =
1
δ
π44 −

β42

δ
π45 = 0, α51 =

1
δ
π54 −

β42

δ
π55 = 0,

α61 =
1
δ
π64 −

β42

δ
π65 = 0, α32 = −β42

δ
π34 −

1
δ
π35 = 0,

α42 = −β51

δ
π44 −

1
δ
π45, α52 = −β51

δ
π54 −

1
δ
π55, α62 = −β51

δ
π64 −

1
δ
π65.

As the parameters are over-identified one only needs to consider the following
results: α11, α21, α31, α42, α52 and α62. This yields the solution given in section 4
that exists if A and B are non-singular.
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Table 1 Tests of Identification and Identifiability

Test Null
Statistic

[p − value]

(I)Quasi-Diagonality|r = 2
αi1 = 0 for i = 4, 5, 6;β41 = −1
αi2 = 0 for i = 1, 2, 3;β52 = 1.

χ2(4) = 3.9595
[0.4115]

(Ia)Weak Exogeneity|r = 2
αi1 = 0 for i = 4, 5, 6;β41 = −1
αi2 = ωi1α42 + ωi2α52 + ωi3α62

for i = 1, 2, 3;β52 = 1.

χ2(4) = 2.5132
[0.6423]

(Ib)Strong Exogeneity|r = 2
(Weak+Cointegrating

Exogeneity)

αi1 = 0 for i = 4, 5, 6
αi2 = 0 for i = 1, 2, 3
βi2 = 0 for i = 1, ..., 4.

χ2(8) = 12.708
[0.1223]

(II)Non-Identifiability|r = 2 β41β52 − β42β52 = 0
χ2(1) = 3.9087

[0.0481]

(IIa)Non-identifiability|(I)
β41β52 − β42β52 = 0
αi1 = 0 for i = 4, 5, 6
αi2 = 0 for i = 1, 2, 3

χ2(5) = 12.078
[0.0337]

(IIb)Non-identifiability|(I)
α31 = 0

αi1 = 0 for i = 4, 5, 6
αi2 = 0 for i = 1, 2, 3

χ2(5) = 24.399
[0.0002]

(IIc)Non-identifiability|(I)
α62 = 0,

αi1 = 0 for i = 4, 5, 6
αi2 = 0 for i = 1, 2, 3

χ2(5) = 13.262
[0.0210]
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