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Abstract

This thesis investigates different issues related to the issuance of debt by sovereign bodies

such as governments, under uncertainty about the future interest rates. Several dynamic

models of interest rates are presented, along with extensive numerical experiments for cali-

bration of models and comparison of performance on real financial market data. The main

contribution of the thesis is the construction and demonstration of a stochastic optimisation

model for debt issuance under interest rate uncertainty. When the uncertainty is modeled

using a model from a certain class of single factor interest rate models, one can construct

a scenario tree such that the number of scenarios grows linearly with time steps. An opti-

mization model is constructed using such a one factor scenario tree. For a real government

debt issuance remit, a multi-stage stochastic optimization is performed to choose the type

and the amount of debt to be issued and the results are compared with the real issuance.

The currently used simulation models by the government, which are in public domain, are

also reviewed. Apparently, using an optimization model, such as the one proposed in this

work, can lead to substantial savings in the servicing costs of the issued debt.
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Chapter 1

Introduction

Economies follow a complex business cycle, often moving from boom to depression. This

leads to unpredictable variations in the amount of money collected by governments. The

extra expenditure in the form of cash payments over receipts as well as the refinancing of

maturing debt and its cash interest payments causes budget deficits for the governments.

To make sure that the cash payment obligations are met, governments borrow funds in

the form of public debt. The formulation of government debt strategies requires analyzing

a complex dynamic inter-temporal problem. The future costs and risks depend on many

factors including the size and structure of the existing debt and the evolution of the interest

rates. When borrowing to finance the primary net funding requirement the government can

choose from a number of different instruments. Examples include treasury bills, coupon

bonds with fixed or index-linked (such as inflation, GDP and other similar indices) coupons

and retail saving bonds in local or foreign currencies. The government wishes to select the

composition and the maturity structure of its portfolio that minimize the cost of servicing

the debt at a given level of risk. This involves designing the maturity structure of the

sovereign portfolio in such a way that the governments financing costs are kept low and

insulated from macroeconomic shocks. Most of the academic literature on optimal sovereign

debt portfolio emphasizes on the role of the debt management in providing insurance against

shocks as prescribed by the optimal taxation theory with the final goal of stabilizing the

debt-to-GDP ratio. Debt managers should minimize the risk that tax rates will have to be

changed in response to economic developments. While offering many insights, this approach

has few empirical implications. In practice, the majority of government debt managers make

no explicit reference to fiscal policy, focusing instead on the budget-smoothing objective.

The academic perspective on sovereign debt management problem has been tied to

economies of the world since the late 19th century and onwards; see e.g. [13] and [37]. Some

of the first academic papers published on public debt started to appear at the beginning of
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the twentieth century [44], discussing the Italian public debt problem. The first waves of

academic papers on public debt problems came with the great depression era (from 1929

to the late 1930’s) ([18],[72],[100]). The excessively large amount of public debt from the

great depression has left economists to wonder what to do with all the debt [70]. Alternative

solutions were thought with the use of monetary policies with debt management to spare

the owners of the debt financial loss while sparing the population most of the pains due to

high inflation; see [95], [105] and [97] for some early references on this strategies. The 1960’s

saw a sudden rise in the power of central banks in stabilizing inflation [106] and [85].

By the mid 1970’s, the public debt problem changed to be seen as wealth and seen as

a tool to promote budget smoothing. The first models were created then [8], [12], [9], [4]

and [3]. In the 1990’s, the concept of optimal debt management started appearing more fre-

quently [68], [10] and [11]. As the public debts rose to new limits [79], new regulations made

their way [78] , [107], [71] and [61]. With a sudden rise in computer processing power and

memory available, along side increasingly more complex methods of mathematical program-

ming, optimization with public debt management has become viable and appeared [104].

The South Korean debt management problem [52] and the Brazilian debt management

problems [47] are both good examples the use of mathematical programming with public

debt issuance. More complex constraints appeared to better model the Italian problems [1]

and [22]. The Turkish debt problem was modeled in the form of a multi-objective prob-

lem [7]. As the thesis progresses, relevant papers will be cited to subsequent applications.

❏
❏
❏❏❫

✡
✡
✡✡✣

❄

✻

✲

Input Data

Bond Data

Auction

timetable

Computed Data

Yield Curve

Scenarios

Constraints

Auction remit

Cost Functions

Optimization

Output decisions

choice of bond,

amount issued

per auction

Figure 1.1: Optimization process used for the debt issuance problem

The objective of this thesis is to look at the applications of modelling and optimization
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paradigms from operations research for the issuance of sovereign debt. The general objective

is to minimise the total cost of debt issuance under interest rate uncertainty. However this

cannot be done without several measures of risk and restrictions on refinancing costs. Public

debt management is a complex field and the issuance alone is very complicated task. As

such, a number of models have been created and are still being created to better mimic

the actions of debt management offices, with further focus on the underlying mathematics

needed for the modeling of debt creation. We will focus on models of evolution of uncertain

interest rates, their calibration and their use as an input to issuance optimization model.

These models are based on secondary market data. We will also look at macroeconomic

models based on primary economic data. The methodology followed is shown in figure 1.1.

The rest of this thesis is organized as follows (Figure 1.2 above outlines the relationships

between various chapters):

❄

❄ ❄

❄

✲

✲ ✛

❄
✲

Chapter 1

Chapter 2

Chapter 3 Chapter 4 Chapter 5

Chapter 6Chapter 7

Chapter 8

Figure 1.2: Organisation chart of the chapters

• The following chapter will cover some mathematical preliminaries regarding probabil-

ity, stochastic processes and modeling of interest rates. While this chapter introduces

static interest rate models, the next chapter 3 focuses on dynamic interest rate models

which are used in the subsequent chapters.

• In chapter 4, we will use the interest rate models shown in the previous chapter to

generate possible scenarios to forecast future values of bonds.
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• Chapter 5 presents several methods to tackle the multi-stage issuance of public debt

management.

• The mathematical programming using mixed-integer models are defined in chapter 6,

using the scenarios created previously from the methods of chapter 4 and the method

to re-evaluate and back-test the possible solutions from chapter 5.

• chapter 7 is dedicated to simulations for the sovereign debt problem.

Directions for further research as well as a list of my own contributions to the field are

outlined in the concluding chapter.
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Chapter 2

Mathematical preliminaries

In this chapter, we collect together several definitions and background material which is

required for the subsequent chapters. The first section is mostly based on [88] and the

second on [17]. Most of the material in this chapter can be found in many other standard

graduate level textbooks.

2.1 Probability

We wish to define a random variable, for that we will need to define a sample space, a σ-field

and a filtration. Let us begin by defining a sample space.

Definition 1. A sample space is the set of all possible outcomes of an experiment. Well

denote a sample space as Ω.

Next, we define a class of subsets of Ω called a σ-field:

Definition 2. Let X be some set, and 2X symbolically represent its power set. Then a

subset Σ ⊂ 2X is called a σ-field if it satisfies the following three properties:

• Σ is non-empty: ∃A ⊂ XandA ∈ Σ.

• Σ is closed under complementation: If A ∈ Σ, then so is its complement, X\A.

• Σ is closed under countable unions: If A1,A2,A3, ... ∈ Σ, then so is A = A1 ∪ A2 ∪
A3 ∪ · · · .

We should now define a probability measure next:

Definition 3. A function P is a probability measure if it satisfies the following conditions:

• the function P returns values within the interval [0, 1],
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• the function P returns 0 for the empty set, and 1 for the entire space,

• for all countable collections {Ai} of the space, P(
⋃

i∈I Ai) =
∑

i∈I P(Ai).

We can progress to define a probability space:

Definition 4. Let Ω 6= ∅, A ⊆ 2Ω a σ-field on Ω and P be a probability measure on A.

Then (Ω,A,P) is called a probability space.

Finally, we define a filtration:

Definition 5. Let us assume a series of time steps t1, t2, . . ., where we know more a later

times. Therefore we obtain a successively larger σ-field at each time step: σ1 < σ2 < σ3 <

. . .. The set of σ-fields is known as a filtration F .

Filtrations can exist in discrete time and continuous time. We are now in a position to

define a random variables:

Definition 6. If Ω 6= ∅, a random variable X : Ω → E is a measurable function from a

probability space (Ω,F ,P) as long as the probability P[X] satisfies the following conditions:

• {ω ∈ Ω : X(ω) ∈ B} ∈ F holds when B ∈ ε,

• the probability of the events X = +∞ and X = −∞ equals zero.

(E , ε) is called a state space and (Ω,F) is the underlying space.

Definition 7. A stochastic process is a family of random variables (Xt)t∈I from a probability

space (Ω,F ,P) into a state space (E , ε). The set I is the index set of discrete or continuous

time in a discrete or continuous state space.

Remark. A stochastic process (Xn) is said to be adapted to the filtration Fn if (Xn) is

known at time tn.

2.2 Brownian Motion

We will be using continuous time stochastic interest rate models in the subsequent work and

some relevant definitions will be outlined here.

In continuous time, a Brownian motion (usually denoted by Wt) can be defined as such:

Definition 8. A continuous stochastic process W = {Wt : t ≥ 0} is called a Brownian

Motion with start in x ∈ R if the following statements hold:

• W0 = x,
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• the process has independent increments, i.e. for all times 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn

the increments Wt(n)−Wt(n−1),Wt(n−1)−Wt(n−2), · · · ,Wt(2)−Wt(1) are independent

random variables.

• ∀t ≥ 0 and h ≥ 0, the increments Wt+h−Wt are normally distributed with expectation

zero and variance h.

• the function t 7→Wt is almost surely continuous.

The Brownian motion {Wt : t ≥ 0} is said to be a standard Brownian motion if x = 0.

Itô processes represent a more general class of class of stochastic processes than Brownian

motion. They are usually represented by a stochastic differential equation:

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt, (2.1)

where dt and dWt are, respectively, the infinitesimal time increment and the corresponding

Wiener process increment. For a unique time continuous solution to exist for this stochastic

differential equation, the coefficient functions µ(Xt, t) and σ(Xt, t) must satisfy:

|µ(α, t)|+ |σ(α, t)| ≤ C(1 + |α|), (2.2)

|µ(α, t)− µ(β, t)|+ |σ(α, t)− σ(β, t)| ≤ D|α− β|, (2.3)

for some constants C and D over any time t such that: 0 < t < T and X0 a random variable.

Remark. µ and σ may or may not be independent of Xt.

The solution of the stochastic differential equation is:

Xt = X0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs (2.4)

where the second integral is a stochastic integral with respect to Wiener process. More

information of the construction of stochastic integrals with respect to Brownian motion can

be found in [58]. In particular, if σ is independent of Xt and is a deterministic function

of time,
∫ t

0
σ(s)dWs is itself a Gaussian random variable for a fixed t, with mean zero and

variance given by
∫ t

0
σ2(s)ds.

2.2.1 Arbitrage and market assumptions

In mathematical finance, one of the basic assumptions is the perfect market assumption, as

described in [31]:

Definition 9. A market is called perfect if:

7



• there are enough financial assets to be traded.

• financial contracts can be enforced.

• the market allows competitive trading.

• the market is free to access.

• there are no financial constraints.

It is rather obvious that there are no markets that are really perfect in practice. However

for the purpose of modelling financial assets, it is useful to give assumptions on the markets.

There are several fundamental assumptions of mathematical finance (FAMF), that have

been created on perfect markets and complement each other to model asset prices. Three

FAMF are needed in this work, the first one is the arbitrage-free market or no-arbitrage

assumption:

Definition 10. An arbitrage is an opportunity to obtain an instantaneous risk-free profit

by exploiting price discrepancies.

It is assumed that there are no-arbitrage in the secondary markets, as First FAMF.

If arbitrage opportunities arise, they are quickly exploited and cleared out by arbitrageur.

There are many models that allow for arbitrage in the market and some that are arbitrage-

free, as explained in chapter 1. The no-arbitrage assumption implies that two different

assets with identical payoffs and risks must have the same price. The price of an asset is

the preoccupation for an investor seeking a return on investment, which leads us the next

FAMF.

Definition 11. Second FAMF: Every investor attempts to maximize his return on invest-

ment while reducing his risk.

Optimization concerns a particular asset and should not be confused with preference

which is logical choice of an asset out of several. Optimization implies some form of active

asset management and reinvesting to obtain a better return. Optimization may lead to a

portfolio of assets that reduce the overall risk while maintaining a good return on investment.

Definition 12. Third FAMF: Market equilibrium dictates a fair price or equilibrium price

for any future cash flow depending on supply and demand as well as an investor’s preference

for that asset.

This is a principle that implies that the market will revert to an equilibrium as time goes

by. It also enables us to use mean reverting models for risk-free rate estimation.
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2.2.2 Time value of money

Another basic concept in finance relevant in this thesis is the idea of time value of money.

Assume that there exist a risk-free interest rate r per year, and the interest is paid, for a

unit of money, n times along the year. Then the value of that unit of money in t years will

be:

x =
(
1 +

r

n

)nt
, (2.5)

if the interest is paid continuously along the t years then:

x = ert, (2.6)

where x is the value of that unit of money in t years. The value of a unit of money today,

payable t years from now, will be:

d =
(
1 +

r

n

)−nt

, (2.7)

where d is the current value of that unit of money, if interest is compounded n times a year

over t years. If it is continuously compounded, then the discount factor is given by the limit

of the expression in equation 2.7:

d = lim
n→∞

(
1 +

r

n

)−nt

= e−rt. (2.8)

2.2.3 Bond pricing and interest rate dynamics

Bonds are the most commonly traded assets in the world and as of 2010, the bond market

is larger then the equity market representing $95 trillion, of which 43% are government

bonds [76]. Bonds have an average traded volume of $822 billion per trading day in the US

alone [93].

Definition 13. A bond is a debt security issued by governments, corporations or other

entities, where the issuer pays an interest or coupon at regular intervals in time and returns

the principal when the bond is about to expire or maturity.

A bond that doesn’t pay coupons is called zero-coupon bond. Coupons may have a fixed

or floating value, floating coupons are linked to an index such as an inflation rate or GDP

growth rate. They are usually used to finance important projects or activities.

There is a need for issuing public debt regardless of any deficit, in order to support the

need for low risk assets from the financial sector. Bonds are nowadays standard, highly

liquid and tradable securities. Governments bonds can be issued in different currencies as

well:

9



Definition 14. Sovereign debt is debt issued by a national government. It is often considered

a risk-free, as governments have an array of tools to guarantee repayment such as raising

taxes or printing money.

Remark. Debt issued by a non-national body, such as a municipal, regional, state debt

is called sub-sovereign debt. Debt created by supranational institutions such as the World

Bank, Kreditanstalt für Wiederaufbau, Asian Development Bank, European Investment

Bank or the European Financial Stability Facility are also considered sub-sovereign or quasi-

sovereign as the sovereign guarantees remain absent.

Definition 15. A government that issues bonds in the country’s domestic currency is called

a government bond, otherwise it is called a sovereign bond.

There are several ways of measuring the financial return earned by holding a bond:

• a coupon yield is the annual return of owning a bond over a year. Fixed income bonds

have a fixed coupon yield at issuance.

• a current yield is the return the owner of a bond will receive as a percentage of the

current price of the bond.

• a yield to maturity is an estimate of what an investor will receive if the bond is held

to its maturity date relative to its current price.

Let us use the following notations for this section:

• P (t, τk) is the price of a bond maturing at τk at time t.

• R(t, τk) is the annualised interest rate of a unit of currency due at τk at time t.

• rt is the short rate, a continuously compounded, annualized interest rate at which an

entity can borrow money for an infinitesimally short period of time from time t,

• f(t, τj , τk) is the forward rate of a unit of currency lent at τj and due at τk at time t.

• L is the face value of the bond at issuance.

In an arbitrage-free market the following property holds:

(1 +R(t, τk))
τk = (1 +R(t, τj))

τj × (1 + f(t, τj , τk))
τk−τj (2.9)

A zero-coupon bond price, compounded n−times a year, is defined by:

Pn(t, τk) = L× (1 +
r

n
)−n(τk−t) (2.10)

10



as described in section 2.2.2. By taking the limit on the frequency as in the previous section

2.8, the price of a zero-coupon bond becomes:

P (t, τk) = lim
n→∞

L× (1 +
r

n
)−n(τk−t) = L× e−r(τk−t) (2.11)

Assuming that rt is a stochastic process, so is the following integral given by e−
∫ T
t

rsds. The

price of a zero coupon bond is then given by:

P (t, τk) = L× E(e−
∫ T
t

rsds|Ft) (2.12)

where the expected value is computed under appropriate risk neutral measure. This can

also be written as:

P (t, τk) = L× e−R(t,τk)τk (2.13)

which gives us a formula for the yield in terms of bond price:

R(t, τk) = − log(P (t, τk))
τk

. (2.14)

It is easy to see that a coupon bond is just a succession of zero-coupon bonds that discount

the coupon at every payment and the face value L of the bond at maturity. For a class

of models called exponential affine models, R(t, τk) happens to be an affine function of the

instantaneous interest rate rt (also called the short rate) in equation 2.12. We will look in

chapter 3 at exponential affine models in more details.

Definition 16. A yield curve is the relation between the annualized interest rates and the

corresponding time to maturity. In other words, each point on the yield curve gives an

annualized, continuously compounded rate of interest which an investor can expect for a

given time to maturity.

Remark. Yield curves exhibit different shapes in practice:

• Normal yield curve is a monotonous ascending yield curve in time to maturity. A

normal yield curve reflects the market’s expectation to have a greater yield in return

of investing for a longer term and is a sign of a growing economy and rising inflation.

Investors will ask for a higher rate of return on securities with longer maturity dates,

expecting higher interest rates in the near future.

• Flat yield curve is a yield curve where all the maturities have very similar returns.

A flat yield curve reflects uncertainty in the near and long term interest rates. The

market investors are willing to get out of their position in longer investments at the

value of the shorter yield.
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• Humped yield curve is a yield curve where the shorter and longer maturities are similar

but the yields in between vary. Another sign of uncertainty in the markets. Similarly

to the flat yield curve, it is usually a yield curve between a normal and inverted yield

curve.

• Inverted yield curve when the short term yields are higher then the long term yields.

They occur when interest rates are high and expected to fall or when the long term

investment is seen as a lower risk compared to the shorter ones. They reflect an

expectation for the short rate and inflation to drop. It’s usually a negative sign for

investors, with certain economies as exceptions.

• Steep yield curve is a normal yield curve where there is higher rise in returns than found

normally. It reflects a high growth and high inflation economy or a recently recovering

economy. Investors are generally wary of such yield curves as it is unsustainable and

seen as a sign of high risk investments.

Flat and humped yield curves have become rare since the later 1990s as central banks

adopted a policy of pre-announcing interest rate moves several weeks before.

Suppose that a vector of bond prices with maturities τ1, τ2, · · · , τN are available in the

market at each time ti, i = 1, 2, · · · ,M . Now, one can construct a model for future bond

price dynamics simply by looking at the prices at a fixed time instant. Alternatively, one

can look at a time series of a single bond price and construct a model for interest rates.

In markets where prices are consistent with each other and there is no arbitrage, the two

models differ via a process called the price of risk explained in the next subsection. We will

try to model how the yield curves evolve through time in the next chapter.

2.2.4 Price of risk

The price of an asset can be seen as a function of a deterministic part and a stochastic part.

The deterministic part will be called the drift. The drift is the underlying trend of the asset,

usually redirected by some kind of random walk or Brownian motion. The stochastic part

of the underlying asset will be represented by the volatility of the price of the asset. The

volatility is the annual standard deviation of continuously compounded returns of a financial

asset, it can be seen as the intensity of the Brownian motion in the model used to price.

Definition 17. The price of risk, or risk premium, is the excess return given to the investor

for bearing the risk involved by owning the underlying asset, in excess of the risk-free rate.

Let us denote the drift of the underlying asset price at time t as µ(t, τk), the price of

risk as λ(t, τk) and the volatility as σt. for a specific market instrument. In a risk-free

12
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Figure 2.1: Plot of four types of yield curves

investment, the price of risk is nil, so the drift of an asset maturing at τk at time t is:

µ(t, τk) = rt, (2.15)

if rt is the risk-free rate. If the investment carries some risk then:

µ(t, τk) = rt + λ(t, τk)× σt. (2.16)

where σt is the volatility of the market instrument at time t. In practice, this results in

using µ(t, τk) as drift in objective measure (or while looking at data for a fixed τk along a

time series) but using µ(t, τk) + λσ as drift in risk neutral measure (i.e., while looking at

prices of different τk, at the same t). The price of risk will be used in the next section 2.3

and in chapter 3 to calibrate several different dynamic models.

There are models of static yield curves, which are simply parametrized functional re-

lationships between yields and corresponding times to maturity. One of the very popular

ones is the Nelson Siegel model. We will concentrate our attention on dynamic interest

rate models in this thesis, i.e. models which describe the evolution of a yield curve through

time. However, we first look at one of the most popular static models, viz. the Nelson-Siegel

model, and its dynamic generalizations.
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2.3 The Nelson Siegel class of interest rate models

The Nelson-Siegel model is a type of yield curve model and was introduced in 1987 [81], in

the following form:

f(τ) = L+ Se−
λ
τ + C

λ

τ
e−

λ
τ , (2.17)

where f(τ) is the instantaneous forward rate, maturing in τ . The constants L, S,C can be

seen as the level L, slope S and curvature C and λ a constant price of risk. Integrating the

instantaneous forward rate will give us the yield curve:

y(τ, T ) =
1

τ

∫ τ

0

f(u, T )du, (2.18)

The corresponding yield of a zero coupon bond at t maturing at T is:

y(t, T ) = Lt + St

(
1− e−λt(T−t)

λt(T − t)

)
+ Ct

(
1− e−λt(T−t)

λt(T − t)
− e−λt(T−t)

)
, (2.19)

The price of a unit zero-coupon bond with maturity T at time t would simply be:

P (t, T ) = e−y(t,T )(T−t), (2.20)

which is identical to equation 2.13. The Dynamic Nelson-Siegel model (DNS) is characterised

by four time-dependent parameters Lt, St, Ct and λt. The price is simply a discounted

continuously compounded asset, as described in equation 2.8 and 2.13. At any given time

t, it is possible to find the values of these parameters to fit a wide variety of possible shapes

of yield curve from a given set of yields or bond prices. This has made this four parameter

model (where the parameters are independent of time) very popular in practice. Rather

than assuming constant parameters and then re-calibrating the model at each time t (e.g.

daily basis), the dynamic Nelson-Siegel model [24] provides an extension of the original three

factor Nelson Siegel model [80]. This model is then further extended in [36] so that the

transition of the level, slope and curvature are autoregressive and becomes:




Lt − µL

St − µS

Ct − µC


 =




γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33







Lt−1 − µL

St−1 − µS

Ct−1 − µC


+




ηt(L)

ηt(S)

ηt(C)


 (2.21)
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where γij is the real, ith and jth column of the transition matrix Γ, ηt is the white noise of

the transitions. The individual yields can be computed as:




yt(τ1)

yt(τ2)
...

yt(τN )




=




1 1−e−λt(τ1−t)

λt(τ1−t)

(
1−e−λt(τ1−t)

λt(τ1−t) − e−λ(τ1−t)
)

1 1−e−λt(τ2−t)

λt(τ2−t)

(
1−e−λt(τ2−t)

λt(τ2−t) − e−λ(τ2−t)
)

...
...

...

1 1−e−λt(τN−t)

λt(τN−t)

(
1−e−λt(τN−t)

λt(τN−t) − e−λ(τN−t)
)







Lt

St

Ct


+




εt,τ1

εt,τ2
...

εt,τN




(2.22)

where εt,τ is the independent and identically distributed measurement noise for a security

maturing at τ at time t.

A simplified version was later created to estimate multi-country yield curve dynamics in

[34]. The simplified model will be called from here on out, basic dynamic Nelson-Siegel (basic

DNS). It is a two factor version of the standard model described in equations (2.21)-(2.22)

where the transition evolves as:

(
Lt

St

)
=

(
Φ11 Φ12

Φ21 Φ22

)(
Lt−1

St−1

)
+

(
Ut(L)

Ut(S)

)
(2.23)

where φij is a real number and Ut(X) are the disturbances such that:

E[Ug(i)Uh(j)] =

{
(σi)

2, if g = h and i = j,

0, otherwise.
(2.24)

σi corresponds to the standard deviation attributed to the ith factor. The yields are obtained

from the following equation:




yt(τ1)

yt(τ2)
...

yt(τN )




=




1 1−e−λt(τ1−t)

λt(τ1−t)

1 1−e−λt(τ2−t)

λt(τ2−t)

...
...

1 1−e−λt(τN−t)

λt(τN−t)




(
Lt

St

)
+




εt,τ1

εt,τ2
...

εt,τN




(2.25)

where εt,τ is the independent and identically distributed measurement noise for a security

maturing at τ at time t.

One of the issues of the Nelson-Siegel model is that the yield obtained is not arbitrage free

[25]. Some results have been obtained from the original model regarding U.S. treasury yield

curves [82] and more extensive results using the dynamic Nelson-Siegel model ([33], [89]).

A more detailed description of advantages and problems of the Nelson-Siegel class of models

can be found in [45].
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Figure 2.2: Examples of Nelson-Siegel yield curves

2.3.1 Arbitrage-free Nelson-Siegel model

Dynamic Nelson Siegel model described above allows for arbitrage. An arbitrage-free version

of the Nelson-Siegel model is given in [20]. Assuming the state variable Lt, St and Ct are

Markov processes defined on a set of R that satisfies the stochastic differential equation:




dLt

dSt

dCt


 =




KQ1(t)

KQ2(t)

KQ3(t)










θQ1(t)

θQ1(t)

θQ1(t)


−




Lt

St

Ct





 dt+ΣtdW

Q
t , (2.26)

where WQ is a standard Brownian motion in R
n on the filtration (Ft) = {Ft : t ≥ 0}, θQ is

the drift term and KQ are bounded, continuous functions on R
n×n. Σt is the bounded and

continuous volatility matrix at time t. More than three factors are rarely needed to explain

the movements in interest rates, see e.g. [30]. We now prove that risk-free rate is an affine

function:

rt = Lt + St, (2.27)

Proof. The short risk-free rate rt is the equivalent to the instantaneous yield y(t, t). Let’s

consider the Taylor expansion:

e−λt(T−t) =

∞∑

i=0

(−λt(T − t))i

i!
,

= 1− λt(T − t) +
(λt(T − t))2

2
+O(λ3t (T − t)3), (2.28)
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The Taylor expansion of the Nelson-Siegel yield y(t, T ) from 2.19 is:

y(t, T ) = Lt +St

(
1− λt(T − t)

2

)
+Ct

(
λt(T − t)− λ2t (T − t)2

2

)
+O(λ3t (T − t)3), (2.29)

So the limit of the yield y(t, T ) as T tends to t is:

lim
T→t

y(t, T ) = Lt + St. (2.30)

The authors of [20] also propose two arbitrage free models. The first one is the In-

dependent factor Arbitrate Free Nelson-Siegel (AFDNSi) model where the factors evolve

as:




dLt

dSt

dCt


 =




κP11 0 0

0 κP22 0

0 0 κP33










θQ1

θQ2

θQ3


−




Lt

St

Ct





 dt+




σ1 0 0

0 σ2 0

0 0 σ3







dW 1,Q
t

dW 2,Q
t

dW 3,Q
t


 (2.31)

and the yields are:




yt(τ1)

yt(τ2)
...

yt(τN )




=




1 1−e−λτ1

λτ1

(
1−e−λτ1

λτ1
− e−λτ1

)

1 1−e−λτ2

λτ2

(
1−e−λτ2

λτ2
− e−λτ2

)

...
...

...

1 1−e−λτN

λτN

(
1−e−λτN

λτN
− e−λτN

)







Lt

St

Ct


−




κi(τ1)
τ1

κi(τ2)
τ2
...

κi(τN )
τN




+




εt,τ1

εt,τ2
...

εt,τN




(2.32)

where εt,τ is the independent and identically distributed measurement noise for a security

maturing at τ at time t and κi(τ) is defined by:

−κi(τ)

τ
=
σ2
11τ

2

6
− σ2

22

[
1

2λ2
− 1− e−λτ

λ3τ
+

1− e−2λτ

4λ3τ

]

− σ2
33

[
1

2λ2
+
e−λτ

λ2
− τ

e−2λτ

4λ
− 3

e−2λτ

4λ2
(2.33)

− 2
1− e−λτ

λ3τ
+

5

8

1− e−2λτ

λ3τ

]

The second model, the Correlated factor Arbitrage Free Nelson-Siegel (AFDNSc) model,
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evolves as:




dLt

dSt

dCt


 =




κP11 κP12 κP13

κP21 κP22 κP23

κP31 κP32 κP33










θQ1

θQ2

θQ3


−




Lt

St

Ct





 dt+




σ1 0 0

σ21 σ2 0

σ31 σ32 σ3







dW 1,Q
t

dW 2,Q
t

dW 3,Q
t


 (2.34)

and the yields are:




yt(τ1)

yt(τ2)
...

yt(τN )




=




1 1−e−λτ1

λτ1

(
1−e−λτ1

λτ1
− e−λτ1

)

1 1−e−λτ2

λτ2

(
1−e−λτ2

λτ2
− e−λτ2

)

...
...

...

1 1−e−λτN

λτN

(
1−e−λτN

λτN
− e−λτN

)







Lt

St

Ct


−




κc(τ1)
τ1

κc(τ2)
τ2
...

κc(τN )
τN




+




εt,τ1

εt,τ2
...

εt,τN




(2.35)

where εt,τ is the independent and identically distributed measurement noise for a security

maturing at τ at time t.

κc(τ) is defined as follows:

−κc(τ)

τ
=− σ2

1τ
2

6
− (σ2

21 + σ2
2)

[
1

2λ2
− 1− e−λτ

λ3τ
+

1− e−2λτ

4λ3τ

]

− (σ2
31 + σ2

32 + σ2
3)

[
1

2λ2
+
e−λτ

λ2
− τ

e−2λτ

4λ
− 3

e−2λτ

4λ2

− 2
1− e−λτ

λ3τ
+ 5

1− e−2λτ

8λ3τ

]
− σ1σ21

[
τ

2λ
+
e−λτ

λ2
− 1− e−λτ

λ3τ

]
(2.36)

− σ1σ31

[
3e−λτ

λ2
+

τ

2λ
+
τe−λτ

λ
− 3

1− e−λτ

λ3τ

]

− (σ21σ31 + σ2σ32)

[
1

λ2
+
e−λτ

λ2
− e−2λτ

2λ2

− 3
1− e−λτ

λ3τ
+ 3

1− e−2λτ

4λ3τ

]

An empirical study of implementation of this model is reported in [36], where the authors

calibrate the model to U.S. Treasury yields with maturity of 3, 6, 9, 12, 18, 24, 36, 48, 60, 84,

96, 108, 120, 180, 240 and 360 months. The yields are taken from the end of month bid/ask

average price quotes from January 1987 to December 2002. The arbitrage free models fit and

forecast as well as the regular dynamic Nelson-Siegel model and appears to perform better for

the medium to long maturities; further, they offer the rigor of the arbitrage free assumption.

The main disadvantage of independent factor and correlated factor arbitrage-free Nelson-

Siegel model is that it increases the number of parameters by 4 and 13 respectively. This
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makes it difficult to calibrate and use for forecasting or optimization.

Remark. For simplicity, we will assume that σ1, σ2, σ3 for the independent factor arbi-

trage free dynamic Nelson Siegel model to be equal to a single constant value σ. Similarly,

σ1, σ2, σ3 for the correlated-factor arbitrage-free dynamic Nelson Siegel model are also as-

sumed to be equal to a single constant σ.

The numerical calibrations of the arbitrage-free models are included in chapter 3.

2.4 Macroeconomic models

In more recent bond pricing models, several attempts have been made to add macroeconomic

variables to better model the economic outlook of markets as a whole with the asset prices.

This is a better methodology to model when the economy is expected to change within the

time frame of the life of an underlying asset. We will look at the macroeconomic Nelson-

Siegel model in detail as an example.

Authors of [35] and [36] add to the dynamic Nelson-Siegel model explained previously

three more macroeconomic variables: the manufacturing capacity utilization (CUt), the

federal funds rate (FFRt) and the annual price inflation (normally the consumer price

index [74], denoted here as INFLt) and test with 1-month yield, 12-month yield and 60-

month yield in the US. Let ft be the vector of factors Lt,St,Ct,CUt,FFR and INFLt. Let

Γ be the transition matrix:

Γ =




γ1,1 γ1,2 · · · γ1,n

γ2,1 γ2,2 · · · γ2,n
...

...
. . .

...

γn,1 γn,2 · · · γn,n




(2.37)

and let µ be the vector of mean state of each factor:

µ =




µL

µS

µC

µCU

µFFR

µINFL




(2.38)
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To obtain the yields of n bonds for at each time steps:




yt(τ1)

yt(τ2)
...

yt(τN )




= Λft + εt. (2.39)

where Λ is the matrix:

Λ =




1 1−e−τ1λ

τ1λ
1−e−τ1λ

τ1λ
− e−τ1λ 0 0 0

1 1−e−τ2λ

τ2λ
1−e−τ2λ

τ2λ
− e−τ2λ 0 0 0

...
...

...
...

...
...

1 1−e−τNλ

τNλ
1−e−τNλ

τNλ − e−τNλ 0 0 0




(2.40)

The 3 right most columns are filled with 0’s to remain consistent with the view that only

3 factors are needed to distill the information in the yield curve [36]. This means that

although the macroeconomic variables are not used directly to model yields, they affect the

transitions of the variables that do. ηt and εt are white noise found in the data:

(
ηt

εt

)
=WN

[(
0

0

)
,

(
Q 0

0 H

)]
. (2.41)

This can now be simplified to:

(ft − µ) = A(ft−1 − µ) + ηt , (2.42)

yt = Λft + εt , (2.43)

Numerical results of the models can be found in [36]. This model is not arbitrage-free either

and has 6 factors, making the model incredibly difficult to calibrate, with at least 42 non zero

variables that need calibration. This model is even harder to use for forecasting purposes.

We will return to the subject of simulation models in chapter 7.

2.5 Summary

This concludes the mathematical preliminaries chapter. Here, we have covered:

• basic probability theory and Brownian motion,

• basic mathematical financial assumptions such as: arbitrage, perfect markets, time

value of money, bond pricing, the price of risk and interest rate dynamics,
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• The Nelson-Siegel class of yield curve models,

• The macroeconomic extension of the dynamic Nelson-Siegel model.

The preliminaries will be of use in the next chapter 3, and in chapter 5.
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Chapter 3

Dynamic interest rate models

In this chapter, we will describe several models used for modelling the changes in interest

rate and methods of their calibration. Some of these models are relevant in the next chapter

to generate possible scenarios for future interest rates.

3.1 Models of short rate

As discussed earlier in chapter 1, public debt is created out of bonds and bond price move-

ment can be explained by short rate models. The short rate, denoted as rt in sections

2.2.1-2.3, is continuously compounded, annualized interest rate to borrow money for an in-

finitesimally short period of time from time t. Let us first look at a simple single factor

model, i.e. models in which there is a single source of uncertainty driving all the interest

rates and then move on to more modern multifactor models. Those models will be cali-

brated to actual bond data to compare with each other, in terms of likelihood attained and

forecasting performance. The first single factor model examined is an Ornstein-Uhlenbeck

process. Ornstein-Uhlenbeck process is a stationary, Gaussian and Markovian mean revert-

ing stochastic process [108], in the form:

dxt = α(β − xt)dt+ σdWt (3.1)

where Wt is the standard Brownian motion defined in section 2.2. α, β are constants, σ is

a positive constant and t > 0. xt has the following mean and variance, if x0 is a constant:

E[xt|F0] = β + (x0 − β)e−αt. (3.2)

V ar[xt|F0] =
σ2

2α
. (3.3)
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The expected value expression explains the mean reverting terminology; starting at any x0,

xt tends to revert to its long run mean β.

3.1.1 Single factor models

We will consider first the Vasicek Model introduced in [109] and then the Cox, Ingersoll

and Ross (CIR) Model first described in [26].

Vasicek Model

Assuming that the instantaneous spot rate behaves as an Ornstein-Uhlenbeck process with

constant coefficients we can write:

drt = κ(θ − rt)dt+ σdWt, (3.4)

Wt is the standard Brownian motion, κ the rate of reversion, θ mean of the drift, σ the

volatility of the short rate rt and r0 is a constant. In the new notation and conditioning on

time s (instead of t = 0), the conditional expected value and the conditional variance are

given by:

E[rt|Fs] = rse
−κ(t−s) + θ(1− e−κ(t−s)). (3.5)

V ar[rt|Fs] =
σ2

2κ
[1− e−2κ(t−s)]. (3.6)

A zero-coupon bond that will mature at T will be worth, according to the Vasicek model,

at time t:

P (t, T ) = A(t, T )e−B(t,T )rt , (3.7)

where

A(t, T ) = exp

{(
θ − σ2

2κ2

)
[B(t, T )− T + t]− σ2

4κ
B(t, T )2

}
, (3.8)

B(t, T ) =
1

κ
[1− e−κ(T−t)]. (3.9)

This model can be slightly modified to include the market price of risk λt as λrt (as

mentioned in section 2.2.4), where λ is a constant and rt the instantaneous spot rate as

before [19].

drt = κ(θ − λσ

κ
− rt]dt+ σdWt (3.10)

with the same conditions as with equation (3.4).
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Cox Ingersoll Ross (CIR) Model

The CIR model is similar to the Vasicek model, but with an added square root term to the

Brownian motion. Unlike the Vasicek model, the instantaneous short rate rt remains always

positive. The model is given by the following equations:

drt = κ(θ − rt)dt+ σ
√
rtdWt, (3.11)

κ, θ, σ, x0 are defined as previously in section 3.1.1. There is also an extra condition:

2κθ > σ2 (3.12)

to keep the short rate positive. The mean and variance conditional on filtration Fs will be:

E[rt|Fs] = rse
−κ(t−s) + θ(1− e−κ(t−s)), (3.13)

V ar[rt|Fs] = rs
σ2

κ

(
e−κ(t−s) − e−2κ(t−s)

)
+ θ

σ2

2κ

(
1− e−κ(t−s)

)2
. (3.14)

The price of a zero-coupon bond maturing at time T will be at time t with the CIR model

as described in [19]:

P (t, T ) = A(t, T )e−B(t,T )rt , (3.15)

where

A(t, T ) =

[
2h exp {(κ+ h)(T − t)/2}
2h+ (κ+ h)(exp(T−t)h −1)

]2κθ/σ2

, (3.16)

B(t, T ) =
2(exp{(T − t)h} − 1)

2h+ (κ+ h)(exp{(T − t)h} − 1)
, (3.17)

h =
√
κ2 + 2σ2. (3.18)

with the addition of the market price of risk λ as defined in section 2.2.4, the CIR model

becomes:

drt = [κθ − (κ+ λσ)rt]dt+ σ
√
rtdWt, (3.19)

from equation (3.11) and is still required to satisfy the inequality (3.12). The pricing formula

changes to:

Ã(t, T ) =

[
2h exp {(κ+ λ+ h)(T − t)/2}

2h+ (κ+ λ+ h)(exp{(T − t)h} − 1)

]2κθ/σ2

, (3.20)

B̃(t, T ) =
2(exp{(T − t)h} − 1)

2h+ (κ+ λ+ h)(exp{(T − t)h} − 1)
, (3.21)

h̃ =
√
κ2 + λ2 + 2σ2, (3.22)
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and

P (t, T ) = Ã(t, T )e−B̃(t,T )rt . (3.23)

3.1.2 Multifactor models

The most important limitation of single factor models lie in the fact that for multiple bonds

maturing at different times with the same model will be perfectly correlated. So someone

could simply hedge a bond with another bond, as all the bond yields will move in parallel.

Another important limitation is the yield curve which lacks slopes and has a constant yield

as the maturity tends to infinity. Having a multifactor model means that the bond yields

are no longer perfectly correlated and their yields will be able to match more interesting and

realistic term structures. Multifactor models offer “humped” shaped yield curves, and are

smooth curves over long horizons. Normally, interest rate dynamics is adequately described

by two factors; see, e.g.[30] for empirical evidence. We describe two common two factor

models next.

The two factor Vasicek model

Similarly to the single factor Vasicek model (represented henceforth as Vas1), the two factor

Vasicek model (represented henceforth as Vas2) is:

rt = xt + yt, (3.24)

dxt = κx(θx − xt)dt+ σxdW
1
t , (3.25)

dyt = κy(θy − yt)dt+ σydW
2
t . (3.26)

where x(0) = x0 and y(0) = y0, κz, θz, σz are constants for a factor z ∈ {x, y}, x0 and y0

are constants and W 1
t , W

2
t are independent Brownian motions as defined in section 2.2.

The price of a zero coupon bond will be:

P (t, T ) = Ax(t, T )Ay(t, T )e
(−Bx(t,T )xt−By(t,T )yt), (3.27)

where

Az(t, T ) = exp

{(
θz −

σ2
z

2κ2z

)
[Bz(t, T )− T + t]− σ2

z

4κz
Bz(t, T )

2

}
, ∀z ∈ (x, y), (3.28)

Bz(t, T ) =
1

κz
[1− e−κz(T−t)], ∀z ∈ (x, y). (3.29)

More details on the two factor model, including a derivation for the formulae above can be

found in [19].
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The two factor CIR model

The two factor Cox Ingersoll Ross (represented henceforth as CIR2) model is a simple

extension to the previous CIR model:

rt = xt + yt, (3.30)

dxt = κx(θx − xt)dt+ σx
√
xtdW

1
t , (3.31)

dyt = κy(θy − yt)dt+ σy
√
ytdW

2
t . (3.32)

With x(0), y(0), κi, θi, σi are similar to the previous definition in section 3.1.2 and again

W 1
t and W 2

t are independent Brownian motions as defined in section 2.2. The price of a

zero coupon bond will be:

P (t, T ) = Ax(t, T )Ay(t, T )e
−Bx(t,T )xt−By(t,T )yt , (3.33)

where

Az(t, T ) =

[
2hz exp {(κz + λz + hz)(T − t)/2}

2hz + (κz + λz + hz)(exp{(T − t)hz} − 1)

]2κzθz/σ
2
z

, (3.34)

Bz(t, T ) =
2(exp{(T − t)hz} − 1)

2hz + (κz + λz + hz)(exp{(T − t)hz} − 1)
, (3.35)

hz =
√
κ2z + λ2z + 2σ2

z , (3.36)

where z ∈ x, y and all other variables are defined as previously in section 3.1.2. Both

models can be extended to a n factor model in a similar fashion [19].

Remark. 2-factor models seem to provide a good compromise in terms of flexibility of

fitting a variety of shapes of term structures [84]. It also has the added advantage of having

a manageable number of parameters for calibration [5] and [30]. A single factor CIR model

has 5 parameters to calibrate and a factor to evaluate at each time step to obtain the short

rate. The 2-factor CIR model has 11 parameters to calibrate and 2 factors to evaluate at

each time step to get the short rate.

3.2 Kalman filter to calibrate models from bond price

data

The calibration of models is essential to forecasting the value of bonds in future scenarios

but also to get the parameter values to use the models with. In practice, we don’t have

access to short rate rt or its components xt, zt. We can only measure bond prices P (ti, Tj)

at discrete times ti, i = 1, 2, . . . , N and for discrete maturities j = 1, 2, . . . , J . To calibrate
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the interest rate model as well as to forecast bond prices, we need to be able to infer the

values of xt, zt from the measured bond prices, in a computationally tractable manner. We

can use the fact that the system is entirely affine in xt, zt since the yields are affine in xt,

zt. For affine state space systems, the most common way of inferring the values of latent or

hidden variables from measured variables is using a recursive moment estimator called the

Kalman filter.

Let us denote, xn here is a generic latent state variable and its relationship with factors

xt, yt mentioned earlier can be clarified as follows. xn is the short rate rn at time tn for a

single factor model and xn is a vector of the two latent states at time tn for a two factor

model. zn is the yield vector at time tn. Note that yields are affine in the short rate for both

CIR and Vasicek models. Kalman filtration [65], is a recursive filter used to approximate

the latent or unobserved states of linear dynamic systems from noisy measurements. To

describe linear filtering in a general set up, let us consider in a discrete time the following

linear dynamic state space system:

xn+1 = Ψxn +Π+ εn+1 Evolution Equation (3.37)

zn = Υxn + Ξ+ ηn Measurement Equation (3.38)

where ε and η are Gaussian, uncorrelated, white noise from the evolution and measurements

with mean zero. Finding xn at time tn may be of interest to predict the yield curve at time

tn+1 or to find a discounted factor at a time to maturity where there might not be an

observable measurement. The matrices Ψ,Π,Υ,Ξ,E(εnε
⊤
n ) = Q > 0,E(ηnη

⊤
n ) = R ≥ 0 are

all constants with respect to every iterations. For calibration and forecasting in interest rate

models, the matrices Ψ,Π,Υ,Ξ are expressed in terms of the model parameters, as will later

be explained in section 3.2.1. The following set of recursive equations is normally referred

to as the Kalman filter:

innovations vn = zn − (Υx̂n|n−1 + Ξ), (3.39)

variance of innovations Σn = ΥPn|n−1Υ
⊤ +R, (3.40)

Kalman gain Kn = ΨPn|n−1Υ
⊤Σ−1

n , (3.41)

conditional mean x̂n+1|n = Ψxn|n−1 +Π+Knvn, (3.42)

conditional variance Pn+1|n = ΨPn|n−1Ψ
⊤ +Q−ΨPn|n−1Υ

⊤Σ−1
n ΥPn|n−1Ψ

⊤. (3.43)

Our objective here will be to predict future values of our short rate to evaluate the corre-

sponding yields. Once xn+1 has a predicted value then a value for zn+1 can be obtained from

equation (3.38). Vice versa, from the observation zn, a value can be found for the unobserv-

able xn. For the purpose of bond issuance, xn will correspond to the instantaneous interest
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rate (or short rate) at time tn and zn will be the bond yield at time tn. The short rate

vector xn is obtained from the vector of discounted factor e−R(t,τn)τn for any τn > t given

z1, z2, · · · , zM . Since the innovations are jointly Gaussian with variance Σn, the prediction

error decomposition of the logarithm of likelihood function will be:

L(zn,Θ) =

M∑

n=1

L(zn|zn−1,Θ), (3.44)

= −
M∑

n=1

[
dim(zn)

2
log(2π) +

1

2
log(|Σn|n−1|) +

1

2
v⊤n Σ

−1
n vn

]
, (3.45)

Afterwards a sequence of innovations vn can be constructed and maximise the likelihood of

observations over the set of parameters. Maximising the likelihood is equivalent however to

maximising its logarithm which, in turn, is equivalent to minimizing the following function:

L(zn,Θ) =
M∑

n=1

(log det(Σn) + v⊤n Σ
−1
n vn). (3.46)

Given a sequence of observations z1, . . . , zM and a parameter vector Θ which characterizes

the system matrices, Kalman filter equations (3.39)-(3.43) generate a sequence of innovations

from which L(zn,Θ) can be computed. In our implementation, this function of Θ is then

minimized over Θ by using Nelder-Mead method, via the fminsearch routine in MATLAB.

Note that the set of equations (3.39)-(3.43) are run over the entire data set for each new value

of parameter vector Θ to calculate the innovations and hence the cost function L(zn,Θ).

Maximum likelihood is a generic technique and can be used provided the expressions for the

conditional mean E(xn|n−1) and the covariance of xn|n−1 can be found. This may be found

using Kalman filters as described above or it may be found more easily if xn is measurable.

We will use the Kalman filter to find the best initial values for the parameters and use the

Kalman filter again to estimate the best values of the time changing variables. A review

of the use of Kalman filtration to financial mathematics can be found in [29] which also

discusses some of the generalizations of the above framework for nonlinear and non-Gaussian

systems. More detailed exposition on the use of filtering in time series models is given in

[40].

3.2.1 Numerical Results on calibration on interest rate models

To set up a calibration problem formally in discrete time, we need to discretise the pricing

models considered. To begin, we will use a natural discretisation of the Vasicek model (see

[58]) which preserves the conditional mean and variance of rn+1 at time tn+1 = tn+∆t and
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is given by:

rt+∆t = E(rt+∆t|rt) +
√
V ar(rt+∆t|rt)

√
∆ǫt+∆t, (3.47)

where the mean and variance are given in equations (3.2)-(3.3) and more specifically for the

Vasicek Model, given in equations (3.5)-(3.6). The Euler discretisation (as shown in [48])

will be:

rt+∆t − rt = κ(θ − rt)∆t+ σεt+∆t

√
∆t, (3.48)

where {εt} is a sequence of scalar i.i.d. Gaussian random variables with zero mean and unit

variance and ∆t = tn+∆t − tn is assumed to be a constant for all n. rn is an unobserved

variable as there is no observable security which pays return instantaneously. When using

the conditional mean and variance equations for the CIR model (3.13) - (3.14), the Euler

discretisation is in the form:

rt+∆t − rt = κ(θ − rt)∆t+ σ
√
rtεt+∆t

√
∆t, (3.49)

where εt+∆t is defined as before. We use a similar discretisation scheme for a two factor

Vasicek model:

xt+∆t − xt = κ1(θ1 − xt)∆t+ σ1ε
x
t+∆t

√
∆t, (3.50)

zt+∆t − zt = κ2(θ2 − zt)∆t+ σ2ε
z
t+∆t

√
∆t, (3.51)

and for a two factor CIR model:

xt+∆t − xt = κ1(θ1 − xt)∆t+ σ1
√
xtε

x
t+∆t

√
∆t, (3.52)

zt+∆t − zt = κ2(θ2 − zt)∆t+ σ2
√
ztε

z
t+∆t

√
∆t. (3.53)

while xt and yt are not observable, one may observe yields from zero coupon bonds at each

time tn which we will be denoted by z(tn, Ti), for different maturities T1, T2, . . . TN , Ti > tn.

To describe the observation equation, denote by zn a vector in R
N whose ith element is

z(tn, Ti). Further, one may assume that our model of the short rate is imperfect and the

vector of observed yields at time tn is given by:

Rn = zn + σzen, (3.54)

where {en} is a vector valued, i.i.d. Gaussian sequence with zero mean and identity matrix

as covariance and σz > 0 is a constant indicating the dispersion of the observed yields from

their value given by the model. Our time discretisation form a linear state space system. At

this point, we should remind that every unit zero coupon bond price obtained from dynamic
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interest rate model was declared in the form:

P (t, T ) = Ate
−Btrt , (3.55)

and from 2.20,the yield of a unit zero coupon bond price is:

P (t, T ) = e−yield(t,T )(T−t). (3.56)

This means that we can describe the yield as:

yield(t, T ) =
Btrt − log(At)

T − t
. (3.57)

Let us denote: Ξt(τ), the vector of individual log(A)t/τ and Υt(τ), the vector of individual

Υt/τ . For the Nelson-Siegel class of yield curves, the yield curves are already given by the

model. We can use Kalman filter outlined in equations (3.39)-(3.43) to calibrate the model

from observed time series Rn, n = 1, 2, . . . ,M . The recursive equations for Kalman filter

are repeated below for easy reference. The optimal estimate of rn+1 based on measurement

Rn (respectively, based on Rn+1) is denoted as r̂n+1|n (respectively, r̂n+1|n+1). vn denotes

the innovations vector at time tn while Σn denotes the covariance matrix of innovations at

time tn. The set of equations given below outline the recursive propagation of estimates

from r̂n|n−1, Pn|n−1 to r̂n+1|n, Pn+1|n after measuring Rn.

vn = Rn − Ξn(τ) + Υn(τ)r̂n|k−1, (3.58)

Σn = Υn(τ)Pn|n−1Υn(τ)
⊤ +R, (3.59)

Kn = ΨnPn|n−1Υn(τ)
⊤Σ−1

n , (3.60)

r̂n+1|n = Ψnr̂n|n +Πn +Knvn, (3.61)

Pn+1|n = ΨnPn|n−1Ψ
⊤
n +Qn −ΨnPn|n−1Υn(τ)

⊤Σ−1
n Υn(τ)Pn|n−1Ψ

⊤
n , (3.62)

(3.61) is the normal state space evolution adjusted with the Kalman gain and innovation. Ψn

and Πn are derived from the moment matching/ mean-variance preserving discretisations

3.47, [19]. They are for the Vasicek and CIR single factor models:

Ψn = e−κ∆t, (3.63)

Πn = (θ − λσ

κ
)(1− e−κ∆t) (3.64)
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as described in equations (3.5)-(3.6) and (3.13)-(3.14). For the multi-factor models:

Ψn =




e−κ1∆t 0 · · · 0

0 e−κ2∆t · · · 0
...

...
...

...

0 0 · · · e−κn∆t



, (3.65)

Πn =




(θ1 − λ1σ1

κ1
)(1− e−κ1∆t)

(θ2 − λ2σ2

κ2
)(1− e−κ2∆t)
...

(θn − λnσn

κn
)(1− e−κn∆t)



, (3.66)

and where Υn(τ) and Ξn(τ) are for a k-factor Vasicek model for m bonds considered:

Υn(τ) =




(1−e−κ1τ1 )
κ1

· · · (1−e−κkτ1 )
κk

(1−e−κ1τ2 )
κ1

· · · (1−e−κkτ2 )
κk

...
...

...
(1−e−κ1τm )

κ1
· · · (1−e−κkτm )

κk



, (3.67)

Ξn(τ) =




(ϑ1 − σ2
1

2κ2
1
)[Cn(τ1)− τ1]− σ2

1

4κ1
(Cn(τ1))

2 + · · ·+ (ϑk − σ2
k

2κ2
k
)[Cn(τ1)− τ1]− σ2

k

4κk
(Cn(τ1))

2

(ϑ1 − σ2
1

2κ2
1
)[Cn(τ2)− τ2]− σ2

1

4κ1
(Cn(τ2))

2 + · · ·+ (ϑk − σ2
k

2κ2
k
)[Cn(τ2)− τ2]− σ2

k

4κk
(Cn(τ2))

2

...

(ϑ1 − σ2
1

2κ2
1
)[Cn(τm)− τm]− σ2

1

4κ1
(Cn(τm))2 + · · ·+ (ϑk − σ2

k

2κ2
k
)[Cn(τm)− τm]− σ2

k

4κk
(Cn(τm))2




(3.68)

where ϑi = θi − λiσi/κi and τ is the difference between the maturity of the bond and the

current time tn. For the k-factor CIR model:

Υn(τ) =




2(eh1τ1−1)
2h1+(κ1+λ1+h1)(eh1τ1−1)

· · · 2(ehkτ1−1)

2hk+(κk+λk+hk)(e
hkτ1−1)

...
...

...
2(eh1τm−1)

2h1+(κ1+λ1+h1)(eh1τm−1)
· · · 2(ehkτm−1)

2hk+(κk+λk+hk)(e
hkτm−1)


 , (3.69)

Ξn(τ) =




log(
[

2h1 e(κ1+λ1+h1)τ1/2

2h1+(κ1+λ1+h1)(eh1τ1−1)

] 2κ1θ1
σ2
1 + · · ·+

[
2hk e(κk+λk+hk)τ1/2

2hk+(κk+λk+hk)(e
hkτ1−1)

] 2κkθk
σ2
k )

...

log(
[

2h1 e(κ1+λ1+h1)τm/2

2h1+(κ1+λ1+h1)(eh1τm−1)

] 2κ1θ1
σ2
1 + · · ·+

[
2hk e(κk+λk+hk)τm/2

2hk+(κk+λk+hk)(e
hkτm−1)

] 2κkθk
σ2
k )




(3.70)
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with h =
√
κ2 + λ2 + 2σ2. The covariance matrix Qn is defined for the two factor Vasicek

model as:

Qn = σ2
vI, (3.71)

and for the CIR models as:

Qn = σ2
vφn, (3.72)

where σv is the standard deviation of measurement equation noise and φn is rn for the single

factor CIR model and:

φn =

(
|xn| 0

0 |yn|

)
(3.73)

for the two factor CIR model. To find estimates of parameters, the joint probability density

function (also called the likelihood function) of observations is maximized over the parameter

vector, which in the single factor case is:

Θ =
[
κ λ θ σ r0 σz

]⊤
(3.74)

Here λ is the price of risk which is assumed to be constant through time. Since the forecast

errors are i.i.d. and Gaussian as shown in [6], the log likelihood function is expressed by:

L(Θ) =

M∑

n=1

log p(Rn|Fn−1,Θ). (3.75)

where p(Rn|Fn−1,Θ) is multivariate Gaussian with mean 0 and variance Σn, and maximising

a concave function is the same as maximising its logarithm. Hence maximising L(Θ) is the

same as minimizing −L(Θ).

− L(Rn,Θ) =
1

2

M∑

n=1

(
log det(Σn) + vT

nΣ
−1
n vn

)
, (3.76)

where the constant terms are ignored. This smooth nonlinear cost function can be minimized

over the set of parameters using any standard nonlinear solver. We use MATLAB’s “ off-

the-shelf ” optimizer fminsearch which uses the Nelder-Mead method and seemed to perform

satisfactorily. It should be noted that as the bond prices are real, i.e. they are not zero

coupon bonds, the process of calibration is done by stripping coupons. We use the above

procedure to calibrate various term structure models to UK government bond data. In

particular, we will calibrate and compare eight different models: one factor Vasicek (Vas1),

two factor Vasicek (Vas2), one factor CIR (CIR1), two factor CIR (CIR2) and certain models

belonging to the class of dynamic Nelson-Siegel models. The class of dynamic Nelson-Siegel

models used here have been described in greater detail earlier in section 2.3 and there will
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be four different models from this class:

• a basic dynamic Nelson-Siegel model (Basic DNS), a two factor version of the standard

three factor model found in equations (2.23)-(2.25),

• the standard three factor dynamic Nelson-Siegel model (DNS) defined in equation

(2.21)-(2.22),

• the arbitrage free dynamic Nelson-Siegel with independent factors (AFDNSi) defined

in equation (2.31),

• the arbitrage free dynamic Nelson-Siegel with correlated factors (AFDNSc) defined in

equation (2.34),

The basic DNS and DNS models are described in more detail in [36] and the arbitrage free

DNS models in [20].Gilt yields from 2006 to 2008, obtained from the UK debt management

office, were used for the numerical experiments. We use daily data from April 2006 to March

2008. The model is calibrated every quarter from March 2007 to March 2008, based on the

past data stretching back one year. In other words, we move the one year calibration window

forward through time as the year unfolds into the next financial year. The re-calibration

takes into account the fact that the interest rate model parameters may not be constant and

drift through time, e.g. due to the impact of the earlier issuance and due to the changes in

the market sentiment. The choice of re-calibration every quarter corresponds to quarterly

review. This gives us five calibrations. The initial guess for the single factor models are in

table (3.1) and the two factor models in table (3.2). The results of the 1st iteration are then

used to guess the initialization parameters for the next iterations. The parameter values

obtained through calibration for various models are reported in tables (3.3)-(3.9).

time Vas1 CIR1

κ 0.10 0.045

λ 0.01 0.015

θ 0.05 0.04

σ 0.04 0.05

r0 0.05 0.06

σv 0.01 0.01

P0 100 100

Q0 0.1 0.5

Table 3.1: Initial guess for the single factor models (UK 2006-2008 data).
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time Vas2 CIR2

κ1 0.1 0.08

λ1 0.07 0.005

θ1 0.047 0.05

σ1 0.045 0.045

x0 0.05 0.05

σv 0.02 0.02

κ2 0.055 0.013

λ2 0.03 0.005

θ2 0.047 0.05

σ2 0.045 0.045

σw 0.02 0.02

z0 0.03 0.03

P0 100 100

Table 3.2: Initial guess for the two factor models (UK 2006-2008 data).

time t = 03/2007 t = 06/2007 t = 09/2007 t = 12/2007 t = 03/2008

κ 0.118437 0.107130 0.103352 0.106248 0.109917

λ 0.010318 0.010415 0.010613 0.010378 0.010245

θ 0.049894 0.051202 0.051649 0.050243 0.050013

σ 0.044564 0.045321 0.045792 0.045540 0.045085

r0 0.065100 0.066458 0.068616 0.068484 0.066599

σv 0.002555 0.002659 0.002599 0.002652 0.002744

P0 100.597148 104.309313 104.080436 107.308930 109.870553

Q0 0.103255 0.102218 0.103585 0.103874 0.105143

Table 3.3: Parameters of Vas1 model (UK 2006-2008 data).

time t = 03/2007 t = 06/2007 t = 09/2007 t = 12/2007 t = 03/2008

κ 0.061925 0.051571 0.062338 0.064651 0.064603

λ 0.005209 0.010409 0.004168 0.004082 0.005628

θ 0.003070 0.008765 0.011169 0.011535 0.009663

σ 1.912993e-8 3.083262e-8 2.459200e-8 2.545363e-8 3.230975e-8

r0 0.000592 0.001660 0.002860 0.002867 0.000769

σv 0.019869 0.020032 0.020101 0.019815 0.019726

P0 15.373186 25.575654 22.567362 22.333447 26.955768

Q0 0.687923 0.757067 0.499557 0.491960 0.536613

Table 3.4: Parameters of CIR1 model (UK 2006-2008 data).
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time t = 03/2007 t = 06/2007 t = 09/2007 t = 12/2007 t = 03/2008

κ1 0.097654 0.096200 0.096038 0.095993 0.095504

λ1 0.070736 0.074596 0.074988 0.075305 0.075412

θ1 0.045791 0.045140 0.045067 0.045249 0.045243

σ1 0.046015 0.047224 0.047209 0.047261 0.047326

x0 0.050230 0.032652 0.032956 0.033191 0.033696

σv 0.020197 0.029862 0.030192 0.030272 0.030162

κ2 0.054964 0.054218 0.054158 0.054218 0.054492

λ2 0.030225 0.033708 0.033905 0.034027 0.034333

θ2 0.047065 0.044503 0.044370 0.044163 0.043956

σ2 0.046091 0.048904 0.049052 0.049191 0.049454

σw 0.020056 0.016743 0.016888 0.017008 0.017184

z0 0.030200 0.025263 0.025463 0.025633 0.025933

P0 100.339884 99.526279 100.288024 101.060924 100.794342

Table 3.5: Parameters of Vas2 model (UK 2006-2008 data).

time t = 03/2007 t = 06/2007 t = 09/2007 t = 12/2007 t = 03/2008

κ1 0.052408 0.052661 0.052800 0.052800 0.052951

λ1 0.004951 0.004973 0.004987 0.004987 0.005002

θ1 0.045660 0.045829 0.045939 0.045939 0.046070

σ1 0.045427 0.045575 0.045686 0.047970 0.048107

x0 0.052993 0.053217 0.053378 0.053378 0.053530

σv 0.023259 0.023362 0.024019 0.024019 0.024087

κ2 0.010644 0.010636 0.010649 0.010649 0.010620

λ2 0.006387 0.006427 0.006434 0.006434 0.006436

θ2 0.033062 0.033069 0.033106 0.033106 0.033050

σ2 0.054799 0.054876 0.054557 0.054557 0.054586

σw 0.021544 0.021635 0.021690 0.021690 0.021752

z0 0.032677 0.032827 0.032921 0.032921 0.033015

P0 105.977270 106.482148 106.796219 106.796221 109.771486

Table 3.6: Parameters of CIR2 model (UK 2006-2008 data).
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time t = 03/2007 t = 06/2007 t = 09/2007 t = 12/2007 t = 03/2008

λ0 0.138662 0.138662 0.138662 0.138232 0.138232

l0 0.147847 0.148217 0.148687 0.146613 0.147071

s0 0.037379 0.037479 0.037595 0.037164 0.037281

c0 0.014667 0.014674 0.014719 0.014713 0.014759

σ 0.000592 0.000592 0.000592 0.000597 0.000597

σv 0.035564 0.035564 0.035564 0.035492 0.035492

P0 -0.337769 -0.337769 -0.337769 -0.337040 -0.337040

Q0 -0.007052 -0.007088 -0.007111 -0.007120 -0.007142

meanl -0.011207 -0.011255 -0.011290 -0.011181 -0.011216

means 0.013115 0.013488 0.013868 0.013817 0.014206

meanc 0.004050 0.004061 0.004074 0.004158 0.025933

a11 0.042646 0.042646 0.042646 0.042772 0.004171

a12 0.000853 0.000853 0.000853 0.000860 0.000860

a13 0.010656 0.010656 0.010656 0.010766 0.010766

a21 0.008927 0.008927 0.008927 0.009003 0.009003

a22 0.036299 0.036299 0.036299 0.036263 0.036263

a23 0.003066 0.003066 0.003066 0.003116 0.003116

a31 -0.011675 -0.011675 -0.011675 -0.011684 -0.011684

a32 -0.005959 -0.005959 -0.005959 -0.006002 -0.006002

a33 0.012517 0.012517 0.012517 0.012638 0.012638

Table 3.7: Parameters of the DNSl model (UK 2006-2008 data)
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time t = 03/2007 t = 06/2007 t = 09/2007 t = 12/2007 t = 03/2008

λ0 0.033079 0.033079 0.033207 0.033207 0.033207

l0 0.209335 0.209335 0.212645 0.212644 0.212646

s0 0.019013 0.019013 0.018933 0.018968 0.019034

c0 0.022531 0.022531 0.022382 0.022422 0.022498

σ -0.000128 -0.000128 -0.000128 -0.000128 -0.000128

σv 0.034758 0.034758 0.034865 0.034865 0.034865

P0 -0.513027 -0.513027 -0.513887 -0.513887 -0.513887

Q0 0.333635 0.333635 0.334279 0.334886 0.336060

meanl -0.002335 -0.002335 -0.002331 -0.002335 -0.002343

means 0.002601 0.002731 0.002719 0.002826 0.002906

meanc 0.009749 0.009749 0.009667 0.009685 0.009719

a11 0.012938 0.012938 0.012976 0.012976 0.012976

a12 0.026422 0.026422 0.026508 0.026508 0.026508

a13 -0.014772 -0.014772 -0.01495 -0.014952 -0.014952

a21 0.013967 0.013967 0.014017 0.014017 0.014017

a22 0.000355 0.000355 0.000356 0.000356 0.000356

a23 0.032897 0.032897 0.033324 0.033324 0.033324

a31 0.012712 0.012712 0.012716 0.012716 0.012716

a32 0.004821 0.004821 0.004854 0.004854 0.004854

a33 0.041492 0.041492 0.041902 0.041902 0.041902

Table 3.8: Parameters for AFDNSi model (UK 2006-2008 data)
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time t = 03/2007 t = 06/2007 t = 09/2007 t = 12/2007 t = 03/2008

λ0 0.138549 0.138549 0.138549 0.140731 0.140731

l0 0.089577 0.089577 0.089577 0.089470 0.089471

s0 0.102094 0.102094 0.102094 0.101318 0.101318

c0 0.029198 0.029198 0.029198 0.029290 0.029290

σ 0.011546 0.011546 0.011546 0.011431 0.011431

σ21 0.001176 0.001176 0.001176 0.001188 0.001188

σ31 0.001016 0.001016 0.001016 0.001018 0.001018

σ32 0.001092 0.001092 0.001092 0.001105 0.001105

σv 0.037580 0.037580 0.037580 0.037743 0.037743

P0 96.283627 96.283627 96.283627 97.616635 97.616635

Q0 -0.000094 -0.000094 -0.000094 -0.000095 -0.000096

meanl 0.010909 0.010909 0.011454 0.011288 0.011853

means 0.011427 0.011427 0.011427 0.011448 0.011448

meanc 0.008496 0.008496 0.008496 0.008392 0.008392

a11 0.009852 0.009852 0.009852 0.010007 0.010007

a12 0.009829 0.009829 0.009829 0.009984 0.009984

a13 0.009428 0.009428 0.009428 0.009064 0.009064

a21 0.011303 0.011303 0.011303 0.011233 0.011233

a22 0.011150 0.011150 0.011150 0.011183 0.011183

a23 0.007872 0.007872 0.007872 0.007856 0.007856

a31 0.011634 0.011634 0.011634 0.011817 0.011817

a32 0.014319 0.014319 0.014319 0.014400 0.014400

a33 0.009800 0.009800 0.009800 0.009955 0.009955

Table 3.9: Parameters for AFDNSc model (UK 2006-2008 data)

time Vas1 CIR1 Vas2 CIR2

t = 03/2007 -10931.822 -6924.240 -292197.983 -7160.666

t = 06/2007 -10527.814 -6899.337 -13232.745 -7160.795

t = 09/2007 -10908.696 -6910.331 -13474.658 -7189.122

t = 12/2007 -10547.430 -6931.456 -503400.291 -8670.995

t = 03/2008 -9614.797 -6925.629 -579432.451 -8261.713

Table 3.10: Achieved likelihood values for the models after maximization (UK 2006-2008

data).
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time Basic DNS DNS AFDNSi AFDNSc

t = 03/2007 -25165.672 -1.014447e+015 -5.845408e+014 -1.753180e+16

t = 06/2007 -25180.714 -8.806014e+015 -2.943862e+014 -9.275356e+15

t = 09/2007 -25222.765 -1.635689e+014 -2.130715e+014 -1.068158e+15

t = 12/2007 -25250.622 -1.711841e+014 -4.868823e+014 -3.273659e+15

t = 03/2008 -25274.040 -2.585992e+013 -1.044413e+014 -1.224788e+15

Table 3.11: Achieved likelihood values for the models after maximization (UK 2006-2008

data)

To compare the quality of yield curve matching, we measure the out-of-sample 2-norm

errors achieved by each calibrated model. These errors are computed by:

N∑

n=1

√√√√
T∑

t=0

(yrealt (τn)− ymodel
t (τn))2, (3.77)

where n corresponds to the nth bond modeled out of the N considered and τn is the time to

maturity T . yreal corresponds to the actual UK yield and ymodel corresponds to the model

generated yield. The results obtained are found in tables (3.12)-(3.13).

A Jarque-Bera test is a goodness of fit statistical test for a normally distributed sample.

It is performed on the short rates obtained from the calibrations to check whether the

skewness and kurtosis match a normal distribution. It corresponds to:

T =
n

6

(
S2 +

1

4
(K − 3)2

)
, (3.78)

where the skewness S is defined as:

S =
1
n

∑n
i=1(ri − r̄)3

(
1
n

∑n
i=1(ri − r̄)2

)3/2 , (3.79)

and the kurtosis K is defined as:

K =
1
n

∑n
i=1(ri − r̄)4

(
1
n

∑n
i=1(ri − r̄)2

)2 , (3.80)

with ri the short rate at time i and r̄ is the short rate sample mean. Table (3.14) shows

the Jarque-Bera test of the short rate distribution obtained from the calibration. The value

1 corresponds to a non-normally distributed short rate and 0 corresponds to a normally

distributed short rate for each of the 5 calibrations performed per model. The table indicates

that the normal distribution assumption for the short rate is inaccurate for Vasicek type

models, even though the out of sample performance of Vas2 is better than most other models.
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For example, the first row (1, 1, 1, 1, 1) indicates that all the five re-calibrations indicate that

the short rate is not normally distributed. Note that Vasicek model is a linear Gaussian

process and inherently assumes Gaussian distribution for the short rate. The short rate in

CIR model is known to be non-central chi-squared distributed, and the results of Jarque-

Bera test in case of CIR1, CIR2 are consistent with the expectation that the rate is not

normally distributed.

Figures (3.1)-(3.4) demonstrate the evolution of actual yields to maturity, after each

calibration experiment for the different models from this chapter and figures (3.5)-(3.7) the

models from the previous chapter. The figures in Appendix B correspond to the calibrations

for the 4 next horizons. The models are more accurate in the earlier quarters with absolute

errors below 0.3% when the interest rates were more stable.

Remark. The errors shown on the figures (3.1)-(3.4) are absolute and not percentage errors.

time Vas1 CIR1 Vas2 CIR2

t = 03/2007 33.320036 34.475752 14.877411 22.446065

t = 06/2007 35.371241 30.595162 15.127590 22.551451

t = 09/2007 44.337066 39.098780 21.405030 27.009136

t = 12/2007 68.676484 64.209287 30.131410 35.667145

t = 03/2008 115.623473 111.613957 44.931169 52.011107

Table 3.12: Values of the out-of-sample 2-norm errors.

time Basic DNS DNS AFDNSi AFDNSc

t = 03/2007 23.023559 25.540732 24.569861 21.329200

t = 06/2007 23.173706 26.822766 24.379365 22.693189

t = 09/2007 27.492665 32.537907 29.941303 31.833671

t = 12/2007 36.488645 41.494472 39.246977 34.778105

t = 03/2008 51.526804 56.107529 57.407175 55.616764

Table 3.13: Values of the out-of-sample 2-norm errors.

Model Jarque-Bera test

Vas1 (1,1,1,1,1)

CIR1 (1,1,1,1,1)

Vas2 (1,1,1,1,1)

CIR2 (1,1,1,1,1)

DNS (0,0,1,1,1)

AFDNSi (1,1,1,1,1)

AFDNSc (1,1,1,1,1)

Table 3.14: Jarque-Bera test on all models
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Figure 3.1: Vasicek Model calibrated with Kalman filtration at t = 03/2007

Remarks. The values of parameters seem fairly stable for the Vasicek model over time.

These values also seem to make sense with a short rate around 5% and a low market volatility.

The price of risk is nearly 1% along the year. The CIR model renders a downward yield

curve which is closer to the real yield curve at the time despite having a very small mean

rate. The short rate is also around 5%. Vas2 or CIR2 factor and the basic version of the

dynamic Nelson-Siegel models (without curvature) approximate much better the real yield

curves compared to the one factor models in terms of out-of-sample 2-norm errors and the

maximum likelihood estimators converge to the same maximum of a variety of starting points

along the year. It should be noticed that the 3-DNS (and other three factor models) have the

best maximum likelihood estimators and have better yield curve approximations, in terms

of 2-norm errors as reported in tables (3.12)-(3.13). In 4 out of 5 cases, the 3 factor DNS

model with correlated factors outperforms the other three factor versions out-of-sample.

Interestingly, basic DNS model performs better out-of-sample than the arbitrage-free model

with independent factors or the three factor DNS model. The 3 factor models are also

computationally quite expensive, and take significantly longer to calibrate, e.g. a three

factor DNS model takes approximately 4600 seconds to calibrate in Matlab R2011b while a

2 factor model takes approximately 700 seconds per calibration, under similar software and

hardware settings.
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Figure 3.2: CIR Model calibrated with Kalman filtration at t = 03/2007
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Figure 3.3: 2 factor Vasicek Model calibrated with Kalman filtration at t = 03/2007
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Figure 3.4: 2 factor CIR Model calibrated with Kalman filtration at t = 03/2007
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Figure 3.5: DNS model calibrated with Kalman filtration at t = 03/2007
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Figure 3.6: AFDNSi model calibrated with Kalman filtration at t = 03/2007
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Figure 3.7: AFDNSc model calibrated with Kalman filtration at t = 03/2007
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3.2.2 Interest rate risk measure

Simply taking the 1st derivative of the price with respect to the short rate rt will give us an

indication of the movement bond prices corresponding to a small change in the short rate.

In the case of the single factor models :

P (t, T ) = A(t, T )e−B(t,T )rt , (3.81)

where A,B are functions of time to maturity T − t. They are used in the Vasicek single

factor model, described in section 3.1.1 and defined as:

B(t, T ) =
1

a

[
1− e−a(T−t)

]
, (3.82)

A(t, T ) = exp

{(
θ − σ2

2a2

)
[B(t, T )−∆]− σ2

4a
B(t, T )2

}
. (3.83)

and in the case of the Cox Ingersoll Ross single factor model, described in section 3.1.1, are

defined as:

A(t, T ) =

[
2h exp {(κ+ h)(T − t)/2}
2h+ (κ+ h)(exp(T−t)h −1)

]2κθ/σ2

, (3.84)

B(t, T ) =
2(exp{(T − t)h} − 1)

2h+ (κ+ h)(exp{(T − t)h} − 1)
, (3.85)

h =
√
κ2 + 2σ2. (3.86)

Taking the 1st derivative with respect to the short rate rt:

∂P (t, T )

∂rt
= −A(t, T )B(t, T )e(−B(t,T )rt), (3.87)

This expression will be used in chapter 6 for the debt issuance optimization problem under

interest rate risk constraint.

Similarly the same be done for the two factor models considered in section 3.1.2 and

section 3.1.2:

P (t, T ) = Ax(t, T )Ay(t, T )e
−Bx(t,T )xt−By(t,T )yt , (3.88)

The derivative with respect to the short rate rt = xt + yt would become:

∂P (t, T )

∂rt
= Ax(t, T )Ay(t, T )(−Bx(t, T )−By(t, T ))e

−Bx(t,T )xt−By(t,T )yt , (3.89)

For the Dynamic Nelson Siegel models described in section 2.3, we assumed in equation
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(2.27) that the short rate rt = Lt + St and the price of a zero-coupon bond is:

P (t, T ) = e−y(t,T )(T−t), (3.90)

with y(t, T ) defined as:

y(t, T ) = Lt + St

(
1− e−λ(t)T

λ(t)T

)
+ Ct

(
1− e−λ(t)T

λ(t)T
− e−λ(t)T

)
, (3.91)

so the derivative with respect to the short rate rt is:

∂P (t, T )

∂rt
= −(1 +

1− e−λ(t)T

λ(t)T
)(T − t)e−y(t,T )(T−t), (3.92)

Those derivatives with respect to the short rate will be used as an interest rate risk

measure, as they correspond to the potential gain or loss of the bond price with the gain or

loss of one percent in the short rate.

3.3 Summary

This chapter has shown how interest rate models can be used and calibrated to obtain

predictions for out of sample data. Eight models, with increasing complexity and number of

parameters have been explained here. The method of Kalman calibration has been explained

and applied to the Eight models to attach values to the parameters of the different models

for several time steps. Application of some of the interest rate models for scenario generation

for optimization will be described in subsequent chapters. In particular, Vasicek type models

(i.e. models with rate-independent volatility) can be approximated well with re-combining

trees, which leads to a major computational advantage in a stochastic optimization set-

up; this will be discussed later in chapter 4. Parts of this chapter will be also of use for

multi-factor simulations in chapter 7.
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Chapter 4

Scenario generation for interest

rates

Some of the more common ways of modelling the evolution of the interest rates were de-

scribed in the previous chapter. These models can be adapted to generate discrete scenarios

of future bond prices. There are several methods for generating scenarios. We will look

at two different popular methods. The need to generate scenarios stems from the need to

forecast several possible interest rates or other macroeconomic variables as needed. In this

chapter, we will explain the methodology used in the subsequent chapters to generate pos-

sible scenarios of interest rates. These scenarios will later be used for the decision models

described in the next couple of chapters, as well as for simulation in chapter 7. In the case

of decision models, the decisions made will turn out to be effective in practice only if the

back-tested generated scenarios adequately reflect reality. The methods described in this

chapter are focused on the use of back-testing scenario generation with the decision mod-

els. In this context, we model a set of scenarios to be used with a stochastic programming

problem. The scenarios are generated using a re-combining tree or Monte Carlo simulations

to carry the short rate and respective bond prices to the mixed integer models described in

chapter 6.

Monte Carlo 1 can be used here to generate data used in our scenarios. For any given

underlying process, we can always generate M sample paths by Monte Carlo simulation

[57] (or M possible yield vectors), at each time step. These values which the uncertain

variable can take are called nodes and the computational complexity of a decision model

under uncertainty depends on the number of nodes (or the number of possible values of the

1For the purpose of this chapter, ’Monte Carlo’ refers to the use of random number generator to gen-
erate scenarios, while ’trees’ refers to generation of scenarios using deterministic rules based on statistical
properties (such as moments) of the underlying distribution. We will use the terminology ’tree’ or ’lattice’
interchangeably to describe re-combining trees, which are discussed in the next section.
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uncertain variable on which the decision will be based). We will look at Monte Carlo method

later in section 4.2. First, we look at back-tested generating scenarios with re-combining

sample paths which typically leads to a much smaller number of nodes than a more general

Monte Carlo implementation.

4.1 Polynomial lattice method

Several standard terminology definitions are going to be explored briefly. We will start with

nodes:

Definition 18. A node is a set of data characterized by its inheritance of potential prior

and later data sets. A node that inherits a state from a prior node is called a child node. A

node that has given a basic state to a child node, is called a parent node. A root node is a

node with no parent nodes.

We can also define scenarios:

Definition 19. A scenario is defined here as a set of descendant nodes starting from the

root node that describe a possible outcome according to a model.

A tree is a set of scenarios. When the descendant nodes recombine, it forms a recombining

lattice tree. We will use a polynomial recombining lattice here as our principal means of

generating scenarios of future interest rates. There are several added benefits to using a

lattice (or a tree) over using traditional Monte Carlo method with non-recombining sample

paths:

• The construction of a polynomial lattice for a given stochastic process is deterministic

and can still capture a fairly wide array of possible values.

• In addition, using a re-combining lattice make the nodes of the tree grow linearly in

time. This is important in stochastic optimization models when the number of decision

variables and the number of constraints are determined by the number of nodes. The

linear growth of data only involves the generation of input data and not the size of

the mixed integer problem solved in subsequent chapters which remains exponential

in time.

We use trinomial trees for capturing the interest rates to price bonds, although higher order

polynomial trees (e.g. pentanomial trees) can also be used. As an example, pentanomial

trees have been used for option pricing in [90].

Let t = 1, 2, · · · , n be the steps in the tree, or the ith generation out of the n descendants

from the root node. Let rji be the short rate at the ith time step and jth scenario. For single
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Figure 4.1: Example of a trinomial recombining lattice tree centered at the ith time and jth

scenario

factor models, we only need a one dimensional 2 tree to model the evolution of the uncertain

interest rates and the number of nodes in the final stage grows linearly, and the number of

total nodes grows quadratically over time, see figure (4.1).

4.1.1 Trinomial tree with a single factor Vasicek model

Let r
(j)
i denote the interest rate at time step i and node j. In the case of a single factor

Vasicek model described in section 3.1.1, we will describe the evolution of the tree as in

[21]: 



r
(j+1)
i = r

(j)
i−1u, for the upper branch of the lattice

r
(j)
i = r

(j)
i−1, for the middle branch of the lattice

r
(j−1)
i = r

(j)
i−1d for for the lower branch of the lattice.

(4.1)

where u = e
σ2(1−exp(−κδt))

2κ and d = e
−σ2(1−exp(−κδt))

2κ . The above choice of u, d is a common

choice in finance provided they satisfy u = 1/d > 0, as they remain positive. The advan-

tage of using a single factor tree in a multi-stage optimization set-up is its computational

simplicity; as mentioned above, it leads to number of scenarios which grow linearly with the

number of time steps. Reducing the size of the time steps, which is equivalent to increasing

the number of time steps for the same time horizon makes our model more accurate, as

it captures more scenarios at the expense of increasing computational complexity. A more

detailed example of a trinomial tree with the Hull-White one factor model can be found in

[58]. The probability of each individual scenario is not considered to be important in this

2Dimension of a tree here refers to the number of sources of uncertainty used.
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chapter and will be assumed in 6.4.2 to be uniform over all scenarios, i.e. pj = 1/J where

pj is the probability of scenario j and J the total of scenarios considered.

Remark. It should be noted that as the volatility of the CIR model is dependent on the

short rate rt, it can’t be modeled using a re-combining tree. Therefore only Monte Carlo

simulation with a Gaussian random number generator can be used with the CIR model for

generating bond price scenarios.

4.1.2 Multi-dimensional trees

x
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, y
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Figure 4.2: A cut from a 2-dimensional trinomial tree centered at the ith and jth scenario
at time t.

Multidimensional trees are necessary to model multiple factors of interest rate models or

modelling inflation as well as interest rates. For instance, a two dimensional tree can model

two factors of randomness and hence can be used to model an interest rate and an inflation

rate. An example of two dimensional tree is shown in figure 4.2. While this is not the only

way to generate a scenario tree, it is the way employed in the optimisation model in this

thesis.

4.2 Monte Carlo scenario generation

Given a mathematical description of a stochastic process, back-tested Monte Carlo simu-

lations enables us to predict a very large number of possible outcomes, allowing for better

decision making under uncertainty as long as we are able to sample from a distribution at
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any future time. An early reference of Monte Carlo simulations was published in 1949 [77].

Its use is widespread both in academia and in the industry, and it is used for solving a wide

variety of problems [48].

4.2.1 Back-tested Monte Carlo method

Monte Carlo simulation samples a large number of random possible paths of a given process.

If the process is an Ito type process described earlier in chapter 2, the random paths are

picked from the model with the addition of a Brownian Motion component. Monte Carlo

simulation can also be used with jump processes. The expected destination of the random

paths and its variance are computed in the end to provide information as to a most likely

destination paths. The steps in the Monte Carlo simulation can be outlined as follows:

• Sample a set of random inputs Zi from a specific distribution,

• Evaluate how a specific model performed under Zi and let Si denote the performance

measure,

• Repeat until enough paths have been obtained,

• Analyze the results and compute the required functions of the sample path, e.g. the

expected value of E[Si].

For a detailed treatment of the Monte Carlo method and its applications in financial math-

ematics, please refer to [48]. The Monte Carlo method can also be applied to multi dimen-

sional problems by using jump processes or the standard d-dimensional Brownian motion

described in chapter 2. A Brownian Motion processWt = (W 1
t ,W

2
t , . . . ,W

d
t )

⊤ for 0 ≤ t ≤ T

is a standard d-dimensional Brownian motion if W0 = 0 , is a continuous paths with inde-

pendent increments and:

Wt −Ws ∼ N (0, (t− s)I), (4.2)

for all 0 ≤ s ≤ t ≤ T and I the identity square matrix of dimension d× d. Each individual

W i
t behaves like a standard Brownian motion and for all j 6= i we get W i

t and W j
t to be

independent.

This methodology has been modified and applied to a wide variety of stochastic processes

including jump diffusions and pure jump processes; see [48]. Alternative classes of methods

to evaluate integrals are quasi-Monte Carlo methods or low discrepancy methods, which are

based on sequences of pseudo-random numbers.

51



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Time

r(
t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Time

r(
t)

Figure 4.3: A trinomial tree with 6 time steps and a Monte Carlo fan with 1000 paths at
t = 0

4.2.2 Comparison between the polynomial tree and Monte Carlo

method

Both the methods are very different. The lattices usually require a much smaller number of

nodes for the same time horizon and are hence very useful in decision models which are com-

putationally intensive and are often non-convex, such as problems with integer constraints

for each scenario. The Monte Carlo method, on the other hand, is extremely flexible and

can be used for simulating a wide variety of processes including jump process, see [23]. How-

ever, the traditional Monte Carlo method requires a lot of memory as each scenario needs

to be stored in memory. Hence it is less suited for optimization, especially when multi-stage

optimization is considered (please see chapter 5) As the debt management problem leads

naturally to a multi-stage decision problem, we will use lattice-based scenario generator in

our model, see figure 4.3.

4.3 Macroeconomic models

Generating scenarios with macroeconomic factors, other than the spot rate of a market or

the inflation index rate, is often used in actuarial sciences [103] and finance [15]. By

incorporating several key macroeconomic factors such as the GDP, the output gap (the

difference between the actual GDP and the highest level of GDP that can be sustained over

a long term when the economy’s resources are fully employed), the unemployment levels,

it is theoretically easier to model the financial requirement for the year and render the

scenarios generated more credible. Certain models were created specifically for simulation
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[14] only and others for optimization [16]. However, some of the factors, such as the market

sentiment are not directly quantifiable and are replaced by proxies in macroeconomic models

(e.g. return of equity, risk premium, unemployment or real estate returns). These soft factors

make the models highly prone to errors from a decision modelling point of view. [36] reports

that the presence of soft factors doesn’t always improve the analysis of data compared to a

standard multifactor short-rate model.

4.4 Summary

In this chapter we have covered several methodologies for scenario generation. Tree based

scenario generation were covered to some extent and compared to Monte Carlo scenario

generation. This will be of use in chapter 6.
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Chapter 5

Multi-stage stochastic

programming

5.1 Background on multi-stage stochastic programming

In this section, we will provide several definitions to help define the debt management

problem in the next section. This section will be more about multi-stage programming in

general, and not specifically about debt management problem. To begin, several symbols

and relevant notations need to be defined:

5.1.1 Notation for this chapter

1. x: a vector of real numbers, x ∈ R
n.

2. y: a vector of integer numbers, y ∈ N
m.

3. U : a vector of random real variables, generally not independent and identically dis-

tributed.

4. f(x, y) : Rn × N
m 7→ R will represent objective functions in future definitions.

5. gi(x, y) : R
n × N

m 7→ R for i = 1, 2, · · · ,M . Where M is a specified integer constant

such asM ≥ 1. The set of functions gi(x, y) will be used to satisfy equality constraints.

6. hj(x, y) : R
n × N

m 7→ R for i = 1, 2, · · · ,M and M is defined as previously. The set

hi(x, y) will be used to satisfy inequality constraints.

7. E[fi(x, u)] be the expected value of the function fi(x, u).
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Stochastic programming methodology was developed in the late 60s ([99], [101], [66])

and have had a widespread influence in the world since then. These are a practical set of

techniques to model problems where some parameters of the problem are uncertain and are

only described by a probability distribution. In our case, these techniques will be used to

model the short rate and other macroeconomical values. By using the scenarios generated

in the previous chapter 4, we can model certain stochastic variables. In the recent years,

several commercial and non-commercial solvers have appeared, such as FortSP [41] or

FuncDesigner [67].

A stochastic program is a mathematical program where one or more variables are random

as defined in chapter 2. We will define a simple recourse stochastic programming problem

first:

Definition 20. A stochastic program (or SP) is a mathematical optimization problem where

some of the data is uncertain. Uncertainty is defined in terms of a probability distribution

on the parameters. The problem can be written in the following form:

minimize f1(x) + E [f2(x, u)] (5.1)

subject to gi(x) = 0, i = 1, ...,m, (5.2)

hj(x) ≤ 0, j = m+ 1, . . . ,M, (5.3)

lr(x, u) <= 0, r = 1, . . . ,K, ∀u ∈ U, (5.4)

x ∈ X ⊆ R
n (5.5)

u ∈ U, is a random variable that takes values in R
n. (5.6)

where Ef2(x, u) is the expected value of f2(x, u) with respect to the random variable u ∈ U ,

where U is the set of possible values within R
n. X is a subset of possible values within R

n.

The set of functions lr(x, u) are required to hold for each constraint with probability 1 and

for each u ∈ U and are the link between the first stage decisions x and the second stage

decisions u.

The above definition is for a two stage program as it involves only one set of decisions and

a second set of decisions that are stochastic to minimize the expected value of the objective

function. To be solved a deterministic equivalent problem is often defined.

Definition 21. A two stage stochastic problem can be reformulated as a deterministic equiv-

alent linear program. It is a large linear programming problem over a finite number of sce-

narios, where the optimal first-stage decision are computed and attach a probability pk to
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each scenario.

minimize f1(x) +

K∑

r=1

f2,r(x, u) (5.7)

subject to gi(x) = 0, i = 1, ...,m, (5.8)

hj(x) ≤ 0, j = m+ 1, . . . ,M, (5.9)

lr(x, u) <= 0, r = 1, . . . ,K, ∀u ∈ U, (5.10)

x ∈ X ⊆ R
n, (5.11)

u ∈ U, is a random variable that takes values in R
n. (5.12)

where the notation is identical to definition 20.

A two stage stochastic problem can be extended to a multi-stage model. A multi-stage

model, or recourse model, is a model where decisions must be made having an incomplete set

of information over deterministic and/or stochastic parameters. If the information becomes

available before a later stage than the model should be able to alter the set of decisions which

were already made for the subsequent stages. If the parameters with incomplete information

are modeled with random variables with a known probability distribution then it becomes

a multi-stage stochastic model:

Definition 22. A multi-stage stochastic program (or MSP) is a mathematical optimization

problem in the form:

minimize
∑n

k=1

[
pkf(xk, uk)

]
(5.13)

subject to gi(x
k
t , u

k
t ) = 0, i = 1, ...,m, ∀k, ∀t ∈ [1, T ], (5.14)

hj(x
k
t , u

k
t ) ≤ 0, j = m+ 1, . . . , n, ∀k, ∀t ∈ [1, T ], (5.15)

xk1 = xl1, ∀k, ∀l, (5.16)

xkt = xlt, if (uk1 , · · · , ukt−1) ≡ (ul1, · · · , ult−1), ∀k, ∀l, ∀t ∈ [1, T ], (5.17)

xkt ∈ Xt(u
k), ∀k, ∀t ∈ [1, T ], (5.18)

ukt ∈ Uk
t , ∀k, ∀t ∈ [1, T ]. (5.19)

where Xt(u
k) is the subset of possible values within R

n at time t and scenario k. Uk
t is the

set of values within R
n at time t and scenario k. pk is the probability of scenario k occurring

within the n scenarios considered, xk = (xk1 , x
k
2 , · · · , xkT ) and uk = (uk1 , u

k
2 , · · · , ukT ) are the

decision and random variables at time t and scenario k. The functions f(x, u), gi(x, u) and

hj(x, u) remain defined as above.

The 3th constraint makes sure that all scenarios and decisions are identical at the start of

the optimization. The 4th constraint exists to ensure that under the same random variables,
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the same decision is taken. See [32] for a more detailed multi-stage stochastic methodology

using scenario trees. For a detailed explanation of mathematical programming see [17].

In this chapter we will look at a generalization of the above problem with some integer

valued variables as follows:

Definition 23. A mixed integer optimization program (or MIP) is a mathematical opti-

mization problem in the form:

minimize f(x, y) (5.20)

subject to gi(x, y) = 0, i = 1, . . . ,m, (5.21)

hj(x, y) ≤ 0, j = m+ 1, . . . , n, (5.22)

x ∈ X ⊆ R
n1 . (5.23)

y ∈ Y ⊆ N
n2 . (5.24)

where x is a vector of size n1 of real numbers: x ∈ R
n1 and y a vector of n2 integer numbers:

y ∈ N
n2 . f is the objective function, gi are the equality constraints, hi are the inequality

constraints. The subset X ⊆ R
n1 is the subset of feasible solutions of x,and Y ⊆ N

n2 is the

subset of feasible solutions of y.

A number of commercial and non-commercial solvers exist to solve mixed integer prob-

lems such as Gurobi [86] and CPLEX [60]. For more information regarding integer pro-

gramming see [112].

5.2 Applications of multi-stage stochastic programming

Several real life problems can be posed as a multi-stage stochastic optimization problem. An

example is a traveling salesman problem where every node is a new stage, and the distance

is fixed but the time to travel varies with a stochastic variable depending on traffic [63]. A

more detailed explanation of the traveling salesman problem can be found in [69] and its

many applications in [92]. The scheduling problem where each time slot is a stage and the

potential attendance or rating can be stochastic is also a multi-stage stochastic problem [75].

Specific scheduling applications featuring multi-stage stochastic optimization include power

distribution [62] and economic lot allocation [42]. The knapsack problem is a problem of

space allocation [53], it can be made as a multi-stage stochastic problem in the case where

the space required or the elements needed to be allocated are changing. The main use in

this thesis will be the public debt issuance problem described in chapter 6.
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5.2.1 Receding horizon method

The receding horizon method used on a stochastic program differs from a multi-stage stochas-

tic program. In a standard multi-stage stochastic program, all decisions must be re-evaluated

at every decision node or time node. In a receding horizon framework, all decisions are re-

evaluated at every interval of time where more information becomes available, similar in

fashion to a weekly, monthly or quarterly budget review. In the current context, the appli-

cation of the receding horizon method can be further explained as follows. We assume that

there are n different points in time t0, t1, . . . , tn when the optimization will be carried out

or repeated, and T > tn is the end of planning horizon. We also assume that the objective

function, the constraints and the variables for the optimization model at each ti is known a

priori. The problem parameters or data for future times ti is not known a priori.

• At t0, a multi-stage stochastic programming problem is set up to minimize a particular

objective function for a given set of constraints and and solved. The first stage decisions

are then implemented.

• At ti, i = 1,2 or 3, a new multi-stage stochastic programming problem is set up, once

the data for the problem becomes available. Note that, in general, this data depends

on the decisions taken at time ti−1 (in the debt cost minimization example in chapter

6, this data will be prior debt issuance).

The main advantage of the receding horizon method is that the computational difficulty of

each stage is independent to the amount of decisions needed to be done. This idea of using

multiple optimizations over the trajectory of an uncertain variable is similar to the receding

horizon approach used in predictive process control, see e.g. [73].

5.2.2 Re-combining lattice for interest rates

As in the previous section, after each (re-)calibration we build a re-combining trinomial

lattice using a procedure in [59] and use it for setting up an optimization problem at each

auction. This idea of solving multiple, possibly multi-stage optimization problems during

the financial year is realistic as the sovereign debt issuing authority can dynamically adjust

its decisions during the year as the economic environment evolves. We build a Q step lattice

at the beginning of each quarter using the parameters of recent calibration. A construction

for Q = 3 is shown in figures 5.2.2 to explain the idea of a receding horizon.

We will now visit the debt management problem using the contents of this chapter to

describe it in the next chapter, and using the contents of all previous chapters to solve it.
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Figure 5.1: Lattice at the beginning of the 1st and 2nd quarter.
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Chapter 6

SP based optimization model

for debt issuance

Governments make use of debt instruments in order to finance two major components of the

national accounts among other needs of financing:

1. the government net cash requirement, which is essentially the difference between gov-

ernment’s income and expenditure in cash returns;

2. the redemption of maturing government bonds. This is the amount needed to finance

the annual repayment of maturing debt.

In managing the government debt, several governments have as their stated debt strategy

objective the minimization of long-term financing cost while maintaining a low downside risk

around those costs. In the UK, for example, the government explicitly states in [107] that

“the primary objective of debt management policy shall be to minimize, over the long term,

the cost of meeting the Government’s financing needs whilst:

• taking account of risk and

• so far as possible, to avoid conflict with monetary policy”.

Although phrased in many different ways, similar statements relating the objective of

government debt management are found in most of the Ministry of Finance code of prac-

tices around Europe and it is explicitly mentioned in the IMF guidelines for public debt

management; see [61].

The trade-off between cost and risk is a familiar concept in the asset-pricing literature

where investors attempt to optimally select the proportion of risky and riskless assets that

maximize their expected utility functions subject to appropriate wealth constraints. This
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suggests that the government might be able to apply corporate finance theory in determin-

ing its debt issuance strategy. However, asset-liability management can not be applied to

sovereign debt management in a straightforward manner. First, the objective and horizon of

government debt management differ from those of private institutions and the types of risks

actively managed at sovereign level also differ from private sector. In particular, while asset

portfolio managers try to maximize asset returns over holding period subject to upper limit

on risk, sovereign debt managers try to minimize the debt-service cost over a longer horizon

subject to an implicit or explicit constraint on the volatility of debt-service cost(as a proxy

for risk). Second, government debt managers are concerned with maintaining a liquid and

well-functioning government security market. Sovereign fixed-income market often serve as

a benchmark for corporate issuers, thus implying that small alterations of the government

portfolio often have large impacts on the entire bond market. Therefore, the objective of

minimizing the cost of debt servicing is subject to the constraint that a minimum level of

bonds has to be issued at each maturity bracket. Finally, the implementation and trans-

mission of monetary policy interventions occur through financial markets. According to the

liquidity preference theory, debt management has a clear influence on the term structure of

interest rates. Therefore, some constraints are imposed on debt management by the need

to consider consistency with monetary policy.

The purpose of this work is to integrate corporate portfolio optimization theory in a

general framework which can be used by government debt managers to inform the issuance

policy. In doing so we assume that one of the main sources of risk in sovereign debt portfolio

management is the uncertainty about future short term interest rates. Other important

sources of uncertainty such as the exposure to currency risk or fluctuations of macroeconomic

variables (e.g., the rate of inflation) are not inserted directly into our cost minimization

problem and are assumed to be closely correlated with the single source of uncertainty used.

To model the evolution of interest rates, we use an affine term structure model introduced

in [109] and discussed in chapter 3, and calibrate to multivariate time series data on

government bond yields using a Kalman filter. This filtering-based calibration approach

allows us to use the short term rate as an unobservable variable rather than using a proxy

for it and to use potentially noisy yield data from which to estimate the short rate. Similar

approaches have been previously employed in [5], [98], [50] and [30] among others. [28]

provides a review of using Kalman filtering in financial time series models.

To generate scenarios of uncertain future interest rates (and hence the yields, which are

affine functions of short rate for the chosen short term rate model) evolving through time,

we use a trinomial recombining lattice. Using a recombining lattice is an industry standard

way of modelling asset price or interest rate evolution for pricing purposes. In the present

context, using a recombining lattice means that the number of possible values the yield

vector can take grows linearly with time steps. In a non-recombining lattice, the number
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of steps can grow exponentially or combinatorially. The use of a recombining lattice keeps

the mixed integer linear programming (MILP) based multi-stage stochastic programming

problem numerically tractable, even on a desktop with modest hardware specifications.

An alternative approach would be to use a non-recombining lattice followed by scenario

generation heuristics, as proposed in [39] and [55].

The use of scenario based stochastic optimization in bond portfolio management is not

new, although most of the applications are demand-side applications (i.e. the optimization

problem as seen from the bond purchaser’s point of view). A two stage stochastic program

was formulated in [49] to address fixed income portfolio management under interest rate and

cash flow uncertainty, while a similar formulation was used in [114] to illustrate management

of portfolios containing mortgage backed securities. In [38], bond portfolio management is

formulated as a multiperiod stochastic program in a dynamic setting. Like our paper, [38]

also uses a recombining lattice as a temporal model for uncertain interest rates.

On the supply side (i.e., for a sovereign issuance problem), a linear programming based

model is presented in [1] for minimization of the total cost of issuance under regulatory

constraints. This model is illustrated using debt issuance data of the Italian government.

Other notable work in this area includes [14], which provides results on the multivariate

simulation of interest rates using observable (ECB) rates as well as analysis of principal

components. The research reported in [22] and [7] is the closest in spirit to the work reported

here, in the sense that, both these papers also develop multi-stage stochastic programming

models for sovereign debt issuance.

6.1 Assumptions

We start with the following assumptions about the process of raising debt by a sovereign

government, as described in [27]:

1. The sovereign body raises debt through a series of auctions. At the beginning of the

financial year, the dates of debt auctions are fixed. There are three separate auction

calenders; one each for short, medium and long dated bonds. Imperatives other than

purely financial ones play a significant role in deciding this calendar and we consider

these calendars as input data.

2. At each auction, a single bond is issued, either from the existing (or pre-issued) stock

or a bond with new maturity.

3. The average price of any bond at the auction is its arbitrage free price as determined

by the yield curve. The yield of any new bond issued is also determined by the yield

curve on the auction date.
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4. Fiscal policy is responsible for the government net cash requirement. Thus, the total

amount to be raised over the financial year is dictated by the government’s borrowing

requirements and is assumed to be an exogenous constant. Further, the total amounts

to be raised through each set of auctions viz. auctions of short, medium, long dated

bonds, are fixed. These are dictated by the government’s need to maintain liquidity

in markets of bonds with different maturities.

5. The government does not engage in opportunistic borrowing. As a consequence finan-

cial strategies that attempt to take advantage of the market conditions for issuance of

various debt instruments are ruled out. This operational principle together with the

need of pursuing an issuance policy that is open and transparent are often described

in the code of practice of the debt managing agencies.

Under these assumptions, the optimization model uses a receding horizon approach as

mentioned earlier; see e.g. [73] for applications in control engineering. This approach in

the present context may be explained as follows. Suppose that there are N auction dates

indexed from t1 through tN . At each auction date ti, i > 1, data of previous auctions

t1, · · · ti−1 are already available. Also, the multivariate time series data are available until

time ti. It is assumed that, at each ti, a new recombining interest rate lattice is established

and a multi-state stochastic optimization problem is solved to generate the choice of bond

and the amount of debt to be auctioned from ti onwards, i.e. at ti, ti+1, · · · , tN . If Ti is the
number of stages in the stochastic optimization problem solved at ti, then Ti − Tj = i − j

for 1 ≤ i ≤ j ≤ N . In the numerical experiments reported in 6.6, this receding horizon

approach is followed based on real UK data and the results are compared with the actual

issuance during the same period.

6.2 Notation for the debt management problem

As outlined later in section 5.2.2, we use a re-combining tree (or lattice) to model the

evolution of interest rates. For a re-combining tree, the number of nodes (and hence decision

variables) grows linearly with time and the problem remains tractable even for a long time

horizon. Given an interest rate lattice and hence a set of scenarios for future bond yields, we

outline here the notation used in our development of the optimization model. The scenario

generation will be discussed separately in latter subsections.

1. N = {1, 2, · · · , N}, J = {1, 2, · · · , J} and K = {1, 2, · · · ,K} are the index sets

for auctions over the budget year, interest rate scenarios and bonds to be auctioned

respectively.
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2. X
(k)
i.j is a binary decision variable which has a value 1 if kth gilt is auctioned at ith

auction, in jth scenario; X
(k)
ij is 0 otherwise.

3. u
(k)
i.j is a real valued decision variable which gives the number of units of bond k sold

at auction i in jth scenario. The unit is enforced to be a multiple of a constant ̟ in

the model with the use of ωi.j as an integer variable.

4. P
(k)
i.j is the forecasted price of the kth bond at the ith auction in the jth scenario; this

is explained in more detail later in section 5.2.2.

5. The amount raised at a single auction is bounded from above by D and from below

by D, both of which are specified constants.

6. D0
(k)
i.j is the prior total holding in the secondary market of the kth bond at the ith

auction in the jth scenario. The parameter D0
(k)
i.j keeps track of the total amount of

a particular bond existing in circulation and is updated after every iteration of the

receding horizon. It also keeps track of maturing debt of the time period in question. ψ

is the upper bound for the liquidity constraint this is a constant for a specific problem

to make sure that to many already existing bonds don’t exist.

7. τ
(k)
i is time to maturity of bond k starting from time ti. It needs to satisfy the maturity

constraint, i.e. τ ≤ τ
(k)
i ≤ τ , where τ , τ are given constants.

8. B ≥ 1 is a constant integer which limits the number of times a specific bond can be

used in the considered financial year. The choice of integer B is a trade-off between

flexibility in choosing the lowest cost issuance and ensuring enough liquidity across all

maturities.

9. L is the principal of each bond. Ij represents the total cost of issuance over the lifetime

of debt in scenario j:

Ij =
∑

i∈N

∑

k∈K

u
(k)
i.j L(1 + χ

(k)
i ),

where χ
(k)
i represents the total amount of coupons over the remaining life of bond k

from time ti onwards. This cost function is calculated in accordance with the European

System of Accounts (ESA95).

Now we will provide some clarification to certain constants used in our problem.

6.3 Requirements of a debt management office

A debt office, as written previously, has certain requirements:

1. An amount D must be raised in cash,
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2. This amount must be issued over the financial year over different maturities in the N

auctions available,

3. This amount must be issued in conventional and index-linked bonds,

4. The bonds issued must be grown to a benchmark amount for 5 year and 10 year

maturity,

5. The debt management office must announce a specific auction calendar at the begin-

ning of the year,

6. and the coupon yield of the specific bond issued at a closer date to the auction,

7. The amount raised must be done in increments of ̟,

8. The debt management office must pick the best coupon yield according to the yield

curve to minimize costs while making sure to raise the full amount of money required

subject to certain risk measures,

9. The debt management office must avoid influencing the operations of the central bank

or the validity of the currency.

These requirements exists as a way to keep the bond market (sovereign and corporate)

liquid enough and provide enough information on their operations as not to have a sudden

impact.

6.4 Optimal debt issuance models

Using the scenarios created in chapter 5, the forecasted short rate used for future auctions

is then linearly interpolated from the tree if the auction date does not coincide with a tree

node; see appendix C for a small example of how this is done. Linear interpolation here

means:

rt = rji + (rji+1 − rji )
t− ti

ti+1 − ti
, (6.1)

Using the Vasicek pricing formula, we can obtain the price of a bond with maturity Tk, at

time ti and corresponding to a short rate r
(j)
i by summing over all coupons:

P
(k)
i.j =

∑

ti<tc≤Tk

χ(k)A(ti, tc)e
−B(ti,tc)r

(j)
i + LA(ti, Tk)e

−B(ti,Tk)r
(j)
i , (6.2)

where L is the principal of each bond, χ(k) is the coupon of the kth bond , tc belongs to the

the set of maturities of all the remaining coupons for the bond considered and A(t, T ), B(t, T )

are as defined in section 3.1.1.
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6.4.1 A simplified optimization model for the debt issuance prob-

lem

For the set-up outlined above, it is worth considering a deterministic optimization problem

first. Let us assume that future prices are “known” as P
(k)
i for the auction date at ti and

for the unit of bond k, the auctions will sell out. Thus the second subscript for prices P ,

which indexes the scenarios, is not used and the overall notation is simplified.

Let X
(k)
i be the binary variable that represents which bond k to issue at the ith auction

and u
(k)
i be a real variable that estimates the amount of bonds to issue for k bond at ith

auction date. The total cost is simply the un-discounted total cash flow from the issuance

of the year. The simplified version of optimization model without uncertainty can then be

expressed as follows.

minimize
∑

i∈N

∑

k∈K

u
(k)
i L(1 + χ

(k)
i ) subject to (6.3)

∑

(i,k)∈(N ,K)

u
(k)
i P

(k)
i ≥ D, (6.4)

u
(k)
i P

(k)
i +D0

(k)
i ≤ ψ −

i∑

pt=1

u
(k)
pt P

(k)
pt ∀i ∈ N , k ∈ K, (6.5)

DX
(k)
i ≤ u

(k)
i P

(k)
i ≤ DX

(k)
i ∀ i ∈ N , k ∈ K, (6.6)

∑

(i,k)∈(N ,K)

X
(k)
i = N, (6.7)

∑

k∈K

X
(k)
i = 1, ∀i ∈ N , (6.8)

∑

i∈N

X
(k)
i ≤ B, ∀k ∈ K. (6.9)

The equations in this model can be explained as follows.

• Inequality (6.4) guarantees that the minimum required amount of debt is raised over

through the specified series of auctions.

• Inequality (6.5) ensures that the total issuance for a particular bond (or a particular

maturity) remains under a specified constant ψ.

• Inequality (6.6) constrains the minimum and the maximum issuance size at each auc-

tion.
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• Equations (6.7)-(6.8) ensure that all auctions are used and only one bond is issued at

each auction.

• Finally, equation (6.9) is a constraint to ensure that one bond is used at most B times

in the series of auctions.

Analytically, this model can be solved using a deterministic mixed integer linear program,

with the amounts auctioned and the issuance choice (binary) variables as the decision vari-

ables. Although the model constitutes a useful exercise, it is overly simplified to illustrate

the issues involved in public debt issuance. The assumption that prices are known and a

lack of measure to control the issuance risk make the problem highly unrealistic. In the

subsequent sections, we will introduce the necessary risk measures and will also introduce a

mechanism to generate scenarios for different possible future prices for bonds.

6.4.2 Risk Measures for stochastic programming

Risk measures provide information about the uncertainty of future debt-service cost, there-

fore the value at risk plays a central role in the management of government debt. An increase

in the value of the debt portfolio reflects an increase in the future burden for taxpayers or

it may boost the cost of other debt instruments often used by debt managers such as swaps

or buybacks.

As a measure of risk, we use two different measures: Conditional Value at Risk (CVaR)

and a quantile based supply-side measure called Cost at Risk (CaR), as discussed in [94].

They both measure the potential extra cost incurred by the DMO with respect to

The CVaR risk measure is the weighted average of the Value at Risk (VaR) and the

losses exceeding VaR. CVaR due to its very definition, is always an upper bound of VaR

and therefor provides a good control of risk within the optimization model. It is defined as

a system of linear constraints in [96]. The CVaR constraint is also bounded to control the

maximum amount of conditional risk tolerated. A similar bound is explained in [22]:

CV aR :=

∑
j∈J pjφj

1− β
+ ζ, (6.10)

with

φj := max

(
Ij −

∑
j∈J Ij

J
− ζ, 0

)
, (6.11)

where J is an index set as defined in section 5.1.1, ζ ∈ R, pj is the probability of the jth

scenario, or a branch of the tree to occur and β corresponds to the confidence rate between 0

and 1. In the proposed model, the value of CVaR will be bounded from above by a constant

ρ as done in [113] and [22]. We also consider that each branch will have an equal probability
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to occur, so that we can take pj to be 1
J . Now the CVaR constraint becomes:

CV aR :=

∑
j∈J φj

J(1− β)
+ ζ

As the CVaR upper bound is reduced, the difference between costs of different scenarios is

reduced as well. As theory suggests, this will raise the expected cost in general.

The CaR measure is defined in [52] as:

CaR := E(Ij) + 1.645ς,

where E(Ij) =
∑

j∈J Ij/J and ς is the standard deviation of the achieved cost. This supply

side measure is similar to the popular Value at Risk (VaR) measure on the demand side,

under the assumption of normally distributed scenarios. In our case, the standard deviation

is computed a posteriori as the sample standard deviation over all the scenarios. As such,

there is no linear constraint to model CaR, it merely provides extra information to estimate

the cost of issuance risk.

6.4.3 A stochastic MILP model for public debt issuance

The mixed integer linear programming model for the optimal debt issuance problem is

defined as follows.

minimize
1

J

∑

j∈J

Ij subject to (6.12)
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∑

(i,k)∈(N ,K)

u
(k)
i.j P

(k)
i.j ≥ D, ∀j ∈ J , (6.13)

u
(k)
i.j P

(k)
i.j = ̟ωi.j , ∀ i ∈ N , k ∈ K, j ∈ J , (6.14)

φj = Ij −
1

J

∑

j∈J

Ij − ζ, ∀ j ∈ J , (6.15)

1

J(1− β)

∑

j∈J

φj + ζ ≤ ρ, (6.16)

u
(k)
i.j P

(k)
i.j +D0

(k)
i.j ≤ ψ −

i∑

pt=1

u
(k)
pt.jP

(k)
pt.j ∀i ∈ N , k ∈ K, j ∈ J , (6.17)

DX
(k)
i.j ≤ u

(k)
i.j P

(k)
i.j ≤ DX

(k)
i.j ∀ i ∈ N , k ∈ K, j ∈ J , (6.18)

∑

(i,k)∈(N ,K)

X
(k)
i.j = N, ∀j ∈ J , (6.19)

∑

k∈K

X
(k)
i.j = 1, ∀i ∈ N , j ∈ J , (6.20)

∑

i∈N

X
(k)
i.j ≤ B, ∀j ∈ J , k ∈ K, (6.21)

if τ ≥ τki or τ ≤ τki thenX
k
i.j = 0 ∀ i ∈ N , j ∈ J . (6.22)

The optimization procedure is schematically illustrated in figure 1. The goal is to minimize

the average cost of debt servicing as defined by ESA95 [43] over all interest rate scenarios

J and the set of auctions N . The rest of the notation in the above model is as defined in

section 5.1.1. The set of equations is an expanded version of the model presented earlier in

section 6.4.1 and can be explained as follows.

• Inequality (6.13) is a constraint to make sure the amount raised is at least the fixed

objective D over the year.

• Equation (6.14) exists to ensure that the auctions are done in increments of ̟, ωi.j

being an integer variable to ensure the increments are respected.

• The systems of inequalities (6.15)-(6.16) corresponds to the CVaR risk measure

bounded from above by ρ with confidence β.

• Equation (6.17) is a liquidity constraint and ensures that the total amount of a specific
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Figure 6.1: Optimization procedure

bond in issuance doesn’t exceed an upper bound ψ.

• Equation (6.18) ensures that each auction will raise funds within the boundaries set

by a government.

• Equations (6.19)-(6.20) impose constraints that all auctions are used and only one

bond is auctioned on each auction date.

• The inequality (6.21) ensures that a single bond is used no more than B times.

• Finally, the last constraint (6.22) ensures that if the maturity of a particular bond

does not match the maturity constraint of a problem at the ith auction it may not be

auctioned by the model.

The optimization model discussed so far assumes that a mechanism is available for gen-

erating scenarios of bond prices. These scenarios need to be arbitrage-free, since we are

assuming that the auction prices are determined by the secondary market.

Remark. There are no non-anticipitivaty constraints defined explicitly in the model. Al-

lowing the model access to all of the data means the solutions for every scenario is far more

diverse and informative. As the receding horizon occurs, the prior issuance, of the scenario

closest to the actual short rate, is added to the portfolio of issued bonds D0
(k)
i.j and a new

set of forecasts are made. This makes the non-anticipitivaty of our deterministic equivalent

problem (as defined in 21) implicit.
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6.5 A stochastic MILP model with liquidity and inter-

est rate risk measurements

In addition to minimizing the average cost of issuance, we can also try to minimize the

average loss of value of gilts due to issuance, with respect to potential change of short rate.

We will start by looking at an interest rate measure which will allow us to do this.

We will use the definitions from section 3.2.2. The risk measure defined in that section

is more involved than the Cost at Risk (CaR) measure; however, it can provide useful

information on the potential portfolio movements related to interest rates. CaR measure

depends only on the mean and the standard deviation; however, optimizing it would be

a linear programming problem with quadratic constraints. As the values of those interest

rate risk measures are pre-computed, they can be used as parameters and optimized linearly

by taking the values of the derivatives from the forecasted yield curves. By inputting the

values into the data files, we can evaluate an interest risk measure at each time step and

each scenario that would represent the potential gain or loss of a zero-coupon bond value

if the short rate were to change by 1%. As interest rate risk is one of the main risks when

issuing fixed income debt, it is important to monitor and control it. It also represents an

extra penalty on the issuance of bonds with a coupon that diverges too much from the yield

curve at each time and scenario. Let the variable IRMi,j denote the interest rate measure

just defined.

Another issue is with the bond devaluation due to an excess of liquidity which can occur

when issuing in tens of millions of bonds per auction.

6.5.1 Modified prices of bonds depending on existing liquidity

Let us consider a modified bond price, where the new price is the existing price discounted

to account for the impact of the already issued quantity. The denominator can represent

several things. Usually it is taken to be the discount factor between fair or mathematical

value and market value. The following equations shows the approach used here:

P̃
(k)
i.j =

P
(k)
i.j

1 + ε(D0
(k)
i.j +

∑t−1
i=0 P

(k)
i.j u

(k)
i.j )

, (6.23)

where P
(k)
i.j corresponds to the price of kth bond at time i and scenario j. P̃ corresponds to

the new modified price and ε is a constant. As previously, D0
(k)
i.j will represent the total prior

issuance of the specific bond at time i and scenario j, to build the bond to a benchmark,
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while making it less worthwhile to issue further. Let µ
(k)
i.j be 1 + ε(D0

(k)
i.j ), then:

P̃
(k)
i.j :=

P
(k)
i.j

µ
(k)
i.j + ε

∑t−1
l=1 u

(k)
l.j P

(k)
l.j

, (6.24)

and let us denote:

z
(k)
i.j := µ

(k)
i.j + ε

t−1∑

l=1

u
(k)
l.j P

(k)
l.j , (6.25)

Now as z
(k)
i.j depend on the prior issuance x

(k)
i.j , it is a decision variable and is always greater

than 1. Lets take the quadratic constraint:

∑

(i,k)∈(N ,K)

u
(k)
i.j P

(k)
i.j

z
(k)
i,j

≥ D ∀j ∈ J , (6.26)

We can change the value of the bond everywhere or just modify the amount to be raised to

accommodate for the difference. It can be rewritten as:

∑

(i,k)∈(N ,K)

u
(k)
i.j P

(k)
i.j ≥ Dz

(k)
i.j , ∀j ∈ J , (6.27)

as z
(k)
i.j by definition will never be negative. This particular constraint is used to make sure

that the total amount raised still meets the requirement of the budget with the modified

prices.

The model can take such a liquidity variable into account while remaining linear, as

explained in [17]. It can be rewritten as:

minimize
1

J

∑

j∈J

Ij subject to: (6.28)

∑

(i,k)∈(N ,K)

u
(k)
i.j P

(k)
i.j ≥ Dz

(k)
i,j , ∀j ∈ J , (6.29)

u
(k)
i.j P

(k)
i.j = ̟ωi.j , ∀ i ∈ N , k ∈ K, j ∈ J , (6.30)

φj = Ij −
1

J

∑

j∈J

Ij − ζ, ∀ j ∈ J , (6.31)

1

J(1− β)

∑

j∈J

φj + ζ ≤ ρ, (6.32)

(u
(k)
i.j + h

(k)
i.j )P

(k)
i.j +D0j ≤ ψ

(k)

i.j ∀i ∈ N , k ∈ K, j ∈ J , (6.33)
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IRM
(k)
i.j = (D0

(k)
i.j +

i∑

ti=1

x
(k)
ti.j

∂P
(k)
i.j

∂r
(k)
i

, (6.34)

∑

k∈K,j∈J

IRM
(k)
i.j < ρ̃, (6.35)

with the additional auction specific constraints :

DX
(k)
i.j ≤ u

(k)
i.j P

(k)
i.j ≤ DX

(k)
i.j ∀ i ∈ N , k ∈ K, j ∈ J , (6.36)

∑

(i,k)∈(N ,K)

X
(k)
i.j = N, ∀j ∈ J , (6.37)

∑

k∈K

X
(k)
i.j = 1, ∀i ∈ N , j ∈ J , (6.38)

∑

i∈N

X
(k)
i.j ≤ B, ∀j ∈ J , k ∈ K, (6.39)

if τ ≥ τki or τ ≤ τki thenX
k
i.j = 0 ∀ i ∈ N , j ∈ J . (6.40)

where ̟,ωi.j , φj , ζ, β are as defined in the previous model 6.4.3. IRM
(k)
i.j corresponds to the

interest rate measure defined earlier in this section, and ρ̃ is the upper bound set over the

portfolio of all bonds and all scenarios. Equation (6.29) is slightly modified to accommodate

the extra issuance of bonds, whereas equations (6.30)-(6.35) are new linear constraints that

have been added to the model.

6.6 Numerical results

We apply the optimization model defined in 6.4.3 to the UK government debt problem for

the 2007 − 08 year. The model parameters N,K and D for the debt problem (auctions,

bonds and amounts to be raised), as defined in section 6.2 are:

Subproblem N K D (in bn)

short (1− 7 years) 4 16 10

medium (7− 15 years) 4 8 10

long (> 15 years) 11 10 23.4

Table 6.1: Parameters used for optimization.

As well as using the real bonds that were available during that financial year, some of

the parameters of the optimization models are chosen based on the government remit as

follows with those defined in table 6.6.

• γ = 250 is the amount in million pound sterling to increment the amount raised at an

auction.
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• D = 1, 500 million and D = 4, 000 million, these are set in the remit.

• B = 2 is the maximum amount of times we choose to issue a particular bond in the

set of auction considered for short dated and medium dated bonds. B = 3 for the long

dated bonds issuance problem.

We will refer to the problem of issuance of short dated bonds as the short subproblem. Sim-

ilarly the medium dated bonds and long dated bonds correspond to the medium subproblem

and the long subproblem respectively. The CVaR measure of risk will be compared to the

traditional VaR measure and the CaR measure introduced in [52]. However unlike CVaR

which is evaluated in our optimization model, VaR and CaR are computed out of sample

for a posteriori analysis. ψ is 20 billion for the short subproblem, 22 billion for the medium

subproblem and 40 billion for the long subproblem. The use of longer term debt doesn’t

decrease the expected cost, as the cost function takes into account all coupon and principal

repayments, not discounted by the effect of inflation. The effect of inflation reduces quite

considerably the actual cost of the debt.

In this section several tables and plots with key results from the different subproblems

will be shown. Let us begin with the results for the short, medium and long subproblem

with no upper limit constraint of CVaR (ρ). The solutions from (6.2 - 6.4) 1 were obtained

on AMD Phenom X6 1055T processor with 4GB of RAM using the Gurobi 5.0.1 solver.

Q CaR in MN VaR in MN CVaR in

MN

S.D. in MN E[I] in MN time in s

1 13570.951 13235.678 12487.400 603.345 12604.396 4.667

2 13236.067 13130.600 11791.049 441.366 11909.629 3.215

3 13080.330 13084.245 11411.655 362.734 11771.610 5.790

4 12988.885 13058.574 11187.301 315.572 11828.529 37.602

5 12925.182 13048.864 11103.565 280.070 11567.305 206.276

6 12877.629 13041.224 11037.916 253.707 11628.767 327.514

Table 6.2: Results for the short subproblem with no ρ constraint.

Q CaR in MN VaR in MN CVaR in

MN

S.D. in MN E[I] in MN time in s

1 24938.271 23208.025 70547.039 3308.965 15034.343 1.149

2 23190.877 22563.763 66334.643 2503.593 14160.075 0.591

3 22334.971 22264.818 63924.727 2087.910 14801.552 0.852

4 21823.823 22231.914 63741.804 1791.331 14794.298 2.737

5 21465.394 22093.170 62553.862 1619.776 14767.257 4.521

1MN in the tables is a common abbreviation for million
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Figure 6.2: Efficient frontier for short subproblem.

Table 6.3: Results for the medium subproblem with no ρ constraint.

Q CaR in MN VaR in MN CVaR in

MN

S.D. in MN E[I] in MN time in s

1 117307.585 105333.152 481727.596 22692.107 49679.162 1.188

2 104380.241 99787.568 439813.347 16863.673 48472.099 1.224

3 98320.306 98024.002 424732.222 13769.380 50866.865 2.116

4 94822.590 97072.583 416614.623 11961.758 50710.848 6.484

5 92492.104 96767.387 414004.704 10647.074 22119.416 22.114

Table 6.4: Results for the long subproblem with no ρ constraint.

By restricting the values of the upper limit of the CV aR constraint, ρ, we are able to

produce results which are given in the Appendix C. Those results are used to produce efficient

frontiers for all three problems. These frontiers are shown in figures (6.2)-(6.4). As can be

seen, integer constraints make the efficient frontiers highly discontinuous. The variation

in E[I] for the short subproblem with changes in ρ is much higher than the corresponding

variation for the medium subproblem or the large subproblem. This can be explained by

the larger choice in short term maturity, coupons and smaller availability to issue within the

liquidity constraints (all maturities roll over eventually towards the short term subproblems).

This means that as ρ is reduced, the model will pick bonds with higher coupons and available

in a larger quantity.

Remark. The discontinuity is also seen in tables (C.1)-(C.3), as empty lines. The empty

lines are unfeasible solutions which are due to the limitations of the Gurobi 5.0.1 solver.
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Figure 6.3: Efficient frontier for medium subproblem.
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The table C.4 represents the solutions for the short subproblem using the CPLEX 12.2.0.0

solver. It can be found in Appendix C. As the number of unfeasible solutions with the

CPLEX solver are greater than with the Gurobi solver, they will be ignored in this thesis.

6.6.1 Comparison with the DMO debt issuance

The above model proposes an optimization based approach to debt issuance. However, the

issuance is often driven by exogenous factors of uncertainty, such as a change in political

sentiment or macroeconomic shocks. Not all the sources of uncertainty can be adequately

represented in an optimization model. From table 6.5 it appears that the implementation

of our model would have resulted in a significant cost reduction for the UK government

in the period considered. What the model does not tell is whether the implementation of

the proposed cost minimization procedure leads to a maturity structure which is radically

different from the one adopted in the real world. It is therefore of interest to compare our

model with the actual issuance by the UK government. An important exogenous factor

which the government takes into account when issuing debt is the net debt to GDP ratio.

The differences in the amounts issued from table 6.5 are rather small. However, they have

an important impact on the total cost of the issuance and can be seen in the debt to GDP

ratios. 2

Subproblem Actual cost Model cost with no ρ Model cost with ρ

Short problem 12.587500 11.628767 12.047241

Medium problem 15.375000 14.767257 14.674645

Long problem 55.353750 50.710848 47.904285

Total cost 83.316250 77.106872 74.626171

Table 6.5: Comparison against real debt issuance in billions of pounds

Remark. Note that the interest rate model used for scenario generation is calibrated on

one data set and the optimization is carried out on a different (out-of-sample) data set

throughout this exercise and the actual issuance decisions are not used as inputs to the

model.

2This work was first reported by the author in [27].

77



Chapter 7

Multifactor simulation models

Optimization modelling is useful in decision making when we have decision variables which

can influence the future outcomes, the size of the system is modest enough to make opti-

mization tractable and we have the dynamics of the system can be forecast with a reasonable

accuracy over a time horizon of interest. When one of these conditions is not satisfied, one

resorts to simulation models instead as an aid in decision making. We focus in this chapter

on macroeconomic simulation models which can be of use in decision making for public debt

issuance by providing useful insight and information into possible future outcomes; see [2]

and [87]. The next section introduces some notation common to both the models. The two

subsequent sections introduce the two models, followed by a discussion on their comparative

advantages. Simulations can be used for medium to long term forecasts and use several

more factors because it does not involve decision making. Both models examined are very

different, the first one is from an actuarial point of view and the second from a government

point of view, although they both look at similar aspects of the economy such as inflation or

the short and long rate. After simulating, the probable medium to long term scenario, we

will apply an optimization model to assess how a specific strategy of issuance fares, e.g. only

long term bond issuance or a mixed maturities issuance of fixed income debt. The choice

of issuance policy or strategy is described in [24] and [91]. [51] describes the calibration

and testing of the policies on macroeconomic models. [64] gives examples of stochastic sim-

ulations for dynamic economic models, whereas [46] propose a set of Bayesian econometric

models.

7.1 Notations for simulation models

In the next section, two models are going to be presented where the following notations will

be used:
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1. rt be the short term rate at time t,

2. lt be the long term rate at time t. It corresponds to the r∞ previously used and can

be defined in certain arbitrage free models,

3. qt be the inflation rate (Consumer Price Index or CPI rate) at time t,

4. pt be the inflation rate (Retail Price Index or RPI rate) at time t,

5. ut be the reversion level at time t,

6. µt be the mean reversion level of inflation at time t,

7. λt be the risk premium or excess equity return attributable to capital appreciation,

8. st be the return of equity defined as qt + rt + λt as seen in [54],

9. yt be the equity dividend yields, it is assumed that the natural logarithm of yt follows

an autoregressive process like ([56], [110] [111]),

10. ret be the real estate returns,

11. uet be the unemployment rate,

12. ogt be the output gap at time t,

13. ft be the financial requirement of the government at time t,

14. dt be the debt to nominal GDP ratio at time t,

15. ζ be the inflation target,

16. dWi be the Brownian motion for each factor i; as defined in section 2.2;

7.2 Macroeconomic models

With the above notation, let us demonstrate a short example applied to the UK from [2],

which uses several Ornstein Uhlenbeck processes:

drt = κr(lt − rt)dt+ σrdWr, (7.1)

dqt = κq(µq − qt)dt+ σqdWq, (7.2)

dlt = κl(µr − lt)dt+ σldWl, (7.3)

d(ln(yt)) = κy(µy − ln(yt))dt+ σydWy, (7.4)

d(re)t = κre(µre − (re)t)dt+ δreqt + σredWre, (7.5)

d(ue)t = κue(µue − uet)dt+ δuedqt + σuedWue. (7.6)
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where δre are δue are constants between 0 and 1. This model is used to give a possible

outcome depending on the values chosen to begin, and decision making can occur after-

wards assuming the decisions don’t impact greatly on the prediction. The equations can be

discretized to:

rt+1(0) = rt(0) + (1− κr)(lt − rt(0)) + σrεr,t, (7.7)

qt+1 = qt + (1− κq)(µq − qt) + σqεq,t, (7.8)

lt+1 = lt + (1− κl)(µr − lt) + σlεl,t, (7.9)

ln(yt+1) = ln(yt) + (1− κy)(µy − ln(yt)) + σyεy,t, (7.10)

ret+1 = ret + (1− κre)(µre − ret) + δreqt + σreεre,t, (7.11)

uet+1 = uet + (1− κue)(µue − uet) + σueεue,t (7.12)

+ δue((1− κq)(µq − qt−1) + σqεq,t−1). (7.13)

The use of the natural logarithm permits us to work with a positive and negative equity

dividend yields, to resemble more closely the equity markets appetite for risk.

Another simulation model used by the UK debt management office can be found in [87]

and is defined as:

rt(0) = φ+ ωqt−1 + χogt−1 + εr,t, (7.14)

qt = ζ(1− ξ) + ξqt−1 + ψogt−1 + εq,t, (7.15)

pt = κ+ qt−1 + ιrt + εp,t, (7.16)

ft = µ+ νft−1 − πogt−1 − θ(dt−1 − d∗) + εf,t, (7.17)

ogt = αt + ρogt−1 − β(rt−1(0)− qt−1) + εog,t. (7.18)

with αt a Markov switching intercept with two states, ρ measures the degree to which the

output gap is affected by its previous value and β is the short rate from the previous period.

ν indicates the extent to which the primary net financing requirement is influenced by its

previous value and θ indicated the extent to which the government has to change its fiscal

policy in order to ensure that the debt to GDP ratio does not deviate too far from the

long-run average ratio. ξ measure the strength with which the CPI inflation is influenced by

its previous value. κ is a constant and ι indicate the extent to which the short rate affects

the RPI inflation. φ is a constant, ω indicate the degree to which the previous period’s value

of the CPI inflation is affected. d∗ is the long-run average debt to nominal GDP. π ψ and

χ are the lagged value of the output gap. The ε variables correspond to the errors and are

defined as such:

• εog,t ∼ N(0, σ2
og),

80



• εf,t ∼ N(0, σ2
f ),

• εq,t ∼ N(0, σ2
q ),

• εp,t ∼ N(0, σ2
p),

• εr,t ∼ N(0, σ2
r),

• εl,t ∼ N(0, σ2
l ),

• εy,t ∼ N(0, σ2
y),

• εre,t ∼ N(0, σ2
re),

• εue,t ∼ N(0, σ2
ue),

Given a medium to long term simulation, we can use a debt issuance strategy to forecast

the costs and risks associated to such a strategy for that particular simulation. The simu-

lation is done on a quarterly basis over a long period of time. Several assumptions will be

taken for simplicity:

• the amount needed to be raised will be the financial requirement ft,

• only new bonds will be issued and there will not be any re issuance of existing bonds,

• all new bonds will be issued at face value,

• the initial debt to GDP ratio is set to a constant,

• the cost of the debt at any given time t is the sum of all remaining fixed and inflation

linked coupons and a realized inflation compensation effect on maturing inflation linked

bonds,

• bonds will be issued to a 5,10 and 20 years maturity for fixed coupons and 30 years

for fixed or inflation linked bonds.

The models are calibrated and used to estimate yield curves evaluated with a Dynamic

Nelson-Siegel model. The yield curves are assumed to depend on the short rate, the CPI

inflation and the output gap at time t, in the following manner according to [87]:




lt

st

ct


 =




E(rt(0))

−E(rt(0))

0.03


+




0 0 0

0 1 0

0.7 −0.6 −2.2







ogt

rt(0)

qt


+




ηl(t)

ηs(t)

ηc(t)


 (7.19)

with the yield at time t for a zero-coupon bond maturing τ :

rt(τ) = lt + st

(
1− exp(−τ/λ)

τ/λ

)
+ ct

(
1− exp(−τ/λ)

τ/λ
− exp(−τ/λ)

)
, (7.20)
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where λ is associated a constant value, in [87] the value λ = 1.45.

Remark. Note that the authors of [87] do not explain the calibration procedure used to

arrive at these values.

Several values have been allocated constant values:

yt=0 = 0, (7.21)

ft=0 =
µ

ν − 1
, (7.22)

qt=0 = ζ, (7.23)

pt=0 = κ+ ιφ+ (1 + ιω)ζ, (7.24)

rt=0(0) = φ+ ωζ. (7.25)

Each scenario generated will allow a yield curve to be constructed at each quarter of the

timescale considered and will allow the cost of a specific strategy to be evaluated.

7.3 Public debt strategy testing

The goal of testing a strategy is to assess how a particular strategy of issuance will perform

over a prolonged period of time, it’s cost, risk attached to it, and it’s result on debt to GDP

ratio dynamics. In [87] they test a fixed strategy over a period of 125 years, and keep issuing

the required financial requirement with a fixed ratio of short, medium, long and/or inflation

linked bonds at each quarter. Assuming a scenario with a short rate and an inflation factor

as well as a financial requirement: a yield curve can be computed. The inflation linked

bonds are easy to price once, the inflation is assumed. Once a yield curve can be evaluated

at each quarter and the amounts to be raised is given by the financial requirements, the

model only needs to issue the bonds.

7.4 Comparison of macroeconomic models

The second model is used by the UK debt management office. It models financial require-

ment and the evolution of the GDP with the output gap as well as other key macroeconomic

factors, and create yield curves along the year to create new bonds. However their assump-

tions appear to be unreasonable and unrealistic, as it is not possible to issue a new bond per

quarter for short, medium and long term bonds as well as an inflation linked bond. There

are no restrictions on the sizes of auctions or financial requirements, the coupon payments

are done quarterly instead of semiannually and issuance occurs at face value. Figures 7.1-

7.2 are an example of a single scenario, using the data obtained from [102]. We can see the

consequence of having a constant drift with a relatively large volatility. We can see in figure
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7.1 that the unemployment rate can move by more than 2% within a single year quite regu-

larly. Clearly several macroeconomic indicators do not vary by over 2% per year regularly,

this helps the notion that the assumptions appear to be unreasonable and unrealistic.

The two methods are very different but they can both be used for decision making.

More information about macroeconomic scenarios and forecasting can be found in [102].

The first model (7.7)-(7.13) is an actuary model and therefore was never intended to be

used for public debt issuance, there is no financial requirement modeled or the GDP growth,

making it useful for macroeconomic simulations but not for public debt issuance.
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Figure 7.1: A single scenario of the 1st model macroeconomical evolution over 60 years.
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Figure 7.2: A single scenario of the 2nd model macroeconomical evolution over 60 years.
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Chapter 8

Conclusion

8.1 Contributions

The main contributions to knowledge of this thesis are contained in chapter 3 and 6. They

are summarized as below:

1. Chapter 3

Several calibrations and comprehensive numerical experiments with real financial UK

data are given to compare different one, two and three factor interest rate models in

terms of their explanatory and predictive power. Comparisons of different one, two

and three factor interest rate models, show that the arbitrage free dynamic Nelson-

Siegel model outperforms all other models in-sample and the two-factor Vasicek model

outperforms out-of-sample. The two-factor Vasicek model is shown to be more accurate

out-of-sample despite being less complex and having considerably faster computation

times as compared to three factor models.

2. Chapter 6

• We calibrate a one factor, linear Gaussian interest rate model using a Kalman

filter and noisy yield measurements and use this to create bond price scenarios for

the optimization model. Arguably, this reflects better market expectation of the

bond prices obtainable through auctions than using primary economic variables.

Using a filter based interest rate model also allows for easy re-calibration and

hence allows for generating interest rate scenarios which are tuned to more recent

market data. For demand-side optimization, a similar approach was taken in

[83] where a two factor interest rate model is used along with a multi-factor

stochastic program to manage mortgage-backed securities. Filtering-based model

is also used in a simulation framework in the report by [34]. The authors are not
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aware of the use of filtering based framework to generate scenarios in a supply-side

optimization.

• We use a recombining lattice-based stochastic programming model [27] as op-

posed to a non-recombining scenario tree used in [22] and [7] while discussing the

sovereign debt issuance. This makes the problem computationally significantly

simpler, as the number of scenarios is reduced significantly, while retaining con-

sistency with the underlying theoretical interest rate model.

• We use a receding horizon approach to carry out multiple, multistage stochastic

programs over a period of time to optimize debt issuance cost over a given horizon;

see [73] for control engineering applications of the receding horizon approach.

Once a stochastic programming exercise is carried out, one need not stick to

the full sequence of optimal decisions with passage of time, as the uncertainty

progressively resolves itself. We propose re-calibrating the scenario generation

(i.e. interest rate) model periodically and use it to re-optimize the issuance over

the remaining period, using the issuance data up to that time. To our knowledge,

the use of receding horizon strategy in an optimization model is new.

• We carry out out-of-sample back-testing to compare the performance of our strat-

egy against the actual debt issuance by the UK government in the budgetary years

2006-2008. Our results show that a significant debt-service cost reduction can be

achieved by carrying out a rigorous optimization exercise.

3. A significant amount of reusable software was created in Matlab (for filtering based

calibration and prediction) and in Matlab and AMPL (for supply side optimization).

The software was used to create the numerical experiments in chapter 3 and 6. It is

fairly easy to use and documentation has been provided in Appendix A.

Further research

This thesis tries to cover all aspects of public debt issuance from an operational research

point of view. The topic has received more interest from academia in recent years. However

as DMOs have become independent fairly recently, very little has been published or shared.

This leaves many facets of the topic unexplored by operational research. This work can be

extended in several areas:

1. A dynamic interest rate model to price bonds, taking into account existing liquidity

and secondary market liquidity would be ideal for optimized decision making of public

debt issuance.
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2. The optimization models can be extended to take into account the inflation linked bond

subproblem. It is a long term problem, where modeling inflation is key for pricing and

for selecting the maturities of the bonds to be issued.

3. Very little work has been done with respect to macroeconomic simulations for long term

planning of public debt issuance. The issuance strategies require too many unrealistic

assumptions in the current literature, as mentioned in chapter 7. An optimization

model based on more realistic macroeconomic dynamics could be potentially a very

useful contribution. The issuance of debt can be made to mimic the real conditions of

debt issuance.

4. Long term debt issuance strategies have only been done with static strategies. In a sim-

ulation environment, dynamic strategies have more potential to model macroeconomic

events with greater accuracy.

5. Currently scenarios are considered independent to public debt issuance strategies. The

issuance of debt doesn’t impact the scenarios in any way, which is another topic that

can be explored in much more detail.
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Appendix A

Function Documentation

In this part of the thesis, we will give a short user interface documentation for the matlab

code developed during this thesis and provided in the accompanying CD-ROM.

We will begin with the scripts:

kalmanscript.m

Call kalmanscript from the Matlab terminal. Within kalmanscript, a user can

choose the calibration model used:

1. One factor Vasicek model,

2. One factor CoxIngersollRoss model,

3. Two factor Vasicek model,

4. Two factor CoxIngersollRoss model,

5. Basic dynamic Nelson-Siegel model, where the curvature is omitted,

6. Non mean reverting dynamic Nelson-Siegel model,

7. Mean reverting dynamic Nelson-Siegel model,

8. Arbitrage free dynamic Nelson-Siegel model with independent factors,

9. Arbitrage free dynamic Nelson-Siegel model with corrolated factors,

10. Macroeconomic dynamic Nelson-Siegel model.

The script will call other scripts to load the data for the time period considered and

load a large amount of data related to the data. It will then perform a Kalman

calibration to obtain the parameters as explained in chapter 3. It will be followed by

an attempted to adjust the factors of the model to the real data. The script depends

on initialization and kalmandataload.m or kalmanweeklydataload.m.
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kalmandataload.m

Is called by kalmanscript to load the daily bond prices from an excel file called

Allconvyields0607.xlsx.

kalmanweeklydataload.m

Is called by kalmanscript to load the weekly bond prices from an excel file called

Allconvyields0607weekly.xlsx.

initialization.m

Is called by kalmanscript to process the loaded data and load additional information

about the bond data such as the model parameters for each model for a specific time

step, the timescale of the problem and the evaluate time points, the bond maturity

and the next dividend dates, the coupon yields, number of coupons left. The script

also selects the number of bonds to consider for the calibration problem. All the data

is processed into matrices for Matlab to process.

scriptshort.m

Is the script used to solve the set of four short term bond problems. The solvers are

chosen with their options within the script then each problem is solved and sends the

decisions taken between receding horizons to the next problem. There is a data file

for each problem needed containing the prices, yields for each scenario at each auction

data making some of those data files quite substantial.

scriptmedium.m

Is the script used to solve the set of four medium term bond problems, similarly to

the scriptshort.m except the data and problems are adjusted to the medium term

bond problem specifications.

scriptlong.m

Is the script used to solve the set of four long term bond problems, similarly to the

scriptshort.m except the data and problems are adjusted to the long term bond

problem specifications.

bsgmodel.m

is a script that is used to create the left hand side A matrix and right hand side b

vector of the optimisation problems based on the AMPL model. It helps to by-pass

the AMPL language all together and just call the solver withing Matlab.

And now for the functions:

mymle.m

The function mymle is in the form: [L x] = mymle(param). Where the input param
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is a vector containing the parameters for the time specific problem and the length

of the vector will depend on the model used. The outputs are L, the maximum

likelihood estimator and x the vector or matrix of interest rate factors evolving along

the timescale of the problem. The maximum likelihood estimator L is estimated from

the Kalman filtration process adjusted to the different models that can be chosen from

kalmanscript.

price.m

The function price is in the form: p = price(y,L,C,mat,divid,annual). Where

the input y corresponds to yield of the bond, L is the face value of the bond (the value

at 1st issuance). C is the coupon of the bond, mat is the time to maturity from the

beginning of the time horizon, divid is the time until the next dividend is payed and

annual specifies how often the bonds pay dividends per year. annual is set to be two,

i.e. the bond pays a dividend every 6 months from 1st issuance. The output p of the

function is the price of the bond corresponding to the yield y.

yield.m

The function yield is in the form: Y = yield(x,param,t,tau). Where x is a vector

or matrix of the factors evolving in time for the duration of the problems timescale,

param is the vector of parameters obtained from Kalman filtration for the model

referenced by the number t. tau corresponds to the time to maturity from the current

time point. The output Y is the corresponding yield obtained using a specific interest

rate model.

yieldbisection.m

The function yieldbisection is in the form:

ymt = yieldbissection(L,P,C,mat,divid,annual). The input are as usual:

1. L is the face value of the bond,

2. P is the price of the bond,

3. C is the coupon of the bond,

4. mat is the time to maturity of the bond,

5. divid is the time until the next dividend occurs,

6. and annual is the frequency at which a bond pays coupons.

The output of the function is yield ymt obtained by using a bisection algorithme.

yieldsecant.m

The function yieldsecant is in the form:

ymt = yieldsecant(L,P,C,mat,divid,annual). The input are as defined earlier:
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1. L is the face value of the bond,

2. P is the price of the bond,

3. C is the coupon of the bond,

4. mat is the time to maturity of the bond,

5. divid is the time until the next dividend occurs,

6. annual is the frequency at which a bond pays coupons.

The output of the function is yield ymt obtained by using a secant algorithm. It is

faster for long term bonds however doesn’t behave well when a singularity occurs, so

when called if an error message occurs it should switch to the slower but more stable

yieldbisection.

Vtreepricing.m

The function Vtreepricing is in the form:

[P bt br r] = Vtreepricing(Q, N, k, L, aucd, divid, coupon, nbcl

, param, objt, MOD). The input argument Q is the number of steps the tree is al-

lowed to take (e.g. 4 step tree means 34 = 81 nodes).

1. N is the number of auctions,

2. k the number of bonds to consider,

3. L is the face value of the bond,

4. aucd the time to auction dates,

5. divid the time until the next dividends,

6. coupon the bond coupon yields,

7. nbcl the number of coupon left,

8. objt the timescale of the problem,

9. param is the vector of parameters for the model number MOD.

The output of Vtreepricing is a set of 4 matrices:

1. bt is the basic tree created by treesetup.m, it is a tree with integer value for

nodes that grow by 1 or -1,

2. br is the basic interest tree build over the basic tree bt and is obtained from

interesttree.m, it replaces the integer value of nodes with possible values of

interest rates for the model MOD,

3. r is a matrix with linearly interpolated values of interest rates at auction dates

obtained from makelinearinterR.m, upon which the set of bonds are priced at

the interest rate values of auction dates to obtain the P matrix.
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treesetup.m

The function treesetup is in the form:

basicT = treesetup(Q,cstraint,branches). It is called by Vtreepricing and is

used to created a general basic tree basicT with recombining lattices with Q tree steps

and branches amount of nodes per node, i.e. if branches = 3 then it will create

a trinomial tree with recombining lattice. If cstraint is 0 then the tree will grow

unconstrained. If cstraint is 1 then the tree will grow until it reaches a maximum or

minimum value and will not be able to grow above it.

interesttree.m

The function interesttree is in the form:

basicR = interesttree(Q,branches,param,MOD,objt,basicT).

It is called by Vtreepricing after having called treesetup. The input arguments are:

1. Q is the number of steps in the tree,

2. branches is the number of branch nodes after each time step,

3. param is the vector of parameters obtained from the Kalman filtration with the

interest rate model number MOD,

4. objt is the timescale of the tree,

5. and basicT is the basic tree where nodes have integer values.

The output basicR is a basic tree with branches branches for Q time steps where each

node has a possible interest rate value instead.

makelinearinterR.m

The function makelinearinterR is in the form:

liniR = makelinearinterR(Q,branches,N,objT,basicR,aucd).

It is called by Vtreepricing after having called interesttree. The input arguments

are:

1. Q is the number of steps in the tree,

2. branches is the number of branch nodes after each time step,

3. N is the number of auctions in the problem,

4. objt is the timescale of the problem considered,

5. basicR is the basic interest tree obtained from interesttree,

6. aucd is the vector of length N with the auction dates.

The function will perfom a linear interpolation on the basic interest tree to get the

output matrix liniR. It is made of the linearly interpolated values of interest rates at

the auction dates.
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adddaynoise.m

The function adddaynoise is in the form:

str = adddaynoise(timestr,delta,basis). Its input arguments are:

1. timestr is a date in string format of Matlab,

2. delta is a integer to specify by how many days,

3. basis is the type of string time template used.

The output is a string with a new date, it can basically move the yields forward of

backward to obtain different yields for the same days while using the same interest

rate model.

Bondpricing.m

The function Bondpricing is in the form:

P = Bondprice1(L,k,t,aucd,dividd,coupon,nbcl,param,MOD). The function has

several input arguments:

1. L is the face value of the bond,

2. k is the number of bonds in the problem,

3. t is the time at which the bond needs to be priced,

4. aucd is the vector with the auction dates,

5. dividd is the vector with the next dividend dates,

6. coupon is the vector with the coupon yields,

7. nbcl is the vector with the number of remaining coupons,

8. param is the vector of parameters for the interest rate model numbered MOD.

The output is the matrix P with the prices of the bonds at each auction date, using

the interest rate model MOD.

savedn.m

The function savedn is in the form:

n = savedn(N,endt,aucd). Is a simple function which takes as input arguments:

1. N is the number of auctions in the problem,

2. endt is the amount of time to consider in the time scale in years,

3. aucd is the vector with the auction dates.

and it returns the number of coupons that will occur in the time considered. It is

important to separate data that needs to be moved to the next problem.
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VPmntCrlo.m

The function VPmntCrlo is in the form:

[P MC MCr] = VPmntCrlo(N, param, MOD, fact, objt, size, L , aucd, mat,

dividd, coupon, nbcl).

The function has a number of input arguments:

1. N is the number of auctions in the problem,

2. param is the vector of parameters for the interest rate model numbered MOD,

3. fact is the number of factors in the interest rate model,

4. objt is the timescale of the problem considered,

5. size is the number of Monte Carlo scenarios to create,

6. L is the face value of the bond,

7. aucd is the vector with the auction dates,

8. mat is the vector with the maturity dates of the bonds,

9. dividd is the vector with the next dividend dates of the bonds,

10. coupon is the vector with the coupon yields of the bonds,

11. nbcl is the vector with the number of coupons left for each bond.

VPmntCrlo is a function which calls MCscengenerator.m and MCinterest.m to create

a Monte Carlo tree of interest rates. The output arguments are:

1. MC is a matrix with all the values of the interest rates along the the time scale

of the problem,

2. MCr is a matrix of the interest rates at the auction dates,

3. P is a matrix of bond prices at each auction date using the interest rate model

MOD.

MCscengenerator.m

The function MCscengenerator is in the form:

mntCrlo = MCscengenerator(N, param, MOD, fact, objt, size).

The function takes as input arguments:

1. N is the number of auctions in the problem,

2. param is the vector of parameters for the interest rate model numbered MOD,

3. fact is the number of factors in the interest rate model,

4. objt is the timescale of the problem considered,

5. size is the number of Monte Carlo scenarios to create.
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The function outputs a matrix MC with size scenarios using the interest rate model

MOD.

MCinterest.m

The function MCinterest is in the form:

MCr = MCinterest(MC, aucd, objt, size).

The function takes as input arguments:

1. MC is the matrix from MCscengenerator.m which contains the interest rate

values over the time scale of the problem,

2. aucd is the vector with the auction dates,

3. objt is the timescale of the problem considered,

4. size is the number of Monte Carlo scenarios to create.

The function outputs a matrix MCr with size scenarios using the interest rate model

MOD at each auction date. MCr is used in VPmntCrlo to create a matrix P with the

prices of the bonds with the interest rates from MCr using model MOD.

A set of functions also exist for the short, medium and long problems:

shorti.m

mediumi.m

longi.m

where i takes the values 1, 2, 3 and 4. The set of functions takes all the data compiled by

Matlab and exports the necessary data into .dat files for AMPL to load.
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Appendix B

Extra calibrations using the

Kalman filter

In this appendix, several plots have been added. They are the evolution of actual yields to

maturity, after each calibration experiment for the different models discussed in chapters 2

and 3 using a Kalman Filter. The calibrations for the 1st quarter were added to chapter

3. The plots for following quarters for the single and two factor Vasicek and Cox Ingersoll

Ross models can be found below, as well as the plots for three different Nelson Siegel models

discussed in chapter 2 and calibrated in chapter 3.
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Figure B.1: Vasicek Model calibrated with Kalman filtration at t = 06/2007
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Figure B.2: Vasicek Model calibrated with Kalman filtration at t = 09/2007
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Figure B.3: Vasicek Model calibrated with Kalman filtration at t = 12/2007
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Figure B.4: Vasicek Model calibrated with Kalman filtration at t = 03/2008
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Figure B.5: CIR Model calibrated with Kalman filtration at t = 06/2007
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Figure B.6: CIR Model calibrated with Kalman filtration at t = 09/2007
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Figure B.7: CIR Model calibrated with Kalman filtration at t = 12/2007
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Figure B.8: CIR Model calibrated with Kalman filtration at t = 03/2008
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Figure B.9: 2 factor Vasicek Model calibrated with Kalman filtration at t = 06/2007
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Figure B.10: 2 factor Vasicek Model calibrated with Kalman filtration at t = 09/2007
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Figure B.11: 2 factor Vasicek Model calibrated with Kalman filtration at t = 12/2007
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Figure B.12: 2 factor Vasicek Model calibrated with Kalman filtration at t = 03/2008
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Figure B.13: 2 factor CIR Model calibrated with Kalman filtration at t = 06/2007
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Figure B.14: 2 factor CIR Model calibrated with Kalman filtration at t = 09/2007
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Figure B.15: 2 factor CIR Model calibrated with Kalman filtration at t = 12/2007
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Figure B.16: 2 factor CIR Model calibrated with Kalman filtration at t = 03/2008

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4.5

5

5.5

6
Real yields to maturity

Time

Y
ie

ld
 in

 p
er

ce
nt

ag
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4.5

5

5.5

6
Model yields to maturity

Time

Y
ie

ld
 in

 p
er

ce
nt

ag
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

−0.05

0

0.05

0.1

0.15
Error between real yield curves and their approximations

Time

E
rr

or

0
0.2

0.4
0.6

0.8
1

0

5

10

15

20
0

2

4

6

8

TimeMaturity

Y
ie

ld
 in

 p
er

ce
nt

ag
e

Figure B.17: DNS model calibrated with Kalman filtration at t = 06/2007
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Figure B.18: DNS model calibrated with Kalman filtration at t = 09/2007
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Figure B.19: DNS model calibrated with Kalman filtration at t = 12/2007
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Figure B.20: DNS model calibrated with Kalman filtration at t = 03/2008
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Figure B.21: AFDNSi model calibrated with Kalman filtration at t = 06/2007
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Figure B.22: AFDNSi model calibrated with Kalman filtration at t = 09/2007
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Figure B.23: AFDNSi model calibrated with Kalman filtration at t = 12/2007
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Figure B.24: AFDNSi model calibrated with Kalman filtration at t = 03/2008
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Figure B.25: AFDNSc model calibrated with Kalman filtration at t = 06/2007
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Figure B.26: AFDNSc model calibrated with Kalman filtration at t = 09/2007
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Figure B.27: AFDNSc model calibrated with Kalman filtration at t = 12/2007
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Figure B.28: AFDNSc model calibrated with Kalman filtration at t = 03/2008
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Appendix C

Detailed numerical results from

optimisation of subproblems in

chapter 6

The following tables correspond to the numerical results obtained from the optimizations of

the short, medium and long subproblems from chapter 6. The results were obtained using

the single factor Vasicek model and a recombining trinomial tree with Q = 4. For the short

subproblem, the maximum amount of a specific bond issued is going to be 22 billions and for

the medium and long subproblem 25 and 36 billions respectively. The results were obtained

using AMPL, Gurobi 5.0.1 on an AMD Phenom X6 1055T processor with 4GB of RAM.

Remark. An empty row indicates that the problem was unsolvable for a particular value

of ρ.

ρ in MN CaR in MN VaR in MN CVaR in MN S.D in MN E[I] in MN

11000.000 12988.614 13048.849 10899.515 315.326 11766.062

10900.000 12988.500 13043.616 10899.515 315.223 11828.576

10800.000 12988.248 13033.480 10704.489 314.991 11766.108

10700.000 12987.103 12998.059 10019.506 313.912 11766.266

10600.000 12987.103 12998.059 10019.506 313.912 11766.266

10500.000 12987.103 12998.059 10019.506 313.912 11766.266

10400.000 12987.666 13009.043 10234.307 314.450 11766.185

10300.000 12987.180 12997.969 10018.648 313.986 11766.254

10200.000 12987.103 12998.059 10019.506 313.912 11766.266

Continued on Next Page. . .

110



Table C.1 – Continued

ρ in MN CaR in MN VaR in MN CVaR in MN S.D in MN E[I] in MN

10100.000 12987.103 12998.059 10019.506 313.912 11766.266

10000.000 12986.959 12997.114 10000.000 313.775 11766.286

9900.000 12986.716 12987.600 9816.490 313.539 11828.822

9800.000 12986.796 12984.226 9753.293 313.618 11766.310

9700.000 12985.820 12972.326 9515.743 312.658 11766.461

9600.000 12985.015 12954.260 9162.550 311.850 11829.092

9500.000 12984.440 12955.105 9170.577 311.244 11766.697

9400.000 12985.227 12953.975 9159.844 312.066 11766.556

9300.000 12984.315 12955.333 9172.740 311.098 11766.726

9200.000 12985.213 12953.996 9160.040 312.051 11766.559

9100.000 12985.249 12950.809 9100.000 312.089 11766.552

9000.000 12984.026 12946.374 8998.913 310.807 11829.273

8900.000 12983.908 12937.579 8831.188 310.715 11829.282

8800.000 12983.196 12931.252 8701.299 309.973 11829.409

8700.000 12983.773 12930.548 8695.876 310.579 11829.304

8600.000 12982.638 12919.406 8468.508 309.387 11829.510

8500.000 12981.961 12921.600 8500.000 308.650 11829.644

8400.000 12981.545 12913.620 8342.239 308.200 11695.914

8300.000 12980.915 12911.721 8295.653 307.481 11829.863

8200.000 12980.553 12906.736 8196.599 307.122 11696.110

8100.000 12979.892 12899.983 8058.023 306.392 11696.245

8000.000 12979.582 12893.368 7927.675 306.054 11830.117

7900.000 12979.576 12891.791 7897.545 306.045 11767.619

7800.000 12978.814 12883.733 7732.312 305.194 11830.279

7700.000 12978.043 12881.433 7675.209 304.297 11767.955

7600.000 12977.079 12877.946 7592.260 303.176 11830.675

7500.000 12977.055 12873.070 7500.000 303.174 11830.670

7400.000 12975.424 12868.320 7380.496 301.246 11697.244

7300.000 12974.709 12864.736 7300.000 300.415 11831.218

7200.000 12974.823 12859.350 7200.000 300.559 11831.187

7100.000 12973.588 12852.502 7047.083 299.079 11831.487

7000.000 12973.017 12850.594 7000.000 298.385 11769.130

6900.000 12971.856 12845.249 6875.914 296.959 11831.961

6800.000 12969.394 12843.970 6800.000 293.810 11897.516

Continued on Next Page. . .
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Table C.1 – Continued

ρ in MN CaR in MN VaR in MN CVaR in MN S.D in MN E[I] in MN

6700.000 12969.551 12838.540 6700.000 294.007 11897.475

6600.000 12968.631 12834.216 6600.000 292.877 11832.834

6500.000 12967.899 12828.862 6483.077 291.946 11699.188

6400.000 12967.491 12824.943 6400.000 291.422 11833.112

6300.000 12966.199 12821.193 6300.000 289.717 11833.490

6200.000 12965.341 12816.954 6200.000 288.573 11833.746

6100.000 12963.845 12813.568 6100.000 286.522 11834.251

6000.000 12963.132 12809.160 6000.000 285.569 11899.340

5900.000 12960.692 12810.039 5900.000 280.352 11900.876

5800.000 12961.158 12801.209 5800.000 282.803 11772.573

5700.000

5600.000 12957.294 12798.778 5600.000 275.533 11703.286

5500.000 12956.844 12794.596 5500.000 274.602 11902.278

5400.000 12955.144 12790.848 5400.000 272.648 11902.657

5300.000 12953.407 12787.306 5300.000 270.546 11903.087

5200.000 12951.668 12791.888 5200.000 263.503 11706.827

5100.000 12950.865 12785.908 5100.000 263.452 11905.369

5000.000 12950.594 12781.922 5000.000 262.510 11905.689

4900.000 12949.584 12777.218 4899.042 261.525 11977.152

4800.000 12947.479 12777.676 4800.000 256.799 11907.259

4700.000 12946.836 12774.054 4700.000 255.410 11978.980

4600.000 12944.852 12768.531 4600.000 254.362 11907.604

4500.000 12942.508 12772.187 4500.000 247.515 11981.144

4400.000 12942.873 12760.648 4381.123 250.948 12042.324

4300.000 12942.667 12765.330 4300.000 245.381 11910.771

4200.000 12939.534 12770.171 4200.000 237.334 12047.241

Table C.1: Results for short subproblem with ρ constraint

ρ in MN CaR in MN VaR in MN CVaR in MN S.D in MN E[I] in MN

44800.000 21756.727 21279.342 44800.000 1723.574 14665.381

44700.000 21755.750 21274.909 44700.000 1722.475 14665.588

Continued on Next Page. . .
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Table C.2 – Continued

ρ in MN CaR in MN VaR in MN CVaR in MN S.D in MN E[I] in MN

44600.000 21753.859 21265.694 44496.320 1720.411 14805.973

44500.000 21754.799 21265.122 44500.000 1721.447 14665.773

44400.000 21753.826 21260.650 44400.000 1720.375 14665.971

44300.000 21752.200 21251.717 44204.670 1718.567 14666.308

44200.000 21751.950 21243.112 44037.430 1718.296 14806.365

44100.000 21751.827 21246.505 44100.000 1718.161 14806.390

44000.000

43900.000 21750.920 21236.730 43900.000 1717.152 14666.570

43800.000 21748.456 21232.527 43779.969 1714.369 14667.099

43700.000

43600.000 21748.894 21222.104 43589.771 1714.8860 14666.995

43500.000 21747.071 21218.187 43486.284 1712.848 14667.378

43400.000 21747.000 21213.708 43400.000 1712.767 14667.393

43300.000

43200.000 21744.648 21203.448 43167.066 1710.122 14807.902

43100.000

43000.000 21743.703 21193.099 42954.785 1709.046 14668.099

42900.000

42800.000 21742.120 21184.311 42762.173 1707.263 14668.437

42700.000 21741.848 21181.270 42700.000 1706.958 14668.495

42600.000 21739.264 21173.528 42510.090 1704.017 14809.066

42500.000 21738.229 21173.663 42495.352 1702.834 14809.294

42400.000 21738.847 21168.100 42400.000 1703.542 14809.157

42300.000 21737.697 21163.845 42300.000 1702.229 14669.401

42200.000 21735.705 21159.604 42185.909 1699.946 14669.842

42100.000 21736.321 21154.530 42100.000 1700.657 14809.712

42000.000

41900.000 21734.091 21145.991 41900.000 1698.093 14670.201

41800.000 21731.566 21141.689 41775.072 1695.176 14810.777

41700.000 21732.867 21136.555 41700.000 1696.685 14810.482

41600.000

41500.000

41400.000 21729.772 21121.180 41354.754 1693.105 14671.173

41300.000 21727.553 21119.258 41278.017 1690.469 14811.710

Continued on Next Page. . .
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Table C.2 – Continued

ρ in MN CaR in MN VaR in MN CVaR in MN S.D in MN E[I] in MN

41200.000 21725.571 21116.915 41200.000 1688.192 14672.143

41100.000 21728.243 21107.989 41077.599 1691.327 14671.521

41000.000

40900.000 21721.793 21104.066 40880.173 1683.474 14813.147

40800.000 21723.619 21095.508 40758.888 1685.905 14812.603

40700.000

40600.000 21723.098 21086.553 40579.748 1685.301 14672.713

40500.000 21722.063 21081.000 40456.069 1684.090 14672.952

40400.000 21721.828 21078.267 40400.000 1683.815 14673.007

40300.000 21720.186 21074.555 40300.000 1681.875 14813.403

40200.000 21718.183 21070.608 40188.628 1679.492 14673.873

40100.000 21718.376 21065.394 40093.140 1679.725 14813.834

40000.000 21718.407 21060.450 40000.000 1679.769 14673.816

39900.000

39800.000

39700.000

39600.000 21714.966 21042.715 39600.000 1675.660 14674.645

Table C.2: Results for medium subproblem with ρ constraint

ρ in MN CaR in MN VaR in MN CVaR in MN S.D in MN E[I] in MN

416800.000 94822.590 97082.339 416800.000 11961.758 47899.448

416700.000 94822.590 97077.076 416700.000 11961.758 47899.448

416600.000 94817.561 97074.325 416600.000 11957.174 47900.076

416500.000 94818.396 97068.642 416500.000 11957.937 47899.971

416400.000 94819.148 97063.002 416400.000 11958.622 47899.877

416300.000 94817.561 97058.535 416300.000 11957.174 47900.076

416200.000 94817.561 97053.272 416200.000 11957.174 47900.076

416100.000 94819.896 97046.839 416100.000 11959.304 47899.783

416000.000 94816.555 97043.252 416000.000 11956.254 47900.203

415900.000 94819.896 97036.313 415900.000 11959.304 47899.783

415800.000 94819.896 97031.049 415800.000 11959.304 47899.783

Continued on Next Page. . .
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Table C.3 – Continued

ρ in MN CaR in MN VaR in MN CVaR in MN S.D in MN E[I] in MN

415700.000 94819.896 97025.786 415700.000 11959.304 47899.783

415600.000 94816.555 97022.200 415600.000 11956.254 47900.203

415500.000 94816.555 97016.937 415500.000 11956.254 47900.203

415400.000 94816.315 97011.794 415400.000 11956.035 47900.233

415300.000 94810.022 97009.733 415300.000 11950.263 47901.033

415200.000 94816.555 97001.147 415200.000 11956.254 47900.203

415100.000 94816.555 96995.884 415100.000 11956.254 47900.203

415000.000 94815.579 96991.113 415000.000 11955.362 47900.326

414900.000 94816.555 96985.358 414900.000 11956.254 47900.203

414800.000 94820.143 96978.294 414800.000 11959.530 47899.753

414700.000 94816.555 96974.831 414700.000 11956.254 47900.203

414600.000 94818.448 96968.616 414600.000 11957.984 47899.965

414500.000 94816.555 96964.305 414500.000 11956.254 47900.203

414400.000 94816.555 96959.042 414400.000 11956.254 47900.203

414300.000 94816.555 96953.779 414300.000 11956.254 47900.203

414200.000 94819.322 96947.126 414200.000 11958.781 47899.855

414100.000 94816.555 96943.252 414100.000 11956.254 47900.203

414000.000 94815.579 96938.482 414000.000 11955.362 47900.326

413900.000 94815.579 96933.218 413900.000 11955.362 47900.326

413800.000 94816.555 96927.463 413800.000 11956.254 47900.203

413700.000 94816.555 96922.200 413700.000 11956.254 47900.203

413600.000 94816.555 96916.937 413600.000 11956.254 47900.203

413500.000 94816.949 96911.475 413500.000 11956.615 47900.153

413400.000 94816.555 96906.410 413400.000 11956.254 47900.203

413300.000 94816.555 96901.147 413300.000 11956.254 47900.203

413200.000 94816.555 96895.884 413200.000 11956.254 47900.203

413100.000 94816.555 96890.621 413100.000 11956.254 47900.203

413000.000 94815.280 96886.001 413000.000 11955.088 47900.363

412900.000 94816.555 96880.095 412900.000 11956.254 47900.203

412800.000 94816.555 96874.831 412800.000 11956.254 47900.203

412700.000 94812.586 96871.580 412700.000 11952.619 47900.705

412600.000 94814.221 96865.486 412600.000 11954.118 47900.498

412500.000 94815.041 96859.806 412500.000 11954.870 47900.394

412400.000 94813.795 96855.175 412400.000 11953.728 47900.552
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Table C.3 – Continued

ρ in MN CaR in MN VaR in MN CVaR in MN S.D in MN E[I] in MN

412300.000 94814.221 96849.696 412300.000 11954.118 47900.498

412200.000 94816.555 96843.252 412200.000 11956.254 47900.203

412100.000 94816.555 96837.989 412100.000 11956.254 47900.203

412000.000 94816.007 96833.002 412000.000 11955.754 47900.272

411900.000 94812.293 96829.624 411900.000 11952.350 47900.743

411800.000 94810.587 96825.233 411800.000 11950.783 47900.961

411700.000 94815.041 96817.701 411700.000 11954.870 47900.394

411600.000 94815.041 96812.438 411600.000 11954.870 47900.394

411500.000 94815.041 96807.175 411500.000 11954.870 47900.394

411400.000 94814.703 96802.083 411400.000 11954.560 47900.436

411300.000 94815.041 96796.648 411300.000 11954.870 47900.394

411200.000 94812.248 96792.805 411200.000 11952.308 47900.749

411100.000 94814.420 96786.437 411100.000 11954.301 47900.472

411000.000 94809.725 96783.570 411000.000 11949.990 47901.071

410900.000 94815.011 96775.611 410900.000 11954.842 47900.398

410800.000 94814.757 96770.477 410800.000 11954.610 47900.430

410700.000 94810.931 96767.162 410700.000 11951.099 47900.917

410600.000 94813.915 96760.377 410600.000 11953.838 47900.536

410500.000 94809.118 96757.566 410500.000 11949.431 47901.149

410400.000 94811.743 96750.957 410400.000 11951.845 47900.813

410300.000 94813.925 96744.583 410300.000 11953.847 47900.535

410200.000 94811.743 96740.431 410200.000 11951.845 47900.813

410100.000 94813.964 96734.037 410100.000 11953.882 47900.530

410000.000 94811.743 96729.905 410000.000 11951.845 47900.813

409900.000 94811.743 96724.642 409900.000 11951.845 47900.813

409800.000 94806.738 96721.953 409800.000 11947.238 47901.457

409700.000 94811.363 96714.310 409700.000 11951.496 47900.862

409600.000

409500.000 94812.448 96703.229 409500.000 11952.492 47900.723

409400.000 94811.743 96698.326 409400.000 11951.845 47900.813

409300.000 94811.743 96693.063 409300.000 11951.845 47900.813

409200.000 94811.743 96687.799 409200.000 11951.845 47900.813

409100.000 94811.743 96682.536 409100.000 11951.845 47900.813

409000.000 94811.743 96677.273 409000.000 11951.845 47900.813
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Table C.3 – Continued

ρ in MN CaR in MN VaR in MN CVaR in MN S.D in MN E[I] in MN

408900.000 94811.743 96672.010 408900.000 11951.845 47900.813

408800.000 94811.743 96666.747 408800.000 11951.845 47900.813

408700.000 94812.065 96661.319 408700.000 11952.140 47900.772

408600.000 94811.804 96656.189 408600.000 11951.901 47900.805

408500.000 94806.738 96653.531 408500.000 11947.238 47901.457

408400.000 94811.743 96645.694 408400.000 11951.845 47900.813

408300.000 94806.738 96643.005 408300.000 11947.238 47901.457

408200.000

408100.000 94811.433 96630.063 408100.000 11951.560 47900.853

408000.000

407900.000

407800.000 94810.964 96614.514 407800.000 11951.129 47900.913

407700.000 94808.711 96610.407 407700.000 11949.056 47901.202

407600.000 94809.372 96604.804 407600.000 11949.665 47901.117

407500.000

407400.000 94808.794 96594.575 407400.000 11949.133 47901.191

407300.000 94809.680 96588.856 407300.000 11949.948 47901.077

407200.000 94806.738 96585.110 407200.000 11947.238 47901.457

407100.000 94807.448 96579.480 407100.000 11947.892 47901.365

407000.000 94806.738 96574.584 407000.000 11947.238 47901.457

406900.000 94807.017 96569.177 406900.000 11947.495 47901.420

406800.000 94809.112 96562.832 406800.000 11949.426 47901.150

406700.000 94809.125 96557.562 406700.000 11949.438 47901.148

406600.000 94808.184 96552.784 406600.000 11948.571 47901.270

406500.000 94806.738 96548.268 406500.000 11947.238 47901.457

406400.000 94797.415 96547.900 406400.000 11938.595 47902.680

406300.000 94808.824 96536.665 406300.000 11949.160 47901.187

406200.000 94807.661 96532.002 406200.000 11948.089 47901.337

406100.000 94808.794 96526.154 406100.000 11949.133 47901.191

406000.000 94804.430 96523.152 406000.000 11945.105 47901.756

405900.000 94806.738 96516.689 405900.000 11947.238 47901.457

405800.000

405700.000

405600.000
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405500.000 94806.738 96495.637 405500.000 11947.238 47901.457

405400.000

405300.000

405200.000 94805.590 96480.443 405200.000 11946.177 47901.605

405100.000 94806.240 96474.842 405100.000 11946.778 47901.521

405000.000 94802.379 96471.593 405000.000 11943.206 47902.025

404900.000 94806.738 96464.058 404900.000 11947.238 47901.457

404800.000 94806.738 96458.795 404800.000 11947.238 47901.457

404700.000 94806.738 96453.531 404700.000 11947.238 47901.457

404600.000 94806.430 96448.428 404600.000 11946.954 47901.496

404500.000

404400.000 94804.297 96439.011 404400.000 11944.982 47901.774

404300.000 94801.440 96435.244 404300.000 11942.336 47902.148

404200.000 94806.462 96427.359 404200.000 11946.983 47901.492

404100.000 94806.165 96422.250 404100.000 11946.708 47901.531

404000.000 94806.008 96417.068 404000.000 11946.564 47901.551

403900.000 94805.881 96411.870 403900.000 11946.447 47901.568

403800.000 94805.552 96406.779 403800.000 11946.142 47901.610

403700.000 94803.996 96402.326 403700.000 11944.704 47901.813

403600.000 94804.967 96396.556 403600.000 11945.602 47901.686

403500.000 94795.464 96396.310 403500.000 11936.776 47902.941

403400.000 94802.398 96387.372 403400.000 11943.224 47902.022

403300.000 94803.527 96381.518 403300.000 11944.270 47901.874

403200.000 94802.535 96376.775 403200.000 11943.351 47902.004

403100.000 94802.898 96371.321 403100.000 11943.688 47901.956

403000.000 94803.996 96365.484 403000.000 11944.704 47901.813

402900.000 94800.459 96362.076 402900.000 11941.426 47902.277

402800.000

402700.000 94804.180 96349.598 402700.000 11944.874 47901.789

402600.000 94804.084 96344.385 402600.000 11944.785 47901.801

402500.000 94801.648 96340.398 402500.000 11942.529 47902.120

402400.000 94803.996 96333.905 402400.000 11944.704 47901.813

402300.000 94802.636 96329.353 402300.000 11943.444 47901.991

402200.000 94791.388 96330.085 402200.000 11932.962 47903.490
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402100.000

402000.000

401900.000 94801.886 96308.694 401900.0000 11942.749 47902.089

401800.000 94803.249 96302.716 401800.000 11944.013 47901.911

401700.000 94800.847 96298.714 401700.000 11941.785 47902.226

401600.000 94802.535 96292.564 401600.000 11943.351 47902.004

401500.000 94799.301 96289.004 401500.000 11940.350 47902.430

401400.000 94798.083 96284.387 401400.000 11939.216 47902.591

401300.000

401200.000 94802.435 96271.564 401200.000 11943.259 47902.017

401100.000 94801.557 96266.762 401100.000 11942.444 47902.132

401000.000 94800.173 96262.227 401000.000 11941.160 47902.315

400900.000

400800.000 94801.639 96250.929 400800.000 11942.520 47902.122

400700.000

400600.000 94799.120 96241.732 400600.000 11940.181 47902.454

400500.000 94801.776 96235.067 400500.000 11942.648 47902.104

400400.000

400300.000

400200.000 94800.459 96219.971 400200.000 11941.426 47902.277

400100.000

400000.000 94800.459 96209.445 400000.000 11941.426 47902.277

399900.000 94800.895 96203.952 399900.000 11941.830 47902.220

399800.000 94800.459 96198.919 399800.000 11941.426 47902.277

399700.000

399600.000 94799.447 96188.927 399600.000 11940.485 47902.411

399500.000 94800.409 96183.156 399500.000 11941.379 47902.284

399400.000 94797.853 96179.246 399400.000 11939.002 47902.622

399300.000 94799.711 96172.998 399300.000 11940.731 47902.376

399200.000 94799.455 96167.870 399200.000 11940.493 47902.410

399100.000 94795.671 96164.620 399100.000 11936.968 47902.913

399000.000 94799.447 96157.348 399000.000 11940.485 47902.411

398900.000 94796.566 96153.615 398900.000 11937.804 47902.793

398800.000 94796.098 96148.602 398800.000 11937.367 47902.856
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398700.000 94799.537 96141.511 398700.000 11940.569 47902.399

398600.000 94797.411 96137.376 398600.000 11938.590 47902.681

398500.000 94798.170 96131.709 398500.000 11939.297 47902.580

398400.000 94798.927 96126.044 398400.000 11940.002 47902.479

398300.000 94798.220 96121.156 398300.000 11939.344 47902.573

398200.000 94794.634 96117.807 398200.000 11936.000 47903.052

398100.000 94797.819 96110.843 398100.000 11938.971 47902.627

398000.000

397900.000 94794.978 96101.833 397900.000 11936.322 47903.006

397800.000 94798.411 96094.739 397800.000 11939.521 47902.548

397700.000 94797.928 96089.732 397700.000 11939.073 47902.612

397600.000 94796.714 96085.115 397600.000 11937.942 47902.774

397500.000 94797.837 96079.254 397500.000 11938.987 47902.624

397400.000 94797.947 96073.933 397400.000 11939.090 47902.609

397300.000 94795.842 96069.792 397300.000 11937.128 47902.890

397200.000 94796.515 96064.169 397200.000 11937.756 47902.800

397100.000 94797.488 96058.387 397100.000 11938.662 47902.671

397000.000 94794.830 96054.544 397000.000 11936.183 47903.026

396900.000 94796.732 96048.264 396900.000 11937.958 47902.771

396800.000 94794.805 96044.032 396800.000 11936.160 47903.029

396700.000 94793.656 96039.386 396700.000 11935.087 47903.183

396600.000 94794.003 96033.936 396600.000 11935.411 47903.137

396500.000

396400.000

396300.000 94795.839 96017.162 396300.000 11937.125 47902.890

396200.000

396100.000 94793.340 96007.977 396100.000 11934.790 47903.226

396000.000 94793.195 96002.792 396000.000 11934.655 47903.245

395900.000 94787.951 96000.379 395900.000 11929.734 47903.958

395800.000 94795.011 95991.290 395800.000 11936.352 47903.001

395700.000 94795.305 95985.869 395700.000 11936.627 47902.962

395600.000 94793.107 95981.787 395600.000 11934.573 47903.257

395500.000 94793.296 95976.422 395500.000 11934.749 47903.232

395400.000

Continued on Next Page. . .

120



Table C.3 – Continued

ρ in MN CaR in MN VaR in MN CVaR in MN S.D in MN E[I] in MN

395300.000 94795.253 95964.844 395300.000 11936.578 47902.969

395200.000 94794.521 95959.973 395200.000 11935.895 47903.067

395100.000 94794.131 95954.920 395100.000 11935.531 47903.119

395000.000 94793.741 95949.866 395000.000 11935.166 47903.172

394900.000 94791.348 95945.896 394900.000 11932.925 47903.495

394800.000 94791.107 95940.764 394800.000 11932.699 47903.528

394700.000 94794.121 95933.872 394700.000 11935.521 47903.121

394600.000

394500.000 94791.893 95924.548 394500.000 11933.436 47903.421

394400.000 94791.212 95919.654 394400.000 11932.798 47903.513

394300.000 94793.562 95913.121 394300.000 11934.998 47903.196

394200.000 94793.440 95907.923 394200.000 11934.884 47903.212

394100.000 94792.199 95903.330 394100.000 11933.723 47903.380

394000.000 94792.048 95898.148 394000.000 11933.581 47903.400

393900.000 94792.982 95892.381 393900.000 11934.455 47903.274

393800.000 94793.358 95886.915 393800.000 11934.808 47903.223

393700.000 94793.376 95881.642 393700.000 11934.824 47903.221

393600.000 94791.472 95877.408 393600.000 11933.042 47903.478

393500.000 94790.174 95872.849 393500.000 11931.824 47903.654

393400.000 94789.778 95867.802 393400.000 11931.452 47903.708

393300.000 94792.778 95860.912 393300.000 11934.265 47903.302

393200.000 94790.598 95856.830 393200.000 11932.221 47903.597

393100.000 94791.649 95850.996 393100.000 11933.207 47903.454

393000.000 94788.565 95847.412 393000.000 11930.312 47903.874

392900.000 94791.278 95840.671 392900.000 11932.859 47903.505

392800.000 94788.947 95836.677 392800.000 11930.671 47903.822

392700.000 94790.525 95830.553 392700.000 11932.153 47903.607

392600.000

392500.000

392400.000 94791.391 95814.294 392400.000 11932.965 47903.489

392300.000 94789.778 95809.907 392300.000 11931.452 47903.708

392200.000 94787.912 95805.664 392200.000 11929.697 47903.963

392100.000 94790.337 95799.076 392100.000 11931.977 47903.632

392000.000 94785.442 95796.497 392000.000 11927.370 47904.303
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391900.000 94790.800 95788.299 391900.000 11932.411 47903.569

391800.000

391700.000 94789.737 95778.351 391700.000 11931.413 47903.714

391600.000

391500.000 94786.632 95769.525 391500.000 11928.492 47904.139

391400.000 94789.155 95762.879 391400.000 11930.867 47903.793

391300.000 94789.209 95757.586 391300.000 11930.917 47903.786

391200.000 94788.146 95752.904 391200.000 11929.918 47903.931

391100.000 94784.656 95749.564 391100.000 11926.627 47904.412

391000.000

390900.000

390800.000 94787.445 95732.236 390800.000 11929.258 47904.027

390700.000

390600.000 94788.902 95720.912 390600.000 11930.629 47903.828

390500.000 94777.367 95722.072 390500.000 11919.712 47905.434

390400.000 94789.111 95710.271 390400.000 11930.825 47903.799

390300.000 94789.248 95704.933 390300.000 11930.954 47903.781

390200.000

390100.000 94785.576 95696.423 390100.000 11927.496 47904.285

Table C.3: Results for long subproblem with ρ constraint

To compare results, a set of short subproblems were evaluated with CPLEX 12.2.0.0 in

the table (C.4). As the results are very similar to the Gurobi 5.0.1 solver and more solutions

are found to be unfeasible, only the results from the Gurobi solver will be considered in this

thesis.

ρ in MN CaR in MN VaR in MN CVaR in MN S.D in MN E[I] in MN

11000.000 12987.739 13049.303 11000.000 314.518 11766.175

10900.000 12988.430 13043.677 10900.000 315.158 11766.085

10800.000 12988.048 13038.611 10800.000 314.807 11766.134

10700.000 12988.155 13033.292 10700.000 314.906 11766.120
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10600.000 12987.991 13028.115 10600.000 314.754 11766.142

10500.000 12987.905 13022.897 10500.000 314.674 11766.153

10400.000 12987.805 13017.688 10400.000 314.580 11766.166

10300.000 12987.580 13012.548 10300.000 314.369 11766.197

10200.000 12987.368 13007.405 10200.000 314.167 11766.227

10100.000 12986.401 13002.735 10100.000 313.218 11766.375

10000.000 12986.920 12997.137 10000.000 313.737 11766.292

9900.000 12986.914 12991.877 9900.000 313.732 11766.293

9800.000 12986.802 12986.680 9800.000 313.624 11766.309

9700.000 12985.210 12982.434 9700.000 312.038 11766.563

9600.000 12985.122 12977.236 9600.000 311.944 11766.580

9500.000 12985.752 12971.539 9500.000 312.591 11766.471

9400.000 12984.230 12967.311 9400.000 311.036 11766.730

9300.000 12985.779 12960.992 9300.000 312.620 11766.466

9200.000 12984.862 12956.339 9200.000 311.691 11766.619

9100.000 12983.777 12951.871 9100.000 310.549 11766.817

9000.000 12984.923 12945.763 9000.000 311.759 11766.606

8900.000 12983.292 12941.663 8900.000 310.061 11766.897

8800.000 12983.256 12936.407 8800.000 310.034 11766.899

8700.000 12983.607 12930.884 8700.000 310.405 11766.834

8600.000 12982.760 12926.239 8600.000 309.515 11766.988

8500.000 12982.069 12921.500 8500.000 308.776 11767.119

8400.000 12982.625 12915.808 8400.000 309.374 11767.012

8300.000 12981.569 12911.372 8300.000 308.230 11767.219

8200.000 12981.390 12906.227 8200.000 308.049 11695.938

8100.000 12980.850 12901.392 8100.000 307.461 11767.356

8000.000 12980.419 12896.477 8000.000 306.987 11767.443

7900.000 12979.001 12892.531 7900.000 305.324 11767.772

7800.000 12978.631 12887.495 7800.000 304.962 11767.829

7700.000 12978.405 12882.422 7700.000 304.708 11767.876

7600.000 12977.703 12877.787 7600.000 303.900 11768.033

7500.000 12977.120 12873.041 7500.000 303.231 11768.162

7400.000 12976.453 12868.347 7400.000 302.479 11768.305

7300.000 12975.262 12864.207 7300.000 301.073 11768.586
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7200.000 12975.019 12859.159 7200.000 300.794 11896.050

7100.000 12974.131 12854.752 7100.000 299.734 11896.264

7000.000 12973.021 12850.603 7000.000 298.382 11896.543

6900.000 12972.007 12846.359 6900.000 297.146 11896.798

6800.000 12971.377 12841.750 6800.000 296.365 11896.961

6700.000 12970.560 12837.336 6700.000 295.352 11897.174

6600.000 12969.232 12833.515 6600.000 293.668 11897.534

6500.000 12968.315 12829.304 6500.000 292.472 11897.797

6400.000 12967.733 12824.660 6400.000 291.741 11897.952

6300.000

6200.000 12965.657 12816.567 6200.000 289.000 11969.871

6100.000

6000.000

5900.000

5800.000

5700.000 12960.119 12797.356 5700.000 281.315 11971.647

Table C.4: CPLEX results for short subproblem with ρ constraint
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