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Abstract

This thesis focuses on applying order-statistics-based inferences on lifetime analysis

and financial risk measurement. The first problem is raised from fitting the Weibull

distribution to progressively censored and accelerated life-test data. A new order-

statistics-based inference is proposed for both parameter and confidence interval es-

timation.

The second problem can be summarised as adopting the inference used in the first

problem for fitting the generalised Pareto distribution, especially when sample size

is small. With some modifications, the proposed inference is compared with classical

methods and several relatively new methods emerged from recent literature.

The third problem studies a distribution free approach for forecasting financial volatil-

ity, which is essentially the standard deviation of financial returns. Classical models

of this approach use the interval between two symmetric extreme quantiles of the

return distribution as a proxy of volatility. Two new models are proposed, which

use intervals of expected shortfalls and expectiles, instead of interval of quantiles.

Different models are compared with empirical stock indices data.

Finally, attentions are drawn towards the heteroskedasticity quantile regression. The

proposed joint modelling approach, which makes use of the parametric link between

the quantile regression and the asymmetric Laplace distribution, can provide estima-

tions of the regression quantile and of the log linear heteroskedastic scale simultane-

ously. Furthermore, the use of the expectation of the check function as a measure of

quantile deviation is discussed.
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Chapter 1

Introduction

Order statistics are among the most fundamental tools in non-parametric statistics.

The earliest order-statistics-based inference was studied by Karl Pearson in 1902,

according to Wilks (1948). In the past century, numerous order statistics based

theories and applications have been created and studied, which makes it impossible

to summarise in the length of a thesis. Title of this thesis employs the term ‘Order-

statistics-based inference’ to unify different contents of related researches under a

categorical and summary framework. The research scopes of this thesis are given in

details in this chapter. First of all, we begin with a brief overview of some most basic

concepts of the order statistics.

Order statistics of a random sample X1, , ...Xn are, in short words, the sample value

re-sorted in ascending order, which are denoted as X1:n ≤ X2:n ≤ ... ≤ Xn:n. The

sample maximum and minimum then can be denoted as the last and the first order

statistics, respectively:

X1:n = min{X1, , ...Xn}, Xn:n = max{X1, , ...Xn}.

Furthermore, many common statistics can be derived from order statistics or be

viewed as a special case. Median, quartiles are essentially special order statistics; the

sample range, which is defined as

Range = Xn:n −X1:n,

is also a special order statistics.

Order statistics are also used in analysing and estimating distributions. For instance,

the L-moments (Hosking, 1990) are essentially linear combinations of order statistics,

3



1.1. Lifetime analysis with order-statistics 4

which provides an alternative view to summarise the distribution.

Studying of the limiting distribution of the largest order statistics by Fisher and

Tippett (1928) has become part of the foundations of the modern extreme value

theory. Moreover, if viewed as special cases of order statistics, the quantiles also

provides a unique angle of analysing distributions, not to mention the large amount

of theoretical and practical research results is based on this concept.

The scopes of the thesis involve several different applications of order-statistic-based

inferences, ranged from distribution estimation for lifetime data to measurement

of financial risk. To this end, the following sections of this chapter introduce and

review related topics with the aim of creating links between research scopes and

order-statistics-based inferences.

1.1 Lifetime analysis with order-statistics

Lifetime analysis is an important topic in many areas, such as engineering, health

and medical, biology, and social science. In different contexts, it is often referred

variously as survival analysis, failure time analysis or reliability analysis. These

studies are categorised as time-to-event data analysis in some literatures, where the

term ‘event’ refers to significant occurrence or result, such as failure or death. Note

that the time scale in this subject are not necessarily real or chronological time

(Lawless, 1982), as it could refer to other measurements of usage or durability that

are often encountered in engineering, for example, mileage of auto-mobiles, number

of hits of keyboard buttons, etc. Nonetheless, consider lifetime variable T , then the

lifetime distribution of T is a fundamental subject in lifetime analysis. For continuous

models, the lifetime or failure time function

F (t) = P(T ≤ t) =

∫ t

0
f(x) dx,

where F (t) and f(t) denote the cumulative distribution function (c.d.f.) and proba-

bility density function (p.d.f.) respectively, and t is usually defined over the interval

[0,+∞). The survival function is given by:

S(t) = P(T ≥ t) =

∫ ∞
t

f(x) dx,

which is defined as the probability of an object surviving to at least time t. Common

lifetime distributions include the exponential distribution, Weibull distribution, and

extreme value distribution, etc.. For more types of lifetime distributions and their



1.1. Lifetime analysis with order-statistics 5

details, see Lawless (1982), Miller et al. (1981).

Let Ti (i = 1, ..., n) be observations of the lifetime variable T , registered as the time

of ‘event’ taking place. Sorting in increasing order then T1:n ≤ T2:n ≤ ... ≤ Tn:n is

order statistics of the lifetime. However, in reality or experiments, the actual number

of observed failure is often smaller than the number of object at the beginning of the

observation for various reasons. That is, the order statistic of the last observation

is Tm:n, where m < n. This problem is closely related with three topics: censoring,

accelerated life-test, and progressive censoring, which are especially the focuses as

part of this thesis. We briefly explore and review these topics in the following part

of this section.

A sample is said to be censored if the number of actual observations is smaller than

the number of objects at the beginning of the observation. In lifetime analysis,

samples are often right censored, that is, some data points above certain value is

unobserved. For example, a sample order statistics T1:n, ..., Tm:n, where m < n, is

right-censored. On contrary, left censoring is that some data points below certain

value is unknown, i.e., the first observed data point is Tk:n, where k > 1 is known, but

T1:n, ..., T(k−1):n are unobserved. Right censoring is very common in lifetime data, as

it is often impractical or impossible to obtain full data set.

Furthermore, another set of censoring types that usually concerned in lifetime analysis

are the Type-I and Type-II censoring, of which definitions are as following (Miller

et al., 1981):

• Type-I: let tc be the fixed censoring time such that events beyond that time is

not observed. Namely, only data points Ti:n ≤ tc, i = 1, ...n are available in the

sample set.

• Type-II: let m < n be fixed, then the observation stops when the mth sample

Tm:n is obtained.

To our best knowledge, Gross and Clark (1975) is the first book to discuss parametric

and non-parametric models for both complete and censored lifetime data.

Another problem that is often confronted in practice is that, samples sometimes are

withdrawn from the sample pool before the event is observed, due to various reasons

(i.e., patients quit experiment prematurely, testing items are accidentally damaged or

contaminated rendering results invalid). This problem is defined and discussed as pro-

gressive censoring in many literatures. Balakrishnan and his coordinators have made

considerable contributions in this area of research, see Balakrishnan and Aggarwala
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(2000), Ng et al. (2002), Ng et al. (2004), Balakrishnan et al. (2004), Balakrishnan

and Xie (2007), for examples. Other contributors in the specific area of progressive

censoring for lifetime data include (but not limited to): Cohen (1963), and more

recently, Wang and Yu (2009), Wang et al. (2010), etc.

For lifetime data, both Type-I and Type-II right censoring arise in practice or ex-

periment, and often are due to the reason that it is impractical or inefficient to keep

observing until defined events occur for all samples. Thus the observation has to

stop after a certain period of time (Type-I), or after a certain amount of events

being registered (Type-II). In engineering, a technique called accelerated life-test is

frequently used to shorten the length of an experiment by putting samples under

‘stress’, which is beyond the normal or standard level, and shortens their life, hence

‘to quickly obtain data which, properly modelled and analysed, yield desired informa-

tion on product life or performance under normal use’ (Nelson, 2009). For example,

Nelson (1972) described the results of a life-test of a type of electronic insulating fluid

under different voltage stress, ranging from 26 to 38 kilovolts (kV), while the ‘nor-

mal’ voltage is 20kV. The accelerated life-tests for Weibull distribution and extreme

value distribution are firstly studied by Meeker and Nelson (1975), and for normal

and log-normal distributions by Kielpinski and Nelson (1975). Research in this area

has been further extended by many, for example, Miller and Nelson (1983), Nelson

(1980), Yang (1994), and Huang (2011), among others.

Sometimes the data censoring problem and the accelerated tests problem are com-

bined in practice. Hence, Chapter 2 of this thesis is dedicated to addressing esti-

mation problems of Weibull distribution for accelerated life-tests under progressive

Type-II right censoring scheme.

1.2 Extreme value theory

In this section we briefly introduce the Extreme Value Theory, which is a branch of

statistics that fulfils the needs of modelling extreme events and extreme probabilities

in many disciplines, and that emerged from research of the limiting distribution of the

largest order statistics in a sample as the sample size increases to infinity (Fisher and

Tippett, 1928). The analysis of extreme values has been widely used in areas such as

research of nature phenomenon and nature disasters, reliability analysis in engineer-

ing, etc. In recent decades there is also increased use of EVT in finance, especially

financial risk management (for example, see McNeil, 1999). Generally, there are two

approaches in the framework of EVT for practical extreme value analysis, which are
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the block of maximum approach and the peak over threshold approach. The first

approach is mainly based on the extreme value distributions, while the second ap-

proach focuses on utilising the generalised Pareto distribution. We briefly discuss the

two approaches from a distributional point of view in the following sections.

1.2.1 The extreme value distributions and the generalised extreme

value distribution

The idea of the block of maximum approach is as follows. Assume a block (sub-

sample) of i.i.d. samples {X1, X2, ..., Xn} with distribution function F (x), and define

the maxima Mn = max(X1, X2, ..., Xn). Hence, it is straightforward that Mn has

distribution Fn(x) =
∏n
i=1 F (xi). If there are sequences of real value constants

an > 0 and bn, such that the normalised maxima of (Mn− bn)/an converges to some

non-degenerate distribution function H. That is:

P{Mn − bn
an

≤ x} = Fn(anx+ bn)→ H(x), as n→∞.

Then the random variable X, with distribution function F , belongs to the maximum

domain of attraction of H, denoted as F ∈ MDA(H).

Fisher and Tippett (1928) and Gnedenko (1948) introduce the following class of

distributions, which are referred as the standard extreme value distributions, thus H

belongs to one of the following three distributions:

Gumbel (type I): F (x) = e−e
−x
, x ∈ R,

Fréchet (type II): F (x;α) =

e−x
−α
, x > 0

0, x ≤ 0
α > 0,

Weibull (type III): F (x;α) =

e−(−x)
α
, x ≤ 0

1, x > 0
α > 0.

Jenkinson (1955) suggested a one parameter representation for the above three dis-

tributions, which is called the generalised extreme value distribution that has c.d.f.:

H(x; ξ) with parameter ξ:

H(x; ξ) =

{
exp

(
−(1 + ξx)1/ξ

)
if ξ 6= 0,

exp (−e−x) if ξ = 0,

where x is such as 1 + ξx > 0 and ξ is a shape parameter. The generalised extreme

value distribution is obtained by setting ξ = 0 for the Gumbel distribution, ξ = α−1
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for the Fréchet distribution, and ξ = −α−1 for the Weibull distribution. Furthermore,

the ξ = α−1 > 0 (Fréchet) case corresponds to heavy-tailed distributions, such as

Cauchy, Student t and Pareto distributions; the ξ = 0 case corresponds to so-called

thin-tailed distributions, of which the tail decays exponentially, such as normal dis-

tribution; the ξ = −α−1 < 0 (Weibull) case corresponds to distributions that have

“no tail”, that is, have finite right points. Refer to the book of De Haan and Ferreira

(2006) for more details about the block of maximum approach and related extreme

value distributions.

1.2.2 The generalised Pareto distribution

In the extreme value theory, the generalised Pareto distribution is used to model

exceedances over certain thresholds, or in other words, data on the tail of the un-

derlying distribution. This method of exceedances is often referred to as the Peak

Over Threshold method. Assuming a random variable Y with distribution function

FY (y), the definition of exceedances is the values of Y above threshold u, namely

X = Y − u. In the EVT, instead of assessing FY (y) directly, we are more interested

in estimating the distribution of the exceedances

Fu(x) = P{Y − u ≤ x|Y ≥ u}, 0 ≤ x ≤ yF − u,

where x is the excess and yF ≤ ∞ denotes the right end points of FY . It follows that

Fu(x) =
F (u+ x)− F (u)

1− F (u)
=
FY (y)− F (u)

1− F (u)
.

Balkema and De Haan (1974) along with Pickands (1975) showed that, when u is

large, for a large class of distribution functions, the conditional excess distribution

function Fu is well approximated by the generalised Pareto distribution,

Fu(x) ≈ FGPD(x;σ, ξ), as u→∞,

where FGPD(x;σ, ξ) is the cumulative distribution function

FGPD(x;σ, ξ) =

1− (1 + ξ
σx)−1/ξ if ξ 6= 0,

1− e−x/σ if ξ = 0,

for x ∈ [0, yF − u) if ξ ≥ 0 and x ∈ [0,−σ
ξ ] if ξ < 0, where ξ is the shape parameter

and σ is the scale parameter. Note that in some literature the shape parameter ξ

has an opposite sign and denoted as κ = −ξ. If ξ > 0 the GPD is heavy-tailed on
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the right side. If ξ = 0 then the distribution reduces to the exponential distribution

and the right tail decays exponentially. When −1 ≤ ξ ≤ −0.5, the distribution has

finite right end-points, which is sometimes referred to as ‘short-tailed’. Furthermore,

when ξ = −1, the GPD actually becomes a uniform U(0, σ) distribution. The kth

central moment of the GPD exists only if ξ < 1/k. For example, when it has a shape

parameter ξ ≥ 1/2, var(Y ) = +∞ and the second central moment no longer exists.

For more details about properties of the GPD and its parameters, see Hosking and

Wallis (1987).

Moment-based methods such as method of moments and probability weighted mo-

ments are widely used for estimating GPD. Both methods are adopting the fact that

the empirical moments from samples should be in according with theoretical moments

in some way. The MOM estimators for the GPD parameters are given by

ξ̂MOM = (X̄2/s2 − 1)/2

σ̂MOM = X̄(X̄2/s2 + 1)/2,

where X̄ and s2 are sample’s mean and variance, respectively.

The PWM estimators for the GPD are

ξ̂PWM = X̄2/(X̄ − 2b)− 2

σ̂PWM = 2X̄t/(X̄ − 2b),

where

b = n−1
n∑
i=1

n− i
n− 1

Xi:n.

Castillo and Hadi (1997) proposed the so-called elemental percentile method. Let

Xi:n and Xj:n (i 6= j) be two distinct order statistics from sample of the GPD and

re-parameterising α = ξ/σ, then the EPM estimator α̂EPM is obtained by solving the

following equation:

ci log(1 + αXi:n) = cj log(1 + αXj:n)

where ci = log(1 − bi:n) < 0 with bi:n = i/(n + 1). Then, the shape parameter is

estimated as

ξ̂EPM = − log(1 + α̂EPMXi:n)/ci,

and consequently σ̂ = ξ̂/α̂. Note that values of these estimators vary when differ-

ent pairs of Xi:n and Xj:n are chosen. Castillo & Hadi suggest that obtain initial

estimations for σ̂(i, j) and ξ̂(i, j) and use medians from each family {σ̂(i, j)}i 6=j and

{ξ̂(i, j)}i 6=j as the final estimators. When the sample size is large, computing each
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and every pair could be too time-consuming, so certain re-sampling scheme is also

recommended.

Zhang (2007) proposed an alternative method for fitting the GPD, the likelihood

moment estimation. The LME contains an auxiliary parameter h, and the estimator

of α = ξ/σ is obtained by solving the following equation

n−1
n∑
i=1

(1 + αXi:n)b − (1− h)−1 = 0, α > −X−1n:n,

where b = hn/
∑n

i=1 log(1+αXi:n). It follows that the shape parameter ξ is estimated

by

ξ̂ =
1

n

n∑
i=1

log(1 + α̂Xi).

The shape estimator is σ̂ = ξ̂/α̂. h = −1/2 is recommended as default value.

Zhang and Stephens (2009) provided another estimator (referred as ZS) for the pa-

rameters of the GPD which uses a procedure similar to Bayesian method to estimate

α

α̂ZS =
m∑
j=1

ajw(aj),

where

aj = 1/Xn:n +

(
1−

√
m

j − 0.5

)
/(3Xn+2

4
:n),

w(aj) = − 1∑m
i=1 expg(ai)−l(aj)

,

with g(a) = n(log(a/ξ) − ξ − 1). After obtaining α̂ZS, estimators ξ̂ZS and σ̂ZS are

obtained same as in the LME method.

In Chapter 3, methods introduced above are discussed and reviewed. Also, in Chapter

3 we focuse on point and interval estimation problems of the GPD, using an order-

statistic-based inference.
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1.3 Quantile regression and order-statistic-based finan-

cial risk measures

Assume random variable X follows a c.d.f. F , then for 0 ≤ p ≤ 1, the inverse of the

c.d.f., F−1(p), is also called the quantile function of X, and it is defined as:

F−1(p) = inf{x : F (x) ≤ p}.

We denote the p-th quantile as Q(p), which is the unique solution to F−1(p) = x. On

the other hand, quantile can be seen as a special type of order statistics, for example,

the p-th (0 < p < 1) quantile of a sample X1, ...Xn can be estimated as the bnpe-th
order statistic from X1:n ≤ X2:n ≤ ... ≤ Xn:n, where b·e indicates rounding up to the

nearest integer.

The p-th population quantile can also be obtained via the following optimisation

problem:

min
Q

E [ρp(yt −Q(p))] ,

where ρp(u) = u(p − I[u ≤ 0]) (I[·] indicates the indicator function) is the so-called

check function.

Koenker and Bassett (1978) (see also Koenker, 2005) introduce the quantile regres-

sion, by introducing the linear relationship

yt = x′tβ + εt, t = 1, ..., T,

where yt are the dependent variables, xt are the explanatory variables, β are unknown

parameters, and εt is an error term which usually has no distributional assumption

other than that the pth quantile of εt is zero and εt has finite variance.

The p-th (0 < p < 1) conditional quantile of yt given xt is then in the expression as:

Qyt|xt(p) = x′tβ(p),

where β(p) is the parameter vector depends on p.

Then the regression parameters β(p) for the p-th quantile can be defined as the

solution to the following minimisation problem:

min
β

E
[
ρp(yt − x′tβ)

]
,

where ρp(u) = u(p− I[u ≤ 0]) is the so-called check function, and I[·] is an indicator
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function. The p-th regression quantile estimator β̂(p) is obtained by solving the

sample analog minimisation problem

min
β

S(β) ≡ 1

T

T∑
t=1

ρp(yt − x′tβ).

Quantile regression has become a rewarding methodology for regression analysis in

many areas. In this thesis we mainly focus on inference and applications of quantile

regression in the field of financial risk evaluating and measurement. In the proceeding

subsection brief overviews of popular risk measures that are based on quantile or order

statistics are given.

1.3.1 Volatility

By definition, volatility of a financial asset is the variance of its return distribution,

denoted as σ2t = var(rt), where rt = ln(St/St−1) is the log return at time t. When

assuming the average return is constant for a short period m and there is no auto-

correlation between successive price ’shocks’, the Realised Volatility is possibly the

best estimation of variance, defined as

RVt =
1

m− 1

m∑
t=1

ε2t ,

where εt = rt − r̄ and r̄ is the mean return.

Popular estimation methods for volatility include (but not limited to), for exam-

ple, the ARCH/GARCH family of models, implied volatility models, etc.. There

also exists group of order-statistic-based methods that based on the range or the

intra-quantile range (interval between two symmetric extreme quantiles) for volatil-

ity estimation and forecasting.

The most important and most discussed range-based volatility estimator is developed

by Parkinson (1980):

Vt =
1

4n log 2

n∑
t=1

(logHt − logLt)
2 ,

where Ht and Lt denote the highest and the lowest values in the t-th time period,

respectively. Numerous researches have been carried out since Parkinson has shown

that range-based volatility estimators are better than log or absolute return volatility

in not only the ideal world that exists on paper or from simulated data, but also in
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many realistic circumstances (see, for examples, Garman and Klass, 1980, Rogers

and Satchell, 1991, Yang and Zhang, 2000, and Alizadeh et al., 2002, among others).

Pearson and Tukey (1965) proposed a measure of the standard deviation σ of a

distribution, which is expressed as a proportion to the difference of the two symmetric

extreme quantiles, or in other words, the inter-quantile range, of that distribution:

Standard Deviation =
Q(1− p)−Q(p)

C(p)

where p ∈ (0, 1) and Q(p) is the p-th population quantile, and the value of denomina-

tor C(p) depends on p. They found that for p = 0.01, 0.025, 0.05 the corresponding

values for C(θ) are given by 4.65, 3.92 and 3.25 respectively. Taylor (2005) greatly

improved Pearson’s original model by replacing the interval between quantiles with

the interval between value at risk measures. More details on this aspect are given in

Chapter 4.6.

1.3.2 Value at risk

The 100(1− p)% value at risk is defined as the threshold value of loss at probability

level p, which is essentially the p-th quantile of the return distribution. In most

industry application the value of p is chosen to be either 1% or 5%, which is re-

quired by the Basel II Accord published in 2004 by the Basle Committee on Banking

Supervision.

One of the most significant improvements made for VaR is possibly the conditional

autoregressive VaR (CAViaR) models introduced by Engle and Manganelli (2004).

Different structures of the CAViaR models bring more versatile characteristics to the

VaR forecast, such as capturing the asymmetric ‘leverage effect’ of impact of negative

and positive news on return process, which is commonly accepted in financial area.

1.3.3 Expected shortfall

The 100p% expected shortfall is defined as the conditional tail expectation that the

value of rt exceeds VaR(p)

ESt(p) = E[rt|rt < VaRt(p)].

Amongst recent researches (e.g., Acerbi and Tasche (2002a), Acerbi and Tasche

(2002b) and Tasche (2002)), the ES is considered as a better risk measure than
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the VaR, as it is a coherent risk measure, while VaR is not, and it contains more

information from extreme cases that beyond VaR.

1.4 Thesis outline

The outline of the thesis is as follow. Chapter 2 introduces a new inference on ac-

celerated life-testing model based on Weibull distribution under Type-II progressive

censoring. Constant stress procedures based on parametric lifetime distributions and

models are often used for accelerated life testing in product reliability experiments.

Maximum Likelihood Estimation is the typically statistical inference method. This

chapter presents a new inference of parameters on Weibull constant stress acceler-

ated life-testing model with progressively Type-II right censoring (including ordinary

Type-II right censoring). We employ the two-parameter Weibull life distribution with

a scale parameter that is a log-linear function of stress. The new inference for both

life distribution parameters and the log-linear function coefficients is provided. Exact

confidence intervals for these parameters are also explored. Theoretic properties, nu-

merical examples of new estimators and their comparison with MLE via simulation

tests and a real data example are given.

Chapter 3 extends the inference, with some modification, to the estimation problems

of generalised Pareto distribution under small samples. The GPD is often used in the

extreme value theory framework, and the sample size is often small, which increases

the difficulty of accurate estimation. The estimation becomes even more difficult for

extremely high quantiles of the GPD when it is heavy-tailed. The performance of

classical methods, such as MLE and moments-based methods, usually suffers under

these conditions. This chapter presents a method of estimation for the GPD that

does not depend on asymptotic theory or bootstrapping. Exact confidence intervals

and generalised confidence intervals as introduced by Weerahandi (1993, 2004) for

parameters and quantiles of the GPD are also explored. We compare the proposed

method with classical methods and several new methods in recent literature under

this topic, via extensive simulation experiments. A real data example is also given.

In Chapter 4.6 we study distribution-free approaches for volatility forecasts, which

are established based on the variance estimation using a pair of symmetric extreme

quantiles model, as introduced by Pearson and Tukey (1965). Recent improvements

of this approach include Taylor (2005), in which CAViaR models are used for quantile

forecasting, and a more general regression form predictor is considered. We propose

two new approaches with the idea of using not just one single pair of quantiles, but
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’tail expectations’ such as expected shortfall and expectile. Thereafter, in empirical

studies we compare different models, including classic parametric models, for short

period volatility forecasts of stock indices. Furthermore, we also consider multiple

regression models that combine two predictors, to see if it improves forecast perfor-

mance.

In Chapter 5 we focus on the joint modelling problem of heteroskedastic quantile re-

gression with the assumption that the error term has a specific distribution. Quantile

regression is known to be more robust against heteroskedacity, and its asymptotic

properties have been studied under certain conditions. Standard quantile regression

inference often assume a linear relationship between the variability and the indepen-

dent variables, and the regression parameters for the location component and for the

scale component are usually estimated separately. We introduce a new inference pro-

cedure that can obtain quantile regression parameters simultaneously by assuming

that the error term follows an asymmetric Laplace distribution. Furthermore, we

explore the idea of a statistical dispersion measure for the quantile, which can be

seen as the analog of standard deviation for the ordinary least square regression.

And finally, in Chapter 6 we summarise the main results of the research and propose

recommendations for possible future research directions.

Note that each chapter is written to be read independently with self contained nota-

tions and definitions, and where reference is made to another chapter the connection

is clearly explained.



Chapter 2

Inference on Weibull constant

stress accelerated life-testing

model under progressive Type-II

censoring

Constant stress procedure based on parametric lifetime distribution and model is

often used for accelerated life testing in product reliability experiment. Maximum

likelihood estimation (MLE) is the typically statistical inference method. This chap-

ter presents a new inference method for Weibull constant stress accelerated life test

with progressively Type-II right censoring (including ordinary Type-II right censor-

ing). An two-parameter Weibull life distribution with a scale parameter that is a

log-linear function of stress is used. New estimates for both life distribution parame-

ters and the log-linear function coefficients are provided. Exact confidence intervals

for these parameters are also explored. Numerical comparison of new estimates with

MLE shows that the proposed new inference method is very promising,

2.1 Introduction

In many industrial fields it is requested for lots of products to operate for a long period

of time. Accompanied with that, it is very important to give reliability in relation

to the lifetime of products. In such cases, however, life testing under a normal stress

can lead to a lengthy procedure with expensive cost. As a means to cope with

these problems, the study of accelerated life test has been developed. The ALT can

16
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quickly yield information on the lifetime distribution of products by inducing early

failure with stronger stress than normal. The results obtained at the accelerated

conditions are analyzed in terms of a model to relate life length to stress; they are

extrapolated to the design stress to estimate the life distribution. One important way

in ALT is constant stress ALT . The problem of modeling data from the CSALT and

making inferences from such data have been studied by many authors. For example,

Vander Wiel and Meeker (1990) studied accuracy of approx confidence bounds for

Weibull CSALT model. Yang (1994) considered optimum 4-level CSALT plans under

location-scale family of distributions. Watkins (1994) discussed likelihood method for

fitting Weibull CSALT models. Wang and Kececioglu (2000) further studied this issue

and gave an efficient algorithm to fit the Weibull CSALT model. Tang et al. (1999)

discussed an optimum CSALT plan for two-parameter exponential distribution. René

Van Dorp and Mazzuchi (2005) discussed Bayes inference for ALT. Leon et al. (2007)

discussed Bayesian modeling of CSALT with random effects. Watkins and John

(2008) discussed the maximum likelihood estimates for CSALT with terminated by

type-II censoring at one of the stress levels. Pascual (2008) studied the planning

of CSALT in the presence of competing risks under Weibull distributions. Ma and

Meeker (2010) discussed strategy for planning CSALT with small sample sizes. Liu

and Tang (2010) considered CSALT for repairable systems with multiple independent

risks, and derived an accelerated life test plans. Tang and Liu (2010) proposed a

sequential CSALT, and discussed its inference procedure and test plan. Yu and

Chang (2012) applied Bayesian model to average quantile estimation for CSALT.

Liu (2012) discussed the model and plan for CSALT with dependent failure modes.

Nelson (2009) provided some excellent information on past and current developments

in the area.

Progressive censoring is a generalised form of censoring which includes the conven-

tional right censoring as a special case. Compared to the conventional censoring,

however, it provides higher flexibility to the experimenter in the design stage by al-

lowing the removal of test units at non-terminal time points and thus, it proves to be

highly efficient and effective in utilizing the available resources. Another advantage of

progressive censoring is that the degeneration information of the test units is obtained

from those removed units. For these reasons, we consider a more general censoring

scheme called progressive type-II censoring. Progressive type-II censoring is a method

which enables an efficient exploitation of the available resources by continual removal

of a prespecified number of surviving test units at each failure time. Balakrishnan

et al. (2007) derived point and interval estimation for a simple step-stress model with

type-I censoring. Gouno et al. (2004) and Balakrishnan and Han (2009) discussed

the optimal step-stress ALT plans under progressive Type-I censoring. Wang and Yu
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(2009) discussed the optimal step-stress ALT plans under progressive Type-II cen-

soring. Wang (2010) derived interval estimation for exponential progressive Type-II

censored step-stress ALT. A book dedicated completely to progressive censoring was

published by Balakrishnan and Aggarwala (2000). Moreover, Balakrishnan (2007)

gave an excellent and extensive review for the progressive censoring methodology.

In this chapter, we choose the two-parameter Weibull distribution for modelling

CSALT data. The two-parameter Weibull distribution is one of the most popular

distributions for modelling lifetime data. It has shape and scale parameters that

gives it the flexibility for fitting various reliability curves. The hazard function de-

rived from Weibull can describe increasing, decreasing or constant failure rate. Also,

Weibull analysis provides reasonable accurate results for small samples. However,

one of the disadvantage of Weibull is that the asymptotic convergence to normality

for this distribution of the MLE is slow (for example, see Gupta and Kundu, 2001).

More discussion is given in following sections of this chapter.

Under a combination of CSALT and progressive Type-II censoring, the sample size

is typical not big, even small, so that large-sample based inference methods such as

MLE-based asymptotic unbiased estimate and asymptotic normal confidence intervals

(CI) may not be suitable, even misleading. In this chapter, we consider CSALT with

progressive Type-II censoring and provides new inference for parameter estimation

and CIs. The advantages of our method are (1) small-sample based confidence inter-

vals are promising whereas MLE-based confidence intervals are based on asymptotic

normality with large sample, (2) progressive censoring scheme which generalizes the

censoring schemes considered for accelerated life test in literature, (3) the log-linear

model for shape parameter includes the exponential life distribution as a special case.

The Weibull CSALT model considered is under the following assumptions:

A 2.1 For any stress level xi, the lifetime distribution of a test unit is Weibull with

c.d.f.

Fi(t) = 1− exp
(
−(t/θi)

β
)
, t > 0, (2.1)

where β > 0 is the shape parameter, θi > 0 is the scale parameter.

Furthermore, the density function of Weibull is

fi(t) =
β

θi

(
t

θi

)β−1
exp

(
−(t/θi)

β
)
, t > 0.

A 2.2 The stress-life relationship is given by

log(θi) = α0 + α1xi. (2.2)
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where α0 and α1 are unknown parameters.

The log-linear model above for the scale parameter includes the exponential life

distribution as a special case which was widely studied in the literature.

Let x0 be the designed stress level, and let x1 < x2 < ... < xk be the k accelerated

stress levels. Suppose that ni test units are placed at stress level xi. Prior to the

experiment, a number ri (< ni) is fixed and the progressive censoring scheme Ri =

(Ri,1, Ri,2, . . . , Ri,ri) with Ri,j ≥ 0 and
∑ri

j=1Ri,j + ri = ni is specified. At the

first failure time Ti,1, Ri,1 units are randomly removed from the remaining ni − 1

surviving units. At the second failure time Ti,2, Ri,2 units are randomly removed

from the remaining ni − 2−Ri,1. The test continues until the rith failure time Ti,ri .

At failure time Ti,ri , all remaining units are removed. When Ri,j = 0, i = 1, ..., k, j =

1, ..., ri− 1, then Ri,ri = n− ri which corresponds to the conventional constant stress

accelerated life-testing with Type-II censoring scheme.

We aim to compare new method to MLE, so Section 2 outlines the MLE under

the constant-stress model and progressively censored scheme. Sections 3 details the

new estimating method and estimation properties. Section 4 focuses on new interval

estimation for unknown parameters and their functions such as reliability function.

Section 5 illustrates the numerical performance of the new method and comparison

with MLE. Section 6 concludes.

2.2 Maximum Likelihood Estimation

At each stress level xi (i = 1, ..., k), there are ri(ri < ni) observations for the lifetime

variable Ti,j (j = 1, ..., ri) and progressive censoring scheme Ri = (Ri,1, Ri,2, ..., Ri,ri).

In total let t = {ti,j : i = 1, ..., k; j = 1, .., ri} be the observed values of lifetime

{Ti}ki=1.

Therefore, based on the likelihood function

L(β, α0, α1|t) =

k∏
i=1

ri∏
j=1

β

θβi
tβ−1i,j exp

− k∑
i=1

ri∑
j=1

(Ri,j + 1)(ti,j/θi)
β

 ,

with log(θi) = α0+α1xi, and
∑ri

j=1Ri,j +ri = ni, we have the log-likelihood function

as

`(β, α0, α1) ∝
k∑
i=1

ri log(β) + (β − 1)

k∑
i=1

ri∑
j=1

log(ti,j)− α0β

k∑
i=1

ri − α1β

k∑
i=1

rixi
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−
k∑
i=1

ri∑
j=1

(Ri,j + 1)tβi,j exp(−α0β − α1βxi)

Hence the MLEs β̂M , α̂0,M , α̂1,M of the parameters β, α0, α1 are the solutions of the

following equations:

1

β
+

∑k
i=1

∑ri
j=1 log(ti,j)∑k
i=1 ri

−∑k
i=1

∑ri
j=1(Ri,j + 1)tβi,j log(ti,j) exp(−α1βxi)∑k

i=1

∑ri
j=1(Ri,j + 1)tβi,j exp(−α1βxi)

= 0,

k∑
i=1

rixi

k∑
i=1

ri∑
j=1

(Ri,j + 1)tβi,j exp(−α1βxi)−

k∑
i=1

ri

k∑
i=1

ri∑
j=1

(Ri,j + 1)xi t
β
i,j exp(−α1βxi) = 0,

α0 =
1

β
log

 k∑
i=1

ri∑
j=1

(Ri,j + 1)tβi,j exp(−α1βxi)

− 1

β
log

(
k∑
i=1

ri

)
.

Note that

∂2`

∂β2
= −

∑k
i=1 ri +

∑k
i=1

∑ri
j=1(Ri,j + 1)xi (ti,j/θi)

β [log (ti,j/θi)]
2

β2
,

∂2`

∂α2
0

= −β2
k∑
i=1

ri∑
j=1

(Ri,j + 1)

(
ti,j
θi

)β
,

∂2`

∂α2
1

= −β2
k∑
i=1

ri∑
j=1

(Ri,j + 1)x2i

(
ti,j
θi

)β
,

∂2`

∂β∂α0
= −

k∑
i=1

ri +

k∑
i=1

ri∑
j=1

(Ri,j + 1)

(
ti,j
θi

)β
+

k∑
i=1

ri∑
j=1

(Ri,j + 1)

(
ti,j
θi

)β
log

(
ti,j
θi

)β
,

∂2`

∂β∂α1
= −

k∑
i=1

rixi +

k∑
i=1

ri∑
j=1

(Ri,j + 1)xi

(
ti,j
θi

)β
+

k∑
i=1

ri∑
j=1

(Ri,j + 1)xi

(
ti,j
θi

)β
log

(
ti,j
θi

)β
,



2.3. New inference method 21

∂2`

∂α0∂α1
= −β2

k∑
i=1

ri∑
j=1

(Ri,j + 1)xi

(
ti,j
θi

)β
.

Numerical solutions of these estimators will be studied in Section 5. The Fisher-

information matrix is often used to calculate the covariance matrices associated with

MLE. Here the observed Fisher-information matrix for (β, α0, α1) is given by

I(β̂M , α̂0,M , α̂1,M ) =


− ∂2`
∂β2 − ∂2`

∂β∂α0
− ∂2`
∂β∂α1

− ∂2`
∂β∂α0

− ∂2`
∂α2

0
− ∂2`
∂α0∂α1

− ∂2`
∂β∂α1

− ∂2`
∂α0∂α1

− ∂2`
∂α2

1


(β̂M ,α̂0,M ,α̂1,M )

.

2.3 New inference method

To make things clear in this section we first consider the case with the known shape

parameter β and propose new estimators for parameters α0, α1 and θ0 = exp(α0 +

α1x0), then extend it to the estimation of β together.

2.3.1 The known shape parameter case

When parameter β is known, let

Si =

ri∑
j=1

(Ri,j + 1)T βi,j , i = 1, 2, ..., k.

Then it is well known that 2Si/θ
β
i follows the χ2 distribution with 2ri degrees of

freedom (proof can be found, e.g., in Wang and Yu, 2009).

According to the property of log-Gamma distribution,

E[log(Si)− β log(θi)] = ψ(ri),

var[log(Si)− β log(θi)] = ψ′(ri),

where ψ(x) = d log(Γ(x))/dx, ψ′(x) = d2 log(Γ(x))/dx2.

Therefore we consider the following regression model:

E(Ui) = β log(θi) = α0β + α1βxi, var(Ui) = ψ′(ri),

where Ui = log(Si)− ψ(ri).



2.3. New inference method 22

According to Gauss-Markov theorem the unbiased estimators for (α0, α1) are respec-

tively given by

α̃0 =
GH − IM
β(EG− I2)

α̃1 =
EM − IH
β(EG− I2)

, (2.3)

where E =
∑k

i=1[ψ
′(ri)]

−1, I =
∑k

i=1[ψ
′(ri)]

−1 xi, G =
∑k

i=1[ψ
′(ri)]

−1 x2i , H =∑k
i=1[ψ

′(ri)]
−1 Ui, M =

∑k
i=1[ψ

′(ri)]
−1 xi Ui.

Further, we have

var(α̃0) =
G

β2(EG− I2)
, var(α̃1) =

E

β2(EG− I2)
, cov(α̃0 , α̃1) = − I

β2(EG− I2)
.

Therefore the scale parameter θ0 at designed stress level x0 could be estimated by

θ̃0 = exp(α̃0 + α̃1x0).

Under assumptions A 2.1 and A 2.2, we obtain the following results for the estimation

of θ0, which are essentially the same as the Theorem 5(1) and the Theorem 6(1) from

Wang and Yu (2009) for the multi-level of stress model.

Theorem 2.1 α̃0 and α̃1 defined in equation (2.3) are the unbiased estimators of α0

and α1, and let Di = [G− (x0 + xi)I + x0xiE]/[βψ′(ri)(EG− I2)], then

(1) if ri +Di > 0 (i = 1, 2, ..., k), then the expectation of θ̃0 exists but θ̃0 is a biased

estimator of θ0. However, an unbiased estimator of θ0 is thus given by

θ̃0U = θ̃0 exp

( k∑
i=1

Diψ(ri)

) k∏
i=1

Γ(ri)

Γ(ri +Di)
. (2.4)

Furthermore, if ri + 2Di > 0 (i = 1, 2, ..., k), then the variance of θ̃0U exists and is

given by

V ar(θ̃0U ) =

(
k∏
i=1

Γ(ri) Γ(ri + 2Di)

Γ2(ri +Di)
− 1

)
θ20.

(2) if ri + 2Di > 0, (i = 1, 2, . . . , k), then θ̃0U has a smaller mean squared error

than that of θ̃0 .

Proof of Theorem 2.1 can also be found in Wang and Yu (2009), as in proofs of

Theorems 5 and 6 in their paper.

In summary, in contrary to MLE whose estimators are asymptotic unbiased with
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asymptotic variances, we have obtained exact unbiased estimators of parameters

(α0, α1, θ0) with exact variances of estimators.

2.3.2 The unknown shape parameter case

Now we consider the case with unknown shape parameter β.

For each i = 1, 2, ..., k, j = 1, 2, ..., ri,, let

Si,j =

j∑
l=1

(Ri,l + 1)T βi,l + [ni −
j∑
l=1

(Ri,l + 1)]T βi,j ,

Similar to the argument for Si in Section 2.3.1, we have

Wi(β) = 2

ri−1∑
j=1

log

(
Si,ri
Si,j

)
∼ χ2(2ri − 2), i = 1, 2, ..., k

and Wi(β) is a strictly monotone function of β.

Notice that W1(β), ...,Wk(β) are independent, because each Wi(β) is calculated in-

dependently using samples under the ith stress level, Ti,· (i = 1, ..., k), and there is

no overlapping among the total k groups of samples. Thus we define

W (β) = 2

k∑
i=1

ri−1∑
j=1

log

(
Si,ri
Si,j

)
∼ χ2(2

k∑
i=1

ri − 2k). (2.5)

The mode of χ2(2
∑k

i=1 ri−2k) distribution is 2
∑k

i=1 ri−2k−2, thusW (β)/(2
∑k

i=1 ri−
2k − 2) converges with probability one to 1. Then let β̃ be the estimator of of the

shape parameter β from the solution of the following equation:

k∑
i=1

ri−1∑
j=1

log

(
Si,ri
Si,j

)
=

k∑
i=1

ri − k − 1. (2.6)

Due to the strictly increasing function of β, the equation (2.6) has exactly one unique

solution. Let β̂ be the solution of the equation (2.6). Then plugging β̂ in (2.3) and

(2.4), we obtain the following estimators (α̂0, α̂1, θ̂0) of (α0, α1, θ0):

α̂0 =
GĤ − IM̂
β̂(EG− I2)

, (2.7)

α̂1 =
EM̂ − IĤ
β̂(EG− I2)

, (2.8)
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θ̂0 = exp

(
α̂0 + α̂1x0 +

k∑
i=1

D̂iψ(ri)

)
k∏
i=1

Γ(ri)

Γ(ri + D̂i)
, (2.9)

where Ûi = log
(∑ri

j=1(Ri,j + 1)T β̂i,j

)
− ψ(ri), Ĥ =

∑k
i=1[ψ

′(ri)]
−1 Ûi,

M̂ =
∑k

i=1[ψ
′(ri)]

−1 xi Ûi, D̂i = [G− (x0 + xi)I + x0xiE]/[β̂ψ′(ri)(EG− I2)].

The estimators (β̂, α̂0, α̂1, θ̂0) of (α0, α1, θ0) given by (6)–(9) are alternative estima-

tors of the parameters (β, α0, α1, θ0). We shall study the finite sample properties of

the proposed estimators in Section 5.

2.4 Interval estimation of unknown estimators

In this section, we will first obtain an exact confidence interval for the shape param-

eter, then derive the generalized confidence intervals for other parameters and some

important quantities of the Weibull distribution at designed stress level x0, such as

its mean, quantiles and reliability function.

2.4.1 Exact confidence interval for the shape parameter

Consider the pivotal quantity W (β). From (2.5), it is of great importance to note

that W (β) is a function of β only and does not depend on other parameters. Hence,

we obtain an exact confidence interval for the shape parameter β as follows.

Theorem 2.2 Suppose (Ti,1, ..., Ti,ri), i = 1, 2, ..., k are progressively Type II censored

samples from the Weibull constant stress accelerated life testing with the progressive

censoring scheme (Ri,1, Ri,2, . . . , Ri,ri), i = 1, 2, ..., k. Then, for any 0 < τ < 1,[
W−1

{
χ2
1−τ/2

(
2

k∑
i=1

ri − 2k

)}
, W−1

{
χ2
τ/2

(
2

k∑
i=1

ri − 2k

)}]

is a 1− τ% confidence interval for the shape parameter β, where χ2
τ (v) is the upper

τ percentile of the χ2 distribution with v degrees of freedom and, for w > 0, W−1(w)

is the solution in β of the equation W (β) = w.

2.4.2 Generalized confidence intervals for other parameters

We now derive generalized confidence intervals for other parameters and some im-

portant quantities of the Weibull distribution at designed stress level x0.
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Let

V1 =

∑k
i=1[ψ

′(ri)]
−1(G− xiI) log(2Si)

EG− I2
− α0β, (2.10)

V2 =

∑k
i=1[ψ

′(ri)]
−1(xiE − I) log(2Si)

EG− I2
− α1β. (2.11)

Then

V1 =

∑k
i=1[ψ

′(ri)]
−1(G− xiI) log(Ti)

EG− I2
, (2.12)

V2 =

∑k
i=1[ψ

′(ri)]
−1(xiE − I) log(Ti)

EG− I2
, (2.13)

where Ti = 2Si/θ
β
i ∼ χ2(2ri). It is obvious from (2.12) and (2.13) that the distribu-

tions of V1 and V2 do not depend on any unknown parameters. Thus V1 and V2 are

pivotal quantities.

Note that W (β) is a strictly increasing function of β, then the equation W (β) = W

has the unique solution g(W,T ), where W ∼ χ2(2
∑k

i=1 ri − 2k). In addition, from

(2.10) and (2.11), we have

α0 =

∑k
i=1[ψ

′(ri)]
−1(G− xiI) log(2Si)

β(EG− I2)
− V1

β
, (2.14)

α1 =

∑k
i=1[ψ

′(ri)]
−1(xiE − I) log(2Si)

β(EG− I2)
− V2

β
. (2.15)

According to the substitution method given by Weerahandi (1993, 2004), we substi-

tute g(W,T ) for β in the expression for α0, α1 in (2.14) and (2.15) and obtain the

following generalized pivotal quantities for the parameters α0, α1:

Y0 =

∑k
i=1[ψ

′(ri)]
−1(G− xiI) log(2si)

g(W, t)(EG− I2)
− V1
g(W, t)

, (2.16)

Y1 =

∑k
i=1[ψ

′(ri)]
−1(xiE − I) log(2si)

g(W, t)(EG− I2)
− V2
g(W, t)

, (2.17)

where si =
∑ri

j=1(Ri,j + 1) t
g(W,t)
i,j .

Notice that Y0 and Y1 reduce to α0 and α1 when T = t respectively, and the distri-

butions of Y0 and Y1 are free of any unknown parameters, thus Y0 and Y1 is indeed

a generalized pivotal quantities. If Y0,τ and Y1,τ denote the upper τ percentiles of Y0

and Y1, then [Y0,1−τ/2, Y0,τ/2] and [Y1,1−τ/2, Y1,τ/2] are the 1−τ generalized confidence

intervals for α0 and α1 respectively.
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The percentiles of Y0 and Y1 can be obtained from (2.16) and (2.17) using the following

Monte Carlo simulation algorithm.

Step 1: For a given data set (n,m, t, R), generate W ∼ χ2
(

2
∑k

i=1 ri − 2k
)

, T1 ∼
χ2(2r1), ..., Tk ∼ χ2(2rk) independently. Using these values, compute g(W, t), V1

and V2 from equations W (β) = W , (2.12) and (2.13).

Step 2: In terms of (2.16) and (2.17), compute the values of Y0 and Y1.

Step 3: Repeat the steps 1 and 2 a large number of times, say, m1(≥ 10, 000) times.

The m1 values of Y0 and Y1 can be obtained respectively.

Step 4: Arrange all Y0 and Y1 values in ascending order respectively: Y0,1 < Y0,2 <

... < Y0,m1 and Y1,1 < Y1,2 < ... < Y1,m1 . Then the τ percentile of Y0 and Y1 are

estimated by Y0,τm1 and Y1,τm1 respectively.

Now note that the mean, pth quantile (0 < p < 1) and reliability function of the

Weibull distribution at designed stress level x0 are given by µ = θ0Γ(1 + 1/β), tp =

θ0[− log(1− p)]1/β and R(t0) = exp[−(t0/θ0)
β] respectively. Along the same lines as

the derivation of Y0 and Y1 for the parameters α0 and α1, we obtain the following

generalized pivotal quantities Y2, Y3 and Y4 for µ, xp and R(x0) respectively:

Y2 = eY0+Y1x0Γ

(
1 +

1

g(W, t)

)
, (2.18)

Y3 = eY0+Y1x0 [− log(1− p)]
1

g(W,t) , (2.19)

Y4 = exp
[
−(t0e

−Y0−Y1x0)g(W,t)
]
. (2.20)

Let Y2,τ , Y3,τ , Y4,τ denote the upper τ percentiles of Y2, Y3, Y4 respectively. Then

Y2,τ , Y3,τ , Y4,τ are the 1− τ upper confidence limits for µ, tp and R(t0), respectively.

Just as in the cases of Y0 and Y1, the percentiles of Y2, Y3, Y4 can be obtained by

Monte Carlo simulations.

Although for given (Ti,1, ..., Ti,ri), i = 1, 2, ..., k, the distributions of Y0, Y1, Y2, Y3, Y4

do not depend on any unknown parameters, the coverage probabilities of their gen-

eralized confidence intervals may depend on nuisance parameters. We study the per-

formance of coverage probabilities of these confidence intervals by simulation. Such

simulation results are reported in Section 5.

Remark: It is easy to prove that β̂(α̂0−α0), β̂(α̂1−α1) and β̂(α̂0+α̂1x0−log(tp)) are

pivotal quantities for the parameters α0, α1 and tp respectively. Hence, confidence

intervals for these parameters can alternatively be obtained based on these pivotal

quantities. The percentiles of these pivotal quantities can also be obtained by Monte
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Carlo simulations. It is worth noting that there is no pivotal quantity for µ.

2.5 Simulation Study

To evaluate and compare the performance of the MLE method and proposed estima-

tors with the proposed alternative method (NEW1), we performed simulation tests

with data generated via various scenarios. We consider different number of stress

levels (k = 2, 3, 4 for simulation design scenario 1-3, 4-6 and 7-9, respectively), com-

bined with different censoring schemes (for example, progressive and non-progressive

censoring). Details of the simulation design scenarios are summarised in Table 2.1.

For each scenario, 10,000 replicates of random samples were generated from the

Weilbull distribution as specified in (1), with three different parameter settings: (1)

(β, α0, α1) = (0.5, 5,−1), (2) (β, α0, α1) = (1, 5,−1), (3) (β, α0, α1) = (3, 5,−1),

respectively.

Then Tables 2.2 to 2.4 compare the percentage-biases and -MSE of parameter estima-

tors form NEW1 method with those from the MLE method under different simulation

scenarios, with respect to three different parameter settings. The percentage-biases

and the percentage-MSE are defined as follow:

percentage− biases =
100%

n

n∑
i=1

ξ̂i − ξ
ξ

,

percentage−MSE =
100%

n

n∑
i=1

(ξ̂i − ξ)2

ξ2
,

where ξ̂ denotes the estimated value and ξ denotes the true value. Findings from

Table 2.2, 2.3 and 2.4 are listed as follows:

• Generally speaking, the relative-bias and -MSE of the NEW1 method for β is

significantly smaller than that of the MLE method. The β estimator of the

NEW1 is almost unbiased and very accurate. MLE’s β estimator is slightly

over-estimate, as bias are all positive.

• For α0, both methods have small percentage-bias and -MSE. The performance

difference between MLE and NEW1, in terms of bias and MSE, is very close.

The MSE of α̂0 decreases, as the true value of β increases, namely, the right

tail of the Weibull distribution becomes “thinner”. For example, when β = 0.5,

the percentage-MSE of MLE and NEW1 are between 0.087 ∼ 0.035 interval;

when β = 1, the interval reduced to 0.022 ∼ 0.009; when β = 2, the interval
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reduced to 0.006 ∼ 0.002.

• For α1, the NEW1 estimates has smaller percentage-bias, while the MLE esti-

mator tends to over-estimate. The percentage-MSE for both methods are about

the same, and significantly decreases as the true value of β increases.

• For θ0, the MLE estimator still tends to over-estimate, while the NEW1 es-

timator seems slightly under-estimate θ0 for most cases. The MLE has much

larger percentage-MSE than NEW1 method, especially when the true value of

β is small. E.g., in Table 2.2, the percentage-MSE for θ0 for simulation scheme

2 are: 84.562 for MLE, 12.960 for NEW1. Also, similar to estimators for α0

and α1, estimation bias and error for θ̂0 significantly decrease as true value of β

increases. For example, when β = 2, the percentage-MSE for θ0 for simulation

scheme 2 are: 0.180 for MLE, 0.146 for NEW1 (in Table 2.4).

• Overall, as the number of stress levels increasing leads to larger sample size,

estimation bias and MSE decreases as sample size increases.

To sum up, simulation for parameter estimations of the Weibull distribution shows

that, in terms of estimation bias and error, the performance of the NEW1 method

is significantly better than of the MLE method. Also, performance of both methods

are somewhat sensitive to the value of shape parameter β of the Weibull distribution.

Smaller value of β leads to less accurate results, as the Weibull distribution becomes

more heavy-tailed.

We also compare the estimation of CIs from MLE method and the NEW1 method.

1000 replicates of progressively Type II censored samples were generated from Weibull

distribution with parameters (β, α0, α1) = (1, 5,−1), for simulation design scenarios

1, 4 and 7 (non-progressive censoring) and scenarios 3, 6 and 9 (progressive censor-

ing), respectively. We calculate the 95% CI that based on MLE method and the

NEW1 inference, for different estimators. The average interval lengths and coverage

probabilities were reported to compare performance of the two methods. Table 2.5

summarises results from simulation design scenarios 1, 3, 4, 6, 7, 9.

Results of the simulation tests for the 95% confidence intervals from MLE method

and the NEW1 method are summarised as follows:

• Overall, MLE method for the 95% CI has smaller interval length than the

NEW1 method does, especially when the sample size is small. For simulation

scenario 1, the interval length for µ of MLE is 644.29, while interval length for

µ of NEW1 is 1531.015 (in Table 2.5), which is more than twice longer than

the MLE.
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• However, the MLE CI estimates are significantly poorer than the NEW1’s in

terms of coverage probability (CP). For the 95% CI, the CP of MLE are all lower

than the expected confidence level for all tested statistics. On the other hand,

the NEW1’s generalised CI estimates have a CP around ±1% of the nominal

95% confidence level. For example, for small sample size such as simulation

scheme 1, although MLE has smaller interval length, the CP are all under 90%,

but NEW1’s generalised CI has CP between 94.5% to 95%.

2.6 A real example and its analysis

Nelson (1975) presented some data on the times to breakdown of a type of electri-

cal insulting fluid subject to various constant voltage stresses. The purpose of the

experiment was to estimate the distribution of time to breakdown at 20 kilovolt.

Table 2.1: Table of the simulation design scenarios

Scenario No. x1, ..., xk n1, ..., nk r1, ..., rk R1, ..., Rk

1 (0.5, 1) (20, 10) (12, 6)
R1 = (0, ..., 0, 8)
R2 = (0, ..., 0, 4)

2 (0.5, 1) (20, 10) (12, 6)
R1 = (8, 0, ..., 0)
R2 = (4, 0, ..., 0)

3 (0.5, 1) (20, 10) (12, 6)
R1 = (4, 0, ..., 0, 4)
R2 = (2, 0, ..., 0, 2)

4 (0.5, 0.75, 1) (20, 15, 10) (12, 9, 6)
R1 = (0, ..., 0, 8)
R2 = (0, ..., 0, 6)
R3 = (0, ..., 0, 4)

5 (0.5, 0.75, 1) (20, 15, 10) (12, 9, 6)
R1 = (8, 0, ..., 0)
R2 = (6, 0, ..., 0)
R3 = (4, 0, ..., 0)

6 (0.5, 0.75, 1) (20, 15, 10) (12, 9, 6)
R1 = (4, 0, ..., 0, 4)
R2 = (3, 0, ..., 0, 3)
R3 = (2, 0, ..., 0, 2)

7 (0.5, 0.75, 1, 1.25) (30, 20, 15, 10) (18, 12, 9, 6)

R1 = (0, ..., 0, 12)
R2 = (0, ..., 0, 8)
R3 = (0, ..., 0, 6)
R4 = (0, ..., 0, 4)

8 (0.5, 0.75, 1, 1.25) (30, 20, 15, 10) (18, 12, 9, 6)

R1 = (12, 0, ..., 0)
R2 = (8, 0, ..., 0)
R3 = (6, 0, ..., 0)
R4 = (4, 0, ..., 0)

9 (0.5, 0.75, 1, 1.25) (30, 20, 15, 10) (18, 12, 9, 6)

R1 = (6, 0, ..., 0, 6)
R2 = (4, 0, ..., 0, 4)
R3 = (3, 0, ..., 0, 3)
R4 = (2, 0, ..., 0, 2)
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Table 2.2: Percentage-bias and Percentage-MSE of MLE estimates and the NEW1 method’s es-
timates. Samples generated with (β, α0, α1) = (0.5, 5,−1). x0 = 0, true value of θ0 = exp(5) ≈
148.413, 10000 replicates

percentage-bias

Scenario MLE NEW1

No. β α0 α1 θ0 β α0 α1 θ0

1 0.165 -0.006 0.238 1.822 -0.004 0.013 0.046 -0.049
2 0.102 0.007 0.218 2.036 -0.011 -0.011 -0.013 -0.006
3 0.140 -0.005 0.191 1.693 -0.005 -0.003 -0.021 -0.109
4 0.104 -0.015 0.077 1.679 0.000 0.003 -0.009 -0.049
5 0.067 0.001 0.104 1.884 -0.004 -0.006 -0.005 0.007
6 0.085 -0.005 0.110 1.742 -0.006 0.001 0.011 -0.044
7 0.059 -0.005 0.056 0.492 0.000 0.004 0.008 -0.006
8 0.040 0.003 0.061 0.550 -0.002 -0.002 0.000 -0.012
9 0.050 -0.001 0.069 0.535 -0.002 0.002 0.017 0.005

percentage-MSE

MLE NEW1

β α0 α1 θ0 β α0 α1 θ0

1 0.107 0.086 4.407 55.653 0.059 0.087 4.358 5.728
2 0.053 0.087 4.430 84.562 0.035 0.087 4.406 12.960
3 0.083 0.083 4.306 44.638 0.048 0.083 4.280 4.361
4 0.053 0.085 4.065 50.759 0.038 0.085 4.076 6.066
5 0.029 0.085 4.108 70.623 0.023 0.086 4.136 11.685
6 0.041 0.083 4.039 64.457 0.031 0.083 4.051 10.532
7 0.025 0.035 1.321 3.425 0.021 0.035 1.346 1.363
8 0.015 0.035 1.302 3.532 0.014 0.035 1.318 1.408
9 0.021 0.035 1.338 3.628 0.018 0.035 1.359 1.477

For the purpose of illustrating the methods presented in this chapter, two Type II

progressively censored samples have been randomly generated from the n1 = 11 and

n2 = 15 observations recorded at 30 and 36 kilovolts in Nelson (1975) respectively.

The observations and the progressive censored plans are reported in Table 2.6. The

design stress level x0 = 20kv. Parameter estimation and confidence interval estima-

tion results are shown in Table 2.7 and 2.8, respectively.

The estimates of the new method for the parameter θ0 and for the mean time to

breakdown µ largely depart from the estimates of the MLE. For example, the mean

time to breakdown estimated using the new method proposed in this chapter is

8613.56, which is approximately 40% shorter than the value estimated by MLE,

14740.47. Note that in the simulation tests we report that MLE tends to overestimate

θ0, by a percentage up to approximately one third. Hence, in this data, the mean

time to breakdown estimated by MLE are possibly also overestimated.

For the CI estimations, results from the real data agree with those from simulations.
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Table 2.3: Samples generated with (β, α0, α1) = (1, 5,−1). x0 = 0, true value of θ0 = exp(5) ≈
148.413, 10000 replicates

percentage-bias

Scenario MLE NEW1

No. β α0 α1 θ0 β α0 α1 θ0

1 0.162 -0.007 0.079 0.255 -0.006 0.002 -0.017 -0.034
2 0.107 0.005 0.113 0.336 -0.007 -0.004 -0.001 -0.034
3 0.140 0.000 0.105 0.298 -0.005 0.001 0.000 -0.031
4 0.101 -0.008 0.026 0.249 -0.003 0.000 -0.017 -0.028
5 0.064 0.002 0.057 0.312 -0.007 -0.002 0.005 -0.018
6 0.085 -0.003 0.048 0.283 -0.005 0.000 -0.002 -0.020
7 0.060 -0.003 0.027 0.096 0.000 0.002 0.003 0.001
8 0.035 0.001 0.031 0.120 -0.006 -0.001 0.000 -0.009
9 0.049 -0.003 0.018 0.097 -0.003 -0.001 -0.009 -0.012

percentage-MSE

MLE NEW1

β α0 α1 θ0 β α0 α1 θ0

1 0.106 0.022 1.067 1.118 0.058 0.022 1.062 0.623
2 0.055 0.022 1.112 1.331 0.036 0.022 1.105 0.670
3 0.082 0.021 1.087 1.222 0.048 0.021 1.075 0.643
4 0.053 0.021 1.032 1.145 0.037 0.021 1.034 0.646
5 0.028 0.021 1.036 1.249 0.023 0.022 1.037 0.679
6 0.041 0.021 1.027 1.211 0.031 0.021 1.028 0.668
7 0.025 0.009 0.327 0.290 0.021 0.009 0.332 0.232
8 0.015 0.009 0.334 0.312 0.013 0.009 0.339 0.241
9 0.021 0.009 0.335 0.290 0.018 0.009 0.335 0.232

The new method has larger confidence interval length for all parameters and the

mean time to breakdown. This is reasonable, considering that simulation tests have

shown the asymptotic CI based on MLE has poor coverage probability below the

nominal level, thus it also has shorter CI length in general.

2.7 Chapter Summary

In this chapter, we have considered a constant stress ALT model with Weibull distri-

bution when the data are progressively censored. We have derived the estimators of

unknown parameters, exact confidence interval of shape parameter and generalized

CIs of other parameters. One possible disadvantage of the method we proposed for

the generalised confidence interval estimation is that, the Monte Carlo simulation

algorithm as described in Section 2.4.2 is computational extensive. A large num-

ber of Monte Carlo simulations, m, is recommended to ensure convergence, but it

may seriously slow down the computation. Nonetheless, the method and theoretic
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Table 2.4: Samples generated with (β, α0, α1) = (2, 5,−1). x0 = 0, true value of θ0 = exp(5) ≈
148.413, 10000 replicates

percentage-bias

Scenario MLE NEW1

No. β α0 α1 θ0 β α0 α1 θ0

1 0.163 -0.003 0.045 0.053 -0.005 0.002 -0.003 -0.003
2 0.106 0.002 0.056 0.084 -0.009 -0.002 -0.002 -0.014
3 0.145 0.000 0.054 0.068 0.000 0.000 0.002 -0.007
4 0.099 -0.004 0.013 0.062 -0.004 0.000 -0.010 -0.009
5 0.065 0.000 0.023 0.065 -0.006 -0.002 -0.004 -0.015
6 0.087 -0.002 0.019 0.058 -0.003 -0.001 -0.005 -0.008
7 0.063 -0.002 0.010 0.016 0.003 0.000 -0.002 0.000
8 0.037 0.000 0.014 0.027 -0.004 -0.001 -0.001 -0.007
9 0.052 -0.002 0.008 0.018 -0.001 -0.001 -0.006 -0.007

percentage-MSE

MLE NEW1

β α0 α1 θ0 β α0 α1 θ0

1 0.104 0.006 0.290 0.163 0.057 0.005 0.270 0.138
2 0.056 0.005 0.280 0.180 0.036 0.006 0.278 0.146
3 0.086 0.005 0.275 0.169 0.050 0.005 0.273 0.142
4 0.051 0.005 0.263 3.017 0.036 0.005 0.254 0.135
5 0.029 0.005 0.253 0.158 0.023 0.005 0.254 0.133
6 0.042 0.005 0.265 0.166 0.031 0.005 0.263 0.144
7 0.026 0.002 0.080 0.056 0.021 0.002 0.081 0.054
8 0.015 0.002 0.081 0.058 0.013 0.002 0.083 0.055
9 0.021 0.002 0.082 0.056 0.018 0.002 0.083 0.054

Table 2.5: Average CP and interval length (in parentheses) of 95% CI estimation. Samples gener-
ated (β, α0, α1) = (1, 5,−1), x0 = 0, and log(θ0) = 5. 1000 replicates

S/N
MLE NEW1

β α0 α1 log(θ0) β α0 α1 log(θ0)

1
0.966 0.887 0.884 0.887 0.944 0.945 0.95 0.945

(1.048) (2.524) (3.553) (2.574) (0.934) (3.174) (4.497) (3.228)

3
0.970 0.906 0.913 0.909 0.955 0.941 0.953 0.954

(0.961) (3.613) (627.152) (2.642) (0.858) (4.437) (924.62) (3.208)

4
0.969 0.925 0.928 0.925 0.952 0.952 0.943 0.952

(0.792) (2.658) (3.676) (2.559) (0.753) (3.068) (4.258) (2.926)

6
0.957 0.922 0.932 0.932 0.943 0.953 0.951 0.953

(0.533) (3.689) (678.736) (2.690) (0.692) (4.205) (883.011) (3.096)

7
0.964 0.928 0.933 0.928 0.965 0.944 0.953 0.944

(0.581) (1.733) (2.127) (1.736) (0.568) (1.899) (2.35) (1.886)

9
0.967 0.919 0.916 0.916 0.953 0.939 0.942 0.944

(0.533) (2.168) (326.839) (1.795) (0.521) (2.355) (370.504) (1.965)
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Table 2.6: Data of the times to breakdown of a type of electrical insulting fluid subject to various
constant voltage stresses (Nelson, 1975).

Voltage level ni Ri Breakdown times

30 kv 11 (2, 0, ..., 0, 2) 7.74, 17.05, 21.02, 43.40, 47.30,
139.07, 144.12

36 kv 15 (4, 0, ..., 0, 1) 0.35, 0.96, 1.69, 1.97, 2.58, 2.71,
3.67, 3.99, 5.35, 13.77

Table 2.7: Parameter estimations of Weibull distribution of the lifetime of the electrical insulting
fluid subject.

β̂ α̂0 α̂1 θ̂0 log(θ̂0) µ̂

MLE 1.02 19.54 -0.50 14868.87 9.61 14740.47
NEW1 0.93 19.84 -0.50 8342.39 9.03 8613.56

Table 2.8: 95% confidence interval for estimators of Weibull distribution of the lifetime of the
electrical insulting fluid subject.

MLE NEW1

lower boundary upper boundary lower boundary upper boundary

β 0.93 1.11 0.64 1.37
α0 14.23 24.86 13.98 26.48
α1 -0.65 -0.34 -0.70 -0.33

log(θ0) 7.42 11.79 7.44 12.56

results are new, totally different from MLE-based inference. The numerical analysis

and comparison are promising, even for small sample and different censoring rates or

schemes.



Chapter 3

Point and interval estimation for

the generalised Pareto

distribution with small samples

In extreme value theory, the generalised Pareto distribution is used to model data

on the tail. Since only a proportion of the data is used, the effective data size for

fitting the GPD is often small. Also, statistical properties, especially tail behaviour

of the GPD varies depending on its shape parameter. Performances of most existing

methods are inconsistent for different ranges of the shape parameter. In this chapter,

we introduce a new method that provides consistently unbiased point estimations,

even for very small sample size. This method also provides an inference for confidence

interval estimation, which is accurate in terms of coverage probability, combined with

reasonable interval length as shown in simulation tests.

3.1 Introduction

In recent years the generalised Pareto distribution has drawn increasingly attention

from researchers because of its application in the extreme value theory (see Castillo

and Hadi, 1997; Zhang, 2007; Zhang and Stephens, 2009 and Hüsler et al., 2011,

amongst others). The development of EVT is motivated by needs of measuring

extreme tail probabilities and tail quantiles, which, in fields such as the research of

disasters, nature phenomenon, insurance and finance, are often the major concern

of risk-related problems. The essential idea of EVT is, as stated in Diebold et al.

(2000), estimating extreme quantiles and probabilities by fitting models to a set

34
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of data using only the data on the tail. Consequently, since only a proportion of

data from the original dataset is used, small sample size is often confronted in tail

modelling. Hence, we emphasise the aspect of small samples on fitting the generalised

Pareto distribution in this chapter.

In the extreme value theory, generalised Pareto distribution is used to model ex-

ceedances over certain thresholds, or in other words, data on the tail of the underlying

distribution. This method of exceedances is often referred to as the peak over thresh-

old method. In the POT approach, rather than assessing FY (y) directly, it is more

focused on estimating the distribution of the exceedances. Consider the following

assumptions

A 3.1 Assuming random variable Y has distribution function FY (y), the definition of

exceedances is the values of Y above threshold u, namely X = Y −u. The probability

function of the exceedance is given by

Fu(x) = P{Y − u ≤ x|Y ≥ u}, 0 ≤ x ≤ yF − u,

where x is the excess and yF ≤ ∞ denotes the right end points of FY .

A 3.2 Fu(x) can be expressed as a function of FY and the

Fu(x) =
FY (u+ x)− FY (u)

1− FY (u)
=
FY (y)− FY (u)

1− FY (u)
. (3.1)

Based on these assumptions, Balkema and De Haan (1974) along with Pickands

(1975) introduced the following results

Theorem 3.1 (Pickands-Balkema-de Haan) when u is large, for a large class of

underlying distribution functions, the conditional excess distribution function Fu is

well approximated by the generalised Pareto distribution,

Fu(x) ≈ FGPD(x;σ, ξ), as u→∞. (3.2)

FGPD(x;σ, ξ) is the cumulative distribution function

FGPD(x;σ, ξ) =

1− (1 + ξ
σx)−1/ξ if ξ 6= 0

1− e−x/σ if ξ = 0
(3.3)

for x ∈ [0, yF − u) if ξ ≥ 0 and x ∈ [0,−σ
ξ ] if ξ < 0, where ξ is the shape parameter

and σ is the scale parameter. Note that sometimes the shape parameter ξ is denoted
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as κ = −ξ. If ξ > 0 the GPD is heavy-tailed on the right side. If ξ = 0 then

the distribution reduces to the exponential distribution and the right tail decays

exponentially. When −1 ≤ ξ ≤ −0.5, the distribution has finite right end-points,

which is sometimes referred to as ‘short-tailed’. Furthermore, when ξ = −1, the

GPD actually becomes a uniform U(0, σ) distribution. The kth central moment of

the GPD exists only if ξ < 1/k. For example, when it has a shape parameter ξ ≥ 1/2,

var(X) = +∞ and the second central moment no longer exists. For more details

about properties of the GPD and its parameters, see Hosking and Wallis (1987).

Furthermore, the p-th quantile of GPD is given by the inverse of (3.3)

QGPD(p;σ, ξ) = F−1GPD(p;σ, ξ) =
σ

ξ

(
(1− p)−ξ − 1

)
. (3.4)

To simplify, we will drop the extra notion and write Q(p) = QGPD(p;σ, ξ) henceforth

where no confusion should be caused.

In practice, the final goal of employing the EVT is still estimating extreme proba-

bilities or quantiles of the original distribution of Y , but not only the exceedances

X. Hence, by substituting Fu in (3.1) with the GPD and approximating FY (u) by

(N − n)/N , where N is the total number of observations and n is the number of

observations over the threshold u, the original distribution FY (y) is expressed with

respect to the GPD parameters as

FY (y) = 1− n

N

(
1 +

ξ

σ
(y)

)−1/ξ
. (3.5)

The p∗-th quantile of Y , F−1Y (p∗) is simply given by inverting (3.5)

F−1Y (p∗) = u+
σ

ξ

((
N

n
(1− p∗)

)−ξ
− 1

)
. (3.6)

Comparing (3.4) and (3.6) we will obtain that

F−1Y (p∗) = u+Q

(
N

n
p∗
)
. (3.7)

The expression in (3.6) represents one of the main goals of the EVT: when p∗ is

very small, instead of estimating extreme p∗-th quantile of FY , which could be very

difficult, one can estimate less-extreme (Nn p
∗)-th quantiles of FGPD, assuming N >> n.
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3.1.1 Existing problems

Since in POT approach, only a proportion of the original sample is used for fitting

the GPD, the sample size of the excess, n, is often small. Generally, the sample

size n for modelling the GPD is determined by threshold u. According to (3.2),

a high threshold generally provides better approximation of the data on the tail

with smaller bias. However, higher u also leads to smaller sample size n, which

may increase estimation variance and bring other problems to the GPD estimations.

Furthermore, for some estimators, their asymptotic properties based on large samples

may not be valid when n is too small. Consequently, interval estimations that are

based on asymptotic theory or bootstrap approaches become less efficient and less

accurate. Unfortunately, in practice the GPD fitting is often confronted with small

samples, although definitions of ‘small’ and ‘large’ sample are somehow vague. We

illustrate this via a simple example: in finance, a typical one-year dataset of daily

returns (or losses) normally consists of around 250 samples (as there are around 250

trading days per year), which might not be very large but at least not ‘small’. If

10% data on the tail is selected from the original dataset, there are only 25 samples

available for fitting the GPD; even if 30% data is selected there are still only 75

samples. It is possible to increase the sample size by using a longer sampling period,

but it is not always wise as older data could be out-of-date. Data from other fields

of research might contain larger samples, nonetheless, as not the entire dataset is

used, the effective sample size for estimating the GPD is often much smaller. In this

chapter, we focus on sample size n ≤ 50.

As described in previous section, some of the distributional properties of the GPD

vary distinctively as value of the shape parameter ξ changes, an ideal estimator for

GPD should be reliable and consistent regardless of its ‘shape’, namely, the tail

behaviour of the underlying distribution. However, performance of some methods

are heavily impacted by the value of ξ, or even become invalid.

For examples, the MLE method does not exist for ξ < −1 since it can have no local

maximum. The MOM estimates do not exist for ξ ≥ 0.5 and the PWM estimates do

not exist for ξ ≥ 1, since the second and first moments of the GPD become infinity in

each case, respectively. Although Hosking and Wallis (1987) suggested that it should

be sufficient to restrict to −0.5 < ξ < 0.5 when considering reliability, Castillo and

Hadi (1997) made a good line of argument that a good estimator for the GPD should

cover a wider domain of ξ for both practical and theoretical reasons. The EPM

method they proposed for parameter estimations are reliable under a wider domain

of ξ (from -2 to 2), but it does not outperform classical methods when the value
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of ξ falls into (−0.5, 0.5). The LME method proposed by Zhang (2007) has high

asymptotic efficiency when r is close to its optimal value, which equals to the true

value of −ξ. However, the LME only supports for r < 1/2, which corresponds to

ξ > −0.5. Also, some methods such as MOM and PWM sometimes conflict with data

(see, e.g., Castillo and Hadi (1997); Dupuis and Tsao (1998)). That is, for ξ < 0, the

supported domain of x is 0 < x < −σ/ξ, however, invalid estimation of σ and ξ may

be given so that some observations can be out of this domain. This is referred to as

non-feasible solution or invalid estimates issue in some literature.

Although some methods may be preferred for certain range of ξ, it is typical that

the tail behaviour of the underlying data is unknown prior to modelling in reality. In

this chapter, we elaborate on the reliability with regards to ξ, ranging from -1 to 1,

of different methods, including the method we proposed.

3.1.2 A brief review of existing methods

For fitting the GPD, the maximum likelihood estimation has been considered by

many (including Davison, 1984; Smith, 1985, Smith, 1987; Hosking and Wallis, 1987;

Grimshaw, 1993; etc.). However, Hosking and Wallis suggested that unless sample

size is larger or equal to 500, the method of moment and the probability weighted

moment are more reliable for ξ ∈ (−0.5, 0.5). Castillo and Hadi (1997) proposed the

so-called elemental percentile method which is reliable for a wider domain of ξ (from

-2 to 2), but it does not out-perform classic methods as long as value of ξ falls into

(−0.5, 0.5). Zhang (2007) proposed an alternative method for fitting the GPD, the

likelihood moment estimation. The LME contains an auxiliary parameter r, which

needs to be determined without knowing ξ (or with preliminary estimation of ξ from

other methods). Zhang showed that the optimal value of r should be close to the

true value of −ξ, but r = 1/2 is recommended if no information about ξ is available.

Zhang and Stephens (2009) provided another estimator (referred as ZS henceforth)

of parameters of the GPD which uses a procedure similar to Bayesian method. The

ZS estimators are fast to compute and their simulation tests show that it is stable

when ξ is in the domain of [−0.5, 1] for sample size n = {50, 500}, and generally

outperform MLE, MOM, PWM and LME in most cases.

Compared with point estimations, confidence interval estimation for the GPD are

less intensively discussed in previous literature, and there exist obvious difficulties

of constructing such interval estimates explicitly. Hence, a common strategy is to

find approximate confidence intervals with coverage probabilities equal to the target

confidence level, theoretically. One well-known approach is approximations based on
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the asymptotic normal distribution. The 1 − τ CI of parameter θ is constructed in

the form of

θ̂ − zτ/2
√
v̂(θ̂) < θ < θ̂ + z1−τ/2

√
v̂(θ̂),

where zτ is the τ -th quantile of the standard normal distribution, and v̂(θ̂) is the

asymptotic variance of estimator θ̂. Further more, the asymptotic variance can be

obtained via either v̂(θ̂) = 1/I(θ̂) or v̂(θ̂) = 1/J (θ̂), where I(θ̂) and J (θ̂) are the

expected and observed Fisher information, respectively. The asymptotic variance

derived from the expected Fisher information of some estimators can be found in

Smith (1987) (for MLE), Hosking and Wallis (1987) (for MOM and PWM), and

Zhang (2007) (for LME), respectively. Example of CI estimation based on observed

information can be found in Davison and Smith (1990)) amongst others. CI for

quantile estimators can be obtained also using asymptotic variance via the Delta

method (Rao, 1973). However, CI estimates based on asymptotic theory may suf-

fer under small samples, as asymptotic properties may not be the same as stated.

For small samples, profile log-likelihood approach may be preferred (e.g., VENZON

and MOOLGAVKAR, 1988; Davison and Smith, 1990). The profile log-likelihood

approach is based on the fact that the relative likelihood L(θ)/L(θ̂) follows the χ2

distribution with 1 degree of freedom. Gilli and Këllezi (2006) gave examples of profile

log-likelihood CI estimates for some financial criteria based on the GPD estimation.

Tajvidi (2003) compared sampling based approaches (i.e. jackknife and bootstrap)

with profile likelihood approaches for heavy-tailed GPD and found the later is better

for both small and large samples. In this chapter, we adapt the inference in Wang

et al. (2010) and propose an approach that does not depend on asymptotic normality

for calculating the exact and generalised confidence intervals for the GPD.

In this chapter, we propose an alternative approach for fitting the GPD. The new

method provides consistent unbiased estimations for parameters, as well as accurate

exact and generalised confidence interval estimations in terms of coverage probability.

Results of simulation tests for different methods and for CI estimations are presented

in Section 3.3. An example using real-world data (same data has been used in Castillo

and Hadi, 1997 and Zhang and Stephens, 2009) will be discussed in Section 3.4, and

finally summary and conclusions in the last section.
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3.2 Exact inference for the GPD

3.2.1 Point estimation

Re-parametrise the GPD with α = ξ/σ, for ξ 6= 0, and assume X1:n ≤ X2:n ≤
... ≤ Xn:n be an ordered statistics of n observations from the GPD. The proposed

estimator for α is then given via some transformation from the c.d.f. (3.3) as follows.

First, let

V(i) = − log (1− FGPD(Xi:n;α, ξ))

=
1

ξ
log (1 + αXi:n) , i = 1, 2, ..., n,

be a sequence of ascending order statistics of samples from the standard exponential

distribution . V(i) is not independent, so let

Wi = (n− i+ 1)(V(i) − V(i−1)), i = 1, 2, ..., n

be the ith normalised spacing, with V(0) = 0. Then W1, ...,Wn are random variables

from independent standard exponential distributions (proof can be found in Viveros

and Balakrishnan, 1994, Appendix B, in which the property of normalised spacings

between order statistics of exponential samples is used). Then let

Di =
i∑

j=1

Wj

= −1

ξ

 i∑
j=1

log (1 + αXj:n) + (n− i) log (1 + αXi:n)

 , (3.8)

i = 1, 2, ..., n;

and

Ui:n =
Di

Dn

=

∑i
j=1 log (1 + αXj:n) + (n− i) log (1 + αXi:n)∑n

j=1 log (1 + αXj:n)
, (3.9)

i = 1, 2, ..., n− 1.

{Ui:n}n−1i=1 can be equivalently regarded as an induced order statistics of an i.i.d.

sample which has a standard uniform U(0, 1) distribution. Note that Ui:n is also an

ancillary statistic that only depends on parameter α. Hence the mean of {Ui:n}n−1i=1
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converges with probability one to 1/2. Let

Ū(α) =
1

n− 1

n−1∑
i=1

Ui:n.

Then α̂ is determined by solving

Ū(α) =
1

2
. (3.10)

Since V(i) can be seen as order statistics from standard expornential distribution, it

has sample mean 1
n

∑n
i=1 V(i) = 1. This leads to an estimator for the shape parameter

ξ, given estimator α̂:

ξ̂ =
1

n

n∑
i=1

log(1 + α̂Xi). (3.11)

Note that (3.11) is identical with the log-likelihood function for ξ as in MLE. The

method we proposed is referred as NEW2 henceforth.

We notice that the idea behind (3.10) is similar to Hüsler et al. (2011), which assume

that the probabilities of the GPD given data (X1, X2, ..., Xn) can also be regarded

as uniformly U(0, 1) distributed, and then estimates of α can be obtained by solving

the equation

1

n

n∑
i=1

FGPD(Xi; α̂, ξ̂) =
1

2
,

along with the profile log-likelihood function (3.11). The essential difference between

NEW2 estimates and the approach in Hüsler et. al is that, for the NEW2 estimates

one does not have to assume the profile log-likelihood in priori, since Ui:n is an

ancillary statistic that does not depend on any parameters other than α. Actually,

there are several different ways to obtain ξ̂ given α̂, and through simulations we found

the profile log-likelihood estimates for ξ̂ in (3.11) are the most accurate.

Thus, our estimators for the GPD parameters are finally given by combining (3.10)

and (3.11). And the pth quantile of the GPD is estimated by either Q̂(p; σ̂, ξ̂) or

Q̂(p; α̂, ξ̂), where Q(p) is shown as in (3.4).

3.2.2 Exact and generalised confidence intervals estimations

Confidence interval for estimators of α and ξ can be derived from (3.10) with the

IE inference. Note that the mean of n independent uniformly U(0, 1) distributed

random variables follows the Bates distribution (Bates, 1955), which has the p.d.f.
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as

fX(x;n) =
n

2 (n− 1)!

n∑
k=0

(−1)k
(
n

k

)
(nx− k)n−1 sgn(nx− k),

for x ∈ (0, 1), and

sgn (nx− k) =


−1 nx < k

0 nx = k

1 nx > k.

Recall from the last section, given data X = x, it is obvious that the sample distribu-

tion of Ū(α) is the Bates distribution with size n−1 (noted as Ū(α) ∼ Bates(n−1)).

Let µL and µU be lower and upper boundaries such that the probability of the value

of Ū(α) falls between these boundaries are 1− τ , i.e.

P(µL < Ū(α) < µU ) = 1− τ.

Let Bates−1τ (n) represents the τ -th quantile of the Bates distribution with sample

size n, then µL = Bates−1τ/2(n − 1) and µU = Bates−11−τ/2(n − 1), respectively. Since

Ū(α) is an pivot quantity and monotonic, it is straightforward to show that

P(A(µL;x) < α < A(µU ;x)) = 1− τ,

where A(µ;x) = α is the inverse function of Ū(α) = µ, given value of observations

X = x. That is, the exact (1− τ)% confidence interval for α is

(A(µL;x), A(µU ;x)) , (3.12)

However, µL and µU are difficult to calculated analytically from the Bates distri-

bution, especially as n grows large. On the other hand, it is more convenient to

obtain these values via Monte Carlo simulation. For example, generate large amount

(say, m ≥ 2000) of random samples µ from Bates(n − 1) distribution, and the τ -th

population quantiles, Bates−1τ (n− 1), can be well approximated by the τ -th sample

quantiles of µ. Then the interval boundaries as in (3.12) can be obtained, using these

simulated sample quantiles.

T = 2Dn = 2
n∑
j=1

log (1 + αXj:n)
1
ξ .

As shown in Wang et al. (2010), T has a χ2 distribution with 2n degrees of free-

dom, regardless of values of α and X. Then consider the following generalised pivot
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quantity for parameter ξ:

Z =
2
∑n

j=1 log
(
1 +A(µ;x)Xj:n

)
T

, (3.13)

where A(µ;x) is previously defined. Note that the value of Z will reduce to ξ if µ =

1/2. As there is no unknown parameters in (3.13), Z is a generalised pivotal quantity

for ξ as defined in Weerahandi (1993) and Weerahandi (2004), and its distribution

can be approximated via Monte Carlo simulations, as follows:

1. generate random samples t ∼ χ2(2n), from the χ2 distribution with 2n degrees

of freedom, with the same sample size m as of random samples µ;

2. replace µ and T in (3.13) with µ and t, respectively. This produces a simulated

random sample set of Z, denoted as z. Hence, the τ -th sample quantile of z

can be used to approximate the τ -th population quantile of Z, denoted as Zτ ;

3. the generalised (1− τ)% confidence interval of ξ is given by:

(
Zτ/2 , Z1−τ/2

)
.

The generalised confidence interval for the quantile of the GPD, QGPD (p;α, ξ), can

be obtained via the following generalised pivotal quantity:

S = QGPD

(
p;A(µ;x), Z

)
. (3.14)

The population quantiles of S can be derived along the same line: replacing µ and Z in

(3.14) with µ and z, which are previously defined, to obtain the Monte Carlo samples

of S. Then the τ -th population quantile of S, denoted as Sτ , can be approximated

by the τ -th sample quantile of the generated sample. Hence, the (1−τ)% generalised

confidence interval of QGPD(p;α, ξ) is given by

(Sτ/2, S1−τ/2).

In the next section, we perform simulation tests to compare and analysis performance

of the NEW2 inference with performance of other methods, for both point estimation

and interval estimation.
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3.3 Simulation study

We conduct simulation experiments to compare parameter estimations from methods

mentioned in previous sections. The data is generated from the GPD as follow: sam-

ple size n = {50, 30, 15}, scale parameter σ = 1 and shape parameter ξ ranged from

−1 to 1 by 0.05, respectively; for each case there are 5000 replicates. Since the scope

of the study is for small sample sizes, the MLE method is omitted from tests due to

the fact that it has been proved inefficient when sample size is small, as stated in

previous section. Totally six methods are considered for point estimations, including

MOM, PWM, EPM, LME, ZS, which have all been introduced in Section 3.1, and

the new method we proposed (NEW2). MOM and PWM are listed as benchmarking

methods, and the POT package (Ribatet, 2011) in the statistical programming lan-

guage R is used for parameter and quantile estimation. For the EPM, the sampling

scheme 3 in Sec. 2.2 of Castillo and Hadi (1997) is applied to eliminate non-feasible

solution. And for the LME method, since we assume no preliminary estimation or

information of the data is available and it is only fair to all tested models, we set

r = −1/2 as recommended by Zhang (2007) for all cases. Results are then used for

quantile estimations for different quantile levels.

We also tested the confidence interval estimation procedure proposed in this chapter

and it is compared with several other models. Details and results are summarised in

Section 3.3.3.

3.3.1 Parameter estimation

First we tested performance of different models for estimating the parameters. The

main purpose of this test is to examine the performance of different methods for the

GPD with different tail behaviours. Estimation bias and root mean square error are

calculated to assess performance of each method. To save space, instead of presenting

results for all cases, we select several cases with respect to different sample size and

ξ = {−1,−0.5,−0.25, 0.0.25, 0.5, 0.75, 1} in Table 3.1 and 3.2. Also, bias and RMSE

of σ̂ and ξ̂ from EPM, LME, ZS and NEW2 methods are plotted against ξ in Figure

3.1 and 3.2, respectively. Results from MOM and PWM are not included in figures

due to their poor performance under extreme heavy-tailed situations, also because

similar graphic evidence can be found in other papers, such as Zhang and Stephens

(2009), Fig. 1&2 and Hüsler et al. (2011), Fig. 2-5. The results can be summarised

as follows:

1. The NEW2 method is consistently unbiased when estimating σ and ξ, even for
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very small sample size n = 15, with reasonable RMSE. For example, among the

n = 15 cases, the NEW2 method’s estimation bias of ξ̂ range from -0.019 to

0.007, while the ZS method’s estimation bias of ξ̂ range from -0.109 to 0.155,

for −1 ≤ ξ ≤ 1.

2. For σ̂, the NEW2 estimator has the smallest RMSE for very heavy-tailed situ-

ations such as ξ = 0.75, 1; for ξ̂, the ZS estimator has the smallest RMSE for

almost all cases. The RMSEs of the NEW2 method do not stand out on top

every time, but the difference can be concluded as only marginal, and, at least,

it is generally better than moment based methods (MOM and PWM).

3. Overall, the RMSEs for both parameters of all tested methods gradually in-

crease as the GPD becomes more heavy-tailed (ξ > 0). On the other hand,

for methods other than NEW2, their estimation for both parameters become

more biased when true value of ξ departs from 0, especially when sample size

becomes smaller. This can be observed from Figure 3.1 and 3.2.

4. For the EPM method, the bias and the RMSE of the shape estimator ξ̂ in-

crease substantially as ξ increases. But overall it provides better estimations

than moment-based methods and confirms the conclusion in Castillo and Hadi

(1997).

We believe it is safe to draw conclusions that, for parameter estimations, the NEW2

method can be considered as the best, since it is the most consistent estimators

for small sample sizes and different tail behaviours, with overall smallest bias and

reasonable estimation error.
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Table 3.1: Bias and RMSE of σ̂

Bias RMSE

n ξ MOM PWM EPM LME ZS NEW2 MOM PWM EPM LME ZS NEW2

50

-1 0.024 0.015 0.010 0.012 -0.045 -0.008 0.242 0.232 0.178 0.171 0.152 0.183
-0.5 0.020 0.017 0.006 0.026 -0.031 0.002 0.217 0.226 0.194 0.187 0.178 0.194
-0.25 0.030 0.027 0.008 0.024 -0.020 -0.007 0.205 0.222 0.201 0.200 0.187 0.205
0 0.046 0.032 -0.001 0.033 -0.016 0.009 0.211 0.230 0.220 0.220 0.206 0.222
0.25 0.121 0.040 -0.014 0.048 -0.006 0.006 0.249 0.235 0.240 0.242 0.226 0.233
0.5 0.406 0.083 -0.018 0.056 0.016 0.009 0.812 0.264 0.268 0.267 0.248 0.255
0.75 1.305 0.182 -0.021 0.064 0.041 0.017 4.200 0.356 0.303 0.292 0.282 0.274
1 4.794 0.440 -0.021 0.079 0.065 0.029 25.755 0.920 0.326 0.323 0.304 0.301

30

-1 0.060 0.042 0.032 0.028 -0.058 0.003 0.346 0.318 0.242 0.227 0.200 0.239
-0.5 0.050 0.045 0.029 0.042 -0.037 0.006 0.291 0.298 0.254 0.252 0.223 0.254
-0.25 0.045 0.039 0.016 0.058 -0.035 0.002 0.277 0.295 0.272 0.275 0.246 0.270
0 0.076 0.054 0.014 0.069 -0.017 0.014 0.285 0.306 0.296 0.301 0.270 0.292
0.25 0.171 0.074 0.005 0.075 0.002 0.015 0.339 0.319 0.320 0.328 0.295 0.312
0.5 0.462 0.124 -0.001 0.089 0.029 0.030 0.856 0.357 0.350 0.361 0.331 0.337
0.75 1.471 0.261 0.003 0.108 0.066 0.032 8.929 0.614 0.384 0.394 0.364 0.365
1 6.173 0.633 -0.001 0.129 0.091 0.042 65.418 3.127 0.431 0.442 0.415 0.402

15

-1 0.103 0.057 0.061 0.082 -0.107 0.006 0.543 0.451 0.366 0.348 0.290 0.352
-0.5 0.098 0.079 0.070 0.101 -0.070 0.004 0.480 0.458 0.406 0.397 0.324 0.378
-0.25 0.088 0.072 0.054 0.127 -0.059 0.014 0.429 0.440 0.420 0.431 0.346 0.395
0 0.145 0.107 0.069 0.142 -0.017 0.023 0.456 0.473 0.467 0.479 0.386 0.429
0.25 0.266 0.147 0.066 0.171 0.018 0.041 0.522 0.490 0.492 0.534 0.423 0.463
0.5 0.567 0.223 0.071 0.192 0.058 0.035 1.129 0.564 0.545 0.570 0.479 0.489
0.75 1.476 0.400 0.069 0.238 0.102 0.064 4.677 0.836 0.609 0.664 0.547 0.553
1 5.270 0.948 0.104 0.267 0.181 0.070 46.190 4.448 0.708 0.745 0.646 0.602
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Table 3.2: Bias and RMSE of ξ̂

Bias RMSE

n ξ MOM PWM EPM LME ZS NEW2 MOM PWM EPM LME ZS NEW2

50

-1 -0.031 -0.013 -0.007 -0.015 0.057 0.014 0.332 0.315 0.192 0.188 0.167 0.209
-0.5 -0.019 -0.015 0.011 -0.029 0.033 0.005 0.201 0.222 0.153 0.150 0.144 0.166
-0.25 -0.027 -0.022 0.024 -0.027 0.024 0.011 0.157 0.186 0.156 0.152 0.143 0.166
0 -0.045 -0.031 0.052 -0.029 0.019 0.000 0.145 0.171 0.191 0.165 0.157 0.177
0.25 -0.103 -0.046 0.083 -0.039 0.009 -0.003 0.168 0.173 0.255 0.189 0.181 0.196
0.5 -0.223 -0.089 0.118 -0.044 -0.007 0.008 0.253 0.202 0.340 0.223 0.210 0.224
0.75 -0.392 -0.173 0.153 -0.046 -0.027 0.003 0.404 0.247 0.420 0.255 0.241 0.254
1 -0.594 -0.297 0.189 -0.057 -0.039 -0.004 0.599 0.336 0.503 0.295 0.277 0.290

30

-1 -0.077 -0.043 -0.028 -0.038 0.077 0.001 0.475 0.429 0.270 0.255 0.229 0.278
-0.5 -0.047 -0.040 0.003 -0.048 0.044 0.002 0.271 0.290 0.211 0.211 0.191 0.226
-0.25 -0.041 -0.034 0.036 -0.062 0.042 0.005 0.215 0.249 0.223 0.217 0.199 0.225
0 -0.079 -0.057 0.053 -0.063 0.018 -0.003 0.203 0.233 0.261 0.228 0.217 0.239
0.25 -0.144 -0.077 0.098 -0.066 0.007 0.001 0.224 0.235 0.328 0.259 0.241 0.258
0.5 -0.266 -0.128 0.137 -0.068 -0.012 -0.005 0.303 0.250 0.406 0.298 0.271 0.295
0.75 -0.434 -0.220 0.176 -0.081 -0.038 -0.011 0.450 0.303 0.498 0.334 0.305 0.336
1 -0.634 -0.353 0.214 -0.090 -0.060 -0.001 0.642 0.404 0.609 0.383 0.350 0.377

15

-1 -0.133 -0.052 -0.053 -0.116 0.155 -0.001 0.742 0.601 0.436 0.408 0.370 0.431
-0.5 -0.104 -0.078 -0.017 -0.119 0.084 0.007 0.461 0.448 0.374 0.357 0.317 0.372
-0.25 -0.092 -0.071 0.034 -0.137 0.072 -0.001 0.349 0.375 0.374 0.355 0.316 0.361
0 -0.144 -0.106 0.057 -0.138 0.028 0.000 0.321 0.350 0.415 0.371 0.328 0.377
0.25 -0.230 -0.150 0.104 -0.144 -0.001 -0.012 0.342 0.354 0.483 0.412 0.361 0.402
0.5 -0.362 -0.226 0.137 -0.148 -0.040 -0.003 0.424 0.381 0.562 0.436 0.391 0.433
0.75 -0.519 -0.320 0.209 -0.182 -0.063 -0.019 0.551 0.430 0.678 0.500 0.435 0.498
1 -0.715 -0.463 0.251 -0.177 -0.109 0.001 0.733 0.536 0.806 0.557 0.492 0.555
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Figure 3.1: Bias and RMSE of the scale estimator σ̂ plotted against ξ (from -1 to 1).
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3.3.2 Quantile estimation

In practice, it is of interest to assess quantiles of the GPD. Thus we proceed to

analyse performances of different methods for quantile estimations using the same

simulation data and results as in Section 3.3.1. We also notice that, in previous

literature it is often assumed that, in general, parameter estimations and quantile es-

timations based on the same approach should perform consistently. However through

simulation tests we show that this statement is arguably vague. For all tested ap-

proaches, performance of quantile estimations are poor for extreme upper quantiles

of heavy-tailed GPD. In order to compare the results under various quantile level

(p = 0.5, 0.75, 0.9) and shape parameter (ξ = {−1,−0.5,−0.25, 0.0.25, 0.5, 0.75, 1}),
percentage-bias and percentage-RMSE for different methods are given in Table 3.3 to

3.5. The percentage-bias and percentage-RMSE are defined as the ratio of estimation
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Figure 3.2: Bias and RMSE of the shape estimator ξ̂ plotted against ξ (from -1 to 1).
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bias and RMSE over the theoretical quantile value, respectively:

Percentage-Bias =
Bias[Q̂(p; σ̂, ξ̂)]

Q(p;σ, ξ)
,

Percentage-RMSE =
RMSE[Q̂(p; σ̂, ξ̂)]

Q(p;σ, ξ)
.

We also plot the percentage-bias and percentage-RMSE of 0.5, 0.75 and 0.9 quantile

for EPM, LME, ZS and NEW2 methods against the value of ξ in Figure 3.3 (n =

30). Figures for 95% quantile and other sample sizes are not included since similar

conclusions can be drawn.

The simulation tests above show that the results are more sophisticated when it

comes to quantile estimates. Nonetheless, tested estimators share some of the prop-

erties as they have displayed in parameter estimations. Firstly, the percentage-bias

and percentage-RMSE for tested estimators increases when the value of ξ increases.

Secondly, MOM and PWM estimators have large percentage-bias and percentage-
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RMSE for large value of ξ such as 0.75 and 1. Thirdly, in general, bias and RMSE

of all estimators increase when sample size decreases.

On the other hand, the properties in quantile estimation that are different from

parameter estimation are summarised as follows:

1. For the three tested quantiles, all tested methods tend to overestimate for

extreme heavy-tailed GPD, especially when ξ → 1, despite different patterns

of bias shown in parameter estimation.

2. As shown in Figure 3.3, generally the EPM estimator has significantly larger

percentage-bias and percentage-RMSE compared to others, especially for p =

0.75 and 0.9. For some cases it is even worse than MOM and PWM estimates.

Unfortunately, we are unable to compare our results with Castillo and Hadi

(1997) since there is no similar data presented.

3. For 0.5 and 0.75 quantiles, he proposed NEW2 estimators generally have the

best performance, in terms of consistently small bias and RMSE. However, its

estimating bias and error are obviously higher than LME and ZS methods as

ξ → 1 under the 0.9 quantile case. On the other hand, performance of LME and

ZS’ 0.9 quantile estimators also dropped significantly, as their percentage-bias

and percentage-RMSE almost doubled from the 0.75 quantile cases.
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Table 3.3: Percentage-bias and Percentage-RMSE of estimating Q(0.5; 1, ξ)

Percentage-bias Percentage-RMSE

n ξ MOM PWM EPM LME ZS NEW2 MOM PWM EPM LME ZS NEW2

50

-1 -0.001 -0.004 0.000 0.000 -0.034 -0.012 0.133 0.132 0.118 0.113 0.107 0.121
-0.5 0.004 0.001 0.003 0.010 -0.027 -0.005 0.151 0.155 0.147 0.139 0.138 0.145
-0.25 0.014 0.011 0.010 0.008 -0.018 -0.011 0.157 0.165 0.161 0.156 0.151 0.161
0 0.025 0.013 0.009 0.016 -0.016 0.001 0.173 0.182 0.182 0.177 0.171 0.177
0.25 0.078 0.017 0.007 0.027 -0.009 -0.002 0.209 0.196 0.200 0.198 0.191 0.192
0.5 0.303 0.044 0.014 0.031 0.007 0.004 0.764 0.220 0.219 0.218 0.211 0.216
0.75 1.020 0.107 0.022 0.038 0.023 0.010 3.771 0.303 0.246 0.241 0.240 0.234
1 3.720 0.294 0.034 0.046 0.043 0.019 21.219 0.852 0.264 0.269 0.262 0.259

30

-1 0.007 0.003 0.009 0.004 -0.045 -0.011 0.171 0.170 0.153 0.146 0.140 0.154
-0.5 0.017 0.013 0.018 0.014 -0.033 -0.007 0.192 0.196 0.187 0.183 0.171 0.186
-0.25 0.018 0.012 0.015 0.024 -0.032 -0.010 0.205 0.213 0.211 0.207 0.196 0.208
0 0.038 0.020 0.019 0.034 -0.021 -0.001 0.224 0.234 0.237 0.233 0.220 0.231
0.25 0.109 0.035 0.025 0.038 -0.006 0.002 0.280 0.257 0.264 0.260 0.247 0.255
0.5 0.335 0.066 0.032 0.049 0.012 0.014 0.785 0.297 0.295 0.287 0.281 0.279
0.75 1.146 0.162 0.049 0.062 0.040 0.013 8.062 0.586 0.326 0.320 0.311 0.305
1 4.823 0.452 0.055 0.076 0.056 0.026 53.844 3.069 0.367 0.358 0.359 0.343

15

-1 0.001 -0.007 0.012 0.018 -0.084 -0.026 0.230 0.230 0.215 0.206 0.204 0.219
-0.5 0.022 0.013 0.032 0.032 -0.066 -0.025 0.275 0.278 0.274 0.266 0.246 0.264
-0.25 0.029 0.016 0.034 0.050 -0.059 -0.017 0.290 0.299 0.304 0.301 0.271 0.289
0 0.070 0.041 0.056 0.063 -0.030 -0.007 0.327 0.336 0.349 0.345 0.306 0.327
0.25 0.161 0.068 0.069 0.084 -0.005 0.007 0.411 0.371 0.387 0.394 0.345 0.362
0.5 0.385 0.114 0.085 0.104 0.019 0.003 1.014 0.443 0.440 0.440 0.395 0.392
0.75 1.097 0.246 0.108 0.127 0.056 0.023 4.146 0.741 0.515 0.499 0.466 0.445
1 4.008 0.685 0.157 0.154 0.114 0.035 37.769 4.311 0.601 0.574 0.549 0.490
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Table 3.4: Percentage-bias and Percentage-RMSE of estimating Q(0.75; 1, ξ)

Percentage-bias Percentage-RMSE

n ξ MOM PWM EPM LME ZS NEW2 MOM PWM EPM LME ZS NEW2

50

-1 -0.009 -0.008 -0.004 -0.005 -0.023 -0.011 0.073 0.074 0.076 0.072 0.072 0.076
-0.5 -0.005 -0.006 0.003 -0.001 -0.020 -0.006 0.107 0.108 0.111 0.104 0.106 0.107
-0.25 0.003 0.000 0.015 -0.003 -0.013 -0.011 0.125 0.126 0.132 0.124 0.123 0.127
0 0.007 0.000 0.026 0.003 -0.011 -0.002 0.150 0.152 0.164 0.150 0.149 0.147
0.25 0.038 -0.001 0.041 0.011 -0.007 -0.005 0.190 0.176 0.200 0.177 0.174 0.172
0.5 0.202 0.008 0.073 0.014 0.005 0.009 0.731 0.207 0.256 0.202 0.204 0.208
0.75 0.744 0.033 0.112 0.021 0.015 0.016 3.345 0.289 0.340 0.238 0.241 0.241
1 2.730 0.149 0.167 0.028 0.034 0.026 16.967 0.811 0.441 0.283 0.281 0.282

30

-1 -0.010 -0.008 -0.001 -0.008 -0.031 -0.015 0.093 0.094 0.095 0.093 0.093 0.096
-0.5 -0.001 -0.003 0.013 -0.004 -0.025 -0.012 0.133 0.134 0.138 0.135 0.131 0.136
-0.25 0.001 -0.004 0.022 0.000 -0.023 -0.014 0.161 0.163 0.170 0.163 0.159 0.163
0 0.008 -0.003 0.035 0.008 -0.019 -0.006 0.190 0.193 0.208 0.192 0.188 0.191
0.25 0.054 0.004 0.066 0.011 -0.005 0.000 0.253 0.229 0.263 0.227 0.227 0.229
0.5 0.215 0.016 0.103 0.023 0.009 0.014 0.738 0.277 0.344 0.267 0.271 0.268
0.75 0.837 0.069 0.162 0.034 0.031 0.015 7.188 0.606 0.459 0.316 0.317 0.314
1 3.588 0.277 0.226 0.047 0.043 0.041 43.018 3.019 0.643 0.371 0.386 0.380

15

-1 -0.023 -0.019 -0.005 -0.013 -0.056 -0.033 0.130 0.134 0.129 0.128 0.136 0.138
-0.5 -0.014 -0.017 0.017 -0.010 -0.052 -0.034 0.187 0.190 0.192 0.190 0.186 0.188
-0.25 -0.007 -0.015 0.036 -0.002 -0.045 -0.027 0.223 0.227 0.236 0.226 0.220 0.221
0 0.016 -0.003 0.071 0.007 -0.028 -0.016 0.268 0.269 0.299 0.275 0.261 0.267
0.25 0.072 0.009 0.115 0.026 -0.009 -0.002 0.361 0.320 0.382 0.332 0.315 0.319
0.5 0.223 0.025 0.168 0.047 0.006 0.004 0.944 0.402 0.515 0.401 0.382 0.373
0.75 0.753 0.111 0.275 0.059 0.043 0.030 3.633 0.720 0.761 0.468 0.487 0.465
1 2.881 0.445 0.433 0.098 0.095 0.067 29.957 4.182 1.172 0.586 0.615 0.562
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Table 3.5: Percentage-bias and Percentage-RMSE of estimating Q(0.9; 1, ξ)

Percentage-bias Percentage-RMSE

n ξ MOM PWM EPM LME ZS NEW2 MOM PWM EPM LME ZS NEW2

50

-1 -0.006 -0.003 -0.004 -0.007 -0.010 -0.006 0.053 0.052 0.040 0.039 0.040 0.039
-0.5 -0.008 -0.007 0.007 -0.010 -0.010 -0.004 0.081 0.084 0.081 0.076 0.077 0.076
-0.25 -0.006 -0.006 0.025 -0.013 -0.003 -0.005 0.107 0.109 0.118 0.105 0.105 0.106
0 -0.011 -0.011 0.058 -0.007 0.000 0.002 0.144 0.144 0.187 0.144 0.146 0.143
0.25 -0.009 -0.018 0.111 -0.001 0.005 0.003 0.198 0.188 0.307 0.196 0.197 0.196
0.5 0.075 -0.031 0.220 0.005 0.018 0.033 0.711 0.241 0.600 0.253 0.261 0.278
0.75 0.408 -0.057 0.379 0.022 0.025 0.052 2.809 0.334 1.069 0.337 0.337 0.360
1 1.621 -0.033 0.626 0.038 0.055 0.077 12.110 0.800 1.856 0.447 0.444 0.465

30

-1 -0.009 -0.003 -0.004 -0.013 -0.013 -0.010 0.070 0.069 0.049 0.052 0.051 0.051
-0.5 -0.011 -0.009 0.015 -0.018 -0.010 -0.010 0.103 0.106 0.101 0.100 0.097 0.099
-0.25 -0.012 -0.012 0.040 -0.021 -0.005 -0.009 0.138 0.141 0.154 0.139 0.136 0.138
0 -0.022 -0.023 0.074 -0.014 -0.005 -0.001 0.184 0.184 0.241 0.184 0.188 0.188
0.25 -0.010 -0.024 0.163 -0.009 0.013 0.017 0.259 0.243 0.419 0.249 0.262 0.266
0.5 0.067 -0.040 0.300 0.014 0.029 0.043 0.708 0.311 0.823 0.346 0.350 0.363
0.75 0.465 -0.041 0.553 0.034 0.054 0.067 6.066 0.695 1.918 0.462 0.458 0.498
1 2.210 0.066 1.019 0.071 0.078 0.137 30.676 2.963 4.642 0.628 0.609 0.702

15

-1 -0.016 -0.005 -0.005 -0.027 -0.017 -0.022 0.102 0.100 0.069 0.081 0.076 0.081
-0.5 -0.030 -0.025 0.021 -0.040 -0.020 -0.023 0.152 0.155 0.146 0.146 0.144 0.142
-0.25 -0.031 -0.030 0.064 -0.044 -0.010 -0.016 0.197 0.200 0.227 0.195 0.199 0.196
0 -0.035 -0.036 0.136 -0.037 0.001 0.004 0.257 0.257 0.379 0.264 0.273 0.276
0.25 -0.024 -0.044 0.272 -0.013 0.025 0.032 0.360 0.332 0.686 0.368 0.385 0.395
0.5 0.037 -0.067 0.499 0.021 0.039 0.072 0.897 0.441 1.619 0.512 0.516 0.549
0.75 0.357 -0.038 1.067 0.045 0.106 0.154 3.004 0.777 3.848 0.685 0.777 0.896
1 1.657 0.172 2.388 0.160 0.192 0.301 21.138 4.019 14.784 1.141 1.191 1.328
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Figure 3.3: Percentage-bias and percentage-RMSE of estimating Q(p; 1, ξ), plotted against ξ, for
different value of p = 0.5, 0.75, 0.9, respectively; sample size n = 30.
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To further explore the performance losses when estimating higher upper quantiles of

the GPD, we consider following subsequent tests.

Hosking and Wallis (1987) show that, by Taylor expansion, Q(p) = σp(1 + 1
2(1 +

ξ)p + O(p2)), as p → 0, thus the accuracy of Q̂(p) for small p is mainly affected by

the accuracy of σ̂. For large p, the mechanic is rather unclear. Hence, we proceed by

examining upper quantile estimations for heavy-tailed GPD with EPM, LME, ZS and

NEW2 methods. Models are tested for various values of p, ranging from 0.5 to 0.95

by 0.05, given sample size n = 30, and several fixed values of ξ = {0.25, 0.5, 0.75, 1}.
The percentage-bias and percentage-RMSE are plotted in Figure 3.4.

We would like to draw attentions to following facts from those figures:

1. The slope of estimation bias and error curves of all tested methods increases

steeply when p value is close to 1. This implies performance of higher upper

quantile estimates is dominated by the largest data points in the sample.

2. The performance loss of the NEW2 method is heavier than LME and ZS when

estimating extreme quantiles of the GPD.

3. However, when estimating less extreme quantiles (as p ≤ 0.8), the NEW2
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Figure 3.4: Percentage-bias and percentage-RMSE of estimating Q(p; 1, ξ), plotted against p (0.5 ≤
p ≤ 0.95), for heavy-tailed GPD with different values of ξ = 0.25, 0.5, 0.75, 1, respectively; sample
size n = 30.
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estimator generally outperform LME and ZS estimators, as the percentage-bias

and -RMSE are small and consistent.

Through the simulation tests we should note that, although the GPD is often used

with the POT method to assess extreme quantiles of the original distribution and it
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has been proved efficient, estimating extreme quantiles of the GPD per se should still

be avoided when possible. Recall that p = (Nn p
∗), where p∗ is the extreme probability

or quantile level of the original distribution FY that need to be assessed, and N is

the sample size of the original data. p∗ and N are often fixed with given information,

but value of p can still be adjusted, by changing the threshold value u (thus changing

n), to be more ‘optimal’. This is essentially the ‘bias-variance-tradeoff’ effect as in

the threshold selection problem: when p∗ and N are fixed, larger n leads to higher

p, thus larger overall bias; smaller n leads to lower p, but larger estimation variance.

Unfortunately, such problem is not the main scope of this chapter and should be

explored in future. Nonetheless, it can be concluded that, choosing a threshold that

leads to a moderate p value will benefit the overall performance of quantile estimation

of the GPD, and the NEW2 method we proposed has displayed promising properties

under this circumstance.

3.3.3 Confidence interval estimation

In practice, knowing the confidence interval of the estimators will also provide valu-

able information in modelling GPD. In this section we compare the performance of

different confidence interval methods, including: profile log-likelihood method based

on MLE estimates (Profile), asymptotic CI based on observed Fisher information of

PWM and LME methods, respectively, and the generalised CI of NEW2 method. We

also consider two bootstrap methods, the percentile bootstrap confidence intervals

and the bias-corrected and accelerated confidence intervals. Details of both bootstrap

methods can be found in Efron and Tibshirani (1986), and see Tajvidi (2003) for a

more spesific study of bootstrap CI for heavy-tailed GPD.

We mainly focus on CI of quantile estimation of the GPD, which include 90% and 95%

CI of Q(p), where p = {0.75, 0.9}, respectively. CI for Q̂(0.5) is not reported because

similar conclusions can be drawn from the results. Random samples of differenct

sizes (n = 50, 30) were generated from σ = 1 and different values of shape parameter

ξ = {−0.25, 0.25, 0.5, 0.75}, with 1000 replicates. For the NEW2 estimates, Θ(τ) was

calculated based on 2000 Monte Carlo random samples; the bootstrap methods were

calculated based on 1000 bootstrap samples. For each method, the average interval

length and coverage probability was summarised in Table 3.6 and 3.7. It is worth to

mention that CI estimations for sample size n = 15 are not reported, due to tested

methods are all failed to provide reliable results in terms of coverage probability or

average interval length.

Same rule applies for assessing interval estimations as in point estimations of the
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GPD, namely, the CI should be consistently reliable for different tail behaviours (dif-

ferent ξ values). Also, ideally a good CI estimation should have coverage probability

(CP) close to the nominal 1− τ confidence level, but as little above 1− τ as possible

(Newcombe, 1998), combining with a reasonable interval length. In general, average

length of CI of all tested method increase as sample size decreases.

Table 3.6 presents results for the less-extreme 75% quantile of the GPD. Overall, the

generalised CIs provided by NEW2 method have the best performance in combination

of CP and average length. The CP based on PWM estimates is always lower than

the nominal level, decreasing as value of ξ increases. On the contrary, The CP based

on LME estimates is obviously much higher than the nominal level, also decreasing

as value of ξ increases. CIs based on profile log-likelihood and NEW2 method have

CP close to the nominal level for different values of ξ, but the NEW2 estimates are

slightly better. Furthermore, if the ‘as little above 1− τ as possible’ rule is applied,

the NEW2 method is preferred.

For Q̂(0.75), bootstrap methods (PERC and BCa) have CP close to the nominal level

in most situation, however, their interval length are very misleading when the GPD

is extremely heavy-tailed, such as ξ = 0.5, 0.75. Extremely large average interval

length (> 1× 105) have been observed for both bootstrap methods, as denoted with

‘***’ signs in tables. For small sample sizes and extremely heavy-tailed distributions,

estimations from naive bootstrap methods are dominated by the largest sample point

(or several extremely large sample points), and may not converge. For more detailed

analysis of naive bootstrap may fail in heavy-tailed cases, please refer to Athreya

(1987) and Hall (1990). Such extremely wide confidence intervals have basically no

practical uses.

For higher quantiles Q̂(0.9), CP of profile log-likelihood and PWM CIs drop signifi-

cantly as the tail of the GPD goes heavier. The interval based on LME is obviously

overestimated, with extreme cases that CP=1 when ξ = −0.25. The NEW2 method

still has CP close to the nominal level within ±0.03 differences for all cases. The

bootstrap methods have the same convergence problem for heavy-tailed GPD, as

shown in previous case, and their CPs are significantly below the nominal level. One

the other hand, the average interval lengths of the NEW2 method are also large for

extremely heavy-tailed situations (such as for ξ = 0.75 the average length of NEW2

CI is 26.35, while the true value of Q(0.9; 1, 0.75) ≈ 6.165), but still much less extreme

than bootstrap methods, and with coverage probability close to the nominal level.

We should mention that, under extremely heay-tailed situations, for n = 15 (which

is not reported here), the interval length problem of NEW2 CI estimations is more

serious, which could render the estimation results useless. However, all other tested
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results have either very poor CP or very poor interval length as well. Nonetheless,

for n = 50 and 30, the confidence interval estimations based on the NEW2 method

obviously outperform other tested methods, and it is contently reliable for different

tail behaviours.
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Table 3.6: Average length and coverage probability (in parentheses) of confidence interval of estimating Q(0.75; 1, ξ)

90% CI 95% CI

n ξ Profile PWM LME NEW2 PERC BCa Profile PWM LME NEW2 PERC BCa

50

-0.25
0.474 0.482 1.066 0.505 0.521 0.527 0.566 0.574 1.263 0.603 0.623 0.631

(0.893) (0.897) (0.997) (0.904) (0.886) (0.894) (0.922) (0.926) (0.997) (0.95) (0.947) (0.951)

0.25
0.961 0.926 1.703 1.016 0.963 0.982 1.170 1.110 2.038 1.235 1.165 1.193

(0.881) (0.868) (0.989) (0.89) (0.894) (0.891) (0.937) (0.924) (0.996) (0.947) (0.945) (0.953)

0.5
1.373 1.212 2.228 1.451 1.371 1.414 1.712 1.457 2.700 1.804 *** ***

(0.883) (0.859) (0.98) (0.897) (0.896) (0.894) (0.93) (0.905) (0.986) (0.938) (0.943) (0.948)

1
2.030 1.644 3.054 2.154 *** *** 2.490 1.864 3.621 2.633 *** ***

(0.885) (0.788) (0.97) (0.896) (0.908) (0.901) (0.942) (0.869) (0.987) (0.943) (0.929) (0.931)

30

-0.25
0.612 0.611 1.365 0.660 0.697 0.702 0.730 0.729 1.632 0.793 0.836 0.844

(0.868) (0.874) (0.998) (0.913) (0.909) (0.897) (0.935) (0.933) (0.999) (0.957) (0.948) (0.943)

0.25
1.245 1.169 2.184 1.371 1.303 1.348 1.569 1.410 2.644 1.732 1.576 1.640

(0.889) (0.884) (0.984) (0.918) (0.898) (0.896) (0.933) (0.919) (0.99) (0.948) (0.949) (0.950)

0.5
1.849 1.538 2.901 2.031 1.816 1.908 2.292 1.756 3.405 2.531 2.171 2.310

(0.900) (0.861) (0.980) (0.917) (0.890) (0.886) (0.947) (0.885) (0.986) (0.958) (0.941) (0.932)

0.75 2.796 1.842 3.989 3.107 *** *** 3.400 2.292 4.718 3.911 *** ***
(0.901) (0.774) (0.967) (0.908) (0.86) (0.853) (0.953) (0.836) (0.982) (0.955) (0.935) (0.930)

*** denotes value larger than 1 × 105
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Table 3.7: Average length and coverage probability (in parentheses) of confidence intervals of estimating Q(0.9; 1, ξ)

90% CI 95% CI

n ξ Profile PWM LME NEW2 PERC BCa Profile PWM LME NEW2 PERC BCa

50

-0.25
0.594 0.616 1.920 0.713 0.572 0.582 0.723 0.736 2.283 0.897 0.684 0.699

(0.864) (0.866) (1.000) (0.897) (0.858) (0.878) (0.913) (0.913) (1.000) (0.952) (0.916) (0.923)

0.25
2.243 1.976 3.869 2.539 1.841 2.011 2.810 2.368 4.567 3.174 2.190 2.466

(0.876) (0.845) (0.994) (0.898) (0.84) (0.843) (0.936) (0.897) (0.998) (0.953) (0.885) (0.899)

0.5
3.643 3.413 5.881 4.700 3.601 4.202 4.416 4.377 7.153 6.431 4.121 5.027

(0.902) (0.787) (0.973) (0.877) (0.846) (0.863) (0.938) (0.849) (0.986) (0.942) (0.886) (0.917)

0.75
4.587 4.898 9.720 9.525 *** *** 5.011 6.011 11.350 12.355 *** ***

(0.847) (0.613) (0.947) (0.881) (0.842) (0.849) (0.833) (0.663) (0.957) (0.943) (0.882) (0.901)

30

-0.25
0.764 0.780 2.430 1.031 0.708 0.718 0.989 0.937 2.927 1.389 0.855 0.872

(0.849) (0.842) (0.998) (0.900) (0.823) (0.841) (0.905) (0.897) (1.000) (0.946) (0.881) (0.889)

0.25
3.011 2.489 5.003 3.950 2.330 2.642 3.662 2.917 5.848 5.271 2.701 3.140

(0.874) (0.821) (0.982) (0.892) (0.81) (0.827) (0.93) (0.868) (0.991) (0.944) (0.833) (0.865)

0.5
4.151 4.271 7.792 8.143 24.477 2352.063 4.730 4.706 9.244 11.586 5.660 7.650

(0.862) (0.743) (0.957) (0.903) (0.82) (0.838) (0.911) (0.820) (0.972) (0.956) (0.862) (0.876)

0.75 4.725 5.873 13.305 18.083 84.915 *** 5.328 7.032 15.706 26.350 16.986 93.397
(0.710) (0.610) (0.919) (0.869) (0.772) (0.811) (0.784) (0.700) (0.954) (0.947) (0.851) (0.88)

*** denotes value larger than 1 × 105
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3.4 Example

We assess a dataset that is given by Castillo and Hadi (1997), Table 3, and has

also been examined by Zhang and Stephens (2009). The dataset is zero-crossing

hourly mean periods (in seconds) of the sea waves measured in a Bilbao buoy, in

January 1997. Previous studies on this dataset suggested that, the fitted GPD tend

to have very negative shape parameters, with estimated ξ̂ range between (−0.6,−1.8),

depending on the method and threshold selected. Zhang and Stephens have already

carried out a detailed analysis about this dataset, including estimated parameters,

Q-Q plots and goodness-of-fit test, with consideration of different thresholds ranging

from 7.0 to 9.5. Since small sample size is the major concern in this chapter, we only

compare different methods with threshold u = 9.0 and 9.5, which have 41 and 17

samples, respectively. Parameter estimates of the NEW2 method for this data is:

u = 9.0 : σ̂ ≈ 0.824, ξ̂ ≈ −0.877;

u = 9.5 : σ̂ ≈ 0.502, ξ̂ ≈ −1.243,

which are close to results of ZS estimates, as shown in Zhang and Stephens, Table 3.

We also calculated the 90% and 95% confidence band of quantile estimations using

threshold u = 9.0 and 9.5 with different methods. However, for both threshold

values the MLE method does not converge, so the profile log-likelihood CI cannot be

obtained. Results from the asymptotic method based on PWM estimates and LME

estimates, and from the NEW2 inference for the two thresholds are plotted in Figure

3.5 and 3.6, respectively. The theoretical and empirical distribution function are also

plotted accordingly.

It is shown in the figures that, for the three methods (PWM, LME and NEW2), the

model fitting is adequate, except that the PWM method has slightly worse fitting

on the upper tail. The lines of CI estimation suggest that the asymptotic approach

based on LME estimates has too wide intervals towards the upper tail. It can be

observed on Figure 3.6 that, for u = 9.5, the lower bound of the 95% CI for Q̂(p)

based on LME goes to negative value as p increases, which is theoretically invalid,

as Q(p) of the GPD is strictly larger than 0 for p > 0. This, however, does illustrate

another drawback of the asymptotic CI approach which has not been shown in our

simulation tests since we did not test for ξ smaller than −0.25: the CI estimation

based on asymptotic normality assumptions may have its bound go beyond theoretical

domain of the estimator. The confidence bands for the asymptotic method based on

PWM and the exact inference of NEW2 have no significant difference, since for very
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Figure 3.5: Confidence intervals of quantiles estimated by different methods plotted against dif-
ferent quantile level p, with threshold u = 9.0.
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Connected-dots: empirical cumulative distribution; solid: estimated quantiles; inner-dash-line: 90%

CI; outer-dash-line: 95% CI

Figure 3.6: Confidence intervals of quantiles estimated by different methods plotted against dif-
ferent quantile level p, with threshold u = 9.5.
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negative values of ξ both methods should have accurate quantile estimations.
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3.5 Chapter Summary

In this chapter, we introduce a new method for point and interval estimations of

the GPD, specifically focusing on small sample cases. The numerical evidence has

shown that, the new method provides consistently reliable point estimates against the

varying tail behaviour of the GPD. At the same time it provides consistently accurate

confidence interval estimates in terms of coverage probability and with reasonable

average interval length, for sample size as small as n = 30. However, it should be

mentioned that the generalised confidence interval estimations described in Section

3.2.2 may be very computational extensive when the number of iterations of the

Monte Carlo simulation algorithm is large.

Furthermore, because of some statistical properties and the tail behaviour of the

GPD depend on the shape parameter ξ, some modelling methods may have better

performance than others for certain interval of ξ. However, in reality, it is not always

possible to choose the most ‘appropriate’ model, as one cannot always know for sure

what range does the value ξ fall into or what tail behaviour does the underlying dis-

tribution have. Thus, an estimation method that maintains good (not necessarily the

best) performance for most situations is certainly a very useful tool when modelling

the GPD. It is true that the new approach we proposed is not uniformly better than

any other methods, but it is certainly, for most circumstances that we have tested,

the most reliable one.



Chapter 4

Volatility forecast using

expected shortfall and expectile

This chapter studies a distribution free approach for forecasting financial volatility,

which could be interpreted as, essentially, the variance of financial returns. Classical

models of this approach use the interval between two symmetric extreme quantiles of

the return distribution as a proxy of volatility. Two new models are proposed, which

use intervals of expected shortfalls and expectiles, instead of interval of quantiles.

Different models are compared with empirical stock indices data.

4.1 Introduction

In finance, volatility is the term to describe the variation of the return process. It is

important because of its widely application in pricing, risk evaluating and decision

making. In recent decades, tremendous efforts have been devoted to produce more

thorough understanding and better forecasting of volatility. However, as volatility is

not directly observable, the true behaviour and mechanism behind it still remained

a mystery.

Empirical findings indicate that, in financial return series, volatility often shows a

clustering effect. A number of methods have been developed to capture the move-

ment of this time-varying variation. Popular methods such as the ARCH-GARCH

(autoregressive conditional heteroskedasticity and generalized autoregressive condi-

tional heteroskedasticity, Bollerslev, 1986, Bollerslev et al., 1992) class of models,

stochastic volatility models and option implied volatility models (see, for example,

Canina and Figlewski, 1993, Christensen and Prabhala, 1998, among others) often

64
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have distributional assumptions such that the models are associated with certain

distributions and its properties are usually fixed over time. This is a potential draw-

back as if these model specifications are not met, the performance and accuracy of

volatility forecast will suffer.

In this chapter we propose a new class of volatility models based on a distribution-

free standard deviation model originally introduced by Pearson and Tukey (1965).

They showed that, the ratio between a random variable’s standard deviation and the

interval between its two symmetric extreme quantiles is remarkably fixed, even for

random variables from various different distributions. Their model was not originally

designed for time-series but some extensions have been made. Taylor (2005) proposes

an alternative method that replaces the quantile estimates with the conditional au-

toregressive value at risk class of models introduced by Engle and Manganelli (2004).

They also employ the least square regression framework to replace the fixed value

of ratios in Pearson and Tuckey’s original model. However, there is a question re-

mains: is one single pair of quantiles enough to capture the behaviour of variation of

the data? This was lately followed by Huang (2012), who questioned the sufficiency

of information should be contained in one single pair of quantiles, and introduced

a new class of models that involves not only one pair of quantiles, but a series of

uniformly spaced quantiles that cover the entire distribution. Huang’s model is com-

putationally intensive and it is commonly known that quantiles away from the centre

of distribution contain more information about variation. In this chapter we pro-

pose a new approach that employs not the interval between symmetric quantiles or

multiple isolated quantiles, but the interval between symmetric expected shortfalls

and expectiles, which are risk measures/statistics focusing on information on the tail

of distribution, to forecast volatility. In the next section we briefly review previous

research of quantile based volatility forecast, including the developments of Taylor

and Huang’s models. In section 4.3 and section 4.4 we introduce new approaches

based on expected shortfall and expectile. In section 4.5 we show empirical findings

of the performance of different models applied to financial stock indices data. The

final section provides summaries and conclusion comments.

4.2 Literature review

In this chapter we focus on volatility estimates based on time-series methods. By

definition, volatility of a financial asset is the variance of its return distribution,

σ2t = var(rt), where rt = ln(St/St−1) is the log return at time t, and St is the price

of the underlying asset at time t. In finance, the residual term, εt, is defined as
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εt = rt − r̄, where r̄ is the mean return, is described as an impact of some sort of

‘shock’ or ‘news’. When assuming the average return is constant for a short period

m and there is no autocorrelation between successive price ‘shocks’, the realised

volatility (RV) is possibly the best estimation of variance, defined as

RVt =
1

m− 1

m∑
t=1

ε2t . (4.1)

The RV is especially effective for high-frequency data (see Barndorff-Nielsen, 2002,

Andersen et al., 2003), for example, calculating the daily volatility using intra-day

returns. In this chapter we use the RV as a benchmark in accessing performance of

different volatility forecasting models.

The generalized autoregressive conditional heteroskedasticity (GARCH) class models

(see Engle, 1982, Bollerslev, 1986 and Taylor, 2008b) are the most popular statistical

volatility forecast models. The general GARCH model interprets volatility as a linear

function of lagged time-varying components such as squared residual term and past

conditional variance. For example, standard GARCH(1,1) model is showed as follow:

σ2t = α+ β1ε
2
t + β2σ

2
t−1,

where α, β1 and β2 are parameters. Empirical findings have shown that generally

β1 ≈ 1 − β2. If we force β1 = 1 − β2, then the GARCH(1,1) model transforms into

the integrated GARCH (iGARCH) model (Nelson, 1990).

Furthermore,the price of financial assets often receive impact of different scale from

negative and positive shocks, respectively. Glosten et al. (1993) introduce the gjr-

GARCH model to cope with this asymmetric effects. The gjr-GARCH(1,1) model is

given by the following expression:

σ2t = α+ (1− I[εt−1 > 0])β1ε
2
t−1 + I[εt−1 > 0]β2ε

2
t−1 + β3σ

2
t−1,

where α, β1, β2 and β3 are parameters. The indicator function I[εt−1 > 0] represents

either a positive (value equals to 1) or a negative (value equals to 0) shock. The gjr-

GARCH is good at capturing the so-called leverage effect, which is the empirically

observed fact that negative ‘shocks’ usually have a stronger impact on the volatility.

However, simple volatility models such as exponentially weighted moving average

mode sometimes out-perform GARCH models, especially in specific markets (see

Tse, 1991 and Kuen and Hoong, 1992 as examples). For a review of comparison

among different models, including EWMA, GARCH(1,1) and gjr-GARCH, please
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refer to Brailsford and Faff (1996).

In the following two sections, we will focusing on introducing the quantile based

model pioneered by Pearson and Tukey (1965) and later extended by Taylor (2005)

and Huang (2012).

4.2.1 Volatility estimation using two symmetric extreme quantiles

Pearson and Tukey (1965) proposed a measure of the standard deviation σ of a

distribution, which can be expressed directly as a proportion to the difference of the

two symmetric extreme quantiles, or in other words, the inter-quantile range, of that

distribution:

σ̃ =
Q̂(1− p)− Q̂(p)

C(p)
(4.2)

where p ∈ (0, 1) and Q̂(p) is the p-th population quantile, and the value of the

denominator C(p) depends on p. They found that for p = 0.01, 0.025, 0.05 the corre-

sponding values for C(p) are given by 4.65, 3.92 and 3.25 respectively. These values

are actually calculated based on (Φ−1(1− p)−Φ−1(p)) with some adaptation, where

Φ−1 is the quantile function of the standard normal distribution. For a normal dis-

tribution, the denominator would be 4.653, 3.920 and 3.290, respectively. Obviously,

σ = (Q(1− p)−Q(p))/(Φ−1(1− p)−Φ−1(p)) if the random variable is normally dis-

tributed. Nonetheless, Pearson and Tukey showed that the estimation in (4.2) holds

for a number of different distributions. Thus it provides an approach of estimating

standard deviation without making any distributional assumptions.

The original model of Pearson and Tukey (1965) can be improved in several ways.

One way is to find the optimum value of the denominator C(p), given different p. For

example, Ally (2010) introduces a data-driven version of C(·), where it is estimated

using the empirical cumulative distribution function of the standardised data. They

indicated that accuracy of this model increases for large samples.

Also, the model in (4.2) can be extended to a regression type of model:

σ̂2 = α+ β
(
Q̂(1− p)− Q̂(p)

)2
Taylor (2005) has shown that, in many cases, parameters obtained from the quadratic

regression above are not significantly different from the values in the original model

of Pearson and Tukey (1965), e.g., α is close to zero and β is approximately close to

4.65, 3.92 and 3.25 corresponding to p = 0.01, 0.025, 0.05, respectively.
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4.2.2 Volatility forecasting based on quantile regression

Taylor (2005) proposes an alternative way of volatility estimation based on Pear-

son and Tukey’s model. They replaced the estimated population quantile Q̂(p) with

the value at risk (VaR). The 100p% VaR is defined as the threshold value of loss

at probability level p. In this chapter, we simply define VaR as the p-th quantile,

VaR(p) = Q(p). Engle and Manganelli (2004) introduce a type of conditional au-

toregressive VaR models that uses quantile regression, which also does not require

assumptions of the distribution. Specifically, they present the following four CAViaR

models:

• Indirect GARCH:

Qt(p) = (β1 + β2Q
2
t−1(p) + β3r

2
t−1)

1/2,

• Adaptive:

Qt(p) = Qt−1(p) + β([1 + exp(G[rt−1 −Qt−1(p)])]−1 − p),

• Symmetric absolute value:

Qt(p) = β1 + β2Qt−1(p) + β3|rt−1|,

• Asymmetric slope:

Qt(p) = β1 + β2Qt−1(p) + β3 max(rt−1, 0)− β4 min(rt−1, 0),

where Qt(p) is the p-th quantile at time t, βs are regression parameters, and rt is the

excess return at time t. G in the adaptive model is a constant, for example, G = 10

as suggested in Engle and Manganelli.

The first model corresponding to the situation where the underlying data is assumed

from a GARCH(1,1) model and has an independent and i.i.d. error distribution. The

second and third model treat both positive and negative past-return symmetrically,

while the fourth model allows different response coefficients on positive and negative

past-returns.

The parameters in the CAViaR models are obtained via quantile regression, which is

originally introduced by Koenker and Bassett (1978). The population 100p% quantile
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of a random variable y can be defined as the parameter m that minimises the function

E[|p− I[y < m]| |y −m|], (4.3)

where I[·] is indicator function. Straightforward, parameters β in CAViaR models

can be solved from the following minimisation problem:

min
β

∑
t

(p− I[yt < Qt(p)])(yt −Qt(p)). (4.4)

Then the 1-step ahead quantile forecast Q̂(p) can be obtained with CAViaR. Hence-

forth, the 1-step ahead volatility forecast can be produced by the following least

square (LS) regression:

σ̂2t+1 = α1 + β1

(
Q̂t+1(1− p)− Q̂t+1(p)

)2
. (4.5)

For multi-period variance forecast, e.g., a k-period time window starting from t + 1

to t+ k, the following LS regression is suggested by Taylor (2005):

σ̂2t+1,k = αk + βk

(
Q̂t+1(1− p)− Q̂t+1(p)

)2
, (4.6)

and the k-period RV is used as a proxy of the true volatility, σ2t+1,k.

In the original model of Pearson and Tukey (1965), three different values of p were

considered. However, the reason of why these specific values were used was not given.

Pearson and Tuckey showed that, among these values, the 90% interval (p = 0.05)

was most robust to different skewness and kurtosis of the data. But it is questionable

that these values are optimal, for example, why not using 91%, 94%, or 99% intervals?

Huang (2012) argues that, instead of using one single pair of extreme quantiles,

employing multiple quantiles that are uniformly spaced across the distribution (e.g.,

from 1% to 99%, by 1%) would reflect not only the tail behaviours but also the

whole pattern of the entire distribution. Under the same LS regression framework,

they propose a family of models:

σ̂2t+1 = α1 + β1

(
F (Q̂t+1(p))

)2
, (4.7)

where Q̂t+1(p) are also obtained via CAViaR models, but the function F (Q̂t+1(p))
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can be one of the following:

SD : F (·) =

(
1

m− 1

99∑
m=1

(Q(0.01m)− Q̄)2

)1/2

Weighted SD : F (·) =

(
99∑
m=1

w(Q(0.01m)− Q̄)2

)1/2

Median SD : F (·) =

(
1

m− 2

99∑
m=1

(Q(0.01m)−Q(0.5))2

)1/2

, (4.8)

where Q̄ is the mean of all these equally spaced quantiles, and Q(0.5) is the central

quantile, namely the median. w in the second model is a weight factor, w is set as

p/25 for p ≤ 0.5 and (1− p)/25 otherwise. Huang (2012) makes comments that for a

return distribution, the behaviour of either tails as well as the section between them

were driven by different forces, thus the approach considering multiple quantiles that

cover the whole distribution would lead to a better performance.

However, it is well-known that quantiles away from the centre of the distribution

contain more information about variation. In this chapter we propose new approaches

of volatility forecasts that consider information on the tails of distribution in the forms

of ’tail expectation’. Details are described in the next section.

4.3 Volatility forecast based on expected shortfall

In the previous section, the methods used for estimating and forecasting population

quantiles were actually a risk measure, value at risk (VaR). Hence, it is institutive

to think of another risk measure as the proxy of estimating variation: the expected

shortfall (ES). The 100p% expected shortfall is defined as the conditional tail expec-

tation that value of the negative log return rt exceeds VaR(p)

ESt(p) = E[rt|rt < VaRt(p)].

Amongst recent research (e.g., Acerbi and Tasche (2002a), Acerbi and Tasche (2002b)

and Tasche (2002)), the ES is considered as a better risk measure than the VaR.

We considered using ES to replace quantiles in the interval quantile based volatility

models for two reasons: first, the ES can be interpreted as the expectation of all more

extreme quantiles that exceed probability level p. Thus, generally, the ES explains

tail behaviours better than a single pair of quantiles. Secondly, risk measures are

essentially measurements of variation, and that makes the ES a potential candidates
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for volatility estimation as VaR is.

Note that similar to VaR, usually the ES is only defined on the ’loss’ side of the

return distribution. To avoid confusion with the conventional definition of ES, we

introduce following alternative measure:

υt(p) =

{
E[rt|rt < Qt(p)] if p is close to 0

E[rt|rt > Qt(p)] if p is close to 1
0 < p < 1. (4.9)

When p is close to 0, υt(p) is identical with the conventional ESt(p), represents the

conditional expectation of rt lower than Qt(p); when p is close to 1, υt(p) is defined

as a ‘mirror’ version of ES, represents the conditional expectation of rt higher than

Qt(p).

Henceforth, the 1-step ahead volatility forecast can be obtained via LS regression:

σ̂2t+1 = α1 + β1 (υ̂t+1(1− p)− υ̂t+1(p))
2 , p ≤ 0.5 (4.10)

and corresponding k-period volatility forecast:

σ̂2t+k = αk + βk (υ̂t+1(1− p)− υ̂t+1(p))
2 , p ≤ 0.5 (4.11)

However, estimating the ES is not a trivial work. In this chapter, we use a relatively

simple way to estimate the ES (consequently the alternative measure υt(p)). The

expression in (4.9) is equivalent to the following integral form:

υt(p) =


1

p

∫ p

0
Qt(δ) dδ if p is close to 0

1

1− p

∫ 1

p
Qt(δ) dδ if p is close to 1,

and this integral form can be approximated via numerical integration methods. For

example, one can first produce a finite sets of integration points Q̂t(δj)s with the

CAViaR models described in previous sections, where 0 < δ1 < δ2 < ... < δj < p.

Then the integral approximation is produced as a weighted sum of all integration

points: ∫ p

0
Qt(δ) dδ ≈

j∑
i=1

ωiQ̂t(δi), (4.12)

where the value of weight ωi depends on the algorithm used.

In the empirical study (Sec. 4.5), we also use CAViaR models to calculate Q̂t(τi) in
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expression (4.12). And the midpoint rule was used for the numerical integration.

4.4 Volatility forecast based on expectile regression

In Section 4.2 we mentioned that the 100p% quantile of random variable y was defined

as the parameter m that minimises E [|p− I[y < m]||y −m|] (as in expression 4.3).

The expectile, as named by Newey and Powell (1987), is the solution of an asymmetric

least squares (ALS) regression with the absolute deviations term |y−m| replaced by

squared deviations (y −m)2. Thus the 100τ% expectile is defined as the parameter

m that minimises

E
[
|τ − I[y < m]|(y −m)2

]
. (4.13)

The expectile regression specification is the same as the quantile regression, namely

there is no assumption on the regression’s error term except that the error is inde-

pendent. On the other hand, the expectile regression has several different properties

compared with the quantile regression, such as the expression in (4.13) is differen-

tiable on the regression effects, while the quantile regression is not. Also, as for

p = 0.5 the quantile regression becomes median regression, for τ = 0.5 the expectile

regression becomes the mean regression. But what interests us most in the context

of estimating variance is that the calculation of population expectile uses more infor-

mation from the whole distribution than the quantile does (Newey and Powell, 1987).

As described by Sobotka and Kneib (2010), the expectile relies ‘on the distance of

observations from the regression predictor while quantiles only use the information

on whether an observation is above or below the predictor’. However, this could be

both an advantage and a drawback, as expectiles are then more sensitive to outliers

and extreme values but at the same time capture more information with respect to

deviation.

Analogue to the minimisation function of regression quantiles in (4.4), Taylor (2008a)

introduce the asymmetric least square regression as in (4.14) to estimate the condi-

tional model of expectile µt(τ).

min
µt(τ)

∑
t

|τ − I[yt < µt(τ)]|(yt − µt(τ))2. (4.14)

Taylor also introduce a set of conditional autoregressive expecile (CARE) models

which are similar to the CAViaR models. For example, the symmetric CARE model

is as follow:

µt(τ) = β1 + β2µt−1(τ) + β3|rt−1|,



4.5. Empirical study 73

where the regression parameters, βs, are solved via expression (4.14).

One important difference between conditional quantile and conditional expectile is

that, the expectiles are determined by tail expectations, while the quantiles are de-

termined by tail probabilities. Nonetheless, for variable y, its population expectile

and population quantile have a one-to-one mapping relation, such as Q(p) = µ(τ),

for some p and τ (for instance, see Efron, 1991). However, it is not necessary that

p = τ . As a matter of fact, p and τ are not equal for most cases.

It is intuitive that the expectiles can be used as proxies for volatility estimating.

One possible approach is that of using expression (4.5) but instead of using quantiles

estimated by CAViaR, using quantiles estimated by CARE, such as Q̂(p) = µ̂(τ).

However, some major drawbacks of this approach are: firstly, accurate mapping from

expectiles to quantiles throughout probability is required in order to produce accurate

volatility forecast. Secondly, as symmetric quantiles are employed, for a matching

pair of p and τ , there is no guarantee that Q(1 − p) = µ(1 − τ), unless the distri-

bution is symmetric. An alternative approach is that using expectiles directly as

proxies for volatility estimation, without matching expectiles with quantiles. For ex-

treme expectiles on lower and upper tails, the expression in (4.13) can be interpreted

as minimising the sum of weighted squares of deviation, and the weights depend on

whether the observations’ value larger or smaller than the predictor m. Thus ob-

servations which are more extreme have higher impact on expectiles. By using two

symmetric extreme expectiles, one can incorporate more distributional information

into volatility estimating than using a single pair of quantiles, without losing focus

on the data near the tails of the distribution. Specifically, the following model is

employed:

σ̂2t+1 = α1 + β1 (µ̂t+1(1− τ)− µ̂t+1(τ))2 , (4.15)

and the corresponding k periods forecast is given by

σ̂2t+1,k = αk + βk (µ̂t+1(1− τ)− µ̂t+1(τ))2 .

4.5 Empirical study

4.5.1 The data

In this section, financial indices from different markets were used to study the perfor-

mance of different volatility forecasting models. The empirical study employs daily

returns from the following five stock indices: German DAX30, US’s Standard & Poor
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(S&P500) and NASDAQ, Japan’s Nikkei 225 (N225) and UK’s FTSE 100 (FTSE).

For each index there are 4900 daily returns starting from 2 January 1992. Due to

a different number of non-trading days in different countries, the dates of the final

data point vary form 25 May 2010 (DAX30) to 06 December 2010 (N225). The first

4000 data points are used as in-sample data for estimating model parameters. The

last 900 data points are used as post-sample data for 10- and 20-day period volatility

forecasts.

Volatility forecasts are compared from the following models:

• GARCH family: GARCH(1,1) model, integrated GARCH model (iGARCH)

and gjr-GARCH model (gjr-GARCH).

• VaR-based quantile interval approach: interval between two symmetric quan-

tiles as described in Section 4.2, where the quantiles are estimated with CAViaR

models. Two interval length are used (90% and 98%) which were suggested in

Pearson and Tukey (1965) are having better performance. Symmetric absolute

value (SAV), asymmetric slope (AS) and adaptive (ADPT) CAViaR models are

used. Estimations from the indirect GARCH CAViaR model are omitted since

its performance does not stand out in Taylor (2005).

• Multiple-quantile-based approach: as described in Section 4.2, introduced by

Huang (2012). Models in this class all employ multiple uniformly spaced

quantiles (USQ) ranged from 0.01 to 0.99, by 0.01, which are produced us-

ing CAViaR. For each model (SD, MSD and MSD), as in expression (4.8),

quantile estimates from SAV, AS and APDT CAViaR are used.

• ES-based approach: the ES are calculated with numerical integration of quan-

tiles as described in Section 4.3. Two different intervals of ES are tested as

proxy of variance: the 90% interval (υ(.95) − υ(.05)) and the 80% interval

(υ(.9)− υ(.1)). The ES’ numerical integration are also based on CAViaR esti-

mations with SAV, AS and ADPT specifications.

• Expectile-based approach: 98%, 95% and 90% expectile intervals calculated

as stated in Sec. 4.4. SAV, AS, ADPT and indirect GARCH (INDI) CARE

models are used.

4.5.2 In-sample estimations

For each stock indices, there are 4000 daily returns used as in-sample data. The first

3500 data points of each stock indices are used to estimate parameters in CAViaR
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Table 4.1: OLS regression the coefficients of 10- and 20-day period realised volatility on intervals
between symmetric interval of ES(.95)−ES(.05) based on asymmetric slope CAViaR model (panel
(a)) and symmetric interval of CARE(.99) − CARE(.01) estimated by asymmetric slope CARE
model (panel (b)). Standard errors in parentheses.

(a) ES.90.AS

DAX30 SP500 N225 NASDAQ FTSE

10-day

α10 × 105 2.889 2.876 6.788 1.442 4.628
(1.475) (1.421) (2.567) (1.587) (1.407)

β10
46.594 51.601 42.064 48.080 46.752
(1.592) (1.331) (1.831) (1.356) (1.702)

20-day

α20 × 105 11.299 9.872 21.072 7.697 11.054
(1.691) (1.774) (2.968) (2.027) (1.553)

β20
40.894 46.752 32.558 43.015 41.332
(1.819) (1.657) (2.106) (1.728) (1.873)

(b) CARE.98.AS

DAX30 SP500 N225 NASDAQ FTSE

10-day ahead

α10 × 105 0.643 2.694 4.310 0.154 4.023
(1.552) (1.366) (2.567) (1.465) (1.453)

β10
0.106 0.098 0.081 0.085 0.094

(0.004) (0.002) (0.003) (0.002) (0.004)

20-day ahead

α20 × 105 8.138 9.780 19.105 9.154 10.570
(1.779) (1.735) (2.992) (1.916) (1.601)

β20
0.093 0.089 0.063 0.076 0.083

(0.004) (0.003) (0.004) (0.003) (0.004)

and CARE models, the next 500 data points are used for the least square regressions

of realised volatility on interval between symmetric quantiles/ES/expectiles. In Table

4.1 we report coefficients of the LS regression and their standard errors of two models:

the 90% ES interval based on numerical integration of asymmetric slope CAViaR

quantiles and the 98% expectile interval estimated by asymmetric slope CARE model.

These two models are the best performance models in their own classes in terms of

R2, which we will discuss in the next section. Both models have relatively very small

intercept coefficients, α10 and α20. The coefficients of independent variables, β10 and

β20, are very different from the Pearson and Tukey (1965) values of corresponding

quantile intervals, which is expected, since the values of ES and expectiles usually

depart from the value of quantile with the same probability level.
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4.5.3 Post-sample estimations

The last 900 data points of each stock index are used as post-sample analysis. Fol-

lowing Taylor (2005) and Huang (2012), the R2 coefficients of these least squares

regressions are reported to see how much explanation power does each model have

to the realized volatility. Table 4.2 and 4.3 summarise the results of 10- and 20-day

periods volatility for R2 coefficients, respectively. The R2 are presented as percentage

values, and the higher the value, the better explanatory power the model has. For

each index, the highest R2 value is highlighted with grey background.

For the 10-day periods volatility, Table 4.2 shows that, overall, estimations based

on adaptive CAViaR or CARE models have poor performance compared with those

based on other types of CAViaR and CARE models. This finding is consistent with

Taylor (2005) but contradictory with Huang (2012), as in the later the ADPT models

generally out-performed the others. Among the five stock indices, the 98% interval

between symmetric expectiles estimated by AS CARE model (CARE.98.AS) has

the highest R2 value for two indices, the U.S. S&P500 (R2 = 65.41) and NASDAQ

(R2 = 62.45). For the German DAX30, the method proposed by Taylor (2005) using

98% intervals and estimated by AS CAViaR (VaR.98.AS) has the highest value of

R2 = 49.94. Performance of benchmark GARCH family models do not stand out

except for the Japanese Nikkie 225 index: the gjr-GARCH has the best measure of

42.57. Finally, for the UK FTSE100, the 90% interval between ES(.95) and ES(.05)

that based on numerical integration of AS CAViaR quantiles , with value 45.93.

The mean R2 of each model across five indices were also calculated, for which the

CARE.98.AS model has the highest value of R2 = 52.09.

The multi-quantile-based methods, on the other hand, do not stand out for all five

indices tested, although their R2 values are not far behind the best ones. Amongst

this class of models, the median SD model as in equation (4.8) with uniformly spaced

quantiles estimated by AS CAViaR model (USQ.MSD.AS) has the best measure for

three out of five indices, and highest mean R2 value. To further compare multi-

quantile-based methods with ES- and CARE-based methods, emcompassing tests

are performed and results are discussed in the next section.

In addition, for ES- or CARE-based models with different interval range, there is no

clear evidence that one interval range is better than others, as the preference differ

according to the index. For example, the ES.80.AS model has better measure than

the ES.90.AS for DAX30 and Nikkie 225, while opposite results are found for the

other three indices. On the other hand, it seems the impact of choosing different

interval ranges is relatively small, while the impact of the selection of different types
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of CAViaR or CARE models are more significant.

Table 4.3 summarises the results for the 20-day periods volatility and it leads to con-

clusions similar to those in the 10-day periods case, except that for NASDAQ, the

VaR.98.AS model has the highest value of R2 (44.83) over the CARE.98.AS model,

which is the best for this index in the previous case. Overall, the CARE.98.AS model

still has the best mean measure amongst all tested models. Furthermore, by compar-

ing values from Table 4.2 and Table 4.3, the explanatory power of different models

are generally weaker when forecasting longer period of volatility, as the uncertainty

in the farther future is more difficult to capture.

To sum up, expectile-based models with asymmetric slope CARE function consis-

tently outperform other models in both 10- and 20-day period volatility forecast. Es-

pecially, the CARE.98.AS model with the 98% interval achieves the highest measure

in both cases. For other interval models, those with asymmetric slope CAViaR out-

perform other types of regression models such as symmetric absolute value CAViaR

and adaptive CAViaR. Interestingly, for the Nikkie 225 stock index, the gjr-GARCH

model has the best performance over other tested models. Estimations based on a

single pair of quantiles and expected shortfall also have remarkable performance for

specific indices. Multi-quantile-based methods are competitive but do not stand out

in any single cases.

4.5.4 J-tests and combining forecasts

We perform the Davidson and MacKinnon (1981)’s J-test as a criteria for comparing

one model with another. Specifically, we want to investigate whether the proposed

methods using ES intervals or CARE intervals is significantly better than methods

using uniformly spaced quantiles. Two pairs of models were selected for compari-

son: the MSD model of uniformly spaced quantiles estimated by AS CAViaR func-

tion (USQ.MSD.AS) against the ES 90% interval model based on AS CAViaR func-

tion (ES.90.AS), and the USQ.MSD.AS against the AS CARE 98% interval model

(CARE.98.AS). These models have the best performance in their own classes in term

of R2, as shown in previous section. Consider the following two regression models:

LM1: σ2RV,t+k = α1 + β1F
2
MSD,t + εt,

LM2: σ2RV,t+k = α2 + β2F
2
NEW,t + et,

where σRV,t is the realised volatility for k-period, εt and ut are residual terms, FMSD

is the regressor of USQ.MSD.AS model as claimed in expression (4.8), and FNEW
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represents the regressor of the ES interval model or the CARE interval model as

specified in expression (4.10) and (4.15), respectively. The idea of the J-test is, if

regression model LM1 is adequately fitted, then including fitted values from model

LM2 as an additional set of regressor should not provide significant improvement,

and vice versa. Let σ̂2MSD,t+k = α1 + β1F
2
MSD,t and σ̂2NEW,t+k = α2 + β2F

2
NEW,t be forecasts

generated for the t+ k period. Then in the ‘plug-in’ models:

σ2RV,t+1,k = α1 + β1F
2
MSD,t + λ1σ̂

2
NEW,t+k + εt,

σ2RV,t+1,k = α2 + β2F
2
NEW,t + λ2σ̂

2
MSD,t+k + et,

the coefficients λ1 and λ2 are tested under null hypothesises H1
0 : λ1 = 0 and H2

0 :

λ2 = 0, respectively.

If H1
0 cannot be rejected, it implies that we cannot reject σ2RV,t+k being better pre-

dicted by σ̂2MSD,t+k; if H2
0 cannot be rejected, it implies that we cannot reject σ2RV,t+k

being better predicted by σ̂2NEW,t+k. Note that we also performed the encompassing

test as in Section 5.3 of Taylor (2005). However there is no significant evidence show-

ing one model encompasses another. For the J-test, we report the value of λ and

corresponding p-values under three different significant levels: a = 1%, 5%, 10%, in

Table 4.4 and 4.5.

Table 4.4 shows the J-test results for comparing USQ.MSD.AS model against ES.90.AS

model. We only consider one model is better than the other if results for λ1 and λ2

are significantly different (e.g., one is zero and the other is not, at significant level

a). For S&P500 and Nikkie 225 indices, both null hypothesises are rejected at 1%

significant level. For NASDAQ index, H1
0 : λ1 = 0 is rejected for both 10- and 20-day

period volatility forecast at a = 1%, but H2
0 : λ2 = 0 can only be rejected at 10%

significant level for both cases. For the 20-day period forecast for FTSE100, H1
0 is

rejected at a = 10%, while unable to reject H2
0 . On the contrary, for DAX30 index,

H2
0 is rejected at a = 1% but H1

0 can only be rejected at a = 5%. To summarise, for

five stock indices and two different periods, there are 3 cases indicate that ES.90.AS

forecasts is better than USQ.MSD.AS forecasts, while there is only 1 case indicates

the opposite.

Similar conclusions can be drawn from Table 4.5, which compares USQ.MSD.AS

model against against CARE.98.AS model. There are 3 out of 10 cases (Nikkie 225

for both periods, and DAX30 for 10-day period) indicates that CARE.98.AS model

is better, while no significant evidence shows the opposite. Combining the results of

j-tests and results of R2 measure in the previous section, conclusions can be made

that, in general, for stock indices included in tests, the multi-quantile-based methods
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do not have advantages over the proposed methods using ES intervals and CARE

intervals. Overall, the interval between symmetric expectiles estimated by AS CARE

model has appealing performance as a proxy for volatility forecasting.

We also consider combining forecasts from multiple models to see whether it improves

the performance of volatility forecasting. Two groups of combined forecast models

are tested: the VaR.98.AS model together with the ES.90.AS model forecasts, and

the VaR.98.AS forecasts together with the CARE.98.AS forecasts. For example, the

combined forecasting model of VaR.98.AS & CARE.98.AS is:

σ̂2comb,t+1,k = αk + βk,1

(
Q̂(.99)t+1 − Q̂(.01)t+1

)2
+ βk,2 (µ̂t+1(.99)− µ̂t+1(.01))2

We compare the R2 of the LS regression of 10- and 20-day period volatility on com-

bined forecasts for five stock indices, and the highest R2 measures from individual

forecast models as shown in Table 4.2 and 4.3 were also included as benchmarks.

Results of the R2 measure of combined forecasts are summarised in Table 4.6. Intu-

itively, by combining quantile interval model with ES interval model or expectile in-

terval model, R2 measure is improved significantly. Overall, the combined VaR.98.AS

and CARE.98.AS forecasts have the highest mean measure across five stock indices.

Interestingly, the improvement brought by combining forecast is more compelling for

the 20-day period volatility. The values of R2 were improved from 16.1% (S&P500)

to 53.8% (Nikkie 225), for different stock indices.

4.6 Chapter summary

Based on works of Pearson and Tukey (1965), Taylor (2005) and Huang (2012), we

propose two new volatility forecast methods that using intervals between symmet-

ric expected shortfalls and conditional autoregressive expectiles under LS regression

framework. The new methods emphasise on information contained on tails of un-

derlying data, and there is no distributional assumption needed. Empirical studies

using five different stock indices suggest that, for 10- and 20-day period realised

volatility forecast, proposed new methods, especially the model based on 98% asym-

metric slope CARE estimates, have overall better performance than other tested

models, including the multiple uniformly spaced quantiles volatility forecast model

introduced by Huang (2012). We also find that, combining the ES interval model or

the CARE interval model with the CAViaR interval model improves the volatility

forecasts, especially for the longer 20-day period volatility forecast, in terms of R2,

which represents the informational content or explanatory power of the LS regression.
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We also would like to draw attention to the fact that methods we proposed are not

perfect, and there are possible improvements worth look into. For example, both

methods, especially models based on expectiles, are sensitive to extraordinary values

and outliers. Further study of possible impacts caused by extreme values might be

necessary, as future research topics.



4.6. Chapter summary 81

Table 4.2: R2 measure of informational content for 900 post-sample volatility forecasts for 10-day
period for different stock indices

DAX30 S&P500 N225 NASDAQ FTSE Mean

GARCH family
GARCH(1,1) 43.04 54.20 37.78 49.08 41.80 45.18
iGARCH 42.27 52.62 36.37 46.96 41.08 43.86
gjr-GARCH 47.81 60.86 42.57 55.95 42.70 49.98
VaR-based intervals
VaR.98.SAV 43.98 53.58 32.64 50.07 40.74 44.20
VaR.98.AS 49.94 63.67 37.09 61.37 44.40 51.29
VaR.98.ADPT 2.07 1.29 0.46 0.74 0.68 1.05
VaR.90.SAV 42.52 50.18 28.30 41.41 39.84 40.45
VaR.90.AS 48.94 53.09 37.88 55.23 40.99 47.23
VaR.90.ADPT 2.08 1.32 0.44 0.73 0.68 1.05
Multi-quantile-based methods
USQ.SD.SAV 42.05 49.23 28.66 42.56 39.67 40.43
USQ.SD.AS 49.18 61.00 37.86 57.75 45.77 50.31
USQ.SD.ADPT 2.06 1.30 0.45 0.73 0.68 1.04
USQ.WSD.SAV 42.19 49.55 28.86 42.88 39.73 40.64
USQ.WSD.AS 49.23 61.13 37.78 57.78 45.72 50.33
USQ.WSD.ADPT 2.06 1.30 0.46 0.73 0.68 1.05
USQ.MSD.SAV 42.03 49.44 28.75 42.58 39.66 40.49
USQ.MSD.AS 49.26 61.05 37.99 57.75 45.80 50.37
USQ.MSD.ADPT 2.04 1.26 0.40 0.21 0.25 0.83
ES-based intervals
ES.90.SAV 43.07 52.16 30.74 45.99 40.19 42.43
ES.90.AS 49.11 62.87 37.27 58.60 45.93 50.76
ES.90.ADPT 2.08 1.31 0.47 0.74 0.68 1.05
ES.80.SAV 42.77 51.02 29.33 43.00 39.87 41.20
ES.80.AS 49.39 61.18 37.77 57.54 45.37 50.25
ES.80.ADPT 2.06 1.31 0.47 0.71 0.68 1.05
Expectile-based intervals
CARE.98.SAV 44.09 55.85 32.98 51.40 40.94 45.05
CARE.98.AS 49.22 65.41 39.17 62.45 44.20 52.09
CARE.98.ADPT 14.00 9.45 0.03 8.77 6.33 7.72
CARE.98.INDI 42.90 57.74 41.20 56.97 43.06 48.37
CARE.95.SAV 43.76 54.30 31.84 48.82 40.68 43.88
CARE.95.AS 49.48 62.18 38.23 60.40 44.79 51.02
CARE.95.ADPT 11.82 8.05 0.54 11.27 5.69 7.47
CARE.95.INDI 42.58 56.77 40.18 54.84 42.97 47.47
CARE.90.SAV 43.71 53.25 30.53 46.95 40.64 43.02
CARE.90.AS 49.45 61.13 38.22 59.38 45.03 50.64
CARE.90.ADPT 15.10 2.52 1.46 8.38 8.37 7.16
CARE.90.INDI 42.56 55.89 38.68 54.05 42.95 46.83
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Table 4.3: R2 measure of informational content for 900 post-sample volatility forecasts for 20-day
period for different stock indices

DAX30 S&P500 N225 NASDAQ FTSE Mean

GARCH family
GARCH(1,1) 32.72 42.11 20.50 35.05 34.05 32.89
iGARCH 32.13 40.96 19.69 33.51 33.39 31.94
gjr-GARCH 35.16 48.13 23.27 40.03 32.06 35.73
VaR-based intervals
VaR.98.SAV 33.59 40.89 18.55 35.28 33.08 32.28
VaR.98.AS 37.12 48.02 21.17 44.83 35.05 37.24
VaR.98.ADPT 2.24 1.51 0.59 0.84 0.96 1.23
VaR.90.SAV 32.36 38.34 16.05 29.37 32.05 29.63
VaR.90.AS 36.31 41.17 21.90 39.12 33.19 34.34
VaR.90.ADPT 2.25 1.55 0.59 0.83 0.97 1.24
Multi-quantile-based methods
USQ.SD.SAV 32.03 37.72 16.27 30.19 31.96 29.63
USQ.SD.AS 36.54 46.24 21.88 40.72 35.28 36.13
USQ.SD.ADPT 2.23 1.53 0.60 0.83 0.96 1.23
USQ.WSD.SAV 32.13 37.94 16.38 30.41 32.01 29.77
USQ.WSD.AS 36.56 46.32 21.81 40.74 35.28 36.14
USQ.WSD.ADPT 2.22 1.53 0.61 0.83 0.96 1.23
USQ.MSD.SAV 32.02 37.91 16.33 30.21 31.95 29.69
USQ.MSD.AS 36.59 46.28 21.96 40.71 35.30 36.17
USQ.MSD.ADPT 2.02 1.48 0.14 0.29 0.42 0.87
ES-based intervals
ES.90.SAV 32.76 39.82 17.43 32.43 32.45 30.98
ES.90.AS 36.53 47.57 21.39 41.36 35.67 36.51
ES.90.ADPT 2.24 1.53 0.61 0.84 0.96 1.24
ES.80.SAV 32.52 38.91 16.63 30.45 32.10 30.12
ES.80.AS 36.64 46.34 21.78 40.58 35.16 36.10
ES.80.ADPT 2.23 1.55 0.61 0.81 0.97 1.24
Expectile-based intervals
CARE.98.SAV 33.67 42.66 18.80 36.07 33.29 32.90
CARE.98.AS 36.74 49.40 22.56 44.14 34.03 37.37
CARE.98.ADPT 13.78 7.30 0.03 5.96 4.58 6.33
CARE.98.INDI 32.61 45.12 22.45 40.70 35.56 35.29
CARE.95.SAV 33.35 41.45 18.13 34.33 32.98 32.05
CARE.95.AS 36.77 47.02 22.08 42.69 34.37 36.58
CARE.95.ADPT 11.10 6.26 0.08 8.11 4.85 6.08
CARE.95.INDI 32.38 44.43 21.85 39.17 35.44 34.66
CARE.90.SAV 33.27 40.67 17.37 33.12 32.94 31.47
CARE.90.AS 36.68 46.23 22.12 41.97 34.42 36.29
CARE.90.ADPT 13.74 2.21 1.92 6.23 8.25 6.47
CARE.90.INDI 32.36 43.82 21.00 38.64 35.42 34.25
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Table 4.4: J-test for comparing USQ.MSD.AS forecasts (σ̂2
MSD,t+k) and ES.90.AS forecasts (σ̂2

ES,t+k).
p-values are in parentheses. The star symbols denote significant levels: *** 1%, ** 5%, * 10%

DAX30 SP500 N225 NASDAQ FTSE

10-day period

Fitted σ̂2
ES,t+k, λ̂1:

-1.112 4.659 -2.455 1.723 0.257
(0.044)** (0.000)*** (0.000)*** (0.000)*** (0.721)

Fitted σ̂2
MSD,t+k, λ̂2:

2.104 -3.717 3.428 -0.728 0.743
(0.000)*** (0.000)*** (0.000)*** (0.098)* (0.302)

20-day period

Fitted σ̂2
ES,t+k, λ̂1:

0.040 4.619 -3.279 2.068 1.496
(0.948) (0.000)*** (0.000)*** (0.000)*** (0.068)*

Fitted σ̂2
MSD,t+k, λ̂2:

0.960 -3.674 4.234 -1.076 -0.497
(0.119) (0.000)*** (0.000)*** (0.05)* (0.544)

Table 4.5: J-test for comparing USQ.MSD.AS forecasts (σ̂2
MSD,t+k) and CARE.98.AS forecasts

(σ̂2
CARE,t+k). p-values are in parentheses. The star symbols denote significant levels: *** 1%, ** 5%,

* 10%

DAX30 SP500 N225 NASDAQ FTSE

10-day period

Fitted σ̂2
CARE,t+k, λ̂1:

1.001 1.852 1.829 2.427 -1.297
(0.064)* (0.000)*** (0.000)*** (0.000)*** (0.000)***

Fitted σ̂2
MSD,t+k, λ̂2:

-0.001 -0.895 -0.845 -1.506 2.264
(0.999) (0.000)*** (0.028)** (0.000)*** (0.000)***

20-day period

Fitted σ̂2
CARE,t+k, λ̂1:

0.616 1.729 1.792 2.275 -1.029
(0.309) (0.000)*** (0.000)*** (0.000)*** (0.005)***

Fitted σ̂2
MSD,t+k, λ̂2:

0.385 -0.763 -0.806 -1.340 2.006
(0.525) (0.000)*** (0.102) (0.000)*** (0.000)***
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Table 4.6: R2 measure of combined forecast models for 900 post-sample volatility forecasts for 10-
and 20-day period volatility. Values in the first row of each periods are the highest R2 measures of
individual-forecast models.

DAX30 SP500 N225 NASDAQ FTSE Mean

10-day period
Highest individual- VaR.98. CARE.98. gjr- CARE.98. ES.90. CARE.98.
forecast model AS AS GARCH AS AS AS

49.94 65.41 42.57 62.45 45.93 52.09

Combination forecast
ES.90.AS and
VaR.98.AS

50.34 64.41 37.79 62.31 46.46 52.26

CARE.98.AS and
VaR.98.AS

50.11 66.92 47.15 62.46 44.50 54.23

20-day period
Highest individual VaR.98. CARE.98. gjr- VaR.98. ES.90. CARE.98.
forecast model AS AS GARCH AS AS AS

37.12 49.40 23.27 44.83 35.67 38.06

Combination forecast
ES.90.AS and
VaR.98.AS

45.42 54.98 28.39 54.63 41.60 45.01

CARE.98.AS and
VaR.98.AS

45.32 57.36 35.79 52.50 41.10 46.42



Chapter 5

Joint modelling of regression

quantiles and heteroskedasticity

with asymmetric Laplace

distribution

The quantile regression has been a rewarding methodology of regression analysis and

has received high attention in recent decades, since being introduced by Koenker and

Bassett (1978). The original assumptions of quantile regression include homoskedas-

ticity, however the heteroskedastic conditions of quantile regression have also been

studied by many (for example, see Koenker and Bassett, 1982, Powell, 1984, Koenker

and Zhao, 1994, among others). A common setting of the heteroskedastic quantile

regression model is to introduce a scale component specified as a linear model of

some explanatory variables. Estimators of the linear scale component model can be

obtained with standard methods, but are usually obtained separately with the quan-

tile regression estimators. In this chapter, we discuss a new model, which consists of

a scale component that has a log linear form, and parameters of the heteroskedastic

scale and parameters of the regression quantile can be estimated simultaneously, via

the parametric link between quantile regression and the asymmetric Laplace distri-

bution.

85
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5.1 Introduction

The quantile regression is introduced by Koenker and Bassett (1978) (see also Koenker,

2005). Starting from the following standard linear model:

yt = x′tβ + εt, t = 1, ..., T, (5.1)

where yt is the dependent variable, xt are the explanatory variables; β are unknown

parameters, and εt is an error term which usually has no distributional assumption

other than that the pth quantile of εt is zero and εt has finite variance.

The p-th (0 < p < 1) conditional quantile of yt given xt is then in the expression as:

Qyt|xt(p) = x′tβ(p),

where β(p) is the coefficients vector depends on p.

Then the regression parameters β(p) for the p-th quantile can be defined as the

solution to the following minimisation problem:

min
β

E
[
ρp(yt − x′tβ)

]
, (5.2)

where ρp(u) = u(p− I[u ≤ 0]) is the so-called check function, and I[·] is an indicator

function. The p-th regression quantile estimator β̂(p) is obtained by solving the

sample analog minimisation problem

min
β

S(β) ≡ 1

T

T∑
t=1

ρp(yt − x′tβ) (5.3)

In the standard setting, εt is i.i.d., and has distribution function F and density func-

tion f . Under some regulatory conditions, the quantile regression is asymptotically

normal (see, for example, Koenker, 2005):

√
T
(
β̂(p)− β(p)

)
d→ N(0, V ),

with

V =
p(1− p)
f(0)2

E[xx′]−1,

where f(0) is the density of εt at zero. The asymptotic properties of the quantile

regression under more complex conditions such as heteroskedasticity has been dis-

cussed by many, for example, Koenker and Bassett (1982), Powell (1984), among
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others.

A special case of the regression quantiles with heteroskedasticity is the location-scale

shift model (see, for example, Koenker and Xiao, 2002), which can be seen as induced

from the following linear model:

yt = x′tα+ (x′tγ)εt, x′tγ > 0 (5.4)

where the error term εt is i.i.d., and x′tα is the location shift component and x′tγ

is the scale shift component, which is also in a linear form. The p-th conditional

quantile of (5.4) is then given by

Qyt|xt(p) = x′tα+ (x′tγ)F−1(p),

where F−1(p) denotes the quantile function of the error term εt. Under this model

specification, the quantile regression estimator

β̂(p) = arg min
β

1

T

T∑
t=1

ρp(yt − x′tβ) (5.5)

is actually an estimator of

β(p) = α+ γF−1(p).

β̂(p) converges to β(p) with probability one, and x′tβ̂(p) is an approximation of

qyt|xt(p). However, solving (5.5) only gives estimates of β(p). The parameters γ of

the scale component are not assessed when using the classical regression estimator

β̂(p).

To estimate γ under the situation that a location shift component is included,

Koenker and Zhao (1996) consider using a two-step procedure: first, remove the

location shift component by ‘de-meaning’, and then regressing the quantile estimator

on the residual. Let α̂ be the ordinary least square estimators such that ŷt = x′tα̂,

and the residual êt = yt−x′tα̂. Then the quantile regression estimator γ̌, given α̂, is

expressed as:

γ̌(p, α̂) = arg min
γ

1

T

T∑
t=1

ρp(êt − x′tγ).

Another model that addresses heteroskedasticity is the weighted quantile regression

model introduced by Koenker and Zhao (1994) and Koenker and Zhao (1996). For the

linear model as shown in (5.4), if the estimation in (5.5) is referred as the ’unweighted’

regression quantile estimator, then the p-th (0 < p < 1) weighted regression quantile
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is obtained by:

β̌(p, γ̂) = arg min
β

1

T

T∑
t=1

ŵ−1t ρ(yt − x′tβ), (5.6)

given that ‖γ̂ − γ‖ = O(T−1/4(log T )1/2), and ŵt = x′tγ̂ denotes the ‘weights’.

Estimation methods for parameters and weights of the weighted regression quantiles

are further discussed by Zhou and Portnoy (1998), among others.

In this chapter, we propose a new class of heteroskedastic quantile regression model

by replacing the linear scale component in (5.4), x′tγ, with a log linear form λt =

exp(x′tγ). An obvious advantage of this change to the model is that, since exp(x′tγ) >

0 for any x′tγ, the additional assumption on the conventional location-scale shift

model ensuring xtγ > 0 could be omitted. We illustrate that the new model can be

estimated via the parametric link between the quantile regression and the asymmetric

Laplace distribution, which is briefly introduced in Section 5.2. Details of the new

quantile regression estimators are given in Section 5.3. In Section 5.4 we study

properties of the new estimators when data departures from the assumption on the

error distribution. In the last two sections, we make remarks and conclusions.

5.2 Asymmetric Laplace distribution

The asymmetric Laplace distribution (ALD), as in some literatures referred as the

skewed-Laplace distribution, has the following density function:

f(u|µ, σ, p) =
p(1− p)

σ
exp

(
−u− µ

σ
(p− I[u ≤ µ])

)
, (5.7)

where µ, σ and p are location, scale and shape (or skew) parameters, respectively.

If p = 1/2, (5.7) reduces to the density of the standard symmetric Laplace distri-

bution; otherwise the density is asymmetric (skewed). One of the most important

properties of the ALD is that, if a random variable u follows the ALD distribution,

u ∼ ALD(µ, σ, p), the p-th quantile of u equals to µ. Furthermore, the mean and the

variance of this three-parameter ALD are given by

E(u) = µ+
σ(1− 2p)

p(1− p)
,

var(u) =
σ2(1− 2p+ 2p2)

(1− p)2p2
,

respectively. For more details and properties of the three-parameter ALD, see Yu

and Zhang (2005).
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The link between the quantile regression and the asymmetric Laplace distribution is

as follow: if we assume the error term in (5.1) εt
iid∼ ALD(0, σ, p), and let µ(xt) = x′tβ,

then the estimation problem for β(p), the p-th conditional quantile Qp(yt|xt) as in

the minimisation function (5.3), is equivalent to parameter estimation problem for

yt ∼ ALD
(
µ(xt), σ, p

)
using the MLE, with the log-likelihood function

`(µ(xt), σ) = −T log(σ)− 1

σ

T∑
t=1

ρp(yt − µ(xt)). (5.8)

Yu and Zhang (2005) show that, solutions to the MLE of the three-parameter ALD

is as follows:

µ̂(xt) = arg min
µ(xt)

1

T

T∑
t=1

ρp(yt − µ(xt)),

σ̂ =
1

T

T∑
t=1

ρp(yt − µ(xt)),

for p known.

Interestingly, if β(p) denotes the true p-th quantile regression parameter, and x′tβ(p)

denotes the true value of the p-th conditional quantile, then σ ≡ E[ρp(yt − x′tβ(p))],

namely, σ is the expectation of the check function at quantile level p. Then σ̂ is

the sample analog estimator of the expectation of the check function. Consider the

ordinary least square counterpart, i.e., α∗OLS is the true value of minimiser to the

minimisation problem

OLS: min
α

E[(yt − x′tα)2],

then E[(yt−x′tα
∗
OLS)2] is actually the sample variance of y. Furthermore, let α∗LAD be

the the true value of minimiser to the least absolute deviation minimisation problem

LAD: min
α

E[|yt − x′tα|],

then E[|yt − x′tα
∗
LAD|] actually yields the sample’s mean absolute deviation. Both

variance and MAD are well-known measure of variability. Similarly, if seen as a func-

tion of p, the scale parameter of the ALD , σ(p) = E [ρp(yt − x′tβ)], when considered

in the framework of quantile regression, can be seen as a measure of statistical dis-

persion of the variability of dependent variable y around its p-th conditional quantile

x′tβ(p), and σ̂(p) is its estimator arising from the sample analog. We name σ(p)

the p-th quantile deviation, to be distinguished from the conventional standard de-

viation and MAD. Then, if a random variable y has an ALD, y ∼ ALD(µ, σ, p),
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0 < p < 1, then its standard deviation, SD(y), and its p-th quantile deviation, σ, has

the following relationship:

SD(y) = σ

√
(1− 2p+ 2p2)

(1− p)p
.

Furthermore, let G and g be the c.d.f. and p.d.f. of y, respectively, and η = E(y).

Then, given that the check function can be equivalently written as ρp(y − µ) =

p(y − µ) − (y − µ)I[y ≤ µ], a relatively general representation for QD(p) of y is as

follow

QD(p) ≡E[ρp(y −Q(p)]

=E
[
p(y −Q(p))− (y −Q(p))I[y ≤ Q(p)]

]
=p(η −Q(p))− E

[
(y − η)I[y ≤ Q(p)]

]
− E

[
(η −Q(p))I[y ≤ Q(p)]

]
=p(η −Q(p))−

∫ Q(p)

−∞
(y − η)g(y) dy − p(η −Q(p))

=−
∫ Q(p)

−∞
(y − η)g(y) dy.

For some distributions, the unconditional population QD can be derived explicitly us-

ing the expression above. For example, if random variable y has a normal distribution

with variance υ2, it is straightforward to obtain its p-th QD

QD(p) = υφ(ψ−1(p)),

where φ(·) is the p.d.f. of standard normal, and ψ−1(p) is the inverse of the c.d.f. of

standard normal.

Hence, the normal distribution’s QD is identical with the normal density function,

which is considered as a very special case. In Figure 5.1, we present graphs of

unconditional population QD functions of several common distributions against their

density functions g(x), where the QD is displayed as a function with respect to x,

namely QD(G(x)).

The parametric link between the quantile regression and the ALD has been exten-

sively used in the Bayesian inference of regression quantiles. Yu and Moyeed (2001)

and Tsionas (2003), among others, have illustrated that, using the link between quan-

tile regression and the ALD allows accurate Bayesian estimation and inference to be

achieved, through computational algorithm such as the Markov Chain Monte Carlo.

In following sections we study heteroskedastic quantile regression with assumption
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Figure 5.1: The QD function graphs for some common distributions. Solid line: density function
f(x); dashed line: quantile deviation QD(p), where p = F (x); vertical dashed line: distribution mean
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that the error term εt has ALD, thus parameters of the quantile regression can be

obtained via MLE method.

5.3 Proposed quantile regression with dynamic variance

For classic linear regression model, it is typical that the error term εt in (5.1) is

normal. However, authors such as Koenker and Bassett (1982), Powell (1984), and

Chamberlain (1994) have considered the quantile regression in under more general

conditions, leading to the conclusion that, the quantile regression is robust when the

normality assumption of εt is not met. Namely, under certain regulatory conditions

and without assuming εt is normal, the regression coefficient estimator β̂(p) is asymp-

totically normal. We further investigate and propose a new inference that allows

assessing the joint modelling problem of quantile regression and the heteroskedastic

variance of conditional quantile simultaneously.

The model considered is under the following assumptions
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A 5.1 Given that yt, xt, γ and εt are defined as in expression 5.1, let λt > 0 be the

heteroskedasticity scale component, then yt and xt have the following model

yt = x′tβ + λtεt, λt = exp(x′tγ), t = 1, ..., T (5.9)

A 5.2 The εt in A 5.1 has an i.i.d. asymmetric Laplace distribution, εt ∼ ALD(0, 1, p).

Then it is straightforward to show that the combination of λtεt has an asymmet-

ric Laplace ALD(0, λt, p) distribution. Then the p-th conditional quantile and its

variance are given by:

qy(p) = x′tβ(p), (5.10)

with

var(λtεt) =
exp(x′tγ)(1− 2p+ 2p2)

(1− p)2p2
.

The estimations for parameters in (5.10) can also be obtained via maximum likelihood

estimation (MLE) for the parameters in the corresponding ALD. Replacing the σ in

(5.8) with λt = x′tγ, the likelihood function of parameters β and γ is then

L(β,γ|X) ∝
T∏
t=1

exp(−x′tγ) exp

(
−ρp(yt − x′tβ)

exp(x′tγ)

)

= exp

(
T∑
t=1

−ρp(yt − x′tβ)

exp(x′tγ)
−

T∑
t=1

x′tγ

)
.

The log-likelihood function is given by:

`(β,γ) =
T∑
t=1

−ρp(yt − x′tβ)

exp(x′tγ)
−

T∑
t=1

x′tγ. (5.11)

Denote β̃(p, γ̃) and γ̃(p) as the MLEs of parameters β(p) and γ(p). Then we have

the following likelihood equations:

β̃(p, γ̃) = arg min
β

T∑
t=1

ρp(yt − x′tβ)

exp(x′tγ̃(p))
, (5.12)

T∑
t=1

ρp(yt − x′tβ̃(p, γ̃))

exp(x′tγ̃(p))
xt =

T∑
t=1

xt. (5.13)

So the β̃(p, γ̃) is essentially the weighted quantile regression estimator as shown in

(5.6). Nonetheless, by using the parametric link between the ALD and the quantile
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regression, the weighted estimators, β̃(p, γ̃) and the weight estimator, λ̃t = x′tγ̃(p)

can be obtained simultaneously.

Furthermore, the maximum likelihood function with respect to λ requires that

λ̃t = exp(x′tγ̃(p))

≡ 1

T

T∑
t=1

ρp(yt − x′tβ̃(p, γ̃)).

As discussed in the previous section, the estimator λ̃t is also an estimator of the p-th

quantile deviation, E[ρp(yt − x′tβ(p))], given xt.

Unfortunately, it seems difficult to obtain the asymptotic properties of (β̃(p, γ̃), γ̃(p)).

It is not reasonable to use the information matrix to give asymptotic variance of the

MLE, as under usual regular conditions the likelihood function is not differentiable

with respect to x′tβ. Koenker and Zhao (1994) proved that the weighted regression

quantile estimator β̌(p, γ̂) defined in (5.6) with weights ŵt is asymptotically normal

, under certain regulatory conditions (conditions C1 - C5 as in their paper). The

estimator λ̃t we proposed can be seen as an estimator of weights. However, under the

assumption A 5.2 in this chapter, C5 from Koenker and Zhao (1994) is not satisfied

since the c.d.f. of εt, F (z), is not twice differentiable at the point z = F−1(p) = 0.

Thus, the Bahadur representation they derived is not available for the estimators we

introduced. The asymptotic properties of regression parameters β̃ and γ̃ is a topic

worth investigating for future research.

The computational estimation of parameters are simply implemented in the R lan-

guage (R Core Team, 2013), by employing the optim function with the quasi-Newton

algorithm to search for solutions to the minimisation problems above. We recommend

using β̃(p, γ̃) = β̂(p) and γ̃p = 0 as initial values for the algorithm, where β̂(p) are

parameters estimated as in (5.3), and 0 is a vector of zeros.

One may argue that the distribution of the error term, εt, usually departs from the

ALD in real data. In the next section, we illustrate that even the true distribution of

εt is not ALD, namely the model in (5.7) is misspecified, the results of the quantile

regression are still accurate, via simulation tests.

5.4 Simulation study

We perform simulation tests to investigate the performance of the proposed model

when the underlying distribution actually depart from ALD. We also consider the
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situation that the model is misspecified, since model misspecification is most likely

in reality. Random samples are generated from the following models.

Model 1. Simple linear model, homoskedastic:

Y (1) = −2X1 + ε1,t, X1 ∼ N(0, 2), ε1,t ∼ N(0, 0.0625),

where N(·) denotes the normal distribution. The true value of p-th conditional

quantile is qY (p,X) = −2X + N−1(p|0, 0.0625), where N−1(p|·) denotes the p-th

quantile of the normal distribution with given parameters.

Model 2. Purely heteroskedastic model, with linear scale shift component, as de-

scribed in Section 1:

Y (2) = 2X1 + (.25 + .75X1)ε2,t, X1 ∼ U(0, 5), ε2,t ∼ N(0, 1),

where U(·) denotes the uniform distribution. Note that for data generated from

this model, the heteroskedastic quantile regression model with ALD error term we

proposed is actually misspecified. The true value of p-th conditional quantile is given

by qY (p,X) = 2X(.25 + .75X)N−1p (0, 1).

Model 3. Heteroskedastic model with exponential scale component and normally

distributed error term

Y (3) = 1 +X1 exp(−0.5X1)ε3,t, X1 ∼ U(0, 5), ε3,t ∼ N(0, 1).

The true value of p-th conditional quantile is given by qY (p,X) = 1+X exp(−.5X)N−1p (0, 1).

Model 4. Heteroskedastic model with exponential scale component and Student’s t

error term:

Y (4) = 1 +X1 + exp(−0.5X1)ε4,t, X1 ∼ U(0, 5), ε4,t ∼ t(6),

where t(6) denotes the Student’s t distribution with 6 degrees of freedom. The true

values of the p-th quantile is qY (p,X) = 1+X+
√

4/6 exp(−.5X)t−1p (6), where t−1p (·)
denotes the p-th quantile of the Student’s t distribution.

For each model, 500 replicates were generated with two different sample sizes, n = 500

and n = 100. Based on these samples, we compute the p = 0.5, 0.75, 0.9 conditional

quantile of Y , using the standard quantile regression model and the heteroskedastic

model proposed in this chapter. Results of the standard quantile regression estimators

β̂ and the heteroskedastic weighted estimators β̃ and γ̃ of the 0.5 and 0.75 conditional
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quantiles are summarised in Table 5.1 and 5.2, respectively, in terms of means and

standard errors of the estimation.

Table 5.1: Mean and standard estimation error of the 0.5 conditional quantile estimators from the
the standard model (β̂) and the proposed heteroskedastic model (β̃ and γ̃), for four different models.

Model 1 Model 2 Model 3 Model 4

Mean SE Mean SE Mean SE Mean SE

n=100

β̂1 -0.001 0.008 0.000 0.214 0.007 0.123 0.990 0.127

β̂2 -2.000 0.004 2.005 0.165 -0.002 0.031 1.002 0.032

β̃1 0.000 0.008 -0.001 0.166 0.007 0.107 0.990 0.110

β̃2 -2.000 0.004 2.004 0.146 -0.002 0.026 1.002 0.026
γ̃1 -3.713 0.093 -1.434 0.178 -0.917 0.157 -0.788 0.181
γ̃2 0.004 0.074 0.437 0.062 -0.511 0.057 -0.506 0.062
n=500

β̂1 0.000 0.003 -0.002 0.088 0.001 0.059 0.998 0.058

β̂2 -2.000 0.002 2.002 0.074 0.000 0.015 1.001 0.014

β̃1 0.000 0.003 -0.002 0.073 0.002 0.051 1.000 0.049

β̃2 -2.000 0.002 2.003 0.062 0.000 0.012 1.000 0.012
γ̃1 -3.697 0.034 -1.412 0.076 -0.916 0.069 -0.778 0.081
γ̃2 0.000 0.018 0.433 0.027 -0.502 0.024 -0.501 0.028

Note that for Model 1, the true values of β(p) are given by (β1, β2) = (0, 2) for q(0.5),

and (β1, β2) = (0.042, 2) for q(0.75); and for Model 2, (β1, β2) = (0, 2) for q(0.5), and

(β1, β2) = (0.168, 2.506) for q(0.75). Furthermore, for Model 1, γ2 = 0 regardless of

the value of p, since the model is homoskedastic. The true values of parameters for

other cases are difficult to obtain explicitly. Table 5.1 and 5.2 show that, both classic

estimators and the proposed estimators for Model 1 are almost identical and very

close to the true values. For other three models, the differences between β̂ and β̃ are

obvious, but not largely depart from each other. On the other hand, the standard

errors of β̃ are smaller than of β̂ in almost every cases.

To further investigate the performance of the two quantile estimators, we compared

estimated quantiles from the standard quantile regression model as in (5.3) and the

proposed model as in (5.10), denoted by q̂ and q̃, respectively. Integrated squared

error, as shown in the equation (5.14) below, were calculated over the range of −5 ≤
x ≤ 5 for Model 1, and 0 ≤ x ≤ 5 for Model 2, 3, and 4, and averaged over replicates.

Results were summarised in Table 5.3.

ISE =

∫ b

a
(q̂y(p, x)− qy(p, x))2 dx (5.14)

Table 5.3 shows that, unsurprisingly, for Model 1, which is homoskedastic, the mean

ISE of q̃ are higher than the mean ISE of q̂ for most cases, although the differences
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Table 5.2: Mean and standard estimation error of the 0.75 conditional quantile estimators from
the the standard model (β̂) and the proposed heteroskedastic model (β̃ and γ̃), for four different
models.

Model 1 Model 2 Model 3 Model 4

Mean SE Mean SE Mean SE Mean SE

n=100

β̂1 0.042 0.008 0.192 0.230 0.467 0.135 1.492 0.157

β̂2 -2.000 0.004 2.502 0.171 -0.092 0.033 0.904 0.038

β̃1 0.042 0.008 0.181 0.184 0.399 0.119 1.413 0.134

β̃2 -2.000 0.004 2.506 0.157 -0.074 0.029 0.924 0.032
γ̃1 -3.934 0.128 -1.666 0.178 -1.128 0.180 -0.982 0.212
γ̃2 0.002 0.113 0.437 0.062 -0.514 0.064 -0.509 0.073
n=500

β̂1 0.042 0.004 0.172 0.098 0.470 0.062 1.496 0.069

β̂2 -2.000 0.002 2.508 0.079 -0.092 0.015 0.904 0.017

β̃1 0.042 0.004 0.170 0.079 0.398 0.053 1.422 0.056

β̃2 -2.000 0.002 2.508 0.068 -0.073 0.012 0.923 0.013
γ̃1 -3.922 0.056 -1.643 0.077 -1.124 0.078 -0.971 0.095
γ̃2 0.002 0.041 0.434 0.027 -0.506 0.027 -0.504 0.032

Table 5.3: Results of simulation tests using the four data generating models. Mean ISE of standard
quantile regression (q̂) and proposed quantile regression (q̃), multiplied by 1000, are summarised in
this table, for sample size n = 100, 500, and p = 0.1, 0.5, 0.9. 500 replicates.

n=100 n=500

p = 0.5 p = 0.75 p = 0.9 p = 0.5 p = 0.75 p = 0.9

1
q̃ 0.136 0.156 0.244 0.025 0.027 0.046
q̂ 0.130 0.153 0.242 0.025 0.027 0.047

2
q̃ 70.992 71.813 122.598 12.600 15.504 27.418
q̂ 73.188 76.750 147.327 16.392 16.904 29.932

3
q̃ 1.705 8.358 26.360 0.339 7.268 24.006
q̂ 2.218 6.179 17.336 0.478 4.086 13.512

4
q̃ 2.001 5.944 18.500 0.336 3.730 14.071
q̂ 2.618 6.258 20.066 0.429 3.808 16.657
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are only marginal. Both methods have significantly higher mean ISE for Model 2,

which has a linear scale component. Note that the model of q̃ is actually misspecified

for data generated from Model 2. Interestingly, the ISE of q̃ is smaller than of

q̂ under this case. Model 3 is a heteroskedastic model with an exponential scale

component and error term follows the standard normal distribution, as specified in

(5.9). The standard estimator q̂ has smaller ISE, except for p = 0.5, which implies

the median regression. Model 4 follows a more general form of (5.9), under this

model the proposed estimator q̃ is correctly specified. The error term in Model 4 ε

is assumed to have a Student’s t distribution with 6 degree of freedom, and it seems

has little impact on the performance of both estimators. Compared with results from

Model 3, the introduction of location component improves the performance of q̃ but

compromise the performance of q̂.

To sum up, in simulation study we tested the standard quantile regression model

and the proposed heteroskedastic quantile regression model using data generated

from distribution depart from the assumed ALD, and data generated from different

model specification, including homoskedasticity and linear heteroskedasticity (other

than exponential). In general, the proposed heteroskedastic quantile regression model

outperform the standard model, especially when heteroskedasticity present.

5.5 Remarks for future research

It should be not difficult to extend the heteroskedastic quantile regression model

proposed in previous sections to auto-regressive models, and thus it can be applied

with time-series data. We are particularly interest in estimating and forecasting of

financial time-series. Koenker and Zhao (1996) has already considered inferences of

quantile regression applied to autoregressive conditional heteroskedasticity (ARCH)

models, and part of their research has been introduced in Section 5.1. We suggest

two possible future research paths. The first is to look at the conditional regression

quantiles of financial returns used as a risk measure, which is commonly known as

the value-at-risk (VaR). Engle and Manganelli (2004) introduce a class of forecast

models called conditional autoregressive VaR (CAViaR), which has been mentioned

in previous chapters. The CAViaR models do not treat heteroskedasticity explicitly,

but it has already received considerable popularity due to its performance in practice.

If heteroskedasticity is introduced into the CAViaR model through the approach

proposed in this chapter, an instantly encountered problem, which may eventually

lead to the second research path, would be: what model should one choose for the

exponential heteroskedastic component, exp(x′tγ)? The second research path is to
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address this issue. A natural choice would seem to be to search in the GARCH

family of volatility forecast models. For example, one can consider the quantile

analog version of the EGARCH model, which is introduced by Nelson (1991) and also

assumes exponential heteroskedasticity. However, if applied to financial time-series,

one must note that a key difference between assumptions for financial time-series

and assumptions we use in this chapter. That is, for financial returns, it is typical

to assume that the residual term has a zero-mean distribution. Thus, it is necessary

to change the error term in (5.9) et = εt − µ, where µ = 1−2p
p(1−p) is the mean of

ALD(0, 1, p), as pointed out by Chen et al. (2012). Then the new error term et has

mean 0 as standard. The goal of future research will focus on two aspects: first, a

new approach for the confidence interval of VaR estimates and forecasts; secondly

and more importantly, a potential new type of ’volatility’, which is defined as the

variance of quantile of return, instead of variance of the mean return.

5.6 Chapter summary

In this chapter, we reviewed classical literature on parametric heteroskedastic quan-

tile regression models. Then we introduced a new method, which assumes the model’s

error term follows an ALD, thereby estimators of the regression quantiles and esti-

mators of the weights, or the quantile deviation, can be obtained simultaneously via

MLE method for parameters of the ALD. Simulation tests show that, even for mod-

els generated using distributions that depart from the assumed ALD, the proposed

heteroskedastic quantile regression model outperform the standard model in general.



Chapter 6

Concluding remarks

The thesis studied several theoretical and applied order-statistics-based methods re-

lating to distribution estimation, measurement and forecasting of some risk measures.

In final chapter, the main contributions from Chapter 2 to 5 are summarised, along

with a brief discussion for possible future research topics.

6.1 Main contributions

In Chapter 2, a new method for constant stress ALT model with Weibull distribution

when the data are progressively censoring is considered. We have derived the unbiased

estimators of unknown parameters, exact confidence interval of shape parameter

and generalized confidence intervals of other parameters. The method and theoretic

results are new, totally different from MLE-based inference. The numerical analysis

and comparison are promising, even for small sample and different censoring rate or

schemes.

An alternative approach is proposed in Chapter 3 for fitting the GPD, especially

under small sample sizes. For parameter estimation, the proposed estimators are

unbiased and stable for extreme shape parameters and small sample sizes. For quan-

tile estimations the situation is more complicated. But for non-extreme quantiles,

estimates based on the alternative approach also has overall small bias. Amongst all

tested estimators, we find that the method proposed in Zhang and Stephens (2009)

also has outstanding performance in both parameter and quantile estimations. The

alternative approach also provides exact and generalised confidence interval estima-

tions for parameters and quantile of the GPD, and it clearly provides more accurate

results, in terms of coverage probabilities with reasonable interval width.

99
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In Chapter 4, we propose two new volatility forecast methods that use intervals be-

tween symmetric expected shortfalls and conditional autoregressive expectiles under

least square regression framework. The new methods elaborate on information con-

tained on tails of underlying data, and there is no distributional assumption needed.

Empirical studies using five different stock indices for short period RV forecasts sug-

gest that, the proposed new methods, especially the model based on 98% asymmetric

slope CARE estimates, have overall better performance than other tested models, in-

cluding the multiple uniformly spaced quantiles volatility forecast model introduced

by Huang (2012). We also found that, combining the ES interval model or the CARE

interval model with the CAViaR interval model improves the volatility forecasts, in

terms of R2.

Chapter 5 elaborates the joint modelling of quantile regression and heterosckedastic-

ity. A new method has been discussed, which assumes the model’s error term follows

an ALD, thereby estimators of the regression quantiles and estimators of the weights,

or the quantile deviation as defined in this chapter, can be obtained simultaneously

via MLE method. Simulation tests show that, even for models generated using dis-

tributions that depart from the assumed ALD, the proposed heteroskedastic quantile

regression model outperform the standard model in general.

6.2 Recommendations for Future Research

• The model analysed in Chapter 2 is for constant-stress accelerated life-tests

under certain data censoring. A natural progression is the study of step-stress

ALT, with progressive Type II censoring. In step-stress tests, the values of

stress on units are not constant, but increased by pre-planned ‘stress patterns’.

i.e., if a unit survived a stress level, it is then moved to a higher stress level, and

continues until the end of the test. The cumulative effects of each stress level

that a unit has survived have to be taken into consideration for the model. The

simple step-stress ALT (Miller and Nelson, 1983), which has only two stress

levels, could be considered as a starting point.

• In Chapter 3 we do not consider more realistic circumstances or empirical ex-

amples for financial data. That is because financial data is well-known not

Gaussian, which is one of the most important assumptions in the POT ap-

proach. Applying EVT for financial data often requires the heteroskedasticity

been ‘filtered’, see McNeil (1999) and Gilli and Këllezi (2006) as examples.

• In Chapter 4, the accuracy of forecasts of RV is affected by the accuracy of
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the estimation of extreme tail quantiles, ES, or expectiles. One could explore

possible ways of improving the forecast performance by considering improved

models for, say, extreme quantiles or ES. Furthermore, it may worth consider-

ation that, when volatility jumps occur, the possible impacts on the proposed

methods, as they are more sensitive to extreme values.

• The work presented in Chapter 5 raises a number of interesting questions for

further consideration.

1. It should be not difficult to extend the heteroskedastic quantile regression

model proposed to auto-regressive models, and thus it can be applied

with time-series data, especially financial time-series. Koenker and Zhao

(1996) has already considered inferences of quantile regression applied to

autoregressive conditional heteroskedasticity (ARCH) models.

2. It would be of interest to investigate if the joint modelling approach pro-

posed can be considered together with the CAViaR models. The CAViaR

models do not treat heteroskedasticity explicitly, but it has already re-

ceived considerable popularity due to its performance for real problems.

3. In Chapter 5 we considered a simple log linear relationship for the scale

component. If considered for financial time-series, a natural progression

would be replacing the simple log linear scale model with the EGARCH

model, which is introduced by Nelson (1991) and also assumes log het-

eroskedasticity.

4. The definition and properties of the quantile deviation could be further

investigated.
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