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Abstract

A numerical implementation of the direct Boundary-Domain Integral Equation (BDIE)/

Boundary-Domain Integro-Differential Equations (BDIDEs) and Localized Boundary-Domain

Integral Equation (LBDIE)/Localized Boundary-Domain Integro-Differential Equations (LB-

DIDEs) related to the Neumann and Dirichlet boundary value problem for a scalar elliptic

PDE with variable coefficient is discussed in this thesis. The BDIE and LBDIE related to

Neumann problem are reduced to a uniquely solvable one by adding an appropriate perturba-

tion operator. The mesh-based discretisation of the BDIE/BDIDEs and LBDIE/LBDIDEs

with quadrilateral domain elements leads to systems of linear algebraic equations (discretised

BDIE/BDIDEs/LBDIE/BDIDEs). Then the systems obtained from BDIE/BDIDE (discre-

tised BDIE/BDIDE) are solved by the LU decomposition method and Neumann iterations.

Convergence of the iterative method is analyzed in relation with the eigen-values of the cor-

responding discrete BDIE/BDIDE operators obtained numerically. The systems obtained

from LBDIE/LBDIDE (discretised LBDIE/LBDIDE) are solved by the LU decomposition

method as the Neumann iteration method diverges.
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Chapter 1

Research Introduction and

Overview

1.1 Introduction

It is well-known that a Boundary Value Problem (BVP) for Partial Differential Equation

(PDE) with a constant coefficient can be reduced to a Boundary Integral Equation (BIE). The

discussion on the BIEs can be found in e.g. Brebbia et al. (1984), Aliabadi (2002), Wrobel

(2002). There are two approaches to derive BIEs of BVPs for PDE with constant coefficients.

The first integral formulation is often named as a direct method and the integral equations

are derived through the application of the second Green’s identity. The second integral

formulation known as an indirect method is founded on single or double layer potentials. It

is from the assumption that the solution can be expressed in terms of a source density function

defined on the problem’s boundary. However, the density function obtained from the indirect

method, in general, has no physical meaning. The method of boundary integral equations

has always had two important applications in the theory of boundary value problems for

partial differential equations: as a theoretical tool for proving the existence of solutions and

as a practical tool for the construction of solutions (Costabel (1988b)). The discussions

on the BVPs had been started long time ago. The background of the BIE by examining its

1
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mathematical foundation from potential theory, boundary value problems, Green’s functions,

Green’s identities, to Fredholm integral equations was explored in e.g. (Cheng and Cheng

(2005), McLean (2000), M. Costabel (2007)).

It was in the early 19th century when a German mathematician, Gauss introduced the

first kind of integral equations of the single layer potential as a tool in numerical computation,

see in (Gauss (1877)). At that time, he produced all the numerical calculations by hand since

computers were yet to be invented in the 1940s. Later, another German mathematician,

Carl Neumann studied the double layer potential, see in (Neumann (1877)). The Neumann

iteration and Neumann boundary condition for Ordinary Differential Equations (ODEs) and

PDEs were named after him.

He showed in (Neumann (1887)) that for convex domain, the operator (12I +K) is con-

tracting such that ||12I +K|| < 1, where K is the double layer potential. In (Plemelj (1911))

it was shown that the spectral radius of (12I + K) on C0(Γ) is less than 1 which implies

the convergence of the Neumann iteration. The discussions for the spectral properties of

(12I +K) in three dimensions with Lyapunov boundary were given in e.g. (Mikhlin (1957),

Goursat (1964)). In 2001, (Steinbach and Wendland (2001)) showed that (12I +K) is a con-

traction in H1/2(Γ). The results were obtained by using the coerciveness properties of the

single layer and hypersingular boundary integral operators obtained by (Costabel (1988a)).

The application of Neumann series on direct BIEs was also discussed. The result for the

Laplace equation in an open set Ω ⊂ Rm was proved by different methods in (Medková

(2007)) and the result for the Poisson equation in a Lipschitz domain was then proved in

(Medková (2009)).

Before that, in 1828, a British mathematician, George Green wrote a book entitled

“An Essay on the Application of Mathematical Analysis to the Theories of Electricity and

Magnetism”(Green (1828)) that first used the term potential function. Herein we find his

remarkable theorem, Green’s identities that are studied largely from the point of view of

fundamental solutions and the core of integrals formulation for direct method. Although

a fundamental solution of PDE is usually highly non-local, numerical implementation of

BIEs pose a great advantage since the problem dimensionality is reduced by one which

2
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requires only a line mesh around the boundary of the domain in 2-D and a surface mesh

for 3-D geometries. This implies huge reduction of computation time and computer memory

requirements since we obtained smaller linear systems and less mesh generation efforts. This

effect is most pronounced when we have unbounded domain. It would be a problematic to

truncate and approximate an unbounded domain for mesh based method, whereas the BIEs,

on the other hand, automatically models the behavior at infinity (e.g. in Cheng and Cheng

(2005)). However, the matrix obtained from BIEs is a fully populated matrix.

Even though Green’s formula is prominent for potential theory, the idea of Green was

then studied to solve other physical problems, e.g. elasticity, Helmholtz and Maxwell BVPs.

In 1860, a German physician, Hermann von Helmholtz in (Helmholtz (1860)) formulated

the fundamental formula for Helmholtz equation that often arises in the study of physical

problems involving PDEs in both space and time. In (Somigliana (1885)), an Italian math-

ematician, Carlo Somigliana made important contributions in elasticity when he formulated

the Somigliana integral equation for elasticity which is counterpart of Greens formula for

potential theory.

There are several numerical computational methods of solving linear partial differential

equations which have been formulated as integral equations, e.g. boundary element method

(BEM) and method of fundamental solutions (MFS). The discussions about BEM can be

found, in e.g. (Beer (2001), Paris and Cañas (1997), Katsikadelis (2002)). The MFS was

introduced in (Kupradze and Aleksidze (1964)) and then developed as a numerical technique

in (Mathon and Johnston (1977)). The advantage of MFS is, it avoids the numerical inte-

gration of singular fundamental solution whereas BEM needs special integration method to

handle the singular fundamental solution.

However, the fundamental solution is generally not available in an explicit and/or cheap-

ly computable form if the coefficients of the auxiliary PDE depend on the space variables.

Therefore, reduction of BVPs with variable coefficients to BIEs is generally not effective

for numerical implementations. An Italian mathematician, Levi introduced method of the

parametrix which is a way to construct fundamental solutions for elliptic PDE with vari-

able coefficients, see in (Levi (1909)). The existence of a parametrix has been proved for

3
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hypo-elliptic pseudo-differential operators, see in (Hörmander (1965)). An explicit construc-

tion of a parametrix for second order partial differential operators based on power series

developments was discovered by Hadamard, see in (Hörmander (1985), Hadamard (1932)).

Using a parametrix (Levi function) as a substitute of a fundamental solution, it is possible

to reduce a BVP not to BIEs but to Boundary-Domain Integral Equations (BDIEs) (see, e.g.

Hilbert (1912), Miranda (1970) and Pomp (1998)). Book written by Miranda (1970) offered

a great discussion of Boundary value problems for partial differential equations and can serve

as a classic reference on PDEs of elliptic type. The classical works in (Hilbert (1912), Levi

(1909), Miranda (1970), Pomp (1998)) deal only with the indirect BDIEs for Dirichlet and

Neumann BVPs.

The BDIEs are called segregated BDIEs when the unknown boundary functions are

considered as formally unrelated to the unknown functions inside the domain whereas for

the united BDIEs, the unknown boundary functions are related to the unknown functions

inside the domain. The analysis of direct united BDIEs was discussed in (S.E. Mikhailov

(2006)) whereas the analysis of direct segregated BDIEs was presented in (Chkadua et al.

(2009b), Chkadua et al. (2010b)). In (Chkadua et al. (2009b)), the discussions of existence,

uniqueness and operator invertibility in Sobolev space were provided while in (Chkadua et al.

(2010b)), the regularity and asymptotic behaviour of BDIE solutions were discussed. The

analysis of segregated BDIEs for mixed variable-coefficient BVPs in exterior domains can

be found in (Chkadua et al. (2011b), Chkadua et al. (2013 (to appear))). For the analysis

on the direct segregated BDIEs with cracks, see (Chkadua et al. (2009a)) that established

the BDIE equivalence to the original BVPs and invertibility of the BDIE operators in the

corresponding Sobolev spaces.

However, BDIEs do not enjoy the privilege of having problem dimensionality reduced

by one like held for BIEs since they do not only consist of the boundary integral but al-

so the domain integrals. For numerical solving the BDIEs, one should discretize not only

the domain boundary but also the domain itself. Moreover, a parametrix is usually highly

non-local like a fundamental solution. This leads the discretized BDIEs to systems of equa-

tions of the same size as obtained from Finite Element Method (FEM) but unlike FEM, the

4
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systems of equations are fully populated matrices. In addition to that, a parametrix like

fundamental solution is singular that implies more expensive computationally in compari-

son with the FEM. Therefore, Finite Element Method (FEM) is seen to be surpassing the

numerical implementation of BDIEs. Mikhailov in 2005 published an article entitled ”Will

the boundary (-domain) integral equation method survive? Preface to the special issue on

non-traditional boundary (-domain) integral equation methods” in (Mikhailov (2005b)). The

articles presented the drawbacks of BIEs/BDIEs and discussed some ideas that might make

BIEs/BDIEs comparable to FEM.

There are several methods for transforming the domain integrals into equivalent boundary

integrals. One of them is boundary node method, which combines BEM with moving least

square (MLS) technique, see in e.g. (Mukherjee and Mukherjee (2005)). The MLS technique

is a meshfree approximation that will not require any meshing for the interior domain.

The discussions on the MLS approximations can be found in e.g. (Levin (1998), Wendland

(2001)). Another technique which is commonly used for treating the volume integral without

discretising the volume is the dual-reciprocity method, see e.g. (Partridge et al. (1992)).

The technique approximates part of the integrand using radial basis functions (RBF) to

approximate the unknown variables which enable the transformation of the domain integrals

that includes unknown variables to the boundary. For the discussions of RBF, see in e.g.

(Buhmann (2000), Buhmann (2003), Gao (2002)).

Since a parametrix is usually highly non-local and to make the BDIEs method competitive

with the FEM, the Localized Boundary-Domain Integral Equation Method (LBDIEM) has

been recently developed. Several researchers addressed this deficiency by employing specially

constructed localised parametrices to reduce linear and non-linear BVPs with variable coef-

ficients to Localized Boundary-Domain Integral Equations (LBDIEs)/Localized Boundary-

Domain Integro-Differential Equations (LBDIDEs), see e.g. (Zhu et al. (1998), Mikhailov

(2002)). After a locally-supported mesh-based or mesh-less discretisation of LBDIEM, LB-

DIEs/ LBDIDEs ends up in sparse systems of algebraic equations. The discretized LBDIEs/

LBDIDEs can be solved by well known efficient and economical methods developed for s-

parsely populated system solution.
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In addition to having less computer memory requirements for solving sparse system-

s of algebraic equations, computer time and memory requirements are also reduced since

less domain and integrations need to be carried out. This is since we will only calculate

the boundary and domain integrals when the interpolation nodes are within the localisa-

tion domain ω(y) that depend on the location of the collocation points y. Moreover, there

are several mesh-less discretisation methods of LBDIEs/ LBDIDEs in LBDIEM to handle

boundary integrals so that the problem dimensionality can be diminished by one e.g. MLS

technique and dual-reciprocity method as discussed in the previous page.

A method called Green Element Method (GEM) was proposed in (Taigbenu (1995))

which was derived from the BEM over the meshes of the FEM. This approach leads to

large sparse matrices like in FEM while still retains the use of fundamental solution. The

domain integrations in original GEM is more easily carried out as compared to BDIEs.

This is due to the fact that the collocation points always belong to element nodes. In that

case, the domain integrations over any polygonal elements can be handled analytically for

most Green’s functions. The detailed discussions of the idea of GEM can be found in e.g.

(Taigbenu (1999)). In (Archer and Horne (1998), Archer et al. (1999)), the GEM and Dual

Reciprocity Boundary Element Method (DRBEM) have been applied to reservoir engineering

problems. Some other applications using GEM can be found in e.g. (Archer and Horne

(2000), Archer and Horne (2002), Taigbenu and Elvin (2006), Taigbenu (2010)). Onyejekwe

(2006) studied the GEM for Poisson’s equation in polar coordinates and some applications

of radial coordinate GEM for the computation of transient fluid flow in a straight rigid pipe

is in e.g. Onyejekwe (2005).

Some localized parametrixes were constructed in (Zhu et al. (1998)) to reduce BVPs for

PDE with variable coefficients to Localized BIEs (LBIEs). The LBIEs that have been derived

combine the advantageous features of the three methods: Galerkin Finite Element Method

(GFEM), BEM and Element Free Galerkin method (EFGM). The GFEM leads to bounded,

sparse and symmetric matrices. The BEM implicates with the full and unsymmetrical ma-

trices, whereas EFGM still involve domain integrals. The LBIEs that were constructed are

meshless, have only boundary integration and lead to banded and sparse system matrices.

6
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Green functions for an auxiliary problem on local spherical domains were used as the local

parametrices in (Zhu et al. (1998), Zhu et al. (1999), Sladek et al. (2004a)) to reduce some

linear and nonlinear scalar problems with variable coefficients.

In the studies, (Zhu et al. (1998)) use the MLS approximations and a mesh free method

that does not need an element mesh for purposes of interpolation of the solution variables.

The numerical experiments in the paper were applied to linear potential problems, such

as the Laplace and Poisson’s equations. In (Zhu et al. (1999)), they extend the work to

non-linear boundary value problems. The numerical implementation that had been carried

out in the paper was for a cubic solution with mixed boundary conditions. Atluri and Zhu

(2000) discussed two kinds of meshless methods. One is Meshless Local Boundary Integral

Equation (MLBIE) that is based on a local unsymmetric form and another one is Meshless

Local Petrov-Galerkin (MLPG) based on local symmetric weak form.

A LBIE for solving problems in linear elasticity was developed in (Atluri et al. (2000)). As

in (Zhu et al. (1998), Zhu et al. (1999)), they solved the LBIE based on the local unsymmetric

weak form (LUWF) and the MLS approximation but for linear elasticity problems. Sladek

et al. (2000b) proposed a method that use direct limit approach to handle the strong and weak

singularities for LBIEs when using MLS approximation. The numerical experiments were

done for linear elasticity. In (Sladek et al. (2000a)), an approach based on local parametrices

to reduce a linear elasticity problem for a body with a special inhomogeneity, to a LBIE was

introduced. The applications of LBIEs on e.g. heat conduction in nonhomogeneous solids,

transient heat conduction, anisotropic and functionally graded materials, are discussed in

(Sladek et al. (2004a), Sladek et al. (2004b), Sladek et al. (2005)). In (Sladek et al. (2003)),

the Green function of the plane Laplace equation was used as a parametrix for the axially

symmetric problem of heat transfer with variable coefficients.

Dai and Cheng (2010) applied an Improved Moving Least-Squares (IMLS) approximation

on LBIE to obtain an Improved LBIE (ILBIE). Unlike LBIE method, the ILBIE method is

a direct meshless boundary integral equation method with the basic unknown quantity is

the real solution of the nodal variables, and the boundary conditions can be implemented

directly and easily as in the finite element method (Dai and Cheng (2010)). The potential

7
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problems considered in this paper were two-dimensional. Based on the numerical examples,

the ILBIE method has greater computational efficiency and precision as compared with the

LBIE with original MLS.

Mikhailov in (Mikhailov (2002)) introduced a localized parametrix as the product of a

parametrix and cut-off function. This is based on the fact that the parametrix is not unique

and has the same singularity at x = y as the fundamental solution but can differ at other

points.

In (Mikhailov (2004), Mikhailov (2005a)), the approach of (Mikhailov (2002)) had been

extended to the mixed BVP for a second order scalar nonlinear (quasi-linear) elliptic PDE

with a variable coefficient that depends on the unknown solution. In (Mikhailov (2003),

Mikhailov (2005a)), the mixed BVP for a second order scalar nonlinear (quasi-linear) elliptic

PDE with a variable coefficient that depends on the unknown solution and the BVP solution

gradient were discussed. The approach in (Mikhailov (2002), Mikhailov (2003), Mikhailov

(2004), Mikhailov (2005a)) was then extended in (Mikhailov (2005c)) to the mixed BVP for

the system of quasi-linear PDEs of physically nonlinear elasticity for continuously inhomo-

geneous body.

By using some incomplete information about eigen-solutions of an original and/or adjoint

generalized Fredholm operator equation (with zero index), (Mikhailov (1999)) constructed

some finite-dimensional perturbation operators. Adding the perturbation operator to the

original one can reduce the eigen-space dimension and yield an unconditionally and uniquely

solvable perturbed equation. The Neumann problem is not unconditionally solvable, and

when it is solvable, its solution can only be unique up to an additive constant. Using results

of (Mikhailov (1999)), (Mikhailov and Nakhova (2005)) presented the numerical implemen-

tation for the mesh-based discretization of a uniquely solvable perturbed Neumann LBDIE

with a variable coefficient. For the approximations, the paper used the linear interpolations

for boundary and domain integrations.

Later, a deeper analytical insight into the properties of the corresponding integral oper-

ators such as the solvability of LBDIE, uniqueness of a solution, equivalence to the original

BVPs and the invertibility of LBDIEs were developed. Chkadua et al. (2010a) described

8
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the equivalence of the LBDIEs to the original mixed type BVPs and the invertibility of the

corresponding localized boundary-domain integral operators (LBDIOs) in the appropriate-

ly chosen function spaces. The invertibility of the LBDIOs related to Dirichlet problem for

PDEs with matrix variable coefficients was discussed in (Chkadua et al. (2011d)). In (Chkad-

ua et al. (2011c)), the discussions on the LBDIEs method for an interface crack problem was

discussed. In the paper, the Fredholm properties of the LBDIO and their invertibility in

appropriate function spaces were also investigated.

Some numerical implementations for BDIE related with the Neumann problem for PDE

with variable coefficient can be seen in e.g. (Mikhailov and Mohamed (2011), Mikhailov

and Mohamed (2012)). Even though no analysis is made of the spectral properties for the

BDIEs’ operator, some conclusions can be attained in (Mikhailov and Mohamed (2012)).

1.2 Research Objectives

The objectives of this research are:

1. To solve the systems obtained from BDIE/BDIDEs and LBDIE/LBDIDEs related to

the Neumann and Dirichlet BVPs for a scalar elliptic PDE with variable coefficient by

using direct method and iterative method (if the solution converges).

2. To analyze the behavior of eigen-values of the corresponding discrete BDIEs and LB-

DIEs operators for a scalar elliptic PDE with several different variable coefficients by

taking the effect of the maximal eigen-values of the discrete BDIEs and LBDIEs.

1.3 Research Rationale

The project results will benefit the software developers and numerous users in mechanical,

structural, civil, marine, and aerospace engineering, who develop and implement computer

codes for solving problems of heat transfer and stress analysis of structure elements made of

“functionally graded” materials, variable-curvature inhomogeneous elastic shells, filtration

through inhomogeneous rocks etc.
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1.4 Scope of the Study

In this thesis, we focus on the numerical implementation of the Boundary-Domain Integral

Equation (BDIE)/Boundary-Domain Integro-Differential Equations (BDIDEs) and Local-

ized Boundary-Domain Integral Equation (LBDIE)/Localized Boundary-Domain Integro-

Differential Equations (LBDIDEs) of BVPs for PDE with variable coefficients. Some simple

regions e.g. a square, a circular domain and a parallelogram are used as our test domains.

We use linear and bilinear interpolations for boundary and domain integrations, respec-

tively. These linear and bilinear interpolation methods are chosen since they are amongst the

easiest ways of approximation. For evaluating the boundary/domain integrals, we mainly use

the the standard Gauss method which is also known as Gauss-Legendre method. However,

for integrands that involve singularities, we use special methods in evaluating the integrals

i.e. Gauss-Laguerre method for boundary integral with logarithmic singularity and Duffy

transformation for domain integrals. In our work, we will also discuss a semi-analytic method

to cancel out the influence of the singularity.

In all of the numerical implementations, we use Fortran (Intel Visual Fortran Compiler

Professional Edition 11.1) with double accuracy as our main programming software in writing

the numerical codes. We also use MATLAB for drawing graphs and computing the eigen-

values of matrix operators. In addition, we also use Mathematica 5.1 to obtain exact solution

of some numerical integrations for our semi-analytic method. For solving the systems of lin-

ear algebraic equations of discretized BDIE/BDIDEs and discretized LBDIE/LBDIDEs, we

use the direct method (LU decomposition method) and iterative method (Neumann itera-

tive method) if the iterations converge. We calculate the eigen-values of the discretized B-

DIE/BDIDEs and LBDIE/LBDIDEs operators and compute the maximal eigen-values which

indicates the spectral radius of the discretized BDIE/BDIDEs and LBDIE/LBDIDEs oper-

ators. The behavior of eigen-values of the corresponding discrete BDIE/BDIDEs and LB-

DIE/LBDIDEs operators for a scalar elliptic PDE with several different variable coefficients

are then analyzed.
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1.5 Outline of Thesis

The thesis is organized into six chapters. The first chapter details some discussions on the

background and rationale of research, objectives of research, scope of the study and chapter

organization.

An overview of Boundary Element Method (BEM) related to the Neumann and Dirichlet

problems for Laplace equation is given in Chapter 2. The formulations of Boundary Integral

Equation (BIE) obtained from the direct and indirect methods are also discussed. Moreover,

the uniqueness and solubility of solutions for the boundary value problems for Laplace equa-

tion are explored. Several Fredholm’s theorems and Fredholm’s alternative theorem which

are related to the solvability of Fredholm’s integral equation are presented. A discussion on

the convergence of the Neumann iteration corresponds to spectral properties of an operator

K is also given. Furthermore, a method by Mikhlin in investigating the spectral properties

of the integral equation related to the Dirichlets and Neumanns problems obtained from the

indirect method in three dimensions is introduced. The discussion of the spectral proper-

ties for BIE that obtained from the direct method is then extended based on the spectral

properties for the BIE obtained from the indirect method,

In Chapter 3, Boundary-Domain Integral Equation (BDIE)/Boundary-Domain Integro-

Differential Equations (BDIDEs) which are used to solve boundary value problems (BVPs)

for PDE with variable coefficient is introduced. The BDIE related to Neumann problem

is reduced to a uniquely solvable one by adding an appropriate perturbation operator. An

overview on the discretization for the boundary ∂Ω of our test domains by using continuous

linear elements and for the domain Ω by using quadrilateral domain elements is also given.

Then, assembling of the element contributions obtained from the integration of each segmen-

t/element to a global matrix is explained. The geometry of three test domains i.e. square,

circular domain, and parallelogram that are used in all the numerical experiments in Chap-

ters 3, 4 and 5 is also introduced. Furthermore, the system obtained from perturbed BDIE

(discretised perturbed BDIE) related to Neumann problem is solved by LU decomposition

method and Neumann iterations. In addition, the spectral properties obtained numerically

11
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from the discrete BDIE operator is also presented. The details on the convergence of the iter-

ative method is also discussed in relation with the maximal eigen-values of the corresponding

discrete BDIE operator obtained numerically.

In Chapter 4, the results of numerical implementations on the BDIDEs related to the

Dirichlet problem for PDE with a variable coefficient are shown. Two BDIDEs which are

associated with the Dirichlet problem are considered. One leads to the discretised BDIDE

with the collocation points xi for xi ∈ Ω at all J nodes. The second BDIDE leads to the

discretised BDIDE with the collocation points xi only for xi ∈ Ω at J − JD nodes where JD

is the number of nodes on the boundary ∂Ω. Similar to the perturbed BDIE (discretised

perturbed BDIE) related to Neumann problem as in Chapter 3, the system obtained from

BDIDE (discretised BDIDE) related to Dirichlet problem with xi ∈ Ω at all J nodes is

solved by LU decomposition method and Neumann iterations. To analyze convergence of

the iterative method, the maximal eigen-values of the corresponding discrete BDIDE operator

were obtained numerically. For the second BDIDE, the system which obtained is solved by

LU decomposition method since the Neumann iterations diverge.

In Chapter 5, the discussions on how the BVPs for PDE with variable coefficient can be re-

duced to the Localized Boundary-Domain Integral Equation (LBDIE)/Localized Boundary-

Domain Integro-Differential Equations (LBDIDEs) for Neumann and Dirichlet problems,

respectively are discussed.

The discretization of the LBDIE/LBDIDEs which leads to systems of linear equations

is explained for the numerical purposes. The algebraic systems of linear equations are then

solved by LU decomposition method. The maximal eigen-values for the LBDIE’s/LBDIDEs’

operators for both Neumann and Dirichlet problems which are related with the convergence

of Neumann iteration method is also investigated and analyzed..

In Chapter 6, some conclusions of this study and some suggestions for further study are

given.
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Chapter 2

Introduction to Boundary Integral

Equations

2.1 Introduction

Many equations of physics are second-order PDEs e.g. wave equation, diffusion (heat) e-

quation, Helmholtz equation, equation of fluid-dynamics, Maxwell equations, Schrödinger

equation. These PDEs can describe a wide variety of phenomena such as sound, heat, elec-

trostatics, electrodynamics, fluid flow and elasticity.

There are various methods for solving BVPs for PDE analytically e.g. methods of sep-

aration of variables, Fourier and Laplace transforms, integral transforms and variation of

parameters. However, many problems encountered in applications cannot be solved using

analytical methods. Therefore, it is necessary to resort to approximate solution methods.

Many methods have been developed for the numerical solution of partial differential

equations and amongst the commonly used are volume-discretisation methods e.g. finite

difference method, finite volume method and finite element method.

Another numerical method that can give a comparable efficiency to volume-discretisation

methods is the Boundary Element Method (BEM). In order to use the BEM, we need to

have representation formulas. Such representation formulas are well known for the classical

13
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boundary value problems of mathematical physics, e.g. Green’s third identity for potential

theory, Betti’s formula for elasticity theory, and the Stratton-Chu formula for electrodynam-

ics (Costabel (1988b)).

In this chapter, we will take a look at Green’s third identity. By using explicit knowledge

of a fundamental solution of the differential equation, BVPs can be reduced to Boundary

Integral Equations (BIEs). However, the fundamental solution is only available for linear

PDEs with constant or some specific variable coefficients.

On the other hand, a parametrix is often available for linear PDEs with variable coeffi-

cients. Later, in the next chapters, we will see that by using a parametrix, BVPs for PDEs

with variable coefficients can be reduced not to BIEs but to Boundary Domain Integral E-

quation (BDIE)/Boundary Domain Integro-Differential Equations (BDIDEs) instead. The

BVPs that will be considered are Dirichlet and Neumann problems.

2.2 Boundary Integral Equation

Boundary integral equations are a classical tool for boundary value problems for partial

differential equations. Many boundary value problems of mathematical physics and engi-

neering can be reduced to integral equations over the boundary of the domain of interest.

Particularly, boundary integral equations are often used to solve numerically the Dirichlet

and Neumann problems and also the mixed boundary value problem (Dirichlet-Neumann).

One of the methods for the approximate numerical solution of these boundary integral

equations is called “boundary element method” (BEM). The approximate solution of the

boundary value problem obtained by using BEM has the distinguishing feature that it is an

exact solution of the differential equation in the domain and is parametrized by a finite set

of parameters living on the boundary. Thus, the problem dimensionality is reduced by one

which requires only a line mesh around the boundary of the domain in 2-D and a surface

mesh for 3-D geometries. This implies huge reduction in mesh generation efforts.

14
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However, the BEM has also some disadvantages, see e.g. (Costabel (1988b)):

Disadvantages of BEM

• Boundary element method requires the explicit knowledge of a fundamental solution of

the differential equation. However, a fundamental solution is often not available in an

explicit form. That case happens when the coefficient is not constant but a variable.

• From a computational point of view, most of the computer codes for BEM are in an

experimental state, and there might exist problems of reliability compared to FEM.

This is maybe since more money is being spent on FEM in the building up of the

computer codes for numerical purposes.

In discussing the application of BEM, the first thing that we should look at is the bound-

ary value problem for partial differential equation. In this subsection, we only focus on the

potential theory which models a broad class of physical phenomena, e. g., heat conduction,

potential flow, seepage, magnetic potential and many others. Further discussion on elasticity

theory as well as the numerical computations can be found, e.g. in (Kupradze (1968), Ameen

(2005)).

Let us consider a scalar function u, defined on a region Ω bounded by a surface Γ :=

∂Ω, with an outward normal ν. The function u is assumed to satisfy the following partial

differential equation:

Lu(x) := −∇2u(x) = f(x), x ∈ Ω. (2.1)

Equation (2.1) is usually known as Poisson equation if f(x) ̸= 0 and as Laplace equation

when f(x) = 0.

Some of the possible boundary conditions are given below:

Dirichlet boundary condition

u(x0) = u(x0), x0 ∈ ∂Ω. (2.2)

Neumann boundary condition

Tu(x0) = a(x0)
∂u(x0)

∂ν
= t(x0), x0 ∈ ∂Ω. (2.3)
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Mixed boundary condition

u(x0) = u(x0), x0 ∈ ∂ΩD,

Tu(x0) = t(x0), x0 ∈ ∂ΩN . (2.4)

where ∂ΩD ∩ ∂ΩN = ∅ and ∂ΩD ∪ ∂ΩN = ∂Ω.

As discussed above, one of the drawbacks of BEM is the necessity to know explicitly a

fundamental solution of the differential equation. Suppose F (x, y) is a fundamental solution

for the operator L in (2.1), that is a solution of the following equation:

LxF (x, y) = δ(x− y),

where δ(x− y) is the Dirac delta function which satisfies

δ(x− y) =

 +∞,

0,

y = x,

elsewhere.

The Dirac delta function also has a special property such that for any continuous function

f(x), the following equation holds:∫
Ω
f(x)δ(x− y)dΩ(x) = f(y).

It is well known that fundamental solutions are explicitly known for many equations with

constant coefficients a(x), where they can be computed by Fourier transformation, and for

some elliptic equations with analytic coefficients, e.g. the Laplace-Beltrami equation on the

sphere, e.g. in (Costabel (1988b)).

As an example, it is well-known that the fundamental solutions for Laplace equation

Lu = −∇2u = 0, x ∈ Ω+ ⊂ Rn, (2.5)

for n = 2 and n = 3 are given respectively, as

F△(x, y) = − 1

2π
ln |x− y| for x, y ∈ R2, (2.6)

F△(x, y) = +
1

4π |x− y|
for x, y ∈ R3. (2.7)
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Figure 2.1: Schematic picture of the domain Ω, boundary ∂Ω and normal ν.

We state here several theorems regarding the uniqueness of solutions for the Dirichlet

and Neumann problems for the Laplace equation (2.5) which can also be found in (Lung-An

(2006)). The functions for the interior and exterior problems are chosen as u ∈ C2(Ω+) ∩

C1(Ω+) and u ∈ C2(Ω−)∩C1(Ω−), respectively. We also consider that u(x0) ∈ C1(∂Ω) and

t(x0) ∈ C(∂Ω).

We are interested in well-posed problems. Then some boundary conditions at infinity are

required for the exterior problem as follow (see e.g. Lung-An (2006)):
u is a bounded function on Ω, Ω ∈ R2,

lim
|x|→∞

u = 0, Ω ∈ R3.
(2.8)

The term well-posed problem was first defined by Jacques Hadamard in (Hadamard (1902))

that have the following properties:

• A solution exists.

• The solution is unique.

• The solution’s behavior hardly changes when there’s a slight change in the initial

condition.
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The following theorems will be useful in the next sections, see e.g. (Kupradze (1968)).

Theorem 2.2.1 (Uniqueness of solutions for the Dirichlet problems for Poisson equation)

The interior Dirichlet problems for n ≥ 2 and the exterior Dirichlet problems for n ≥ 3

have at most one solution.

Theorem 2.2.2 (Uniqueness of solutions for the Neumann problems for Poisson equation)

• Any constant is a solution of the homogeneous interior Neumann problem. Two so-

lution of the interior Neumann problem (with arbitrary f) can differ by at most a

constant.

• Solution for 2-D exterior Neumann problem is unique up to a constant and the 3-D

exterior Neumann problem has at most one solution.

Next we represent the solution of the partial differential equation (2.5) in the domain

by means of boundary potentials. Such representation formulas are well known for the

classical boundary value problems of mathematical physics, e. g. Green third identity for

potential theory, Betti’s formula for elasticity theory, and the Stratton-Chu formula for

electrodynamics (Costabel (1988b)).

Let u and v be scalar functions defined on some region Ω in Rn. The first Green identity

is given as follows: ∫
Ω
[vLu+∆v ·∆u] dΩ =

∫
∂Ω
v
∂u

∂ν
dΓ. (2.9)

In particular, we can take v = 1 in (2.9), which implies∫
Ω
Lu dΩ =

∫
∂Ω

∂u

∂ν
dΓ. (2.10)

Applying (2.10) to the solution of the Neumann problem in (2.1) and (2.3), we obtain∫
Ω
f(x) dΩ(x) =

∫
∂Ω
t(x0) dΓ(x). (2.11)

Equation (2.11) is a compatibility condition that must be satisfied for the existence of the

solution for the Neumann problem.
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The second Green identity is∫
Ω
[uLv − vLu] dΩ =

∫
∂Ω

[uTv − vTu] dΓ. (2.12)

Taking u as the unknown solution of L in (2.1) and v as the fundamental solution F△(x, y)

for Laplace equation defined in (2.6) and (2.7) depending on the type of the dimension of

the domain of the problem, we arrive at the third Green identity

c(y)u(y) +

∫
∂Ω

[u(x)TxF△(x, y)− F△(x, y)Tu(x)]dΓ(x)

=

∫
Ω
F△(x, y)f(x)dΩ(x), x, y ∈ Rn, (2.13)

where

c(y) =



1

0

α(y)/2π

α(y)/4π

if y ∈ Ω+,

if y ∈ Ω−,

if y ∈ ∂Ω and Ω ⊆ R2,

if y ∈ ∂Ω and Ω ⊆ R3,

(2.14)

where α(y) is an interior space angle at a corner point y of the boundary ∂Ω. If ∂Ω is a

smooth boundary, then we have c(y) = 1/2, see e.g. (Paris and Cañas (1997)).

We can refer to (Paris and Cañas (1997)) for the derivation of all four cases in (2.14). The

fixed point y ∈ ∂Ω in equation (2.13) is usually called the source point in Potential Theory

and the collocation point in BEM while the point x is called the field point or observation

point. A pair of boundary functions of the solution u of (2.1), i.e., u|Γ and ∂u/∂ν|Γ are

known as Cauchy data.

If u is the solution that satisfies the Laplace equation as in (2.1) with f = 0, then the

third Green formula in (2.13) becomes

c(y)u(y) = −
∫
∂Ω

{u(x)TxF△(x, y)− F△(x, y)Tu(x)} dΓ(x). (2.15)

The representation formula (2.15) consists of two boundary potentials, the single layer

potential

V ϕ(y) :=

∫
∂Ω
F△(x, y)ϕ(x) dΓ(x), y /∈ ∂Ω, (2.16)
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and the double layer potential

Wψ(y) :=

∫
∂Ω

[TxF (x, y)△]ψ(x) dΓ(x), y /∈ ∂Ω. (2.17)

The corresponding boundary integral (pseudodifferential) operators of the direct values

of the single layer potential V and the double layer potential W, the adjoint double layer

potential W∗ and the double layer potential L± are

Vϕ(y0) :=

∫
∂Ω
F△(x, y0)ϕ(x) dΓ(x),

Wψ(y0) :=

∫
∂Ω

[TxF△(x, y0)]ψ(x) dΓ(x),

W∗ϕ(y0) :=

∫
∂Ω

[TyF△(x, y0)]ϕ(x) dΓ(x),

L±ψ(y0) := − [TyWψ(y0)]
± ,

where y0 ∈ ∂Ω.

Therefore, for y /∈ ∂Ω, (2.15) can written in terms of V and W , i.e.,

c(y)u(y) = −Wu(y) + V Tu(y). (2.18)

For y ∈ ∂Ω, (2.15) can be written in terms of V and W, i.e.,

c(y)u(y) = −Wu(y) + VTu(y). (2.19)

Here c(y) is defined as in (2.14).

Any boundary value problem can be reduced to Boundary Integral Equation by using

several different approaches. The main classifications would fall into two broad categories:

direct method and indirect method. The direct method is based on Green formula while

the indirect method is based on the single or double layer potentials. However, the density

function obtained from the indirect method, in general, has no physical meaning.

We will further in next section assume for simplicity that the boundary ∂Ω is smooth.

2.2.1 Formulation of Direct boundary integral equations

The following well-known jump relations might be useful for further discussions, see in e.g.

(Hsiao and Wendland (2008)):
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Theorem 2.2.3 (Jump Relations) a) Let ϕ ∈ C(∂Ω) and y0 ∈ ∂Ω. Then

[Vϕ](y0) = [V ϕ]+(y0) = [V ϕ]−(y0), (2.20)

∂+ν [V ϕ](y0) = W∗ϕ(y0) +
1

2
ϕ(y0), (2.21)

∂−ν [V ϕ](y0) = W∗ϕ(y0)−
1

2
ϕ(y0). (2.22)

b) Let ϕ ∈ C(∂Ω) and y0 ∈ ∂Ω. Then

[Wψ]+(y0) = Wψ(y0)−
1

2
ψ(y0), (2.23)

[Wψ]−(y0) = Wψ(y0) +
1

2
ψ(y0), (2.24)

−Lψ(y0) := ∂+ν [Wψ](y0) = ∂−ν Wψ(y0), (2.25)

where + and − are the the limiting boundary values on ∂Ω from Ω+ and Ω−, respectively.

We will discuss the formulation of the boundary integral equation by using Green formula

(2.15) which is known as “direct method”. The Green formula (2.15) admits two ways of

approaching the boundary based on the traces |± and on the normal derivative ∂±ν .

The first way is by considering traces. For the interior Dirichlet and Neumann problem,

c(y) = 1. Therefore equation (2.15) gives

u = −Wν+u
+ + V (∂+

ν+
u) on Ω+. (2.26)

The notation ν+ in (2.26) denotes that the direction of ν is outward to Ω+.

Substituting (2.20) and (2.23) into the trace of (2.26), we obtain

u+ =
1

2
u+ −Wν+u

+ + V(∂+
ν+
u) on ∂Ω. (2.27)

Now we consider the exterior Dirichlet and Neumann problems which consist of finding

u which satisfies the Laplace equation (2.5) in y ∈ Ω− with Dirichlet boundary condition

(2.2) and Neumann boundary condition (2.3), respectively.

For the exterior region Ω−, equation (2.15) gives

u = −Wν−u
− + V (∂−

ν−u) on Ω−. (2.28)
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Here the notation ν− indicates that the direction of ν is inward with respect to Ω+. Equation

(2.28) is true if u satisfies the additional condition at infinity as in (2.8).

Since ν− = −ν+, we can write (2.28) as follows:

u =Wν+u
− − V (∂−

ν+
u) on Ω−. (2.29)

Substituting (2.20) and (2.24) into the trace of (2.29), we obtain

u− =
1

2
u− +Wν+u

− − V(∂−
ν+
u) on ∂Ω. (2.30)

Next, one can use the second way of the Green formula (2.15) approaching the boundary,

i.e. based on the normal derivative ∂±ν .

For the interior problem, taking normal derivative (2.26) from Ω+, we obtain

∂+
ν+
u = −∂+

ν+
[Wν+u

+] + ∂+
ν+

[V (∂+
ν+
u)] on ∂Ω. (2.31)

Therefore, taking into account the jump relations in (2.21) and (2.25) and substituting them

into (2.31), we obtain

∂ν+u(y0) = Lu+(y0) +W∗
ν+(∂

+
ν+
u(y0)) +

1

2
∂+
ν+
u(y0), y0 ∈ ∂Ω. (2.32)

For the exterior Dirichlet and Neumann problem, taking the normal derivative of (2.29)

from Ω−, we arrive at the following equation:

∂−
ν+
u = ∂−

ν+
[Wν+(u

−)]− ∂−
ν+

[V (∂−
ν+
u)] on ∂Ω. (2.33)

Substitution (2.22) and (2.25) into (2.33), gives

∂−
ν+
u(y0) = −Lu−(y0)−W∗(∂−

ν+
u(y0)) +

1

2
∂−
ν+
u(y0), y0 ∈ ∂Ω. (2.34)

Interior Dirichlet Problem

We will look for the solution u which satisfies the Laplace equation (2.5) in y ∈ Ω+ with

Dirichlet boundary condition (2.2). Equation (2.27) can be written as(
1

2
+Wν+

)
u+ = V(∂+

ν+
u) on ∂Ω. (2.35)
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Substituting the boundary condition (2.2) into (2.35), we obtain an integral equation of the

first kind w.r.t. ∂+
ν+
u:

V(∂+
ν+
u(y0)) =

(
1

2
+Wν+

)
u(y0), y0 ∈ ∂Ω. (2.36)

Besides, we can also reduce the interior Dirichlet problem to another integral equation by

using (2.32). Substituting the boundary condition (2.2), equation (2.32) can also be written

as the following integral equation of the second kind w.r.t. ∂+
ν+
u:(

1

2
−W∗

ν+

)
(∂+

ν+
u(y0)) = Lu(y0), y0 ∈ ∂Ω. (2.37)

Exterior Dirichlet Problem

Now we consider the exterior Dirichlet problem which consisits of finding u which satisfies

the Laplace equation (2.5) in y ∈ Ω− with Dirichlet boundary condition (2.2) and condition

at infinity as in (2.8).

Rearranging, equation (2.30) can be written as(
1

2
−Wν+

)
u− = −V(∂−

ν+
u) on ∂Ω. (2.38)

Substituting the boundary condition (2.2) into (2.38), we obtain the following integral equa-

tion of first kind w.r.t. ∂−
ν+
u:

−V(∂−
ν+
u(y0)) =

(
1

2
−Wν+

)
u(y0), y0 ∈ ∂Ω. (2.39)

As in interior Dirichlet case, we can also reduce the exterior Dirichlet problem to another

integral equation by taking normal derivative ∂−ν . Substituting the boundary condition (2.2)

into equation (2.34) yields the following integral equation of the second kind w.r.t. ∂−
ν+
u:(

1

2
+W∗

ν+

)
(∂−

ν+
u(y0)) = −Lu(y0), y0 ∈ ∂Ω. (2.40)

In the later work, we will compare the spectral properties of BIE obtained from indirect

method with the BIE from the direct method. We consider the following homogeneous

equation with variable parameter ζ:

ϕ0(y0) + 2ζW∗ϕ0(y0) = 0. (2.41)

23



Introduction to BIEs Boundary Integral Equation

Note that if ζ = −1, then (2.41) is the homogeneous equation (2.37) with density ϕ0 = ∂+
ν+

,

and if ζ = 1, equation (2.41) is the homogeneous equation of (2.40) with the density ϕ0 = ∂−
ν+

.

The discussion on the spectral properties of BIE from the direct method will be detailed in

subsection 2.3.2.

Interior Neumann Problem

Next, we will look for the solution u which satisfies the Laplace equation (2.5) in y ∈ Ω+

with Neumann boundary condition (2.3). Substituting the boundary condition (2.3) into

(2.35), we obtain an integral equation of the second kind w.r.t. u+:(
1

2
+Wν+

)
u+(y0) = V(t(y0)), y0 ∈ ∂Ω. (2.42)

Besides, we can also reduce the interior Neumann problem to another integral equation

by using (2.32). Substituting the boundary condition (2.3), equation (2.32) can be written

as the following integral equation of the first kind w.r.t. u+:

Lν+u
+(y0) =

(
1

2
−W∗

ν+

)
(t(y0)), y0 ∈ ∂Ω. (2.43)

Exterior Neumann Problem

Now we consider the exterior Neumann problem which consists of finding u which satisfies

the Laplace equation (2.5) in y ∈ Ω− with Neumann boundary condition (2.3).

Substituting the boundary condition (2.3) into (2.38), we obtain the Fredholm integral

equation of the second kind w.r.t. u−:(
1

2
−Wν+

)
u−(y0) = −V(t(y0)), y0 ∈ ∂Ω. (2.44)

We can also reduce the exterior Neumann problem to another integral equation by taking

into account ∂−ν . Substituting the boundary condition (2.3) into equation (2.34) yields the

following integral equation of the first kind w.r.t. u−:

−Lu−(y0) =
(
1

2
+W∗

ν+

)
(t(y0)), y0 ∈ ∂Ω. (2.45)

In order to compare the spectral properties of BIE obtained from indirect method with

the BIE from the direct method, we consider the conjugate equation of (2.41), i.e.,

ψ0(y0) + 2ζWψ0(y0) = 0. (2.46)
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Observe that if ζ = 1, then (2.46) is the homogeneous equation of (2.42) with the density

ψ0 = u+, and if ζ = −1, equation (2.46) is the homogeneous equation of (2.44) with the

density ψ0 = u−. The discussion on the spectral properties of BIE obtained from the direct

method will be continued in subsection 2.3.2.

2.2.2 Fredholm’s theorems

Generally, we have to use approximate methods in solving integral equations. The solubility

of the integral equation must be established before we can apply the approximate method.

The analysis of the integral equation prior to its solution given by Fredholm consists of

four theorems.

These four theorems are applied for the Fredholm integral equations of the second kind

with a kernel k(x, y). We define the Fredholm operator K as follows (see e.g. Hunter and

Nachtergaele (2001)):

Kρ =

∫ b

a
k(x, y)ρ(x) dΓ(x),

where limits a and b are finite constants.

We can write the general Fredholm integral equations of the second kind with scalar

parameter λ as follows:

ρ(y)− λ

∫ b

a
k(x, y)ρ(x) dΓ(x) = g(y). (2.47)

The parameter λ and the functions ρ(y), k(x, y) and g(y) can be taken as real or complex.

By setting λ = 1/µ, we can also write I − λK as µI −K such that (2.47) becomes

µρ(y)−
∫ b

a
k(x, y)ρ(x) dΓ(x) = µg(y).

The point λ for which the resolvent

Rµ = (µI −K)−1 or Rλ = (I − λK)−1

exists is called regular point of K.

It is well-known that if λ is regular, then the following homogeneous Fredholm’s integral

equation:

ρ(y)− λ

∫ b

a
k(x, y)ρ(x)dΓ(x) = 0, (2.48)
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has only the trivial solution, see e.g. (Mikhlin (1957)).

The resolvent set σ′(K) is the collection of all µ ∈ C for which λ are regular points of

K. The spectrum of K is defined as the complement of the resolvent set, σ(K) = C\σ′(K).

Recall that the spectrum of an operator on a finite-dimensional vector space is precisely the

set of eigenvalues, see e.g. Hunter and Nachtergaele (2001). However an operator on an

infinite-dimensional space may have additional elements in its spectrum, and may have no

eigenvalues.

For µI−K bounded implies (µI−K)−1 is a bounded linear map by the following theorem

(see, e.g. (Hunter and Nachtergaele (2001))):

Theorem 2.2.4 (Open mapping theorem) Suppose that T : X → Y is a one-to-one, onto

and bounded linear map between Banach spaces X and Y . Then T−1 : Y → X is bounded.

Therefore both µI −K and (µI −K)−1 are one-to-one, onto and bounded linear operators.

The spectrum of a bounded linear operator K on an infinite-dimensional space is divided

into three cases:

• The point spectrum of K consists of all µ ∈ σ(K) such that µI −K is not one-to-one.

The point spectrum of K is known as the eigenvalue set of K.

• The continuous spectrum of K consists of all µ ∈ σ(K) such that µI −K is one-to-one

but not onto, and has dense range.

• The residual spectrum of K consists of all µ ∈ σ(K) such that µI − K is one-to-one

but not onto, and does not have dense range.

Next, we state four Fredholm’s theorem which can be found, e.g. in (Mikhlin (1957),

Atkinson (1997)). Let the kernel k(x, y) : [a, b] × [a, b] → C be a continuous function. Let

also the solutions ρ(y) and g(y) belong to the space C0[a, b] of continuous functions defined

in a closed interval a ≤ x ≤ b with norm ||ρ|| = max
x∈J

|ρ(x)| where J = [a, b]. Then, the

following holds:
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Theorem 2.2.5 (Fredholm’s first theorem)

In any finite portion of the complex λ-plane there exists not more than a finite number

of characteristic values λ of Fredholm’s integral equation:

ρ(y)− λ

∫ b

a
k(x, y)ρ(x) dx = g(y).

Theorem 2.2.6 (Fredholm’s second theorem)

To each characteristic value there corresponds at least one eigenfunction. The number of

linearly independent eigenfunctions

ρ1(y), ρ2(y), ..., ρn(y),

corresponding to a given characteristic value, is finite.

Theorem 2.2.7 (Fredholm’s third theorem)

If λ0 is characteristic value of the kernel k(x, y), then λ0 is an characteristic value of

the conjugate kernel k(y, x) and the number of linearly independent eigenfunctions of the

equations

ρ(y)− λ0

∫ b

a
k(x, y)ρ(x) dx = 0,

and of the conjugate equation

ς(y)− λ0

∫ b

a
k(y, x)ς(x) dx = 0

is the same.

Let us introduce the scalar product (ρ, ς) of two functions ρ(x) and ς(x),

(ρ, ς) =

∫ b

a
ρ(x)ς(x) dx.

It is true that

(Kρ, ς) = (ρ,K∗ς).

The operator K∗ς is the operator conjugate to Kρ which is defined as follows:

K∗ς =

∫ b

a
k(y, x)ς(x) dx.
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Theorem 2.2.8 (Fredholm’s fourth theorem) Let λ0 be an characteristic value of the kernel

k(x, y). In order that the inhomogeneous equation

ρ(y)− λ0

∫ b

a
k(x, y)ρ(x) dx = g(y)

has a solution, it is necessary and sufficient that its right-hand side g(y) is orthogonal to all

eigenfunctions of the conjugate homogeneous equation

ς(y)− λ0

∫ b

a
k(y, x)ς(x) dx = 0.

Let assume that k(x, y) is a Hilbert-Schmidt kernel i.e. a square integrable function in

the square domain Π = {(x, y) : a ≤ x ≤ b, a ≤ y ≤ b}, so that{∫ b

a

∫ b

a
|k(x, y)|2 dxdy

}
<∞, (2.49)

and ρ(x), g(x) ∈ L2[a, b], i.e.∫ b

a
|ρ(x)|2 dx <∞,

∫ b

a
|g(x)|2 dx <∞.

The operator K with such a kernel is bounded in L2[a, b]. The norm of this operator is

estimated as

||K||L2 ≤

√∫ b

a

∫ b

a
|k(x, y)|2 dxdy. (2.50)

The Fredholm theorems work also in L2(a, b). From all these four Fredholm’s theorems,

there follows the very often used theorem in the analysis of operator equations which is called

Fredholm’s alternative (see in e.g. Porter and Stirling (2004), Atkinson (1997)):

Theorem 2.2.9 (Fredholm’s alternative) Let K be a bounded linear map from L2 to itself.

Then either the inhomogeneous equation (I −λK)ρ = g(y) is soluble whatever its right-hand

side maybe, or else the corresponding homogeneous equation (I−λK)ρ = 0 has a non-trivial

solution ρ ∈ L2.

2.2.3 The Neumann series

We have seen from the Fredholm alternative that a Fredholm integral operator with contin-

uous or square integrable kernel is invertible if an associated homogeneous equation has only
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trivial solutions. Besides, we can also guarantee that (I − λK)ρ has a bounded inverse if

||λK|| < 1. We can write ||λK|| < 1 in terms of µ, i.e., |µ| > ||K||. Therefore, the exterior

disc {µ ∈ C : |µ| > ||K||} is contained the resolvent set σ′(K) and σ′(K) is an open subset

of C. If |µ| > ||K||, the resolvent operator is given by

Rµ = (µI −K)−1 =

∞∑
n=0

Kn

µn+1
or Rλ = (I − λK)−1 =

∞∑
n=0

λnKn.

We then can write the solution of the integral equation

(I − λK)ρ = g (2.51)

in the Neumann series expansion i.e. (see e.g. Porter and Stirling (2004)),

ρ = (I − λK)−1g =

∞∑
n=0

λnKng.

Since the spectrum σ(K) ofK is the complement of the resolvent set σ′(K) which is open,

it follows that the spectrum σ(K) is a closed subset of C and σ(K) ⊂ {µ ∈ C : |µ| ≤ ||K||}.

It is standard to define the spectral radius of an operator K as the radius of the smallest

disk centered at 0 in C containing the spectrum, i.e. (Hunter and Nachtergaele (2001)),

r(K) = |σ(K)| = sup{|µ| : µ ∈ σ(K)|}.

In the case of bounded linear operator K on some Banach space, the spectral radius r(K)

is defined by the Gelfand formula

r(K) = lim
n→∞

||Kn||
1
n .

Note that r(K) lies between 0 and ||K||, i.e., 0 ≤ r(K) ≤ ||K|| and if K is self-adjoint,

we will have r(K) = ||K|| (see e.g. Hunter and Nachtergaele (2001)).

There are several methods of testing the convergence or divergence of an infinite series
∞∑
n=0

λnKn such as ratio test, root test, integral test, limit comparison test and Cauchy con-

densation test. Now, let us consider one of these methods e.g. the root test. Defining

r1 = lim
n→∞

sup ||Kn||1/n, we have the following three cases (see e.g. Hunter and Nachtergaele

(2001)):
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• If r1 < 1, the series
∞∑
n=0

Kn converges.

• If r1 > 1, the series
∞∑
n=0

Kn diverges.

• If r1 = 1, the series
∞∑
n=0

Kn may converge or diverge.

The ordinary limit lim
n→∞

||Kn||1/n is the common value of lim
n→∞

sup ||Kn||1/n and

lim
n→∞

inf ||Kn||1/n. Therefore, whenever the original limit exists we will have r1 = r(K) =

lim
n→∞

||Kn||1/n. We first consider the first case. Letting r(K) < 1 implies there is an R such

that r(K) < R < 1 and an N such that ||Kn|| ≤ Rn for all n ≥ N . Then, it follows that for

r(K) < µ, the sum
∞∑
n=0

λnKn converges and (µI −K)−1 exists.

For r(K) > 1, there is an R such that 1 < R < r(K) and an N such that ||Kn|| ≥ Rn for

all n ≥ N . Recall that the spectrum of K is contained inside the disc {µ ∈ C : |µ| ≤ r(K)},

i.e., σ(K) ⊂ {µ ∈ C : |µ| ≤ r(K)} and that the Neumann series must diverge, so µI −K is

not invertible, for some µ ∈ C with |µ| = r(K).

2.2.4 Compact linear operator and its spectrum

In this subsection, we will state a special theorem for a compact operator. The proof of the

theorem can be found in (Kreyszig (1978)).

Previously, we said that the spectrum for a bounded linear operator on the infinite-

dimensional Hilbert space L2 may not only consist of point spectrum but also may include

continuous spectrum and residual spectrum.

However, a compact operator has special properties such that the spectrum consists

entirely of eigenvalues. One needs a condition for the kernel k which is sufficient for the

operator K to be compact.

For the space C0[a, b] with

||K|| = max
0≤y≤1

{∫ b

a
k(x, y)dΓ(x)

}
,

the continuity of the kernel k : [a, b]× [a, b] → C will imply compactness of the operator K.

This compactness follows from Ascoli Theorem (Kreyszig (1978), Atkinson (1997)).
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For space L2[a, b], the norm of this operator is estimated as in (2.50). The kernel k :

[a, b]× [a, b] → C needs to be a Hilbert-Schmidt kernel such that equation (2.49) is satisfied

for the operator K to be a compact operator (Conway (1990)).

The spectral theory of compact linear operators is a relatively simple generalization of

the eigenvalue theory of finite matrices and resembles the finite dimensional case in many

respects which can be be seen in the following theorem (Kreyszig (1978)):

Theorem 2.2.10 A compact linear operator K : X → Y where X and Y are Banach spaces

has the following properties:

• The set of the eigenvalues of K is countable (perhaps finite or even empty).

• µ = 0 is the only possible accumulation point of the set of eigenvalues (limit point of

the set of eigenvalues).

• If K is infinite dimensional, then the spectrum of K contains 0, i.e., 0 ∈ σ(K).

• Every spectral value µ ̸= 0 is an eigenvalue.

In the next Section, we state the spectral properties of indirect BIEs that have been

discussed in e.g. (Goursat (1964), Mikhlin (1957)) and will extend them to the discussions

of direct BIEs.

31



Introduction to BIEs Boundary Integral Equation

2.3 Spectral properties of BIEs

Let us consider the method in investigating the spectral properties of the indirect BIEs related

to the Dirichlet and Neumann problems that have been discussed in (Goursat (1964), Mikhlin

(1957)). In their discussions, they studied the spectral properties of the indirect BIEs for the

BVPs in 3-dimensional domains. The results also hold true for several cases of the BVPs in

2-dimensional domains (Goursat (1964)).

2.3.1 Spectral properties of indirect BIEs

We can obtain the indirect Dirichlet BIEs by seeking the solution of the Dirichlet problems

in the form of the double layer potential and by taking into account the jump relations as

in Theorem 2.2.3. The Dirichlet BIEs for the region Ω+ lying inside ∂Ω and Ω− exterior of

∂Ω are as in equations (2.52) and (2.53), respectively.

ψ(y0)− 2Wψ(y0) = −2u(y0), for region Ω+, y0 ∈ ∂Ω, (2.52)

ψ(y0) + 2Wψ(y0) = 2u(y0), for region Ω−, y0 ∈ ∂Ω. (2.53)

For the Neumann problem, we want to look for the solution in the form of single layer

potential V . The Neumann BIEs for interior and exterior regions are given in (2.54) and

(2.55), respectively.

ϕ(y0) + 2W∗ϕ(y0) = 2t(y0) for region Ω+, y0 ∈ ∂Ω, (2.54)

ϕ(y0)− 2W∗ϕ(y0) = −2t(y0) for region Ω−, y0 ∈ ∂Ω. (2.55)

We consider the following homogeneous equation:

ϕ(y0) + 2ζW∗ϕ(y0) = 0. (2.56)

Note that equation (2.56) is the homogeneous form of equations (2.55) and (2.54) when

ζ = −1 and ζ = 1, respectively.

Goursat (1964), Mikhlin (1957) showed that ζ = −1 is the regular value, and the char-

acteristic values of (2.56) are distributed on the rays ζ ≥ 1 and ζ < −1.
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For the discussion in finding the set of characteristic values for the interior and exterior

Dirichlet problems, let us consider the following equations:

ψ(y0) + 2ζWψ(y0) = 0, (2.57)

where ζ is the conjugate of ζ. Observe that equation (2.57) is the homogeneous equation of

equations (2.52) and (2.53) when ζ = −1 and ζ = 1, respectively.

We can show that ζ is real valued such that ζ = ζ.

Therefore as in the Neumann BIEs, we have ζ = −1 as the regular value and the charac-

teristic values are distributed on the rays ζ ≥ 1 and ζ < −1.

Recall Theorem 2.2.10 that states the spectral points µ ̸= 0 are eigenvalues. Therefore,

we conclude that the spectra of W and W∗ do not include residual spectrum sets.

2.3.2 Spectral properties of direct BIEs

After obtaining the spectral properties for the indirect BIEs, we can also obtain the spectral

properties for BIEs of the direct method. We have seen before that the set of the characteris-

tic values of (2.56) lies on the rays ζ ≥ 1 and ζ < 1 and has regular value at ζ = −1. Observe

that equation (2.56) is the same as equation (2.41). Therefore the set of the characteristic

values of the integral equation for the Dirichlet problem obtained from the direct method

also lies on the rays lies on the rays ζ ≥ 1 and ζ < −1 with the regular value at ζ = −1.

Note that the homogeneous equation (2.57) is the same as equation (2.46) i.e. the ho-

mogeneous equation for the Neumann problem obtained from the direct method. Therefore,

we can conclude that ζ = −1 is the regular value of equation (2.46) and the characteristic

values are distributed on the rays ζ ≥ 1 and ζ < −1.

2.4 Conclusion

In this chapter, we have given brief discussion on BVPs for PDE and stated various methods

in solving BVSs for PDE analytically and numerically. We focused on one of the numerical

method in solving BVPs, i.e., Boundary Element Method (BEM). We discussed the formu-

lations of Boundary Integral Equation (BIE) related with Neumann and Dirichlet problems
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for the Laplace equation obtained from the direct and indirect method. The direct method

is based on Green formula while the indirect method is based on the single or double layer

potentials. The uniqueness and solubility of solutions for the boundary value problems for

Laplace equation was also discussed. We presented four Fredholm’s theorems and Fredholm’s

alternative theorem which are related to the solvability of Fredholm’s integral equation. How-

ever, without investigating whether the homogeneous equation has only trivial solution as

stated in Fredholm’s alternative theorem, we can guarantee the uniqueness of the linear map

(I−λK)ρ, where λ is the characteristic value, K is the Fredholm operator and ρ is the solu-

tion, if ||λK|| < 1. If the uniqueness of the linear map is established, the Neumann iteration

method for the solution of the linear map will converges. Some review on the convergence

of the Neumann iteration corresponding to spectral properties of operator K is also given.

We also gave the spectral properties of the integral equations related to the Dirichlet’s and

Neumann’s problems obtained from the indirect method in three dimensions as studied in

e.g. (Goursat (1964), Mikhlin (1957)). We employed the spectral properties for the BIEs

obtained from the indirect method for the discussion on the spectral properties of the direct

BIEs.

34



Chapter 3

The Boundary-Domain Integral

Equation for Neumann Problem

3.1 Introduction

In Chapter 2, it has been discussed that we can reduce a boundary-value problem (BVP)

for a partial differential equation (PDE) to a boundary-integral equation (BIE) useful for

numerical implementation. However, in order for the reduction to be enabled, it is necessary

to ensure the availability of the fundamental solution for the PDE. It is well-known that

the fundamental solutions are explicitly known for many equations with constant coefficients

a, where they can be computed, e.g. by Fourier transformation. Unfortunately, such a

fundamental solution is not available in the general case of partial differential operators with

coefficients varying throughout the domain.

In handling such case, we can use a parametrix (Levi function), which is wider available,

instead of the fundamental solution, see in e.g. (Mikhailov (2002), Hilbert (1912), Miranda

(1970), Pomp (1998) and references therein). This option allows reduction of the PDEs

with variable coefficients not to boundary integral equation (BIE) but to boundary-domain

integral equation (BDIE) or boundary-domain integro-differential equation (BDIDE).

In the beginning of this chapter, we will give an introduction to the derivation of BDIE
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related to Neumann’s and Dirichlet’s problems for PDE with variable coefficient.

We also give an overview on how we approximate the BDIEs on two-dimensional do-

mains. We will discretize the boundary ∂Ω of our test domains by using the boundary linear

elements and the domain Ω is meshed into quadrilateral domain elements. We also describe

how element contributions obtained from the integration of each segment/element will be

assembled to a global matrix based on the relation between local nodes and global nodes.

For the numerical experiments, we present results of numerical implementations on the

perturbed BDIE related to the Neumann problem for PDE with variable coefficient. Then

the system obtained from BDIE (discretised BDIE) related to Neumann problem is solved

by the Neumann iterations and LU decomposition method. The spectral properties obtained

numerically from the discrete BDIE operator will be presented. The details on the conver-

gence of the iterative method is discussed in relation with the maximal eigen-values of the

corresponding discrete BDIE operator obtained numerically.

The numerical results for BDIDE related to the Dirichlet problem for PDE with variable

coefficient will be discussed in the next chapter.

3.2 The Boundary-Domain Integral Equation

Let us consider the following linear second-order elliptic PDE:

Lu(x) =

n∑
i=1

∂

∂xi
a(x)

∂

∂xi
u(x) = f(x), (3.1)

where u(x) is the unknown function, while f(x), and a(x) > const > 0 are prescribed

functions.

Suppose P (x, y) is a parametrix for the operator L in (3.1), that is, it satisfies the

following equation:

LxP (x, y) = δ(x− y) +R(x, y), (3.2)

where δ(x − y) is the Dirac delta function and the remainder R(x, y) may have a weak

singularity at most, at x = y.
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A parametrix for PDE with variable coefficient as in (3.1) is given by the fundamental

solution for the same equation but with ‘frozen coefficients’ a(x) = a(y) i.e.

P (x, y) =
ln |x− y|
2πa(y)

, x, y ∈ R2, (3.3)

P (x, y) = − 1

4πa(y) |x− y|
, x, y ∈ R3, (3.4)

where |x− y| =
√

(xi − yi)(xi − yi).

The remainder R(x, y) can be calculated using equations (3.2), (3.3) and (3.4) which are

as in the following:

R(x, y) =
xi − yi

2πa(y) |y − x|2
∂a(x)

∂xi
, x, y ∈ R2, (3.5)

R(x, y) =
xi − yi

4πa(y) |y − x|3
∂a(x)

∂xi
, x, y ∈ R3. (3.6)

Let v(x) = P (x, y) and take u(x) as a solution of equation (3.1), we can then write the

Green’s formula (2.12) as follows:

c(y)u(y) −
∫
∂Ω

[u(x)TxP (x, y)− P (x, y)Tu(x)] dΓ(x)

+

∫
Ω
R(x, y)u(x) dΩ(x) =

∫
Ω
P (x, y)f(x) dΩ(x), (3.7)

where c(y) is the same as in (2.14).

As described in (Mikhailov (2002)), substituting boundary condition (2.3) in the integrals

in (3.7) and taking (3.7) at y ∈ Ω ∪ ∂Ω will give the linear direct boundary-domain integral

equation, BDIE.

For the pure Neumann problem, the BDIE is as given below.

c(y)u(y) −
∫
∂Ω
u(x)TxP (x, y) dΓ(x) +

∫
Ω
R(x, y)u(x) dΩ(x)

= −
∫
∂NΩ

P (x, y)t(x) dΓ(x) +

∫
Ω
P (x, y)f(x) dΩ(x), y ∈ Ω ∪ ∂Ω. (3.8)

The Neumann problem is not unconditionally solvable, and when it is solvable, its solution

can only be unique up to an additive constant. These properties are inherited by the BDIE,

cf. (Chkadua et al. (2011a)).
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As in (Mikhailov and Nakhova (2005)), one can add the perturbation operator

[Qu] :=
1

|∂Ω|

∫
∂Ω
u(x) dΓ(x). (3.9)

to equation (3.8) where |∂Ω| =
∫
∂Ω dΓ(x) i.e. denotes the length of the boundary ∂Ω.

Therefore, we obtain the perturbed Neumann BDIE as follows:

c(y)u(y) −
∫
∂Ω
u(x)TxP (x, y) dΓ(x) +

1

|∂Ω|

∫
∂Ω
u(x) dΓ(x)

+

∫
Ω
R(x, y)u(x) dΩ(x) = −

∫
∂Ω
P (x, y)t(x) dΓ(x)

+

∫
Ω
P (x, y)f(x) dΩ(x), y ∈ Ω ∪ ∂Ω. (3.10)

Using results of (Mikhailov (1999)), one can prove that equation (3.10) is uniquely solv-

able for any right-hand side and moreover, when the solvability condition for equation (3.8)

is satisfied, one of its solutions, such that∫
∂Ω
u(x) dΓ(x) = 0,

is delivered by the solution of its perturbed counterpart (3.10).

In the next subsection, we will discuss the discretization of the BDIE for the pure Neu-

mann problem as in equation (3.10).

The Discretization of the BDIE with Linear Element

In order to evaluate the boundary integral involved in the boundary-domain integral equation

(3.8), the boundary is represented as an L-sides polygon i.e. ∂Ω ≃ ∂Ω1∪∂Ω2∪ · · ·∪∂ΩL. In

the linear element technique, the nodes are allocated at the edges of elements and boundary

values are linearly interpolated in between.

For the integral over domain Ω, we discretized the domain into M quadrilateral elements

Ωm ⊂ Ω, 1 ≤ m ≤M . The domain is represented as Ω ≃ Ω1 ∪ Ω2 ∪ · · · ∪ ΩM .

Similar to the finite element approximation, the unknown function u(x) at any point

x ∈ Ω is interpolated over its values u(xj) at the global nodes xj as,

u(x) =

J∑
j=1

ϕj(x)u(x
j), x, xj ∈ Ω ∪ ∂Ω,
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Figure 3.1: Figure shows ∂Ωl and Ωm on a rectangle domain with 9 nodes.

where ϕj(x) is the global shape function and J is the number of nodes.

By applying the interpolation to equation (3.10) and placing the collocation point xi at

all J nodes of the mesh, we get the system of J linear algebraic equations for J unknowns

u(xj), as follows

c(xi)u(xi) +
∑
xj∈Ω

Kiju(x
j) +

∑
xj∈Γ

◦
Kiju(x

j) =
∑

xj∈∂Ω

Qijt(x
j) +Di, xi ∈ Ω, (3.11)

where Kij ,
◦
Kij , Qij and Dij are defined as in the following:

Kij = −
∫
∂Ω
ϕj(x)TxP (x

i, x) dΓ(x) +

∫
Ω
ϕj(x)R(x

i, x) dΩ(x), (3.12)

◦
Kij =

1

|∂Ω|

∫
∂Ω
ϕj(x) dΓ(x), (3.13)

Qij = −
∫
∂Ω
ϕj(x)P (x

i, x) dΓ(x), (3.14)

Di =

∫
Ω
P (xi, x)f(x) dΩ(x). (3.15)

The boundary ∂Ω and the domain Ω in (3.12)-(3.15) are then approximated by ∂Ω =∪
l

∂Ωl and Ω =
∪
m
Ωm respectively.

Therefore, we obtain

Kij = −
L∑
l=1

∫
∂Ωl

ϕj(x)TxP (x
i, x) dΓ(x) +

M∑
m=1

∫
Ωm

ϕj(x)R(x
i, x) dΩ(x),
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◦
Kij =

1

|∂Ω|

L∑
l=1

∫
∂Ωl

ϕj(x) dΓ(x),

Qij = −
L∑
l=1

∫
∂Ωl

ϕj(x)P (x
i, x) dΓ(x),

Di =

M∑
m=1

∫
Ωm

P (xi, x)f(x) dΩ(x),

which can be written as follows:

Kij = −
∑

∂Ωl∋xj

∫
∂Ωl

ϕj(x)TxP (x
i, x) dΓ(x) +

∑
Ωm∋xj

∫
Ωm

ϕj(x)R(x
i, x) dΩ(x), (3.16)

◦
Kij =

1

|∂Ω|
∑

∂Ωl∋xj

∫
∂Ωl

ϕj(x) dΓ(x), (3.17)

Qij = −
∑

∂Ωl∋xj

∫
∂Ωl

ϕj(x)P (x
i, x) dΓ(x), (3.18)

Di =

M∑
m=1

∫
Ωm

P (xi, x)f(x) dΩ(x). (3.19)

Instead of writing (3.16)-(3.19) in global node numbering, it is useful for numerical pur-

poses to write them in terms of local nodes numbering.

The relations between the local node (xln or xmN ) and the global node xj are as follows:

xj = xj(l,n) = xln, for x
l
n ∈ ∂Ωl, 1 ≤ l ≤ L, n = 1, 2, (3.20)

xj = xj(m,N) = xmN , for x
m
N ∈ Ωm, 1 ≤ m ≤M, N = 1, · · · , 4. (3.21)

This implies

u(xj) = u(xln), for x
l
n ∈ ∂Ωl, 1 ≤ l ≤ L, n = 1, 2, (3.22)

u(xj) = u(xmN ), for xmN ∈ Ωm, 1 ≤ m ≤M, N = 1, · · · , 4. (3.23)

We can express the coordinates of a point placed somewhere in the one-dimensional

element using an intrinsic coordinate η. The Cartesian coordinates of a point on boundary

element ∂Ωl ⊂ ∂Ω with the intrinsic coordinate η are given by x1(η)

x2(η)

 =

2∑
n=1

Ψn(η)

 xl1n

xl2n

 , − 1 ≤ η ≤ 1, (3.24)
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where Ψn(η) are element shape functions.

There are two nodes for each element ∂Ωl and the shape functions are given as in the

following (see e.g. Beer (2001)):

Ψ1(η) =
1

2
(1− η), (3.25)

Ψ2(η) =
1

2
(1 + η), −1 ≤ η ≤ 1. (3.26)

For the the discretization of integrals over domain Ω, the derivation is analogous to

the boundary integral case except that now there are two intrinsic coordinates ξ = (ξ1, ξ2)

instead of only one intrinsic coordinate η. In our work, we discretized the domain into

several quadrilateral elements where each element consists of four straight edges defined by

four vertices.

The Cartesian coordinates of a point on a domain element Ωm ⊂ Ω with the intrinsic

coordinate ξ = (ξ1, ξ2) are given as follows x1(ξ)

x2(ξ)

 =
4∑

N=1

ΦN (ξ)

 xm1N

xm2N

 , −1 ≤ ξ1 ≤ 1, −1 ≤ ξ2 ≤ 1,

where ΦN (η) are local shape functions.

For the linear isoparametric two-dimensional elements, there are four nodes for each

element Ωm, and the shape functions are given as in the following:

Φ1(ξ) =
1

4
(1− ξ1)(1− ξ2),

Φ2(ξ) =
1

4
(1 + ξ1)(1− ξ2),

Φ3(ξ) =
1

4
(1 + ξ1)(1 + ξ2),

Φ4(ξ) =
1

4
(1− ξ1)(1 + ξ2).

For the boundary element, equation (3.24) implies that the tangent vector in the η

direction can be written as in the following:

∂x

∂η
=

∂

∂η

 x1(η)

x2(η)

 =

2∑
n=1

∂Ψn(η)

∂η

 xl1n

xl2n

 , x ∈ ∂Ωl. (3.27)
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It can be established that the Jacobian Jl1 = |∂Ωl|/2 where |∂Ωl| represents the length

of each boundary element ∂Ωl i.e.

|dΓ| =

√(
dx1
dη

)2

+

(
dx2
dη

)2

dη = Jl1(η) dη, 1 ≤ l ≤ L.

The Jacobian matrix of the mapping from the x1x2 to the ξ1ξ2 plane is defined as

V2 =

 ∂x1/∂ξ1 ∂x2/∂ξ1

∂x1/∂ξ2 ∂x2/∂ξ2

 .

The determinant of the Jacobian matrix is the surface metric coefficient,

Jm2(ξ) = DetV2 =
∂x1
∂ξ1

∂x2
∂ξ2

− ∂x1
∂ξ2

∂x2
∂ξ1

, 1 ≤ m ≤M.

The elements ∂Ωl and Ωm are mapped to the reference elements i.e. ∂Ωl is mapped to

the segment −1 ≤ η ≤ 1 and Ωm is mapped to the square such that −1 ≤ ξ1 ≤ 1 and

−1 ≤ ξ2 ≤ 1.

Therefore, we can write equations (3.16)-(3.19) as follows:

Kij = −
∑
Γl∋xj

Al
n(j,l),i +

∑
Ωm∋xj

Gm
N(j,m),i,

◦
Kij =

1

|∂Ω|
∑
Γl∋xj

Bl
n(j,l),i,

Qij = −
∑
Γl∋xj

F l
n(j,l),i,

Di =
M∑

m=1

Hm
i ,

where n(j, l) is the local number of the node xj on the boundary element Γl, N(j,m) is the

local number of the node xj on the domain element Ωm.

The integrals that we have to evaluate are denoted as

Al
ni =

∫ 1

−1
Ψn(η)TxP (x

i, x(η))Jl1(η) dη, (3.28)

Bl
ni =

∫ 1

−1
Ψn(η)Jl1(η) dη, (3.29)
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F l
ni =

∫ 1

−1
Ψn(η)P (x

i, x(η))Jl1(η) dη, (3.30)

Gm
Ni =

∫ 1

−1

∫ 1

−1
ΦN (ξ)R(xi, x(ξ))Jm2(ξ) dξ1dξ2, (3.31)

Hm
i =

∫ 1

−1

∫ 1

−1
P (xi, x(ξ))f(x(ξ))Jm2(ξ) dξ1dξ2. (3.32)

The integrals in (3.28)-(3.32) are evaluated by Gauss-Legendre integration formulas. The

Gauss-Legendre integration formulas in one-dimensional and two-dimensional cases, respec-

tively are (see e.g. Beer (2001)):∫ 1

−1
f(η) dη =

ı∑
i=1

Wif(ηi),

∫ 1

−1

∫ 1

−1
f(ξ) dξ1dξ2 =

ȷ∑
j=1

ı∑
i=1

WiWjf(ξ1i, ξ2j),

where ı and ȷ are the number of quadrature points used to evaluate the integrals, and ξ1i

and ξ2j are quadrature point abscissas. The weights associated to point i and j are denoted

as Wi and Wj , respectively.

However, special treatment has to be taken when the collocation point xi is an element n-

ode or is close to the integration element since the kernels of the integrals (3.28), (3.29),(3.31)

and (3.32) are singular at the collocation points. This will prevent us from using the normal

Gauss-Legendre integral formula.

For calculating the first integral (3.28) when the collocation point xi belongs to the

integration element i.e when xi = s1 or xi = s2 (refer Figure 3.2), −→r =
−−−−−−→
(xi, x(η)) and ν are

perpendicular to each other along the interval of integration. Therefore, TxP (x, y) becomes

TxP (x, x
i) =

cos 90◦

2π r
= 0.

From relation in (3.20), we have Al
ni = Aj(l,n),i. Therefore, when x

i = xj ,

Aj(l,n),i = Aii = lim
ε→0

∫ 1

−1+ε

Φ(η) cos 90◦

2πr
Jl1(η) dη = 0.

We will use linear semi-analytic method to handle the influence of the singularity 1/r

when the collocation point xi is near to the integration element. As the beginning of the
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discussion in this semi-analytic method, we introduce the following notations (See Figure

3.2):

W1 =
∣∣xi − x(sl1)

∣∣ , (3.33)

W2 = |x(sl2)− x(sl1)| , (3.34)

W3 =
(
xi − x(sl1)

)
· (x(sl2)− x(sl1)) , (3.35)

ẽ =
(
Ŵ1 · Ŵ2

)2
=

(−→
W 1 ·

−→
W 2

W1W2

)2

=

(
W3

W1W2

)2

, (3.36)

h =

∣∣∣−→W 1 ×
−→
W 2

∣∣∣
W2

=
W1W2

√
1−

(
Ŵ1 · Ŵ2

)2
W2

=W1

√
1− ẽ, (3.37)

d = W2 cos θ =
−→
W 2 · Ŵ1 =

−→
W 1 ·

−→
W 2

W1
=
W3

W1
, (3.38)

s =
W2

2
(η + 1). (3.39)

Here Ŵ1 and Ŵ2 are the unit vector.

Figure 3.2: Illustration of the notations used in describing this semi-analytic method.

Evidently,

TxP (x, x
i) =

(((
x1 − xi1

)
ν1(x) +

(
x2 − xi2

)
ν2(x)

) a(x)

2πr2a(xi)

)
,
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We also define

T (1)
x P (x, xi) =

(((
x1(sl1)− xi1

)
ν1(x) +

(
x2(sl1)− xi2

)
ν2(x)

) a(x(sl1))
2πr2a(xi)

)
,

T (2)
x P (x, xi) =

(((
x1(sl2)− xi1

)
ν1(x) +

(
x2(sl2)− xi2

)
ν2(x)

) a(x(sl2))
2πr2a(xi)

)
,

where r = |x− xi|.

The semi-analytic formula is arranged as follows:

L∑
l=1

∫
∂Ωl

TxP (x, x
i)dΓ(x) = GB +GA,

where

GB =

L∑
l=1

∫
∂Ωl

(
TxP (x, x

i)−Ga

)
dΓ(x),

Ga =

(
sl2 − s

sl2 − sl1

)
T (1)
x P (x, xi)ϕj(x(sl1)) +

(
s− sl1
sl2 − sl1

)
T (2)
x P (x, xi)ϕj(x(sl2)),

GA =

L∑
l=1

∫
∂Ωl

(
sl2 − s

sl2 − sl1

)
T (1)
x P (x, xi)ϕj(x(sl1)) ds

+
L∑
l=1

∫
∂Ωl

(
s− sl1
sl2 − sl1

)
T (2)
x P (x, xi)ϕj(x(sl2)) ds

=

L∑
l=1

∫ sl2

sl1

(
sl2 − s

sl2 − sl1

)
T (1)
x P (x, xi)ϕj(x(sl1)) ds

+

L∑
l=1

∫ sl2

sl1

(
s− sl1
sl2 − sl1

)
T (2)
x P (x, xi)ϕj(x(sl2)) ds. (3.40)

The idea in this method is to calculate integrals of GB by using normal Gaussian quadrature

and integrals in GA will be calculated analytically.

Since

(sl2 − s) =
(sl2 − sl1)

2
(1− η) , (3.41)

(s− sl1) =
(sl2 − sl1)

2
(1 + η) , (3.42)

we can then write (3.40) as

GA =
L∑
l=1

∫ sl2

sl1

ϕj(x(sl1))

(
1− η

2

)
T (1)
x P (x, xi) ds
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+

L∑
l=1

∫ sl2

sl1

ϕj(x(sl2))

(
1 + η

2

)
T (2)
x P (x, xi) ds

=
L∑
l=1

ϕj(x(sl1))a(x(sl1))hl1
4πa(xi)

∫ 1

−1
(1− η)

1

r2
ds

dη
dη

+

L∑
l=1

ϕj(x(sl2))a(x(sl2))hl2
4πa(xi)

∫ 1

−1
(1 + η)

1

r2
ds

dη
dη, (3.43)

where

hl1 =
((
x1(sl1)− xi1

)
ν1(x) +

(
x2(sl1)− xi2

)
ν2(x)

)
,

hl2 =
((
x1(sl2)− xi1

)
ν1(x) +

(
x2(sl2)− xi2

)
ν2(x)

)
.

Defining

gA1 =

∫ 1

−1
(1− η)

1

r2
ds

dη
dη, (3.44)

gA2 =

∫ 1

−1
(1 + η)

1

r2
ds

dη
dη, (3.45)

equation (3.43) can be written as

GA =

L∑
l=1

ϕj(x(sl1))a(x(sl1))hl1
4πa(xi)

gA1 +

L∑
l=1

ϕj(x(sl2))a(x(sl2))hl2
4πa(xi)

gA2.

The integrals (3.44) and (3.45) are calculated analytically.

The radius r can be written as

r =
√
h2 + (d− s)2, (3.46)

where h, d and s are defined in (3.37)-(3.39).

Therefore we can write (3.44) and (3.45) as

gA1 =

∫ 1

−1

(
1− η

h2 + (d− s)2

)
ds

dη
dη, (3.47)

gA2 =

∫ 1

−1

(
1 + η

h2 + (d− s)2

)
ds

dη
dη. (3.48)

The analytic solutions for integrals and in (3.47) and (3.48) are

gA1 =

(
2Jl1(η)

(
2
(
W 2

2 −W3

)
f1 −

√
W 2

1W
2
2 −W 2

3 f2

))
(
W 2

2

√
W 2

1W
2
2 −W 2

3

) , (3.49)
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gA2 =
(2Jl1(η)(2W3f1 +

√
W 2

1W
2
2 −W 2

3 f2))

(W 2
2

√
W 2

1W
2
2 −W 2

3 )
, (3.50)

where

Jl1(η) =
ds

dη
=
W2

2
,

f1 = ArcTan

[√
W 2

1W
2
2 −W 2

3

(W 2
1 −W3)

]
, (3.51)

f2 = ln

[
(W 2

1 +W 2
2 − 2W3)

W 2
1

]
. (3.52)

Defining

c̃ = cos θ =
W3

W1W2
,

κ =
W1

W2
,

we can then write (3.49) -(3.52) as

gA1 =

(
−

(
(2(c̃W1W2 −W 2

2 )f1)

(
√
1− c̃2W1W 2

2 )

)
− f2
W2

)
, (3.53)

gA2 =

(
2c̃f1√

1− c̃2W2

+
f2
W2

)
, (3.54)

f1 = ArcTan

[√
1− c̃2

(κ− c̃)

]
, (3.55)

f2 = ln

[
1 +

1

κ2
− 2c̃

κ

]
. (3.56)

The second integral (3.30) i.e. the integral of F l
ni for x

i = xj involves the weak singularity.

The integration with the kernel involving ln(1/r) can be be evaluate numerically by using

the modified Gauss Quadrature called the Gauss-Laguerre integration i.e.∫ 1

0
f(η) ln

(
1

η

)
dη ≈

ı∑
i=1

Wif(ηi),

where ı is the number of integration points, see e.g. Beer (2001). Note that for this integration

scheme, we have singularity at η̄ = 0 and the limits are from 0 to 1. Therefore, the change

of coordinates has to be made in order that the integral (3.29) can be calculated using the

Gauss-Laguerre integration formula. The change in coordinate is given by

η = 2η − 1 when xi is at the first node of the element ∂Ωl,
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η = 1− 2η when xi is at the second node of the element ∂Ωl.

Note that for the numerical integrals over domain, we have singular integrals Gm
Ni and

Hm
i whenever the collocation point xi is a node xj = xmN belongs to the element.

In order to evaluate the integrals when xi is a node of the integration element, we split

the element into triangular subelements as explained in (Beer (2001)).

We divide the element into two triangles and the formulas are as follows

Gm
Ni =

2∑
s=1

∫ 1

−1

∫ 1

−1
ΦN (ξ)R(xi, x(ξ))Jm(ξ)Jm2(ξ) dξ1ξ2,

Hm
i =

2∑
s=1

∫ 1

−1

∫ 1

−1
P (xi, x(ξ))f(x(ξ))Jm(ξ)Jm2(ξ) dξ1ξ2,

where Jm2(ξ) is the Jacobian from ξ to ξ.

Figure 3.3: Triangular subelements for numerical integration when xi is a node of an element.
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The transformation from local coordinates to sub-element coordinates is given by the

following formulas:

ξ1(ξ) =
∑
j∈tris

Φj(ξ)ξ1t(j), ξ2(ξ) =
∑
j∈tris

Φj(ξ)ξ2t(j),

where tris is triangular element, ξ = ξ1, ξ2, and s = 1, 2.

The local node number of sub-element node t(j), j = 1, . . . , 3 are arranged according to

the following table:

Table 3.1: The local node number of sub-element node t(j).

xi at node Subelement 1 Subelement 2

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

1 2 3 1 3 4 1

2 3 4 2 4 1 2

3 1 2 3 4 1 3

4 1 2 4 2 3 4

The shape functions N j(ξ1, ξ2) for each triangle element tris are given as in the following:

Φ1(ξ) =
1

4
(1 + ξ1)(1− ξ2),

Φ2(ξ) =
1

4
(1 + ξ1)(1 + ξ2),

Φ3(ξ) =
1

2
(1− ξ1).

The Jacobian Jm2(ξ) is given by

Jm2(ξ) =
∂ξ1

∂ξ1

∂ξ2

∂ξ2
− ∂ξ2

∂ξ1

∂ξ1

∂ξ2
,

where

∂ξ1

∂ξ1
=
∑
j∈tris

∂Φj(ξ)

∂ξ1
ξlj ,

∂ξ1

∂ξ2
=
∑
j∈tris

∂Φj(ξ)

∂ξ2
ξ1j ,
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∂ξ2

∂ξ1
=
∑
j∈tris

∂Φj(ξ)

∂ξ1
ξ2j ,

∂ξ2

∂ξ2
=
∑
j∈tris

∂Φj(ξ)

∂ξ2
ξ2j .

The next process is assembling the element contributions in (3.28), (3.29), (3.30), (3.31)

and (3.32) as matrices’ element.

After we calculate the element contributions in (3.28), (3.29), (3.30), (3.31) and (3.32),

we need to assembly the element contributions into the global coefficient matrix.

In the global coefficient matrix, rows correspond to the collocation point xi and columns

correspond to the global node number xj . The global node numbering xj are assigned such

that nodes x1, · · · , xh are the nodes on the boundary and xh+1, · · · , xJ are nodes in the

domain.

In the assembly process, the boundary element contributions from (3.28), (3.29) and

(3.30) give the row elements that belong to the columns 1, · · · , h that represent the nodes on

the boundary. Therefore, the columns of the matrix that represent the nodes in the domain

i.e. with numbers h+ 1, · · · , J are set to be 0.

The domain element contributions from (3.31) and (3.32) populate each of the row ele-

ments that belongs to the columns 1, · · · , h, · · · , J .

The system of equation (3.11) can now be solved numerically by any numerical method

for solving linear algebraic systems, e.g. by LU decomposition method or Neumann series

expansion (if the latter converges).

In order to apply the Neumann series expansion, we rewrite (3.11) as∑
xj∈Ω∪∂Ω

(
cij +Kij +

◦
Kij

)
u(xj) =

∑
xj∈∂Ω

Qijt(x
j) +Di, xj ∈ Ω ∪ ∂Ω, (3.57)

where cij = ciδij is a diagonal matrix.

Denoting

F(xi) =
∑

xj∈∂Ω

Qijt(x
j) +Di,

we can write (3.57) as in the following:∑
xj∈Ω∪∂Ω

(
cij +Kij +

◦
Kij

)
u(xj) = F(xi). (3.58)
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There many possibilities to apply the Neumann series to solve equation (3.58). Let us

consider one of them.

It is known that the inverse c−1
ij of the diagonal matrix cij is given by

c−1
ij =

1

ci
δij .

Multiplying by the inverse matrix of cij i.e. c
−1
ij both sides of equation (3.58) and denoting

the matrices

K̂ij = Kij +
◦
Kij ,

c−1 = c−1
ij ,

u = u(xj),

F = F(xi),

we get

(I + c−1K̂)u = c−1F . (3.59)

Denoting c−1K̂ = −K1 and c−1F = B, we can write (3.59) as in the following:

(I −K1)u = B.

This enable us to try to apply Neumann series expansion as in the following:

u =
N∑

n=0

Kn
1B, (3.60)

where N here is the number of iterations.

However, our numerical results show that the Neumann series expansion (3.60) failed to

converge to the corresponding results obtained by LU decomposition method. The numerical

results that illustrate the divergence will be shown in the next section. Therefore, we deduce

that the Neumann series expansion in equation (3.60) might not be the best version of the

Neumann series expansion. We derived a new one that will converge to the solutions obtained

by LU decomposition method.

For the new version, we write (3.58) as

(I −K2)u = F ,

51



The BDIE for Neumann Problem Numerical Examples

where

I = δij ,

u = u(xj),

F = F (xi),

K0ij = −cij + δij −Kij , (3.61)

K2ij = −cij + δij −Kij −
◦
Kij . (3.62)

This enables us to apply the Neumann series expansion in the form

u =
N∑

n=0

Kn
2F (3.63)

that will be used in the later numerical experiments.

Since it is rather expensive for numerical purposes to calculate the power ofK2 in equation

(3.63), we will denote

g0 = F ,

gn = K2gn−1,

therefore the Neumann series expansion (3.63) can be written as

u =

N∑
n=0

Kn
2F = F +

N∑
n=1

gn. (3.64)

3.3 Numerical Examples of BDIE for Neumann Problem

For the numerical experiments, we solve the BDIE for Neumann problem (3.10) on several

two-dimensional test domains such as square, circular and parallelogram domains. These test

domains will also be used in the next chapters that deals with solving BDIE for Dirichlet

problem and Localized-Boundary Domain Integral equation (LBDIEs) for Neumann and

Dirichlet problems.

The first test domain that we consider is a square 1 < x1 < 2, 1 < x2 < 2. The second

test domain is a circular domain with centre (2, 2) and unit radius. The final test domain is
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a parallelogram domain with vertices (3, 1), (4, 1), (6, 2) and (5, 2). Figure 3.4 shows some

meshes examples for the three test domains where J is the number of nodes.

In the numerical experiments, we consider several interior Neumann problems with the

following parameters:

1. a(x) = 1, f(x) = 0 for x ∈ Ω ∪ ∂Ω, with t(x) = ν1(x), x ∈ ∂Ω,

2. a(x) = x22, f(x) = 0 for x ∈ Ω ∪ ∂Ω, with t(x) = x22ν1(x), x ∈ ∂Ω,

3. a(x) = x42, f(x) = 0 for x ∈ Ω ∪ ∂Ω, with t(x) = x42ν1(x), x ∈ ∂Ω,

4. a(x) = x62, f(x) = 0 for x ∈ Ω ∪ ∂Ω, with t(x) = x62ν1(x), x ∈ ∂Ω,

5. a(x) = x82, f(x) = 0 for x ∈ Ω ∪ ∂Ω, with t(x) = x82ν1(x), x ∈ ∂Ω,

6. a(x) = x102 , f(x) = 0 for x ∈ Ω ∪ ∂Ω, with t(x) = x102 ν1(x), x ∈ ∂Ω,

7. a(x) = x22, f(x) = 2x22 for x ∈ Ω ∪ ∂Ω, with t(x) = 2x1x
2
2ν1(x), x ∈ ∂Ω,

The exact solutions for Neumann problem in Tests 1-6 and Test 7 are given in (3.65) and

(3.66), respectively,

u(x) = x1, x ∈ Ω ∪ ∂Ω, (3.65)

u(x) = x21, x ∈ Ω ∪ ∂Ω. (3.66)

All numerical computations are done using Fortran package written by the author, with

the double precision. We solve the linear system (3.11) by two approaches. The first one is

using LU decomposition and the second is using the Neumann series (3.64).
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(c) The parallelogram domain with J = 289.

Figure 3.4: Test domains.
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For each domain, we present a posteriori relative errors for the approximate solution

ϵ(u) =

max
1≤j≤J

∣∣uapprox(xj)− uexact(x
j)
∣∣

max
1≤j≤J

|uexact(xj)|
, (3.67)

and for its gradient

ϵ(∇u) =
max

1≤m≤M
|∇uapprox(xmc )−∇uexact(xmc )|

max
1≤m≤M

|∇uexact(xmc )|
, (3.68)

where xmc are centres of the quadrilateral domain elements em.

We determine ∂uapprox/∂x1 and ∂uapprox/∂x2 at the middle of each interior domain ele-

ment. The numerical results of ∂u/∂x1 and ∂u/∂x2 are based on the following interpolation:

∂u

∂x1
=

∑
j

∂ϕj(x)

∂x1
u(xj), (3.69)

∂u

∂x2
=

∑
j

∂ϕj(x)

∂x2
u(xj), x, xj ∈ Ω ∪ ∂Ω. (3.70)

The interpolation formulas in the local coordinates are given as follows:

∂u

∂x1
=

4∑
N=1

2∑
j=1

∂ΦN (ξ(x))

∂ξj

∂ξj
∂x1

u(xmN ), (3.71)

∂u

∂x2
=

4∑
N=1

2∑
j=1

∂ΦN (ξ(x))

∂ξj

∂ξj
∂x2

u(xmN ), x, xmN ∈ Ω ∪ ∂Ω. (3.72)

3.3.1 Numerical results related to the Neumann series expansion (3.60)

Figure 3.5 shows the divergence of the solutions correspond to the arrangement of the Neu-

mann series in equation (3.60). The divergence of the solutions is more obvious for the test

on circular domain. The numerical experiments illustrated in Figure 3.5 are done for Test 2.
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Figure 3.5: Relative errors of the solutions on the square and circle vs. number of Neumann iterations,

compared with the error of the LU decomposition solution (horizontal lines), for different number of mesh

nodes J .
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3.3.2 Numerical results related to the Neumann series expansion (3.64)

In this subsection, we will present the numerical results obtained from the Neumann series

expansion as arranged in (3.64). This new arrangement of the Neumann series expansion

converges to the solutions obtained by LU decomposition method.

The comparative results for relative errors of approximate solutions uapprox obtained by

LU decomposition method and their gradient ∇uapprox versus number of nodes J for Test 2

and Test 7 on square domain are shown in Figure 3.6.

10
1

10
2

10
3

10
4

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

No of nodes J

R
el

at
iv

e 
E

rr
or

 ε
(u

)

 

 
Test 2: u=x

1

Test 7: u=x
1
2

(a)

10
1

10
2

10
3

10
4

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

No of nodes J

R
el

at
iv

e 
E

rr
or

 ε
(∂

 u
/ ∂

 x
2)

 

 
Test 2: u=x

1

Test 7: u=x
1
2

(b)

Figure 3.6: Relative errors of the approximate solutions (a) and their gradients (b), on the square vs.

number of nodes J .
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The comparative results for relative errors of approximate solutions obtained by Neumann

iteration method versus number of nodes J for Test 2 and Test 7 on square domain is shown

in Figure 3.7.
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Figure 3.7: Relative errors of the solutions on the square vs. number of Neumann iterations, compared with

the error of the LU decomposition solution (horizontal lines), for different number of mesh nodes J .

58



The BDIE for Neumann Problem Numerical Examples

The comparative results for relative errors of approximate solutions uapprox obtained by

LU decomposition method versus number of nodes J for Test 2 and Test 7 on circular domain

is shown in Figure 3.8.
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Figure 3.8: Relative errors of the approximate solutions (a) and their gradients (b), on circular domain vs.

number of nodes J .
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The comparative results for relative errors of approximate solutions obtained by Neumann

iteration method versus number of nodes J for Test 2 and Test 7 is shown in Figure 3.9.
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Figure 3.9: Relative errors of the solutions on circular domain vs. number of Neumann iterations, compared

with the error of the LU decomposition solution (horizontal lines), for different number of mesh nodes J .
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The comparative results for relative errors of approximate solutions uapprox obtained by

LU decomposition method versus number of nodes J for Test 2 and Test 7 on parallelogram

is shown in Figure 3.10.
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Figure 3.10: Relative errors of the approximate solutions (a) and their gradients (b), on the parallelogram

vs. number of nodes J .
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The comparative results for relative errors of approximate solutions obtained by Neumann

iteration method versus number of nodes J for Test 2 and Test 7 on parallelogram is shown

in Figure 3.11.
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Figure 3.11: Relative errors of the solutions on parallelogram vs. number of Neumann iterations, compared

with the error of the LU decomposition solution (horizontal lines), for different number of mesh nodes J .
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From figures 3.6, 3.8 and 3.10, we can see the dependence of the solution error on the

number of collocation points J for the solution of the algebraic system by the LU decompo-

sition.

The dependence of the error ϵ(u) on the number of nodes J can be fitted with a power

function (i.e. with straight line in the double logarithmic coordinates in the graphs), giving

ϵ ∼ 1/
√
J ∼ h for Test 2 and ϵ ∼ 1/J ∼ h2 for Test 7 i.e. respectively, linear and quadratic

convergence with respect to the average linear size of the elements, h.

For the gradient error we similarly have ϵ(∇u) ∼ J−q′/2 ∼ hq
′
, where q′ = 0.1 for the

square and circular domains and q′ = 0.2 for the parallelogram domain in Test 2, while q′ = 1

for the square and parallelogram domains and q′ = 2 for the circular domain in Test 7.

The accuracy in Test 2 is much higher since the implemented piece-wise bi-linear inter-

polation is exact on the linear exact solution, and only the integral operator approximation

error, related with the accuracy of the numerical integration, is involved. In the Test 7, on

the contrary, the piece-wise bi-linear interpolation of the quadratic exact solution gives its

contribution in the total error. On the other hand, the higher convergence rate in Test 7

can be attributed to the quadratic convergence rate of the piece-wise linear interpolation of

smooth nonlinear function, while the lower convergence rate in Test 2 can be explained by

the linear convergence of the approximation of the the integral operator.

As follows from Figures 3.7, 3.9 and 3.11 the Neumann series converges to the LU decom-

position solutions, reaching the LU decomposition accuracy after 70 iterations for the square,

40 iterations for the circle and 140− 160 iterations for the parallelogram in Test 2 and after

20− 40 iterations for the square, 15− 20 iterations for the circle and 60− 100 iterations for

the parallelogram in Test 7. The number of the Neumann iterations necessary to reach the

same accuracy as the LU decomposition slightly grows with the the number of collocation

points since the accuracy of the LU decomposition numerical solution taken for comparison

also grows. The dependence of the iteration number on the test (i.e. on the exact solution

behaviour) and on the domain shape is also related with the different accuracy of the LU

numerical solution taken for comparison.
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3.3.3 Eigen-values

To investigate the convergence of the iterative method and whether it holds for other variable

coefficients of the PDE, we consider in this section the eigen-values of the obtained algebraic

systems approximating the eigen-values of the BDIEs. It is well known that the Neumann

series in the form of equation (3.64) for a matrix operator K2 converges for any right hand

side if and only if all eigen-values of the operator K2 belong to the open unit disc (cf.

Section 2.2.3). Moreover, the number of terms in the Neumann series sufficient for the error

to be lower than a prescribed value, can be estimated in terms of the maximum eigen-value

modulus. Let λ̃k, k = 1, 2, · · · J , denote the eigen-values of the matrix K0 defined by (3.61)

i.e. the numbers for which the homogeneous equation

(λ̃kI −K0)u = 0

has non-trivial solutions. Similarly, let λ̂k, k = 1, 2, · · · J , denote the eigen-values of the

perturbed matrix K2.

When the coefficient a(x) is a constant, the remainder R vanishes and boundary-domain

integral equation (3.8) can be split on the purely boundary integral equation for the boundary

values (traces) of u on ∂Ω, and on the representation formula for u in Ω. The same will hold

also for the perturbed equation (3.10) and its discrete counterpart (3.11).

From (Goursat (1964), Mikhlin (1957)) one can deduce that in this case the eigen-values

of the non-perturbed boundary integral operator (and thus the whole operator K0) in the ap-

propriate function spaces are real and belong to the interval (0, 1]. Application of (Mikhailov

(1999)) gives that the spectrum of the perturbed operator K2 belongs to the interval [0, 1),

that is its spectral norm is less than 1 implying convergence of the corresponding Neumann

series.

When the coefficient a(x) is not constant, the spectral properties and thus a proof of

convergence of the Neumann series for BDIEs is not available but some conclusions about

the convergence can be drown from the following graphs presenting the numerically ob-

tained largest-modulus eigen-values of the discrete operators K0 and K2 and influence of the

coefficient a(x) on them.
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Figure 3.12 show the first five eigen-values λ̃k of the matrix K0 in (3.61) with the largest

moduli for the examples in Test 2 for square, circular domain and parallelogram, respectively.

These five eigen-values appear to be real for the square and parallelogram and have an

imaginary part less than 0.006 for the circle. Numerically obtained largest eigen-values λ̂k

of the perturbed matrix K2 in (3.62) coincide (up to the third digit) with those for the

unperturbed matrix K0 in (3.61), except the eigen-value λ̃1 = 1, that vanishes for K2,

as predicted by the theory. Indeed, the eigen-values of the discrete operators K0 and K2

approximate the spectra of the corresponding integral operators K0 and K2. The operators

K0 and K2 differ only by the perturbation operator (3.9) and, according to (Mikhailov

(1999)), their eigen-values coincide except the eigen-value λ̃ = 1 that is transferred to the

spectrum point λ̂ = 0, for the operatorK2 , under the assumption that there are no associated

functions corresponding to the eigen-value λ̃ = 1 .

The maximal eigen-values of the matrixK2 i.e. λ̃2 on Figure 3.12 gives the spectral radius

of the matrix K2 influencing the convergence rate of the Neumann series. In our examples

in Test 2, the spectral radii are less than one, implying convergence of the Neumann series.

For the circular domain it converges after 25 iterations, while for the parallelogram only

after 100 iterations correlating well with max |λ̂k| = 0.5 for the circular domain and max

|λ̂k| = 0.9 for the parallelogram.
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Figure 3.12: Eigen-values of the matrix K0 vs. the number of nodes J .
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To investigate the influence of the coefficient a(x) on the maximum eigen-values of the

perturbed matrix K2, we calculated them for a(x) = xk2 with different 0 ≤ k ≤ 10 as in Tests

1 – 6. (Note that our previous examples were calculated for k = 2 i.e. for Test 2.)

The results of influence of the coefficient a(x) are presented in Figures 3.13 – 3.15 for

the finest meshes, J = 1089 for the square and parallelogram, and J = 2113 for the circular

domain. For the overlapping eigen-values seen on the figures our calculation shown that their

eigen-functions are linearly independent i.e. the eigen-values are geometrically multiple. The

figures show that for sufficiently high k i.e. for sufficiently sharp variation of the coefficient,

the eigen-values are generally complex and can lay outside the unit circle, unlike the constant-

coefficient case. This means that the standard Neumann series for the BDIE with such

variable coefficients can generally diverge. Note however that from these figures one can

conclude that 0 ≤ Re λ̂k < 1 for the all considered examples, similar to the constant coeficient

case, while |Im λ̂k| < C with some constant C < 1.5.

Next, we will analyze the eigen-values for discrete BDIE in our test examples. In our

example, the coefficient a(x) is as follows

a(x) = xk2, 0 ≤ k ≤ 10.

Note that

∇a = (0, kxk−1
2 ), and

|∇a|
a

=
k

x2
.

Therefore

max

∣∣∣∣L∇aa
∣∣∣∣ = max

∣∣∣∣Lkx2
∣∣∣∣ , (3.73)

where L is denoted as the characteristic size of the domain.

Equation (3.73) then implies

max

∣∣∣∣L∇aa
∣∣∣∣ = max

∣∣∣∣ kx2
∣∣∣∣ = k

2
< k, for square, (3.74)

max

∣∣∣∣L∇aa
∣∣∣∣ = max

∣∣∣∣2kx2
∣∣∣∣ = 2k

3
< k, for circle, (3.75)

max

∣∣∣∣L∇aa
∣∣∣∣ = max

∣∣∣∣ kx2
∣∣∣∣ = k

2
< k, for parallelogram. (3.76)
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Hence, by considering equations (3.74)-(3.76) and taking into account the results in Fig-

ures 3.13-3.15, we can deduce that

max

∣∣∣∣L∇aa
∣∣∣∣ < 5, (3.77)

in order to ensure that the Neumann series expansion converges.
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Figure 3.13: The largest eigen-values of the matrix K2 for the square vs. k for a(x) = xk
2 .
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Figure 3.14: The largest eigen-values of the matrix K2 for the circular domain vs. k for a(x) = xk
2 .
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Figure 3.15: The largest eigen-values of the matrix K2 for the parallelogram vs. k for a(x) = xk
2 .
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3.4 Conclusion

The finite-dimensional perturbation allows to reduce the BDIE of the Neumann problem to an

unconditionally and uniquely solvable integral equation. The numerical results presented in

this chapter show that the mesh-based discretization of the BDIE with a quadrilateral bilinear

approximation leads to a system of linear algebraic equations that can be solved e.g. by LU-

decomposition with linear convergence with respect to the element size (diameter). For some

variable coefficients and shapes of the domains, the discrete BDIE can be also solved by fast

converging Neumann iterations, which is related to the beneficial spectral properties of the

BDIE. A more detailed analysis of the discrete BDIE eigen-values demonstrated that when

the PDE coefficient moderately varies with coordinates i.e. when the coefficient gradient is

small or moderate (e.g. max
∣∣L∇a

a

∣∣ < 5 in the considered examples, where L is a characteristic

size of the domain) the spectrum is contained in the unit circle, which implies the Neumann

series convergence. Then the standard Neumann iteration method is a good alternative to

the direct methods, especially when the computer storage and CPU time needs for the latter

become prohibitive. However, this spectrum property does not hold generally, and when

the coefficient varies sharply enough, some eigen-values appear also outside the unit circle,

which can lead to divergence of the standard Neumann series; in these cases the modified

Neumann series, other iterative (e.g. GMRES) or direct methods will be more appropriate.
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Chapter 4

The Boundary-Domain

Integro-Differential Equations for

Dirichlet Problem

4.1 Introduction

In Chapter 3, we have discussed that by using a parametrix, the Neumann boundary-value

problem for a partial differential equation with variable coefficient can be reduced to a BDIE.

We also have shown how Boundary Element Method can be used for the approximation and

numerical solution of the BDIE. In this chapter, we extend the work that have been done on

the perturbed BDIE of Neumann problem in Chapter 3 to the united BDIDE of Dirichlet

problem.

From two versions of the BDIDEs for Dirichlet problem, we can obtain two sets of linear

algebraic systems. This can be also interpreted as two different ways in the interpolation

process. The first one is by taking the collocation points xi only for xi ∈ Ω i.e. at J − JD

nodes of the mesh during the interpolation process where JD is the number of nodes on the

boundary ∂Ω. The second one is by taking the collocation points xi for xi ∈ Ω at all J

nodes like in BDIE related to Neumann problem. The spectral properties obtained from the
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numerical experiment for the discrete BDIDE operator related to Dirichlet problem will also

be presented.

4.2 The BDIDEs for Dirichlet Problem

Let us consider the same second-order linear elliptic PDE in a two-dimensional bounded

domain, Ω as in Chapter 3,

(Lu)(x) :=

2∑
i=1

∂

∂xi

[
a(y)

∂u(x)

∂xi

]
= f(x), x ∈ Ω,

with the Dirichlet boundary condition

u(x) = u(x), x ∈ ∂Ω.

Equation (3.7) can be used for formulating different boundary-domain integro-differential

equations (BDIDEs) with respect to u and its derivatives, e.g. by united formulation and

partly segregated formulation. The BDIDEs are called segregated BDIDEs when the un-

known boundary functions are considered as formally unrelated to the unknown functions

inside the domain whereas for the united BDIDEs, the unknown boundary functions are

related to the unknown functions inside the domain.

As described in (Mikhailov (2002)), for united formulation, substituting boundary con-

dition (2.2) in the integrals in (3.7) and taking (3.7) at y ∈ Ω ∪ ∂Ω will give the following

linear direct boundary-domain integro-differential equation, BDIDE:

c(y)u(y) +

∫
∂Ω
P (x, y)Tu(x) dΓ(x) +

∫
Ω
R(x, y)u(x) dΩ(x) = F (y), (4.1)

where

F (y) =

∫
∂Ω
u(x)TxP (x, y) dΓ(x) +

∫
Ω
P (x, y)f(x) dΩ(x), y ∈ Ω ∪ ∂Ω. (4.2)

For the partly segregated formulation, equation (4.1) is applied at y ∈ Ω∪∂Ω, substitute

u(y) for u(y) when y ∈ ∂Ω. This gives rise to another direct boundary domain integro-

differential equation, BDIDE, for t(x) at x ∈ ∂Ω, i.e.,

c0(y)u(y) +

∫
∂Ω
P (x, y)t(x) dΓ(x) +

∫
Ω
R(x, y)u(x) dΩ(x) = F 0(y), (4.3)
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F 0(y) =
[
c0(y)− c(y)

]
u(y) + F (y), y ∈ Ω ∪ ∂Ω,

c0(y) = 0 if y ∈ ∂Ω, (4.4)

c0(y) = 1 if y ∈ Ω+, c0(y) = 0 if y ∈ Ω−.

Note that both BDIDEs (4.1) and (4.3) do not only contain the usual line integral over

the boundary ∂Ω as in the case when the parametrix is a fundamental solution but also an

integral over the entire solution domain Ω. Furthermore, the unknown function u appears

in the integrand of the integral over the domain.

Rearranging (4.1), applying the same interpolation as in Chapter 3 to equation (4.1) and

placing the collocation point xi for xi ∈ Ω at all J nodes of the mesh, we obtain the system

of J linear algebraic equations for J unknowns u(xj), as follows:

c(xi)u(xi) +
∑
xj∈Ω

KD
ij u(x

j) = QD
i +DD

i , xi ∈ Ω, (4.5)

where KD
ij , Q

D
i and DD

i are defined as follows:

KD
ij =

M∑
m=1

∫
Ωm

ϕj(x)R(x, x
i) dΩ(x) +

L∑
l=1

∫
∂Ωl

P (x, xi)

[
a(x)

(
∂ϕj(x)

∂ν(x)

)]
dΓ(x), (4.6)

QD
i =

L∑
l=1

∫
∂Ωl

u(x)TxP (x, x
i) dΓ(x), (4.7)

DD
i =

M∑
m=1

∫
Ωm

P (x, xi)f(x) dΩ(x), (4.8)

Equation (4.6) can then be written as

KD
ij =

∑
Ωm∋xj

∫
Ωm

ϕj(x)R(x, x
i) dΩ(x)

+
∑

∂Ωl⊂{Ωm:Ωm∋xj}

∫
∂Ωl

P (x, xi)

[
a(x)

(
∂ϕj(x)

∂ν(x)

)]
dΓ(x). (4.9)

Denoting Gm
N,i and H

m
i as in (3.31) and (3.32), and

Ãl
N,i =

∫ 1

−1
P (x(η), xi)

a(x(η))
 2∑

p=1

2∑
k=1

∂ΦN (ξ)

∂ξk

∂ξk
∂xp

∣∣∣∣
ξ=ξ(η)

νp(x(η))

Jl1(η) dη,
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(4.10)

F̃ l
i =

∫ 1

−1
u(x(η))TxP (x(η), x

i)Jl1(η) dη, (4.11)

we then can write (4.6)-(4.8) as follows:

KD
ij =

∑
Ωm∋xj

Gm
N(j,m),i +

∑
∂Ωl⊂{Ωm:Ωm∋xj}

Ãl
N(j,m),i, (4.12)

QD
i =

L∑
l=1

F̃ l
i , (4.13)

DD
i =

M∑
m=1

Hm
i . (4.14)

where N(j,m) is the local number of the node xj on the domain element Ωm.

Partly using the Dirichlet condition in the out-of-integral term, we obtain the following

modification of equation (4.1).

u(y) +

∫
Ω
R(x, y)u(x) dΩ(x) +

∫
∂Ω
P (x, y)Tu(x) dΓ(x)

= (1− c(y))u(y) +

∫
∂Ω
u(x)TxP (x, y) dΓ(x)

+

∫
Ω
P (x, y)f(x) dΩ(x), y ∈ Ω. (4.15)

4.2.1 The discretized BDIDE with the collocation points xi ∈ Ω

Applying interpolation to equation (4.15) and placing the collocation point xi for xi ∈ Ω at

all J nodes of the mesh, we obtain the system of J linear algebraic equations for J unknowns

u(xj), as follows:

u(xi) +
∑
xj∈Ω

KD
ij u(x

j) = (1− c(xi))u(xi) +QD
i +DD

i , x
i ∈ Ω, (4.16)

where KD
ij , Q

D
i and DD

i are defined in (4.6)-(4.8).

Defining

F (xi) = (1− c(xi))u(xi) +QD
i +DD

i ,

we can then write (4.16) as

u(xi) +
∑
xj∈Ω

KD
ij u(x

j) = F (xi), xi ∈ Ω. (4.17)
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The integral in (4.10) needs a special treatment when a collocation point xi is a vertex of

the integration element since the kernels of these integrals are weakly singular at collocation

points.

The integral (4.10) with the kernel involving ln(1/r) are evaluated numerically by using

the following semi-analytic formula:∫
∂Ωl

P (x, xi)a(x)
∂ϕj(x)

∂ν(x)
dΓ(x) =

∫
∂Ωl

[
P (x, xi)a(x)

∂ϕj(x)

∂ν(x)
− gijl

]
dΓ(x) +Gijl,

where

gijl =

(
s2 − s

s2 − s1

)
P (x, xi)a(x(s1))

∂ϕj(x)

∂ν(x)

+

(
s− s1
s2 − s1

)
P (x, xi)a(x(s2))

∂ϕj(x)

∂ν(x)
, (4.18)

Gijl =

∫
∂Ωl

gijl ds =

∫
∂Ωl

(
s2 − s

s2 − s1

)
P (x, xi)a(x(s1))

∂ϕj(x(s1))

∂ν(x)
ds

+

∫
∂Ωl

(
s− s1
s2 − s1

)
P (x, xi)a(x(s2))

∂ϕj(x(s2))

∂ν(x)
ds. (4.19)

Since

(s2 − s) =
(s2 − s1)

2
(1− η) ,

(s− s1) =
(s2 − s1)

2
(1 + η) ,

one can write (4.18) and (4.19) as

gijl =
(1− η)

2
P (x, xi)a(x(s1))

∂ϕj(x)

∂ν(x)

+
(1 + η)

2
P (x, xi)a(x(s2))

∂ϕj(x)

∂ν(x)
, (4.20)

Gijl =

∫ s2

s1

(1− η)

2
P (x, xi)a(x(s1))

∂ϕj(x(s1))

∂ν(x)
ds

+

∫ s2

s1

(1 + η)

2
P (x, xi)a(x(s2))

∂ϕj(x(s2))

∂ν(x)
ds

= a(x(s1))
∂ϕj(x(s1))

∂ν(x)

∫ 1

−1

(1− η)

2
P (x, xi)

ds

dη
dη

+ a(x(s2))
∂ϕj(x(s2))

∂ν(x)

∫ 1

−1

(1 + η)

2
P (x, xi)

ds

dη
dη. (4.21)

77



The BDIDE for Dirichlet Problem The Boundary-Domain Integro-Differential Equations

Defining

gA1 =

∫ 1

−1

(1− η)

2
P (x, xi)

ds

dη
dη, (4.22)

gA2 =

∫ 1

−1

(1 + η)

2
P (x, xi)

ds

dη
dη, (4.23)

We then can write (4.21) as

Gijl =

(
a(x(s1))

∂ϕj(x(s1))

∂ν(x)

)
gA1 +

(
a(x(s2))

∂ϕj(x(s2))

∂ν(x)

)
gA2.

The integrals gA1 and gA2 are calculated analytically.

The radius r can be written as

r =
√
h2 + (d− s)2,

where h, d and s are defined as (3.37)-(3.39).

Therefore we can write gA1 and gA2 in (4.22) and (4.23) as

gA1 =

∫ 1

−1

(
1− η

2

)(
1

2

)(
ln[h2 + (d− s)2]

2πa(xi)

)
ds

dη
dη, (4.24)

gA2 =

∫ 1

−1

(
1 + η

2

)(
1

2

)(
ln[h2 + (d− s)2]

2πa(xi)

)
ds

dη
dη. (4.25)

The analytic solutions for integrals gA1 and gA2 are calculated by using Mathematica 5.1

as given in equations (4.26) and (4.27) below.

gA1 =
Jl1(η) (h1 + h2 + h3 + h4)

4πa(xi)W 4
2

, (4.26)

gA2 =
Jl1(η) (f1 + f2 + f3 + f4)

4πa(xi)W 4
2

, (4.27)

where

Jl1(η) =
ds

dη
,

h1 = −3W 4
2 + 2W 2

2W3 + 4(W 2
2 −W3)

√
W 2

1W
2
2 −W 2

3ArcTan

[
(W 2

2 −W3)√
W 2

1W
2
2 −W 2

3

]
,

h2 = 4(W 2
2 −W3)

√
W 2

1W
2
2 −W 2

3ArcTan

[
W3√

W 2
1W

2
2 −W 2

3

]
,

78



The BDIDE for Dirichlet Problem The Boundary-Domain Integro-Differential Equations

h3 = (W 2
1W

2
2 + 2W 2

2W3 − 2W 2
3 ) ln[W

2
1 ],

h4 = (−W 2
1W

2
2 +W 4

2 − 2W 2
2W3 + 2W 2

3 ) ln[W
2
1 +W 2

2 − 2W3],

f1 = −W 4
2 − 2W 2

2W3 + 4W3

√
W 2

1W
2
2 −W 2

3ArcTan

[
(W 2

2 −W3)√
W 2

1W
2
2 −W 2

3

]
,

f2 = 4W3

√
W 2

1W
2
2 −W 2

3ArcTan

[
W3√

W 2
1W

2
2 −W 2

3

]
,

f3 = (−W 2
1W

2
2 + 2W 2

3 ) ln[W
2
1 ],

f4 = (W 2
1W

2
2 +W 4

2 − 2W 2
3 ) ln[W

2
1 +W 2

2 − 2W3].

The notations W1, W2 and W3 are given in (3.33)-(3.35) and illustrated in Figs. 3.2-??.

The analytic solutions for integrals gA1 and gA2 in (4.26) and (4.27) are uncertainty of

the type 0/0 when xi = s1 and xi = s2 .

Therefore, when xi = s1 , by taking the limit as W1 → 0, we obtain

gA1 =

(
1

4πa(xi)

)
Jl1(η)(−3 + ln[W 2

2 ]),

gA2 =

(
1

4πa(xi)

)
Jl1(η)(−1 + ln[W 2

2 ]).

When xi = s2, by taking the limit as W1 →W2, we have

gA1 =

(
1

4πa(xi)

)
Jl1(η)(−1 + ln[W 2

2 ]),

gA2 =

(
1

4πa(xi)

)
Jl1(η)(−3 + ln[W 2

2 ]).

4.2.2 The discretized BDIDE with the collocation points xi ∈ Ω

Instead of BDIDE (4.1) employed at y ∈ ∂Ω, we can employ Dirichlet boundary condition

u = u on ∂Ω. This means that instead of taking the collocation point xi for xi ∈ Ω at all J

nodes of the mesh, we can take the collocation point xi only for xi ∈ Ω at J − JD nodes of

the mesh during the interpolation process. Here JD is the number of boundary nodes of the

mesh.

Therefore, we split
∑

xj∈Ω
KD

ij u(x
j) in (4.5) to two parts such that

∑
xj∈Ω

KD
ij u(x

j) =
∑
xj∈Ω

KD
ij u(x

j) +
∑

xj∈∂Ω

KD
ij u(x

j).
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The second part
∑

xj∈∂Ω
KD

ij u(x
j) can be transferred to the right-hand side.

Therefore, from (4.5) we obtain the system of J−JD linear algebraic equations for J−JD

unknowns u(xj), as in the following:

u(xi) +
∑
xj∈Ω

KD
ij u(x

j) = −
∑

xj∈∂Ω

KD
ij u(x

j) +QD
i +DD

i , x
i ∈ Ω, (4.28)

where KD
ij , Q

D
i , and D

D
i are given by (4.9) and (4.7)-(4.8).

4.2.3 Numerical Examples for System (4.28)

In the earlier discussion of Section 4.2, we have seen that, in solving the BDIDE for Dirichlet

problem as in (4.1), we have two ways of BDIDE implementation.

The first one is by taking into account the collocation points xi for xi ∈ Ω at all J nodes

as in equation (4.5).

The second way is by taking the collocation points xi only for xi ∈ Ω at J − JD nodes of

the mesh during the interpolation process as in equation (4.28).

The second way looks more interesting in terms of computation time since we have less

collocation points xi. In this Section 4.2.3, we present several test examples of solving

equation (4.28) by LU decomposition. However, the Neumann series expansion does not

converge for the solution of equation (4.28). We will discuss details on the spectrum of

BDIDE operator for equation (4.28) in Section 4.2.4.

In Section 4.2.5, we consider the first method i.e. we solve equation (4.5) with the

collocation points xi ∈ Ω at all J nodes. For equation (4.5), the Neumann series converges

to the desired solution.

As in the previous test examples on Neumann problem, we will consider three test do-

mains i.e. a square domain, a circular domain and a parallelogram. The geometry of the

three test domains are as in Figure 3.4.

For each domain, we solve the following interior Dirichlet problems:

1. a(x) = 1 with f(x) = 0 for x ∈ Ω ∪ ∂Ω and u(x) = x1 for x ∈ ∂Ω,

2. a(x) = x22 with f(x) = 0 for x ∈ Ω ∪ ∂Ω and u(x) = x1 for x ∈ ∂Ω,
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3. a(x) = x42 with f(x) = 0 for x ∈ Ω ∪ ∂Ω and u(x) = x1 for x ∈ ∂Ω,

4. a(x) = x62 with f(x) = 0 for x ∈ Ω ∪ ∂Ω and u(x) = x1 for x ∈ ∂Ω,

5. a(x) = x82 with f(x) = 0 for x ∈ Ω ∪ ∂Ω and u(x) = x1 for x ∈ ∂Ω,

6. a(x) = x102 with f(x) = 0 for x ∈ Ω ∪ ∂Ω and u(x) = x1 for x ∈ ∂Ω,

7. a(x) = x22 with f(x) = 2x22 for x ∈ Ω ∪ ∂Ω and u(x) = x21 for x ∈ ∂Ω,

Let us define the relative error for the approximate solution ϵ(u) and and the relative

errors for its gradient ϵ(∇u), as in (3.67) and (3.68).

The comparative results for relative error of approximate solutions uapprox obtained by

LU decomposition method and their gradient ∇uapprox versus number of nodes J for Test

2 and Test 7 on square domain, circular domain, and parallelogram are shown in Figures

4.1-4.3.
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Figure 4.1: Relative errors of the approximate solutions (a) and their gradients (b), on the square vs.

number of nodes J .
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Figure 4.2: Relative errors of the approximate solutions (a) and their gradients (b), on circular test domain

vs. number of nodes J .
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Figure 4.3: Relative errors of the approximate solutions (a) and their gradients (b), on parallelogram vs.

number of nodes J .

84



The BDIDE for Dirichlet Problem The Boundary-Domain Integro-Differential Equations

As in Section 3.3, the dependence of the error ϵ(u) on the number of nodes J (an on

the average linear size of the elements, h) can be fitted with a power function (i.e. with a

straight line in the double logarithmic coordinates in the graphs) so that ϵ ≈ J−q/2 ≈ hq.

From our numerical results, the convergence rate of BDIDE for Dirichlet problem as in

equation (4.28) when J increases is close to the convergence rate of BDIE for Neumann

problem as discussed in Section 3.3 i.e. q ≈ 1 in Test 2 and q ≈ 2 in Test 7 i.e. respectively,

linear and quadratic convergence with respect to the element size h.

The accuracy in Test 2 is much higher as compared to the Test 7 as only the integral

operator approximation error, related with the accuracy of the numerical integration, is

involved. However, for Test 7, in addition to the integral operator approximation error, the

implementation of the piece-wise bi-linear interpolation on the quadratic exact solution gives

its contribution in the total error.

4.2.4 Eigen-values for the System (4.28)

In this section, we will discuss the distribution of eigen-values of the corresponding discrete

operators calculated numerically in (4.28). This is helpful in investigating the convergence

of Neumann series expansion.

Defining

F (xi) = −
∑

xi∈∂Ω

KD
ij u(x

j) +QD
i +DD

i ,

we can then write (4.28) as

c(xi)u(xi) +
∑
xj∈Ω

KD
ij u(x

j) = F (xi), xi ∈ Ω. (4.29)

In solving equation (4.29) by using Neumann series expansion, and since c(xi) = 1 for

xi ∈ Ω, we write (4.29) as

(I −K3)u = F ,

where

I = δij ,

85



The BDIDE for Dirichlet Problem The Boundary-Domain Integro-Differential Equations

u = u(xj),

K3 = −Kij , (4.30)

F = F (xi).

These notations enable us to present the Neumann series expansion as in the following:

u =
N∑

n=0

Kn
3F . (4.31)

Since it is rather expensive for numerical purposes to calculate the power ofK3 in equation

(4.31), we will denote

g0 = F ,

gn = K3gn−1.

Therefore (4.31) can be written as

u =

N∑
n=0

Kn
3F = F +

N∑
n=1

gn. (4.32)

It is well known that the Neumann series in the form (4.32) for a matrix operator K3

converges for any right hand side if and only if all eigen-values of the operator K3 belong to

the open unit disc.

We have seen in Section 3.3.3, the detailed analysis of the discrete BDIE eigen-values

for Neumann problem demonstrated that when the PDE coefficient moderately varies with

coordinates, the spectrum is contained in the unite circle, which implies the Neumann series

convergence. However, this property does not hold generally, and when the coefficient varies

sharp enough, some eigen-values appear also outside the unite circle, which can lead to

divergence of the standard Neumann series. Similar behavior will be observed also for the

BDIDE of the Dirichlet problem.

In checking the distribution of eigen-values of the corresponding discrete operator K3

calculated numerically in (4.30), we will consider here the simplest test example i.e. a = 1

as in Test 1. Observe that when a = 1, the BDIDE will be reduced to a BIE and the

maximal eigen-values should lies within a unit circle. However, in contrast to the theory for
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the original BIE, in our numerical experiment of discrete BIE for Dirichlet problem, some

eigen-values of the operator K3 (4.30) appears also outside the unite circle even for Test 1

i.e. when a = 1.

Let λ̃k, k = 1, 2, J−JD, denote the eigen-values of the matrix K3 = Kij i.e. the numbers

λk for which the homogeneous equation

(λ̃kI −K3)u = 0

has non-trivial solutions.

We calculate several eigen-values with the maximum modulus for Test 2 on a square (see

Figure 3.4a) in Figure 4.4.
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Figure 4.4: Eigen -values of the matrix K3 for the square vs. the number of nodes J − JD.

The values of J that are taken in the experiments on a square are 25, 81, 289 and 1089.

From the figure, we can see that there is no convergence of the eigen-values as J increases

and the spectrum is not contained in the unite circle that leads to divergence of the Neumann

iteration. Note also that the five maximal eigen-values are all real.

This can be explained by the fact that the left-hand side operator in (4.29) can be

considered as the discrete approximation of the closed unbounded BDIDE operator which

domain of definition consists of the function u that are equal 0 on the boundary but the

range consists of the functions that may be non-zero on the boundary. But the resolvent

87



The BDIDE for Dirichlet Problem The Boundary-Domain Integro-Differential Equations

of closed unbounded operator has an essential singularity at infinity, see e.g. (Kato (1980),

Theorem 6.13).

Therefore, to obtain the convergence of the Neumann series expansion, we will analyze

in the next Subsection, the eigen-values for equation (4.17) i.e. for collocation points xi ∈ Ω.

4.2.5 Numerical Examples for System (4.17)

In solving equation (4.17) by using Neumann series expansion, we write (4.17) as

(I −K4)u = F ,

where

I = δij ,

u = u(xj),

K4 = −Kij ,

F = F (xi).

This arrangement enables us to apply the Neumann series expansion as in the following:

u =
N∑

n=0

Kn
4F . (4.33)

We denote

g0 = F ,

gn = K4gn−1.

Therefore (4.33) can be written as

u =

N∑
n=0

Kn
4F = F +

N∑
n=1

gn. (4.34)

As previously, we give numerical examples for square, circular domain and parallelogram

domains presented in Figure 3.4. For all tests, we give numerical results for the relative

error for the approximate solution ϵ(u) and its gradient ϵ(∇u) as given in (3.67) and (3.68),

respectively.
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The comparative results obtained by LU decomposition method versus number of nodes

J for Test 2 and Test 7 on square, circular and parallelogram domains are shown in the

Figures 4.5, 4.7 and 4.9, respectively.
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Figure 4.5: Relative errors of the approximate solutions (a) and their gradients (b), on the square vs.

number of nodes J .
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Figure 4.6: Relative error of the solutions on the square vs. number of Neumann iterations, compared with

the error of the LU decomposition solution (horizontal lines), for different number of mesh nodes J .
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Figure 4.7: Relative errors of the approximate solutions (a) and their gradients (b), on circular domain vs.

number of nodes J .
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Figure 4.8: Relative error of the solutions on circular domain vs. number of Neumann iterations, compared

with the error of the LU decomposition solution (horizontal lines), for different number of mesh nodes J .
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Figure 4.9: Relative errors of the approximate solutions (a) and their gradients (b), on the parallelogram vs.

number of nodes J .
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Figure 4.10: Relative error of the solutions on parallelogram vs. number of Neumann iterations, compared

with the error of the LU decomposition solution (horizontal lines), for different number of mesh nodes J .
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From Figures 4.5, 4.7 and 4.9, we can see that the error of approximate solution ϵ(u) and

the error of gradient ϵ(∇u) decrease.

Figures 4.6, 4.8 and 4.10 show the the solutions obtained by Neumann iterations con-

verged to the solutions obtained by LU decomposition.

Similar to Section 3.3, we fitted the dependence of the error ϵ(u) on the number of nodes

J with a power function (i.e. with straight line in the double logarithmic coordinates in the

graphs), giving ϵ ∼ J−q/2 ∼ hq. We get q ≈ 1 in Test 2 for square and parallelogram. For

circular domain, the convergence rate is quite slow, i.e., q ≈ 0.6. For Test 7, our numerical

experiments shows q ≈ 1.5 for square, q ≈ 1 for circular domain and q ≈ 2 for parallelogram.

For the gradient error we similarly have ∇ϵ(u) ∼ J−q′/2 ≈ hq
′
, where q′ ≈ 0.16 for the

square, q′ ≈ 0.08 for circular domains and q′ ≈ 0.05 for the parallelogram domain in Test 2,

while q′ ≈ 0.9 for the square and parallelogram, and q′ ≈ 0.4 for the circular domain in Test

7.

As follows from Figures 4.6, 4.8 and 4.10 the Neumann series converges to solutions

obtained from LU decomposition method, reaching the LU decomposition accuracy after

40− 80 iterations for the square, 40− 50 iterations for the circle and 90− 100 iterations for

the parallelogram in Test 2 and after 20− 40 iterations for all domains in Test 7.

More Neumann iterations are needed to reach the accuracy of the LU decomposition

numerical solution for Test 2 compared to Test 7 since the accuracy of the LU decomposition

numerical solution taken for comparison for Test 2 is higher than Test 7.

This means that in addition to the dependence of the iteration number on the test (i.e.

on the exact solution behaviour) and on the domain shape, it is also related with the different

accuracy of the LU numerical solution taken for comparison.
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4.2.6 Eigen-values for the System (4.17)

In the previous subsection, we have seen that the Neumann series expansion in (4.34) con-

verges to the LU decomposition solutions for Test 2 and Test 7, i.e., when a = x22. We will

also investigate whether it holds for other variable coefficients a(x) of the PDE for Dirichlet

problem.

In this section, we want to investigate the eigen-values properties of the obtained alge-

braic systems (4.5) for a matrix operator K4 that influences the convergence of the iterative

method. It is well known that the Neumann series in the form of equation (4.34) for a matrix

operator K4 converges for any right hand side if and only if all eigen-values of the operator

K4 belong to the open unit disc. Moreover, if all eigen-values of the operator K4 belongs

to the open unit disc, maximum eigen-value modulus will reflects the number of iterations

sufficient for Neumann series to converges to the LU decomposition solution.

Let λ̃k, k = 1, 2, · · · J , denote the eigen-values of the matrix K4 , i.e., the numbers λ̃k for

which the homogeneous equation

(λ̃kI −K4)u = 0

has non-trivial solutions.

When the coefficient a(x) is a constant, the remainder R vanishes but unlike to the BDIE

system for the Neumann problem, the BDIDE (4.15) can not be split on the purely boundary

integral equation for the boundary values (traces) of u on ∂Ω, and on the representation

formula for u in Ω because of the term with Tu. The same will also hold for its discrete

counterpart (4.16).

In Section 3.3.3, we have made some conclusion about spectral properties for operator

K2 of the perturbed BDIE for PDE of Neumann problem. We have seen that, when the

power k of the coefficient a(x) increases, the imaginary values of the largest λ̃ increase as

well such that after some k, the eigen-values appear also outside the unit circle. This implies

the divergence of the standard Neumann series expansion for coefficients a(x) with big k

even the direct methods such as LU decomposition and Gaussian elimination still reliable.

However, the real values of the largest λ̃ do not vary much and it is still belong to the interval
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(0, 1).

In the following discussions, we will see that similar conclusion can be made for BDIDE

(4.15).

Figures 4.11-4.13 present the first eigen-values λ̃k of the matrixK4 with the largest moduli

for the examples in Test 2 for square, circular and parallelogram domains, respectively.

Note that, in all examples in case 2, i.e., when coefficient a(x) = x2, the maximal absolute

values of eigen-values of the matrix K4 are less than 1, that implies the convergence of the

Neumann series. The Neumann series for the circular domain converges after 40 iterations

and parallelogram needs 90 iterations to converge correlating well with max |λk| = 0.5 for

the circular domain and |λk| = 0.9 for the parallelogram.

However, as we will see, this property does not hold generally as the order, k, of the

coefficient a(x) growth increases, the maximal eigen-values increase and above some value

of k, some eigen-values appear also outside the unite circle, which can lead to divergence

of the standard Neumann series. In investigating the influence of the coefficient a(x) on

the maximum eigen-values of the matrix K4, we calculated them for a(x) = xk2 for k =

0, 2, · · · , 10.

We show the maximum eigen-values of the operator K4 for the finest meshes on each

domains, i.e., when J = 1089 for the square and parallelogram and J = 2113 for circular

domain. This result on each domain is shown in Figures 4.14- 4.16.

For the overlapping eigen-values seen on the figures our calculation shown that their

eigen-functions are linearly independent, i.e., the eigen-values are geometrically multiple.

Note however that from these figures one can conclude that 0 < Re λ̃k < 1 for the all

considered examples, similar to the constant coefficient case, while |Im λ̃k| < C with some

constant C < 2.

Next, we will analyze of the eigen-values for discrete BDIDE. We consider equations

(3.74)-(3.76) and by observing the spectral properties in Figures 4.14-4.16, we have

max

∣∣∣∣L∇aa
∣∣∣∣ < 5, (4.35)

for the spectral radius to be less than 1. Note that the condition obtained in (4.35) for
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the BDIDE operator is the same as obtained in (3.77) for the perturbed Neumann BDIE

operator.
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Figure 4.11: Eigen -values of the matrix K4 for the square domain vs. the number of nodes J .
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Figure 4.12: Eigen -values of the matrix K4 for the circular domain vs. the number of nodes J .
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Figure 4.13: Eigen -values of the matrix K4 for the parallelogram vs. the number of nodes J .
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Figure 4.14: The six largest eigen-values of the matrix K4 on the square vs k for a(x) = xk
2 .
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Figure 4.15: The six largest eigen-values of the matrix K4 on the circular domain vs k for a(x) = xk
2 .
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Figure 4.16: The six largest eigen-values of the matrix K4 on the parallelogram vs k for a(x) = xk
2 .
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4.3 Conclusion

The numerical experiments and the analysis of the discrete BDIE’s eigen-values related to

Neumann problem is further extended to those of Dirichlet problem in this chapter. Unlike

the BDIE related to Neumann problem, we don’t have to add a perturbation operator in order

to guarantee the BDIDEs to be an unconditionally and uniquely solvable integral equation.

The numerical results presented in this chapter show that the mesh-based discretization of

the BDIDE with a quadrilateral bilinear approximation leads to a system of linear algebraic

equations that can be solved e.g. by LU-decomposition with linear convergence with respect

to the linear element size. We showed that spectral properties of the BDIDE depend on the

variable coefficients and shapes of the domains which also influence the convergence of the

Neumann iterations. Similar to the BDIE related to Neumann problem, when the coefficient

gradient is small or moderate (e.g. max
∣∣L∇a

a

∣∣ < 5 in the considered examples, where L is a

characteristic size of the domain) the spectrum is contained in the unit circle, which implies

the Neumann series convergence. Moreover, the number of terms in the Neumann series

sufficient for the error to be lower than a prescribed value, can be estimated in terms of the

maximum eigen-value modulus. For larger coefficient gradient, i.e., when max
∣∣L∇a

a

∣∣ ≥ 5,

some eigen-values appear also outside the unit circle, which can lead to divergence of the

standard Neumann series. For the later case, the eigen-values are generally complex and

can lay outside the unit circle. It is also interesting that real values of the eigen-values are

always less than 1 for the all considered examples even for sufficiently sharp variation of the

coefficient. This might leads to much easier work on mapping the exterior λ-domain to the

exterior of the unit circle, which will lead to a converging modification of the Neumann series

as suggested by (Kantorovich and Krylov (1964)) and (Kublanovskaya (1959)).

Unlike FEM, the system of linear algebraic obtained from boundary-domain integral

equation is fully populated which prevent the use of well elaborated methods for sparsely

populated systems. This fact may influence the computational time especially for higher

number of nodes. Therefore, the standard Neumann iteration method is a good alternative

to the direct methods when max
∣∣L∇a

a

∣∣ < 5.
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Chapter 5

The Localized Boundary-Domain

Integral Equation for Neumann and

Dirichlet Problems

5.1 Introduction

In this chapter, we will discuss the Localized Boundary-Domain Integral Equations (LBDIEs)

related to Neumann and Dirichlet problems. These LBDIEs are obtained by using localized

parametrix Pχ(x, y). In our work, we chose a constant cut-off function χ. We explain the

discretization of the LBDIEs which leads to systems of linear equations. The algebraic

systems of linear equations are then solved by using LU decomposition method.

The advantage of LBDIE is in the possibility to reduce it to a linear algebraic sparsely

populated system. Therefore, the time taken for calculation will be shorter than for fully

populated system obtained from non-localised BDIE.

From our numerical experiments shown in this chapter, it will be seen that the maximal

eigen-values for the LBDIEs’ operators related to both Neumann and Dirichlet problems are

not contained in a unit circle, therefore the Neumann problem diverges.
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5.2 Localized Boundary-Domain Integral Equations

The idea to reduce the fully populated linear algebraic equations obtained from boundary-

domain integral equation to a sparsely system of linear algebraic equations is discussed in

(Mikhailov (2002)). Thus, we can consider the localized parametrix

Pχ(x, y) = χ(x, y)P (x, y), (5.1)

where χ(x, y) is a cut-off function such that χ(y, y) = 1 and χ(x, y) = 0 at x not belonging

to a localisation domain ω(y). The localized parametrix Pχ(x, y) has the same singularity

as parametrix P (x, y) at x = y but it is non-zero only on the localisation domain ω(y).

Since Pχ(x, y) is a parametrix for the operator L in (3.1), it is a solution of the following

equation:

LxPχ(x, y) = δ(x− y) +Rχ(x, y), (5.2)

where δ(x− y) is the Dirac delta function and the remainder Rχ(x, y) is defined as

Rχ(x, y) = R(x, y)− Lx((1− χ)P ).

The third Green identity localized on the intersection ω(y) ∩ Ω and on its boundary

∂[ω(y) ∩ Ω] is as follows:

c(y)u(y) −
∫
w(y)∩∂Ω

u(x)TxPχ(x, y) dΓ(x) +

∫
w(y)∩∂Ω

Pχ(x, y)Tu(x) dΓ(x)

−
∫
Ω∩∂ω(y)

u(x)TxPχ(x, y) dΓ(x) +

∫
Ω∩∂ω(y)

Pχ(x, y)Tu(x) dΓ(x)

+

∫
w(y)∩Ω

Rχ(x, y)u(x) dΩ(x) =

∫
w(y)∩Ω

Pχ(x, y)f(x) dΩ(x), y ∈ Ω. (5.3)

We choose the cut-off function χ as

χ(x, y) =

 1, x ∈ ωy,

0, x /∈ ωy.
(5.4)

Therefore, we have,

Pχ(x, y) =

 P (x, y), x ∈ ωy,

0, x /∈ ωy,
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and

Rχ(x, y) =

 R(x, y), x ∈ ωy,

0, x /∈ ωy‘.

However, this cut-off function χ(x, y) is not smooth in x ∈ Rn which results in appearing

the third and forth integrals in (5.3).

5.2.1 Localized Boundary-Domain Integral Equation Method for Neu-

mann Problem

For Neumann problem, after imposing in (5.3)) the Neumann boundary condition, Tu(x) =

t(x), x ∈ ∂Ω, the LBDIE can be written as

c(y)u(y) −
∫
∂ω(y)

u(x)TxPχ(x, y) dΓ(x) +

∫
Ω∩∂ω(y)

Pχ(x, y)Tu(x) dΓ(x)

+

∫
ω(y)∩Ω

Rχ(x, y)u(x) dΩ(x) = −
∫
ω(y)∩∂Ω

Pχ(x, y)t(x) dΓ(x)

+

∫
ω(y)∩Ω

Pχ(x, y)f(x) dΩ(x), y ∈ Ω. (5.5)

The Neumann problem is not unconditionally solvable, and when it is solvable, its solution

can only be unique up to an additive constant. These properties are inherited by the BDIE,

cf. (Chkadua et al. (2011a)).

As in Chapter 3, we add the perturbation operator in (3.9) but to the LBDIE for PDE

of Neumann problem.

Therefore, we get the following perturbed LBDIE:

c(y)u(y) +
1

|∂Ω|

∫
∂Ω
u(x) dΓ(x)−

∫
ω(y)

u(x)TxPχ(x, y) dΓ(x)

+

∫
Ω∩∂ω(y)

Pχ(x, y)Tu(x) dΓ(x) +

∫
ω(y)∩Ω

Rχ(x, y)u(x) dΩ(x)

= −
∫
ω(y)∩∂Ω

Pχ(x, y)t(x) dΓ(x)

+

∫
ω(y)∩Ω

Pχ(x, y)f(x) dΩ(x), y ∈ Ω. (5.6)

By applying interpolation to equation (5.6) and placing the collocation point xi for xi ∈ Ω

at all J nodes of the mesh, we obtain the following system of J linear algebraic equations
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for J unknowns u(xj), assuming that ω(xj) ⊂ Ω for any xi and ∂ω(xi) consists of only the

element boundaries i.e. do not cut through the elements,

c(xi)u(xi) +
∑

xj∈ω(xi)

Kiju(x
j) +

∑
xj∈∂Ω

◦
Kiju(x

j) = Qi +Di, x
i ∈ Ω, (5.7)

where Kij ,
◦
Kij , Qi and Di are defined as follows:

Kij = −
∫
∂ω(xi)

ϕj(x)TxPχ(x, x
i) dΓ(x) +

∫
Ω∩∂ω(xi)

Pχ(x, x
i)

[
a(x)

∂ϕj(x)

∂ν(x)

]
dΓ(x)

+

∫
ω(xi)

ϕj(x)Rχ(x, x
i) dΩ(x), if xj ∈ ω(xi), (5.8)

Kij = 0, if xj /∈ ω(xi), (5.9)

◦
Kij =

1

|∂Ω|

∫
∂Ω
ϕj(x) dΓ(x), (5.10)

Qi = −
∫
ω(xi)∩∂Ω

Pχ(x, x
i)t(x) dΓ(x), (5.11)

Di =

∫
ω(xi)

Pχ(x, x
i)f(x) dΩ(x). (5.12)

Since ϕj are nonzero only on ω(xj), we can write (5.8)- (5.12) as follows:

Kij = −
∑

γl⊂∂ωl(xi)∩ω(xj)

∫
γl

ϕj(x)TxPχ(x, x
i) dΓ(x)

+
∑

γl⊂∂ωl(xi)∩ω(xj)∩Ω

∫
γl

Pχ(x, x
i)

[
a(x)

∂ϕj(x)

∂ν(x)

]
dΓ(x)

+
∑

Ωm⊂ω(xi)∩ω(xj)

∫
Ωm

ϕj(x)Rχ(x, x
i) dx, (5.13)

◦
Kij =

1

|∂Ω|
∑

∂Ωl⊂ω(xj)

∫
∂Ωl

ϕj(x) dΓ(x), (5.14)

Qi = −
∑

∂Ωl⊂ω(xi)

∫
∂Ωl

Pχ(x, x
i)t(x) dΓ(x), (5.15)

Di =
∑

Ωm⊂ω(xi)

∫
Ωm

Pχ(x, x
i)f(x) dx. (5.16)

Here, γl is the discretized localisation boundaries.

Therefore, we can write equations (5.13)-(5.16) as follows:

Kij = −
∑

γl⊂∂ωl(xi)∩ω(xj)

Al
n(j,l),i
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+
∑

γl⊂∂ωl(xi)∩ω(xj)∩Ω

C l
N(j,l),i +

∑
Ωm⊂ω(xi)∩ω(xj)

Gm
N(j,m),i,

◦
Kij =

1

|∂Ω|
∑

∂Ωl⊂ω(xj)

Bl
n(j,l),

Qi = −
∑

∂ωl⊂ω(xi)

F l
i ,

Di =
∑

Ωm⊂ω(xi)

Hm
i ,

where n(j, l) is the local number of the node xj on the boundary element ∂Ωl and N(j,m)

is the local number of the node xj on the domain element Ωm.

Expressions Gm
N,i, A

l
n,i, S

q
n,i, C

q
N,i, F

l
i and Hm

i are given as

Al
n,i =

∫ 1

−1
Ψn(η)TxPχ(x(η), x

i)Jl1(η) dη, (5.17)

C l
N,i =

∫ 1

−1
Pχ(x(η), x

i)

a(x(η))
 2∑

p=1

2∑
k=1

∂ΦN (ξ)

∂ξk

∂ξk
∂xp

∣∣∣∣
ξ=ξ(η)

νp(x(η))

Jl1(η) dη,
(5.18)

Gm
N,i =

∫ 1

−1

∫ 1

−1
ΦN (ξ)Rχ(x(ξ), x

i)Jm2(ξ) dξ1dξ2, (5.19)

F l
i =

∫ 1

−1
Pχ(x(η), x

i)t(x(η))Jl1(η) dη, (5.20)

Hm
i =

∫ 1

−1

∫ 1

−1
Pχ(x(ξ), x

i)f(x(ξ))Jm1(ξ) dξ1dξ2. (5.21)

In the following, we will present the numerical results of (5.7) solved by direct method

(LU decomposition method).

We will use quadratic semi-analytic method to handle the influence of singularity 1/r

when the collocation point xi is near to the node that belongs to the integration element.

This is due to improve convergence of the relative error for the approximate solutions as the

number of nodes J increases.

Al
1i =

∫ 1

−1
Ψ1(η)TxP (x

i, x(η))Jl1(η) dη

=

∫ 1

−1
Ψ1(η)

(
a(x(η))

(
(x1 − xi1)ν1(x) + (x2 − xi2)ν2(x)

) 1

2πr2a(xi)

)
Jl1(η) dη,
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Al
2i =

∫ 1

−1
Ψ2(η)TxP (x

i, x(η))Jl1(η) dη

=

∫ 1

−1
Ψ2(η)

(
a(x(η))

(
(x1 − xi1)ν1(x) + (x2 − xi2)ν2(x)

) 1

2πr2a(xi)

)
Jl1(η) dη,

where νk(x), k = 1, 2, are constant on integration interval.

From (3.25) and (3.26), the linear interpolation of a(x(η)) can be written as

a(x(η)) ≈ Ψ1(η)a(x(−1)) + Ψ2(η)a(x(1)),

which implies

Ψ1(η)a(x(η)) ≈ (Ψ1(η))
2 a(x(−1)) + Ψ1(η)Φ2(η)a(x(1)),

Ψ2(η)a(x(η)) ≈ Ψ1(η)Φ2(η)a(x(−1)) + (Ψ2(η))
2 a(x(1)).

The quadratic semi-analytic formulas are arranged as follows:

Al
1i = Gl

B1 −Gl
A1,

Al
2i = Gl

B2 −Gl
A2,

where

Gl
B1 =

∫ 1

−1

(
Ψ1(η)TxP (x

i, x(η))− gb1
)
Jl1(η) dη, (5.22)

Gl
B2 =

∫ 1

−1

(
Ψ2(η)TxP (x

i, x(η))− gb2
)
Jl1(η) dη, (5.23)

GA1 =

∫ 1

−1
gb1Jl1(η) dη

=

∫ 1

−1
(Ψ1(η))

2 a(x(−1))
(
(x1(−1)− xi1)ν1(x) + (x2(−1)− xi2)ν2(x)

) 1

2πr2a(xi)
Jl1(η) dη

+

∫ 1

−1
Ψ1(η)Ψ2(η)a(x(1))

(
(x1(1)− xi1)ν1(x) + (x2(1)− xi2)ν2(x)

) 1

2πr2a(xi)
Jl1(η) dη

111



The Localized Boundary-Domain Integral Equations LBDIE for Neumann Problem

=
a(x(−1))

(
(x1(−1)− xi1)ν1(x) + (x2(−1)− xi2)ν2(x)

)
8πa(xi)

∫ 1

−1
(1− η)2

(
1

r2

)
Jl1(η) dη

+
a(x(1))

(
(x1(1)− xi1)ν1(x) + (x2(1)− xi2)ν2(x)

)
8πa(xi)

∫ 1

−1
(1− η) (1 + η)

(
1

r2

)
Jl1(η) dη,

(5.24)

GA2 =

∫ 1

−1
gb2Jl1(η) dη

=

∫ 1

−1
Ψ1(η)Ψ2(η)a(x(−1))

(
(x1(−1)− xi1)ν1(x) + (x2(−1)− xi2)ν2(x)

) 1

2πr2a(xi)
Jl1(η) dη

+

∫ 1

−1
(Ψ2(η))

2 a(x(1))
(
(x1(1)− xi1)ν1(x) + (x2(1)− xi2)ν2(x)

) 1

2πr2a(xi)
Jl1(η) dη

=
a(x(−1))

(
(x1(−1)− xi1)ν1(x) + (x2(−1)− xi2)ν2(x)

)
8πa(xi)

∫ 1

−1
(1− η) (1 + η)

(
1

r2

)
Jl1(η) dη

+
a(x(1))

(
(x1(1)− xi1)ν1(x) + (x2(1)− xi2)ν2(x)

)
8πa(xi)

∫ 1

−1
(1 + η)2

(
1

r2

)
Jl1(η) dη, (5.25)

where

gb1 = (Ψ1(η))
2

(
a(x(−1))

(
(x1(−1)− xi1)ν1(x) + (x2(−1)− xi2)ν2(x)

) 1

2πr2a(xi)

)
+ Ψ1(η)Ψ2(η)

(
a(x(1))

(
(x1(1)− xi1)ν1(x) + (x2(1)− xi2)ν2(x)

) 1

2πr2a(xi)

)
,

gb2 = Ψ1(η)Ψ2(η)

(
a(x(−1))

(
(x1(−1)− xi1)ν1(x) + (x2(−1)− xi2)ν2(x)

) 1

2πr2a(xi)

)
+ (Ψ2(η))

2

(
a(x(1))

(
(x1(1)− xi1)ν1(x) + (x2(1)− xi2)ν2(x)

) 1

2πr2a(xi)

)
.

The integrals GB1 and GB2 in (5.22) and (5.23), respectively, are calculated by using

Gaussian quadrature and integrals GA1 and GA2 in equations (5.24) and (5.25), respectively,

will be calculated analytically. The integrals GA1 and GA2 can be written as

GA1 =
a(x(−1))

(
(x1(−1)− xi1)ν1(x) + (x2(−1)− xi2)ν2(x)

)
8πa(xi)

gA1

+
a(x(1))

(
(x1(1)− xi1)ν1(x) + (x2(1)− xi2)ν2(x)

)
8πa(xi)

gA2,

GA2 =
a(x(−1))

(
(x1(−1)− xi1)ν1(x) + (x2(−1)− xi2)ν2(x)

)
8πa(xi)

gA2
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+
a(x(1))

(
(x1(1)− xi1)ν1(x) + (x2(1)− xi2)ν2(x)

)
8πa(xi)

gA3,

where

gA1 =

∫ 1

−1

(1− η)2

r2
ds

dη
dη, (5.26)

gA2 =

∫ 1

−1

(1 + η)(1− η)

r2
ds

dη
dη, (5.27)

gA3 =

∫ 1

−1

(1 + η)2

r2
ds

dη
dη. (5.28)

Next, we will show how we calculate integrals gA1, gA2 and gA3 analytically.

Using (3.46), we can write (5.26)-(5.28) as

gA1 =

∫ 1

−1

(
(1− η)2

h2 + (d− s)2

)
ds

dη
dη, (5.29)

gA2 =

∫ 1

−1

(
(1 + η)(1− η)

h2 + (d− s)2

)
ds

dη
dη, (5.30)

gA3 =

∫ 1

−1

(
(1 + η)2

h2 + (d− s)2

)
ds

dη
dη. (5.31)

The analytic solutions for integrals gA1, gA2 and gA3 in (5.29) -(5.31) are

gA1 =
1

W 4
2

(
8Jl1(η)

(
W 2

2 − (W 2
1W

2
2 −W 4

2 + 2W 2
2W3 − 2W 2

3 )f1√
W 2

1W
2
2 −W 2

3

+ (−W 2
2 +W3)f2

))
,

gA2 =
(4Jl1(η)

(
2(W 2

1W
2
2 + (W 2

2 − 2W3)W3)f1 +
√
W 2

1W
2
2 −W 2

3

(
−2W 2

2 + (W 2
2 − 2W3)f2

))
W 4

2

√
W 2

1W
2
2 −W 2

3

,

gA3 =
(8Jl1(η)(((−W 2

1 )W
2
2 + 2W 2

3 )f1 +
√
W 2

1W
2
2 −W 2

3 (W
2
2 +W3f2)))

(W 4
2

√
W 2

1W
2
2 −W 2

3 )
,

where

Jl1(η) =
ds

dη
=
W2

2
,

f1 = ArcTan

[√
W 2

1W
2
2 −W 2

3

(W 2
1 −W3)

]
,

f2 = ln

[
(W 2

1 +W 2
2 − 2W3)

W 2
1

]
,

and W1, W2 and W3 are defined in (3.33)-(3.35).
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5.2.2 Numerical Examples

In the following, we will presents the numerical results of the perturbed LBDIE related with

Neumann problem (5.6) on several test domains. For easier comparison, we still use the same

test regions as in previous test examples on BDIE related to Neumann and Dirichlet problems

in Chapter 3 and Chapter 4 i.e. a square domain, a circular domain and a parallelogram.

The geometry of the three test domains are shown in Figure 3.4.

For the numerical experiments, we also consider the interior Neumann problems that

have been used in Chapter 3 i.e. Tests 2 and 7.

All the numerical computations in the implementations are done using Fortran package

with the double precision. All the linear algebraic system (5.7) obtained from perturbed

LBDIE for Neumann problem (5.6) will only be solved by using direct method. The Neumann

iteration method’s issues will be discussed later in the eigen-value section.

In the following, we present the figures of numerical results i.e. the relative error for

the approximate solution ϵ(u) and and the relative errors for its gradient ϵ(∇u), as given in

(3.67) and (3.68).

The comparative results for relative error of approximate solutions uapprox obtained by

LU decomposition method and their gradient ∇uapprox versus number of nodes J for Test 2

and Test 7 on are shown in Figures 5.1-5.3.
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Figure 5.1: Relative errors of the approximate solutions (a) and their gradients (b), on the square vs.

number of nodes J .
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Figure 5.2: Relative errors of the approximate solutions (a) and their gradients (b), on circular test domain

vs. number of nodes J .
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Figure 5.3: Relative errors of the approximate solutions (a) and their gradients (b), on parallelogram vs.

number of nodes J .
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We find the power function that fits the dependence of the error ϵ(u) on the number

of nodes J such that ϵ ∼ J−q/2 ∼ hq. For Test 2 in our numerical experiments, we get

q ∼ 1 for square and parallelogram domains. This convergence rate is the same as for the

non-localised BDIE related with Neumann problem in Chapter 3. For circular domain, we

get slightly slower convergence i.e. q ∼ 0.7. For Test 7, we obtained q ∼ 0.9 for square

domain, q ∼ 0.8 for circle and q ∼ −0.9 for parallelogram.

For the gradient error we similarly have ϵ(∇u) ∼ J−q′/2 ∼ hq
′
, where q′ ∼ 0.05 for the

square and q′ ∼ −1.4 for circular domains and q′ = −0.4 for the parallelogram domain in

Test 2, while q′ = 0.4 for the square and q′ = 0.3 for circular domains and q′ = −0.9 for the

parallelogram domain in Test 7.

The accuracy in Test 2 is much higher than in Test 7 since the implemented piece-wise

bi-linear interpolation is exact on the linear exact solution, and only the integral operator

approximation error, related with the accuracy of the numerical integration, is involved.

In the Test 7, on the contrary, the piece-wise bi-linear interpolation of the quadratic exact

solution gives its contribution in the total error.

Eigen-values for Discrete Perturbed Neumann LBDIE Operator

In this subsection, we will investigate the spectral properties for the discrete LBDIE operators

in Tests 1-6. When coefficient a(x) = x22, we will see that the ten largest moduli of eigen-

values for the operator K5 for the discrete LBDIE operators in Test 2 are generally real and

lay outside the unit circle. Then, we check whether this also holds for constant coefficient

and other variable coefficients of the PDE as in Tests 1-6.

In order to apply Neumann iteration method in solving equation (5.7), we arrange (5.7)

such that

(I −K5)u = F , (5.32)

where

I = δij ,

u = u(xj),
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F = Qi +Di,

K5 = −cij + δij −Kij −
◦
Kij . (5.33)

This new version enable us to apply the Neumann series expansion

u =

N∑
n=0

Kn
5F . (5.34)

We denote

g0 = F ,

gn = K5gn−1,

such that the Neumann series expansion (5.34) can be written as

u =

N∑
n=0

Kn
5F = F +

N∑
n=1

gn. (5.35)

However, in our numerical results, the Neumann series expansion (5.35) failed to converge

to the corresponding results obtained by LU decomposition method. To check why this

happens, we will find the eigen-values of the matrix K5.

Let λ̃k, k = 1, 2, · · · J , denote the eigen-values of the matrix K5 i.e. the numbers λ̃k for

which the perturbed homogeneous equation

(λ̃kI −K5)u = 0

has non-trivial solutions.

Figure 5.4 shows the first ten eigen-values λ̃k of the matrix K5 in (5.33) for Test 2.

These ten eigen-values appear to be real for the square and circle and have an imaginary

part less than 0.05 for the parallelogram.

The maximal modulus of the eigen-values of the matrix K5 i.e. λ̃1 on Figures 5.4a-5.4c

gives the spectral radius of the matrix K5 influencing the behavior of the Neumann series

on operator K5. In all our exampless the radii are greater than one which explains why

Neumann series diverges.
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In order to investigate the influence of the coefficient a(x) on the maximum eigen-values

of the perturbed matrix K5, we calculated them for a(x) = xk2 with different 0 ≤ k ≤ 10 as

in Tests 1- 6 in Chapter 3. (Note that our previous examples were calculated for k = 2 i.e.

for Test 2.)

The results of influence of the coefficient a(x) are presented in Figure 5.5 for the finest

meshes, J = 1089 for the square and parallelogram, and J = 2113 for the circular domain.

For the overlapping eigen-values seen on the figures our calculation shown that their

eigen-functions are linearly independent i.e. the eigen-values are geometrically multiple.

In our numerical experiments, the eigen-values of the discrete LBDIE operator related

with Neumann problem are real and lay outside the unit circle. This means that the standard

Neumann series for the LBDIE with such constant or variable coefficients will generally

diverge.
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Figure 5.4: Eigen-values of the matrix K5 vs. the number of nodes J .
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2 .

122



The Localized Boundary-Domain Integral Equations LBDIE for Dirichlet Problem

5.2.3 Localized Boundary-Domain Integral Equation for Dirichlet Prob-

lem

For Dirichlet problem, we impose the Dirichlet boundary condition, u(x) = u(x), x ∈ ∂Ω,

in the localised third Green identity (5.3) and obtain

c(y)u(y) −
∫
Ω∩∂ω(y)

u(x)TxPχ(x, y) dΓ(x) +

∫
∂ω(y)

Pχ(x, y)Tu(x) dΓ(x)

+

∫
ω(y)∩Ω

Rχ(x, y)u(x) dΩ(x) =

∫
ω(y)∩∂Ω

u(x)TxPχ(x, y) dΓ(x)

+

∫
ω(y)∩Ω

Pχ(x, y)f(x) dΩ(x), y ∈ Ω. (5.36)

Partly using the Dirichlet in out-of-integral term, we obtain the modification of equation

(5.36) given below.

u(y) −
∫
Ω∩∂ω(y)

u(x)TxPχ(x, y) dΓ(x) +

∫
∂ω(y)

Pχ(x, y)Tu(x) dΓ(x)

+

∫
ω(y)∩Ω

Rχ(x, y)u(x) dΩ(x)

= (1− c(y))u(y) +

∫
ω(y)∩∂Ω

u(x)TxPχ(x, y) dΓ(x)

+

∫
ω(y)∩Ω

Pχ(x, y)f(x) dΩ(x), y ∈ Ω. (5.37)

By applying interpolation to u in equation (5.37) and satisfying the equation at the

collocation points xi ∈ Ω at all J nodes of the interpolation mesh, we obtain the system of

J linear algebraic equations for J unknowns u(xj),

u(xi) +
∑

xj∈ω(xi)

KD
ij u(x

j) = (1− c(xi))u(xi) +QD
i +DD

i , x
i ∈ Ω, (5.38)

where KD
ij , Q

D
i and Di are defined as follows:

KD
ij = −

∫
Ω∩∂ω(xi)

ϕj(x)TxPχ(x, x
i) dΓ(x) +

∫
∂ω(xi)

Pχ(x, x
i)

[
a(x)

∂ϕj
∂ν(x)

]
dΓ(x)

+

∫
ω(xi)∩Ω

ϕj(x)Rχ(x
i, x) dΩ(x), (5.39)

QD
i =

∫
ω(xi)∩∂Ω

u(x)TxPχ(x, x
i) dΓ(x), (5.40)
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DD
i =

∫
ω(xi)∩Ω

Pχ(x, x
i)f(x) dΩ(x). (5.41)

We then can write (5.39)- (5.41) as follows:

KD
ij = −

∑
γl⊂∂ωl(xi)∩ω(xj)

∫
γl

ϕj(x)TxPχ(x, x
i) dΓ(x)

+
∑

γl⊂∂ωl(xi)∩ω(xj)∩Ω

∫
γl

Pχ(x, x
i)

[
a(x)

∂ϕj(x)

∂ν(x)

]
dΓ(x)

+
∑

Ωm⊂ω(xi)∩ω(xj)

∫
Ωm

ϕj(x)Rχ(x, x
i) dΩ(x), (5.42)

QD
i =

∑
∂Ωl⊂ω(xi)

∫
∂Ωl

u(x)TxPχ(x, x
i) dΓ(x), (5.43)

DD
i =

∑
Ωm⊂ω(xi)

∫
Ωm

Pχ(x, x
i)f(x) dΩ(x). (5.44)

Therefore, we can write equations (5.42)-(5.44) as follows:

KD
ij = −

∑
γl⊂∂ωl(xi)∩ω(xj)

Al
n(j,l),i +

∑
γl⊂∂ωl(xi)∩ω(xj)∩Ω

C l
N(j,l),i

+
∑

Ωm⊂ω(xi)∩ω(xj)

Gm
N(j,m),i,

QD
i =

∑
∂Ωl⊂ω(xi)

F̃ l
i ,

DD
i =

∑
Ωm⊂ω(xi)

Hm
i ,

where Al
N,i, C

q
N,i, G

m
N,i, and H

m
i are given in (5.17)- (5.20), while F̃ l

i ,

F̃ l
i =

∫ 1

−1
u(x(η))TxP (x(η), x

i)Jl1(η) dη.

Defining

F (xi) = (1− c(xi))u(xi) +QD
i +DD

i ,

we can then write (5.38) as

u(xi) +
∑

xj∈ω(xi)

KD
ij u(x

j) = F (xi) (5.45)
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Similar to the case of non-localised BDIDE, instead of taking the collocation point xi

for xi ∈ Ω at all J nodes of the mesh, we can take the collocation point xi only for xi ∈ Ω

at J − JD nodes of the mesh during the interpolation process. Here JD is the number of

boundary nodes of the mesh.

For the rest of the collocation points i.e. xi ∈ ∂Ω, the solution u(xi) is known from the

boundary condition, u(xi) = u(x) on ∂Ω.

Therefore
∑

xj∈ω(xi)

KD
ij u(x

j) in (5.38) can be splited to two parts i.e.

∑
xj∈ω(xi)

KD
ij u(x

j) =
∑

xj∈ω(xi)∩Ω

KD
ij u(x

j) +
∑

xj∈ω(xi)∩∂Ω

KD
ij u(x

j).

The second part
∑

xj∈ω(xi)∩∂Ω
KD

ij u(x
j) can be transferred to the right-hand side.

Thus, from (5.38) we obtain the system of J − JD linear algebraic equations for J − JD

unknowns u(xj), as in the following:

u(xi) +
∑

xj∈ω(xi)∩Ω

KD
ij u(x

j) = (1− c(xi))u(xi)−
∑

xj∈ω(xi)∩∂Ω

KD
ij u(x

j) +QD
i +DD

i , x
i ∈ Ω,

(5.46)

where Kij , Q
D
i and DD

i are defined as in (5.39) - (5.41).

5.2.4 Numerical Examples

Numerical Solution for System (5.46)

In the following discussion, we show the numerical results of the LBDIE discretisation (5.46)

i.e. by taking the collocation points xi only for xi ∈ Ω at J − JD nodes of the mesh. All

the numerical computations are done using Fortran with the double precision. The linear

algebraic system (5.46) is solved by using direct method only.

In the following figures, we present the relative errors for the approximate solution ϵ(u)

and and for its gradient ϵ(∇u), as defined in (3.67) and (3.68).

The comparative results for relative errors of approximate solutions uapprox obtained by

LU decomposition method and their gradient ∇uapprox versus number of nodes J for Test 2

and Test 7 are shown in Figures 5.6- 5.8.
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Figure 5.6: Relative errors of the approximate solutions (a) and their gradients (b), on the square vs.

number of nodes J .
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Figure 5.7: Relative errors of the approximate solutions (a) and their gradients (b), on circular test domain

vs. number of nodes J .
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Figure 5.8: Relative errors of the approximate solutions (a) and their gradients (b), on parallelogram vs.

number of nodes J .
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The numerical experiments for LBDIE related with Dirichlet problem of equation (5.46)

shows that no convergence is achieved as the number of nodes J increases. For Test 2, given

that ϵ(u) ∼ J−q/2 ∼ hq, we obtain q ∼ −1.3 for square, q ∼ −2 for circular domain and

q ∼ −2.3 for parallelogram. For Test 7, we get q ∼ −0.6 for square, q ∼ −0.02 for circular

domain and q ∼ −0.7 for parallelogram.

These results might be due to the round-off error during the implementing of Test 2. For

Test 7, we believe that the diverges of the error ϵ(u) is because of not sufficient approximation

since we only used linear interpolation for boundary integrals.

This seems to be important even for square domain since interpolation functions are

not only to describe the geometry of the elements but also approximate functions over the

elements.

Since the gradient error ϵ(∇u) corresponds to the error ϵ(u), we might expect the diver-

gence of the gradient error ϵ(∇u) with the increase of J .

Indeed, given ϵ(∇u) ∼ J−q′/2 ∼ hq
′
, we have q′ ∼ −1.6 for the square, q′ = −1.5 for

circle and q′ = −3 for parallelogram in Test 2.

In Test 7, we have q′ ∼ −0.4 for the square, q′ = −0.6 for circle and q′ = −1 parallelogram

The eigen-values of the operator in equation (5.46) can tend to infinity by the same reason

as for the non-localised equation (4.5). More interesting would be to analyse the eigen-values

of the operator in equation (5.45).

Numerical Solution for System (5.45)

In this subsection, we will present the numerical results of the discrete LBDIE (5.45) obtained

by taking the collocation points xi for xi ∈ Ω i.e. at all J nodes. Similar to Section 5.2.4,

the system of algebraic equations is solved by using direct method only. However, we have

now J algebraic equations instead of only J − JD for system (5.46).

In the following, we present the graphs for the relative errors for the approximate solution

ϵ(u) and and for its gradient ϵ(∇u). The comparative results for relative error of approximate

solutions uapprox obtained by LU decomposition method and their gradient ∇uapprox versus

number of nodes J for Test 2 and Test 7 are shown in Figures 5.9-5.11.
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Figure 5.9: Relative errors of the approximate solutions (a) and their gradients (b), on the square vs.

number of nodes J .
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Figure 5.10: Relative errors of the approximate solutions (a) and their gradients (b), on circular test domain

vs. number of nodes J .
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Figure 5.11: Relative errors of the approximate solutions (a) and their gradients (b), on parallelogram vs.

number of nodes J .
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As in Neumann LBDIE, the numerical experiments for Dirichlet LBDIE (5.45) shows

that we achieved convergence as the number of nodes J increases for square domain and

parallelogram for Test 2. For Test 2, given that ϵ(u) ∼ J−q/2 ∼ hq, we obtain q ∼ 3 for

square, q ∼ 3.4 for circular domain and q ∼ 2.4 for parallelogram. For Test 7, we get

q ∼ −0.04 for square, q ∼ −0.12 for circular domain and q ∼ −0.2 for parallelogram.

Since the gradient error ϵ(∇u) is related to the error ϵ(u), we might expect the divergence

of the gradient error ϵ(∇u) with the increasing J for all regions in Test 7. Similarly, given

ϵ(∇u) ∼ J−q′/2 ∼ hq
′
, we have q′ ∼ 2 for the square, q′ = −1.5 for circle and q′ = 1.4 for

the parallelogram in Test 2. For Test 7, we have q′ ∼ −0.6 for the square and circle while

q′ = −0.04 parallelogram.

Eigen-values for the System (5.45)

In solving equation (5.45) by using Neumann series expansion, we write (5.45) as

(I −K6)u = F ,

where

I = δij ,

u = u(xj),

K6 = −KD
ij ,

F = F (xi).

This arrangement enables us to apply the Neumann series expansion as in the following:

u =

N∑
n=0

Kn
6F . (5.47)

We construct gn such that

g0 = F ,

gn = K6gn−1.
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Therefore (5.47) can be written as

u =

N∑
n=0

Kn
6F = F +

N∑
n=1

gn. (5.48)

Our numerical experiments shown that the Neumann series (5.48) diverges for Test 2 and

Test 7 i.e. when a = x22. We will also investigate whether it holds for constant coefficient

and other variable coefficients a(x) of the PDE for Dirichlet problem.

If all eigen-values of the operator K6 belong to the open unit disc, then the Neumann

series in the form of equation (5.48) for a matrix operator K6 converges for any right hand

side.

Let λ̃k, k = 1, 2, · · · J , denotes the eigen-values of the matrix K6 i.e. the numbers λ̃k for

which the homogeneous equation

(λ̃kI −K6)u = 0,

has non-trivial solutions.

In the following experiments, we will see that the conclusion similar to the one that have

been made for perturbed LBDIE of Neumann problem (5.6) in Section 5.2.2 holds also for

LBDIE of Dirichlet problem (5.37).

Figures 5.12-5.14 present the first eigen-values λ̃k of the matrix K6 with the largest

moduli in Test 2 for square, circular and parallelogram domains, respectively.

From the numerical experiments, we can presented the spectral radii of discretize LBDIE

operator related to Dirichlet problem K6 for all the test regions lay outside the unit circle.

Investigating the influence of the coefficient a(x) on the maximum eigen-values of the

matrix operator K6, we calculated them for a(x) = xk2 for k = 0, 2, · · · , 10. The results are

shown in Figure 5.15.

Like in previous chapters, we presented the maximum eigen-values of the operator K6

for the finest meshes on each domains i.e. when J = 1089 for the square and parallelogram

and J = 2113 for circular domain.

For the overlapping eigen-values seen on the figures our calculation shown that their

eigen-functions are linearly independent i.e. the eigen-values are geometrically multiple.
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Note that in all the experiments even for constant coefficient, five/six largest eigen-values

of the operator K6 are all real and the spectral radii λ1 > 1 for all the domains which implies

the diverges of the Neumann iterations.
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Figure 5.12: Eigen-values of the matrix K6 for the square domain vs. the number of nodes J .
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Figure 5.14: Eigen -values of the matrix K6 for the parallelogram vs. the number of nodes J .
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Figure 5.15: The largest eigen-values of the matrix K6 vs k for a(x) = xk
2 .

139



The Localized Boundary-Domain Integral Equations Conclusion

5.3 Conclusion

In this Chapter, we have seen that the BVPs for PDE with variable coefficient can be reduced

to the Localized Boundary-Domain Integral Equations (LBDIEs) related with Neumann and

Dirichlet problems by using localized parametrix Pχ(x, y). The parametrix P (x, y) is not

unique based on the fact that all parametrixes P (x, y) for a differential operator L have the

same singularity at x = y but can differ at other points. We chose the localized parametrix

Pχ(x, y) to be constant when x ∈ ωy and we present the discretization process in solving the

LBDIEs numerically. The discretization of the LBDIEs led to systems of linear equations

which is then solved by using direct method (LU decomposition method).

No theoretical analysis about the spectral properties of the LBDIEs operators related to

the Neumann and Dirichlet problems is available, but we can conclude from the numerical

experiments that spectral radii of discretize LBDIEs’ operators exceed 1 and mainly real

numbers. This is not only occurs when we deal with BVP for PDE with variable coefficient

but also for BVP for PDE with constant coefficient. Therefore, for LBDIEs’ operators, the

Neumann iteration generally does not converge regardless of the coefficient. Hence, the direct

methods seem to be more appropriate in solving the system of algebraic equations obtained

from LBDIEs.
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Conclusions and Future Research

The research that have been carried out in this thesis includes: (i) solving numerically the

discretized BDIEs and LBDIEs related to the Neumann and Dirichlet boundary value prob-

lem for a scalar elliptic PDE with variable coefficient by using direct method and iteration

method when it converges; (ii) analyzing the behavior of eigen-values of the corresponding

discrete BDIEs and LBDIEs operators for a scalar elliptic PDE with several different vari-

able coefficients by taking the effect of the maximal eigen-values of the discrete BDIEs and

LBDIEs.

First, we considered Boundary-Domain Integral Equations of the Neumann and Dirichlet

value problems for PDE with variable coefficient. The reduction of the BVPs to BDIEs is

possible by using a parametrix which is more widely available than a fundamental solution.

We made an overview on how we discretized the boundary ∂Ω and the domain Ω with linear

boundary element and quadrilateral domain elements, respectively. Assembling proses of the

element contributions obtained from the integration of each element to a global matrix based

on the relation between local nodes and global nodes were explained. Three test domains,

square, circular, and parallelogram that were used in all the numerical experiments in all

chapters were introduced.

The BDIE related to Neumann problem was reduced to a uniquely solvable one by adding

an appropriate perturbation operator. The numerical experiments on the perturbed BDIE

related to the Neumann problem for PDE with variable coefficient was presented in Chapter
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3 and the numerical experiments on BDIE related to the Dirichlet problem for PDE with

variable coefficient was reported in Chapter 4. The linear algebraic system obtained from

BDIE (discretised BDIE) related to Neumann problem was solved by the Neumann iterations

and LU decomposition method. The numerical examples illustrated that high accuracy can

be achieved.

The spectral properties obtained numerically from the discrete BDIE operator were also

presented. We also discovered that the eigen-values essentially depend on the coefficient

function a(x). Detailed analysis of the discrete Neumann BDIE eigen-values demonstrated

that when the PDE coefficient moderately varies with coordinates i.e. when the coefficient

gradient is small or moderate (e.g. max
∣∣L∇a

a

∣∣ < 5 in the considered examples, where L

is a characteristic size of the domain) the spectrum is contained in the unit circle, which

implies the Neumann series convergence. For max
∣∣L∇a

a

∣∣ ≥ 5, the imaginary part of the

maximal eigen-values exceeded 1 and led to divergence of the Neumann iteration method.

An interesting feature is that the real value of the maximal eigen-values remained less than

1. Following (Kantorovich and Krylov (1964)) and (Kublanovskaya (1959)) one can map the

exterior of this λ-domain to the exterior of the unite circle, which will lead to a converging

modification of the Neumann series. This method looks interesting to be done in the future

studies. Therefore, we can say that the standard Neumann iteration method is a good

alternative to the direct methods, especially when the computer storage and CPU time

needs for the latter become prohibitive.

However, this spectrum property does not hold generally, and when the order of the

coefficient varies such that max
∣∣L∇a

a

∣∣ ≥ 5, some eigen-values appear also outside the unit

circle, which can lead to divergence of the standard Neumann series; in these cases the

modified Neumann series, other iterative (e.g. GMRES) or direct methods will be more

appropriate.

In Chapter 4, we showed the results of numerical implementations on the BDIDE related

to the Dirichlet problem for PDE with variable coefficient. Unlike the BDIE related with

Neumann problem implemented, we had not one but two ways of discretisation. The first

way is by employing the BDIDEs at the collocation points xi for xi ∈ Ω at all J nodes.
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Similar to the BDIE (discretised BDIE) related to Neumann problem in Chapter 3, the

system obtained from BDIDE (discretised BDIE) related to Dirichlet problem is solved by

the Neumann iterations and LU decomposition method. We reported on the maximal eigen-

values of the corresponding discrete BDIE operator obtained numerically as in Chapter 3

for BDIE related with Neumann problem. From the numerical experiments, we obtained

very similar behavior of the eigen-values for discretized Dirichlet BDIDE operator to the

discretized Neumann BDIE operator. The analysis of the discrete Dirichlet BDIDE eigen-

values also demonstrated that when the PDE coefficient moderately varies with coordinates

i.e. when the coefficient gradient is small or moderate (e.g. max
∣∣L∇a

a

∣∣ < 5 in the considered

examples, where L is a characteristic size of the domain) the spectrum is contained in the unit

circle, which implies the Neumann series convergence. For max
∣∣L∇a

a

∣∣ ≥ 5, the imaginary

part of the maximal eigen-values also exceeded 1 and led to divergence of the Neumann

iteration method. The real part of the maximal eigen-values remained less than 1. The

second way in the interpolation process is by employing the BDIDE only at the collocation

points xi ∈ Ω at J − JD nodes of the mesh during the interpolation process where JD is the

number of nodes on the boundary ∂Ω. In this second setting, we only solved the system by

LU decomposition method since the Neumann iterations diverge.

In Chapter 5, we discussed on the Localized Boundary-Domain Integral Equation (LB-

DIE) for PDE of Neumann and Dirichlet problems. The advantage of LBDIE is that after

discretisation its system of linear algebraic equations is sparsely populated. Therefore, the

time taken for calculation of elements of the matrix as well as solving system of equations

is shorter than for fully populated system obtained from non-localised BDIE. The reduction

from the BVPs to the LBDIEs are possible by using a localized parametrix Pχ(x, y). We

chose the cut-off function χ such that χ(x, y) = 1 when x ∈ ωy and χ(x, y) = 0 when x /∈ ωy.

The discretization process of the LBDIEs was explained. We then solved the system of e-

quations by using direct method (LU decomposition method). In the experiments regarding

linear exact solution with the collocation points xi ∈ Ω at J nodes of the mesh, we have

achieved convergence of the relative error as J increases. These linear solution problems were

used to check the spectral radii of discrete LBDIEs’ operator. The experimental results for
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Dirichlet problems regarding linear exact solution by taking the collocation points xi only

for xi ∈ Ω at J − JD nodes of the mesh do not attain converges as J − JD increases due to

the round-off error. In order to achieve the convergence as J − JD increases, one should set

higher precision in the the numerical codes. For the quadratic exact solution for Neumann

and Dirichlet problems, we generally failed to achieve the converges as J increases. This is

due to not enough approximation order as we use only linear and bilinear approximations.

In handling the problem, one should use higher order of approximations.

We can conclude from the numerical experiments that spectral radii of discrete LBDIEs’

operators tested for linear exact solutions are all exceed 1 and relatively real numbers. This

is not only occurs for the LBDIE associated with BVP for PDE with variable coefficient but

also for the LBDIE in case of the constant coefficient. Therefore, for LBDIE operators, we

conclude that the Neumann iterations generally do not converge regardless of the coefficient.

Thus, the direct methods seem to be more appropriate in solving the system of algebraic

equations obtained from the LBDIEs. For the future research, it is beneficial to use spe-

cialized algorithms and data structures that take advantage of the sparse structure of the

matrix. The operations using standard dense matrix structures and algorithms are slow and

may consume large data storage. The sparse data can be compressed, and this compression

can result in significantly less amounts of memory. There are several, iterative and direct

methods available for solving sparse matrix systems. The commonly known iterative meth-

ods for sparse matrix are conjugate gradient method and GMRES. Further improvement on

the numerical implementations can be done by using higher order approximations. The use

of semi-analytic method can also be applied for the domain integrations to replace the duffy

transformations in handling singularity.
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