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Abstract

The asymmetric distance–constrained vehicle routing problem (ADVRP) looks at finding ve-

hicle tours to connect all customers with a depot, such that the total distance is minimised;

each customer is visited once by one vehicle; every tour starts and ends at a depot; and the

travelled distance by each vehicle is less than or equal to the given maximum value.

We present three basic results in this thesis. In the first one, we present a general flow-

based formulation to ADVRP. It is suitable for symmetric and asymmetric instances. It has

been compared with the adapted Bus School Routing formulation and appears to solve the

ADVRP faster. Comparisons are performed on random test instances with up to 200 customers.

We reach a conclusion that our general formulation outperforms the adapted one. Moreover,

it finds the optimal solution for small test instances quickly. For large instances, there is a

high probability that an optimal solution can be found or at least improve upon the value

of the best feasible solution found so far, compared to the other formulation which stops

because of the time condition. This formulation is more general than Kara formulation since

it does not require the distance matrix to satisfy the triangle inequality.

The second result improves and modifies an old branch-and-bound method suggested by

Laporte et al. in 1987. It is based on reformulating a distance–constrained vehicle routing

problem into a travelling salesman problem and uses the assignment problem as a lower

bounding procedure. In addition, its algorithm uses the best-first strategy and new branching

rules. Since this method was fast but memory consuming, it would stop before optimality

is proven. Therefore, we introduce randomness in choosing the node of the search tree in

case we have more than one choice (usually we choose the smallest objective function). If an

optimal solution is not found, then restart is required due to memory issues, so we restart

our procedure. In that way, we get a multistart branch and bound method. Computational

experiments show that we are able to exactly solve large test instances with up to 1000

customers. As far as we know, those instances are much larger than instances considered

for other VRP models and exact solution approaches from recent literature. So, despite its

simplicity, this proposed algorithm is capable of solving the largest instances ever solved in
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literature. Moreover, this approach is general and may be used in solving other types of

vehicle routing problems.

In the third result, we use VNS as a heuristic to find the best feasible solution for groups

of instances. We wanted to determine how far the difference is between the best feasible

solution obtained by VNS and the value of optimal solution in order to use the output

of VNS as an initial feasible solution (upper bound procedure) to improve our multistart

method. Unfortunately, based on the search strategy (best first search), using a heuristic to

find an initial feasible solution is not useful. The reason for this is because the branch and

bound is able to find the first feasible solution quickly. In other words, in our method using

a good initial feasible solution as an upper bound will not increase the speed of the search.

However, this would be different for the depth first search. However, we found a big gap

between VNS feasible solution and an optimal solution, so VNS can not be used alone unless

for large test instances when other exact methods are not able to find any feasible solution

because of memory or stopping conditions.
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Chapter 1

Introduction

Optimization problems contain a set of decision variables, an objective function and a set

of constraints. It is defined as follows: minimize or maximize the objective function by

finding values of the decision variables that satisfying the set of constraints. Let f be an

objective function, X is a feasible set, and S is a solution space. The optimization problem

is formulated as follows:

min{f(x)|x ∈ X, X ⊆ S} (1.1)

If x ∈ X, it is called a feasible solution. Otherwise, it is an infeasible solution. In general,

optimization models can be classified in different ways. We consider the classification based

on the variables type: continuous optimization, and discrete optimization problems. If the

cardinality of the solution space is finite, we get the combinatorial optimization problems

(COP). They are well known to be easy to express and difficult to solve [140]. In addition,

COPs can be formulated as mathematical programming problems.

Mathematical programming problem is defined as follows:

min f(x) (1.2)

subject to

gi(x) ≤ 0, i = 1, ..., m (1.3)

xj ≥ 0, j = 1, ..., n. (1.4)
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Where f(x) : Rn → R and X belong to Rn or S which satisfies | S |< ∞.

Linear program (LP) is a mathematical model that finds a set of non negative values for

variables which maximize or minimize a linear objective function satisfying a set of linear

constraints. LP with some integer variables is called a mixed integer linear program (MIP).

If all the variables are integers, it is called an integer linear program (IP). In other words,

if there are no integer variables, we get linear program (LP), while no continuous variable

will result in a pure (IP). In the case of both integer and continuous variables being present,

then we get mixed IP (MIP) [166]. In general, solving IP is more difficult than solving LP.

MIP is formulated as follows:

max/min cx + dy (1.5)

subject to

Ax + Dy ≤ b, (1.6)

x ≥ 0, y ≥ 0 (1.7)

x integer, (1.8)

where c = (c1, ..., cn), d = (d1, ..., dn), A = (aij)m×n, D = (dij)m×n, b = (b1, ..., bm)T ,

integer variables x = (x1, ..., xn)T and continuous variables y = (y1, ..., yn)T .

Integer program is considered as one of the most popular models in combinatorial opti-

mization and it is formulated as follows [166]:

max/min cx (1.9)

subject to

Ax ≤ b (1.10)

x ≥ 0 (1.11)

x integer. (1.12)

As a mathematical programming model, linear programming models can be defined as

finding the maximum or minimum value of the objective function subject to a set of linear

2



Introduction Classification of VRP

constraints. In other words, find the values of n decision variables xi to maximize or minimize

the objective function z. It can be written as follows where ci, aij , bi are constants.:

max/min z =
n∑

i=1

cixi (1.13)

subject to
n∑

j=1

aijxj ≤ bi ∀ i = 1, ..., m (1.14)

xi ≥ 0 ∀ i = 1, ..., n. (1.15)

When the decision variables satisfy the linear constraints, they produce feasible solutions

to the linear programming problem. The feasible region contains all feasible solutions, where

the optimal solution is a feasible solution that optimizes the objective function.

An example of practical combinatorial optimization problem is Vehicle routing problem

(VRP) which is considered as a pure IP problem. In this thesis we are interested in finding

the optimal solution or an approximate solution to one type of VRPs. In the next section

there are definitions, classifications, and formulations for VRPs.

1.1 Classification of Vehicle Routing Problems

Vehicle routing problem (VRP) is defined as planning least cost tours to serve a set of

customers (collection, delivery or both) by using a set of vehicles provided that some con-

straints are satisfied [158]. The objective is to minimize the cost (time or distance) for all

tours. The cost of the tours can be fuel cost, driver wages and so on. It is an NP–hard

problem [75, 141, 168], for information on computational complexity see [96].

Real world applications may be mail delivery, solid waste collection, street cleaning,

distribution of commodities, design telecommunication, transportation networks, school bus

routing, dial–a–ride systems, transportation of handicapped persons, and routing of sales

people and maintenance units. A survey of real–world applications is in [160].

The first article on VRP was published in 1959 by Dantzig and Ramser [40]. Since then,

many researchers have studied various VRP models, mainly driven by the great potential

of its applications as well as its limitations. For a summary about developments of VRP
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in the last 50 years see [107], which shows the solved instances with up to 135 customers.

Moreover, there are some books for VRPs see [68, 69, 160]. In addition, for an overview of

VRPs we refer to [38, 49, 69, 160, 169].

The VRP can be considered as a generalization of the Multiple Travelling Salesman

Problem (m–TSP), which is also an NP–hard problem. Lenstra and Rinnooy Kan [120]

suggested transforming VRP into m–TSP by adding (m − 1) dummy vertices (where m is

the number of vehicles). The number of vehicles in the VRP corresponds to the number of

salesmen.

There are many different classification principles to VRPs: based on data (static and

dynamic); based on constraints (constrained and unconstrained). In this thesis we classify

VRP problems based on constraints: unconstrained VRP and constrained VRP.

1.1.1 Unconstrained Vehicle Routing Problems

The unconstrained (VRP) is defined as designing a set of tours with minimum cost to serve

a set of customers (or cities) using a fleet of vehicles satisfying the following conditions

• customers constraints: every customer is visited (served) once by one vehicle. If the

distance matrix satisfies the triangle inequality, then we accept that some customers

could be crossed more than once.

• vehicles constraints: all tours start and end at the depot.

Let G = (V, A) be a complete graph, V is a set of vertices and it is defined as follows:

V = {0} ∪N where N is the set of customers (or cities), 0 indicates the depot and A is the

set of arcs, each arc (i,j) is corresponding to a non negative number cij which is the distance

(travel cost or travel time) between vertex i and vertex j. If the distance from vertex i

to vertex j is different from vertex j to vertex i then C is asymmetric. Otherwise, C is

symmetric and a set of arcs (A) is replaced by a set of edges (E). Assume m is the number

of vehicles which can be fixed or free. The decision binary variable xij is defined as follows:

xij =





1 If the arc (i, j) ∈ A belongs to the optimal solution where i 6= j;

0 Otherwise.
(1.16)
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The formulation of unconstrained VRP is as follows [158]:

Min
∑

i6=j

cijxij (1.17)

subject to
∑

j∈V

xij = 1 ∀i ∈ V \{0} (1.18)

∑

i∈V

xij = 1 ∀j ∈ V \{0} (1.19)

∑

i∈N

xi0 = m (1.20)

∑

j∈N

x0j = m (1.21)

∑

i,j∈S

xij ≤ |S| − r(S) ∀S ⊆ V \{0}, S 6= ∅ (1.22)

xij ∈ {0, 1} ∀i, j ∈ V (1.23)

Constraints (1.18, 1.19) are the in-degree and out-degree for each vertex, which means

that every vertex is visited only once; constraints (1.20, 1.21) represent the in-degree and

out-degree of the depot; constraint (1.22) is subtour elimination and r(S) is the minimum

required number of vehicles to visit all vertices in S; last constraint (1.23) is the integrality

constraint.

1.1.2 Constrained Vehicle Routing Problems

Constrained VRP is defined as designing a set of tours with minimum cost to serve a set of

customers using a fleet of vehicles satisfying customers constraints; vehicles constraints; and

additional constraints. There are several types of constraints which produce several types of

constrained VRPs:

• capacitated vehicle routing problem (CVRP).

• distance–constrained vehicle routing problem (DVRP).

• distance–constrained capacitated VRP (DCVRP).
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• vehicle routing problem with time windows (VRPTW).

• vehicle routing problem with backhauls (VRPB).

• vehicle routing problem with pickup and delivery (VRPPD).

We will provide the definitions and formulations for each type of VRP, although we will focus

on Asymmetric DVRP in more detail later in this thesis.

Capacitated Vehicle Routing Problem (CVRP)

CVRP is a practical problem and it is considered the simplest and most studied type of

VRP. Let G = (V, A) be a complete directed graph, V = {0} ∪ N where N is the set of

customers, m identical vehicles with capacity Q, 0 indicates the central depot and A is the

set of arcs. cij is the travel cost (or travel distance) between vertex i and vertex j. The

demand of vertex i is di where Q ≥ di ≥ 0 for each i = 1, .., n and d0 = 0.

CVRP consists of: a set of customers N where each customer has demand di; m identical

vehicles with capacity Q; and central depot. The objective function of CVRP is to minimize

the total distance (time or cost) to serve all customers, provided:

• customers constraints: every customer is visited (served) once by one vehicle.

• vehicles constraints: all tours start and end at the depot.

• capacity constraints: the load of each vehicle at any time is less than or equal to the

vehicle’s capacity.

If the constraint of capacity is replaced with the distance constraint then we get a distance-

constrained vehicle routing problem (DV RP ) which is also an NP-hard problem. It is defined

as follows [158]: Find the optimal set of tours with minimum travelled distance to connect

the depot to n customers using m vehicles, such that:

• customers constraints: every customer is visited exactly once.

• vehicles constraints: every vehicle starts and ends its tour at the depot.
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• distance constraints: the total travelled distance by each vehicle in the solution is less

than or equal to the maximum possible travelled distance.

It is an asymmetric DVRP if the distance from vertex i to vertex j is different from vertex

j to vertex i. Otherwise, the symmetric DVRP is defined. When the problem of VRP

has distance constraints and capacity constraints, it is called Distance-constrained CVRP

(DCVRP).

If we have only one vehicle with unlimited capacity or no distance constraint, the CVRP

(DVRP, or DCVRP) will be equivalent to the TSP. The solution in this case entails looking

for one tour over all customers with minimum cost or minimum travelled distance [158].

Different types of formulations for CVRP can be found in this thesis in Section (1.2).

Vehicle Routing Problem with Time Windows (VRPTW)

VRPTW is considered as an extension to CVRP with time window constraint and it is also

an NP-hard problem. It is defined as optimizing a set of least cost tours to serve a set of

customers within a time window interval by using a set of vehicles satisfying:

• customers constraints: every customer is visited (served) once by one vehicle. If the

distance matrix satisfies the triangle inequality, then a customer could be crossed more

than once.

• vehicles constraints: all tours start and end at the depot.

• capacity constraints: the load of each vehicle is less than or equal the vehicle’s capacity.

• service time constraints: each customer has to be served within a time window [ai, bi].

That means it is not acceptable to serve customers before or after a time window

interval, and in the case that the vehicle arrives before the start time then it has to

wait [34].

Let G = (V, A) be a complete directed graph, where V = {0, n+1}∪N and N = {1, ..., n}
is a set of customers; 0, n + 1 represent the first and the last depot; A is the set of arcs; and

7



Introduction Classification of VRP

k represents identical vehicles. The travel time for each arc (i, j) ∈ A is tij . Each vertex i

has to be served within a time window [ai, bi] and each vertex also has service time si.

To present the formulation of VRPTW, the decision variable xijk is used and defined as

follows:

xijk =





1 If (i, j) ∈ A is used by vehicle k ∈ K;

0 Otherwise.
(1.24)

The time variable wik denotes the start of service for vertex i ∈ V when served by vehicle

k ∈ K. Time windows for the start depot and last depot are [a0, b0] = [an+1, bn+1] = [E,L]

where E,L are the earliest departure to the start depot and latest arrival to the last depot.

Respectively, the demand and service time of these vertices 0 and n + 1 are zero. Let ∆+(i)

represents the set of vertices that come directly after i such that (i, j) ∈ A. ∆−(i) represents

the set of vertices that come directly before i such that (j, i) ∈ A.

The multicommodity network flow formulation to VRPTW using the same notation in

[34] is given as follows:

min
∑

k∈K

∑

(i,j)∈A

cijxijk (1.25)

subject to
∑

k∈K

∑

j∈∆+(i)

xijk = 1 ∀i ∈ N (1.26)

∑

j∈∆+(0)

x0jk = 1 ∀k ∈ K (1.27)

∑

i∈∆−(j)

xijk −
∑

i∈∆+(j)

xjik = 0 ∀k ∈ K, j ∈ N (1.28)

∑

i∈∆−(n+1)

xi,n+1,k = 1 ∀k ∈ K (1.29)

xijk(wik + si + tij − wjk) ≤ 0 ∀k ∈ K, (i, j) ∈ A (1.30)

ai

∑

j∈∆+(i)

xijk ≤ wik ≤ bi

∑

j∈∆+(i)

xijk ∀k ∈ K, i ∈ N (1.31)

E ≤ wik ≤ L ∀k ∈ K, i ∈ {0, n + 1} (1.32)
∑

i∈N

di

∑

j∈∆+(i)

xijk ≤ C ∀k ∈ K (1.33)
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xijk ≥ 0 ∀k ∈ K, (i, j) ∈ A (1.34)

xijk ∈ {0, 1} ∀k ∈ K, (i, j) ∈ A (1.35)

In this nonlinear formulation, the constraint (1.26) indicates that every vertex is visited by

one vehicle; constraints (1.27 - 1.29) represent the flow on the path by vehicle k; constraints

(1.30 - 1.32) are the time constraints; constraint (1.33) represents the capacity constraint;

constraint (1.34) represents the non negativity constraint; the last constraint (1.35) represents

the integrality constraint.

Vehicle Routing Problem with Backhauls (VRPB)

VRPB is another extension to CVRP and it is also an NP-hard problem. To define VRPB

we need to divide the set of customers into two subsets: the first set contains customers

who require the product to be delivered, these customers are called linehaul customers. The

other set contains customers who require the product to picked up, they are called backhaul

customers. If the tour contains customers from both sets, the linehaul customers must

serve before any backhaul customers. Note that tours with backhaul customers only are not

allowed in some formulations [159].

The constraints for this problem are as follows [159]:

• customers constraints: each customer is visited (served) once by one vehicle. If the

distance matrix satisfies the triangle inequality, then a customer could be crossed more

than once.

• vehicles constraints: all tours start and end at the depot.

• capacity constraints: the load of each vehicle at any time is less than or equal C.

• linehaul customers have to be served before backhaul customers in any tour.

In the following formulation, which is also suitable for asymmetric VRPB, it is acceptable to

have a tour with one linehaul customer but it is not acceptable to have a tour with backhaul

customers only.
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Let G = (V, A) be a complete directed graph; V = {0} ∪ L ∪ B where 0 represents the

depot; L = {1, 2, .., n} is a subset of linehaul customers and B = {n+1, .., n+m} is a subset

of backhaul customers; dj is the demand of each customer for delivery or collection; K is the

number of vehicles, each vehicle has capacity C; cij is the cost of arc (i, j).

Let L0 = L∪{0}, and B0 = B∪{0}. Let Ḡ = (V̄ , Ā) be a complete directed graph where

V̄ = V , Ā = A1∪A2∪A3 and A1 = {(i, j) ∈ A : i ∈ L0, j ∈ L} represents the arcs from depot

and linehaul customers to linehaul customers; A2 = {(i, j) ∈ A : i ∈ B, j ∈ B0} represents

the arcs from backhaul customers to backhaul customers and depot; A3 = {(i, j) ∈ A : i ∈
L, j ∈ B0} represents the arcs from linehaul customers to backhaul customers and depot.

Let ζ and β represent all subsets of customers in L and B. Let z = ζ ∪ β and let r(S)

be the smallest number of vehicles required to serve all customers in S where S ∈ z. Let

∆+(i) represents the set of vertices that come directly after i such that (i, j) ∈ A and ∆−(i)

represents the set of vertices that come directly before i such that (j, i) ∈ A.

The decision variable xij is used and defined as follows:

xij =





1 If (i, j) is in the optimal soltuion;

0 Otherwise.
(1.36)

The formulation of VRPB is given as follows [159]:

min
∑

(i,j)∈Ā

cijxij (1.37)

subject to
∑

i∈∆−(j)

xij = 1 ∀j ∈ V̄ \{0} (1.38)

∑

j∈∆+(i)

xij = 1 ∀i ∈ V̄ \{0} (1.39)

∑

i∈∆−(0)

xi0 = K (1.40)

∑

j∈∆+(0)

x0j = K (1.41)

∑

j∈S

∑

i∈∆−(j)\S
xij ≥ r(S) ∀S ∈ z (1.42)
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∑

i∈S

∑

j∈∆+(i)\S
xij ≥ r(S) ∀S ∈ z (1.43)

xij ∈ {0, 1} ∀(i, j) ∈ Ā (1.44)

Constraints (1.38, 1.39) are the in-degree and out-degree for each customer, which means

that every customer is visited only once; constraints (1.40, 1.41) represent the in-degree

and out-degree of the depot; constraints (1.42, 1.43) represent the connectivity and capacity

constraints; the last constraint (1.44) represents the integrality constraint.

Vehicle Routing Problem with Pickup and Delivery (VRPPD)

VRPPD is an NP-hard problem. In the basic version of VRPPD, each customer i requests

two demands, di to be delivered and pi to be picked up. In addition, we need to add for each

customer i two new variables, Oi which denotes the vertex where the source of delivery exists

and Di which denotes the customer where the destination of the pick up exists. Assuming

at each customer the delivery is implemented before the pick up, so the constraints of the

basic VRPPD are as follows [43]:

• customers constraints: each customer is visited (served) once by one vehicle. If the

distance matrix satisfies the triangle inequality, then a customer could be crossed more

than once.

• vehicles constraints: all tours start and end at the depot.

• capacity constraints: The load of each vehicle must be less than or equal to Q and

should be satisfied all the time.

• each customer i must be served after the customer Oi and before customer Di in the

same tour in case both Oi and Di are not the depot.

Clearly, the customers who are required demand to be picked up only have to be served before

other customers including the customers who are required demand only to be delivered. The

formulation of VRPPD use three variables:
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1. The time variable Tik determines the time when the service for customer i starts by

vehicle k.

2. The load variable Lik determines the load of vehicle k when the service for customer i

is finished.

3. The decision variable xijk is defined as follows:

xijk =





1 If (i, j) ∈ Ak is used by vehicle k ∈ K;

0 Otherwise.
(1.45)

Let N = P ∪ D where P = {1, .., n} represents the set of pick up vertices, and D =

{n + 1, .., 2n} represents the set of delivery vertices. Assume vertex i requires demand di to

pick up and deliver to vertex n + i, let li = di and ln+i = −di.

Let K represents the set of vehicles, each vehicle with capacity Ck and serves a set of

vertices Nk = Pk ∪Dk where Nk, Pk, Dk are subsets of N, P, D. In addition, for each vehicle

there is a network Gk = (Vk, Ak) where Vk = Nk ∪ {o(k), d(k)} represents a set of vertices

including the source and destination depots for vehicle k. The travel time and cost between

two vertices using vehicle k is tijk and cijk respectively. The formulation of VRPPD is given

as follows [43]:

min
∑

k∈K

∑

(i,j)∈Ak

cijkxijk (1.46)

subject to
∑

k∈K

∑

j∈Nk∪{d(k)}
xijk = 1 ∀i ∈ P (1.47)

∑

j∈Nk

xijk −
∑

j∈Nk

xj,n+i,k = 0 ∀k ∈ K, i ∈ Pk (1.48)

∑

j∈Pk∪{d(k)}
xo(k),j,k = 1 ∀k ∈ K (1.49)

∑

i∈Nk∪{o(k)}
xijk −

∑

i∈Nk∪{d(k)}
xjik = 0 ∀k ∈ K, j ∈ Nk (1.50)

∑

i∈Dk∪{o(k)}
xi,d(k),k = 1 ∀k ∈ K (1.51)
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xijk(Tik + si + tijk − Tjk) ≤ 0 ∀k ∈ K, (i, j) ∈ Ak (1.52)

ai ≤ Tik ≤ bi ∀k ∈ K, i ∈ Vk (1.53)

Tik + ti,n+i,k ≤ Tn+i,k ∀k ∈ K, i ∈ Pk (1.54)

xijk(Lik + lj − Ljk) = 0 ∀k ∈ K, (i, j) ∈ Ak (1.55)

li ≤ Lik ≤ Ck ∀k ∈ K, i ∈ Pk (1.56)

0 ≤ Ln+i,k ≤ Ck − li ∀k ∈ K,n + i ∈ Dk (1.57)

Lo(k),k = 0 ∀k ∈ K (1.58)

xijk ≥ 0 ∀k ∈ K, (i, j) ∈ Ak (1.59)

xijk ∈ {0, 1} ∀k ∈ K, (i, j) ∈ Ak (1.60)

Constraints (1.47, 1.48) force each vertex requirement (pick up or delivery) to be served

once by the same vehicle; constraints (1.49 - 1.51) impose that each vehicle starts from its

origin depot o(k) and terminates at its destination depot d(k); nonlinear constraint (1.52)

is responsible for the suitability of the requirements between tours and schedules; constraint

(1.53) is the time window constraint where [ai, bi] is the time window interval for a vertex

i; constraint (1.54) forces each vehicle to visit the pick up vertex before the delivery vertex;

nonlinear constraint (1.55) is responsible for the suitability of the requirements between tours

and vehicle loads; constraints (1.56, 1.57) represent the vehicle capacity interval at the pick

up vertex and delivery vertex for each vehicle; constraint (1.58) represents the initial load for

each vehicle; the last constraints (1.59) and (1.60) are nonnegativity and binary constraints.

1.2 VRP Formulation Types

There are two types of integer programming formulations based on the constraints, [99]:

• polynomial size formulation: the number of constraints increase polynomially with the

number of vertices.
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• exponential size formulation: the number of constraints increase exponentially with

the number of vertices.

Polynomial size formulation can contain two types of formulations based on the type of

additional variables [99]:

• vertex based formulation: the additional variables are related to the vertices of the

graph.

• flow based formulation: the additional variables are related to the arcs of the graph.

There are three basic types of formulations used to represent VRPs [158]: vehicle flow

formulation; Commodity flow formulation; and set-partitioning formulation.

1.2.1 Vehicle Flow Formulation

In this formulation each arc or edge corresponds to an integer variable which represents how

many times this arc is used by a vehicle. Two-index vehicle flow formulation uses a variable

x(i, j) to represent whether arc (i, j) is used in the optimal solution or not. The three-index

vehicle flow formulation uses a variable x(i, j, k) to represent how many times the arc (i, j)

is used by vehicle k in the optimal solution, where the last index distinguishes between the

vehicles.

As an example we will present two-index vehicle flow formulation of CVRP as given in

[14] which was originally proposed by Laporte in 1985. Let G = (V,E) be an undirected

graph, V = {0} ∪N where N is the set of customers, m identical vehicles with capacity Q,

0 indicates to the central depot and E is the set of edges. Cij is the travel cost (or travel

distance) between vertex i and vertex j. The demand of vertex i is di where Q ≥ di ≥ 0 for

each i = 1, .., n and d0 = 0.

Let ϕ = {S : S ⊆ V \{0}, |S| ≥ 2} and let S̄ = V \S be the complementary set of S.

Assume d(S) =
∑

i∈S di is the whole demand of the vertices in S, k(S) is the minimum

number of vehicles required to serve all vertices in S.
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Let xij be an integer variable defined as follows:

xij =





2 If i = 0 and route with one vertex exists in the solution;

1 If {i, j} belongs to an optimal solution where (i 6= 0 and j 6= 0)

or (i = 0 and j 6= 0);

0 Otherwise.

(1.61)

The two-index vehicle flow formulation for CVRP is as follows:

min
∑

{i,j}∈E

cijxij (1.62)

subject to:
∑

j∈V,i<j

xij +
∑

j∈V,i>j

xji = 2 ∀i ∈ N (1.63)

∑

i∈S

∑

j∈S̄,i<j

xij +
∑

i∈S̄

∑

j∈S,i<j

xij ≥ 2k(S) ∀S ∈ ϕ (1.64)

∑

j∈N

x0j = 2m (1.65)

xij ∈ {0, 1, 2} ∀{i, j} ∈ E (1.66)

The constraint (1.63) represents the degree of each vertex (each vertex that is served); con-

straint (1.64) represents the capacity constraint (subtour elimination constraint); constraint

(1.65) represents the depot degree (m vehicles leave and m vehicles return to the depot);

and finally constraint (1.66) is integrality constraint.

1.2.2 Commodity Flow Formulation

This formulation was proposed originally by Garvin et. al in 1957 (see [52]). It requires two

continuous variables to be connected with each arc (or edge). These continuous variables

represent the flow of commodities on the arcs (or edges) used by the vehicles in the tour.

In other words, commodity flow formulation requires two flow variables yij and yji, both

represent the load of vehicles of a feasible solution in two sides. Suppose the vehicle travels

from vertex i to vertex j then yij denotes the load of the vehicle, while yji denotes the empty
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space in the vehicle, where yij +yji = Q (vehicle capacity). This has to satisfied for all routes

in the feasible solution.

Another copy of the depot has to be added. There are one, two, and multi-commodity

flow formulations. Any route in a feasible solution to CVRP has two paths, the first path

from the depot 0 to the depot (n + 1) and uses yij , while the second path starts from the

depot (n + 1) to the depot 0 and uses yji. Let d(N) denotes to the demand of all vertices.

Let S̄ = V \S be the complement of S where S ⊆ V \{0}. This formulation needs to add

one vertex n+1 as a copy of the depot 0 to the graph. Therefore, the extended graph contains

two depots and it is denoted by Ḡ = (V̄ , Ē) where V̄ = V ∪ {n + 1}, N = V̄ \{0, n + 1}, and

Ē is given: Ē = E ∪ {{i, n + 1}|i ∈ N}, cin+1 = c0i where i ∈ N .

In this formulation xij is a binary variable defined as follows:

xij =





1 If {i, j} ∈ Ē belongs to the optimal solution ;

0 Otherwise.
(1.67)

The two commodity flow formulation for CV RP which was proposed by Baldacci in 2004

(see [14]) is as follows:

min
∑

{i,j}∈Ē

cijxij (1.68)

subject to:
∑

j∈V̄

(yji − yij) = 2di ∀i ∈ N (1.69)

∑

j∈N

y0j = d(N) (1.70)

∑

j∈N

yj0 = mQ− d(N) (1.71)

∑

j∈N

yn+1j = mQ (1.72)

∑

j∈V̄ ,i<j

xij +
∑

j∈V̄ ,i>j

xji = 2 ∀i ∈ N (1.73)

yij + yji = Qxij ∀{i, j} ∈ Ē (1.74)

yij ≥ 0, yji ≥ 0 ∀{i, j} ∈ Ē (1.75)
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xij ∈ {0, 1} ∀{i, j} ∈ Ē (1.76)

The constraint (1.69) represents the difference between the inflow and the outflow for each

vertex which is equal to the double of the demand of that vertex. Constraint (1.70) shows that

the outflow at the depot 0 is equal to the demand of all vertices. Constraint (1.71) indicates

the inflow at the depot 0 which is equal to the difference between the vehicle capacity and

the total vertices demand. Constraint (1.72) represents the outflow at the depot (n+1) to be

equal to the total capacity of all vehicles. Constraint (1.73) forces the degree of each vertex to

be 2. Constraint (1.74) defines the edges of a feasible solution. Finally, the constraint (1.75)

represents the non-negative constraint and the constraint (1.76) is the integrality constraint.

1.2.3 Set-Partitioning Formulation

This formulation was proposed in 1964 by Balinski and Quandt (see [18]) with the model

containing an exponential number of binary variables. It is necessary to define one variable

for every feasible tour that is used by a single vehicle [121], so that when the size of the

problem increases polynomially, the number of variables grows exponentially. For this reason

using column generation becomes necessary [121]. In addition, this formulation needs a huge

number of variables.

Let R be the set of all possible routes, each route has cost cl corresponding to the sum

of costs of edges in that route, xl is a binary variable defined as follows:

xl =





1 If route l ∈ R belongs to an optimal solution;

0 Otherwise.
(1.77)

ail is a binary coefficient defined as follows:

ail =





1 If vertex i ∈ V belongs to route l ∈ R;

0 Otherwise.
(1.78)

The Set-Partitioning formulation of CVRP is as follows [121]:

min
∑

l∈R

clxl (1.79)
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subject to:
∑

l∈R

xl = m (1.80)

∑

l∈R

ailxl = 1 ∀i ∈ V (1.81)

xl ∈ {0, 1} ∀l ∈ R (1.82)

The constraint (1.80) shows that m routes are chosen, constraints (1.81) shows that each

vertex has to be on one route. The final constraint (1.82) is integrality constraint. If

the distance matrix satisfies the triangle inequality, then set partitioning formulation is

transformed to set covering formulation [26].

1.3 Distance-Constrained Vehicle Routing Problem

In general if we relax the distance constraints from DVRP, then it will become M-TSP. In

addition, if there is only one vehicle then DVRP will become TSP [108]. Solving TSP or M-

TSP is easier than solving VRPs [108]. A real world application can be sales representative

visits customers without pick up or delivery requirements but with distance constraints [108].

1.3.1 History

The literature is rich for symmetric VRPs and poor for asymmetric VRPs, although the

symmetric VRPs is considered as a special case of asymmetric VRPs. The exact methods of

asymmetric VRPs have a weak performance on symmetric VRPs. Furthermore, the methods

designed for symmetric VRP instances may not be adapted easily to solve asymmetric VRPs

[70].

Surprisingly, ADVRP is not studied like other types of VRPs. There are a few papers

that discuss this problem see [99, 113].

• The first paper was in 1984 by Laporte, Desrochers and Nobert [108]. It presents two

exact algorithms for DVRP. One of them is based on Gomory cutting planes and the

other one is based on branch and bound. They deal with symmetric instances (Eu-

clidean and non-Euclidean) where Euclidean means that the distance matrix satisfies
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the triangle inequality. They conclude that solving non-Euclidean instances is easier

than solving Euclidean, where both algorithms are able to find the optimal solution

with up to 50 customers in Euclidean cases and 60 in non-Euclidean instances. In

addition, the cutting plane algorithm performs better than branch and bound algo-

rithm. Moreover, in both algorithms, solving instances become more difficult when the

maximum distance allowed is decreased.

• Laporte, Nobert and Desrochers in 1985 present an integer linear programming al-

gorithm to solve VRP with distance and capacity constraints. They use relaxation

constraints and subtour elimination constraints. They solve the model with up to 60

customers [112] using Euclidean and non-Euclidean instances.

• The third paper was in 1987 by Laporte et. al [113]. It is considered as the first

paper with Asymmetric DVRP in the operations research literature. They use similar

techniques to Laporte et. al (see [110]) which is originally considered as an extension

to the algorithm of Carpaneto and Toth for TSP [28].

An exact algorithm for solving ADVRP is developed in [113]. It uses the branch and

bound method where the relaxation problem is the modified assignment problem. They

extend the distance matrix based on the technique of Lenstra and Rinnooy (see [120])

by adding (m − 1) dummy depots where m represents the number of vehicles. The

solution is feasible to ADVRP if two conditions are satisfied:

– the solution contains m hamiltonian circuits.

– the length for each of them is less than or equal to the maximum distance allowed.

In the case that the infeasible solution is obtained, the infeasible circuit is eliminated

by adding a new constraint. This means the illegal subtour is eliminated by branching

this infeasible subproblem into subproblems.

They find the first feasible solution by adapting Clarke and Wright’s algorithm (see

[32]). If this is not able to provide a feasible solution then the upper bound (UB) is

set to: UB = m × Dmax where Dmax represents the maximum distance allowed. If
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the total length of a subtour is greater than Dmax, then it has to be eliminated. They

eliminate illegal tours by excluding arcs.

They use randomly generated instances, with two types of distance matrices, those

satisfying and not satisfying the triangle inequality. This method is able to solve up to

100 customer problems for ADVRP. They conclude that solving tighter problems are

more difficult.

• The forth paper published in 1992 by Li et. al, see [122], considers two objective func-

tions to DVRP: minimize total distance and minimize the number of vehicles used.

They transform the DVRP into a multiple traveling salesman problem with time win-

dows (mTSPTW), where the time window constraint [ai, bi] for any customer i means

that it is not allowed to serve customer i before ai or after bi. In other words, the

vehicle has to wait until time ai to start before dealing with customer i. For details on

time windows with VRP see Section 1.1.

In order to enable the transformation, the distance constraint is used as a time window

constraint [0, Dmax] for all customers, and another copy of the depot is added to the

graph. The time window for the first depot is [0, 0] (departure depot), and the time

window for the last depot is [0, Dmax] (arrival depot). It is solved using a column

generation approach. They present and analyze the worst case performance for DVRP

with a heuristic and provide results with up to 100 customers. The comparison includes

the length of the initial tour and the value of the lower bound.

• Conference paper by Almoustafa et.al in 2009 [7]. An old branch-and-bound method

(suggested by Laporte et al. in 1987) is revised and modified. This method is based on

reformulating the distance–constrained vehicle routing problem into a traveling sales-

man problem and use of the assignment problem (AP) as a lower bounding procedure.

The Hungarian algorithm is used to find the solution to AP (an efficient implementa-

tion of Hungarian method for AP). In [7] branching based on tolerances and costs are

used in two algorithms.

Computational results indicate that according to how many times the optimal solution
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is found, the performance of tolerance-based algorithms is better than the performance

of cost-based algorithms. On the other hand, the opposite is held when the CPU time

is considered. Both algorithms are able to find optimal solution up to 200 customers.

• Kara emphasized in 2011 that there are still a limited number of published papers on

DVRP in this area of literature [98, 99, 100]. Kara’s technical report [99] displayed the

existing formulations and presented new formulations for DVRP:

– flow based formulation.

– vertex based formulation.

All new formulations have O(n2) binary variables and O(n2) constraints and it can

be used by commercial solvers such as CPLEX. The flow based formulation performs

better than vertex based formulation according to the computational times. On the

other hand, the vertex based formulation provides better lower bounds than flow based

formulation [98].

Kara recommends flow based formulation to solve small and moderate-sized cases, while

vertex based formulation to be used to improve heuristic procedures for DVRP [98].

Finally the proposed formulations by Kara can be adapted by adding other constraints

to DVRP.

1.3.2 Our Approach

Our target is to increase the size of instances that can be solved exactly by our approach to

solve ADVRP. In addition, our target is to propose a simple and robust algorithm. In this

thesis we propose three results.

Firstly, we present a general flow-based formulation to solve ADVRP. This formulation

is more general than Kara formulation [98], since it does not require the distance matrix to

satisfy the triangle inequality. It produces a solution faster than the adapted formulation.

In addition, we are able to improve the quality of the objective function in case the optimal

solution is not reached because of stopping conditions.
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Secondly, we use tolerance based branching rules [6] and try to improve it in different

ways. First of all by using CPLEX as a lower bounding procedure to solve AP and comparing

that with the Hungarian algorithm. We find that the Hungarian algorithm produces a

solution in shorter CPU time when compared with CPLEX for solving AP. In other words,

there is a big gap, in terms of time, between using the Hungarian algorithm and CPLEX to

solve AP.

Tolerance based branching rules method is fast but memory consuming, and could stop

before optimality is proven. Therefore, we introduce randomness in choosing the node of the

search tree in cases where we have more than one choice. If an optimal solution is not found

and restart is required due to memory issues, we restart our procedure. In this way, we get

a multistart branch and bound method.

Computational experiments show that we are able to exactly solve large test instances

with up to 1000 customers. So, despite the simplicity, this proposed algorithm is capable of

solving the largest instances ever solved in literature. As far as we know, those instances are

much larger than instances considered for other VRP models and exact solution approaches

from recent literature. For example CVRP is not always able to solve instances optimally

with more than 200 customers [48].

In order to compare our approach we use a commercial IP solver (CPLEX) to get the

optimal solution of the ADVRP. Using CPLEX solver to obtain the optimal solution to

ADVRP faces some difficulties for two reasons. The first reason is related to the CPU time

which is too long and the second reason is related to the larger instances which can’t be

uploaded due to lack of memory.

Thirdly, we develop heuristic based on VNS to find a good feasible solution in case our

exact multistart branch and bound method stops because of memory or stopping conditions.

We use the route-first-cluster-second approach to transfer TSP solution to ADVRP solution.

Unsatisfactory results are obtained. The reason for not getting expected good results could

be the route-first-cluster-second approach.
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1.4 Thesis Overview

The structure of this thesis is as follows:

• Chapter 1 we present classification of VRPs based on constraints (unconstrained VRP

and constrained VRP), then we explain in more detail definitions and formulations of

the main constrained VRPs: Capacitated VRP; distance-constrained VRP; VRP with

time windows; VRP with backhauls; and VRP with pickup and delivery. In addition,

basic formulation types for VRPs are presented.

• Chapter 2 we provide basic information about the solution methods: Exact methods

that find the optimal solution such as: branch and bound, cutting plane, branch and

cut, column generation, cut and solve; branch-and-cut-and-price, branch-and-price,

and dynamic programming; Classical Heuristics that find approximate solution such

as: constructive heuristics, two phase methods, improvement heuristics; Metaheuristics

are classified into three groups, and are presented with basic information as follows:

1. Local search based metaheuristics: such as multi-start method, simulated an-

nealing (SA), tabu search (TS), greedy randomized adaptive search procedure

(GRASP), neural networks (NN), variable neighborhood search (VNS), and guided

local search (GLS).

2. Population Based (natural inspired): genetic algorithm (GA), evolutionary al-

gorithm (EA), scatter search (SS), Ant colony optimization (ACO), and Path

Relinking (PR).

3. Hybrid metaheuristics.

In addition, we provide more information on VNS, since it is used in Chapter 5 to find

feasible solutions to ADVRP. We propose different variants of VNS types and their

algorithms.

• Chapter 3 we present three formulations for ADVRP: adapted bus school routing prob-

lem (ABSRP), Kara formulation, and our general formulation. We explain the differ-

ence between Kara formulation and our general formulation then we compare between
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adapted formulation and our general formulation with an illustrative example. Finally,

we present computational results and the conclusion.

• Chapter 4 Multistart Branch and Bound for ADVRP (MSBB− ADVRP): a simple intro-

duction is presented in section 4.1, then mathematical programming formulations of

ADVRP is in section 4.2. We discuss in section 4.3 single start branch and bound for

ADVRP and most of the relevant basic concepts which are used later: upper bound,

lower bound, branching rules, the algorithm, and an illustrative example. A descrip-

tion of the multi start method used to solve ADVRP is given in section 4.4 with the

algorithm and an example. An efficient implementation and data structure are given in

section 4.5. Computational results are provided in section 4.6 with methods compared,

numerical analysis and summary tables of results. Section 4.7 contains the conclusion

and future research directions. For more information on the detailed tables of results

see Appendix A.

• Chapter 5 Variable neighborhood search (VNS), we explain our VNS based heuristic

for solving ADVRP. The initialization algorithms are presented in section 5.1, and the

main algorithm VNS-ADVRP is explained with more detail in section 5.2 and illustrated

with an example. The last two sections present the obtained results and the analysis

beyond them, conclusion and future research. For more information on the detailed

tables of results see Appendix B.

• Chapter 6 contains a summary of thesis conclusions and possible future research where

we suggest some ideas for further research.

• Appendix A contains tables of results for Multistart Branch and Bound for ADVRP

in Chapter 4.

• Appendix B contains tables of results for Variable Neighborhood Search in Chapter 5.

24



Chapter 2

Solution Methods

Three types of algorithms are used to solve any VRP:

• Exact algorithms which look for an optimal solution. Such methods include branch

and bound, cutting plane, branch and cut, column generation, cut and solve, branch-

and-cut-and-price, branch-and-price, and dynamic programming.

• Classical heuristics which search for a good feasible solution without guarantee of opti-

mality. Such methods include constructive heuristics, two phase methods, improvement

heuristics.

• Metaheuristics or framework for building heuristics. They are classified in this the-

sis into three groups: local search based metaheuristics, population based (natural

inspired), and hybrid metaheuristics.

For surveys of solution methods for VRPs we refer to [49, 106, 111, 114, 160].

2.1 Exact Algorithms

These type of methods are able to find an optimal solution to any instance with a proof

of optimality [144]. This has been studied by many authors [16, 31, 106, 111, 120]. When

the size of the problem increases polynomially, the CPU time which is required to solve the

problem increases exponentially [144]. We will explain some of these exact methods:
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2.1.1 Branch and Bound (B&B)

B&B was introduced in 1960s and usually used to solve discrete optimization problems

defined as an integer program, and it has been used as an exact method to solve most

types of VRPs. The B&B uses a relaxation of the original problem. The most important

components in B&B are:

• The quality of the bounds (upper bound (UB) and lower bound (LB)): UB is the value

of the best feasible solution found so far and it is called incumbent. LB is the value of

the objective function to the current node, which is not possible to reach any successor

node with smaller value than LB in case the current node is expanded further. When

a good UB is found early in the search tree, pruning becomes more effective.

• The search strategy: it defines how the next node is chosen for branching. There are

three basic strategies [128]:

1. Breadth first search: Expand the search tree by one level, then examine all nodes

in this level before the next level is expanded until the solution is found. It is not

possible to solve large problems using this strategy because the number of nodes

in the search tree increases exponentially at each level.

2. Depth first search: Expand the search tree by choosing the last generated node

and continue until you find a solution or you find a node without children, then

backtrack to the recent generated node which is not explored yet. It requires

polynomial memory space but the solution times and the search tree are large.

Finding a good upper bound will be useful in this strategy to reduce the size of the

search tree by fathoming large numbers of nodes since their lower bound values

are greater than the values of the upper bounds.

The negative point of this strategy appears when the value of the incumbent is not

close to the value of the optimal solution, which means unnecessary computations

could be made with undesirable extra CPU times. According to the observation

in [124] this search strategy performs weakly in practice even if a heuristic is used

to find an initial solution.
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3. Hybrid search: Suppose a minimization problem. The hybrid search strategy

chooses the node with the smallest lower bound to branch and it is a good strategy

in minimizing the total number of nodes in the search tree, which have to be

explored before the optimal solution is found [144]. This strategy focuses on

looking for proof of optimality, which means that there is no solution better than

the incumbent [124]. This is also known as best first search strategy.

Best first search strategy is the fastest but it requires exponential memory space.

It is considered more efficient than breadth first search because it branches less

subproblems [170]. However, compared with the depth first search, it is less

affected by using an initial upper bound.

In this thesis we use the best first search strategy because it is the fastest and

we expect it to be useful in solving larger instances. However, we are not using

any heuristic to find an initial upper bound because there will be no observable

benefit based on the fact that B&B is able to find a feasible solution early in the

search tree [47].

The search tree initially contains a root node which represents the original problem. During

the search it will be increased by adding new nodes. All other nodes in the search tree

represent subproblems, where every new generated node is numbered. At each iteration, a

node from a list of active nodes (unexplored nodes) is chosen based on the search strategy

to expand. Each new node is checked. If it produces a feasible solution then the value of the

upper bound is updated. Otherwise, the node produces an unfeasible solution. Once again,

if its value is larger than the current incumbent then it will be fathomed. If not, then it will

be added to the list of active nodes to be expanded further during the search.

The new generated nodes (children) are tightened more than parent nodes because they

have more constraints. Relaxation of the original problem is solved at each node in the

search tree. Fathoming (or pruning) is an important feature of the B&B tree in helping to

minimize the number of generated nodes in the search tree.

The search in any branch will stop in one of these cases: a feasible solution is found, or

the value of the objective function is worse than the value of the UB (best feasible solution
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found so far) [166]. When there are no more unexplored nodes in the search tree, the search

in the whole B&B tree terminates and the optimal solution (if it exists) is the value of the

current upper bound.

When B&B procedure is used for solving a problem, we have to decide [13]:

• what constraints to relax? (in order to solve the problem easily).

• what branching rules to use? (a rule to split the feasible set to subsets).

• what lower bounding procedure to be used? (it is a procedure to find the value of the

objective function for the relaxation problem at each subproblem).

• what search strategy to be used? (it is a rule to choose the next subproblem to be

processed).

• what upper bounding procedure will be used?

• how to fathom? and when to stop?.

The initial (good) feasible solution is usually obtained by heuristic. The value obtained is

used as the initial UB, which helps fathoming nodes and reduces the size of the search tree.

If there is no known heuristic solution then the upper bound UB = ∞.

Relaxation in general means some or all constraints are dropped. There are two kinds of

relaxations: basic combinatorial relaxation and sophisticated relaxation, such as Lagrangian

relaxation [157]. Lagrangian relaxation is defined as taking some constraints out and adding

them to the objective function [166]. It provides tight lower bounds but demands more

computational time. To have a relaxed model that is easier to solve, you are recommended

to choose difficult constraints (complicating constraints) to relax and add to the objective

function [166].

The effectiveness of B&B is based on the strategy used to choose the next node in the

search tree to branch [3]. In addition, it is based on the quality of the upper bounds that

are used to minimize the size of the search tree [13]. In other words, to keep the B&B tree

small, a good upper bound is required [144]. In order to get a good upper bound, you need
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to apply heuristic or metaheuristic at some nodes in the search tree [144]. Therefore, the

efficiency of B&B is based on the rapid convergence of the lower and upper bounds [124].

There are two methods to improve the B&B algorithm [70]:

• tight the bounds: enlarge lower bound or use heuristic to get good upper bound.

• improve the branching rules: use different branching rules to improve the algorithm.

Note that a feasible solution is often found early in the B & B search tree but the

confirmation of optimality requires longer CPU time to be proved [47]. In addition, B&B

can be used as heuristic to produce feasible solutions during a given time [47].

Survey of Branch and Bound

B&B algorithm is one of the most successful methods to solve MIPs. It is based on two

principles, branching and selecting the node from the search tree. There are several types of

branching such as (for more information see [3]):

• Most infeasible branching: it is not good enough because its results are similar to

random branching.

• Pseudocost branching: it is effective but not strong at the beginning.

• Strong branching: it is effective if evaluated based on the number of nodes in the

search tree, while it is inefficient if evaluated based on time [3]. In case the full set of

candidates is used, it is called full strong branching.

• Reliability branching: it is a generalization of pseudocost and strong branching, and

its performances are better than hybrid strong/pseudocost branching.

Our branching rules, which are based on tolerances, are similar to strong branching.

Strong branching proposed in CPLEX 7.5 checks the candidates (fractional variables) to

calculate the extra cost of giving an integer value to a fractional variable in order to decide

which variable to choose for branching [3]. Tolerance calculates the extra cost of removing

the infeasibility of the current solution (destroying an infeasible tour by removing one arc)

before selecting which subproblem to develop further.
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2.1.2 Cutting Planes

This technique is used when there is a large number of linear constraints of IP, or when

the linear relaxation becomes stronger by adding some valid inequalities [137]. It generates

Gomory Cuts [166]. Gomory cuts are used to tighten the relaxed problem by deleting part

of the solution space [73]. The added cuts will not affect the original problem but will affect

the relaxed problem by increasing the chance of finding a solution. The method should be

applied as follows: Add cuts then solve the relaxation problem, continue until the solution

at the current relaxation problem equals the incumbent (current upper bound), then stop

with the value of the incumbent as the optimal solution [73].

2.1.3 Branch and Cut (B&C)

It is an incorporation of the branch and bound algorithm and cutting plane method. Cutting

plane can be applied at the root node (global cuts) or at every node (local cuts) in the search

tree. This will produce a smaller sized tree (i.e. reduce the size tree) [129, 166]. B&C adds

cutting plane to a tight relaxed subproblem by deleting a set of solutions for the relaxed

subproblem. The deleted solutions are not feasible to the unrelaxed subproblem [90].

The positive point of B&C is that it reduces the size of the search tree which helps to

increase the size of solvable instances, while the negative point is that it increases the time

at each node in the search tree [90]. In branch and cut the enumeration benefits from cutting

plane, where the lower bound obtained from the enumeration tree is better than the bound

obtained from the branch and bound tree [137]. On the other hand, cutting plane benefits

from enumeration, where the separation algorithm can be more active when it is used with

branching [137].

2.1.4 Other Approaches

In the literature there are also exact methods such as:

• Cut and Solve: Cut and Solve uses a path tree instead of search tree. It solves two

easy subproblems at each node: a relaxed problem and a spare problem, and it adds a
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constraint to a relaxed problem. The positive points of this method are that the search

will not choose the wrong branch because it has only one branch, and the memory

requirements are reasonable [33].

• Column Generation: This technique adds more variables to the problem in order to

avoid increasing the number of constraints [166]. It is considered as a dual of cutting

plane [144]. For example in [29] the original linear program is divided into a linear

restricted master problem and a pricing subproblem. For more details on column

generation we refer to [44, 74, 118].

• Branch-and-Cut-and-Price: It is defined as a combination of B&B, cutting plane

method and column generation, and produces influential algorithms [51, 144].

• Branch-and-Price: It is defined as a combination of B&B and column generation. New

columns are generated at each node from the search tree [144].

• Dynamic Programming: Dynamic programming was proposed by Bellman [22]. It is a

procedure used to solve optimization problems, and is also called multistage program-

ming [47]. Dynamic programming has four elements: stages, states, decisions, and

policies [47].

2.2 Classical Heuristics

Not all problems can be solved by exact method for many reasons. For example, if a problem

has a large number of constraints, or a huge search space, then the number of feasible

solutions will be enormous, so it will be difficult to find the optimal solution [128]. As we

mentioned before VRP is an NP hard problem, for this reason it can sometimes be difficult to

find the optimal solution during an acceptable computational time even for small instances.

Consequently we have to accept the best feasible solution that is found in a reasonable

computational time, rather than concentrate on finding the optimal solution [102]. Therefore,

we need to use other methods such as heuristics or metaheuristics.
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Heuristics have been studied by many researchers [32, 116, 160] and developed between

1960 and 1990 [109]. It is defined as techniques to find approximate solution, namely a

procedure which produces a good feasible solution (not optimal) [89]. This produces an

approximate solution, but without guarantee of optimality. Heuristics such as local search

can find near optimal solutions in reasonable running times. It begins with an initial solution

trying to search in its neighborhood to find a solution that is better than the current one.

This will continue until no better solution is found, then local search will stop presenting the

current solution as locally optimal. Empirical results emphasize that local search is able to

find acceptable solutions in acceptable CPU times [1].

The effectiveness of heuristics is measured by the running time (CPU) and the quality

of the solution, which is measured by calculating the ratio between the value of the final

solution obtained by the heuristic and the optimal solution or best known feasible solution

obtained from the literature [1].

According to [35] heuristics can be compared using four criteria: accuracy, speed, sim-

plicity and flexibility. They report the best known heuristics for VRP: Clarke and Wright’s

algorithm [32] is one of the best known algorithm in the last decade because of its simplicity

and speed [35], the Sweep algorithm (less simple, more speedy) [61], and Fisher and Jaiku-

mar algorithm [50]. Greedy algorithm is popular because it is simple, easy and fast but it is

not sufficient [128].

The weakness of heuristics is that each heuristic is designed for a specific problem [128].

Some of the traveling salesman problem heuristics may be used with minor modifications for

solving VRP such as: nearest neighbor heuristic, insertion heuristic, and tour improvement

heuristic. Besides these there are many other heuristics [106].

In [102] they consider heuristics with two stages, the first is called construction stage

and builds an initial solution; the second is called local search stage and develops the initial

solution by searching the neighborhood. In this thesis, based on [115], the classical heuristics

are divided into three groups as follows: constructive heuristics; two phase methods; and

Improvement heuristics.
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2.2.1 Constructive Heuristics

These heuristics focus on constructing a feasible solution with a main interest on the cost

and not improvement [115]. There are two main techniques used to construct a feasible solu-

tion. The first technique is insertion heuristics, which constructs a solution by inserting one

customer each time. Greedy algorithms are a good example of this class, it uses construction

to get feasible solutions [128]. The second technique is savings heuristics, which uses the

idea of merging the routes where each customer is served.

As an example is Clark and Wright Savings Algorithm [32].

2.2.2 Two Phase Methods

Two models exist: first is cluster-first, route-second: cluster the vertices to get feasible

clusters then construct a feasible route for each cluster. In other words, gather the customers

into subsets, then build a route for each subset e.g Fisher and Jaikumar algorithm [50]. The

second model is route-first, cluster-second: construct one route for all vertices then separate

it into feasible routes (see [19]).

This type of heuristics provide good quality feasible solutions compared with constructive

heuristics [115].

2.2.3 Improvement Heuristics (Local Search)

The search starts from any initial feasible solution and attempts to improve it in the neigh-

borhood of the initial solution. The improvement can be exchanging an arc or a vertex in a

route or exchanging between the routes [115].

2.3 Metaheuristics

Metaheuristics are considered a powerful approach applied to difficult combinatorial opti-

mization problems and achieve great results [57]. It consists of heuristics that are based on

some metaheuristic rules.

33



Solution Methods Metaheuristic

The motivation behind metaheuristics is to explore the search space in an effective and

efficient way [25]. Such metaheuristics (or framework for building heuristics) are Multi-

start local search [125, 126], Simulated annealing [2, 89, 128, 138], Tabu search [12, 54, 88,

162], Greedy randomized adaptive search procedure [151], Neural networks [128], Variable

neighborhood search [85], Guided local search [164], Genetic algorithms [41, 160], Scatter

search [65], Ant colony optimization [46], Evolutionary algorithm [25], Path relinking [65],

etc. For more information on the best known metaheuristics and some of their applications

see these books [58, 63, 146].

Metaheuristic methods combine sophisticated rules in a neighborhood search, the struc-

ture of memory, and recombination of solutions. By this combination metaheuristics aim

to improve the quality of solutions compared with classical heuristics but with higher com-

puting time [109]. In addition, metaheuristics use different methods to escape from local

optima such as iterate local search (Multistart local search, GRASP), change the neighbor-

hood (VNS), move to non-improving neighbors (TS, SA). For an overview of metaheuristics

see [55, 140] and for developments in the field of metaheuristics applied to VRP see [23, 57].

Local search indicates that there is a relationship between the effectiveness of the search

and the search space [128]:

• If the search space is chosen to be small then the search will finish quickly and the

local optimum will be found. In this case the quality of the optimum solution is poor.

It is recommended to increase the search space in order to improve the quality of the

solution.

• If the search space is large then we would not complete the search because of time,

memory or anything else.

For such reasons the search space should not be established randomly [128]. Metaheuristics

can be compared based on the following principles [83]:

1. Simplicity: simple to implement, to explain, or to analyze.

2. Coherence: the steps of heuristics for a specific problem should logically follow the

metaheuristic’s rule.
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3. Effectiveness in finding optimal or near optimal.

4. Efficiency in finding a good (or an approximate) solution in a reasonable CPU time.

5. Robustness for different instances not only for specific instances.

6. User-friendliness: the metaheuristics are preferred to be easy to understand and easy

to implement, which requires the metaheuristics to have just a few parameters.

7. Generality: this means they have to be suitable for several types of problems.

8. Interactivity by allowing the user to improve the process.

9. Multiplicity: the ability to present some near optimal solutions.

For more details on how to compare metaheuristics we refer to [155]. There are several types

of classification such as nature-inspired (ACO) vs non-nature inspired metaheuristics (TS)

[25]; constructive versus iterative; deterministic versus stochastic; memory usage (TS, GA)

versus no-memory (SA).

Metaheuristics classified in this thesis based on the number of solutions used by a meta-

heuristic at any time as follows:

1. Local Search Based Metaheuristics: this class of metaheuristics use one solution to

get another. For example, simulated annealing (SA), tabu search (TS), determinis-

tic annealing (DA), greedy randomized adaptive search procedure (GRASP), neural

networks (NN), variable neighborhood search (VNS), guided local search (GLS), and

iterated local search (ILS).

The stopping conditions for most of them can be maximum CPU time, maximum

number of iterations, or maximum number of iterations without improvement [25].

2. Population Based (natural inspired): This uses more than one solution to find a new

solution. For example, genetic algorithm (GA), evolutionary algorithm (EA), scatter

search (SS), ant colony optimization (ACO), particle swarm optimization (PSO), and

Path relinking (PR).
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3. Hybrid Metaheuristics: The combination between metaheuristics and the techniques

of optimization (Artificial intelligence (AI) and Operation research (OR)) is known as

hybrid metaheuristic and it produces efficient results [25].

2.3.1 Local Search Based Metaheuristics

Multi-start Local Search

Multi-start procedure is designed to diversify the search and to escape local optima [125].

The method has two stages: first stage generates a solution and second stage improves it

[126]. The output of Multi-start algorithm is the best local optima found [126].

The classification of Multi-start methods can be based on one of these factors: memory

(use memory or memoryless), randomization (systematic or randomized), degree of rebuild

(built from scratch or fix some elements in the previous generated solutions) [126].

The main steps of Multi-start algorithm is as follows [125]:

• first iteration i = 1;

• while stopping condition is not satisfied do

– construct solution si;

– improve the solution si to get s′i;

– update the best solution found so far;

– i = i + 1;

Simulated Annealing (SA)

SA is well studied in literature [138]. It provides a method to avoid the local optimum in

order to find the global optimum by accepting moves that are not necessarily better than

the current value of the objective function [138]. SA needs four main components: brief

representation to the problem, a neighborhood function, a transition method, and a cooling

schedule (static and dynamic schedules) [2].
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Let z be the objective function of the current solution, zi is the objective function of the

current candidate solution, T is a parameter used to determine acceptance of the candidate

solution, in case its value is not better than the value of the current solution [89]. SA starts

randomly from an initial solution in the feasible region, then it uses move selection rules to

move to the next solution. The move selection rule is:

• accept movement to the next solution if its value is better than the current one;

• otherwise, if no better solution is found in the neighborhood of the current solution:

– move to the immediate neighbor only if a random number is less than the proba-

bility of acceptance, since

Prob{acceptance} = ex where x =
zi − z

T
(2.1)

– otherwise keep the current solution (do not move).

During the search, the value of T decreases and each value of T can be used with a determined

number of iterations. When the number of iterations is assigned with the smallest value of

T (or if the move selection rule can’t accept any immediate neighbor) then stop to get the

best solution found so far, at any iteration, as the final solution [89]. SA is different from

local search in three aspects [128]:

1. the way that SA stops: it stops when the stopping conditions are satisfied.

2. the way that SA moves: it not only moves to better solutions but also to accepted

solutions based on the parameter T .

3. the value of T is updated frequently during the search: this affects the output of SA.

SA uses the probabilistic rule which is: if the neighborhood found solution is better than the

current one, accept it. Otherwise, there are two options, first option is accept this solution

anyway, second option is search again in the same neighborhood for another solution [128].

In the case that deterministic principles are applied to SA, we get Deterministic Annealing

(DA) [56].
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Stopping conditions can be the maximum number of iterations in general, or the maxi-

mum number of iterations if there is no improvement in the current value of the objective

function [55]. The last point about SA is that rerunning the same instance under the same

conditions produces different solutions because SA depends on probabilistic rules [128].

SA has applied to CVRP by Alfa. et.al in 1991 [5]. The performance of SA was poor. The

reason being that a route first-cluster second algorithm was used to find an initial solution.

Another example is Osman’s simulated annealing algorithm in 1993 [139]. This performed

well but was not considered a strong algorithm. Moreover, SA is a popular approach because

it is simple and easy to apply [138], for more information on SA see [2, 105].

Tabu Search (TS)

TS is considered an extension of a classical local search by adding short term memory [59].

The first proposition for TS method was in 1986 by Glover, see [62], and it was one of the

most popular and successful metaheuristics for VRP [36]. The main idea of TS is to start

from an initial solution and to accept movement to non-improving moves if local search (LS)

reaches a local optima [53].

The basic components of any TS is the search space, the neighborhood structure, the

short-term tabu lists, and aspiration criteria. Aspiration criteria states that tabus can be

ignored if there is no chance of cycling. In other words, it accepts movement to tabu moves

if it produces solutions that are better than the current solution [59]. TS uses a local search

procedure to find a local optimum and then moves to any point in the neighborhood. If

a better solution is found then apply the local search procedure again to find a new local

optimum. Otherwise apply another move [89].

In order to avoid repetition of the same local optimum, tabu lists will record each move

in tabu moves, so that a tabu list is updated during the running of the algorithm [64]. For

the best use of memory in a tabu search, the tabu list should be used efficiently.

There are three principles to manage the tabu list [88]:

• tabu list size: A short list will be useless because cycling could have occurred, whilst on

other hand, a long tabu list will expand the search and increase the number of visited
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solutions. Unfortunately, it is not easy to determine the size of a tabu list, and so the

most useful way is to fluctuate the size of the tabu list [88].

• intensification: It is defined as searching in the promising neighborhood, implying the

part of the neighborhood that contains very good solutions [89]. To intensify the search,

the size of the tabu list should be decreased for some iterations [88].

• diversification: Indicates searching in a new neighborhood (unexplored areas) [89]. To

diversify the search, randomly execute restart several times [88].

Different stopping criteria can be used such as a maximum number of iterations in general,

a maximum number of iterations if there is no improvement in the value of the objective

function, or maximum CPU time [89]. The simple pattern for TS is given below [59]:

Initialization:

build an initial solution S0;

set S = S0, f
∗ = f(S0), S∗ = S0, T = ∅;

Search: while stopping criteria is not satisfied do

select S from the acceptable subset (non tabu) to the neighborhood of S;

if f(S) < f∗, then :

• set f∗ = f(S), S∗ = S,

• update T by adding the current move (delete the oldest one if it is necessary);

TS keeps the best solution found so far and tries to improve it by using updated history of

the search as a parameter to control the search. The method is as follows: accept the best

solution in the neighbor regardless if its value is better than the current solution or not, but

it should not be in the tabu list [128]

An example of TS algorithm, is Osman’s tabu search algorithm [139]. Two versions of

the algorithm are used, the first version is called best-admissible. It explores the whole
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neighborhood and chooses the best acceptable move. The second version is called first-best-

admissible, which selects the first acceptable move. Computational results shows good results

for both versions [55]. For information on the application of TS on VRPs see [12, 162].

Greedy Randomized Adaptive Search Procedure (GRASP)

GRASP is a multistart procedure which uses a randomized greedy construction as heuristics

to find a solution [150]. It is a combination of constructive heuristics and local search [25].

In other words, GRASP is considered as a repetitive approach and each iteration consists of

two phases: construction phase (iterative greedy and adaptive process), and improvement

phase (local search procedure) [140].

The first phase constructs an initial solution while the second phase improves the initial

solution. Both phases are repeated until the stopping criteria is satisfied. A stopping criteria

can be the maximum number of iterations [140]. Note that a larger number of iterations

causes longer CPU time but finds better solutions [151].

The main steps in GRASP algorithm can be summarized as follows [151]:

• Initialize: max–iterations, seed;

• for k = 1 to max–iterations do

– build a solution ;

– if (solution infeasible) then (repair to get feasible solution);

– local search (to find the local optimum);

– update solution (if necessary);

• end;

• return best–solution.

At each iteration of the construction phase, the selection of the next element to be in-

cluded in the solution is based on the evaluation of all other candidate elements. The evalua-

tion produces a list of restricted candidates (RCL) containing the best elements. Randomly,

40



Solution Methods Metaheuristic

one element is selected from RCL and added to the incomplete solution. Reevaluate the

remaining elements then update RCL; continue until RCL = ∅ [151]. In the case that we

get an infeasible solution, apply the repair procedure to reach feasibility [151].

Several features can affect the speed and the effectiveness of the local search procedure,

for example the neighborhood structure, the neighborhood search technique, and the starting

solution [151]. According to the last feature, it is useful for local search to start with a high

quality solution that is obtained by the constructive phase [151]. There are two types of the

neighborhood search strategy to apply [151]:

• a best improving strategy: the search continues until all the neighbors are investigated

and it returns the best neighbor. It can be time consuming.

• a first improving strategy: the search continues in the neighborhood until it finds the

first neighbor which has a value better than the current solution. It returns the first

neighbor found.

In general, best improving can be more effective than first improving but with more time

consumption. In some cases the opposite is correct (when the initial solution is not chosen

at random) based on an empirical study see [82]. Generally GRASP is simple and a very

fast metaheuristic [25].

Neural Networks (NN)

NN is a net that contains nodes connected with each other by weighted connections. The

output of some nodes is used as input for other nodes in the net based on the type of con-

nection [143]. NN aims to imitate the real brain in order to implement complex calculations

quickly [128]. Basic elements in NN are neurons vi ∈ [0, 1] where i = 1, 2, .., N is an index

to each neuron. wij is the weight from neuron vi to neuron vj which could be positive or

negative in value, θ is the threshold.

vi = g(
N∑

j=1

wijvi − θi) (2.2)
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where the function g(x) = 1
2(1 + tanh(x/c)) and c > 0 is a temperature [143]. There are

two types of structures: feedforward: sends the sign from input to output neurons; feedback:

sends the sign in both directions [143]. Moreover, there are two groups of NN: pure neural

approach and hybrid approach [143].

NN has many advantages, for example it can find a local optimal in a short space of

time by using training methods and sometimes it can escape from a local optimal –if there

are several local optimal solutions – to global optimal by using some evolutionary methods

[128]. On the other hand, one disadvantage is that NN loses its flexibility when the network

becomes large [128].

Variable Neighborhood Search (VNS)

This was proposed by Mladenović in 1997 [131]. It uses different neighborhoods to move

from local optima towards global optima [81]. Suppose we have nested neighborhoods. We

start by looking for a local optima then search in the first neighborhood to generate solution

randomly. If this solution is better than the local optima, then we move to it by considering

it as a new local optima. Otherwise, we move to the second neighborhood and so on. We

return to the first neighborhood when we find a solution better than the local optima or

when we have searched in all the neighborhoods.

The main steps in basic VNS is given below [77]:

• Initialization: select the structure of the neighborhood Nk where k = {1, .., kmax}, find

the initial solution x, choose termination condition;

• While termination condition is not satisfied do:

for k = 1 to kmax do

– Shaking: find random solution x′ from the kth neighborhood of x;

– Local search: find the local optimum solution x′′ with x′ as initial solution;

– move to x′′ if it is better than x and continue the search with k = 1, otherwise

k = k + 1.
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The termination condition can be the CPU time, the maximum number of iterations in

general, or the maximum number of iterations without any improvement to the current

solution [77]. In the steps of basic VNS, the solution x′ is chosen randomly to avoid local

optimum [77]. There are three different methods to search in the neighborhood as follows

[83]:

• (i) deterministic: when the change of the neighborhood is deterministic (means find

the best neighbor), we get variable neighborhood descent (VND).

• (ii) stochastic: when the random point is chosen from the neighborhood, we get reduced

VNS (RVNS), which is useful for very large instances [77].

• (iii) combination of deterministic and stochastic: when a combination is used we get

basic VNS (BVNS).

Some extensions to VNS are skewed VNS (SVNS) and variable neighborhood decompo-

sition search (VNDS) [77, 83]. VNS is based on simple principles and is considered effective,

very efficient, robust, and very user friendly [77]. At the end of this chapter (Section 2.4),

there is more information about VNS it is used in Chapter 5 to find good quality solutions

to DVRP.

Guided Local Search (GLS)

Local search (LS) by itself is a very quick method to find good feasible solutions but it can

get stuck at local optima. For this reason, GLS is proposed to help LS escape from local

optima and reach the global optimum solution by using penalties [164].

The main steps of GLS algorithm as follows [164]:

• initialization:

– apply construction method to find an initial solution;

– set all penalties to 0;

– define the augmented objective function;
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• repeat until stopping conditions are satisfied:

– apply improvement methods: such as simple local search, variable neighborhood

search;

– if (local optima is found) then (modify augmented objective function by increasing

the penalties of one or more of the elements that appear in the local optima).

• return best solution found.

Stopping conditions can be CPU time or the number of moves. When the local optima

is found, penalties will be increased for chosen features from the local optima solution.

Moreover, this not only causes the local optima to be escaped but also diversification of the

search. So, the features with high costs are penalized more than the features with low costs

[164]. GLS is a simple, efficient and effective metaheuristic. In addition, it searches in the

promising areas [164].

2.3.2 Population Based Metaheuristics

Genetic Algorithms (GAs)

This expression was first used by Holland in 1975 [91]. In GAs the phenotype corresponds

to the genotype. In other words, a vector x consists of a set of variables corresponding to a

string where its elements are genes [91]. Holland used the idea of crossover and mutation

to recombine strings. Crossover is defined as substitution of some genes from one parent

with parallel genes in the other parent [147]. Mutation means changing specific genes in the

genotype randomly [30]. There are two strategies, the first one uses crossover initially and

then mutation, the second strategy uses crossover or mutation (one of them but not both)

[147].

GAs generate randomly feasible solutions to be the population; choose some of the feasible

solutions from the population to be parents; randomly join best parents to produce new

feasible solutions (children) [89]. In other words, choose the best elements and ignore the

worst [55]. If an infeasible solution (miscarriage) is obtained, then repeat the process until a
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feasible solution is found. We can choose the number of iterations or CPU time as stopping

conditions [89].

The main steps of Genetic algorithm is given as follows [41]:

1. initialize a population;

2. apply evaluation function for all individuals;

3. choose good individuals based on fitness to create a new generation by applying mu-

tation, or crossover;

4. apply again the evaluation function in order to keep the good elements and delete the

bad ones;

5. check if stopping conditions are satisfied, stop. Otherwise go to step 3.

The main operators for GAs are given below [4]:

• selection: selecting an individual from the population to be a parent based on its fitness.

There are many methods to do this, such as proportional selection.

• crossover: it joins two individuals (parents) to produce two new individuals (offspring),

with particular techniques to do this. One of them is called single point crossover, it

divides the chromosome of each parent into two parts (head and tail) by using a random

cut. The tail of the first parent connects with the head of the second parent and the

tail of the second parent connects with the head of the first parent to produce two new

offsprings.

• mutation: it happens at random with low frequency and provides an unguided change

to the area of the search by randomly changing one value of gene (bit) in a specific

position.

• replacement: this operator decides which newly generated individual will be chosen to

be a member in the new generation. There are many strategies, for example genera-

tional replacement, which means that all new individuals become the new generation.
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In order to implement GAs, the researcher has to choose the size of the population and

the technique to choose the individuals [147]. The size of the population is chosen based

on the required level of efficiency and effectiveness [147]. Stopping conditions could be

number of fitness evaluations, time, etc. For more information on the application of GAs see

[30, 41, 67, 92, 127, 136, 148, 153].

GAs are considered as an important type of Evolutionary Algorithm (EA) and nowadays

researchers use the expression EA to cover the latest 15 years of development [147]. Evo-

lutionary techniques adapted to the change in population and do not need to restart from

scratch [128]. The selection of individuals can be deterministic or stochastic. The determin-

istic is faster than the stochastic which is appropriate when you have a short period of time

for implementation [128]. Individuals with high fitness have a big chance of being chosen for

the next generation or as parents [25].

Scatter Search (SS)

SS is defined as combining solutions to construct new solutions [65]. It needs a set of points

called reference set (Ref Set) [152], where Ref Set contains good solutions [65]. SS combines

the reference points to construct new points [65].

The main steps of SS procedure is as follows [65]:

• construct p solutions and build Ref Set which contains b different solutions;

• reorder the solution in Ref Set based on the value of the objective function from the

best to the worst value;

• set Newsolutions=true;

• while (Newsolutions) do

– generate newsubsets from Ref Set, each one of them contains m solutions;

– set Newsolutions =false;

– while (newsubset 6= ∅) do

∗ select the next subset S;
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∗ apply solution combination method on S to get one or more new solutions x;

∗ if the value of the new solution is better than the worst value in Ref Set

then add x to Ref Set and remove the worst value, reorder Ref Set and set

Newsolutions =true;

∗ delete S from Newsubsets;

– end while

• end while

SS has 5 methods: a diversification generation method, an improvement method, a reference

set update method, a subset generation method, and a solution combination method [65]. SS

uses methods effectively to search in intensification and diversification neighborhoods [152],

and it uses deterministic methods to generate new solutions [152].

Ant Colony Optimization (ACO)

ACO is a part of swarm intelligence and imitates the behavior of ants during the process of

moving food from the source to the colony (nest) by using shortest routes [21, 45]. It uses

dummy ants instead of real ants to find solutions to combinatorial optimization problems.

In the beginning, ants discover the area around the nest in a random way until they find

the food. They evaluate the quantity and quality of the food before they start move it to the

nest [25]. Real ants use pheromone for communication between each other and to mark their

own route. Pheromone is a chemical substance, so each time the real ant uses a route, the

pheromone on this route will be increased. Therefore, the probability of choosing this route

by other ants will be increased [21]. The quantity of pheromone is based on the quantity

and quality of the food, so it will help other ants to find the shortest route to the source of

the food [25].

ACO heuristic in [21] contains route construction, trail updating, and route improvement

strategies. The main steps in ACO algorithm is given as follows [46]:

• initialization
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• while (Stopping criteria is not satisfied) do

– construct ant solution

– apply local search (optional step)

– update phermones

In ACO the pheromone corresponds to a value connected with an arc (or edge) and this

value increases when the arc appears in a good solution [36]. At the end of moving food, the

shortest route will stay and the longest routes will be forgotten [21].

Path Relinking (PR)

PR is considered as an extension to SS and is designed to incorporate the intensification and

the diversification search [65, 152]. PR generates new paths between the selected solution

instead of combining them to generate new solutions [152]. It is used with GRASP as an

intensification strategy by applying it to each local solution to improve it [151].

2.3.3 Hybrid Metaheuristics

It is defined as a combination of one metaheuristic with other metaheuristics, or with parts

of other metaheuristics, or with operational research techniques [25]. The hybrid optimizers

are more effective in reducing the CPU time and improving the quality of the solution [144].

Hybrid metaheuristics take benefits from each component (pure metaheuristic) [145].

There are a number of classifications for hybrid metaheuristics in literature. Raidl et al

in [145] classify hybrid metaheuristics based on the following principles:

1. type of algorithm: such as mixture of parts of some metaheuristic strategies, or combi-

nation of metaheuristics with general techniques from operational research and artificial

intelligence.

2. level of hybridization: high-level combinations and low-level combinations.

3. order of the implementation: batch execution where the algorithm is executed in order,

intertwined way, parallel way.
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4. the control strategy: integrative (one of them is part of the other algorithm), or col-

laborative (each one of them is not part of the other but they swap information).

In [25] hybrid metaheuristics are classified as: collaborative combinations (exchange the

information during sequential or parallel run) and integrative combinations. An example of

the hybridization of metaheuristic and B&B can be in two different ways:

• B&B within metaheuristics such as ACO or GRASP to improve the efficiency of meta-

heuristic.

• or metaheuristic within B&B to reduce the CPU time and minimize the search tree in

B&B [24].

We can use exact methods with heuristics or metaheuristics, for example, in [167] they

use reactive tabu search with branch and bound and claim the cooperation produces very

effective or reasonable computational CPU time.

The purpose of hybrid metaheuristics is to take advantage of both individual algorithms

and synergy to produce more effective hybrid system [145].

2.4 Variable Neighborhood Search Basic Schemes

Assume that x denotes the solution of min{f(x)|x ∈ X, X ⊆ S} (see Chapter 1). Denote

with Nk(x), k = 1, .., kmax the set of solutions that belong to neighborhood Nk(x), i.e., the

kth neighborhood of x is denoted by Nk(x) and it contains all vectors that could be obtained

from x when a modification k is applied to x [85].

We call x a local minimum with respect to Nk, if there is no solution better than x that

belongs to Nk(x), i.e., f(x) < f(x′), ∀x′ ∈ Nk(x). The optimal solution (or global minimum)

xopt is the best feasible solution, i.e., f(xopt) < f(x),∀x ∈ X where X ⊆ S.

The core of VNS is simple. NeighborhoodChange algorithm is given in Algorithm 1. The

quality of two solutions are compared. One is called incumbent (x) and another x′ belongs

to the kth neighborhood of x. If there is improvement f(x′) < f(x) then the new value

49



Solution Methods VNS:Basic Schemes

(as a new incumbent) is updated and set k = 1 to start from the first neighborhood again.

Otherwise, the next neighborhood is chosen to continue the search (k = k + 1).

Function NeighborhoodChange(x, x′, k);

if f(x′) < f(x) then1

x ← x′; k ← 1//Make a move;2

else

k ← k + 1// Next neighborhood;3

end

Algorithm 1: Algorithm of Neighborhood Change

VNS uses different neighborhood structures in three ways: deterministic, stochastic, and

combination of both, thus producing different types of VNS. Basic information and algorithm

for each one is described in this section.

2.4.1 Variable Neighborhood Descent (VND)

Local Search

There are two local search strategies considered in literature: best improvement and first

improvement.

• Best Improvement: starts from an initial solution; explores the whole neighborhood

then moves to the best value found which is considered a local minimum. This method

is time consuming because it has to check the whole neighborhood. Best improvement

algorithm is given in Algorithm 2.

Function BestImprovement(x);

repeat

x′ ← x;1

x ← arg miny∈N(x)f(y);2

until (f(x) ≥ f(x′)) ;
Algorithm 2: Algorithm of Best Improvement
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• First Improvement: starts from an initial solution but it moves as soon as a better

solution is found. Then it starts the investigation again. If no improved solution is

found in the current neighborhood, it will stop. First improvement algorithm is given

in Algorithm 3.

Function FirstImprovement(x);

repeat

x′ ← x; i ← 0;1

repeat

i ← i + 1;2

x ← arg min{f(x), f(xi)}, xi ∈ N(x);3

until (f(x) < f(xi) or i = |N(x)|) ;
until (f(x) ≥ f(x′)) ;

Algorithm 3: Algorithm of First Improvement

VND

VND heuristics change `max neighborhoods N`, ` = 1, .., `max in a deterministic way. It

explores the neighborhood N`(x), where x is an incumbent solution and then moves to

x′ ∈ N`(x) or not. The steps of the basic (sequential) best improvement VND are given in

Algorithm 4. There are three types of VND: sequential (or basic), nested and mixed nested

[78, 84, 135]. Basic information is presented below:

• Sequential VND: it works as follows:

– define an order of `max neighborhood structures to be used in the search.

– apply local search (LS) with respect to (w.r.t) the first neighborhood structure,

then w.r.t the second neighborhood in the list and so on.

– when better solution is found, start again from the first neighborhood structure

in the list.

– the search will stop if there is no better solution in N`max neighborhood.
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Function VND(x, `max);

repeat

` ← 1;1

x′ ← x;2

repeat

x′ ← arg miny∈N`(x)f(y) // Find the best neighbor in N`(x);3

NeighborhoodChange(x, x′, `) //Change neighborhood ;4

until ` = `max ;
until f(x) ≥ f(x′) ;

Algorithm 4: Basic VND Algorithm

The obtained solution is considered a local minimum with respect to all `max neigh-

borhood structures. Its cardinality is equal to the sum of cardinalities |N`(x)|. For

example if `max = 2 and every neighborhood has n points, then we have to visit 2n

points (see [93]).

• Nested VND: Suppose we have 2 neighborhood structures, we apply local search in

any point in the second neighborhood with respect to the first neighborhood. So, by

using nested VND we will visit |N1(x)| × |N2(x)| points. As we can see nested VND

neighborhoods are larger than sequential VND and requires more CPU time (see [93]).

• Mixed VND: It starts with nested VND then switches to sequential VND. The reason

for that is to reduce the large number of visited points generated by nested VND (see

[93]).

2.4.2 Reduced Variable Neighborhood Search (RVNS)

It uses a stochastic way to search the neighborhood Nk(x) and is useful for very large

instances. The CPU time (tmax), the maximum number of iterations, or the maximum

number of iterations between two improvements are used as stopping conditions. RVNS

consists of a perturbation or a shaking step followed by a neighborhood change step. It has

two parameters: tmax, kmax. Based on much experimental analysis, the best value for kmax
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Function RVNS(x, kmax, tmax);

repeat

k ← 1;1

repeat

x′ ← Shake(x, k) // Shaking;2

NeighborhoodChange(x, x′, k) //Change neighborhood ;3

until k = kmax ;

t ← CpuTime();4

until t > tmax ;
Algorithm 5: RVNS Algorithm

is 2 or 3 [149]. RVNS algorithm is given in Algorithm 5. For more information on RVNS

and its applications see [66, 149].

2.4.3 Basic Variable Neighborhood Search (BVNS)

Function BVNS(x, kmax, tmax);

repeat

k ← 1;1

repeat

x′ ← Shake(x, k) // Shaking;2

x′′ ← FirstImprovement(x′) //Local Search ;3

NeighborhoodChange(x, x′′, k) //Change neighborhood ;4

until k = kmax ;

t ← CpuTime();5

until t > tmax ;
Algorithm 6: BVNS Algorithm

BVNS combines deterministic and stochastic change in neighborhoods. The stopping

conditions could again be the maximum CPU time used in the search (tmax). The main

steps of BVNS consists of shaking, local search (First improvement (Algorithm 3) or Best

improvement (Algorithm 2)), and neighborhood change. BVNS algorithm is summarized in
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Algorithm 6.

Function GVNS(x, `max, kmax, tmax);

repeat

k ← 1;1

repeat

x′ ← Shake(x, k) ;2

x′′ ← VND(x′, `max) ;3

NeighborhoodChange(x, x′′, k) ;4

until k = kmax ;

t ← CpuTime();5

until t > tmax ;
Algorithm 7: GVNS Algorithm

2.4.4 General Variable Neighborhood Search GVNS

It is a combination of BVNS and VND. In other words, it replaces local search in Algorithm

6 by the VND algorithm given in Algorithm 4. The steps of GVNS are given in Algorithm

7. For more information on GVNS and its successful applications see [87, 93, 135].

2.4.5 Skewed Variable Neighborhood Search (SVNS)

It uses diversification search to investigate the neighborhoods that are not close to the in-

cumbent. SVNS measures the distance between the incumbent x and the obtained local

optimum x′′ by using a function ρ(x, x′′) . Then it accepts whether to move or not according

to the value of the parameter α and the function ρ(x, x′′)(see Algorithm 9). The value of

parameter α is chosen by the user based on testing results. The steps of SVNS are given in

Algorithm 8 and the steps of Neighborhood Change for SVNS are given in Algorithm 9. For

more information on some applications of SVNS see [27, 156].
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Function SVNS(x, kmax, tmax, α);

repeat

k ← 1, xbest ← x;1

repeat

x′ ← Shake(x, k) ;2

x′′ ← FirstImprovement(x′) ;3

NeighborhoodChangeS(x, x′′, k, α) ;4

until k = kmax ;

if(f(x) < f(xbest)) then xbest ← x;5

x ← xbest;6

t ← CpuTime();7

until t > tmax ;
Algorithm 8: SVNS Algorithm

Function NeighborhoodChangeS(x, x′′, k, α);

if f(x′′)− αρ(x, x′′) < f(x) then1

x ← x′′; k ← 1//Make a move;2

else

k ← k + 1// Next neighborhood;3

end

Algorithm 9: Algorithm of Neighborhood Change for SVNS
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2.4.6 Variable Neighborhood Decomposition Search (VNDS)

VNDS is considered as an extension to BVNS by splitting VNS into two levels by the de-

composition of the problem [86]. It is used to solve large problem instances. The steps of the

algorithm are presented in Algorithm 10. There td is the running time of decomposed prob-

lems solved by VNS at the second level. For more information on VNDS and its applications

see [37, 76, 117, 119].

Function VNDS(x, kmax, tmax, td);

repeat

k ← 2, xbest ← x;1

repeat

x′ ← Shake(x, k); y ← x′\x ;2

y′ ← VNS(y, k, td); x′′ = (x′\y) ∪ y′ ;3

x′′′ ← FirstImprovement(x′′) ;4

NeighborhoodChange(x, x′′′, k) ;5

until k = kmax ;
until t > tmax ;

Algorithm 10: VNDS Algorithm

For more information on VNS see [94, 130, 132, 133, 134].
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Chapter 3

General Formulation for ADVRP

As we mentioned before the Distance–Constrained Vehicle Routing Problem (DVRP) is

defined as follows: find the optimal set of tours to connect the depot to n customers with m

vehicles, such that:

• every customer is served exactly once.

• every vehicle starts and ends its tour at the depot.

• the total distance travelled by each vehicle in the solution is less than or equal to the

maximum distance allowed (Dmax).

In this chapter we present a general flow-based formulation (see [9]) that proved to be an

effective and efficient formulae with confirmation by computational results. This formulation

is compared with the adapted one. It appears that our formulation solves ADVRP faster

and is able to improve the quality of the objective function. In other words, it is able to

find the optimal solution whereas the adapted formulation could only find the best feasi-

ble solution without guarantee of optimality because of time. Comparisons between these

two formulations are performed on random test instances with dimensions from 40 to 200

customers.

In addition, we present Kara formulation which is similar to our formulation, but the

difference is that Kara formulation requires the assumption of the triangle inequality.
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The structure of this chapter is as follows: the introduction in Section 3.1 contains

the common parts in formulations. Section 3.2 presents the adapted bus school routing

formulation. Section 3.3 presents Kara formulation which deals with matrices that satisfy

the triangle inequality and section 3.4 presents our general formulation with an illustrative

example. The computational results are in section 3.5. Finally, section 3.6 is a conclusion.

3.1 Introduction

Let N = {1, 2..., n − 1} denotes the set of customers and V = N ∪ {0} denotes the set of

vertices where (0) is an index for the depot. The set of arcs is denoted as A = {(i, j) ∈
V ×V, i 6= j}. The travelled distance from vertex i to vertex j is denoted by cij . The number

of vehicles is denoted by m. The decision binary variables xij are defined as follows:

xij =





1 if the arc (i, j) belongs to an optimal tour;

0 otherwise.
(3.1)

The continuous variables (zij) represent the total length travelled from the depot to

vertex j, where i is the predecessor of vertex j. The common part of the general formulation

and the adapted formulation of ADVRP is given below:

f(S) = min
∑

(i,j)∈A

cijxij (3.2)

where xij satisfies these conditions

∑

i∈V

xij = 1 ∀ j ∈ N (3.3)

∑

j∈V

xij = 1 ∀ i ∈ N (3.4)

∑

i∈N

xi0 = m (3.5)

∑

j∈N

x0j = m (3.6)
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∑

(i,j)∈A

zij −
∑

(i,j)∈A

zji −
∑

j∈V

cijxij = 0 ∀ i ∈ N (3.7)

xij ∈ {0, 1} ∀ (i, j) ∈ A. (3.8)

Obviously, there are 2-index variables and a polynomial number of constraints. This

model is known as flow (arc) based model since constraint (3.7) is a typical flow constraint.

It says that the distance from vertex i to any other vertex j on the tour should be equal

to the difference between the distance from the depot to vertex i and the distance from the

depot to vertex j. The constraints (3.3, 3.4) ensure that the indegrees and outdegrees of

each vertex equal to 1. Constraints (3.5, 3.6) express that indegrees and outdegrees of the

depot equal to the number of vehicles (m).

3.2 Adapted Formulation

The adapted formulation was originally the Bus school routing problem (BSRP) described

as the collection of students from (n) bus stops to be brought to school (or collection from

the school to be brought to bus stops), and the number of buses is given (m). For more

information on BSRP see [20].

The objective function is to minimize the total distance (cost or time), provided:

• the travelled distance for each bus has to be less than or equal to the given value

(Dmax).

• each bus stop can only be used by one bus.

• each bus stop can only be in one tour.

• every tour must have one stop at least.

• the number of students in each tour must not exceed the capacity of the bus.

Kara [101] noticed that the special case of BSRP is DVRP. In fact, if we ignore the ca-

pacity constraints and consider the number of buses constant, then the following constraints

need to be added to get an Adapted BSRP formulation:
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zij ≤ Dmaxxij ∀ (i, j) ∈ A (3.9)

zij ≥ cijxij i 6= 0, ∀(i, j) ∈ A (3.10)

z0i = c0ix0i ∀ i ∈ N (3.11)

Constraints (3.3) - (3.10) for morning routes (collection), and constraints (3.3) - (3.11) for

afternoon routes (delivery) are used in [42]. We do not need both if we consider the origin

of the bus and its destination (school) as a single vertex (depot). Therefore, we will use

constraints(3.3) - (3.11) to find the solution to ADVRP. We are allowed to consider the

depot and the school as the same vertex since the distance matrix is asymmetric. This

formulation is compared with our general formulation.

3.3 Kara Formulation

Now we discuss another formulation which is similar to ours, that is Kara’s flow based

formulation [98]. Kara’s formulation is given as follows:

f(S) = min
∑

(i,j)∈A

dijxij (3.12)

where xij satisfies these conditions

∑

i∈V

xij = 1 ∀ j ∈ N (3.13)

∑

j∈V

xij = 1 ∀ i ∈ N (3.14)

∑

i∈N

xi0 = m (3.15)

∑

i∈N

x0i = m (3.16)

∑

(i,j)∈A

zij −
∑

(i,j)∈A

zji −
∑

j∈V

dijxij = 0 ∀ i ∈ N (3.17)

zij ≤ (Dmax − dj0)xij j 6= 0,∀(i, j) ∈ A (3.18)
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zi0 ≤ Dmaxxi0 j ∈ N (3.19)

zij ≥ (dij + d0i)xij i 6= 0, ∀(i, j) ∈ A (3.20)

z0i = d0ix0i ∀ i ∈ N (3.21)

xij ∈ {0, 1} ∀ (i, j) ∈ A. (3.22)

The dij in this formulation represents the shortest distance between vertex i and vertex j.

This means that the distance matrix in Kara’s formulation is required to satisfy a triangle

inequality, while our general formulation does not need this requirement. Therefore, these

two formulations differ only on the assumption of the triangle inequality.

In [98], Kara compares his formulation with Waters formulation (see [165]), where Kara

formulation outperformed Waters formulation.

3.4 General Formulation for ADVRP

In this formulation, we use the concept of shortest distance to and from the depot. The

same objective function and the same constraints (3.3) - (3.8), (3.11) are used. In addition,

we add the following constraints:

zij ≤ (Dmax − dj0)xij j 6= 0,∀(i, j) ∈ A (3.23)

zij ≥ (cij + d0i)xij i 6= 0, ∀(i, j) ∈ A (3.24)

zi0 ≤ (Dmax)xi0 ∀ i ∈ N (3.25)

Here d0i represents the shortest distance from the depot to vertex i and dj0 represents

the shortest distance from vertex j to the depot. cij represents the travelled distance from

vertex i to vertex j. Values of d0i and dj0 have been found and added as the last two rows

of the distance matrices.
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Table 3.1: Original distance matrix for ADVRP with n=8 and m=2

0 1 2 3 4 5 6 7

0 ∞ 2 11 10 8 7 6 5

1 6 ∞ 1 8 8 4 6 7

2 5 12 ∞ 11 8 12 3 11

3 11 9 10 ∞ 1 9 8 10

4 11 11 9 4 ∞ 2 10 9

5 12 8 5 2 11 ∞ 11 9

6 10 11 12 10 9 12 ∞ 3

7 7 10 10 10 6 3 1 ∞

3.4.1 Illustrative Example

The distance matrix of this example has been taken from [13], and the example is restated by

Goldengorin in a form suitable for ADVRP by adding a number of vehicles and a maximum

distance allowed [71].

There are 8 customers. The maximum distance allowed is Dmax = 23. The location of

the first customer is considered a depot. The distances between the customers (cij) are shown

in Table 3.1 as an asymmetric matrix. In this matrix the first row represents the distances

from the depot to all other customers. The first column represents the distances from each

customer to the depot, and all other entries represent distances between the customers. The

optimal solution to this problem is:

Tour 1: depot, 5, 3, 4

Tour 2: depot, 1, 2, 6, 7

The total distances for the first tour is 21 and for the second tour is 16. Therefore, the value

of the optimal solution is 21+16= 37 (see Figure 3.1).

These two constraints from the adapted BSRP formulation are clearly satisfied. In fact,

z(2, 6) ≥ c(2, 6)× x(2, 6) =⇒ 6 > 3
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Figure 3.1: Optimal solution (n=8, m=2, Dmax =23)

z(3, 4) ≥ c(3, 4)× x(3, 4) =⇒ 10 > 1

With our formulation the values of d(0,2) and d(0,3) are 3 and 8 respectively. Therefore,

we have:

z(2, 6) ≥ (d(0, 2) + c(2, 6))x(2, 6) =⇒ 6 ≥ (3 + 3)× 1

z(3, 4) ≥ (d(0, 3) + c(3, 4))x(3, 4) =⇒ 10 ≥ (8 + 1)× 1

It is clear that our formulation is tighter than the adapted BSRP.

3.5 Computational Results

Computers. All experiments were implemented under windows XP and on intel (R)

Core(TM)2 CPU 6600@2.40GHz, with 3.24 GB of RAM. The code is written in C++ lan-

guage, and the solver is CPLEX 11.

Test Instances. A random number generator has been used to generate a full asymmetric

distance matrix as in [7]. The size of the distance matrix (n) is chosen to be {40, 60, 80,

100} for small test instances or{120, 140, 160, 180, 200} for large test instances. For each n,

two different number of vehicles were defined as follows:
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m(1) = n/20 m(2) = n/10.

Four different distance matrices were generated for each combination of n and m. The

maximum distance allowed of the first run is ∞, then it reduces to 90% of the longest tour

in the previous run. Each instance has been run at least twice and at most four times. The

total number of small and large test instances are 86 and 107 respectively.

We calculate the shortest distance from the depot to all customers and the shortest

distance from all customers to the depot. We add these two rows to each corresponding

distance matrix.

Comparison. We compare our general formulation with the adapted BSRP formulation.

Both of them stop when optimal solution is found or when the time limit is reached.

The time limit is chosen to be 3600 seconds. The summary results are presented in Tables

3.2 and 3.3. Table 3.2 contains the summary results on small test instances (from n = 40 up

to 100). Table 3.3 contains the summary results on large test instances (from n=120 up to

200). Both tables have the same form:

Table 3.2: Summary results on small test instances

] Opt ] Feas ] Inf Total CPU time (secs) Average CPU time (secs)

General Formulation 86 0 0 8082 93.98

Adapted BSRP 85 0 1 15114.92 177.82

• ]Opt- how many times each program finds the optimal solution.

• ]Feas - how many times a feasible solution (not optimal solution) has been found.

• ]Inf - how many times no feasible solution is found because the time limit is reached.

• ]Total CPU time (secs) - the total time spent in seconds for all experiments where the

optimal solutions are found.
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• Average CPU time (secs) - the average time per successful experiment.

Average CPU time =
Total CPU time

]Opt
(3.26)

Table 3.3: Summary results on large test instances

] Opt ] Feas ] Inf Total CPU time (secs) Average CPU time (secs)

General Formulation 94 5 8 59259.87 630.42

Adapted BSRP 90 2 15 87483.46 972.03

We carried out 193 experiments. The percentage of finding the optimal solution for small

and large instances by using general formulation is (100%, 87%) and by using the adapted

BSRP formulation is (98%, 84%). The average time for small and large instances by using

general formulation is (93, 630) seconds, and by using the adapted BSRP formulation is (177,

972) seconds. For more details on the results for small test instances see Table 3.4, 3.5, 3.6

and 3.7. The key of those Tables are as follows:

• n denotes the number of vertices including the depot.

• m denotes the number of vehicles.

• Dmax denotes the maximum distance allowed, the initial value is 1000 then it is reduced

to 90% of Ti where Ti is the longest tour in the previous run, and so on.

• when the time limit is reached we did not report the time.
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3.5.1 Tables of Detailed Results

Table 3.4: Table of small instances

n m Dmax CPU time of CPU time of

Adapted BSRP General formulation

40 2 1000 1.92 0.84

40 2 114 3.69 2.02

40 2 81 42.69 25.48

40 2 1000 1.76 1.73

40 2 169 6.64 3.58

40 2 121 20.52 26.06

40 2 1000 0.7 0.66

40 2 143 2.69 5.84

40 2 98 20.09 25.92

40 2 1000 6.1 3.11

40 2 111 10.85 36.86

40 4 1000 0.31 0.39

40 4 82 3.41 2

40 4 69 37.76 6.27

40 4 1000 1.08 1.7

40 4 107 4.89 1.59

40 4 89 9.8 5

40 4 1000 1.53 0.63

40 4 136 2.13 2.08

40 4 121 3.06 5.02

40 4 96 22.05 10.38

40 4 1000 1.77 2.19

40 4 104 1.69 0.64

40 4 81 18.34 18.88
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Table 3.5: Table of small instances (continue)

n m Dmax CPU of ABSRP CPU of General Formulation

60 3 1000 4.53 3.63

60 3 97 14.52 12.45

60 3 1000 22.8 13.36

60 3 130 16.49 86.2

60 3 108 342.19 251.79

60 3 1000 4.86 2.83

60 3 110 3.58 11.72

60 3 95 3.25 88.94

60 3 71 150.5 55.02

60 3 1000 10.85 12.94

60 3 83 333.27 14.17

60 6 1000 2.52 1.66

60 6 72 2.4 0.5

60 6 60 9.05 2

60 6 1000 3.21 4.02

60 6 79 13.09 35.28

60 6 1000 8.22 2.48

60 6 72 44.01 5.24

60 6 1000 2.04 1.84

60 6 54 224.77 29.7

80 4 1000 136.63 46.5

80 4 132 96.63 99.94

80 4 1000 105.6 47.58

80 4 155 27.45 57.24

80 4 88 814.58 414.32
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Table 3.6: Table of small instances (continue)

n m Dmax CPU of ABSRP CPU of General Formulation

80 4 1000 44.03 75.24

80 4 94 51.42 154.09

80 4 1000 101.58 59.97

80 4 80 1328.14 113.61

80 8 1000 6.28 4.61

80 8 74 5.92 11.45

80 8 1000 18.86 5.72

80 8 89 29.28 6.69

80 8 62 40.8 102.69

80 8 1000 20 7.19

80 8 63 103.88 32.99

80 8 1000 5.84 4.05

80 8 83 15.19 2.03

80 8 68 12.3 14.5

100 5 1000 134.11 171.01

100 5 112 178.44 44.61

100 5 66 1142.7 404.58

100 5 1000 16.63 16.81

100 5 106 14 9.3

100 5 67 2030.77 110.01

100 5 1000 65.6 38.69

100 5 80 503.28 34.33

100 5 70 586.25 365.47

100 5 63 1468.55 928.54
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Table 3.7: Table of small instances (continue)

n m Dmax CPU of ABSRP CPU of General Formulation

100 5 1000 84.27 47.22

100 5 90 1123.49 430.42

100 5 63 2313.18 1641

100 10 1000 12.27 9.25

100 10 55 36.55 8.86

100 10 1000 65.81 37.38

100 10 43 ——- 1464.67

100 10 1000 15.02 12.8

100 10 77 7.14 4.45

100 10 54 660.46 25.61

100 10 1000 104.35 35.61

100 10 77 116.35 29.05

100 10 68 29.67 127.85

3.6 Conclusion

In this chapter we present a general mathematical programming formulation for solving

ADVRP. It differs from existing formulation of Kara. Our model does not assume satisfaction

of the triangular inequality. However, it contains the shortest distances between the depot

and customers. First, we compare between our general formulation and adapted formulation

with an illustrative example. Then an extensive computational comparison between them

has been performed. It appears that our shortest path based formulation is more effective

and efficient.
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Chapter 4

Multistart Branch and Bound for

ADVRP

In this chapter we revise and modify a branch-and-bound method for solving the asymmetric

distance–constrained vehicle routing problem (ADVRP) which is based on an old branch and

bound method suggested by Laporte et al. in 1987 [113].

As mentioned before, this method is based on reformulating the distance–constrained

vehicle routing problem into a travelling salesman problem and using assignment problem as

a lower bounding procedure. In addition, the algorithm uses the best first strategy and new

tolerance based branching rules. This method was fast but memory consuming. To overcome

the memory problem, we introduce randomness, in case of ties, in choosing the node of the

search tree. If an optimal solution is not found, we restart our procedure. This restart due

to lack of memory so cannot continue with the current tree. In this way, we get a multistart

branch and bound method.

As far as we know, the instances solved exactly (up to 1000 customers) are much larger

than instances considered for other VRP models from recent literature. So, despite of its

simplicity, this proposed algorithm is capable of solving the largest instances ever solved in

literature. Moreover, this approach is general and may be used to solve other types of vehicle

routing problems. This chapter is based on our article presented in [8]. The extended version
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has been published in this book [10] and in [11].

The structure of this chapter is as follows. In section 4.1, we present the introduction.

Section 4.2 presents mathematical programming formulations of ADVRP. In section 4.3 we

discuss the deterministic and stochastic Branch and Bound method for ADVRP. In section

4.4 we present our multistart approach for solving ADVRP. Section 4.5 contains details

regarding data structure that we used in our implementation. Computational results are

provided in section 4.6. Finally in section 4.7 we give a conclusion and future research

directions.

4.1 Introduction

A variety of integer programming formulations have been proposed for VRPs, including the

so-called two-index and three-index formulations, the set partitioning formulation, and vari-

ous formulations based on extra variables representing the flow of one or more commodities

(see e.g. survey and formulation comparisons in [121]). In addition, recent solution tech-

niques are mostly based on branch-and-cut or on branch-and-cut-and-price (see [17, 142] and

recent survey in [16]).

In this chapter we suggest a new simple algorithm for solving ADVRP that is based

on Branch and Bound (B&B) method. As in [113], the ADVRP is first transformed to

the travelling salesman problem (TSP). The lower bounds are obtained by relaxing the

subtour elimination and maximum distance constraints. Thus the Assignment problem (AP)

is solved in each node of the B&B tree. In addition, the best-first-search strategy and adapted

tolerance based rules for branching are used as in [7]. That is, the next node in the tree is

the one with the smallest relaxed objective function value. In the case of a tie, we use two

tie-breaking rules: (i) the last one in the list (TOL-ADVRP) [7]; (ii) the random one among

them (RND-ADVRP).

We found that stochastic B&B based method (RND-ADVRP) is faster than the determin-

istic B&B based method (TOL-ADVRP) but it is still memory consuming. That is why we

suggested multistart B&B method (MSBB-ADVRP). It simply uses random tie-breaking rule

71



Multistart Branch and Bound for ADVRP Mathematical Programming Formulations

in the selection of the next subproblem and restart again. Computational results show that

we are able to provide exact solutions for instances with up to 1000 customers. The size of

problems could be even larger if a more powerful computer (with larger memory) is used.

As far as we know these instances are much larger than any other instances considered for

similar VRP models and exact solution approaches from the recent literature. For example,

in the recent paper by Baldacci and Mingozzi [15], several VRP problem types are studied

and sophisticated exact solution methods tested. The largest instances solved had 199 cus-

tomers. Therefore, our simple algorithms are capable of solving the largest instances ever

solved in the literature.

4.2 Mathematical Programming Formulations for ADVRP

In this section we give two mathematical programming formulations of ADVRP. The first

one, so-called flow based formulation, is used for comparison purposes in the computational

results section. The second is based on transformation of ADVRP to asymmetric travelling

salesman problem (TSP). We use its relaxation in our B&B exact method, that will be

described in section (4.3).

Let N ′ = {1, 2..., n−1} denotes the set of customers and V ′ = N ′∪{0} denotes the set of

vertices where 0 is the index of the depot. A set of arcs is denoted by A′ where A′ is defined

as follows: A′ = {(i, j) ∈ V ′ × V ′ : i 6= j}. The distance matrix is denoted by D′ = [d′ij ]

where d′ij presents the travelled distance from vertex i to vertex j, the number of vehicles is

denoted by m. The maximum distance allowed is denoted by Dmax. The shortest distance

between vertex i and vertex j is denoted by cij .

The decision binary variable xij is defined as follows:

xij =





1 if the arc (i, j) belongs to any tour and i 6= j;

0 otherwise.
(4.1)
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4.2.1 Flow Based Formulation

For the sake of comparison, we use flow based formulation of ADVRP with a polynomial

number of variables and constraints, without copying depots. This is achieved by introducing

the new set of variables zij . They present the shortest length travelled from the depot to

vertex j, where vertex i is the predecessor of vertex j. The formulation of ADVRP, that will

be later used with CPLEX solver (CPLEX-ADVRP), is given below [98]:

f(S) = min
∑

(i,j)∈A′
cijxij (4.2)

subject to

∑

i∈V ′
xij = 1 ∀ j ∈ N ′ (4.3)

∑

j∈V ′
xij = 1 ∀ i ∈ N ′ (4.4)

∑

i∈N ′
xi0 = m (4.5)

∑

j∈N ′
x0j = m (4.6)

∑

(i,j)∈A′
zij −

∑

(j,i)∈A′
zji −

∑

j∈V ′
cijxij = 0 ∀ i ∈ N ′ (4.7)

zij ≤ (Dmax − cj0)xij ∀ j 6= 0, ∀(i, j) ∈ A′ (4.8)

zi0 ≤ Dmaxxi0 ∀i ∈ N ′ (4.9)

zij ≥ (cij + c0i)xij ∀ i 6= 0, ∀(i, j) ∈ A′ (4.10)

z0i = c0ix0i ∀ i ∈ N ′ (4.11)

xij ∈ {0, 1} ∀ (i, j) ∈ A′. (4.12)

Obviously, there are a polynomial number of variables and constraints. This model is known

as flow based model since constraint (4.7) is a typical flow constraint. It says that the
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distance from vertex i to any other vertex j on the tour should be equal to the difference

between the distance from the depot to vertex i and the distance from the depot to vertex j.

Constraint (4.8) indicates that the total distance from the depot to vertex j and the shortest

distance from vertex j to the depot directly are less than or equal to the maximum distance

allowed. The constraint (4.9) checks that the total distance travelled up to the depot is less

than or equal to the maximum distance allowed. In addition, according to constraint (4.10)

the total distance from the depot to vertex j should be greater than or equal to the distance

from the depot to vertex i plus the distance from vertex i to vertex j. Constraint (4.11)

gives the initial value for z0i, which is equal to the distance from the depot to vertex i. Last

constraint (4.12) introduces the decision variables xij as binary variables.

4.2.2 TSP Formulation

The TSP formulation may be obtained by adding m−1 copies of the depot to V ′ [120]. Now

there are n + m− 1 vertices in the new augmented directed graph G(V, A), where

V = V
′ ∪ {n, n + 1, . . . , n + m− 2}.

The distance matrix D is obtained from D′ by the following transformation rules where

i, j ∈ V :

dij =





d′ij if (0 ≤ i < n, 0 ≤ j < n, i 6= j)

d′0j if (i ≥ n, 0 < j < n)

d′i0 if (0 < i < n, j ≥ n)

∞ otherwise

Then the formulation of TSP [39] is given below (4.13 - 4.16) as follows:

f(S) = min
∑

(i,j)∈A

dijxij (4.13)

where xij satisfies these conditions

∑

i

xij = 1 ∀ j ∈ V (4.14)
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∑

j

xij = 1 ∀ i ∈ V (4.15)

∑

i,j∈U

xij ≤| U | −1 ∀ U ⊂ V \{0}, |U | ≥ 2, (4.16)

+ distance constraints (4.17)

The constraints (4.14) and (4.15) ensure that indegree and outdegree of each vertex

are equal to 1. The constraint (4.16) eliminates subtours, where U is a subset of V \{0}
containing at least 2 vertices. To formulate ADVRP, in addition to (4.13)-(4.16), we need

to add the distance constraint (4.17), which checks if the total distance for each tour is less

than the maximum distance allowed (Dmax).

The downside of this formulation is the exponential number of constraints in (4.16),

since the number of subsets U is exponential. However, in our B&B method, which will be

explained in the next section, this set of constraints will be relaxed.

DVRP may be seen as a special case of VRP with time windows constraints (VRPTW)

[121]. As mentioned in Section 1.1, VRPTW requires a time tij ≥ 0 to traverse arc (i, j),

that includes any time used to serve customer i ∈ N ′. The service must begin within the

time window [ei, li] for each customer, where 0 ≤ ei ≤ li ≤ ∞. In addition, each vehicle is

allowed to leave the depot at time e0 or after, and come back to depot by time l0 or before.

A vehicle can wait before serving any customer or after . The DVRP can be viewed as a

special case of the VRPTW by setting tij = dij , ei = d0i and li = Dmax − di0.

4.3 Single Start Branch and Bound for ADVRP (RND-ADVRP)

The branch and bound (B&B) is an exact method for solving integer programming problems.

It consists of enumerating all possible solutions within the so-called search tree and pruning

subtrees when better solutions than the current one (upper bound) cannot be found. B&B

is briefly explained below:

• The original problem is placed at the root of the branch and bound tree (or search tree).

All other nodes in the search tree represent subproblems. In solving subproblems some
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variables are fixed and some constraints are ignored (relaxed), so that the lower bound

is obtained.

• An initial feasible solution of good quality is usually obtained by heuristic and its

objective function value is the initial upper bound (UB). If a heuristic is not used,

then the upper bound is set to infinity (UB = ∞) and it will be updated as soon as

the feasible solution is found during the search.

• The search strategy defines the way in which we choose the next node for branching.

There are three basic branching strategies: breadth first search, depth first search and

hybrid search which is also called best first search strategy (see Section 2.1.1). In this

thesis we implement this strategy.

4.3.1 Upper Bound

The upper bound is the value of the incumbent which is the best feasible solution found so

far. Initial value of UB could be ∞ or it could be obtained by using a heuristic. Usually

heuristics provide good feasible solutions, that help to reduce the size of the search tree by

pruning any subproblem that has a value greater than UB.

In our method this value is not so useful because we use best first search which is not

affected by the value of UB. For this reason we set the value of UB to be UB = m×Dmax.

4.3.2 Lower Bounds

To apply B&B we need a lower bounding procedure that should be applied at each node

of the search tree. Of course, there are many ways to relax model (4.13)-(4.17). The more

constraints included, the better (higher) the lower bound. In fact, the set of feasible solutions

of the problem with m constraints is a subset of feasible solutions of the same problem

with m − 1 constraints. Thus, its objective function value is worse. However, adding new

constraints makes the lower bound higher.

We use AP as a lower bounding procedure of the TSP formulation given in (4.13)-

(4.15), i.e., we relax all tour elimination and maximum distance constraints (4.16) and (4.17).
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Although the quality of the lower bound is not high, the benefit is in using the very fast

exact Hungarian method for solving AP [104]. In this thesis we use the implementation

described in [97]. The complexity of AP at root node is O(n3) [163]. Another advantage is

that the relaxed AP solution is already an integer.

Proposition 1 Any feasible AP solution of problem (4.13)-(4.15) consists of a set of cycles,

i.e., a sequence of arcs starting and ending at the same vertex with the number of arcs in

any cycle k greater than or equal to 2 (ωk ≥ 2).

Proof. It is clear from (4.14) and (4.15) that the degree of each vertex in S is equal to 2. It

has one incoming and one out coming arc. If the matrix D was symmetric and n even, then

those cycles would contain just 2 vertices and therefore ωk = 2.

However, in all other cases, ωk is obviously larger than 2: if vertex i is assigned to vertex

j, then vertex j is not necessarily assigned to vertex i. ¥

We can present the solution of AP and TSP as a set of cycles [6]. There are 3 types of

cycles obtained by AP relaxation:

• a served cycle- contains exactly one depot.

• an unserved cycle- contains no depot.

• a path- contains more than one depot.

In the last case, each path may be divided into served cycles. Therefore, the number of

served cycles is equal to the number of depots in the path. Subsequently, the term tour is

used to denote either a served cycle, an unserved cycle or a path; the term depot is used to

denote either the original depot or a copy of the depot. A tour is called infeasible if its total

distance is larger than Dmax or if it contains no depot.

4.3.3 Branching Rules

Since the set of constraints (4.16) and (4.17) are relaxed, the AP solution may have many

infeasible tours. If the tour is infeasible, it must be destroyed, i.e., one arc should be excluded
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(deleted). We exclude an arc from the current infeasible solution S by giving it a large value

(∞) and then resolving AP relaxation again. Realistically, in the new solution, such an arc

will not appear, since we minimize the AP objective function. There are several ways to

remove an arc from S. We can try all possible removals (one at the time) and collect all

objective function values obtained from solving the new corresponding AP ’s.

In this thesis we use the concept of tolerance, where tolerance is one of the sensitivity

analysis techniques (for more details on sensitivity analysis see [103, 123]). The definition of

tolerance is used as a branching rule within B&B method in [161] for solving ATSP. Applying

this idea for solving ADVRP was first used in [7] and here we improve it.

The difference between the value of the objective function before and after the exclusion

of an arc in the current solution is called upper tolerance (UT) of the arc [72]. A series of arcs

have to be checked by removing one arc each time to get a new subproblem which has to be

added to the search tree. The node corresponds to the smallest objective function obtained

is chosen to branch further. Therefore, in our ADVRP tolerance based B&B (TOL-ADVRP),

the chosen subproblem corresponds to the arc which has the smallest upper tolerance. Some

preliminary results of this approach has been given in [7].

Another possibility of destroying an infeasible tour is to exclude the arc with the largest

cost [6]. B&B method uses such a branching rule called COST-ADVRP. However, based on ex-

tensive computational analysis, the results obtained with COST-ADVRP were of slightly worse

quality than those obtained by TOL-ADVRP. This is the reason why in the computational

analysis section we give TOL-ADVRP results. In TOL-ADVRP when there is more than one sub-

problem in the list of active subproblems (that have the smallest objective value) we choose

the last among them to branch next. In other words, our tie-breaking rule is deterministic.

4.3.4 Algorithm

The main steps of TOL-ADVRP algorithm are given in Algorithm 11, where we use the following

notation:

D- a distance matrix.
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S = {T1, T2, ..., TM(S)}- the relaxed solution obtained by AP presented as a set of tours

where M(S) is the number of tours in S.

Tk = {a1, .., at(Tk)}- the tour Tk in the solution S is presented as a set of arcs where t(Tk)

is the number of arcs in a tour k.

d(Tk)- the total travelled distance in a tour k where d(Tk) =
∑

(i,j)∈Tk
dij .

f(S) =
∑M(s)

k=1 d(Tk) - the value of an optimal solution to AP .

S∗- an optimal solution to ADVRP.

L- the list of active subproblems (or unfathomed nodes in a search tree): it is updated

during the execution of the code.

LB- the lower bound. It is the smallest value of the objective function to AP among those

in L.

UB- the upper bound value to ADVRP, initially set to a large value.

APcnt- counts the number of nodes in B&B tree (how many times AP subroutine is called).

Maxnodes- the maximum number of nodes allowed in B&B tree. In order to prevent

termination with no memory message, we use it as a stopping condition. Here we set

Maxnodes = 100, 000.

β- the type of tie-breaking rule that has two values:

β =





0 deterministic (last in L);

1 at random.

we will use β = 0 in TOL-ADVRP algorithm. Later we will use β = 1 in RND-ADVRP

Algorithm.

ind- the variable that covers all possible outputs of the algorithm. The basic algorithm may

stop with the following outputs:
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ind =





1 an optimal solution S∗ is found;

2 feasible solution S is found but not proven as optimal;

3 no feasible solution is found (lack of memory);

4 there is no feasible solution of the problem at all.

Here we explain some of the steps of TOL-ADVRP algorithm (see Algorithm 11):

• At the root node we find solution S by solving AP problem. Then, we calculate the

total distance d(Tk) for every tour Tk of S and check the feasibility of the solution. If

it is feasible, then the optimal solution is found and the program stops.

• Otherwise, we repeat the following steps until the memory limit is reached:

– Branching. Choose the subproblem bi ∈ L with the smallest value of the ob-

jective function, where i denotes the iteration number. In the case when more

than one subproblem has the (same) smallest value, the choice is made according

to the value of β. If β = 0, choose last subproblem in L; otherwise choose one

randomly to develop further. This second option will be used in our multistart

method.

– Best first. Find the ratio between the total distance d(Tk) and the number of

arcs in the chosen subproblem t(Tk) for every infeasible tour Tk, k = 1, .., M ′ where

M ′ is the number of infeasible tours. Choose the tour Tk∗ with the largest ratio

d(Tk)/t(Tk).

– Tolerance (expanding search tree). Calculate upper tolerances for all arcs

in this tour Tk∗ as follows. Exclude in turn one arc from Tk∗ by putting ∞ in

the distance matrix at the corresponding position. Find AP solution to these

subproblems. For each excluded arc find the difference between the value of

the objective function before and after excluding the arc. This gives the upper
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Procedure X-ADVRP(n, m,Dmax, D,Maxnodes, β, S∗, ind);

UB ← m×Dmax, APcnt ← 1, set iteration counter i ← 1;1

Solve AP by using HA to get a solution S = {Tl|l = 1, ..., M(S)};2

L = {1}- the list contains the root node;3

Calculate d(Tl) and t(Tl) for every tour of Tl ∈ S;4

if (S feasible) then (S∗ = S is an optimal solution; ind=1; stop);5

while (APcnt < Maxnodes) do

Branching. Choose subproblem bi ∈ L with the smallest value of the objective6

function bi = arg minl∈L{f(bl)}; in the case of a tie, choose one from the list with

respect to β value;

Best first. Find the ratio d(Tk)/t(Tk) for every infeasible tour k = 1, .., M ′ where7

M ′ is the number of infeasible tours and choose the tour k∗ with the largest ratio;

Tolerance (expanding search tree). Calculate upper tolerances for all arcs8

in this k∗ tour by solving t(Tk∗) times AP problem to get solutions Sr where

r = 1, ..., t(Tk∗). Expand search tree with those t(Tk∗) subproblems and update

APcnt as: APcnt = APcnt + t(Tk∗);

Feasibility check. Remove bi from L. Check feasibility of all new (expanded)9

nodes. If feasible, update UB (if necessary);

Update. If UB is updated, then update L based on the new UB value as:10

L ← L ∪ {r|f(Sr) < UB}\{q|f(Sq) > UB} where Sr are the new generated

infeasible solutions, and Sq are the existing infeasible solutions. Otherwise, update

L based on the current UB value as: L ← L ∪ {r|f(Sr) < UB} ;

Optimality conditions. If (L = ∅ and UB 6= m × Dmax) then (S∗ is the11

optimal solution where f(S∗) = UB; ind=1; stop). Otherwise, If (L = ∅ and

UB = m×Dmax) then (there is no feasible solution; ind=4; stop);

i = i + 1;12

end

Termination. If (UB 6= m×Dmax) then (S is the new incumbent; ind =2; return),13

otherwise (no memory; ind=3; return) ;
Algorithm 11: (TOL-ADVRP) Algorithm (β = 0) and (RND-ADVRP) Algorithm (β = 1)
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tolerance (UT) value to that arc. Note that the value of the counter APcnt is

increased by the number of arcs in the chosen tour:

APcnt = APcnt + t(Tk∗)

– Check Feasibility. Remove bi from L (L ← L\{bi}). Check feasibility of the

solution at every new generated subproblem.

– Update. If a feasible solution is found and its value is smaller than the current

upper bound, then update the value of the upper bound, update the list of active

subproblems by adding the new expanded subproblems that have value smaller

than UB and removing those subproblems that have value greater than UB as

follows:

L ← L ∪ {r|f(Sr) < UB}\{q|f(Sq) > UB}

Note that Sr are the new generated infeasible solutions, and Sq are the existing

infeasible solutions. Otherwise, i.e., if the upper bound is not updated, then

update L by adding the new expanded subproblems that have value smaller than

UB as follows:

L ← L ∪ {r|f(Sr) < UB}

– Optimality conditions. Check if L = ∅ and UB is updated then stop with the

value of optimal solution f(S∗) = UB (ind=1). Otherwise, if L = ∅ and UB is

not updated, stop with the message that no feasible solution exists (ind=4).

– Termination. When there is no memory we get two possible outputs:

∗ If UB is updated then S∗ is returned as feasible but not proven as the optimal

solution (ind=2).

∗ Otherwise, a feasible solution has not been found, but it might exist (ind=3).

Proposition 2 If there is no memory limit, then the algorithm TOL-ADVRP finds an optimal

solution to ADVRP or proves that such a solution does not exist.
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Proof. Let us denote with F and G the set of all feasible solutions of ADVRP problem

and the set of solutions generated by our B&B algorithm, respectively. In order to show that

TOL-ADVRP works properly, it is enough to show that F ⊆ G. In other words, we need to

show that no feasible ADVRP solution is omitted in enumeration of cycles produced by AP

relaxation. In fact, our enumeration is based on arcs elimination (by giving them value ∞
in step 8) and decreasing the number of tours . It is followed by solving lower bounding

AP problem. AP provides a solution S as a set of cycles (Proposition 1). Clearly, the set of

all solutions G generated by our method contains all possible cycles with m vehicles, and

therefore all tours from F . Thus, the set of all feasible ADVRP tours is the subset of all the

generated sets, and our TOL-ADVRP enumerates all feasible tours. ¥

4.3.5 Illustrative Example

Table 4.1: Original distance matrix for ADVRP with n=8 and m=2

0 1 2 3 4 5 6 7

0 ∞ 2 11 10 8 7 6 5

1 6 ∞ 1 8 8 4 6 7

2 5 12 ∞ 11 8 12 3 11

3 11 9 10 ∞ 1 9 8 10

4 11 11 9 4 ∞ 2 10 9

5 12 8 5 2 11 ∞ 11 9

6 10 11 12 10 9 12 ∞ 3

7 7 10 10 10 6 3 1 ∞

The example, given in Table 4.1, is taken from [13], and the example is restated by

Goldengorin in a form suitable for DVRP by adding a number of vehicles and a maximum

distance constraint [71], where the number of customers is n = 8 and the number of vehicles

is m = 2. In matrix D, the first row represents the distances from the depot to all other
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customers. The first column represents the distances from each customer to the depot, and

all other entries represent distances between the customers. To solve this problem, we have

to add m− 1 = 2− 1 = 1 copy of the depot.

Table 4.2: New distance matrix

0 1 2 3 4 5 6 7 8

0 ∞ 2 11 10 8 7 6 5 ∞
1 6 ∞ 1 8 8 4 6 7 6

2 5 12 ∞ 11 8 12 3 11 5

3 11 9 10 ∞ 1 9 8 10 11

4 11 11 9 4 ∞ 2 10 9 11

5 12 8 5 2 11 ∞ 11 9 12

6 10 11 12 10 9 12 ∞ 3 10

7 7 10 10 10 6 3 1 ∞ 7

8 ∞ 2 11 10 8 7 6 5 ∞

Table 4.2 illustrates the new distance matrix after adding the last row and the last

column according to the new distance function (see Section 4.2: ”TSP formulation”). In the

new matrix 0 and 8 are indices of the depot. The lower bound (LB) solution at the root node

of B&B tree, obtained by solving AP (4.13 - 4.15), is given in Figure 4.1:a. Each depot label

is written inside a squared box, and the total distance is written inside each tour.

We will construct 2 problems with this dataset using 2 different values of Dmax. First

value of Dmax(1) is ∞, which produces the longest tour (LT ) as an output to the optimal

solution, then the second value of maximum distance allowed Dmax(2) is chosen to be 0.90×
LT .

Problem 1.

First, the value of Dmax is set to ∞. The AP solution counter, the list of active sub-

problems in the search tree, and the iteration counter are initialized (APcnt = 1, L = {1},
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i = 1), Clearly, the initial value of UB = m×Dmax = ∞. Since b1 ∈ L, we have b1 = 1.

Figure 4.1: Solutions at node 1 (root node), node 2, node 3, and node 4

Iteration 1. It can be seen from Figure 4.1:a that the AP solution S1 has three tours: T1 =

{(0, 6), (6, 7), (7, 0)}; T2 = {(8, 1), (1, 2), (2, 8)}; and finally T3 = {(5, 3), (3, 4), (4, 5)}. One of

them is infeasible, since it does not contain the depot (node 0 or 8), thus solution S1 is not

feasible.

The program will check the total distance for all tours in the solution at the root node

of the search tree: d(Tm) = {d(T1), d(T2), d(T3)} = {16, 8, 5}. The corresponding objective

function value is f1 = f(S1) = 16 + 8 + 5 = 29. Since only the tour T3 is infeasible, we

choose arcs from T3 for branching. The number of arcs in T3 is equal to 3 (t(T3) = 3) and

its total distance is equal to 5 (d(T3) = 5). The value of the upper tolerance for each arc of

T3 = {(5, 3), (3, 4), (4, 5)} should be calculated in the following way:

85



Multistart Branch and Bound for ADVRP Branch and Bound

(i) Arc (5, 3):exclude this arc from the solution, i.e., replace its value d(5, 3) = 2 with

d(5, 3) = ∞, and then solve the AP. The resulting solution is given in Figure 4.1:b.

This new solution is not feasible as well, since there are two infeasible tours T3 =

{(3, 4), (4, 3)}; and T4 = {(6, 7), (7, 6)}. The value of the optimal AP solution at node

2 in the search tree is f2 = f(S2) = 17 + 8 + 5 + 4 = 34. The UT value for the arc (5, 3)

in the solution S2 is calculated as:

UT (5, 3) = f2 − f1 = 34− 29 = 5

(ii) Arc (3, 4): first, restore the value of d(5, 3) into its previous value 2. By excluding an

arc (3, 4) as before, we get f3 = f(S3) = 8+23+4 = 35. The solution at node 3 is also

not ADVRP feasible since it contains one infeasible tour T3 (Figure 4.1:c). The value of

the upper tolerance for the arc (3, 4) is:

UT (3, 4) = f3 − f1 = 35− 29 = 6

(iii) Arc (4, 5): as before, restore d(3, 4) to its previous value 1. Excluding the arc (4, 5)

produces f4 = f(S4) = 21 + 8 + 4 = 33 (Figure 4.1:d). The solution at node 4 is not

feasible since it contains one infeasible tour T3. The value of upper tolerance for the

arc (4, 5) is:

UT (4, 5) = f4 − f1 = 33− 29 = 4

The value of APcnt = 1 + 3 = 4 and L = L\{b1} = ∅. There is no need to update UB

since no feasible solution is found. Thus, the new list of active subproblems is L = {2, 3, 4}.
Since the condition f(Sr) < ∞, (r = 2, 3, 4) holds for all 3 subproblems above.

Iteration 2. The smallest upper tolerance in the first iteration is at node 4. Therefore,

the arc (4, 5) is excluded and LB = f(S4) = 33. Thus, the index of the next subproblem

b2 ∈ L is equal to 4 (b2 = 4, see Figure 4.2:a and 4.2:b). We start now from subproblem 4,

which gives an infeasible solution (see Figure 4.1:d). Among 3 tours in that solution S only

one tour is infeasible. It has two arcs T3 = {(7, 6), (6, 7)}. Thus, in this case, the two new

subproblems are generated by the program:
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(i) Arc (7, 6): exclude this arc (d(7, 6) = ∞) and solve the corresponding AP. Note that

two arcs are now excluded: (4,5) and (7,6). Then we get a feasible solution S5 =

{T1, T2} where:T1 = {(0, 6), (6, 7), (7, 5), (5, 3), (3, 4), (4, 0)}; T2 = {(8, 1), (1, 2), (2, 8)},
and d(T1) = 26, d(T2) = 8, f5 = f(S5) = 34 (see Figure 4.3:a).

(ii) Arc (6, 7): restore the value of arc (7,6) to its previous value(d(7, 6) = 1). By excluding

the arc (6,7) we get an infeasible solution S6 with f6 = 37.

Figure 4.2: TOL-ADVRP Tree

The list of active subproblems L = L\{4}∪{6} = {2, 3, 6} and the counter APcnt = 6. Since

the value of upper bound UB is updated (UB = 34), the new list of active subproblems

becomes empty (L = ∅) since f(Sj) ≥ 34; j = 2, 3, 6. So the optimal solution is found at

node 5 in the search tree (Figure 4.2:b). In this example, the total number of subproblems

in the search tree is 6.

Both TOL-ADVRP and RND-ADVRP will provide the same results for problem 1 because

there is only one choice (only one value is the smallest in the list).
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Figure 4.3: Solution at node 5 and 9

Problem 2.

The output of problem 1 provides the value of the longest tour in the optimal solution

which is 26 see Figure 4.3:a. We use this value as an input value to problem 2 to get a new

value Dmax as follows: Dmax = 0.9 × 26 = 23.4. We will consider only the integer part of

this number so that the new value of maximum distance allowed is Dmax = 23. We update

the value of Dmax and run the same example.

Iteration 1. It will be the same as iteration 1 in problem 1, i.e., L = {2, 3, 4}.
Iteration 2. As can be seen in Figure 4.3:a, the solution S5 is no longer a feasible solution

because the distance constraint is not satisfied (d(T1) = 26 > Dmax = 23). Thus, in this

iteration we have L = {2, 3, 5, 6} where two nodes (node 2 and node 5) have the same

smallest value 34 (Figure 4.2:b). Therefore, according to tie-breaking rule for TOL-ADVRP,

we have to choose the last node to branch next (b3 = 5), while for RND-ADVRP we have two
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options node 2 and node 5, one of them will be chosen randomly. Assume node 5 is chosen

(b3 = 5). Node 5 has tow tours, one of them T1 is not feasible. Since T1 has 6 arcs then there

are 6 new subproblems generated in the search tree (see Figure 4.2:c). When we branch at

node 5, we find the first feasible solution at node 9, so we update UB = 37, APcnt = 12,

L = {2, 3, 7, 10, 12}.
Iteration 3. In this iteration we have 3 nodes (2, 7, and 12) that have the same smallest value

34 (see Figure 4.2:c). For TOL-ADVRP, last node in the list has to be chosen to branch next i.e.,

b4 = 12, while for RND-ADVRP there are 3 options and one of them will be chosen randomly

(ns = 3). So we need to choose one k among three nodes: 2, 7 or 12 where k = 1 + 3α.

Assume that α = 0.4, then k = 2 and the second node b4 = 7 is chosen for branching. This

step is repeated at each iteration until the optimal solution is found or stopping conditions

is satisfied. At the end, after generating 58 subproblems (APcnt = 58) we get an optimal

solution value 37 (see Figure 4.3:b).

4.4 Multistart Method for ADVRP (MSBB-ADVRP)

The main idea of (RND-ADVRP) is to select randomly the next subproblem among those with

the same (smallest) objective function value. The random selection may cause the generation

of a smaller search tree. Therefore, if we reach the maximum number of subproblems allowed,

then the restart is required due to memory issues. Thus, we restart the exact B&B method

again, hoping that in the next attempt we will get an optimal solution. For that reason, in

MSBB-ADVRP we rerun RND-ADVRP (with β = 1) many times until an optimal solution is found

or infeasibility is proven. Each time we run RND-ADVRP, we save the value of UB as output

of RND-ADVRP (Note that we did not change the value of UB as input when RND-ADVRP is

rerun). Then we compare all the outputs of RND-ADVRP to keep the best as the output of

MSBB-ADVRP

4.4.1 Algorithm

The main points of (MSBB-ADVRP) algorithm 12 is summarized as follows:
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Procedure MSBB-ADVRP(n,m, Dmax, D,Maxnodes, β, ntrail, Sbest);

fbest ←∞, β ← 1;1

for i = 1 to ntrail do2

RND-ADVRP(n,m, Dmax, D, Maxnodes, β, S∗, ind);3

if(ind = 1)then (Sbest = S∗; stop);4

if(ind = 4) then (stop);5

if 1 < ind < 4 then6

if (f(S∗) < fbest) then7

Sbest = S∗, fbest = f(S∗);8

end

end

end

Algorithm 12: Algorithm of Multistart B&B (MSBB-ADVRP)

• Re-run each instance a given number of times (ntrail- a parameter).

• Stop in these two cases:

1. if the optimal solution is found (ind = 1).

2. if the infeasibility of the problem instance is proven (ind = 4).

• Otherwise run again.

This will increase the chance of finding an optimal solution or at least improve the value of

the best feasible solution found so far. The number of reruns needs to be given by the user.

In the case that there are more than one subproblem with the smallest value in the list

of active subproblems (L) then choose randomly one of them as follows:

1. Generate a uniform random number α ∈ [0, 1].

2. Find the number of nodes in the list (ns) which has the same smallest value of the

objective function.
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3. Find k ∈ [1, ns] as k = 1 + ns ∗ α.

4. Branch on the node corresponding to the kth position.

In this thesis we set the parameter ntrail = 5, and it is called M5SBB-ADVRP.

Then we compare with RND-ADVRP to see what the improvement we get when we apply

a stochastic way of choosing from L and what the improvement we get when we rerun the

code 5 times.

4.4.2 Illustrative Example

We now present our MSBB-ADVRP on the same example from the previous section. We do not

consider Problem 1, since there were no ties.

Problem 2. We run the example with Dmax = 23.

Iteration 1. both programs do the same because we have only one smallest value in L (see

Figure 4.2:a).

Iteration 2. there are two nodes 2 and 5 that have the same smallest value f(S2) = f(S5) = 34

(Figure 4.2:b). So, there are two options and logically MSBB-ADVRP will provide two different

search trees. The outputs of applying MSBB-ADVRP in this case are as follows:

• if a first run provides an optimal solution, then no need to rerun the program again.

• if a first run provides a feasible solution, then rerun the program again. That could

find an optimal solution or at least produce another value of a feasible solution.

• if a first run is not able to find any feasible solution because no memory, so rerun

will give another chance to investigate another search tree and produce either proof of

infeasibility, or a feasible solution.

In general, there is a big chance to get two different values of best feasible solutions.

Iteration 3. the number of subproblems that have the same smallest value is equal to 3

(ns = 3). Therefore, there are 3 options, and MSBB-ADVRP will take benefit of that and

produce different outputs, hoping to reach an optimal solution. This step is repeated at each

iteration until the optimal solution is found or proof of infeasibility is found .
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4.5 An efficient Implementation - Data Structure

The most important task in implementation of TOL-ADVRP, RND-ADVRP, and MSBB-ADVRP is

to keep track of excluded arcs (a, b) during the enumeration of the B&B tree. We use for

RND-ADVRP, and MSBB-ADVRP the same data structure of TOL-ADVRP. Both start and end

points of the arcs (a) and (b) are stored separately in the first matrix A and in the second

matrix B respectively (see Figure 4.4). Those matrices are expanded during the execution of

the code. Each row of A and B represents a node in the search tree. Thus, we always start

with A = [−1] and B = [−1] since there are no excluded arcs at the root node (see Figure

4.4: At root node). Note that we use symbol (−1) to denote a dummy vertex.

Each time some arc is excluded (its value set to ∞ and AP solved again), a new row in

both matrices is added, containing end points of the excluded arc. In addition, each iteration

brings a new column, where rows from previous iterations are filled with dummy vertices.

Figure 4.4: First two iterations

Of course based on the best-first-search criterion and tie-breaking rule, new rows of A

and B (in new iteration) will keep track of excluded parent vertices from previous iterations.
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The successor nodes of each parent node have identical rows except the last value. The

number of cells in each row has a positive number (not -1) is representing the number of

excluded arcs in this node. We use a temporary vector (V ) to save the original values of

excluded arcs in the chosen node to branch next.

We will now present our data structure on the same example from the previous section.

At the root node. we have A = [−1], B = [−1] (see Figure 4.4).

First iteration. we have 3 new nodes in the search tree, or 3 possible arcs to be excluded (see

Figure 4.2:a). So we add 3 more rows to both matrices A and B. Thus, we have only one

column for this iteration and 4 rows in both matrices.

• At node 2 we exclude arc (5, 3), so we put 5 in the row 2 of A, and 3 in the row 2 of B.

• At node 3 we exclude arc (3, 4), so we put 3 in the row 3 of A, and 4 in the row 3 of B.

• At node 4 we exclude arc (4, 5), so we put 4 in the row 4 of A, and 5 in the row 4 of

B (see Figure 4.4: First iteration).

Based on branching rules, node 4 is chosen to branch since the AP solution, after excluding

arc (4, 5), was the smallest. So we copy both rows of node 4 in both matrices and put them

as initial values to all successor nodes of node 4. In node 4 there are three tours (2 feasible

tours and one infeasible tour). We have only one tour to destroy (see Figure 4.1:d). The

chosen infeasible tour has two arcs, so we will add two new rows and one column in the next

iteration.

Second iteration. we have 2 more nodes (see Figure 4.2:b). We add two rows to both matrices

(exclude two arcs from some nodes), and one column. The two new nodes will copy the

information from the row of node 4 because node 4 is chosen to branch in the first iteration.

Then we will add the new arc that was excluded in each case (see Figure 4.4: Second

iteration).

Note that for the root node all the row contains (-1), and for nodes (2,3,4) we put (-1) in

the second column because we have excluded only one arc for them. Each time we increase

the dimension of both matrix we have to put (-1) for all previous nodes in the new columns.
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Figure 4.5: Third iteration

Third iteration. we choose to branch on node 5. This will produce 6 new nodes (see Figure

4.2:c). So we need to add 6 rows and one column to both matrices (see Figure 4.5: Third

iteration).

4.6 Computational Results

Computers. All experiments were implemented under windows XP and on intel(R) Core(TM)2

CPU 6600@2.40GHz, with 3.24 GB of RAM. The code is written in C++ language. Some

parts of the code are taken from [161].

Test Instances. Full asymmetric distance matrices were generated at random using the

uniform distribution to generate three groups of instances:

• group 1: generate integer numbers between 1 and 100.

• group 2: generate integer numbers between 1 and 1000.

• group 3: generate integer numbers between 1 and 10000.

The generator of random test instances needs the following input data:

n- the size of distance matrix.
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γ- the parameter that controls the degree of symmetry in the distance matrix, γ ∈ [0, 1]: 0

means completely random and asymmetric; 1 means completely symmetric; 0.5 means

50% symmetric, etc.

seed - the random number: when n ≤ 200, four different distance matrices were generated

for each combination of (n,m). However, only one distance matrix is generated in the

case: 200 < n ≤ 1000.

The Floyd-Warshall Algorithm is used to calculate the shortest distance between all

vertices in the graph (for more information on the algorithm and the code see [154]). Ma-

trices satisfying triangle inequality C are obtained by applying Floyd-Warshall algorithm

on the generated matrices. Test instances are divided into two sets: small size (with

n = 40, 60, .., 200) and large size (with n = 240, 280, ..., 1000) instances. For each n be-

longing to the small set, two different types of instances are generated, based on the different

number of vehicles: m1 = n/20 and m2 = n/10. For instances belonging to the large set, we

use only m1.

In addition, for each distance matrix we consider 3 problems with 3 different values of

Dmax. The first value of Dmax(1) is set to ∞ and then we use this formulae to obtain the

new values of Dmax based on the length of the previous longest tour:

Dmax(i) = 0.90× LT (i− 1),

Where i ∈ {2, 3}, and LT (i − 1) is the longest tour in the optimal solution when the value

of the maximum distance allowed is Dmax(i−1). Note that we start with problem 1. If we

get optimal solution, then we continue to consider problem 2 otherwise we stop because we

could not obtain LT (1) to find Dmax(2), and so on.

The total number of instances in all groups are 695, distributed as follows: the first group

is 257; the second group is 222; and the third group is 216. All test instances used in this

thesis can be found on the following web site as well as the code for the generator coded in

C++: http://www.mi.sanu.ac.rs/∼nenad/advrp/
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4.6.1 Methods Compared.

In this thesis we compare three methods to find an optimal solution for ADVRP: MSBB-ADVRP,

TOL-ADVRP, CPLEX-ADVRP. In all our experiments reported below, MSBB-ADVRP use a random

tie-breaking rule. When MSBB-ADVRP runs the code once we get RND-ADVRP, while when it

reruns 5 times we get M5SS-ADVRP. We note that increasing the number of restarts might

improve the chances of finding an optimal solution, but with the cost of a larger CPU time.

In all methods the process will continue until one of these cases are met:

• an optimal solution is found.

• no memory.

• the time limit is reached.

We choose the time limit to be 10800 seconds (3 hours) for all test instances.

Comparison.

The rows in all tables give the following characteristics:

1. ] Opt (ind = 1)- how many times the optimal solution is found.

2. ] Feas (ind = 2) - how many times feasible (but not optimal) solutions have been

found.

3. ] No Mem (ind = 3) - how many times feasible solutions are not found because of lack

of memory.

4. ] No Feas (ind = 4) - how many instances with proven infeasibility are detected.

5. ] Feas=Opt - how many times feasible solutions have been found equal to optimal

solutions but without guarantee of optimality.

6. Total time (Opt)- the total time spent in seconds, only for instances where the optimal

solutions are found.
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7. Average time (Opt)- the average time for instances when an optimal solution is found,

where:

Average time(Opt) =
Total time(Opt)

]Opt
(4.18)

8. Total time (Feas)- the total time spent in seconds, only for instances where feasible

solutions are found.

9. Average time (Feas)- the average time for instances when feasible solutions are found,

where:

Average time (Feas) =
Total time (Feas)

]Feas
(4.19)

Table 4.3: Results for instances from group 1 with Dmax(1) = ∞

TOL CPLEX RND M5SBB

]Opt (ind = 1) 92 74 92 92

]Feas (ind = 2) 0 0 0 0

]No Mem (ind = 3) 0 18 0 0

] No Feas (ind = 4) 0 0 0 0

] Feas=Opt 0 0 0 0

Total time (Opt) 4.61 25662.64 7.68 8.29

Average time (Opt) 0.05 346.79 0.08 0.09

Total time (Feas) 0 0 0 0

Average time (Feas) 0 0 0 0

% of solved 100 80 100 100

% of (Feas=Opt) 0 0 0 0

The columns in all tables present the results of these methods:

• Tolerance based branch and bound TOL-ADVRP.

• Commercial software CPLEX-ADVRP.
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• Single start branch and bound RND-ADVRP.

• Multistart branch and bound (ntrail = 5) M5SBB-ADVRP.

Detailed results for all three methods may be found on the following web site:

http://www.mi.sanu.ac.rs/∼nenad/advrp/.

Table 4.4: Results for instances from group 1 with Dmax(2) = 0.90× LT (1)

TOL CPLEX RND M5SBB

]Opt (ind = 1) 64 72 71 73

]Feas (ind = 2) 19 2 17 16

]No Mem (ind = 3) 7 16 2 1

] No Feas (ind = 4) 2 2 2 2

] Feas=Opt 11 0 14 14

Total time (Opt) 959.40 53644.51 157.26 261.75

Average time (Opt) 14.54 745.06 2.21 3.59

Total time (Feas) 1261.36 21600 958.61 4240.96

Average time (Feas) 66.39 10800 56.39 265.06

% of solved 72 78 77 79

% of (Feas=Opt) 12 0 15 15

Tables (4.3, 4.4, and 4.5) contain summary results to all group 1 test instances from

n = 40 up to n = 1000 customers with Dmax(1) = ∞, Dmax(2) = 0.90×LT (1), and Dmax(3) =

0.90× LT (2) respectively.

Tables (4.6, 4.7, and 4.8) contain summary results to all group 2 test instances from

n = 40 up to n = 1000 customers with Dmax(1) = ∞, Dmax(2) = 0.90×LT (1), and Dmax(3) =

0.90× LT (2) respectively.

Finally Tables (4.9, 4.10, and 4.11) contain summary results to all group 3 test instances

from n = 40 up to n = 1000 customers with Dmax(1) = ∞, Dmax(2) = 0.90 × LT (1), and

Dmax(3) = 0.90× LT (2) respectively.
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Table 4.5: Results for instances from group 1 with Dmax(3) = 0.90× LT (2)

TOL CPLEX RND M5SBB

]Opt (ind = 1) 40 52 54 56

]Feas (ind = 2) 17 2 15 13

]No Mem (ind = 3) 16 19 4 4

] No Feas (ind = 4) 0 0 0 0

] Feas=Opt 5 0 13 13

Total time (Opt) 1302.76 54902.08 1727.37 2031.59

Average time (Opt) 32.57 1055.81 31.99 36.28

Total time (Feas) 1860.48 21600 767.27 2871

Average time (Feas) 109.44 10800 51.15 220.85

% of solved 55 71 74 77

% of (Feas=Opt) 7 0 18 18

Table 4.6: Results for instances from group 2 with Dmax(1) = ∞

TOL CPLEX RND M5SBB

]Opt (ind = 1) 85 75 85 85

]Feas (ind = 2) 7 0 7 7

]No Mem (ind = 3) 0 17 0 0

] No Feas (ind = 4) 0 0 0 0

] Feas=Opt 1 0 1 1

Total time (Opt) 244.93 38411.48 239.89 244.04

Average time (Opt) 2.88 512.15 2.82 2.87

Total time (Feas) 14276.37 0 14513.98 42673.58

Average time (Feas) 2039.48 0.00 2073.43 6096.23

% of solved 92 81 92 92

% of (Feas=Opt) 1 0 1 1
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Table 4.7: Results for instances from group 2 with Dmax(2) = 0.90× LT (1)

TOL CPLEX RND M5SBB

]Opt (ind = 1) 39 67 45 45

]Feas (ind = 2) 27 2 30 32

]No Mem (ind = 3) 17 14 8 6

] No Feas (ind = 4) 2 2 2 2

] Feas=Opt 13 0 16 18

Total time (Opt) 1487.57 34966.52 924.85 912.55

Average time (Opt) 38.14 521.89 20.55 20.28

Total time (Feas) 2183.82 21599.94 13529.43 45497.36

Average time (Feas) 80.88 10799.97 450.98 1421.79

% of solved 46 79 53 53

% of (Feas=Opt) 15 0 19 21

Table 4.8: Results for instances from group 2 with Dmax(3) = 0.90× LT (2)

TOL CPLEX RND M5SBB

]Opt (ind = 1) 16 34 27 28

]Feas (ind = 2) 13 2 14 13

]No Mem (ind = 3) 16 9 4 4

] No Feas (ind = 4) 0 0 0 0

] Feas=Opt 6 0 9 9

Total time (Opt) 577.69 21148.49 694.89 728.1

Average time (Opt) 36.11 622.01 25.74 26.00

Total time (Feas) 1762.68 21665.23 12990.62 28358.06

Average time (Feas) 135.59 10832.62 927.90 2181.39

% of solved 36 76 60 62

% of (Feas=Opt) 13 0 20 20
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Table 4.9: Results for instances from group 3 with Dmax(1) = ∞

TOL CPLEX RND M5SBB

]Opt (ind = 1) 81 73 82 82

]Feas (ind = 2) 11 2 10 10

]No Mem (ind = 3) 0 17 0 0

] No Feas (ind = 4) 0 0 0 0

] Feas=Opt 4 0 4 4

Total time (Opt) 380.35 22164.37 452.93 449.71

Average time (Opt) 4.70 303.62 5.52 5.48

Total time (Feas) 24689.81 12475.17 17166.85 34994.44

Average time (Feas) 2244.53 6237.59 1716.69 3499.44

% of solved 88 79 89 89

% of (Feas=Opt) 4 0 4 4

Table 4.10: Results for instances from group 3 with Dmax(2) = 0.90× LT (1)

TOL CPLEX RND M5SBB

]Opt (ind = 1) 38 52 42 42

]Feas (ind = 2) 26 15 29 30

]No Mem (ind = 3) 16 13 9 8

] No Feas (ind = 4) 2 2 2 2

] Feas=Opt 7 0 13 13

Total time (Opt) 68.09 27715.43 562.24 560.84

Average time (Opt) 1.79 532.99 13.39 13.35

Total time (Feas) 10750.07 42689.33 20546.84 49560.83

Average time (Feas) 413.46 2845.96 708.51 1652.03

% of solved 46 63 51 51

% of (Feas=Opt) 9 0 16 16
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Table 4.11: Results for instances from group 3 with Dmax(3) = 0.90× LT (2)

TOL CPLEX RND M5SBB

]Opt (ind = 1) 17 21 21 21

]Feas (ind = 2) 16 12 20 20

]No Mem (ind = 3) 9 9 1 1

] No Feas (ind = 4) 0 0 0 0

] Feas=Opt 3 1 5 5

Total time (Opt) 488.29 11141.02 1719.22 1690.68

Average time (Opt) 28.72 530.52 81.87 80.51

Total time (Feas) 2869.47 43221.07 8089.95 34012.03

Average time (Feas) 179.34 3601.76 404.50 1700.60

% of solved 41 50 50 50

% of (Feas=Opt) 7 2 12 12

4.6.2 Numerical Analysis

According to the computational results, the numerical analysis identifies these points:

(i) The most effective method on average is our Multistart Branch and Bound for ADVRP

(MSBB-ADVRP).

• Group 1: For 92 instances in the first stage (with Dmax(1) = ∞), the rate of success

is 100% for TOL-ADVRP, 80% for CPLEX-ADVRP, 100% for RND-ADVRP, and 100%

for M5SBB-ADVRP. For the second stage (with Dmax(2) = 0.90 × LT (1)) the rate

of success is 72%, 78%, 77%, and 79% for TOL-ADVRP, CPLEX-ADVRP, RND-ADVRP,

and M5SBB-ADVRP respectively. Finally, in the third stage (with Dmax(3) = 0.90×
LT (2)) the rate of success for the programs TOL-ADVRP, CPLEX-ADVRP, RND-ADVRP

and M5SBB-ADVRP is 55%, 71%, 74%, and 77% respectively.

Our M5SBB-ADVRP is the best in group 1. However, if the percentage of the in-

stances where (Feas = Opt) is added, the effectiveness of our M5SBB-ADVRP will

improve (See Figure 4.6).
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Figure 4.6: % of solved and % of (Feas=Opt) of Group 1 in all stages

• Group 2: For 92 instances in the first stage (with Dmax(1) = ∞), the rate of

success is 92% for TOL-ADVRP, 81% for CPLEX-ADVRP, 92% for RND-ADVRP, and

92% for M5SBB-ADVRP. For the second stage (with Dmax(2) = 0.90 × LT (1))

the rate of success is 46%, 79%, 53%, and 53% for TOL-ADVRP, CPLEX-ADVRP,

RND-ADVRP, and M5SBB-ADVRP respectively. Finally, in the third stage (with

Dmax(3) = 0.90 × LT (2)) the rate of success for the three programs TOL-ADVRP,

CPLEX-ADVRP, RND-ADVRP and M5SBB-ADVRP is 36%, 76%, 60%, and 62% respec-

tively.

Figure 4.7: % of solved and % of (Feas=Opt) of Group 2 in all stages

If we consider the percentage of instances where the value of the feasible solution

equals the value of the optimal solution, the performance of M5SBB-ADVRP will be

the best compared with CPLEX-ADVRP (See Figure 4.7).
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• Group 3: For 92 instances in the first stage (with Dmax(1) = ∞), the rate of

success is 88% for TOL-ADVRP, 79% for CPLEX-ADVRP, 89% for RND-ADVRP, and

89% for M5SBB-ADVRP. For the second stage (with Dmax(2) = 0.90 × LT (1))

the rate of success is 46%, 63%, 51%, and 51% for TOL-ADVRP, CPLEX-ADVRP,

RND-ADVRP, and M5SBB-ADVRP respectively. Finally, in the third stage (with

Dmax(3) = 0.90 × LT (2)) the rate of success for the three programs TOL-ADVRP,

CPLEX-ADVRP, RND-ADVRP and M5SBB-ADVRP is 41%, 50%, 50%, and 50% respec-

tively.

By considering the percentage of instances where the value of the feasible solu-

tion equals the value of the optimal solution, the most effective method is our

M5SBB-ADVRP (See Figure 4.8).

Figure 4.8: % of solved and % of (Feas=Opt) of Group 3 in all stages

(ii) Regarding efficiency, it can be seen that TOL-ADVRP, RND-ADVRP and M5SBB-ADVRP are

much faster than CPLEX-ADVRP.

• Group 1: In the first stage TOL-ADVRP is efficient (average time for TOL-ADVRP is

0.05 seconds, for CPLEX-ADVRP is 346.79, for RND-ADVRP is 0.08, and for M5SBB-ADVRP

is 0.09). This is because TOL-ADVRP uses a deterministic way in the search and

there is no need to generate random numbers. In the second and third stages, the

RND-ADVRP is more efficient for solving instances (average time for RND-ADVRP are

2.21 and 31.99 seconds in the second and third stages respectively), whereas the
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Figure 4.9: Average time for instances in Group 1

average time for M5SBB-ADVRP is 3.59 and 36.28. The difference is not big between

RND-ADVRP and M5SBB-ADVRP. However the percentage of solved instances with

M5SBB-ADVRP is larger than the percentage of solved instances with RND-ADVRP.

In all stages the opposite holds for CPLEX-ADVRP (346.79 seconds, 745.06 seconds,

and 1055.81 seconds in the first, second, and third stages). However in that stage

the number of instances solved exactly by CPLEX-ADVRP is not the highest among

them (See Figure 4.9).

• Group 2: The most efficient method is RND-ADVRP in all stages where the average

time is 2.82 seconds, 20.55 seconds, and 25.74 seconds. The M5SBB-ADVRP comes

next with average time (2.87 seconds, 20.28 seconds, 26.00 seconds). On the other

hand, the percentage of solved instances in M5SBB-ADVRP is higher than RND-ADVRP

only in stage three while both have the same percentage in the first and second

stage (92%, 53%).

The CPLEX-ADVRP has the longest average time whilst also maintaining the highest

rate of solved instances in the second and third stages, without considering the

percentage of the instances where the value of the feasible solution equals the

value of the optimal solution (See Figure 4.10).
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Figure 4.10: Average time for instances in Group 2

• Group 3: The most efficient method is TOL-ADVRP with (4.70 seconds, 1.79 seconds,

28.72 seconds in first, second, and third stages) with the lowest percentage of

solved instances. The second most efficient method is M5SBB-ADVRP with 5.48

seconds, 13.35 seconds, and 80.51 seconds. Moreover, it has the highest percentage

of solved instances in the first and third stages and second highest percentage in

the second stages.

The CPLEX-ADVRP has the longest average time as well as the highest rate of

solved instances, only in the second stage, without considering the percentage

of the instances where the value of the feasible solution equals the value of the

optimal solution (See Figure 4.11).

(iii) When comparing all methods with respect to all 3 stages, we get the following obser-

vations (See Figure 4.12):

• Stage 1: The best performance in terms of effectiveness and efficiency is obtained

by multistart method M5SBB-ADVRP and RND-ADVRP while the worst performance

is obtained by CPLEX-ADVRP.

• Stage 2: Multistart method has the best performance by considering the percent-
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Figure 4.11: Average time for instances in Group 3

age of the instances where the value of the feasible solution equals the value of

the optimal solution.

However, CPLEX-ADVRP is the most effective (not efficient) without the previous

consideration.

• Stage 3: The most effective and efficient methods are multistart method RND-ADVRP

and M5SBB-ADVRP by considering the percentage of the instances where the value of

the feasible solution equals the value of the optimal solution (83% for M5SBB-ADVRP

and 67% for CPLEX-ADVRP).

Based on the percentage of the solved instances, the highest performance is

CPLEX-ADVRP with 67%, while the second highest is M5SBB-ADVRP with 66%. Note

the small difference between them. However, if we take into account the number

of exactly solved instances by M5SBB-ADVRP and its CPU time used, it is clear

that the most reliable method in this stage is M5SBB-ADVRP.

(iv) When comparing small and large test instances, it can be concluded that the CPLEX-ADVRP

is most effective (not efficient) for small instances. However, for large test instances,

multistart method M5SBB-ADVRP is the most effective and efficient.
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Figure 4.12: Effectiveness and efficiency for instances of all groups in all stages
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4.7 Conclusion

We consider ADVRP and suggest exact algorithms for solving it. They are based on solv-

ing the Assignment problem relaxation and branching based on tolerances [6], where using

Assignment problem as relaxation to ADVRP was proposed for the first time by Laporte et.

al in 1987 [113]. We introduce a new method MSBB-ADVRP based on randomness in choosing

the next node in the branch and bound tree and restart the algorithm again and we compare

with CPLEX-ADVRP.

Computational experiments show that with our multistart approach MSBB-ADVRP we are

able to solve at least 77% in group 1, 53% in group 2, and 50% in group 3 of instances

in all stages with up to 1000 customers. while CPLEX-ADVRP is able to solve at least 71%,

76%, and 50% in group 1, group 2, and in group 3 respectively. It appears that MSBB-ADVRP

on average needs between 0.08 and 81.87 seconds, while CPLEX needs between 303.62 and

1055.81 seconds.

In summary, the results of experiments emphasize that using MSBB-ADVRP provides good

solutions in reasonable computational time. Moreover, as far as we know, we are able to

exactly solve problems with larger dimensions than previous methods in the literature. For

example the largest problem solved by CPLEX has n = 360 customers, while we are able

to solve exactly with n = 1000 customers. It is interesting to note that the dimensions of

problems solved by our methods depend on available memory of the computer used. Thus,

our approach may be used in the future using new computers with larger memory.

Real world instances are difficult to solve in our method. The reason is not a drawback of

our method but the lower bounding procedure (AP). These instances are clustered, making

it difficult to deal with because AP finds several subtours in the search tree, which deems

unhelpful in destroying one of them. Random instances do not have this property and we

prove computationally that our method outperforms other methods.

For future research, the running computational times of the algorithm can be improved

by developing a good heuristic such as Variable Neighborhood Search [85, 131], and to use

it as an initial upper bound. Another possibility is to improve lower bounds by adding
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more constraints to the assignment problem or to relax some of them using Lagrangian

multipliers. Such an approach does not use the advantages provided by fast Hungarian

method and could be a research topic for future work. Although we implement our B&B

based method on ADVRP problem, the method is quite general and may be adapted for

solving other VRP variants. Our approach is applied and tested on large instances. We are

proud to report that a good performance is achieved. We recommend our approach to be

applied on instances where symmetry does not exist.
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Chapter 5

Variable Neighborhood Search for

ADVRP

Variable neighborhood search (VNS) is proposed by Mladenović and Hansen in 1997 [131].

Its basic idea is to use different neighborhoods in order to move from a local optima towards

the global optima [77, 78, 79, 80, 81, 84, 87].

As mentioned before, our exact method (multi-start branch and bound) does not always

find a feasible solution and stops due to lack of memory. Moreover, for some large instances

when Dmax is tight, solving them can become harder and the exact method may stop before

it finds any feasible solution. For these reasons, in this chapter we develop a heuristic based

on VNS to find a good feasible solution in a short space of time.

The structure of this chapter is as follows: In section 5.1 we present two initialization

algorithms for ADVRP. Our VNS based heuristic for ADVRP is designed and explained

in section 5.2 with an illustrative example. Section 5.3 contains computational results and

finally in section 5.4 there is a conclusion.

5.1 Initialization Algorithms

We developed a code to solve ADVRP heuristically by using a VNS approach. We call our

heuristic VNS-ADVRP. As mentioned in Section 2.2, heuristics for solving VRP variants use
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two local search types: cluster-first-route-second, or route-first-cluster-second. We use in

this thesis route-first-cluster-second. Our heuristic VNS-ADVRP in its initialization step, calls

two subroutines: INIT-TSP and INIT-ADVRP.

5.1.1 INIT-TSP algorithm

INIT-TSP generates a few initial ATSP solutions and improves them. The INIT-TSP algo-

rithm is given in Algorithm 13 and its steps can be explained in the following way:

• build a random initial ATSP solution (RndPermut procedure).

• improve the initial solution by a well known local search (Swap procedure). It repeats

the following steps until no improvement is found or the number of iterations reaches

1000:

– exchange order of any two customers in the initial solution in a deterministic way;

calculate the value of the objective function. Assume there are n customers in the

ATSP tour, then there are n(n−1)
2 possibilities for exchange. Each time 4 arcs are

added and 4 arcs are deleted at most. Finally choose the best swap between two

customers.

– if there is improvement, apply the best swap in the initial solution ATSP. Other-

wise, keep the current solution as it is.

Both RndPermut and Swap procedures are repeated a few times (10 times), the best

among them is chosen to be used as an input in the next step.

5.1.2 INIT-ADVRP Algorithm

INIT-ADVRP transforms ATSP solution to ADVRP solution and it has two stages:

• First stage:

– build (n− 1) solutions to ADVRP. The difference between solutions is the order

of the second vertex in the tour (i. e., the first customer), where the depot is
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Procedure INIT-TSP(n,m, D, ntrialmax, x, ftsp);

fbesttsp ←∞, ntrial ← 0 ;1

while (ntrial < ntrialmax) do2

ntrial ← ntrial + 1 ;3

RndPermut(x, f)// Build random TSP tour;4

Swap(x, x′)// Best improvement local search;5

if f(x′) < f(xtsp) then6

xtsp ← x′;7

end

end

x ← xtsp;8

Algorithm 13: Algorithm of INIT-TSP for initial solution to TSP

considered as a first vertex in each tour. We consider that all vehicles have to be

used. For this reason, we use a variable Tmax, its value is calculated as follows:

Tmax = f(x)
m , where f(x) is the value of the objective function for the TSP solution,

and m is the number of vehicles. We use the value of Tmax to cluster ADVRP

solution.

– compare between the obtained feasible solutions to choose the best feasible solu-

tion.

In case INIT-ADVRP can not find any feasible solution then we choose based on the

value of the new objective function F :

F = fold + 100×max{LT −Dmax, 0} (5.1)

Where LT is the longest tour in the current solution (feasible or infeasible). If the

obtained solution is feasible then LT < Dmax and F = fold. Otherwise, an infeasible

solution will be chosen based on the smallest amount of infeasibility.

• Second stage: improve each tour in the chosen solution (Swap procedure). The im-

proved solution is used as an initial solution to ADVRP in the VNS-ADVRP algorithm.
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Algorithm INIT-ADVRP(n,m, Dmax, D, x, f, xbest, fbest);

R ← x; fbest = ∞;1

(Initial solution to ADVRP) ;

for i = 2 to n do2

Cluster customers from big tour R(i) into subtours (R1, .., Rm′) by3

choosing x(i) as the first customer after the depot, where m′ is the

number of subtours // Best Improvement;

Calculate fi = f(R1) + f(R2) + .. + f(Rm′) ;4

if fi < fbest then5

Rbest ← R(i);

end

end

Rbest ← (R1, .., Rm) (Improve solution);6

for j = 1 to m do7

Swap(Rj , R
′
j) // Local Search ;8

if f ′j < fj then9

Rj ← R′
j ;10

end

end

fbest = f1 + f2 + .. + fm;11

Rbest = (R1, .., Rm);12

Algorithm 14: Algorithm of INIT-ADVRP

INIT-ADVRP algorithm is given in Algorithm 14

5.2 VNS-ADVRP Algorithm for ADVRP

In this section we will explain VNS-ADVRP Algorithm. This algorithm is considered the

main algorithm in our program where CPU time is used as a stopping condition. Two

subroutines are called in a loop in order to improve the initial ADVRP solution as follows:
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Algorithm VNS-ADVRP(n,m, D, itermax, xopt, fopt, tmax, kmax);

INIT-TSP(n,m, Dmax, D, itermax, x, ftsp);1

// Get initial TSP solution;

INIT-ADVRP(n,m, Dmax, D, x, f, xbest, fbest);2

// Get initial ADVRP solution;

niter ← 0;3

while (t < tmax) do4

niter ← niter + 1;5

if(niter > nitermax) then go to 1;6

k ← 0;7

while k < kmax do8

Shake(x, x′, k) // Shaking;9

LocalSearch(x′, x′′) // First improvement;10

NeighborhoodChange(x, x′′, k) // Change neighborhood;11

end

t=time();

end

xopt = x, fopt = f12

Algorithm 15: Algorithm of VNS for ADVRP

• Shake (x, x′, k): This subroutine swaps k randomly chosen pairs of customers in the

kth neighborhood of x (x′ ∈ Nk(x)). For example if k = 2 then two pairs of customers

are swapped at random to get a new solution x′ ∈ N2(x).

• Local Search (x, x′, x′′): This subroutine searches for a feasible solution by moving a

customer from one tour to be inserted in another tour.

The details of VNS-ADVRP algorithm are given in Algorithm 15, and the algorithm of

NeighborhoodChange is given in Algorithm 1.
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Procedure Shake(x, x′, k);

Generate RND ∈ (0, 1);1

if (RND < 1
2) then2

Shake1(x, x′, k);3

else

Shake2(x, x′, k)4

end

Algorithm 16: Algorithm of Shaking

5.2.1 Shaking Agorithms

Procedure Shake1(x, x′, k);

for i = 1 to k do1

Generate random index j ∈ [2, n + m];2

if (xj 6= 1 and xj+1 6= 1) then3

Swap between customer xj and customer xj+1 ;4

else

if (xj 6= 1 and xj−1 6= 1) then5

Swap between customer xj and customer xj−1 ;6

else

GoTo 2;7

end

end

end

Algorithm 17: Algorithm of Shake1

The main shaking algorithm is given in Algorithm 16. Two shaking algorithms are used

as explained below:

• Shake1(x;x′; k) is given in Algorithm 17. It repeats the following steps to get a solution

from N
(1)
k (x) starting from the first to the kth neighborhood:
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– it chooses a customer x(j) randomly (step 2).

– if this customer x(j) is not the last customer in its tour, then it swaps between

customer x(j) and x(j + 1) (step 4), otherwise it swaps between customer x(j)

and x(j − 1) (step 6).

– in case the chosen customer is a depot or it exists alone in its tour, then choose

another customer (step 7).

• Shake2(x;x′; k) is given in Algorithm 18. It repeats k times the following steps to

get a solution from N
(2)
k (x) starting from the first to the kth neighborhood: In each

neighborhood, it chooses two different customers randomly then swaps them.

Procedure Shake2(x, x′, k);

for i = 1 to k do1

Generate two random numbers j1, j2 ∈ [2, n + m], j1 6= j2;2

if (xj1 6= 1 and xj2 6= 1) then

Swap between customer xj1 and customer xj2 ;3

else

GoTo 2;4

end

end

Algorithm 18: Algorithm of Shake2

5.2.2 Local Search Algorithm

Local search algorithm uses the first improvement strategy and applies insertion which is a

special case of 3-opt. It starts from a solution obtained by shaking which could be feasible

or not. Then it inserts every customer xi ∈ Tj between any two vertices that belong to all

other subtours, except Tj . The cardinality of this insertion is O(n2).

The algorithm for local search is given in Algorithm 19 and the main steps in the algorithm

are explained below:
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Procedure Local Search(x′, x′′);

niter ← 0, Improve ← true;1

while (Improve) do2

niter ← niter + 1;3

Improve = False;4

for i = 2 to n do5

Find in x′ index of the tour j where customer xi ∈ Tj);6

for h = 1 to n do7

if xh 6∈ Tj then8

Insert customer xi between vertex xh and xh+1;9

if tour improved then10

Save customer xi and vertex xh and tour Tj ;11

Improve = true;12

GoTo 14;13

end

end

end

end

if Improve then14

x′′ ← (in x′ insert customer xi between vertex xh and xh+1 in15

the tour Tj);

Update objective function f ;16

x′ ← x′′;17

end

end

Algorithm 19: Algorithm of Local Search

• For each index i ∈ [2, n] in the solution x′, find the tour j that contains the customer

(xi ∈ Tj).
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• For each vertex xh not in the tour Tj insert customer xi between vertex xh and xh+1:

– If the solution after insertion produces a feasible solution then calculate the dif-

ference (dif) between the objective function before and after the insertion.

– Otherwise this solution is not considered, continue with insertion the same cus-

tomer xi after the next vertex to xh and so on.

• If the difference produces a negative value (that means there is an improvement in

the tour), then save the customer xi, the tour Tj , and the vertex xh. Break all loops,

update the solution x by inserting the customer xi from the tour Tj between the vertex

xh and xh+1, then update the value of the objective function f = f + dif .

• As long as the improved solution is obtained, start again from the beginning. Other-

wise, stop when there is no improvement.

5.2.3 Illustrative Example

We will explain the VNS-ADVRP Algorithm on the same example we used in section 3.4.1 and

section 4.3.5. In it, there are 8 vertices (7 customers and one depot) and the maximum

distance allowed is set to Dmax = ∞.

The location of the first vertex is considered a depot. In the distance matrix, the first row

represents the distances from the depot to all other customers. The first column represents

the distances from each customer to the depot, and all other entries represent distances

between the customers. The distances between the customers (cij) are shown in Table 5.1

as an asymmetric matrix.

We now give detailed steps of the algorithm VNS-ADVRP illustrated on this small example.

INT-TSP Algorithm (see section 5.1.1)

• Build an initial solution to TSP. Without loss of generality, we assume that the order

is: 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8, where vertex 1 is the depot. We will

assume also that there is an additional arc that connects the last vertex in the tour

with the first vertex in the tour. Therefore, the initial order of customers in a TSP tour
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Table 5.1: Distance matrix for ADVRP with n=8 and m=2

1 2 3 4 5 6 7 8

1 ∞ 2 11 10 8 7 6 5

2 6 ∞ 1 8 8 4 6 7

3 5 12 ∞ 11 8 12 3 11

4 11 9 10 ∞ 1 9 8 10

5 11 11 9 4 ∞ 2 10 9

6 12 8 5 2 11 ∞ 11 9

7 10 11 12 10 9 12 ∞ 3

8 7 10 10 10 6 3 1 ∞

is: x = (x1, x2, x3, x4, x5, x6, x7, x8) = (1, 2, 3, 4, 5, 6, 7, 8). The value of the objective

function is then:

f(x) = c(1, 2) + c(2, 3) + c(3, 4) + c(4, 5) + c(5, 6) + c(6, 7) + c(7, 8) + c(8, 1)

= 2 + 1 + 11 + 1 + 2 + 11 + 3 + 7 = 38.

• Improve the initial solution by swap local search until no improvement is found or the

number of iterations reaches 1000.

First iteration: We start by swapping x1 with all other vertices in a deterministic way.

This will produce the following seven TSP tours in the neighborhood of x:

1. (2, 1, 3, 4, 5, 6, 7, 8)

2. (3, 2, 1, 4, 5, 6, 7, 8)

3. (4, 2, 3, 1, 5, 6, 7, 8)

4. (5, 2, 3, 4, 1, 6, 7, 8)

5. (6, 2, 3, 4, 5, 1, 7, 8)

6. (7, 2, 3, 4, 5, 6, 1, 8)
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7. (8, 2, 3, 4, 5, 6, 7, 1)

Continue swapping xi with all other vertices xj except with {xj |j < i} in a deterministic

way, to get the remaining TSP tours. At the end, there will be n(n−1)
2 possible TSP

tours. Since n = 8, there will be 28 TSP tours in N1 neighborhood of x.

N1(x) = {(2, 1, 3, 4, 5, 6, 7, 8), (3, 2, 1, 4, 5, 6, 7, 8), (4, 2, 3, 1, 5, 6, 7, 8), (5, 2, 3, 4, 1, 6, 7, 8),

(6, 2, 3, 4, 5, 1, 7, 8), (7, 2, 3, 4, 5, 6, 1, 8), (8, 2, 3, 4, 5, 6, 7, 1), (1, 3, 2, 4, 5, 6, 7, 8),

(1, 4, 3, 2, 5, 6, 7, 8), (1, 5, 3, 4, 2, 6, 7, 8), (1, 6, 3, 4, 5, 2, 7, 8), (1, 7, 3, 4, 5, 6, 2, 8),

(1, 8, 3, 4, 5, 6, 7, 2), (1, 2, 4, 3, 5, 6, 7, 8), (1, 2, 5, 4, 3, 6, 7, 8), (1, 2, 6, 4, 5, 3, 7, 8),

(1, 2, 7, 4, 5, 6, 3, 8), (1, 2, 8, 4, 5, 6, 7, 3), (1, 2, 3, 5, 4, 6, 7, 8), (1, 2, 3, 6, 5, 4, 7, 8),

(1, 2, 3, 7, 5, 6, 4, 8), (1, 2, 3, 8, 5, 6, 7, 4), (1, 2, 3, 4, 6, 5, 7, 8), (1, 2, 3, 4, 7, 6, 5, 8),

(1, 2, 3, 4, 8, 6, 7, 5), (1, 2, 3, 4, 5, 7, 6, 8), (1, 2, 3, 4, 5, 8, 7, 6), (1, 2, 3, 4, 5, 6, 8, 7)}.

The difference in the value of the objective function before and after the swap is

calculated by adding the length of the new arcs and subtracting the length of the

deleted arcs. The current TSP tour is: x = (1, 2, 3, 4, 5, 6, 7, 8). If we swap x1 and

x2 then we get x1 = (2, 1, 3, 4, 5, 6, 7, 8), the difference ∆1 between f(x1) and f(x) is

calculated as follows:

∆1 = c(8, 2) + c(2, 1) + c(1, 3)− c(1, 2)− c(2, 3)− c(8, 1)

= 10 + 6 + 11− 2− 1− 7 = 17.

If we get a negative number, the improved value of the objective function is obtained.

Otherwise, the swap is not useful since the value of the objective function is increased.

Each time two vertices (xi, xk) are swapped, the value of ∆j(j = 1, ..., 28) is calculated.

We keep the smallest value of ∆ = min{∆j |j = 1, ..., 28} which corresponds to the

best swap. In this example the value of ∆ is equal to −7 and it corresponds to

the swap between x3 and x6 in x. Therefore, the new incumbent solution is x′ =

(1, 2, 6, 4, 5, 3, 7, 8), where f(x′) = f(x) + ∆ = 38 − 7 = 31. Set x = x′ and use it as

the new best solution.

Second iteration: In the second iteration, we get ∆ = 4, so the local minimum with

respect to 1-swap neighborhood is reached and we stop local search since we get the
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local minimum x = (1, 2, 6, 4, 5, 3, 7, 8) with the objective function value f(x) = 31.

In INT-TSP Algorithm, we generate 10 random initial TSP tours and we try to improve each

of them by local search. We choose the best local minimum obtained. Note that we do not

get the same tour in each run of the code since it depends on the random initial tour. The

best tour we found in 10 restarts is: x = (1, 2, 3, 7, 8, 6, 4, 5) and the value of the objective

function is 26. This TSP tour is then used as an input of the next initialization algorithm

(INIT-ADVRP Algorithm) to find the best initial DVRP solution.

INIT-ADVRP Algorithm (see section 5.1.2)

The best obtained TSP tour is x = (1, 2, 3, 7, 8, 6, 4, 5). This algorithm has two stages:

• First stage: we build n − 1 = 8 − 1 = 7 solutions to DVRP. The value of Tmaxis

calculated as follows: Tmax = f(x)
m = 26

2 = 13. We use the value of Tmax to cluster

ADVRP tours. For each solution i (i = 1, ..., 7), we calculate the length of each tour j:

LT (i, j) and the corresponding value of the objective function. Finally, we determine

whether the solution is feasible or not:

– first solution x(1) = (1, 2, 3, 7, 8, 6, 4, 5)

T (1, 1) : (1, 2, 3, 7, 8, 6, 4), LT (1, 1) = c(1, 2) + c(2, 3) + c(3, 7) + c(7, 8) + c(8, 6) +

c(6, 4) + c(4, 1) = 2 + 1 + 3 + 3 + 3 + 2 + 11 = 25,

T (1, 2) : (1, 5), LT (1, 2) = c(1, 5) + c(5, 1) = 8 + 11 = 19,

f(x(1)) = LT (1, 1) + LT (1, 2) = 25 + 19 = 44 (feasible solution).

– second solution x(2) = (1, 3, 7, 8, 6, 4, 5, 2)

T (2, 1) = (1, 3, 7), LT (2, 1) = 24,

T (2, 2) = (1, 8, 6, 4, 5, 2), LT (2, 2) = 28,

f(x(2)) = 52 (feasible solution).

– third solution x(3) = (1, 7, 8, 6, 4, 5, 2, 3)

T (3, 1) = (1, 7, 8, 6, 4), LT (3, 1) = 25,

T (3, 2) = (1, 5, 2), LT (3, 2) = 25

T (3, 3) = (1, 3), LT (3, 3) = 16,

f(x(3)) = 66 (infeasible solution since we found 3 tours instead of 2).
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– forth solution x(4) = (1, 8, 6, 4, 5, 2, 3, 7)

T (4, 1) = (1, 8, 6, 4, 5, 2), LT (4, 1) = 28,

T (4, 2) = (1, 3, 7), LT (4, 2) = 24,

f(x(4)) = 52 (feasible solution).

– fifth solution x(5) = (1, 6, 4, 5, 2, 3, 7, 8)

T (5, 1) = (1, 6, 4, 5, 2), LT (5, 1) = 27,

T (5, 2) = (1, 3, 7), LT (5, 2) = 24,

T (5, 3) = (1, 8), LT (5, 3) = 12,

f(x(5)) = 63 (infeasible solution).

– sixth solution x(6) = (1, 4, 5, 2, 3, 7, 8, 6)

T (6, 1) = (1, 4, 5, 2), LT (6, 1) = 28,

T (6, 2) = (1, 3, 7), LT (6, 2) = 24,

T (6, 3) = (1, 8, 6), LT (6, 3) = 20,

f(x(6)) = 72 (infeasible solution).

– seventh solution x(7) = (1, 5, 2, 3, 7, 8, 6, 4)

T (7, 1) = (1, 5, 2), T (7, 1) = 25

T (7, 2) = (1, 3, 7), LT (7, 2) = 24,

T (7, 3) = (1, 8, 6, 4), LT (7, 3) = 21,

f(x(7)) = 70 (infeasible solution).

The list of feasible solutions found in the first stage is {x(1), x(2), x(4)}. Their objective

function values are f(x(1)) = 44, f(x(2)) = 52, f(x(4)) = 52. Therefore, we choose

x(1) = (1, 2, 3, 7, 8, 6, 4, 1, 5) as the best feasible solution. Its value is f(x(1)) = 44.

• Second stage: The swap procedure for each tour in the solution is applied to improve

the solution. In our example, the obtained solution x(1) is not improved. Therefore,

this solution x(1) is used as an input for VNS-ADVRP algorithm.

VNS-ADVRP Algorithm (see section 5.2)

In this algorithm, the CPU time is used as the stopping condition (tmax = 10 seconds),

and we have two subroutines: shaking and local search. The input solution for this algorithm
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is rewritten as DVRP solution by writing the tours next each other and adding the depot as

the last vertex in the solution as follows:

x = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) = (1, 2, 3, 7, 8, 6, 4, 1, 5, 1).

Shaking Steps: (see section 5.2.1) Generate a random number RND ∈ (0, 1). Based on

that value, apply Shake1 Algorithm (see Algorithm 17) or Shake2 Algorithm (see Algorithm

18). Assume RND = 0.19 < 0.5. This means that Shake1 algorithm is chosen. The

neighborhood counter k is set to 1 (k = 1); we need to generate one index at random

j ∈ [2, 10] to swap between a pair of customers. Assume that j = 5. Since x5 = 8 is not a

depot, we check if x5+1 = x6 is not a depot as well. Since x6 = 6 is a customer, we swap

x5 and x6 (i.e., customers 8 and 6) to get a new solution x′ = (1, 2, 3, 7, 6, 8, 4, 1, 5, 1) and

f(x′) = 48 + 19 = 67 (see Figure 5.1:A).

Local Search (Insertion): (see section 5.2.2)

• Start from the first customer in the first tour T (1, 1) = (x1, x2, x3, x4, x5, x6, x7) =

(1, 2, 3, 7, 6, 8, 4) which is x2 = 2. Insert this customer in between any two vertices of

all other tours T (1, 2) = (x8, x9, x10) = (1, 5, 1) (except tour T (1, 1)). So we get the

following two solutions:

– first solution: insert x2 = 2 between x8 = 1 and x9 = 5 to get:

x′(1) = (1, 3, 7, 6, 8, 4, 1, 2, 5, 1) (see Figure 5.1:B). Calculate the difference in the

length of each tour as follows:

∆1 = c(1, 3)− c(1, 2)− c(2, 3) = 8,

∆2 = c(2, 5) + c(1, 2)− c(1, 5) = 2.

Check whether adding the value of ∆1 to the length of T (1, 1) and adding the

value of ∆2 to the length of T (1, 2) are less than the value of Dmax; if yes, the

obtained solution is feasible. We then need to check if there is an improvement in

the value of the objective function as follows: if the value of ∆1 + ∆2 is negative,

then there is an improvement; keep track of this insertion (step 11 in Algorithm

19). Otherwise, continue local search. In the example: ∆1 +∆2 = 10 so we ignore

this solution.
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Figure 5.1: Current solution before and after insertion (A,B,C)

– second solution: insert x2 = 2 between x9 = 5 and x10 = 1 to get:

x′(2) = (1, 3, 7, 6, 8, 4, 1, 5, 2, 1) (see Figure 5.1:C). Calculate ∆1 = 8, ∆2 = 6. The

obtained solution is still feasible so check if there is improvement:

∆1 + ∆2 = 14. Ignore this solution and continue by inserting next customer.

• Second customer in the first tour x3 = 3 is inserted in the other tour to get two solutions

(see Figure 5.1:A):

– first solution: insert x3 = 3 between x8 = 1 and x9 = 5 to get:

x′(3) = (1, 2, 7, 6, 8, 4, 1, 3, 5, 1) (see Figure 5.2:D). Calculate the difference in the
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Figure 5.2: Solutions after insertion (D,E,F)

length of each tour to get: ∆1 = 2, ∆2 = 11. The obtained solution is still feasible

but there is no improvement, so ignore it and continue.

– second solution: insert x3 = 3 between x9 = 5 and x10 = 1 to get:

x′(4) = (1, 2, 7, 6, 8, 4, 1, 5, 3, 1) (see Figure 5.2:E). Calculate the difference in the

length of each tour to get:∆1 = 2, ∆2 = 3. The obtained solution is still feasible

but there is no improvement, so ignore it and continue, etc.

If we insert x5 = 6 between x8 = 1 and x9 = 5 we get: x′(7) = (1, 2, 3, 7, 8, 4, 1, 6, 5, 1)

(see Figure 5.2:F), ∆1 = −18, and ∆2 = 10. The obtained solution is still feasible, and
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there is an improvement since ∆1 + ∆2 = −8. So we save the solution, and update

x′′ = (1, 2, 3, 7, 8, 4, 1, 6, 5, 1), f(x′′) = f(x′) + ∆1 + ∆2 = 67 − 18 + 10 = 59. Set

x′ = x′′ = (1, 2, 3, 7, 8, 4, 1, 6, 5, 1) and start the local search again by inserting x2 = 2

between x7 = 1 and x8 = 6, and so on.

At the end of our VNS-ADVRP algorithm, we get x = (1, 2, 3, 1, 7, 8, 6, 4, 5, 1) as the best

feasible solution in 10 seconds, and the value of the objective function is f(x) = 34. Note

that the final solution obtained is optimal (see section 4.3.5).

5.3 Computational Results

All experiments were implemented under windows XP and on intel(R) Core(TM)2 CPU

6600@2.40GHz, with 3.24 GB of RAM. The code is written in Fortran.

Test Instances. Full asymmetric distance matrices are generated at random using the uni-

form distribution to generate integer numbers. These integer numbers belong to one of these

intervals [1, 100], [1, 1000], [1, 10000]. The shortest distance between every two customers is

calculated. The size of test instances between 40 to 1000 customers is categorized as fol-

lows: small test instances {40, 80, .., 200}, large test instances {240, 280, .., 1000}. For each

n ≤ 200, two different number of vehicles are used: m1 = n/20 and m2 = n/10. For instances

240 ≤ n ≤ 1000, we use only m1.

We generate four different distance matrices for each combination of (n,m). However,

only one distance matrix is generated for large test instances (i.e., 200 < n ≤ 1000). The

maximum distance allowed is Dmax = ∞. The maximum CPU time for small test instances

is 10 seconds and for large test instances is 100 seconds. All test instances used in this thesis

can be found on the following web site: http://www.mi.sanu.ac.rs/∼nenad/advrp/

We evaluate the performance of VNS based on the difference between:

• the value of best feasible solution obtained by VNS.

• and the value of the optimal solution or the best value of feasible solution obtained so

far by the previous methods: MSBB-ADVRP, CPLEX-ADVRP.
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5.3.1 Data Structure

The initialization algorithm INIT-TSP requires the following information for each instance:

the number of vertices (n), the number of vehicles (m), maximum distance allowed (Dmax),

and the distance matrix (d).

The order of customers in the TSP solution is stored as xtsp = (x1, x2, ..., xn) while

the order in ADVRP is presented as: xdvrp = (x1, x2, ..., x1, xi, xi+1, ..., xn, x1) where x1

represents the depot and the others represent the customers. The total number that x1 will

appear in xdvrp is equal to (m + 1).

5.3.2 Numerical Analysis

We compared three methods: CPLEX-ADVRP, MSBB-ADVRP (see Chapter 4), and VNS-ADVRP.

The tables of results present the value of the objective function to the solution obtained

(optimal solution or best feasible solution found so far), CPU time, and %dev, where:

%dev =
f(V NS)− f(bestknown)

f(bestknown)
× 100 (5.2)

See Appendix B for more details about the results. The summary table contains the number

of vertices, the average %dev and the average CPU Time in each case (see Table 5.2).

The percentage of error (%dev) and the CPU Time increase when the number of cus-

tomers increase. The results we get are not good enough. In addition, when we reduced

Dmax, sometimes we faced difficulties in finding any feasible solution. The reason for this

is probably that the route-first-cluster-second approach is not suitable. In Appendix B, we

present some limited computational results for the case when Dmax is less than infinity.

We believe that the cluster-first-route-second approach will improve VNS results. How-

ever, when the number of customers increases, which may be a realistic urban problem, all

exact solution methods fail to reach a solution and a heuristic is the only choice.
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Table 5.2: Summary results for instances from group 1, 2, 3 with Dmax(1) = ∞

Average of Group 1 Average of Group 2 Average of Group 3

n %dev CPU %dev CPU %dev CPU

40 5.10 10.00 5.02 10.00 3.80 10.01

60 8.02 10.05 7.48 10.03 8.08 10.05

80 9.50 10.08 7.76 10.09 8.45 10.09

100 11.95 10.15 9.79 10.11 10.61 10.24

120 14.66 10.16 11.93 10.37 8.93 10.27

140 16.61 10.35 15.02 10.30 13.28 10.54

160 18.47 10.47 14.53 10.54 15.26 10.74

180 18.94 10.54 14.87 10.88 14.04 10.84

200 20.96 11.21 16.85 11.97 16.64 11.30

240-400 24.44 103.15 19.85 110.87 18.96 117.30

440-600 24.82 120.97 29.42 121.73 24.13 118.93

640-800 21.99 148.26 33.41 189.65 28.72 362.70

840-1000 18.53 246.66 35.40 394.16 30.14 559.48

5.4 Conclusion

We use VNS based heuristic to find a feasible solution to ADVRP, but we did not get

satisfactory results. The reason for why this is could be in the use of route-first-cluster-

second approach. However, the combination of VNS with an exact method could give good

results. Using the VNS solution as an initial upper bound for possible depth-first B&B

method will reduce the number of active nodes in multi-start branch and bound. Such that,

the chance of finding the optimal solution, especially for large instances, will be larger if the

value of Dmax is tight. In general, this approach can help to resolve the memory problem

of MSBB-ADVRP. For these reasons, we expect that using VNS as a heuristic to find a feasible

solution could improve the speed of our exact method or at least improve the quality of the
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incumbent solution.

In future research, to improve VNS based heuristic for solving ADVRP, we suggest the

use of cluster-first-route-second approach and use of more neighborhood structures within

recent VNS methodologies see [95].
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Chapter 6

Conclusions

6.1 Overview

In this thesis, exact and approximate solution methods for solving Asymmetric distance-

constrained vehicle routing problems (ADVRP) are discussed. In this chapter, we summarize

our scientific contributions, and also present future research directions. The main contribu-

tion of this thesis is the exact solution method for solving the larger instances compared to

previous work in the literature.

In Chapter 3, we presented a general flow based formulation for solving Asymmetric

distance- constraints vehicle routing problem (ADVRP). This formulation does not require the

distance matrix to satisfy the triangle inequality unlike Kara formulation (see [98]). It uses

the shortest distances between the depot and customers. This formulation is first illustrated

on an illustrative example. A computational comparison between this formulation and the

adapted formulation has been performed, showing advantages of our formulation.

In Chapter 4, we compared three methods for solving ADVRP: tolerance based branch-

ing (TOL-ADVRP), multistart branch and bound (MSBB-ADVRP), and commercial software

(CPLEX-ADVRP). TOL-ADVRP is a simple and fast method but has a memory consumption

problem. Therefore, we introduce the new method based on randomness in choosing the

next node in the branch and bound tree within multistart MSBB-ADVRP.

In Chapter 5, we tried to improve the initial upper bound of the exact method by using
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variable neighborhood search (VNS). VNS uses the route-first-cluster-second approach. It

appears that it is not helpful to use VNS in providing the value of the upper bound for our

multistart method. The reason being that we use best first strategy which is able to find a

feasible solution in a short time.

6.2 Contribution

The goal of this research is to increase the size of ADVRP problems that can be solved exactly

in a reasonable CPU time. The thesis is divided into three main parts. The summary of

each part is given below:

• The first part presents a general formulation to ADVRP. It appears that our formulation

is more effective and efficient i.e., it shows good results in reducing the CPU time and

increasing the number of solved instances (see [9]).

• The second part proposes three methods to solve ADVRP. We showed that our multistart

method (MSBB-ADVRP) allowed us to solve larger instances than CPLEX does using the

formulation presented by Kara in [99]. The instances that we have solved exactly (up

to 1000 customers) are much larger than the instances considered for other VRPs from

the literature.

In addition, we achieve considerable reduction in the average running time. The per-

formance of CPLEX is worse for large instances while our method performs very well

on these instances. On the other hand, the reverse is satisfied for small instances (see

[11]).

• The third part uses VNS to find a good feasible solution to ADVRP in order to solve

very large problems or to improve the upper bound for the exact method. For large

instances, VNS is a better choice for finding a feasible solution in a short amount of

time than CPLEX, which sometimes is not able to find any feasible solution in 3 hours.
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6.3 Future Research

• Our approach may be applied to other VRP variants, such as ADVRP with capacity

constraints, or in solving bus school routing problems.

• Instead of best first strategy, use guided dives search strategy (see [145] page 484).

• Combine the best-first-search with the depth-first-search: start with the best first

search then temporarily use depth first search as far as possible; next use the best first

search to jump to the best node in the search tree; then use the depth first search again

and so on.

• Improve the lower bound by using CPLEX to solve assignment constraints adding

2 new constraints (4.5 and 4.6). Use it as a procedure in exact method instead of

Hungarian algorithm.

• Another approach could be in using the lower tolerance-based branch-and-bound [60]

(instead of the upper tolerance used in this thesis).
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[143] C. Peterson and B. Söderberg. Artificial neural networks. In: E. Aarts and J. K. Lenstra, eds.,

Local search in combinatorial optimization, chapter 7, pages 173–214. John Wiley & Sons Ltd,

1997.

[144] G. R. Raidl and J. Puchinger. Combining (integer) linear programming techniques and meta-

heuristics for combinatorial optimization. In: C. Blum and M. J. B. Aguilera and A. Roli and

M. Sampels, eds., Hybrid metaheuristics an emerging approach to optimization, chapter 2, pages

31–62. Springer, 2008.

[145] G. R. Raidl, J. Puchinger, and C. Blum. Metaheuristics hybrids. In: M. Gendreau and J. Y.

Potvin, eds., Handbook of metaheuristics, chapter 16, pages 469–496. Springer, 2010.

[146] C. R. Reeves. Modern heuristic techniques for combinatorial problems. John Wiley & Sons,

Inc, 1993.

[147] C. R. Reeves. Genetic algorithms. In: M. Gnedreau and J. Y. Potvin, eds., Handbook of

metaheuristics, chapter 5, pages 109–140. Springer, 2010.

[148] C. R. Reeves and J. E. Rowe. Genetic algorithms - Principles and perspectives. Kluwer, Norwell,

MA, 2002.

[149] S. Remde, P. Cowling, K. Dahal, and N. Colledge. Exact/heuristic hybrids using rvns and

hyperheuristics for workforce scheduling. In EvoCOP’07 Proceedings of the 7th European con-

ference on Evolutionary computation in combinatorial optimization, pages 188–197, 2007.

[150] M. G. C. Resende and C. C. Riberio. Greedy randomized adaptive search procedures. In: F.

Glover and G.A. Kochenberger, eds., Handbook of metaheuristics, chapter 8, pages 219–249.

Kluer, 2003.

[151] M. G. C. Resende and C. C. Riberio. Greedy randomized adaptive search procedures: advances,

hybridizations, and application. In: M. Gnedreau and J. Y. Potvin, eds., Handbook of meta-

heuristics, chapter 10, pages 283–320. Springer, 2010.

[152] M. G. C. Resende, C. C. Riberio, f. Glover, and R. Mart́ı. Scatter search and path-relinking:

fundamentals, advances, and applications. In: M. Gnedreau and J. Y. Potvin, eds., Handbook

of metaheuristics, chapter 4, pages 87–108. Springer, 2010.

145



Bibliography

[153] S. Salhi and R. Petch. A ga based heuristic for the vehicle routing problem with multiple trips.

Journal of Mathematical Modelling and Algorithms, 6(4):591–613, 2007.

[154] Scvalex. All sources shortest path: The floyd-warshall algorithm.

http://compprog.wordpress.com/2007/11/15/all-sources-shortest-path-the-floyd-warshall-

algorithm, 2007.

[155] J. Silberholz and B. Golden. Comparison of metaheuristics. In: M. Gnedreau and J. Y. Potvin,

eds., Handbook of metaheuristics, chapter 21, pages 625–640. Springer, 2010.

[156] M.C. De Souza and P. Martins. Skewed vns enclosing second order algorithm for the de-

gree constrained minimum spanning tree problem. European Journal of Operational Research,

191(3):677–690, 2008.

[157] P. Toth and D. Vigo . Branch and bound algorithms for the capacitated VRP. In: P. Toth and

D. Vigo, eds., Vehicle routing problem, chapter 2, pages 29–52. SIAM, 2002.

[158] P. Toth and D. Vigo . An overview of vehicle routing problems. In: P. Toth and D. Vigo, eds.,

Vehicle routing problem, chapter 1, pages 1–26. SIAM, 2002.

[159] P. Toth and D. Vigo . VRP with backhauls. In: P. Toth and D. Vigo, eds., Vehicle routing

problem, chapter 8, pages 195–224. SIAM, 2002.

[160] P. Toth and D. Vigo. The vehicle routing problem. SIAM, 2002.

[161] M. Turkensteen, D. Ghosh, B. Goldengorin, and G. Sierksma. Tolerance-based branch and

bound algorithms for the atsp. European Journal of Operational Research, 189(3):775–788,

2008.

[162] L. Vogt, C. A. Poojari, and J. E. Beasley. A tabu search algorithm for the single vehicle routing

allocation problem. Journal of the Operational Research Society, 58:467–480, 2007.

[163] A. Volgenant. An addendum on sensitivity analysis of the optimal assignment. European

Journal of Operational Research, 169(1):338–339, 2006.

[164] C. Voudouris, E. P. K. Tsang, and A. Alsheddy. Guided local search. In: M. Gnedreau and J.

Y. Potvin, eds., Handbook of metaheuristics, chapter 11, pages 321–362. Springer, 2010.

[165] C. D. J. Waters. Expanding the scope of linear programming solutions for vehicle scheduling

problems. Omega, 16(6):577–583, 1988.

146



Bibliography

[166] H. P. Williams. The formulation and solution of discrete optimization models. In: G. Appa,

L. Pitsoulis, H. P. Williams. eds., Handbook on modelling for discrete optimization, chapter 1,

pages 3–60. New York: Springer, 2006.

[167] D. L. Woodruff. A chunking based selection strategy for integrating metaheuristics with branch

and bound. In: S. Voss and S. Martello and I. H. Osman and C. Roucairol, eds., Metaheuristics:

advances and trends in local search paradigms for optimization, chapter 34, pages 499–511.

Kluwer, 1999.

[168] M. Yannakakis. Computational complexity. In: E. Aarts and J. K. Lenstra, eds., Local search

in combinatorial optimization, chapter 2, pages 19–56. John Wiley & Sons Ltd, 1997.

[169] L. C. Yeun, W. R. Ismail, K. Omar, and M. Zirour. Vehicle routing problem: models and

solutions. Journal of Quality Measurement and Analysis, 4(1):205–218, 2008.

[170] R. Zhou and E. A. Hansen. Breadth-first heuristic search. Artificial Intelligence, 170:385–408,

2006.

147



Appendix A MSBB Tables of

Results

The key to the Tables:

• n: the number of customers including the depot.

• m: the number of vehicles.

• p: the index to the problem number.

• Obj: the output which could be:

1. optimal solution.

2. (best feasible solution): feasible solution is found but not proven as optimal, so we use

brackets to identify.

3. (inf): no feasible solution is found (lack of memory).

4. inf: there is no feasible solution of the problem at all.

• CPU: the time spent in seconds, except three cases where we use these notation:

1. 3h: when the time limit is reached, this is 3 hours.

2. noM: when there is no memory to read the instance.

3. —–: when there is no memory to continue.

• TOL: the result of TOL-ADVRP

• CPLEX: the result of CPLEX-ADVRP

• RND: the result of RND-ADVRP

• M5SBB: the result of rerun MSBB-ADVRP five times.
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Appendix A. MSBB Tables of results

.1 Tables of Results for Group 1

Table 1: Table of results for instances from group 1 with Dmax(1) = ∞

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

40 2 1 152 0 152 1.63 152 0 152 0

2 208 0 208 1.69 208 0 208 0

3 178 0 178 0.67 178 0 178 0

4 186 0 186 1.22 186 0.02 186 0

4 1 171 0 171 1 171 0 171 0

2 223 0 223 0.8 223 0 223 0

3 213 0 213 0.56 213 0 213 0

4 218 0 218 1.03 218 0 218 0

60 3 1 178 0 178 5.64 178 0.02 178 0.02

2 222 0 222 3.42 222 0 222 0.02

3 192 0 192 6.92 192 0 192 0.01

4 205 0.02 205 5.47 205 0.02 205 0.01

6 1 203 0.01 203 2.84 203 0.02 203 0.02

2 254 0 254 5.92 254 0 254 0

3 228 0 228 4.17 228 0 228 0

4 238 0 238 1.39 238 0 238 0

80 4 1 198 0.02 198 18.97 198 0 198 0

2 237 0 237 37.94 237 0.02 237 0

3 211 0 211 19.31 211 0 211 0

4 214 0 214 16.94 214 0 214 0
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Appendix A. MSBB Tables of results

Table 2: Table of results for instances from group 1 with Dmax(1) = ∞ (continue)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

8 1 231 0 231 15.41 231 0 231 0

2 281 0 281 23.08 281 0 281 0.01

3 242 0.02 242 15.31 242 0 242 0

4 238 0 238 23.94 238 0 238 0

100 5 1 204 0 204 12.11 204 0 204 0

2 256 0 256 13.16 256 0 256 0

3 228 0 228 36.86 228 0.01 228 0.01

4 225 0 225 6.88 225 0 225 0

10 1 232 0 232 15.48 232 0 232 0

2 309 0 309 20.5 309 0 309 0

3 270 0.01 270 16.3 270 0.01 270 0

4 255 0 255 29.47 255 0 255 0

120 6 1 232 0 232 393.02 232 0 232 0

2 269 0 269 127.6 269 0 269 0.02

3 241 0.02 241 232.1 241 0 241 0

4 270 0.02 270 287.03 270 0.02 270 0.02

12 1 269 0 269 68.89 269 0 269 0

2 329 0 329 13.64 329 0 329 0

3 277 0.02 277 100.16 277 0.01 277 0.02

4 308 0 308 20.02 308 0 308 0

140 7 1 238 0.01 238 438.18 238 0.02 238 0.03

2 274 0.02 274 62.22 274 0.01 274 0

3 249 0.02 249 808.53 249 0.03 249 0.02

4 284 0.05 284 40.46 284 0.03 284 0.03
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Table 3: Table of results for instances from group 1 with Dmax(1) = ∞ (continue)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

14 1 280 0.03 280 82.16 280 0.02 280 0.02

2 334 0 334 154.57 334 0 334 0

3 283 0.03 283 159.82 283 0.03 283 0.03

4 326 0 326 372.21 326 0.02 326 0

160 8 1 259 0.03 259 364.93 259 0.03 259 0.03

2 298 0.01 298 96.69 298 0.01 298 0.02

3 268 0.02 268 711.1 268 0.08 268 0.08

4 286 0 286 427.74 286 0 286 0

16 1 309 0 309 335.24 309 0.02 309 0.02

2 365 0 365 174.6 365 0 365 0

3 309 0.02 309 88.96 309 0.01 309 0

4 328 0.01 328 404.08 328 0 328 0

180 9 1 277 0 277 2356.54 277 0 277 0.01

2 317 0 317 1528.11 317 0.02 317 0

3 294 0.02 294 1475.98 294 0.01 294 0

4 301 0.03 301 1934.8 301 0.05 301 0.03

18 1 329 0 329 65.53 329 0 329 0

2 392 0.02 392 477.52 392 0.03 392 0.03

3 340 0.03 340 170.32 340 0.03 340 0.03

4 347 0.01 347 63.88 347 0 347 0

200 10 1 287 0 287 210.95 287 0 287 0

2 322 0.02 322 2708.05 322 0.02 322 0.02

3 305 0.02 305 209.35 305 0.01 305 0.02

4 309 0.05 309 3137.18 309 0.05 309 0.05
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Table 4: Table of results for instances from group 1 with Dmax(1) = ∞ (continue)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

20 1 343 0 343 95.57 343 0 343 0.01

2 394 0 394 773.46 394 0 394 0

3 358 0.05 358 250.92 358 0.03 358 0.05

4 364 0.08 364 108.19 364 0.08 364 0.08

240 12 1 331 0.01 331 2629.42 331 0.03 331 0.03

280 14 1 366 0.05 (inf) 3h 366 0.05 366 0.05

320 16 1 395 0 395 1136.89 395 0.02 395 0

360 18 1 425 0.03 (inf) 3h 425 0.05 425 0.05

400 20 1 467 0.28 (inf) 3h 467 0.19 467 0.17

440 22 1 509 0.13 (inf) 3h 509 0.13 509 0.13

480 24 1 554 0.19 (inf) 3h 554 0.2 554 0.2

520 26 1 593 0.63 (inf) 3h 593 0.08 593 0.08

560 28 1 635 0.2 (inf) 3h 635 0.2 635 0.19

600 30 1 680 0.56 (inf) 3h 680 0.23 680 0.23

640 32 1 726 0.01 (inf) —– 726 0.02 726 0.02

680 34 1 770 0.11 (inf) 3h 770 0.09 770 0.11

720 36 1 813 0.03 (inf) noM 813 0.03 813 0.03

760 38 1 857 0.19 (inf) noM 857 0.19 857 0.19

800 40 1 903 0.3 (inf) noM 903 0.42 903 0.44

840 42 1 948 0.03 (inf) noM 948 0.03 948 0.05

880 44 1 993 0.05 (inf) noM 993 0.05 993 0.03

920 46 1 1037 0.13 (inf) noM 1037 0.11 1037 0.11

960 48 1 1081 0.16 (inf) noM 1081 0.14 1081 0.13

1000 50 1 1127 0.8 (inf) noM 1127 4.63 1127 5.28
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Table 5: Table of results for instances from group 1 with Dmax(2) = 0.90× LT (1)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

40 2 1 inf 0 inf 0 inf 0 inf 0

2 inf 0 inf 0 inf 0 inf 0

3 (180) 9.91 180 1.11 (180) 10.06 (180) 50.75

4 (187) 8.2 187 6.14 (187) 8.33 (187) 42.33

4 1 171 1.67 171 0.8 171 1.72 171 1.73

2 (224) 8.84 224 1.58 (224) 10.11 (224) 50.17

3 (214) 10.33 214 4.33 (214) 12.52 (214) 62.14

4 (inf) 16.81 222 17.42 (inf) 18.3 (inf) 91.58

60 3 1 178 0 178 3.58 178 0.02 178 0

2 222 0.01 222 11.06 222 0.05 222 0.05

3 (193) 11.81 192 5.38 192 0 192 0

4 (205) 13.92 205 31.61 (205) 15.44 (205) 75.53

6 1 203 0.02 203 3.3 203 0.02 203 0.01

2 254 0.03 254 4.34 254 0.02 254 0.02

3 (inf) 16.55 228 24.11 (228) 19.61 (228) 96.82

4 238 0 238 0.95 238 0.01 238 0.02

80 4 1 198 0.03 198 6.03 198 0.03 198 0.01

2 (inf) 21.56 237 60.49 237 0.27 237 0.23

3 211 0 211 32.5 211 0.02 211 0.01

4 (215) 18.63 214 27.33 (215) 19.2 (215) 93.02

8 1 231 0 231 7.74 231 0 231 0.02

2 (282) 22.44 281 18.64 (282) 25.7 281 25.03

3 (inf) 26.22 242 106.97 242 2.38 242 2.3

4 238 0.02 238 15.52 238 0 238 0
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Table 6: Table of results for instances from group 1 with Dmax(2) (continue)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

100 5 1 204 0 204 12.16 204 0 204 0

2 256 0.02 256 75.94 256 0.02 256 0.01

3 (inf) 26.56 229 668.27 (inf) 29.97 (230) 152.88

4 225 0.01 225 82.54 225 0.02 225 0.02

10 1 232 0.01 232 15.36 232 0.02 232 0.02

2 309 0 309 14.6 309 0.01 309 0.01

3 270 0 270 63.96 270 0.01 270 0.01

4 255 0.02 255 26.72 255 0.02 255 0.02

120 6 1 232 0.03 232 348.24 232 0.02 232 0.02

2 (270) 45.88 269 202.17 269 0.52 269 0.52

3 (242) 41 242 1221.39 (242) 42.6 (242) 208.31

4 (inf) 41.77 271 409.71 (271) 42.13 (271) 211.62

12 1 269 0.03 269 121.51 269 0.03 269 0.05

2 329 0.01 329 29 329 0.01 329 0.01

3 (277) 57.2 277 94.27 (277) 59.92 (277) 296.16

4 308 0.02 308 129.05 308 0.01 308 0.02

140 7 1 238 0.01 238 292.81 238 1.09 238 1.03

2 274 0.31 274 350.19 274 0.05 274 0.05

3 249 0.31 249 106.93 249 0.13 249 0.11

4 284 0.05 284 613.27 284 0.03 284 0.03

14 1 280 0.02 280 342.39 280 0.03 280 0.02

2 334 0.33 334 253.51 334 0.11 334 0.11

3 (283) 91.94 283 173.31 (283) 93.07 (283) 443.55

4 (328) 93.49 326 767.57 326 1.09 326 1.05
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Table 7: Table of results for instances from group 1 with Dmax(2) (continue)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

160 8 1 259 0.03 259 398.63 259 15.27 259 14.44

2 298 0.05 298 344.32 298 0.08 298 0.06

3 268 0.01 268 637.16 (269) 87.39 268 83.13

4 (287) 87.55 286 1201.97 (286) 79.05 (286) 386.64

16 1 309 0 309 728.24 309 0.02 309 0.01

2 365 0.05 365 465.42 365 0.05 365 0.03

3 (310) 130.55 310 7014.37 (310) 121 (310) 588.31

4 328 0.03 328 875.53 328 0.03 328 0.03

180 9 1 277 0.31 277 1911.22 277 1.79 277 1.81

2 317 0.08 317 1378.82 317 0.08 317 0.08

3 (294) 127.07 294 614.91 (294) 135 (294) 641.02

4 301 0.03 301 1475.62 301 0.03 301 0.03

18 1 (330) 160.25 330 842.47 (330) 177.48 (330) 841.71

2 392 0.08 392 1040.63 392 0.42 392 0.42

3 (341) 179.07 340 1970.85 340 5.81 340 5.83

4 347 0.08 347 630.89 347 0.09 347 0.08

200 10 1 (288) 143.28 287 1626.88 287 0.2 287 0.16

2 322 0.08 322 2276.13 322 0.14 322 0.13

3 305 0.05 305 329.38 305 0.17 305 0.16

4 309 0.55 309 2304.96 309 0.16 309 0.16

20 1 343 0.06 343 1661.52 343 0.05 343 0.06

2 394 9.28 394 1866.67 394 0.41 394 0.41

3 358 0.06 358 2237.54 358 0.05 358 0.05

4 364 0.11 364 332.72 364 0.28 364 0.27
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Table 8: Table of results for instances from group 1 with Dmax(2) (continue)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

240 12 1 331 7.38 331 4755.92 331 1.31 331 1.33

280 14 1 366 0.23 366 7915.94 366 0.2 366 0.2

320 16 1 395 0.36 (422) 3h 395 0.34 395 0.36

360 18 1 425 13.61 (436) 3h 425 1.26 425 1.17

400 20 1 467 58.88 (inf) 3h 467 6.7 467 6.78

440 22 1 509 0.86 (inf) 3h 509 0.27 509 0.25

480 24 1 554 113.72 (inf) 3h 554 27.68 554 26.91

520 26 1 593 0.64 (inf) 3h 593 0.67 593 0.66

560 28 1 635 1.31 (inf) 3h 635 1.39 635 1.28

600 30 1 680 1.75 (inf) 3h 680 2.06 680 1.83

640 32 1 726 1.7 (inf) 3h 726 1.7 726 1.66

680 34 1 770 312.12 (inf) noM 770 2.38 770 2.41

720 36 1 813 2.38 (inf) noM 813 2.31 813 2.33

760 38 1 857 227.69 (inf) noM 857 11.91 857 11.41

800 40 1 903 27.2 (inf) noM 903 7.69 903 7.5

840 42 1 948 9.28 (inf) noM 948 23.27 948 23.55

880 44 1 993 3.73 (inf) noM 993 3.59 993 3.67

920 46 1 1037 3.17 (inf) noM 1037 3.28 1037 3.23

960 48 1 1081 159.49 (inf) noM 1081 13.98 1081 13.5

1000 50 1 (inf) —— (inf) noM 1127 12.38 1127 11.83
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Table 9: Table of results for instances from group 1 with Dmax(3) = 0.90× LT (2)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

40 4 1 171 1.63 171 1.78 171 1.73 171 1.73

60 3 1 (179) 11.02 179 52.38 (179) 13.44 (179) 65.39

2 (225) 16.91 223 29.2 (223) 21.55 (223) 102.58

3 (inf) 11.69 193 21.66 (193) 15.13 (193) 73.11

6 1 (203) 16.13 203 10.8 (203) 17.78 (203) 87.22

2 254 0.05 254 18.42 254 0.02 254 0.02

4 (239) 15.83 239 46.91 (239) 20.41 (239) 101.25

80 4 1 (199) 22 198 52.5 198 0.38 198 0.34

2 (inf) 21.44 238 557.51 (238) 21.98 (238) 105.33

3 (213) 20.5 211 339.99 211 0.3 211 0.28

8 1 231 0.01 231 8.44 231 0 231 0.02

2 (285) 21.89 282 84.88 (282) 25.17 (282) 126.3

3 (inf) 25.74 243 48.22 (243) 28.83 (243) 139.27

4 238 0 238 22.11 238 0.02 238 0

100 5 1 (inf) 28.58 205 1762.32 (inf) 32.63 (inf) 160.21

2 256 0.17 256 150 256 0.11 256 0.11

4 225 0.08 225 39.67 225 0.05 225 0.05

10 1 232 0.02 232 58.33 232 0.02 232 0.01

2 309 0.08 309 6.84 309 0.05 309 0.03

3 (271) 40.42 271 43.28 (271) 43.11 (271) 207.43

4 (inf) 33.89 257 1018.28 (inf) 41.58 (inf) 203.62

120 6 1 232 0.03 232 172.16 232 0.05 232 0.05

2 (270) 44.19 270 1975.04 (270) 45.6 (270) 227.81
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Table 10: Table of results for instances from group 1 with Dmax(3) (continue)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

120 12 1 269 1.92 269 113.11 269 0.11 269 0.11

2 (inf) 62.11 330 3063.79 (330) 67.32 (330) 337.66

4 308 0.95 308 49.74 308 0.06 308 0.06

140 7 1 (239) 63.35 238 3734.3 238 1.2 238 1.2

2 (275) 59.6 274 506.22 274 0.78 274 0.77

3 249 0.33 249 2989.76 249 0.27 249 0.3

4 284 0.59 284 408.25 284 0.78 284 0.8

14 1 280 1.36 280 118.51 280 7 280 7.16

2 334 0.31 334 155.93 334 0.11 334 0.11

4 (inf) 77.63 326 1146.39 326 4.02 326 3.92

160 8 1 (260) 87.25 259 741.72 (260) 99.08 259 141.91

2 (299) 93.44 298 1239.32 298 0.14 298 0.14

3 268 0.03 268 865.57 (269) 83.61 268 186.62

16 1 309 0.05 309 1276.83 309 0.05 309 0.05

2 (366) 133.69 365 95.88 365 0.16 365 0.14

4 (inf) 123.52 328 661.83 (328) 123.94 (328) 632.69

180 9 1 (278) 106.39 (278) 3h 277 9.63 277 9.5

2 317 0.08 317 1123.62 317 0.08 317 0.08

4 301 0.05 301 2206.6 301 0.06 301 0.08

18 2 (inf) 171.83 392 941.45 392 37.22 392 37.58

3 (inf) 174.05 (344) 3h (inf) 178.48 (inf) 897.28

4 347 0.48 347 745.8 347 0.3 347 0.3

200 10 1 (inf) 132.6 288 8169.13 (288) 140.32 (288) 664.96

2 322 0.08 322 3503.28 322 0.11 322 0.09

3 305 6.53 305 2463.57 305 0.55 305 0.55

4 (310) 126.11 309 2737.02 309 1.52 309 1.48
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Table 11: Table of results for instances from group 1 with Dmax(3) (continue)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

200 20 1 343 16.8 343 1528.52 343 0.52 343 0.52

2 394 8.55 394 1265.66 394 0.5 394 0.5

3 358 0.17 358 1850.42 358 0.17 358 0.16

4 364 1.72 364 646.86 364 0.55 364 0.56

240 12 1 331 3.02 331 4032.28 331 4.67 331 4.66

280 14 1 (inf) 363.96 (inf) 3h 366 319.08 366 316.28

320 16 1 395 8.41 (inf) 3h 395 0.91 395 0.91

360 18 1 425 13.27 (inf) 3h 425 3.91 425 3.91

400 20 1 (468) 981.76 (inf) 3h 467 93.85 467 93.33

440 22 1 509 0.59 (inf) 3h 509 4.78 509 4.72

480 24 1 (inf) —– (inf) 3h 554 786.35 554 775.35

520 26 1 593 0.94 (inf) 3h 593 2.59 593 2.58

560 28 1 635 1.02 (inf) 3h 635 1.03 635 1.02

600 30 1 680 1.67 (inf) 3h 680 4.14 680 4.11

640 32 1 726 1.34 (inf) 3h 726 1.38 726 1.31

680 34 1 (inf) —– (inf) noM 770 133.05 770 131.27

720 36 1 813 2.3 (inf) noM 813 2.36 813 2.31

760 38 1 (inf) —– (inf) noM 857 50.36 857 49.5

800 40 1 903 754.99 (inf) noM 903 26.13 903 26.64

840 42 1 948 9.53 (inf) noM 948 165.88 948 168.95

880 44 1 993 2.69 (inf) noM 993 2.56 993 2.52

920 46 1 1037 88.61 (inf) noM 1037 15.94 1037 15.81

960 48 1 1081 372.31 (inf) noM 1081 39.78 1081 42

1000 50 1 (inf) —– (inf) noM (inf) —– (inf) —–
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.2 Tables of Results for Group 2

Table 12: Table of results for instances from group 2 with Dmax(1) = ∞
Tol CPLEX RND M5SBB

n m p
Obj CPU Obj CPU Obj CPU Obj CPU

40 2 1 1323 0.03 1323 0.59 1323 0.02 1323 0.03

2 1898 0 1898 0.5 1898 0 1898 0

3 1586 0 1586 0.5 1586 0 1586 0

4 1690 0 1690 0.7 1690 0 1690 0

4 1 1483 0 1483 0.5 1483 0 1483 0

2 2034 0 2034 0.42 2034 0 2034 0.01

3 1930 0 1930 0.28 1930 0 1930 0

4 1999 0 1999 0.81 1999 0 1999 0

60 3 1 1478 13.09 1478 3.09 1478 14.81 1478 15.7

2 1895 0 1895 5.2 1895 0 1895 0

3 1660 11.14 1660 1.08 1660 0.58 1660 0.58

4 1739 0 1739 2.11 1739 0 1739 0

6 1 1686 0.01 1686 1.48 1686 0.02 1686 0.02

2 2153 0 2153 3.53 2153 0 2153 0

3 1993 0.01 1993 4.16 1993 0 1993 0.02

4 2041 0 2041 0.77 2041 0 2041 0

80 4 1 1529 0 1529 5.66 1529 0 1529 0

2 (1930) 26.8 1907 11.69 (1930) 29.27 (1930) 150.65

3 1712 0.02 1712 45.3 1712 0 1712 0

4 1720 0 1720 1.83 1720 0 1720 0

8 1 1837 0 1837 4.81 1837 0 1837 0

2 (2235) 30.81 2235 9.75 (2235) 33.28 (2235) 170.07

3 1995 0 1995 7.59 1995 0 1995 0

4 1917 0 1917 6.61 1917 0 1917 0
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Table 13: Table of results for instances from group 2 with Dmax(1) = ∞ (continue)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

100 5 1 1474 0.03 1474 36.41 1474 0.01 1474 0.02

2 1966 0.02 1966 76.77 1966 0.02 1966 0.01

3 1796 0.2 1796 29.09 1796 0.2 1796 0.2

4 1701 0.08 1701 73.82 1701 0.08 1701 0.08

10 1 1659 0 1659 13.67 1659 0 1659 0

2 2345 0 2345 46.17 2345 0 2345 0

3 2152 0.02 2152 23.86 2152 0 2152 0

4 1901 0.11 1901 17.66 1901 0.11 1901 0.11

120 6 1 1639 0.02 1639 140.79 1639 0.02 1639 0.03

2 1983 0.02 1983 136.04 1983 0 1983 0

3 1782 0 1782 93.77 1782 0 1782 0

4 2046 0.02 2046 100.1 2046 0.02 2046 0.02

12 1 1910 0.02 1910 51.97 1910 0.02 1910 0.02

2 2437 0 2437 24.69 2437 0 2437 0

3 1986 0 1986 16.06 1986 0.02 1986 0

4 2287 0 2287 9.34 2287 0 2287 0

140 7 1 1593 0.09 1593 315.89 1593 0.05 1593 0.05

2 1890 0.03 1890 46.31 1890 0.02 1890 0.02

3 1668 0.06 1668 396.43 1668 0.06 1668 0.06

4 2045 0 2045 303.8 2045 0.01 2045 0

14 1 1880 0.02 1880 67.3 1880 0 1880 0

2 2317 0.02 2317 127.27 2317 0.02 2317 0.02

3 1856 0.22 1856 692.19 1856 0.22 1856 0.22

4 2276 0 2276 119.21 2276 0 2276 0

161



Appendix A. MSBB Tables of results

Table 14: Table of results for instances from group 2 with Dmax(1) = ∞ (continue)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

160 8 1 1685 1.84 1685 1474.17 1685 1.88 1685 1.88

2 1989 0 1989 245.22 1989 0 1989 0

3 1724 0.19 1724 3919.84 1724 0.19 1724 0.19

4 2003 0.06 2004 1182.39 2003 0.05 2003 0.05

16 1 2025 0.01 2025 289.89 2025 0.01 2025 0.01

2 2451 0 2451 32.45 2451 0 2451 0

3 1950 0.02 1950 1932.37 1950 0.01 1950 0.02

4 2251 0.02 2251 102.38 2251 0.02 2251 0.02

180 9 1 1699 0.05 1699 774.32 1699 0.03 1699 0.03

2 2061 0.05 2061 271.76 2061 0.05 2061 0.05

3 1854 0.28 1854 1579.94 1854 0.05 1854 0.05

4 2039 0.19 2039 2853.41 2039 0.13 2039 0.13

18 1 2065 0 2065 37.11 2065 0 2065 0.02

2 2574 0.02 2574 72.44 2574 0.03 2574 0.03

3 2110 0.08 2110 432.85 2110 0.08 2110 0.08

4 2319 0.02 2319 945.91 2319 0.02 2319 0.02

200 10 1 1757 0.01 1757 112.66 1757 0 1757 0

2 2006 0 2006 457.66 2006 0 2006 0.02

3 1862 0.03 1862 359.3 1862 0.03 1862 0.03

4 1986 0.05 1986 2476.05 1986 0.05 1986 0.05

20 1 2123 0 2123 167.11 2123 0 2123 0

2 2508 0.01 2508 343.46 2508 0.01 2508 0

3 2152 0.03 2152 2491.83 2152 0.03 2152 0.03

4 2302 0.01 2302 3668.73 2302 0.02 2302 0.02
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Table 15: Table of results for instances from group 2 with Dmax(1) = ∞ (continue)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

240 12 1 1977 0.06 1977 2231.11 1977 0.08 1977 0.06

280 14 1 2037 0.03 2037 5315.13 2037 0.02 2037 0.03

320 16 1 1972 0.13 1972 1564.42 1972 0.11 1972 0.13

360 18 1 2008 173.65 (inf) 3h 2008 175.52 2008 179.16

400 20 1 2066 8.41 (inf) 3h 2066 8.44 2066 8.52

440 22 1 (2104) 967.83 (inf) 3h (2100) 995.61 (2100) 5066.2

480 24 1 (2175) 1172.23 (inf) 3h (2175) 1200.5 (2175) 6030.11

520 26 1 2207 0.08 (inf) noM 2207 0.08 2207 0.08

560 28 1 2279 0.47 (inf) noM 2279 0.47 2279 0.47

600 30 1 (2309) 2370.81 (inf) noM (2309) 2397.18 (2309) 9656.18

640 32 1 2395 0.39 (inf) noM 2395 0.41 2395 0.39

680 34 1 2437 23.22 (inf) noM 2437 23.22 2437 23.09

720 36 1 2365 0.2 (inf) noM 2365 0.2 2365 0.19

760 38 1 (2411) 4553.24 (inf) noM (2411) 4737.6 (2411) 3h

800 40 1 (2452) 5154.65 (inf) noM (2452) 5120.54 (2452) 3h

840 42 1 2470 0.88 (inf) noM 2470 0.88 2470 0.89

880 44 1 2513 2.64 (inf) noM 2513 2.22 2513 2.2

920 46 1 2578 2.52 (inf) noM 2578 3.77 2578 3.73

960 48 1 2577 3.59 (inf) noM 2577 3.45 2577 4.73

1000 50 1 2614 0.41 (inf) noM 2614 2.02 2614 0.42
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Table 16: Table of results for instances from group 2 with Dmax(2) = 0.90× LT (1)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

40 2 1 inf 0 inf 0.27 inf 0 inf 0

2 inf 0 inf 0.33 inf 0.02 inf 0

3 (1606) 9.75 1606 0.98 (1606) 10.77 (1606) 54.22

4 (1694) 7.66 1694 7.17 (1694) 8.86 (1694) 44.96

4 1 (1487) 11.38 1487 9.44 (1493) 14.52 (1493) 73.99

2 (inf) 8.86 2057 4.89 (inf) 10.3 (inf) 51.57

3 (1948) 11.94 1948 1.27 (1948) 14.13 (1948) 71.25

4 (inf) 12.02 2032 24.09 (2032) 16.89 (2032) 85.94

60 3 1 (1489) 13.67 1482 7.34 (1489) 13.53 (1489) 71.93

2 (1897) 12.91 1897 52.19 (1897) 15.09 (1897) 75.25

3 (inf) 10.86 1661 8.55 (1678) 13.8 (1678) 68.74

4 1739 0.02 1739 4.11 1739 0.02 1739 0.01

6 1 (1686) 17.98 1686 12.95 (1693) 18.64 (1686) 89.66

2 (2154) 15.59 2154 10.5 (2154) 21.27 (2154) 101.32

3 (1994) 17.58 1994 16.5 (1994) 18.69 (1994) 93.27

4 2041 0.01 2041 0.63 2041 0 2041 0

80 4 1 1529 0.02 1529 6.06 1529 0 1529 0.01

3 1712 0.02 1712 48.03 1712 0.02 1712 0.01

4 (1738) 22.25 1720 14.05 1720 0.02 1720 0.01

8 1 (1841) 32.36 1841 88.65 (1841) 34.52 (1841) 173.68

3 1995 0.02 1995 8.97 1995 0.02 1995 0.02

4 (1923) 23.89 1923 22.8 (1923) 32.95 (1923) 165.06
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Table 17: Table of results for instances from group 2 with Dmax(2) (continue)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

100 5 1 1474 0.17 1474 45.1 1474 0.94 1474 0.94

2 (1968) 33.56 1968 79.77 (1969) 35.67 (1968) 178.79

3 (inf) 32.63 1796 39.33 (1796) 36.3 (1796) 184.06

4 (1705) 31.08 1705 81.79 (1708) 34.86 (1708) 173.23

10 1 (1662) 45.28 1661 26.77 (1661) 53.13 (1661) 264.36

2 (2351) 43.41 2347 92.3 (2347) 48.02 (2347) 237.22

3 (2159) 50.86 2152 31.59 (2152) 51.63 (2152) 258.09

4 1901 0.11 1901 34.7 1901 0.11 1901 0.11

120 6 1 1639 0.02 1639 83.24 1639 0.03 1639 0.02

2 (1987) 51.69 1985 992.13 (1987) 57.08 (1987) 284.59

3 1782 0.03 1782 24.7 1782 0.02 1782 0.03

4 2046 0.06 2046 29.34 2046 0.05 2046 0.05

12 1 (inf) 74.08 1912 115.72 (inf) 79.16 (inf) 390

2 2437 0.02 2437 25.67 2437 0 2437 0.02

3 1986 0.03 1986 26.89 1986 0.03 1986 0.03

4 2287 0.02 2287 8.11 2287 0.03 2287 0.03

140 7 1 1593 0.09 1593 207.26 1593 0.03 1593 0.03

2 1890 0.94 1890 152.29 1890 1.24 1890 1.24

3 (1668) 68.17 1668 3838.51 (1668) 72.02 (1668) 358.35

4 2045 0.05 2045 279.7 2045 0.05 2045 0.05

14 1 (1882) 119.85 1881 363.85 (1881) 125.83 (1881) 629.24

2 2317 3.13 2317 37.09 2317 0.19 2317 0.19

3 (inf) 104.55 1857 1608.27 (inf) 98.49 (inf) 491.06

4 2276 0.03 2276 222.35 2276 0.05 2276 0.03
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Table 18: Table of results for instances from group 2 with Dmax(2) (continue)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

160 8 1 (inf) 115.15 1685 437.68 (inf) 120.85 (inf) 605.94

2 1989 0.08 1989 175.91 1989 0.08 1989 0.08

3 (1727) 103.15 1724 524.42 (1727) 103.52 (1727) 512.78

4 (2005) 105.57 2004 8409.63 (2005) 105.83 (2005) 513.03

16 1 (inf) 167.01 2025 859.31 2025 23.44 2025 22.55

2 2451 0.06 2451 396.97 2451 0.08 2451 0.08

3 (1956) 149.9 (1952) 3h (1953) 147.35 (1953) 723.57

4 2251 0.83 2251 362.14 2251 0.11 2251 0.09

180 9 1 (1705) 136.85 1699 1089.03 1699 0.52 1699 0.52

2 2061 0.05 2061 2336.62 2061 0.05 2061 0.05

3 (inf) 109.76 (1947) 10799.94 (inf) 134.68 (inf) 669.97

4 2039 1.72 2039 1600.19 2039 2.91 2039 2.88

18 1 (2066) 211.15 2067 151.26 (2066) 227.45 (2066) 1069.95

2 2574 0.09 2574 93.16 2574 0.11 2574 0.11

3 (inf) 191.88 2110 649.41 (2110) 215.04 (2110) 976.11

4 (2320) 244.11 2319 421.41 2319 1.17 2319 0.95

200 10 1 1757 0.08 1757 472.1 1757 0.08 1757 0.06

2 2006 0.14 2006 1024.05 2006 0.16 2006 0.14

3 1862 0.17 1862 700.83 1862 0.17 1862 0.14

4 1986 0.05 1986 988.94 1986 0.05 1986 0.05

20 1 (inf) 227.37 2125 605.28 (inf) 250.04 (2131) 1196.75

2 2508 6.28 2508 870.45 2508 0.19 2508 0.2

3 2152 21.78 2152 1515.17 2152 0.39 2152 0.38

4 2302 12.11 2302 214.81 2302 0.61 2302 0.63
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Table 19: Table of results for instances from group 2 with Dmax(2) (continue)

Tol CPLEX RND M5SBB
n m

Obj CPU Obj CPU Obj CPU Obj CPU

240 12 1977 17.7 1977 2272.11 1977 0.33 1977 0.28

280 14 2037 0.25 (inf) noM 2037 0.3 2037 0.25

320 16 (1976) 592.23 (inf) noM 1972 0.48 1972 0.48

360 18 (inf) 631.89 (inf) noM (inf) 673.71 (inf) 3341.94

400 20 (inf) 914.95 (inf) noM (inf) 916.16 (2066) 4574.02

520 26 2207 1.39 (inf) noM 2207 1.42 2207 1.41

560 28 (inf) —- (inf) noM (2279) 2067 (2279) 10593.95

640 32 2395 2.11 (inf) noM 2395 2.86 2395 2.86

680 34 (inf) —- (inf) noM (2437) 3595.23 (2437) 3h

720 36 2365 6.12 (inf) noM 2365 5.34 2365 5.34

840 42 (inf) —- (inf) noM (2470) 6319.81 (2470) 3h

880 44 2513 8.23 (inf) noM 2513 9.02 2513 9.03

920 46 2578 1399.95 (inf) noM 2578 34.74 2578 34.42

960 48 2577 3.59 (inf) noM 2577 4.86 2577 3.45

1000 50 (inf) —- (inf) noM 2614 832.53 2614 823.29
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Table 20: Table of results for instances from group 2 with Dmax(3) = 0.90× LT (2)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

60 3 4 (inf) 15.16 1748 77.33 (1748) 17.05 (1748) 84.89

6 4 2041 0.03 2041 0.75 2041 0.02 2041 0.02

80 4 1 1529 0.02 1529 7.02 1529 0 1529 0.02

3 (1713) 18.16 1713 450.05 (1713) 21.72 (1713) 108.29

4 (inf) 20.17 1720 1098.05 1720 3.91 1720 3.95

8 3 (inf) 28.05 1995 227.05 (2008) 31 1995 33.5

100 5 1 (1475) 31.44 1475 57.72 (1475) 35.83 (1475) 180.04

10 4 (1901) 45.78 1901 5.83 (1901) 52.77 (1901) 265.09

120 6 1 1639 0.05 1639 49.34 1639 0.06 1639 0.06

3 1782 0.14 1782 45.83 1782 0.22 1782 0.22

4 2046 0.38 2046 40.23 2046 0.55 2046 0.56

12 2 (2444) 69.72 2437 25.81 2437 0.3 2437 0.3

3 1986 0.3 1986 17.41 1986 0.25 1986 0.23

4 (2291) 75.58 2291 53.42 (2291) 89.21 (2291) 442.3

140 7 1 (inf) 83.74 1593 879.42 (1593) 91.38 (1593) 455.45

2 (inf) 67.77 1890 151.99 1890 16.41 1890 16.39

4 2045 1.02 2045 1374.6 2045 0.77 2045 0.67

14 2 2317 3.14 2317 22.83 2317 0.31 2317 0.28

4 (inf) 98 2281 221.1 (inf) 101.76 (inf) 507.32

160 8 2 1989 0.09 1989 105.63 1989 0.08 1989 0.09

16 1 (inf) 169.03 (2031) 10800.6 (inf) 175.87 (inf) 845.03

2 2451 15.78 2451 242.59 2451 0.16 2451 0.16

4 (2259) 150.77 2251 215.07 (2251) 146.35 (2251) 720.05
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Table 21: Table of results for instances from group 2 with Dmax(3) (continue)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

180 9 1 (inf) 155.87 1699 1001.48 (inf) 162.73 (inf) 812.03

2 (2062) 141.05 2061 1098.47 2061 107.46 2061 106.71

4 (inf) 152.54 2039 1419.26 2039 2.66 2039 2.66

18 2 2574 3.86 2574 365.18 2574 0.28 2574 0.28

4 (2320) 252.51 2319 903.84 2319 0.59 2319 0.59

200 10 1 (inf) 183.98 (1792) 10864.63 (1759) 157.74 (1759) 780.85

2 2006 0.13 2006 781.37 2006 0.14 2006 0.14

3 (1863) 162.73 1862 1539.35 1862 2.3 1862 2.22

4 (1986) 140.22 1986 350.63 (1986) 190.78 (1986) 922.31

20 2 (2510) 209.66 2509 3155.25 (2510) 278.09 (2510) 1327.19

3 (2156) 230.94 2152 2651.45 2152 12.83 2152 12.45

4 2302 15.22 2302 100.68 2302 1.63 2302 1.59

240 12 1 (1978) 234.12 1978 2412.46 (1978) 292.05 (1978) 1471.53

280 14 1 (inf) 410.31 (inf) 3h 2037 13.41 2037 13.3

320 16 1 (inf) 533.22 (inf) 3h 1972 389.85 1972 387.08

520 26 1 2207 293.71 (inf) 3h 2207 6.89 2207 6.92

640 32 1 (inf) —— (inf) 3h 2395 46.97 2395 47.08

720 36 1 (inf) —— (inf) noM (2365) 3796.97 (2365) 10800.07

880 44 1 2513 240.19 (inf) noM 2513 79 2513 82.44

920 46 1 (inf) —— (inf) noM (2579) 7789.68 (2579) 10800

960 48 1 2577 3.63 (inf) noM 2577 7.84 2577 8.19

1000 50 1 (inf) —— (inf) noM (inf) 8997.54 (inf) 10805.18
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.3 Tables of Results for Group 3

Table 22: Table of results for instances from group 3 with Dmax(1) = ∞
Tol CPLEX RND M5SBB

n m p
Obj CPU Obj CPU Obj CPU Obj CPU

40 2 1 13047 0.03 13047 3.45 13047 0.03 13047 0.03

2 18769 0 18769 0.28 18769 0 18769 0

3 15692 0 15692 0.44 15692 0 15692 0

4 16704 0 16704 0.56 16704 0 16704 0

4 1 14630 0.33 14630 0.72 14630 0.34 14630 0.33

2 20122 0 20122 0.28 20122 0 20122 0

3 19134 0 19134 0.28 19134 0 19134 0

4 19775 0 19775 0.5 19775 0 19775 0

60 3 1 14487 5.99 14487 2.36 14487 6.5 14487 6.47

2 18713 0 18713 5.99 18713 0 18713 0

3 (16328) 15.24 16328 3.96 (16328) 17.17 (16328) 85.83

4 17076 0 17076 1.58 17076 0 17076 0

6 1 16540 0 16540 1.42 16540 0 16540 0

2 21227 0 21227 3.39 21227 0 21227 0.02

3 19610 0 19610 1.88 19610 0.01 19610 0.01

4 20059 0 20059 0.86 20059 0 20059 0

80 4 1 14896 0 14896 7.88 14896 0 14896 0

2 (18706) 29.65 18706 20.91 (18706) 32.11 (18706) 160.47

3 16726 0 16726 62.19 16726 0 16726 0

4 16795 0 16795 23.19 16795 0.02 16795 0.01

8 1 17955 0 17955 3.67 17955 0 17955 0

2 (21910) 33.31 21910 4.25 (21910) 35.09 (21910) 175.54

3 19526 0 19526 4.67 19526 0 19526 0

4 18736 0 18736 8.03 18736 0 18736 0
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Table 23: Table of results for instances from group 3 with Dmax(1) = ∞ (continue)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

100 5 1 14229 0.02 14229 20.88 14229 0 14229 0.02

2 19189 0.02 19189 42.39 19189 0.02 19189 0

3 (17451) 38.55 17451 20.94 (17451) 42.84 (17451) 209.04

4 16465 0.28 16465 8.61 16465 0.28 16465 0.28

10 1 16042 0 16042 15.52 16042 0 16042 0

2 22885 0.03 22885 12.19 22885 0.02 22885 0.03

3 20914 2.53 20914 37.5 20914 2.53 20914 2.53

4 18369 0.02 18369 16.56 18369 0 18369 0.01

120 6 1 15799 0.01 15799 140.15 15799 0 15799 0

2 19276 0 19276 41.28 19276 0 19276 0

3 17222 0 17222 52.96 17222 0 17222 0

4 19776 0.01 19776 75.78 19776 0.02 19776 0.02

12 1 18400 0.02 18400 19.39 18400 0.01 18400 0.01

2 23692 0 23692 40.75 23692 0 23692 0

3 19136 0 19136 7.41 19136 0 19136 0

4 22045 0 22045 10.75 22045 0 22045 0

140 7 1 15213 0.36 15213 395.19 15213 0.22 15213 0.2

2 18162 0.05 18162 1021.54 18162 0.03 18162 0.03

3 (15953) 85.52 (15953) 1675.17 (15953) 86 (15953) 424.62

4 19708 0.13 19708 224.68 19708 0.16 19708 0.16

14 1 17998 0.01 17998 23.22 17998 0.02 17998 0.02

2 22293 0 22293 27.84 22293 0 22293 0

3 17690 0.16 17690 106.99 17690 0.14 17690 0.14

4 21836 0 21836 29.84 21836 0.02 21836 0
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Table 24: Table of results for instances from group 3 with Dmax(1) = ∞ (continue)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

160 8 1 (15984) 141.54 15977 942.99 (15984) 148.84 (15984) 741.72

2 18982 0 18982 128.63 18982 0 18982 0

3 16423 2.08 16423 420.58 16423 2.09 16423 2.09

4 19245 0.05 19245 156.38 19245 0.06 19245 0.05

16 1 19148 0.01 19148 103.21 19148 0.03 19148 0.05

2 23311 0.01 23311 56.81 23311 0.01 23311 0

3 18491 0.06 18491 206.16 18491 0.14 18491 0.14

4 21575 0.01 21575 208.71 21575 0.03 21575 0.03

180 9 1 15976 0.03 15976 214.91 15976 0.03 15976 0.03

2 19644 0.42 19644 788.2 19644 0.42 19644 0.41

3 (17619) 158.15 17576 1304.54 (17619) 159.81 (17619) 795.72

4 19488 0.05 19488 1062.66 19488 0.03 19488 0.05

18 1 19453 0 19453 49.3 19453 0 19453 0

2 24445 0.03 24445 78.69 24445 0.01 24445 0.03

3 19948 0.09 19948 628.71 19948 0.11 19948 0.11

4 22080 0.01 22080 74.11 22080 0.01 22080 0.02

200 10 1 16471 0.02 16471 272.12 16471 0 16471 0

2 18918 0.02 18918 343.51 18918 0.03 18918 0.02

3 17488 0.06 17488 933.45 17488 0.06 17488 0.06

4 18810 0.14 18810 404 18810 0.14 18810 0.14

20 1 19890 0.02 19890 59.36 19890 0 19890 0.02

2 23602 0.01 23602 74.86 23602 0 23602 0

3 20138 0 20138 1289.48 20138 0 20138 0.02

4 21737 0.05 21737 959.41 21737 0.06 21737 0.05
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Table 25: Table of results for instances from group 3 with Dmax(1) = ∞ (continue)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

240 12 1 18352 0.02 18352 7485.38 18352 0.02 18352 0.03

280 14 1 18700 0.05 (19254) 3h 18700 0.05 18700 0.05

320 16 1 17913 0 17913 1363.11 17913 0.01 17913 0.02

360 18 1 17861 0.34 (inf) 3h 17861 0.05 17861 0.06

400 20 1 18318 0.39 (inf) noM 18318 0.41 18318 0.39

440 22 1 18325 2.38 (inf) 3h 18325 4.09 18325 4.08

480 24 1 18853 0.22 (inf) noM 18853 0.22 18853 0.23

520 26 1 18843 0.55 (inf) noM 18843 0.56 18843 0.55

560 28 1 (19265) 2742.87 (inf) noM (19265) 2782.24 (19265) 10800.07

600 30 1 19368 0.19 (inf) noM 19368 0.17 19368 0.19

640 32 1 19821 14.8 (inf) noM 19821 17.83 19821 17.92

680 34 1 (20026) 4381.57 (inf) noM (20026) 4426.71 (20026) 10801.03

720 36 1 18852 1.19 (inf) noM 18852 1.03 18852 1.03

760 38 1 19054 0.53 (inf) noM 19054 0.53 19054 0.52

800 40 1 19237 346.17 (inf) noM 19237 339.75 19237 339.03

840 42 1 (19226) 8066.02 (inf) noM 19223 74.21 19223 71.66

880 44 1 (19319) 8997.39 (inf) noM (19319) 9436.04 (19319) 10800.4

920 46 1 19748 0.11 (inf) noM 19748 0.13 19748 0.11

960 48 1 19140 0.11 (inf) noM 19140 0.11 19140 0.09

1000 50 1 19176 0.13 (inf) noM 19176 0.13 19176 0.11

173



Appendix A. MSBB Tables of results

Table 26: Table of results for instances from group 3 with Dmax(2) = 0.90× LT (1)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

40 2 1 inf 0 inf 0 inf 0 inf 0

2 inf 0 inf 0 inf 0 inf 0

3 (15902) 10.14 15902 0.67 (15902) 10.55 (15902) 55.02

4 (16747) 7.84 16747 1.86 (16747) 9 (16747) 45.41

4 1 (inf) 11.27 (14668) 9.66 (inf) 13.59 (inf) 67.72

2 (inf) 8.98 20343 10.47 (inf) 10.8 (inf) 52.67

3 19134 0 19134 0.33 19134 0 19134 0

4 (20100) 16.81 20100 66.49 (20100) 20.33 (20100) 98.17

60 3 1 (14591) 13.7 14516 68.22 (14591) 13.77 (14591) 71.6

2 (18715) 13.77 (18715) 4.58 (18715) 15.33 (18715) 76.33

4 (inf) 14.55 (17181) 94.94 (17471) 16.94 (17243) 83.57

6 1 (16540) 19.25 16540 11.83 (16540) 19.95 (16540) 99.85

2 21227 0 21227 6.97 21227 0.02 21227 0

3 (19630) 16.31 (19630) 8.08 (19630) 18.48 (19630) 91.6

4 20059 0.02 20059 1.84 20059 0.02 20059 0

80 4 1 14896 0 14896 8.42 14896 0.01 14896 0.02

3 (16882) 20.13 (16799) 7267.44 (16882) 22.27 (16829) 112.5

4 (16894) 22.78 16801 11.17 (16801) 26.86 (16801) 134.18

8 1 17955 0.02 17955 10.98 17955 0.01 17955 0

3 19526 0 19526 5.13 19526 0 19526 0

4 (inf) 25.73 (18788) 35.02 (inf) 35.08 (inf) 173.88

100 5 1 14229 0.17 14229 27.72 14229 0.42 14229 0.39

2 19189 0.17 19189 33.11 19189 0.03 19189 0.01

4 (16532) 30.39 16505 50.17 (16505) 35.39 (16505) 179.89
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Table 27: Table of results for instances from group 3 with Dmax(2) (continue)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

100 10 1 (16061) 46.33 (16062) 34.16 (16061) 58.11 (16061) 290.18

2 (22937) 46.31 22904 41.89 (22904) 50.67 (22904) 245.51

3 (20975) 54.81 20914 46.75 (20914) 54.03 (20914) 273.54

4 18369 0.61 18369 42.59 18369 0.03 18369 0.03

120 6 1 15799 0.05 15799 115.89 15799 0.05 15799 0.05

2 (19310) 55.59 (19300) 478.29 (19310) 59.94 (19310) 297.7

3 17222 0.63 17222 28.72 17222 0.38 17222 0.36

4 19776 0.06 19776 25.13 19776 0.05 19776 0.05

12 1 (inf) 80.8 18416 37.66 (inf) 84.5 (inf) 413.82

2 (23698) 70.5 (23698) 86.39 (23698) 76.22 (23698) 372.35

3 19136 1.23 19136 42.44 19136 0.61 19136 0.61

4 22045 0.03 22045 21.94 22045 0.03 22045 0.03

140 7 1 (inf) 94.85 15213 399.36 (15235) 97.74 (15235) 484.45

2 18162 0.03 18162 411.11 18162 0.05 18162 0.03

4 19708 0.19 19708 282.48 19708 2.22 19708 2.19

14 1 (inf) 129.19 (17998) 161.6 (inf) 132.07 (inf) 653.5

2 22293 0.06 22293 34.75 22293 0.06 22293 0.08

3 (inf) 118.79 (17698) 1988.7 (inf) 115.26 (inf) 570

4 (21836) 113.4 21836 209.15 (21836) 110.38 (21836) 548.11

160 8 2 18982 0.08 18982 801.01 18982 0.06 18982 0.08

3 (16448) 116.57 16423 5385.78 (16423) 116.61 (16423) 584.39

4 (19264) 109.72 19249 501.54 (19262) 122.55 (19262) 615.2

16 1 (19226) 181.73 19148 52.75 19148 18.38 19148 18.3

2 23311 0.08 23311 48.06 23311 0.08 23311 0.08

3 (inf) 163.55 (18521) 3h (18640) 169.41 (18507) 856.87

4 (21588) 163.88 (21575) 120.47 (21575) 163.76 (21575) 886.88

180 9 1 15976 0.13 15976 510.08 15976 0.13 15976 0.11

2 19644 0.41 19644 1180.03 19644 0.41 19644 0.42

4 (19488) 184.9 19488 479.14 (19488) 185.95 (19488) 929.38
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Table 28: Table of results for instances from group 3 with Dmax(2) (continue)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

180 18 1 (19458) 239.26 19458 215.69 (19458) 240.95 (19458) 1220.41

2 24445 0.09 24445 904.67 24445 0.08 24445 0.09

3 (inf) 226.48 19948 633.49 (19950) 232.97 (19950) 1171.67

4 (22123) 272.63 22080 309.96 (22080) 261.33 (22080) 1307.1

200 10 1 16471 0.11 16471 160.43 16471 0.13 16471 0.13

2 (18925) 165.76 18918 1434.82 18918 23.67 18918 23.98

3 17488 0.06 17488 2986.13 17488 0.06 17488 0.06

4 18810 0.14 18810 910.52 18810 0.14 18810 0.14

20 1 19890 0.16 19890 134.08 19890 0.16 19890 0.16

2 23602 0.11 23602 154.93 23602 0.13 23602 0.13

3 20138 0.11 20138 1839.81 20138 0.13 20138 0.13

4 21737 11.75 21737 1625.53 21737 2.69 21737 2.69

240 12 1 18352 0.03 18352 5391.74 18352 0.03 18352 0.02

280 14 1 18700 5.91 (19035) 3h 18700 3.83 18700 3.81

320 16 1 17913 0.34 (18316) 3h 17913 0.36 17913 0.34

360 18 1 17861 0.34 17861 6968.50 17861 9.84 17861 9.8

400 20 1 (inf) 1129.2 (inf) 3h (inf) 1207.12 (18380) 6018.36

440 22 1 18325 3.98 (inf) 3h 18325 31.55 18325 31.52

480 24 1 (18859) 1414.12 (inf) 3h 18853 338.86 18853 338.38

520 26 1 (inf) —— (inf) 3h 18843 86.19 18843 85.94

600 30 1 19368 3.45 (inf) noM 19368 3.45 19368 3.44

640 32 1 (inf) —— (inf) 3h (inf) 3787.13 (inf) 10800.39

720 36 1 (inf) —— (inf) noM (18852) 5206.2 (18852) 10806.45

760 38 1 (inf) —— (inf) noM (19054) 5838 (19054) 10803.09

800 40 1 (19240) 7343.44 (inf) noM (19237) 7293.15 (19237) 10801.07

840 42 1 (inf) —— (inf) noM (inf) 8503.23 (inf) 10813.9

920 46 1 19748 14.63 (inf) noM 19748 15.17 19748 14.8

960 48 1 19140 9.39 (inf) noM 19140 9.47 19140 9.55

1000 50 1 19176 13.52 (inf) noM 19176 13.25 19176 12.89
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Table 29: Table of results for instances from group 3 with Dmax(3) = 0.90× LT (2)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

40 4 3 (19317) 13.12 (19317) 10.72 (19317) 14.6 (19317) 69.36

60 6 2 (inf) 22.42 21262 8.15 (inf) 21.67 (inf) 108.31

4 (20067) 19.23 20067 10.2 (20067) 25.45 (20067) 115.5

80 4 1 (15010) 21.42 14896 9.09 14896 0.42 14896 0.41

8 1 (18004) 36.9 (17988) 7.73 (18004) 42.06 (18004) 187.79

3 (19690) 30.28 19526 70.79 19526 4.14 19526 3.8

100 5 1 (14234) 33.86 (14234) 95.53 (14234) 44.05 (14234) 222.85

2 (19221) 34.3 (19221) 180.67 (19221) 39.16 (19221) 186.3

10 4 (inf) 43.63 18377 28.03 (18377) 59.05 (18377) 278.02

120 6 1 (15825) 54.14 (15818) 10800.47 (15824) 66.36 (15824) 319.81

3 (inf) 60.47 (17249) 10800.39 (17249) 68.96 (17249) 342.77

4 19776 0.09 19776 24.94 19776 0.2 19776 0.2

12 3 (19248) 76.69 (19158) 2036.82 (19163) 81.46 (19158) 405.64

4 (22110) 82.57 (22095) 51.41 (22110) 104.51 (22110) 475.75

140 7 2 18162 0.47 18162 567.03 18162 0.2 18162 0.19

4 19708 0.25 19708 368.19 19708 2.27 19708 2.17

14 2 22293 2.61 22293 44.08 22293 23.28 22293 22.03

160 8 2 18982 1.19 18982 442.73 18982 0.36 18982 0.33

16 1 (inf) 182.74 (19169) 1287.91 (19222) 200.79 (19222) 971.99

2 23311 0.08 23311 79.3 23311 0.08 23311 0.08

180 9 1 15976 1.73 15976 711.41 15976 0.78 15976 0.77

2 (19644) 161.87 19644 290.28 (19644) 171.54 (19644) 836.97

18 2 24445 25.36 24445 81.24 24445 5.83 24445 5.74

200 10 1 16471 0.11 16471 146.19 16471 0.11 16471 0.11

2 (18930) 166.65 18924 2737.11 (18926) 185.28 (18926) 930.72

3 17488 1.95 17488 3202.91 17488 0.61 17488 0.61

4 (18881) 165.24 18810 1408.79 (18810) 199.04 (18810) 1000.63
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Table 30: Table of results for instances from group 3 with Dmax(3) (continue)

Tol CPLEX RND M5SBB
n m p

Obj CPU Obj CPU Obj CPU Obj CPU

200 20 1 (19895) 264.4 19895 377.38 (19895) 303.84 (19895) 1523.76

2 23602 23.81 23602 117.69 23602 9.45 23602 9.41

3 (20139) 277.23 (20139) 1921.9 (20139) 285.67 (20139) 1433.8

4 21737 14.75 21737 415.49 21737 3.47 21737 3.45

240 12 1 18352 1.34 (18352) 6863.99 18352 1.08 18352 1.08

280 14 1 18700 16.53 (18701) 9163.53 18700 335.67 18700 335.88

320 16 1 (inf) 559.65 (inf) 3h (17918) 640.74 (17918) 3226.05

360 18 1 (inf) 752.26 (inf) 3h (17864) 896.23 (17864) 4506.4

440 22 1 (inf) 1076.06 (inf) noM (18328) 1244.12 (18328) 6177.66

480 24 1 (18874) 1431.57 (inf) noM 18853 1050.87 18853 1027.99

520 26 1 (inf) —— (inf) 3h 18843 218.64 18843 214.47

600 30 1 (inf) —— (inf) noM (19368) 3417.04 (19368) 10800.26

920 46 1 19748 10.59 (inf) noM 19748 10.67 19748 10.5

960 48 1 19140 9.36 (inf) noM 19140 9.34 19140 9.27

1000 50 1 19176 378.07 (inf) noM 19176 41.75 19176 42.19
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.4 Tables of Results in Stage 1

Table 31: Table of results for instances from group 1 with Dmax(1) = ∞

Objective Value CPU Time
n m p

CPLEX M5SBB VNS
%dev

CPLEX M5SBB VNS

40 2 1 152 152 158 3.95 1.63 0 10.00

40 2 2 208 208 225 8.17 1.69 0 10.00

40 2 3 178 178 193 8.43 0.67 0 10.00

40 2 4 186 186 198 6.45 1.22 0 10.00

40 4 1 171 171 179 4.68 1 0 10.02

40 4 2 223 223 233 4.48 0.8 0 10.00

40 4 3 213 213 217 1.88 0.56 0 10.00

40 4 4 218 218 224 2.75 1.03 0 10.00

60 3 1 178 178 200 12.36 5.64 0.02 10.11

60 3 2 222 222 248 11.71 3.42 0.02 10.00

60 3 3 192 192 204 6.25 6.92 0.01 10.03

60 3 4 205 205 226 10.24 5.47 0.01 10.05

60 6 1 203 203 218 7.39 2.84 0.02 10.05

60 6 2 254 254 268 5.51 5.92 0 10.05

60 6 3 228 228 240 5.26 4.17 0 10.08

60 6 4 238 238 251 5.46 1.39 0 10.03
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Table 32: Table of results for instances from group 1 with Dmax(1) = ∞ (Continue)

Objective Value CPU Time
n m p

CPLEX M5SBB VNS
%dev

CPLEX M5SBB VNS

80 4 1 198 198 223 12.63 18.97 0 10.16

80 4 2 237 237 271 14.35 37.94 0 10.05

80 4 3 211 211 236 11.85 19.31 0 10.08

80 4 4 214 214 238 11.21 16.94 0 10.09

80 8 1 231 231 245 6.06 15.41 0 10.08

80 8 2 281 281 302 7.47 23.08 0.01 10.00

80 8 3 242 242 263 8.68 15.31 0 10.05

80 8 4 238 238 247 3.78 23.94 0 10.11

100 5 1 204 204 235 15.20 12.11 0 10.34

100 5 2 256 256 295 15.23 13.16 0 10.27

100 5 3 228 228 268 17.54 36.86 0.01 10.08

100 5 4 225 225 252 12.00 6.88 0 10.22

100 10 1 232 232 251 8.19 15.48 0 10.00

100 10 2 309 309 336 8.74 20.5 0 10.02

100 10 3 270 270 295 9.26 16.3 0 10.14

100 10 4 255 255 279 9.41 29.47 0 10.13

120 6 1 232 232 270 16.38 393.02 0 10.02

120 6 2 269 269 319 18.59 127.6 0.02 10.09

120 6 3 241 241 279 15.77 232.1 0 10.36

120 6 4 270 270 321 18.89 287.03 0.02 10.27

120 12 1 269 269 304 13.01 68.89 0 10.09

120 12 2 329 329 367 11.55 13.64 0 10.05

120 12 3 277 277 315 13.72 100.16 0.02 10.23

120 12 4 308 308 337 9.42 20.02 0 10.14

140 7 1 238 238 295 23.95 438.18 0.03 10.11

140 7 2 274 274 313 14.23 62.22 0 11.19

140 7 3 249 249 304 22.09 808.53 0.02 10.16

140 7 4 284 284 338 19.01 40.46 0.03 10.23
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Table 33: Table of results for instances from group 1 with Dmax(1) = ∞ (Continue)

Objective Value CPU Time
n m p

CPLEX M5SBB VNS
%dev

CPLEX M5SBB VNS

140 14 1 280 280 318 13.57 82.16 0.02 10.11

140 14 2 334 334 371 11.08 154.57 0 10.14

140 14 3 283 283 331 16.96 159.82 0.03 10.44

140 14 4 326 326 365 11.96 372.21 0 10.39

160 8 1 259 259 315 21.62 364.93 0.03 10.44

160 8 2 298 298 355 19.13 96.69 0.02 10.63

160 8 3 268 268 329 22.76 711.1 0.08 10.64

160 8 4 286 286 338 18.18 427.74 0 10.59

160 16 1 309 309 367 18.77 335.24 0.02 10.06

160 16 2 365 365 418 14.52 174.6 0 10.58

160 16 3 309 309 367 18.77 88.96 0 10.42

160 16 4 328 328 374 14.02 404.08 0 10.38

180 9 1 277 277 342 23.47 2356.54 0.01 10.94

180 9 2 317 317 383 20.82 1528.11 0 10.56

180 9 3 294 294 359 22.11 1475.98 0 10.72

180 9 4 301 301 364 20.93 1934.8 0.03 10.97

180 18 1 329 329 377 14.59 65.53 0 10.36

180 18 2 392 392 446 13.78 477.52 0.03 10.25

180 18 3 340 340 403 18.53 170.32 0.03 10.31

180 18 4 347 347 407 17.29 63.88 0 10.19

200 10 1 287 287 358 24.74 210.95 0 11.89

200 10 2 322 322 399 23.91 2708.05 0.02 11.05

200 10 3 305 305 378 23.93 209.35 0.02 13.97

200 10 4 309 309 390 26.21 3137.18 0.05 11.27

200 20 1 343 343 396 15.45 95.57 0.01 10.03

200 20 2 394 394 455 15.48 773.46 0 10.16

200 20 3 358 358 427 19.27 250.92 0.05 10.61

200 20 4 364 364 432 18.68 108.19 0.08 10.73
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Table 34: Table of results for instances from group 1 with Dmax(1) = ∞ (Continue)

Objective Value CPU Time
n m p

CPLEX M5SBB VNS
%dev

CPLEX M5SBB VNS

240 12 1 331 331 395 19.34 2629.42 0.03 101.98

280 14 1 (inf) 366 449 22.68 3h 0.05 100.19

320 16 1 395 395 502 27.09 1136.89 0 105.48

360 18 1 (inf) 425 536 26.12 3h 0.05 101.09

400 20 1 (inf) 467 593 26.98 3h 0.17 106.98

440 22 1 (inf) 509 642 26.13 3h 0.13 111.44

480 24 1 (inf) 554 681 22.92 3h 0.2 155.56

520 26 1 (inf) 593 739 24.62 3h 0.08 110.52

560 28 1 (inf) 635 802 26.30 3h 0.19 106.05

600 30 1 (inf) 680 844 24.12 3h 0.23 121.28

640 32 1 (inf) 726 926 27.55 —– 0.02 129.06

680 34 1 (inf) 770 937 21.69 3h 0.11 137.66

720 36 1 (inf) 813 978 20.30 noM 0.03 153.20

760 38 1 (inf) 857 1028 19.95 noM 0.19 149.58

800 40 1 (inf) 903 1088 20.49 noM 0.44 171.81

840 42 1 (inf) 948 1137 19.94 noM 0.05 295.80

880 44 1 (inf) 993 1190 19.84 noM 0.03 169.69

920 46 1 (inf) 1037 1238 19.38 noM 0.11 232.28

960 48 1 (inf) 1081 1277 18.13 noM 0.13 250.66

1000 50 1 (inf) 1127 1300 15.35 noM 5.28 284.89
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Table 35: Table of results for instances from group 2 with Dmax(1) = ∞

Objective Value CPU Time
n m p

CPLEX M5SBB VNS
%dev

CPLEX M5SBB VNS

40 2 1 1323 1323 1402 5.97 0.59 0.03 10.00

40 2 2 1898 1898 2007 5.74 0.5 0 10.00

40 2 3 1586 1586 1680 5.93 0.5 0 10.00

40 2 4 1690 1690 1807 6.92 0.7 0 10.02

40 4 1 1483 1483 1564 5.46 0.5 0 10.00

40 4 2 2034 2034 2084 2.46 0.42 0.01 10.00

40 4 3 1930 1930 1976 2.38 0.28 0 10.00

40 4 4 1999 1999 2104 5.25 0.81 0 10.00

60 3 1 1478 1478 1658 12.18 3.09 15.7 10.03

60 3 2 1895 1895 2068 9.13 5.2 0 10.06

60 3 3 1660 1660 1790 7.83 1.08 0.58 10.00

60 3 4 1739 1739 1837 5.64 2.11 0 10.05

60 6 1 1686 1686 1813 7.53 1.48 0.02 10.02

60 6 2 2153 2153 2298 6.73 3.53 0 10.06

60 6 3 1993 1993 2134 7.07 4.16 0.02 10.00

60 6 4 2041 2041 2117 3.72 0.77 0 10.05

80 4 1 1529 1529 1725 12.82 5.66 0 10.05

80 4 2 1907 (1930) 2046 7.29 11.69 150.65 10.06

80 4 3 1712 1712 1865 8.94 45.3 0 10.19

80 4 4 1720 1720 1953 13.55 1.83 0 10.08

80 8 1 1837 1837 1920 4.52 4.81 0 10.06

80 8 2 2235 (2235) 2347 5.01 9.75 170.07 10.05

80 8 3 1995 1995 2102 5.36 7.59 0 10.06

80 8 4 1917 1917 2005 4.59 6.61 0 10.20
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Table 36: Table of results for instances from group 2 with Dmax(1) = ∞ (Continue)

Objective Value CPU Time
n m p

CPLEX M5SBB VNS
%dev

CPLEX M5SBB VNS

100 5 1 1474 1474 1719 16.62 36.41 0.02 10.27

100 5 2 1966 1966 2161 9.92 76.77 0.01 10.08

100 5 3 1796 1796 2008 11.80 29.09 0.2 10.05

100 5 4 1701 1701 1878 10.41 73.82 0.08 10.06

100 10 1 1659 1659 1833 10.49 13.67 0 10.13

100 10 2 2345 2345 2503 6.74 46.17 0 10.03

100 10 3 2152 2152 2264 5.20 23.86 0 10.09

100 10 4 1901 1901 2037 7.15 17.66 0.11 10.16

120 6 1 1639 1639 1934 18.00 140.79 0.03 10.63

120 6 2 1983 1983 2239 12.91 136.04 0 10.27

120 6 3 1782 1782 1932 8.42 93.77 0 10.75

120 6 4 2046 2046 2385 16.57 100.1 0.02 10.59

120 12 1 1910 1910 2130 11.52 51.97 0.02 10.09

120 12 2 2437 2437 2602 6.77 24.69 0 10.02

120 12 3 1986 1986 2174 9.47 16.06 0 10.28

120 12 4 2287 2287 2556 11.76 9.34 0 10.33

140 7 1 1593 1593 1948 22.28 315.89 0.05 10.19

140 7 2 1890 1890 2241 18.57 46.31 0.02 10.80

140 7 3 1668 1668 1949 16.85 396.43 0.06 10.75

140 7 4 2045 2045 2336 14.23 303.8 0 10.06

140 14 1 1880 1880 2131 13.35 67.3 0 10.22

140 14 2 2317 2317 2517 8.63 127.27 0.02 10.34

140 14 3 1856 1856 2101 13.20 692.19 0.22 10.02

140 14 4 2276 2276 2573 13.05 119.21 0 10.00

160 8 1 1685 1685 1970 16.91 1474.17 1.88 10.94

160 8 2 1989 1989 2301 15.69 245.22 0 10.47

160 8 3 1724 1724 2005 16.30 3919.84 0.19 11.30

160 8 4 2004 2003 2278 13.73 1182.39 0.05 10.16
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Table 37: Table of results for instances from group 2 with Dmax(1) = ∞ (Continue)

Objective Value CPU Time
n m p

CPLEX M5SBB VNS
%dev

CPLEX M5SBB VNS

160 16 1 2025 2025 2335 15.31 289.89 0.01 10.08

160 16 2 2451 2451 2725 11.18 32.45 0 10.50

160 16 3 1950 1950 2224 14.05 1932.37 0.02 10.72

160 16 4 2251 2251 2546 13.11 102.38 0.02 10.14

180 9 1 1699 1699 2033 19.66 774.32 0.03 10.67

180 9 2 2061 2061 2445 18.63 271.76 0.05 11.11

180 9 3 1854 1854 2128 14.78 1579.94 0.05 10.11

180 9 4 2039 2039 2358 15.64 2853.41 0.13 12.34

180 18 1 2065 2065 2286 10.70 37.11 0.02 10.92

180 18 2 2574 2574 2827 9.83 72.44 0.03 11.47

180 18 3 2110 2110 2457 16.45 432.85 0.08 10.44

180 18 4 2319 2319 2627 13.28 945.91 0.02 10.00

200 10 1 1757 1757 2179 24.02 112.66 0 13.67

200 10 2 2006 2006 2334 16.35 457.66 0.02 11.05

200 10 3 1862 1862 2161 16.06 359.3 0.03 17.47

200 10 4 1986 1986 2433 22.51 2476.05 0.05 10.22

200 20 1 2123 2123 2395 12.81 167.11 0 12.09

200 20 2 2508 2508 2836 13.08 343.46 0 10.59

200 20 3 2152 2152 2451 13.89 2491.83 0.03 10.50

200 20 4 2302 2302 2672 16.07 3668.73 0.02 10.14

240 12 1 1977 1977 2307 16.69 2231.11 0.06 103.20

280 14 1 2037 2037 2362 15.95 5315.13 0.03 100.06

320 16 1 1972 1972 2411 22.26 1564.42 0.13 107.69

360 18 1 (inf) 2008 2408 19.92 3h 179.16 107.36

400 20 1 (inf) 2066 2571 24.44 3h 8.52 136.02

440 22 1 (inf) (2100) 2637 25.57 3h 5066.2 114.47

480 24 1 (inf) (2175) 2813 29.33 3h 6030.11 106.06

520 26 1 (inf) 2207 2856 29.41 noM 0.08 117.72

560 28 1 (inf) 2279 3029 32.91 noM 0.47 114.59
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Table 38: Table of results for instances from group 2 with Dmax(1) = ∞ (Continue)

Objective Value CPU Time
n m p

CPLEX M5SBB VNS
%dev

CPLEX M5SBB VNS

600 30 1 (inf) (2309) 2999 29.88 noM 9656.18 155.78

640 32 1 (inf) 2395 3125 30.48 noM 0.39 151.50

680 34 1 (inf) 2437 3238 32.87 noM 23.09 150.52

720 36 1 (inf) 2365 3154 33.36 noM 0.19 192.47

760 38 1 (inf) (2411) 3333 38.24 noM 10800.19 169.75

800 40 1 (inf) (2452) 3239 32.10 noM 10800.18 284.00

840 42 1 (inf) 2470 3320 34.41 noM 0.89 374.00

880 44 1 (inf) 2513 3361 33.74 noM 2.2 324.47

920 46 1 (inf) 2578 3549 37.66 noM 3.73 329.17

960 48 1 (inf) 2577 3450 33.88 noM 4.73 632.05

1000 50 1 (inf) 2614 3589 37.30 noM 0.42 311.13
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Table 39: Table of results for instances from group 3 with Dmax(1) = ∞

Objective Value CPU Time
n m p

CPLEX M5SBB VNS
%dev

CPLEX M5SBB VNS

40 2 1 13047 13047 13821 5.93 3.45 0.03 10.00

40 2 2 18769 18769 19087 1.69 0.28 0 10.02

40 2 3 15692 15692 16581 5.67 0.44 0 10.02

40 2 4 16704 16704 18126 8.51 0.56 0 10.02

40 4 1 14630 14630 15121 3.36 0.72 0.33 10.00

40 4 2 20122 20122 20152 0.15 0.28 0 10.00

40 4 3 19134 19134 19889 3.95 0.28 0 10.00

40 4 4 19775 19775 20005 1.16 0.5 0 10.00

60 3 1 14487 14487 15932 9.97 2.36 6.47 10.02

60 3 2 18713 18713 20361 8.81 5.99 0 10.03

60 3 3 16328 (16328) 18648 14.21 3.96 85.83 10.08

60 3 4 17076 17076 18782 9.99 1.58 0 10.06

60 6 1 16540 16540 17855 7.95 1.42 0 10.02

60 6 2 21227 21227 22266 4.89 3.39 0.02 10.09

60 6 3 19610 19610 20290 3.47 1.88 0.01 10.08

60 6 4 20059 20059 21137 5.37 0.86 0 10.05

80 4 1 14896 14896 16842 13.06 7.88 0 10.19

80 4 2 18706 (18706) 20098 7.44 20.91 160.47 10.09

80 4 3 16726 16726 18827 12.56 62.19 0 10.08

80 4 4 16795 16795 18218 8.47 23.19 0.01 10.16

80 8 1 17955 17955 19455 8.35 3.67 0 10.03

80 8 2 21910 (21910) 23226 6.01 4.25 175.54 10.03

80 8 3 19526 19526 20835 6.70 4.67 0 10.08

80 8 4 18736 18736 19678 5.03 8.03 0 10.05
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Table 40: Table of results for instances from group 3 with Dmax(1) = ∞ (Continue)

Objective Value CPU Time
n m p

CPLEX M5SBB VNS
%dev

CPLEX M5SBB VNS

100 5 1 14229 14229 15931 11.96 20.88 0.02 10.38

100 5 2 19189 19189 21485 11.97 42.39 0 10.42

100 5 3 17451 (17451) 19114 9.53 20.94 209.04 10.34

100 5 4 16465 16465 19112 16.08 8.61 0.28 10.30

100 10 1 16042 16042 17708 10.39 15.52 0 10.17

100 10 2 22885 22885 24679 7.84 12.19 0.03 10.03

100 10 3 20914 20914 22362 6.92 37.5 2.53 10.13

100 10 4 18369 18369 20242 10.20 16.56 0.01 10.16

120 6 1 15799 15799 16952 7.30 140.15 0 10.03

120 6 2 19276 19276 21553 11.81 41.28 0 10.83

120 6 3 17222 17222 19173 11.33 52.96 0 10.33

120 6 4 19776 19776 21797 10.22 75.78 0.02 10.41

120 12 1 18400 18400 20040 8.91 19.39 0.01 10.19

120 12 2 23692 23692 25025 5.63 40.75 0 10.11

120 12 3 19136 19136 20763 8.50 7.41 0 10.14

120 12 4 22045 22045 23745 7.71 10.75 0 10.09

140 7 1 15213 15213 17976 18.16 395.19 0.2 11.28

140 7 2 18162 18162 20322 11.89 1021.54 0.03 10.58

140 7 3 (15953) (15953) 18323 14.86 1675.17 424.62 11.11

140 7 4 19708 19708 22775 15.56 224.68 0.16 10.63

140 14 1 17998 17998 20036 11.32 23.22 0.02 10.22

140 14 2 22293 22293 24762 11.08 27.84 0 10.25

140 14 3 17690 17690 19843 12.17 106.99 0.14 10.13

140 14 4 21836 21836 24284 11.21 29.84 0 10.11

160 8 1 15977 (15984) 19179 20.04 942.99 741.72 11.36

160 8 2 18982 18982 22837 20.31 128.63 0 10.11

160 8 3 16423 16423 18686 13.78 420.58 2.09 13.17

160 8 4 19245 19245 21886 13.72 156.38 0.05 10.33
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Table 41: Table of results for instances from group 3 with Dmax(1) = ∞ (Continue)

Objective Value CPU Time
n m p

CPLEX M5SBB VNS
%dev

CPLEX M5SBB VNS

160 16 1 19148 19148 21933 14.54 103.21 0.05 10.22

160 16 2 23311 23311 26251 12.61 56.81 0 10.06

160 16 3 18491 18491 20848 12.75 206.16 0.14 10.20

160 16 4 21575 21575 24660 14.30 208.71 0.03 10.45

180 9 1 15976 15976 18811 17.75 214.91 0.03 11.23

180 9 2 19644 19644 23185 18.03 788.2 0.41 11.20

180 9 3 17576 (17619) 20633 17.39 1304.54 795.72 12.11

180 9 4 19488 19488 21959 12.68 1062.66 0.05 10.41

180 18 1 19453 19453 21865 12.40 49.3 0 10.56

180 18 2 24445 24445 26588 8.77 78.69 0.03 10.75

180 18 3 19948 19948 22852 14.56 628.71 0.11 10.20

180 18 4 22080 22080 24448 10.72 74.11 0.02 10.27

200 10 1 16471 16471 20177 22.50 272.12 0 12.17

200 10 2 18918 18918 22189 17.29 343.51 0.02 10.70

200 10 3 17488 17488 21408 22.42 933.45 0.06 10.75

200 10 4 18810 18810 21680 15.26 404 0.14 14.30

200 20 1 19890 19890 22970 15.49 59.36 0.02 10.25

200 20 2 23602 23602 26166 10.86 74.86 0 11.13

200 20 3 20138 20138 23193 15.17 1289.48 0.02 10.53

200 20 4 21737 21737 24808 14.13 959.41 0.05 10.55

240 12 1 18352 18352 21745 18.49 7485.38 0.03 101.11

280 14 1 (19254) 18700 21935 17.30 3h 0.05 109.73

320 16 1 17913 17913 21400 19.47 1363.11 0.02 109.09

360 18 1 (inf) 17861 20915 17.10 3h 0.06 153.23

400 20 1 (inf) 18318 22426 22.43 noM 0.39 113.33

440 22 1 (inf) 18325 22632 23.50 3h 4.08 122.56

480 24 1 (inf) 18853 23389 24.06 noM 0.23 117.88

520 26 1 (inf) 18843 22896 21.51 noM 0.55 119.45

560 28 1 (inf) (19265) 24066 24.92 noM 10800.07 101.36
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Table 42: Table of results for instances from group 3 with Dmax(1) = ∞ (Continue)

Objective Value CPU Time
n m p

CPLEX M5SBB VNS
%dev

CPLEX M5SBB VNS

600 30 1 (inf) 19368 24534 26.67 noM 0.19 133.38

640 32 1 (inf) 19821 26083 31.59 noM 17.92 131.50

680 34 1 (inf) (20026) 26016 29.91 noM 10801.03 315.50

720 36 1 (inf) 18852 24279 28.79 noM 1.03 394.64

760 38 1 (inf) 19054 24060 26.27 noM 0.52 639.91

800 40 1 (inf) 19237 24442 27.06 noM 339.03 331.97

840 42 1 (inf) 19223 24703 28.51 noM 71.66 543.16

880 44 1 (inf) (19319) 25166 30.27 noM 10800.4 544.86

920 46 1 (inf) 19748 25753 30.41 noM 0.11 461.42

960 48 1 (inf) 19140 24426 27.62 noM 0.09 728.95

1000 50 1 (inf) 19176 25677 33.90 noM 0.11 519.00
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.5 Tables of some Results in Stage 2

Table 43: Table of results for instances from group 1 with Dmax(2) = 0.90× LT (1)

Objective Value CPU Time
n m p

CPLEX M5SBB VNS
%dev

CPLEX M5SBB VNS

40 2 1 inf inf inf 0 0

40 2 2 inf inf inf 0 0

40 2 3 180 (180) 188 4.44 1.11 50.75 100.00

40 2 4 187 (187) 202 8.02 6.14 42.33 100.00

40 4 1 171 171 177 3.51 0.8 1.73 100.00

40 4 2 224 (224) 228 1.79 1.58 50.17 100.00

40 4 3 214 (214) 224 4.67 4.33 62.14 100.00

40 4 4 222 (inf) (inf) 17.42 91.58

60 3 1 178 178 197 10.67 3.58 0 100.05

60 3 2 222 222 241 8.56 11.06 0.05 100.05

60 3 3 192 192 213 10.94 5.38 0 100.00

60 3 4 205 (205) 218 6.34 31.61 75.53 100.03

60 6 1 203 203 217 6.90 3.3 0.01 100.02

60 6 2 254 254 265 4.33 4.34 0.02 100.06

60 6 3 228 (228) 234 2.63 24.11 96.82 100.05

60 6 4 238 238 254 6.72 0.95 0.02 100.02

80 4 1 198 198 228 15.15 6.03 0.01 100.05

80 4 2 237 237 260 9.70 60.49 0.23 100.02

80 4 3 211 211 233 10.43 32.5 0.01 100.03

80 4 4 214 (215) 250 16.82 27.33 93.02 100.03

80 8 1 231 231 252 9.09 7.74 0.02 100.03

80 8 2 281 281 302 7.47 18.64 25.03 100.05

80 8 3 242 242 255 5.37 106.97 2.3 100.20

80 8 4 238 238 251 5.46 15.52 0 100.19

191



Appendix B. VNS Tables of results

Table 44: Table of results for instances from group 1 with Dmax(2) (continue)

Objective Value CPU Time
n m p

CPLEX M5SBB VNS
%dev

CPLEX M5SBB VNS

100 5 1 204 204 (inf) 12.16 0

100 5 2 256 256 287 12.11 75.94 0.01 100.17

100 5 3 229 (230) (inf) 668.27 152.88

100 5 4 225 225 255 13.33 82.54 0.02 100.00

100 10 1 232 232 259 11.64 15.36 0.02 100.08

100 10 2 309 309 331 7.12 14.6 0.01 100.08

100 10 3 270 270 292 8.15 63.96 0.01 100.23

100 10 4 255 255 276 8.24 26.72 0.02 100.22

120 6 1 232 232 271 16.81 348.24 0.02 100.42

120 6 2 269 269 307 14.13 202.17 0.52 100.06

120 6 3 242 (242) 278 14.88 1221.39 208.31 100.19

120 6 4 271 (271) (inf) 409.71 211.62

120 12 1 269 269 292 8.55 121.51 0.05 100.56

120 12 2 329 329 (inf) 29 0.01

120 12 3 277 (277) 309 11.55 94.27 296.16 100.06

120 12 4 308 308 339 10.06 129.05 0.02 100.02

140 7 1 238 238 289 21.43 292.81 1.03 100.30

140 7 2 274 274 318 16.06 350.19 0.05 100.06

140 7 3 249 249 288 15.66 106.93 0.11 101.34

140 7 4 284 284 323 13.73 613.27 0.03 101.20

140 14 1 280 280 317 13.21 342.39 0.02 100.38

140 14 2 334 334 360 7.78 253.51 0.11 100.11

140 14 3 283 (283) 324 14.49 173.31 443.55 100.17

140 14 4 326 326 346 6.13 767.57 1.05 100.31
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Table 45: Table of results for instances from group 1 with Dmax(2) (continue)

Objective Value CPU Time
n m p

CPLEX M5SBB VNS
%dev

CPLEX M5SBB VNS

160 8 1 259 259 305 17.76 398.63 14.44 100.95

160 8 2 298 298 347 16.44 344.32 0.06 101.39

160 8 3 268 268 304 13.43 637.16 83.13 100.95

160 8 4 286 (286) 334 16.78 1201.97 386.64 101.00

160 16 1 309 309 354 14.56 728.24 0.01 100.23

160 16 2 365 365 (inf) 465.42 0.03

160 16 3 310 (310) 345 11.29 7014.37 588.31 100.19

160 16 4 328 328 362 10.37 875.53 0.03 101.02

180 9 1 277 277 (inf) 1911.22 1.81

180 9 2 317 317 376 18.61 1378.82 0.08 100.52

180 9 3 294 (294) (inf) 614.91 641.02

180 9 4 301 301 341 13.29 1475.62 0.03 100.53

180 18 1 330 (330) (inf) 842.47 841.71

180 18 2 392 392 (inf) 1040.63 0.42

180 18 3 340 340 388 14.12 1970.85 5.83 101.45

180 18 4 347 347 386 11.24 630.89 0.08 100.27

200 10 1 287 287 (inf) 1626.88 0.16

200 10 2 322 322 376 16.77 2276.13 0.13 101.25

200 10 3 305 305 361 18.36 329.38 0.16 100.03

200 10 4 309 309 368 19.09 2304.96 0.16 100.20

200 20 1 343 343 (inf) 1661.52 0.06

200 20 2 394 394 (inf) 1866.67 0.41

200 20 3 358 358 401 12.01 2237.54 0.05 100.41

200 20 4 364 364 413 13.46 332.72 0.27 100.33
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