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Abstract 
 

      To understand the function of the cardiovascular system, the propagation of waves 

in arteries has to be investigated, since they carry information which can be used for the 

prevention and diagnosis of cardiovascular diseases.  

       The main goal of this thesis is to improve the understanding of wave propagation in 

central and peripheral arteries studying the local hemodynamics of the ascending aorta, 

the carotid artery and the femoral artery by analysing human, animal and in vitro data. 

Also, another aim is to introduce a technique for non-invasive determination of the local 

arterial distensibility, the wave speed, and wave intensities. 

       Arterial hemodynamics is here studied using wave intensity analysis, a time domain 

technique based on pressure and velocity measurements that is derived from the 1D 

theory of wave propagation in elastic tubes. Also, variations of this technique were used, 

such as (i) the non-invasive wave intensity analysis that relies on diameter and velocity 

measurements and (ii) the reservoir-wave approach in which pressure is considered the 

sum of a pressure due to the elastic properties of the arteries and a pressure due to the 

travelling wave.   

       To identify the correct analysis to describe the wave propagation in the ascending 

aorta using pressure and velocity measurements, the hemodynamics of the canine 

ascending aorta was studied invasively using the traditional wave intensity (or wave-

only) analysis and the reservoir-wave approach in both control condition and during 

total aorta occlusions in order to provide clear reflection sites. The models produced a 

remarkably similar wave intensity curves, although the intensity magnitudes were 

different. The reservoir-wave model always yielded lower values for all hemodynamic 

parameters studied. Both models led to the conclusion that distal occlusions have little 

or no effect on hemodynamics in the ascending aorta. 

       Since the ascending aorta is not an accessible vessel its examination in clinical 

routine is challenging. More superficial arteries, such as carotid, radial, brachial and 

femoral arteries, might be easier to examine, in particular using ultrasound equipment 

that is normally available in the clinic. These considerations led to the second study of 

this thesis that is the introduction of a new technique for the non-invasive determination 
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of arterial distensibility, local wave speed and wave intensities to study arterial 

hemodynamics in humans. The technique relies only on diameter and velocity 

measurements that can be obtained using ultrasound. In particular, the technique was 

used for the first time to study the hemodynamic of the carotid and femoral arteries in a 

large population of healthy humans to investigate the changes with age and gender. The 

carotid artery was more affected by the aging process than the femoral artery, even in 

healthy subjects. Local wave speed, distensibility and hemodynamic wave intensity 

parameters (except the reflection index) had strong correlations with age at the carotid 

artery. The mechanical properties and hemodynamic parameters of the femoral artery 

were not significantly age-dependent, but local wave speed, distensibility and forward 

wave intensity were significantly gender-dependent.  

       The findings of the first and second studies contributed to the design of the third 

study. The carotid artery is an elastic artery relatively close to the heart and thus the 

hemodynamics of this vessel is related to left ventricular function. For this reason, the 

carotid hemodynamics of the same healthy population was investigated for the first time 

using the reservoir-wave approach. Pressure and velocity measurements were separated 

into their reservoir and excess components and the effects of age and gender on these 

parameters were studied. It was found that in the carotid artery reservoir and excess 

components are strongly affected by the ageing process.  

       From the above studies some questions about the hemodynamics of central arteries 

remained unsolved. For this reason it was decided to carry out in vitro experiments in a 

mock circulatory system to investigate the effects of variation of compliance and stroke 

volume on the reservoir and excess pressure components of the ascending aorta. This 

allows for the study of different physiological and pathological conditions, such as age, 

hypertension, atherosclerosis and ventricular dysfunction in relation to vascular 

compliance and stroke volume. The reservoir and excess components of the measured 

pressure wave were both significantly related to aortic compliance and stroke volume, 

but the reservoir pressure had a stronger relationship with aortic compliance compared 

with the excess pressure and its magnitude increased more significantly when the aorta 

became stiffer. Wave speeds, calculated using measured and excess pressures, followed 

the same pattern, but the one calculated using excess pressure was smaller than the 

other. Wave speed was strongly related to aortic compliance, but not to the change of 

stroke volume. 
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       In conclusion, the use of the wave-only and the reservoir-wave models led to 

different values of wave speed and intensities that can be explained considering the 

anatomy of the arterial system. Notably, elastic and muscular arteries are differently 

affected by age and gender. The hemodynamics of the carotid artery are strongly related 

to age also in healthy subjects. Pressure and flow velocity in the carotid artery can be 

separated into their reservoir and excess components. The new non-invasive technique 

based on diameter and velocity measurements could be relevant in clinical practice as a 

screening tool. 
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Chapter 1 : Background information  

1.1 Introduction 

The World Health Organisation (WHO) report states that cardiovascular diseases 

(CVDs) are the leading causes of death and disability in the world (World Health 

Organisation, 2012). CVDs are a group of disorders of the heart and blood vessels and 

include: coronary heart disease, cerebrovascular disease, peripheral arterial disease,  

heart disease, deep vein thrombosis and pulmonary embolism. The WHO reported that 

as recent as  2008 17.3 million of people died from CVDs and of these deaths, about 7.3 

million were due to coronary heart disease and 6.2 million were due to stroke. In the 

UK it has been estimated that in 2009 around one third of all deaths were due to CVD 

(British Heart Foundation, 2012). Of these deaths, 82,000 were due to coronary heart 

disease, and about 49,000 were caused by stroke. For successful prevention, diagnosis 

and treatment of CVDs a deep understanding of the hemodynamics of the 

cardiovascular system both in normal and in disease conditions is needed. 

1.2 The cardiovascular system 

The cardiovascular system carries blood to the body tissues through the blood 

vessels. The blood is the vehicle for oxygen, nutrients and waste products. The 

circulatory system comprises the heart and a complex network of vessels that carries the 

blood from the heart to all the organs and the periphery (systemic circulation and 

microcirculation). The blood returns to the heart through the veins in order to be 

pumped to the lungs where it is oxygenated and it releases carbon dioxide (pulmonary 

circulation) as shown in Figure 1.1. 

1.2.1 The heart and the cardiac cycle 

            The heart consists of four chambers, two superior called the right and left atrium 

and two inferior termed the right and left ventricle. The left side of the heart pumps 

blood into the systemic circulation, while the right side pumps blood into the pulmonary 
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circulation. The right atrium collects deoxygenated blood that then flows in to the right 

ventricle which pumps into the pulmonary circulation.  

 

Figure 1.1: Circulatory system (Taken from Tortora, Grabowski 1993). 
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Blood is oxygenated in the lungs and returns to the heart, in the left atrium and then it 

passes into the left ventricle which pumps blood in the systemic circulation. The path of 

the blood through the left and right heart is shown in Figure 1.2. To avoid back flow, 

the four chambers are separated by four valves that open and close based on pressure 

changes as the heart contracts and relaxes. The valve between right atrium and right 

ventricle is called tricuspid valve, and the one that separates the left atrium from the left 

ventricle is termed mitral valve. The valves that lie in the opening of the ventricles are 

called pulmonary and aortic valves for the right and left side, respectively. During the 

cardiac cycle, atrial and ventricular contraction or relaxation cause pressure changes 

resulting in blood flowing from regions of higher pressure to regions of lower pressure.  

 

Figure 1.2: Path of blood through the heart (Taken from Tortora, Grabowski 1993). 

During the cardiac cycle we can identify a phase called systole that refers to the 

contraction and a phase termed diastole that refers to the relaxation. From pressure 

waveforms measured in the left atrium, left ventricle and aorta the mechanics of the 

cardiac cycle can be easily described following Figure 1.3. It is possible to identify a 

first phase, "early diastole", when the pulmonary and aortic valves close, the atrio-

ventricular (AV) valves are open, and the whole heart is relaxed. Then a second phase, 

called "atrial systole", characterized by atrial contraction and by the flow of blood from 
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the atrium to the ventricle. The third, "isovolumic ventricular contraction", is when the 

ventricles begin to contract, the AV and semilunar valves close, and volume is constant. 

The fourth, "ventricular ejection", is when the ventricles are empty and contracting, and 

the semilunar valves are open. During the fifth stage, "isovolumic ventricular 

relaxation", pressure decreases, blood does not enter the ventricles, they begin to relax, 

and the semilunar valves close due to the pressure of blood in the aorta. 

 

Figure 1.3: Cardiac events occurring in the cardiac cycle (Taken from Guyton, Hall 

2006).  

1.2.2 Systemic circulation 

The systemic circulation starts from the aorta. The portion of the aorta that 

passes upward behind the pulmonary artery trunk as it emerges from the left ventricle is 

the ascending aorta. Then it turns to the left, forming the aortic arch that then runs down 

to the level of the fourth thoracic vertebra where the descending aorta starts. It splits 

into two common iliac arteries at the level of the fourth lumbar vertebra. The 

descending aorta between the aortic arch and the diaphragm is the thoracic aorta and the 

section between the diaphragm and the iliac arteries is the abdominal aorta. Each section 

of the aorta produces generations of other arteries that finally split into arterioles and 
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capillaries that supply blood to the tissues. Blood then returns to the right atrium 

through the systemic veins. 

1.2.3 Arterial structure 

The arterial wall is composed of three layers, as shown in Figure 1.4. The inner 

coat, termed tunica intima, is made of a lining of endothelium that is in contact with the 

blood, a basement membrane and a layer of elastic tissue called the internal elastic 

lamina. The central layer, or tunica media, consists of elastic fibers and muscle fibers. 

The third layer, tunica adventitia, is composed mainly of elastic and collagen fibers. 

This structure gives the vessels two important functional properties: elasticity and 

contractility.  

 

Figure 1.4: Anatomy of the arterial wall (Taken from Tortora, Grabowski 1993). 

As blood is ejected into the arterial system, the large arteries distend and accommodate 

a fraction of the stroke volume and during the diastolic phase the elastic recoil of the 

vessels pushes the blood onward. The distensibility is largely determined by passive 

elastic structures. The contractility of the smaller vessel is determined by its smooth 

muscle that is arranged in both longitudinal and circumferential ways around the lumen. 

1.2.3.1 Elastic arteries  

Elastic arteries include the aorta and the brachiocephalic, common carotid, 

subclavian, vertebral, common iliac and pulmonary arteries. The wall of these vessels is 

thin compared to their diameters and another important feature of the elastic arteries is 
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that the tunica media layer contains more elastic fibers and less smooth muscle. During 

the ejection phase, the walls of the elastic arteries stretch in response to increased 

pressure. They accommodate blood and the elastic fibers store some of the energy. For 

this reason, the elastic arteries can be regarded as a pressure reservoir. When they recoil 

(during ventricular relaxation), the elastic energy stored drives blood towards the 

periphery.  

1.2.3.2 Muscular arteries 

Muscular arteries include the axillary, brachial, radial, intercostal, splenic, 

mesenteric, femoral, popliteal, and tibial arteries. They are medium-sized arteries 

containing more smooth muscle than elastic fibers in their tunica media. For this reason, 

they are capable of greater vasoconstriction and vasodilation that allow them to adjust 

the rate of blood flow that supplies the other structures. The wall of these arteries is 

quite thick because of the large amount of smooth muscle.  

1.3 Role of arterial stiffness in hypertension 

       Arteries are not passive conduits of blood, but they have an active role in 

cardiovascular function, including in abnormalities of blood pressure. Distensibility of 

large arteries is an important and fundamental element in the relationship between 

pulsatile pressure and flow. Stiffening of these arteries can cause hypertension and can 

also be a consequence of this condition. An increase of arterial pressure causes acute 

and reversible stiffening of the large arteries without a change in the wall structure of 

the vessel. Arterial stiffness increases momentarily as blood pressure rises. Arterial 

stiffening increases also because the structure of the arterial wall changes. Persistently 

elevated blood pressure accelerates atherosclerosis, arterial smooth muscle hyperplasia 

and hypertrophy, and collagen synthesis, thus increasing arterial stiffness. Both of these 

mechanisms of stiffening of the large arteries are likely to be present in hypertension 

(Arnett et al. 2000, Franklin 2005). An initial increase in arterial blood pressure may 

generate a positive response in which hypertension biomechanically increases arterial 

stiffness without any structural change of the arterial wall, but later the pressure increase 

can lead to additional vascular hypertrophy and hyperplasia, collagen deposition, and 

atherosclerosis (Benetos 1997).  
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        Arteries have an important role in converting pulsatile blood flow to steady flow. 

During systole, the aorta accommodates some of the stroke volume and the pressure 

increases. During diastole the aorta recoils to promote forward flow and pressure is 

partially maintained by the recovering of the expanded arterial walls. If the artery is 

stiffer, this cushioning function is compromised, resulting in a higher systolic and lower 

diastolic blood pressure. Elastin fibers work at low and normal pressures while collagen 

fibers work at higher pressures (systolic blood pressure greater than 200 mmHg). 

Differences in the ratio of elastin to collagen affect arterial stiffness. The lower the ratio 

of elastin to collagen, the stiffer is the artery. Elevated smooth muscle tone or smooth 

muscle cell hypertrophy also increases arterial stiffness. The loss of elasticity of the 

artery wall with age is particularly relevant after the 5th decade of life (Franklin et al. 

2001), leading to the development of isolated systolic hypertension in the elderly and to 

an increased cardiovascular risk.  

1.4 Blood flow in the arterial system 

Interest in the cardiovascular system began many centuries ago, but the 

“modern” conception started with William Harvey (1578-1675) who published his 

discovery about the circulation of the blood in 1628 (Harvey 1628). In 1733 Hales 

(1677-1746) reported the first measurements of in vivo blood pressure and he also 

concluded that the change from pulsatile flow in arteries to the steady flow in veins was 

caused by the distensibility of the large arteries (Hales 1733). Hales was also the first to 

introduce the concept of peripheral resistance. The theoretical approach to the 

circulation began with Leonhard Euler (1707–1783). In 1755 he proposed the one-

dimensional equations of conservation of mass and momentum in a distensible tube 

(Euler 1775). In 1808 Thomas Young (1773-1829) found the relationship between 

elastic properties and the velocity of propagation of the arterial pulse (Young 1809). An 

important milestone in cardiovascular mechanics was the development of the law of 

viscous flow in tubes by Jean Luis Poiseuille (1799-1869) in which the volume flow 

rate is proportional to the pressure drop (Poiseuille 1846). An important study on the 

field of wave propagation was carried out by the brothers Weber. In 1825 they 

published their monograph which established many of the fundamental properties of 

wave propagation and reflection (Weber, Weber 1825). This work was followed in 

1877–1878 by the experimental work on wave speed of Moens (1846–1891) ) and the 
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theoretical study of the wave speed of Korteweg (1848–1941) ((Moens 1879, Korteweg 

1878). Korteweg’s theoretical formulation showed that the wave speed was determined 

both, by the elasticity of the tube wall and the compressibility of the fluid. Otto Frank 

(1865-1944) dominated the scene in the early twentieth century. He expressed 

mathematically the qualitative concepts of Hales and he analyzed the cardiovascular 

system as a model in which the heart pumps blood into a central elastic reservoir (the 

Windkessel) from which the blood is drained to the periphery through non-elastic 

vessels (Frank 1905). Frank later introduced the theory of waves in arteries. In 1920 he 

derived the wave speed in terms of the elasticity and in 1926 he also included the effect 

of viscosity, the resulting motion of the wall and the energy of the pulse wave. The two 

theories proposed by Frank (Windkessel and pulse wave model) have an internal 

conflict since the Windkessel model is based on the assumption that the whole arterial 

system acts like a single compartment while the wave model predicts that information 

propagates through the vessels in the form of waves. In the work that McDonald 

published in 1955 (McDonald 1955), he assumed that the entire arterial system was in a 

steady-state oscillation produced by the regularly repeated beat of the heart and defined 

the pressure pulse as an assembly of sinusoidal waves of frequencies determined by 

Fourier series. McDonald and Womersley (Womersley 1955, McDonald 1955) 

developed together the concept of Impedance Analysis through the Fourier technique in 

the frequency domain. This approach is still the most common in arterial mechanics and 

has been further developed by Taylor (Taylor 1966), O'Rourke (O'Rourke & Taylor 

1967; O'Rourke 1982) and Westerhof (Westerhof et al. 1969; Westerhof et al. 1971; 

Westerhof et al. 1972). In particular the latter developed the impedance approach to 

allow the separation of the pressure and flow waveforms into forward and backward 

components. An alternative approach to the analysis of blood flow in arteries in the 

frequency domain was based on the solution of the method of characteristics by 

Riemann (Riemann 1860). The first attempt of using this method to describe the wave 

propagation in the arteries was made by Anliker (Anliker et al. 1971). This work 

inspired Parker and Jones (Parker & Jones 1990) in the development of the wave 

intensity analysis. This technique has the advantage of obtaining an analysis in the time 

domain.   
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1.5 Wave propagation  

Waves are disturbances that propagate in space and time and their travel 

implicates exchange of energy from one form to another. Waves propagate in arteries 

due to the balance between the inertial force of the blood and the restoring force of the 

walls (in arterial wave analysis fluid compressibility is usually neglected because blood 

is relatively incompressible). The contraction of the heart produces a forward travelling 

wave (or series of wavefronts) that propagates from the aorta to the peripheral 

circulation. A wave such as the one generated by the ventricle will propagate unaltered 

if it is travelling in a uniform tube containing an inviscid fluid, but non-uniformities in 

terms of the cross sectional area or elasticity of the tube will create wave reflections. 

Wave propagation in arteries has been mainly analysed by two approaches, one in the 

frequency domain using the impedance (or Fourier) analysis and one in the time domain 

through the wave intensity analysis. 

1.5.1 Wave propagation in frequency domain: Impedance analysis 

          As discussed above the majority of studies on wave propagation were mostly 

done in the frequency domain, using impedance analysis. Arterial impedance (Z) (also 

called arterial input impedance) is another concept which counterparts the synonymous 

electrical term and is termed as the ratio between pressure (P) and flow (Q). Unlike 

resistance which is calculated from mean pressure and mean flow, impedance is a 

complex, time (or frequency)-dependent quantity that defines the dynamic relationship 

between pressure and flow. Usually, the impedance modulus decreases from its highest 

value at zero frequency to a minimum. The analysis of the complex relationship 

between pressure and flow in the frequency domain using Fourier analysis is possible 

only if the cardiovascular system is assumed to be in steady state. Using this analysis, 

the arterial pressure and flow waveforms can be decomposed into sinusoidal 

components (harmonics) with the appropriate frequencies, magnitudes and phase shifts. 

Although the impedance analysis has allowed for a better understanding of the wave 

propagation in arteries, as has been recently reported by Mitchell (Mitchell 2009), it has 

several limitations. First of all it implies the linearity of the system, i.e. that waves 

interact additively and also, even though Fourier transform recognizes the amplitude 

and phases of the various frequencies that contribute to a time series it cannot give 

information on their location within a time series. That means that Fourier analysis 
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cannot be used in case of non-periodic or transient flow. Linearity and periodicity are 

two debatable assumptions in the arterial system. 

1.5.1.1 From the two to the four-element Windkessel model 

As discussed in section 1.2.4, Frank quantitatively formulated the two-element 

Windkessel model. This model was inspired by the pumps in ancient fire engines that 

converted intermittent pumping into relatively steady flow by means of an air chamber 

(Figure 1.5).  

 

Figure 1.5: Sketch of the concept of the aortic two-element Windkessel. The model can 

be paralleled to an old fire engine pump and it can be described in terms of arterial 

compliance and peripheral resistance (Taken from Westerhof et al. 2009).  

The Windkessel model includes a resistance and a compliance element (Figure 

1.6) (Frank 1899). Since Poiseuille’s law establishes that resistance is inversely 

proportional to the blood vessel radius to the fourth power, the resistance to flow in the 

cardiovascular system is largely confined in the smallest arteries and the arterioles. The 

peripheral resistance, R, is obtained adding all individual resistances in the 

microcirculation. The compliant element is mainly characterized by the elasticity of the 

large arteries and it can be found by adding all the compliances of all vessels and is 

therefore termed total arterial compliance, C. The two-element Windkessel calculates 

that during the diastolic phase of the cardiac cycle, when the aortic valve is closed, 
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pressure will decay exponentially with a characteristic decay time which equals RC. The 

Windkessel is a lumped model that describes the entire arterial system, using a pressure-

flow relation at its inlet. Using this model, the wave travel and reflection phenomena 

cannot be taken into account. Moreover, the two-element Windkessel does not 

accurately predict the relationship between flow and pressure during systole. When flow 

measurements and Fourier analysis became available, the input impedence could be 

calculated  (Westerhof et al. 1972; Milnor, Nichols 1975; Nichols et al. 1977) and a 

three-element Windkessel, comprising R, C and aorta characteristic impedance (Zc), 

was proposed (Figure 1.6) (Westerhof et al. 1973). The three-element Windkessel can 

be seen as the first attempt to relate the lumped Windkessel model and wave travel 

phenomena since characteristic impedance equals wave speed times blood density 

divided by (aortic) cross-sectional area. Although the overall calculated pressure 

waveforms are similar to the measured ones, the high frequency details of the 

waveforms such as the inflection point and the augmentation in aortic pressure cannot 

be described by the three-element Windkessel model (Westerhof et al. 2009). Burattini 

and Gnudi (Burattini, Gnudi 1982) suggested adding another element in order to 

overcome the inaccuracy of the three-element Windkessel. Stergiopulos et al 

(Stergiopulos et al. 1999) proposed the four-element Windkessel, adding to the previous 

model an inertance element (Figure 1.6), which is the summation of all the inertances in 

the entire arterial system. The new element only affects the mean term and very low 

frequency behavior of the input impedance. However, due to the challenge of estimating 

the total inertance, the four-element Windkessel is not as successful as the three-element 

model (Westerhof et al. 2009). 
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Figure 1.6: The two-element (top), the three-element (middle) and the four-element 

(bottom) Windkessel (WK) models presented in hydraulic and electrical form. R is the 

peripheral resistance, C the compliance, Zc is the aortic characteristic impedance and L 

is the inertance (Taken from Westerhof et al. 2009). 

1.5.2 Wave propagation in the time domain: Wave intensity analysis 

Wave intensity analysis (WIA) for studying wave propagation in arteries was 

introduced by Parker and Jones in 1988 (Parker, Jones et al. 1988). It is based on the 

method of the characteristics (Riemann 1860) and, in its unseparated form, it does not 

assume any linearity or periodicity. WIA is an analysis in time domain and it represents 

the waveforms of pressure and velocity as successive wavefronts (small incremental 

waves) rather than the summation of sinusoidal wavetrains. Wavefronts are the 

elemental waves in wave intensity analysis. They can join each other as they propagate, 

causing waves to increase, or they can separate causing the wave to become less steep 

as it propagates. Figure 1.7 shows an example of aortic pressure waveforms 

decomposed into sinusoidal wavetrains and successive wavefronts.  
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Figure 1.7: Measured pressure waveform in a human aorta (top of both pictures) and 

decomposition into sinusoidal wavetrains (left) and successive wavefronts (right). 

(Taken from Parker 2009). 

Wave intensity (dI) is calculated as change in pressure times change in velocity  

dPdUdI   

It has the dimensions of power/unit area and it is the flux of energy per unit area 

carried by the wave as it travels. This definition implies that the wave intensity values 

depend on the sampling rate. In order to overcome this problem an alternative definition 

of wave intensity can be used 

dt
dU

dt
dPdI   

A wave can be also characterized by the integral of the peak, 
end

tarts

t

t

dIdt . The result 

of the integration is called the wave energy. This quantity is associated with the energy 

carried by the wave and is generally much less than the total kinetic and potential 

energy associated with the wave (Parker 2009). Figure 1.8 shows an example of wave 

intensity analysis performed in the human ascending aorta from the measured pressure 

and velocity. Positive values of dI correspond to forward waves and negative values to 
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backward waves. From the figure it is possible to identify three main peaks. The first 

peak is the initial compression (or acceleration) wavefront due to the contraction of the 

left ventricle. In mid-systole there is a negative peak indicating the reflection of the 

previous contraction wavefront. Then there is a second positive peak representative of a 

dominant forward wavefront at the end of systole that is a decompression (or 

deceleration) wave produced by the relaxation of the left ventricle. 

 

Figure 1.8: First measurement of wave intensity in man. Measured pressure P (top) and 

velocity U (middle) and net wave intensity dI (bottom). (Taken from Parker 2009). 

WIA is a 1-D theory, thus it assumes the arteries are long, thin and elastic tubes. 

As a consequence of this assumption the variation of velocity across the cross-section is 

neglected and the no slip condition at the wall is not considered. An important property 

for the clinical use of wave intensity is that it is calculated in the time domain and thus 

it is easy to determine when waves are present at the measurement site, their time of 

arrival and their magnitude. Since the impedance method results are in the frequency 

domain it is difficult to define when the waves arrive.  

 

1.5.2.1 Non-invasive wave intensity analysis 

              Feng and Khir (Feng & Khir 2010) developed another technique for studying the 

propagation of waves in flexible tubes based on noninvasive and simultaneous 

measurements of diameter (D) and U to separate diameter, velocity and wave intensity 

waveforms into their forward and backward components. The new wave intensity, 
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based on D and U measurements, was defined as the product of dD and dU. It has the 

same advantages of the traditional wave intensity analysis being positive for forward 

waves and negative for backward waves. While its reliability has been assessed in 

laboratory on hydraulic bench experiments (Feng & Khir 2010; Li & Khir 2011), the 

applicability in a clinical setting and using routine clinical measuring equipment has not 

been demonstrated. 

1.5.3 Wave speed 

            To separate the wave intensity into its forward and backward components, the 

wave speed (c) must be known (Parker & Jones 1990). The wave speed (also called 

pulse wave velocity, PWV) is the speed at which disturbance travels along the medium 

and it depends on the mechanical and geometrical properties of the vessel and on the 

density of the blood (Milnor & Bertram 1978). Thomas Young (Young 1809) was the 

first scientist that determined this parameter for an arterial segment as the change in 

pressure and distensibility. Wave speed is an important clinical parameter because it is 

an indicator of arterial stiffness and cardiovascular disease. For this reason several 

methods have been developed to determine it. Theoretically, wave speed in a thin 

walled elastic tube filled with an incompressible fluid can be determined using the 

Moens-Kortweg equation, 
D

Ehc


 , (Korteweg 1878; Moens 1879), where, c is the 

wave speed, E is the Young’s modulus of the tube wall, h is the wall thickness, ρ is 

density of liquid and D is the diameter of tube. In clinical practice the most used method 

to calculate the wave speed is the “foot-to-foot” method, which implies pressure 

measurements in two different sites at known distance and the transit time of the wave. 

This technique gives an averaged wave speed along the path. Usually measurements are 

taken at the carotid and femoral level (Figure 1.9).  
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Figure 1.9: Foot-to-foot technique. The method implicates the measurement of the time 

that the wave takes to travel from one site to another (Δt) at known distance (ΔL). In 

this example the common carotid artery and the common femoral artery are the two 

sites and the reference point to calculate the time difference is the foot of the wave 

(Taken from Laurent et al. 2007). 

            In the past few decades other methods to determine the local wave speed using 

single point measurements have been developed:  

 PU-loop method. Khir et al. (Khir et al. 2001) introduced the PU-loop method 

that consists of the determination of the slope of the linear portion of the loop at 

early systole where most probably only forward waves are present. The slope 

equals ρc, where ρ is blood density;  

 Area-Flow method. Another technique to determine the wave speed in a specific 

point of the arterial tree is the area-flow method (Rabben et al. 2004); this is 

based on the definition of the characteristic impedance; 

 Sum of Squares method. Davies et al. (Davies et al. 2006) extended the PU-loop 

principle deriving a formula that minimizes the net wave energy over a complete 

cardiac cycle using simultaneously P and U measurements in a single position. 

This technique was developed to overcome the problem of the determination of 

local wave speed in coronary arteries; 



Chapter1: Background 

 17   
 

 lnDU-loop method. Another method that relies only on diameter and velocity 

measurements was introduced by Feng and Khir (Feng, Khir 2010). Local wave 

speed is determined from the slope of the linear portion of the lnDU-loop in 

early systole, which is equal to ½ c. The advantage of this method is that it does 

not rely on the pressure measurement that cannot be acquired non-invasively in 

all the arteries. 

 D2P-loop method. Alastruey (Alastruey 2011) proposed the D2P-loop that 

consists of the determination of the slope of the linear part of the loop in diastole 

assuming the arterial wall as a Voigt-type visco-elastic material. The slope is 

equal to D0/ρc2 (with D0, mean arterial diameter). 

1.6 Reservoir-wave approach 

The Windkessel model, proposed in 1899 by Frank mentioned in section 1.5.1.1 

(Frank 1899, Sagawa et al. 1990), shows the importance of the aortic compliance in 

turning the discontinuous cardiac output into a more continuous pressure and flow in the 

downstream arteries, storing about 50% of the left ventricular stroke volume during 

systole and forwarding it to the peripheral circulation during diastole (Belz 1995). The 

Windkessel model clarifies very well the diastolic part of the pressure waveform, but is 

not particularly accurate for the systolic one because it does not take into account the 

wave contribution. To explain these two phases and the differences in shape of pressure 

and flow waveforms a new time domain approach, that is a combination of the 

Windkessel model and the wave propagation theory, was proposed (Wang et al. 2003). 

The authors considered the measured pressure in the aorta (P) as the sum of a reservoir 

pressure (Pr) and a pressure due to the waves that is termed excess pressure (Pe). An 

example is shown in Figure 1.10. This new approach resolves the self-cancelling waves 

that appear in the separation of the flow waveforms using the measured pressure that 

can only be explained by self-cancelling forward and backward waves of nearly equal 

magnitudes (Davies et al. 2007; Tyberg et al. 2009).  

The main findings of the study of Wang et al. (Wang et al. 2003) were: Pr is 

proportional to the aortic volume and the Pe waveform has the same shape of the aortic 

flow. In a separate study, wave intensity analysis was performed in the canine aorta 

using Pe and U (Tyberg et al. 2009). The results have shown that there are no significant 

backward-traveling waves to the aortic root at basal conditions. Although several 
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studies have been carried out using the reservoir-wave approach, the physical meaning 

of these new components of the measured pressure is still not completely understood as 

well as how these components change in healthy and non-healthy subjects has to be 

further investigated.  

 

Figure 1.10: Example of reservoir pressure (Pr, top figure in red) calculated from a 

pressure waveform (P, top figure in black) measured in the aorta of a dog. In the bottom 

figure, excess pressure (Pe, in blue) and velocity (U, in red) measured at the same site 

are plotted together to show the similarity between the two curves. 

1.6.1 Reservoir-wave approach at an arbitrary location 

The reservoir-wave theory as first introduced by Wang et al. (Wang et al. 2003), 

is based on the assumption that the flow is zero during diastole. This is true only at the 

aortic root when the aortic valve closes at the beginning of diastole. To use the same 

approach at different locations along the arterial tree, the concept of the reservoir-wave 
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theory has been further developed by Aguado-Sierra et al. (Aguado-Sierra et al. 2008a) 

assuming a similar exponential decay in diastole at different sites of the arterial system. 

They showed that it is possible to separate both the measured pressure in the reservoir 

and the excess components along the aorta; they also developed the reservoir-wave 

approach to the velocity waveforms, introducing the concept of reservoir and excess 

velocity (Figure 1.11). Note that in the original paper of Aguado–Sierra et al. (Aguado-

Sierra et al. 2008a) the reservoir pressure and velocity are termed P  and U , 

respectively, and the excess components p and u, respectively. In this thesis the 

reservoir pressure and the velocity components are called Pr and Ur and the excess 

components Pe and Ue.  

       The hemodynamics in other locations of the arterial system using the reservoir-

wave approach has not been studied yet.  

 

Figure 1.11: Simultaneous pressure (P) and velocity (U) measurements at different 

aortic locations in a dog and their corresponding reservoir–wave separated components. 

Pressures are shown on the left and the velocities on the right. Thick solid curves, 

ascending aorta; thick dashed curves, aortic arch; thin solid lines curves, thoracic aorta; 

thin dashed curves, abdominal aorta (Taken from Aguado-Sierra et al. 2008a).  
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1.7 Importance of wave speed and wave intensity analysis in clinical practice 

Wave speed is a parameter of particular physiological and clinical interest as it 

gives a direct measure of arterial stiffness. Increased stiffness of large elastic arteries is 

an early risk factor for cardiovascular diseases (Blacher et al. 1999; Cohn 2006; 

Vlachopoulos et al. 2010) and it has been reported that it is related to the following 

conditions: aging (Avolio et al. 1983; Mitchell et al. 2004; O'Rourke, Nichols 2005), 

hypertension (Benetos 1997), diabetes (Schram et al. 2004), atherosclerosis (Van Popele 

et al. 2001), heart failure (Kawaguchi et al. 2003) and others (Rubin et al. 2005). Wave 

intensity analysis is a relevant hemodynamic parameter in clinic practice for 

understanding how the waves travel along the arterial tree. This is a useful tool to 

evaluate the working conditions of the heart interacting with the arterial system 

(Ramsey, Sugawara 1997; O'Rourke 2002, Penny et al. 2008; Sugawara et al. 2009). In 

2003 Ohte et al. (Ohte et al. 2003) used WIA in the carotid artery to assess left 

ventricular systolic and early diastolic performance in subjects with suspected coronary 

artery disease. They found a strong correlation between the magnitude of the first 

positive peak of the wave intensity with the maximum rate of left ventricle pressure rise 

and between the second positive peak and the time constant of the left ventricle 

relaxation. In the same year Bleasdale et al. (Bleasdale et al. 2003) established a new 

index of cerebral vasomotor tone using WIA at the common carotid artery in a 

population of healthy subjects. The WIA applied at different peripheral arteries has 

shown differences in wave patterns (Zambanini et al. 2005). Wave intensity analysis 

shows also differences between normal and pathological subjects. In particular, Curtis et 

al. (Curtis et al. 2007) found that the energy carried by the forward compression wave is 

significantly reduced in subjects with heart failure and the one carried by the backward 

wave was increased. A more recent study has found that the wave reflection index 

calculated from the wave intensity analysis is a predictor of future cardiovascular events 

in hypertensive subjects (Manisty et al. 2010).  

So far the majority of the methods to determine c and WI are based on pressure 

waveforms that cannot be determined noninvasively in all arteries. In 2000, Sugawara et 

al. discovered a linear relationship between diameter and pressure waveforms in the 

carotid artery during systole (Sugawara et al. 2000). This finding led to the development 

of a non-invasive real-time measurement system of wave intensity (Harada et al. 2002) 

where diameter changes are measured with an echo-wall tracking system and used as a 
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surrogate for pressure changes. Systolic and diastolic blood pressures are used to 

convert the diameter waveform into pressure. The blood flow velocity is measured with 

range-gated Doppler signals.  

The non-invasive wave intensity analysis and the lnDU-loop method for the 

determination of c introduced in sections 1.5.2.1 and 1.5.3, respectively, contrary to 

Harada’s technique, have the advantage to not assume any linear relationship between 

pressure and diameter. The introduction of these techniques in clinical routine would be 

potentially useful as screening tool for cardiovascular diseases. For this reason, a study 

of the application of these non-invasive methods in healthy and non-healthy human has 

to be carried out. 

1.8 Relevance of the reservoir-wave approach in clinical practice 

The concept of two separate components of the measured pressure related to two 

different phenomena attracted the interest of other authors that tried to investigate the 

potential use of the new approach in clinical routine. Davies et al. (Davies et al. 2010a) 

found that the magnitude of the reservoir pressure increases with age and is the major 

determinant of the aortic augmentation index, which was considered to be caused 

mainly by the reflection waves. The same authors, also, reported that the time integral 

of the excess pressure is a predictor of cardiovascular events (Davies et al. 2010b). 

These studies demonstrated that the reservoir and excess pressure seem to be a 

promising tool to be used clinically for prevention, diagnosis or treatment of 

cardiovascular diseases. Therefore, the potential of this new approach has to be further 

investigated. 

1.9 Motivation for research 

As it has been discussed previously in this chapter, it appears evident that wave 

speed is an important measure of the arterial stiffness. Even though the wave speed was 

widely studied, most of the techniques employed to determine wave speed are based on 

pressure measurement, which is not easy to measure non-invasively in all the arteries. 

For this reason it is difficult to apply these techniques of wave speed determination into 

the clinical examination practice. The introduction of the lnDU-loop method, proposed 

by Feng and Khir (Feng 2008; Feng, Khir 2010), could be very promising for routine 

examination since it is based only on D and U measurements that can easily be recorded 
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non-invasively in the clinical environment with an ultrasound system. Moreover, the 

method does not make any assumptions about the relation between pressure and 

diameter and it does not require the measurement of the pressure waveform, nor of its 

systolic, diastolic or mean value in order to calibrate the diameter waveform of another 

artery. The lnDU-loop has been already validated in vitro (Li, Khir 2011; Li 2012), but 

a human study is still lacking. 

The reservoir-wave approach seems to have resolved the self-cancelling wave 

that appears in the linear separation of the flow waveforms and the subtraction of the 

reservoir pressure allows the study of wave propagation employing wave intensity 

analysis using the excess pressure (Wang et al. 2003; Davies et al. 2007; Tyberg et al. 

2009). However, recently some investigators have questioned the validity of this theory 

(Mynard et al. 2012; Segers et al. 2012). In particular, Maynard et al. performed wave 

intensity analysis on computational and animal data and found that using the reservoir-

wave approach the wave pattern is not reproduced faithfully by the wave intensity 

analysis after the subtraction of the reservoir pressure. On the contrary, some other 

investigators have demonstrated that a paradoxical pattern of wave reflection could 

appear if the reservoir pressure is not taken into account (Wang et al. 2011). The debate 

about the more correct model to be used for describing the wave propagation in arteries 

is still open in the literature. 

However, the use of the reservoir wave approach at different vascular locations 

and the concepts of a reservoir and excess velocity seem to open a new perspective in 

arterial hemodynamics. Moreover, the findings related to the potential use of reservoir 

and excess pressure as screening and diagnostic parameters (Davies et al. 2010a; Davies 

et al. 2010b) are promising, but a wider study in physiological and pathological 

condition is still needed. 

1.10     Aims and objectives 

The aim of this thesis therefore is to improve the understanding of wave 

propagation in central and peripheral arteries using different approaches for determining 

wave speed, intensities and other hemodynamic parameters in healthy human and in 

simulated pathological conditions. Furthermore, another aim of this thesis is to 

introduce a non-invasive technique for determining the mechanical properties of the 

arterial wall and wave intensities in humans. 
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The specific objectives of this thesis are: 

1) To give a contribution to the debate about the more correct model for describing the 

wave propagation; quantifying  the differences between the wave-only and the 

reservoir-wave models in describing the wave propagation in the ascending aorta when 

clear reflection sites are present;  

2) To study the arterial distensibility and other hemodynamic parameters in more 

accessible arteries that can be examined in clinical practice using a new non-invasive 

technique based on diameter and flow velocity measurements; 

3) To investigate non-invasively the changes of elastic and muscular arteries in relation 

to age and gender in healthy subjects; 

4) To separate the velocity waveform into the reservoir and excess components related 

to the corresponding reservoir and excess components of the pressure and to investigate 

the changes of these parameters in the carotid artery of healthy human in relation to age 

and gender;  

5) To investigate the effects of the ageing process and pathological conditions on 

reservoir and excess pressure components in central arteries.  

1.11 Thesis outline 

        In order to achieve the above mentioned aims and objectives this work has been 

structured in the following way:  

 Chapter 2: This chapter is entitled “Theoretical background” and covers all the 

mathematical formulation for the theories used throughout this thesis. 

 Chapter 3: This chapter is entitled “Comparison between wave-only and reservoir-

wave approach for the analysis of arterial waves in the canine aorta”. To provide a 

contribution to the debate about the correct approach to describe wave propagation 

in arteries, in this chapter, the hemodynamics of the canine aorta in control 

condition and during total aorta occlusion at four different levels (thoracic, 

diaphragm, abdominal and iliac) was studied measuring pressure and velocity 

invasively at the aortic root. Similarities and differences between the wave-only 
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theory and the reservoir-wave approach in the determination of wave speed and 

intensities in these conditions were assessed.  

 Chapter 4: This chapter is entitled “Non-invasive determination of local wave speed 

and intensities in carotid and femoral arteries of healthy human”. In this chapter the 

hemodynamic of central and peripheral human arteries was investigated. Carotid 

and femoral arteries are more superficial vessels compared to the ascending aorta 

and thus more suitable for clinical examination. A new non-invasive technique 

based on diameter and velocity measurements was used here to determine arterial 

distensibility, wave speed and intensity in the carotid and femoral arteries of healthy 

human. In this chapter the changes of these hemodynamic parameters with age and 

gender were also investigated and differences between elastic and muscular arteries 

were assessed. 

 Chapter 5: This chapter is entitled “Reservoir pressure and velocity in the human 

carotid artery”. In this chapter the reservoir-wave approach was applied to study the 

hemodynamics of the carotid artery in the same population used in chapter 4. The 

carotid artery is an elastic artery relatively close to the heart and thus the 

hemodynamics of this vessel is related to the left ventricle function. Pressure and 

flow velocity measurements were separated into their reservoir and excess 

components using an algorithm that allows for the use of this approach not only at 

the aortic root but also in other locations of the arterial tree. Effects of age and 

gender on the reservoir/excess components of velocity and pressure, and wave 

intensities were investigated. 

 Chapter 6: This chapter is entitled “Reservoir and excess pressure changes with 

vascular compliance and stroke volume”. Whilst in the previous study the reservoir 

and excess components of the pressure were investigated in healthy subjects; in this 

chapter they were investigated in relation to a change of aortic compliance and 

stroke volume in order to simulate the ageing process and pathological conditions. 

These changes were studied in vitro, in the ascending aorta of a mock circulatory 

system of the arterial circulation.  

 Chapter 7: This chapter is entitled “Conclusions and future work”. It contains a 

general discussion, a summary of conclusions related to chapters 3-6 and future 

works. 
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Chapter 2 : Theoretical Background 

2.1 Introduction 

A one-dimensional model to describe fluid flow in elastic tubes has been 

developed by Euler in 1775 (Euler 1775). The equations of motion for fluid of the 

model are complex, hyperbolic partial differential equations. They were solved in 1860 

when Riemann proposed the method of characteristics (Riemann 1860). The work of 

Riemann provided the basis for the development of wave intensity analysis (WIA) 

which has been briefly discussed in chapter 1. WIA relies on the solution of Euler’s 

mathematical model and equations using the method of characteristics (Parker, Jones 

1990).  

In this chapter the analytical details to derive the wave intensity analysis from 

the conservation laws that each arterial segment must respect are reported. The two 

main assumptions that are made when the one-dimensional model is applied to the flow 

in arteries are: 

1) Blood is considered as an incompressible fluid because its compressibility is 

small in comparison to the large distensibility of the arterial wall (Lighthill 

1978, Pedley 1980). 

2) The arterial radius expansion and contraction have to be small compared to its 

undisturbed value, which means that radial fluid motion is negligible compared 

to the longitudinal one (Lighthill 1978). 

2.2 Governing flow equations 

Blood flow in arteries follows the laws of conservation for mass and momentum. 

Mass law: The conservation law states that an equal quantity of incompressible 

fluid flowing into a system must flow out, since mass can neither be created nor 

destroyed 

(2.1) 
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where A is the cross-sectional area, t is time, U is the spatially averaged velocity and x 

is the axial distance along the tube . 

Momentum law: it is derived from Newton’s second law that is Force = mass x 

acceleration (Newton 1687) that can be rearranged to become Force = rate of change of 

momentum, which equals the resultant force acting on the body. 
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                                                                                      (2.2) 

where P is the spatially averaged pressure and ρ is the density of the fluid. 

Blood vessels are considered as impermeable elastic tubes with uniform and 

constant properties and the effects of viscous dissipation are assumed to be negligible. 

As the cross-sectional area of the tubes changes during systole and diastole as a result of 

the variation in pressure and the elastic properties of the wall, the values rely on the 

instantaneous pressure only (Parker & Jones 1990). Accordingly, A can be defined as a 

function of P that itself is a function of x and t. Equation 2.3 describes the tube law 

which is the relationship between transmural pressure and cross sectional area 

)),(( txPAA                                                                                                               (2.3) 

And if we expressed this as rate of change of the cross-sectional area at time (t) 

and distance (x) 
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The substitution of equation 2.4 into equation 2.1 leads to  
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That divided by the arterial segment compliance and rearrange gives 

                                                                                (2.6) 

 

                                                                                            

which is a first order hyperbolic partial differential equation, which can be solved using 

the method of characteristics (Riemann 1860). Matrix notation can be used to express 

equations 2.2 and 2.6 as 

 xt                                                                                                               (2.7) 
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where Ds is the distensibility of the vessel wall which can be defined as the rate of 

change of A per change of the P over the initial area 
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The eigenvalues, λ, of the matrix Ω, are solutions of the characteristic polynomial 

0 I                                                                                                                   (2.9) 

where I is the identity matrix and the eigenvalues represent speed of propagation 
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The left term of the equation 2.10 can be defined as c2, thus 

sD
c


12    and also,   22  Uc                                                      (2.11a) and (2.11b) 

consequently, the eigenvalues of the matrix Ω are 

cU                                                                                                                   (2.12) 

where c is the local wave speed.  

The characteristic directions are 

cU
dt
dx

                                                                                                                  (2.13) 

and they can be used to convert partial differential equations (PDE) into a system of 

ordinary differential equations (ODE) assuming that the waves run in the space-time 

plane along the characteristic directions 
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Considering the wave speed is a function of local pressure this equation can be rewritten 

as Riemann function terms 
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where R is the Riemann invariant, P0 is an arbitrary pressure and (+) and (-) indicate the 

direction of wave travel (+ indicates forward and – backward direction). The differential 

form of equation 2.15 is 

0 c
dPdUdR


                                                                                                   (2.16) 

2.2.1 The water-hammer equation 

In order to show more clearly the straightforward relationship between pressure 

and velocity equation 2.16 can be written as 

  cdUdP                                                                                                             (2.17) 

which is the well-known water-hammer equation that enables one to calculate the 

pressure dependent wave speed of a wavelet when travel is only unidirectional. 

2.2.2 The pressure-velocity loop method 

In order to separate the waves into backward and forward components, the 

knowledge of c is essential. In Figure 2.1 pressure P is plotted against velocity U over a 

whole cardiac cycle in order to obtain a PU-loop. In the early ejection phase, where only 

unidirectional waves are present, the relationship between pressure and velocity is linear 

and the slope of this linear part equals ρc as predicted by integration of the water 

hammer equation  

P+ - P0=ρcU+                                                                                                                                                                  (2.18) 

where P0 is the diastolic pressure.  

The PU-loop method has been shown to give accurate results in both in vivo (Khir et al. 

2001) and in vitro experiments (Khir & Parker 2002). This technique to calculate wave 

speed has been used in chapters 4, 5 and 6. 
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Figure 2.1: Example of PU-loop in a dog during thoracic occlusion. The blue line is the 

linear fitting of the linear part of the loop in early systole and arrow indicates the 

direction of the loop. 

2.2.3 Wave separation  

All measured pressure and velocity values are derived from forward and 

backward wavefronts that intersect at a precise time and plane. Assuming that the 

increments in pressure and velocity are the linear summation of variation of P and U in 

forward and backward directions we can write 

  dPdPdP  and   dUdUdU                                                     (2.19) and (2.20) 

Replacing the water-hammer equation in equations 2.19 and 2.20 we can calculate dP 

and dU in forward and backward direction as 

 cdUdPdP  2
1

                                                                                                
(2.21) 






  c

dPdUdU 2
1

                                                                                             
(2.22) 

Integrating equations 2.21 and 2.22 




 
T

t
dPPP

0
0 


 

T

t

dPPP
0

0
                                                                             

(2.23) 




 
T

t
dUUU

0
0 


 

T

t

dUUU
0

0
                                                                       

(2.24)
          

 

where P0 and U0 are integration factors and T is the duration of the whole beat. P0 has 

been assumed equal to the diastolic pressure for P+ and all the other integration factors 

have been assumed to be equal to zero. 
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2.2.4 Wave intensity 

The intensity of the wave can be calculated as dI=dPdU and is the flux of energy 

carried by the waves per unit area. Forward and backward intensities can be defined as 

dI+=dP+dU+ and dI-=dP-dU-, respectively. If c is known, then the intensity of the waves 

can be separated in the forward and backward component 

 2

4
1 cdUdP

c
dI 




                                                                                         
(2.25) 

Wave intensity is always positive for forward waves and negative for those that are 

travelling in backward direction. Equation 2.25 can be integrated to obtain the energy of 

the wave 

  
T

dtdII
0                                                                                                                

(2.26) 

 

Figure 2.2: Example of wave intensity in the aorta of a dog. Net (dI, black), forward 

(dI+, red) and backward (dI-, dashed blue) wave intensities. 

Figure 2.2 shows an example of wave intensity analysis in a canine aorta; the 

net intensity (dI) is separated into its forward (dI+) and backward (dI-) component using 

equation 2.25. Two main positive waves can be detected; one in early systole that is the 

forward compression wave due to the ventricular ejection and one in late systole that is 

the forward expansion wave due to the reduction in left ventricle rate of contraction. In 
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mid-systole a negative wave is predominant, which is the backward compression wave 

due to the reflections from the periphery. The area under these curves gives the energy 

of the waves. 

2.2.5 Non-invasive determination of wave speed using diameter and velocity  

As discussed in chapter 1, determination of wave speed is useful in clinical 

environment because it is a marker of vascular disease (Blacher et al. 1999; Mitchell et 

al. 2010). However, a pressure waveform cannot be obtained in a non-invasive way in 

all arteries. For this reason, a mathematical formulation for wave speed determination 

that involves diameter (D) and velocity measurements has been recently developed 

(Feng 2008; Feng & Khir 2010). This new technique has been already validated in vitro 

(Li & Khir 2011; Li 2012) and an in vivo study is part of chapter 4.  

The formulation for the assessment of c using D and U follows. If we consider a 

vessel circular cross sectional area we can write 

D
dD

A
dA 2


                                                                                                                 

(2.27) 

where D in the change in diameter. Replacing equation 2.27 in 2.11a and rearranging 

we have 

D
dDcdP 22

                                                                                                           
(2.28) 

Assuming dD as the linear summation of diameter changes due to changes in the 

forward and backward diameter changes,  

  dDdDdD                                                                                                         (2.29) 

substituting equation 2.29 in equation 2.28 and considering equation 2.18, we can write 

   dDdD
D
cdPdP

22
                                                                                 

(2.30) 

which can be expressed in terms of D and U only using the water-hammer equation 

(equation 2.17) 

















dDdD
dUdUDc

2                                                                                                    
(2.31) 

Assuming that dD/D = dlnD, which is the incremental hoop strain, c can be determined 

as 




Dd

dUc
ln2

1

                                                                                                         
(2.32) 
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Plotting lnD against U gives a lnDU-loop with a linear portion in early systole, as the 

PU-loop. In this case the slope of the linear part equals equals ½ c. In Figure 2.3 a 

typical example of a lnDU-loop is shown.  

 

 

Figure 2.3: Example of lnDU-loop in the femoral artery of a healthy human. The blue 

line is the linear fitting of the linear part of the loop in early systole and arrow indicates 

the direction of the loop. The diameter in expressed in (m). 

2.2.6 Non-invasive wave intensity analysis  

Based on the above formulation also the wave separation and a non-invasive 

wave intensity analysis (ndI) have been developed (Feng & Khir 2010). Using the 

water-hammer equation (2.17) in equation 2.28 in order to have the expression in terms 

of D and U only and considering unidirectional waves lead to 

  dU
c

DdD
2                                                                                                            

(2.33) 

Since the change in velocity is a linear summation of velocity changes in 

forward and backward directions (equation 2.20) we can write 







  dU

c
DdDdD
22

1

                                                                                             
(2.34) 







  dD

D
cdUdU 2

2
1

                                                                                             
(2.35) 

Integration of  equations 2.34 and 2.35 leads to 




 
T

t
dDDD

0
0 


 

T

t

dDDD
0

0
                                                                        

(2.36)
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


 
T

t
dUUU

0
0 


 

T

t

dUUU
0

0
                                                                       (2.37)                                              

where D0 and U0 are integration factors and T is the duration of the whole beat. D0 has 

been assumed equal to the diastolic diameter for D+ and all other integration factors 

have been assumed equal to zero. 

Non-invasive wave intensity can be calculated as ndI=dDdU and can be 

separated in forward and backward direction as for the traditional wave intensity 

analysis 

 
2

22/4
1







  dU

c
DdD

cD
dIn                                                                               (2.38) 

Non-invasive wave intensity is always positive for forward waves and negative 

for those that are travelling in backward direction. Equation 2.38 can be integrated to 

obtain the energy of the wave as in equation 2.26. 

2.2.7 Wave classification 

            Waves can be classified in four different classes based on their nature 

(compression and expansion) and direction (forward and backward). Compression 

waves are related to an increase in pressure and diameter that induces acceleration if the 

wave is travelling in the forward direction and deceleration in case of backward 

direction. On the other hand, expansion waves are associated with a decrease in pressure 

and diameter, which induces acceleration if the wave is running in the backward 

direction and deceleration for the forward direction. In Table 2.1 the wave classification 

is reported. 

Table 2.1: Wave classification. 

Direction Wave dP dU dD dI ndI 

Forward 
Compression >0 >0 >0 >0 >0 

Expansion <0 <0 <0 >0 >0 

Backward 
Compression >0 <0 >0 <0 <0 

Expansion <0 >0 <0 <0 <0 
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2.2.8 Reservoir-wave theory 

In this section, the mathematical formulation of the model proposed by Wang et 

al. (Wang et al. 2003) is reported. Throughout the thesis this model will be called 

reservoir-wave model. 

The authors assumed that the measured pressure at the aortic level (P) is the linear 

summation of a pressure due to the waves that they called excess pressure (Pe) and a 

reservoir pressure due to the elastic properties of the aorta (Pr), 

   tPtxPtxP re  ,),(                                                                                               (2.39) 

where Pr varies with time only. 

Variation of aortic Pr can be defined as 

C
tQtQ

dt
dV

dV
dP

dt
tdP outinr

r

rr )()()( 


                                                                                         
(2.40) 

where Vr is the reservoir volume, Qin is the aorta inflow, Qout the outflow and C is the 

compliance of all the arterial tree. Qout can be described by the follow equation 

R
PtP

tQ r
out




)(
)(

                                                                                                                         
(2.41) 

where P∞ is the asymptotic pressure of the diastolic exponential decay and R is the 

resistance of the peripheral systemic circulation. Substituting equation 2.41 in equation 

2.40 

C
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(2.42) 

leads to the general solution 
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(2.43) 

where t0 and P0 are time and pressure at the beginning of the ejection. Qin was 

considered zero during the diastole. 

Once Pr has been subtracted from the measured pressure, Pe can be used instead 

of P to determine the wave speed (PeU-loop method), to separate the waves in forward 

and backward direction and to calculate the wave intensity as dI=dPedU. This model has 

been used in chapter 3 to assess the differences with the traditional wave theory in the 

canine aorta and in chapter 6 to study the reservoir and excess pressure components in 

the aortic root of a mock circulatory system. 
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2.2.9 Extension to reservoir velocity 

In this section the extension of the reservoir-wave model to an arbitrary location 

is reported (Aguado-Sierra et al. 2008a).  

They assumed that also velocity is the sum of a reservoir (Ur) and an excess (Ue) 

component 

     txUtxUtxU re ,,,                                                                                           (2.44) 

Note that Ur depends also on the position while Pr depends only on time.  

To determine Ur, it has to be assumed that it is directly proportional to P-P∞ in the 

diastolic part where the reservoir effect is prevailing and the wave activity negligible. Ur 

is given as 

R
PPU r



                                                                                                              

(2.45) 

where R  is the effective resistance of the vessels downstream of the measurement site 

and can be determined from the linear portion of the PU-loop in diastole or as 

    UPPR / where <P> and <U> are the time-averaged pressure and 

velocity between the dicrotich notch time, Tn, and the end of the beat, T. Once R is 

determined, Ur can be determined at any time 0 < t < T as 

R
PPU r

r



                                                                                                             

(2.46) 

and is equal to the velocity due to the reservoir pressure only in the case of negligible 

compliance downstream of the measurement site. Ue can be calculated as Ue=U-Ur                                                                                                                   

(2.47) 

Ue can be used instead of U to determine the wave speed (PeUe-loop method), to 

separate the waves in forward and backward direction and to calculate the wave 

intensity as dI=dPedUe. This model was used in chapter 5 to study the carotid 

hemodynamics in healthy subjects. 



  Chapter 3: Wave analysis with and without reservoir pressure in canine aorta 

 36   
 

Chapter 3 : Comparison between wave-only 
and reservoir-wave approach for the analysis of 
arterial waves in the canine aorta 
 

3.1 Introduction 

As mentioned at the end of chapter 1, this chapter compares two different 

models for describing wave propagation in arteries, during aortic occlusion. In 

particular, the two techniques are the traditional wave intensity analysis and the more 

recent reservoir-wave approach. 

The Windkessel model, proposed in 1899 by Frank (Sagawa et al. 1990), shows 

the importance of aortic compliance in turning the discontinuous cardiac output into a 

more steady flow in the microcirculation; about half of the volume flow rate during 

systole is stored in the compliant arteries which contract during diastole making the 

volume flow rate through the microcirculation much more uniform (Belz 1995). The 

model consists of a resistance to flow through the microcirculation (R) that depends on 

the peripheral vessels and a compliance (C) determined mainly by the elasticity of the 

large arteries. The model predicts that the arterial pressure will decay exponentially 

during diastole with a time constant RC. The Windkessel model, as originally presented, 

describes the diastolic part of the pressure waveform very well, but is not particularly 

accurate for systole because it does not take into account the contribution of waves 

(Westerhof et al. 2009).  

The addition of the characteristic impedance to the two-element Windkessel was 

proposed to link the lumped model and the wave propagation in the arterial system 

(Westerhof et al. 1969; Westerhof et al. 1971). However, the three-element Windkessel 

is not able to describe high frequency details such as the inflection point and the 

augmentation shoulder in aortic pressure (Westerhof et al. 2009). 

Wave intensity analysis (WIA) is a time-domain technique based on the classical 

one-dimensional flow equations in flexible tubes, and was introduced as an alternative 

to the frequency-domain techniques (Parker, Jones 1990; Parker et al. 1988, Parker 

2009). Both WIA and impedance methods can be used for the separation of pressure 

and flow waveforms into their forward and backward components; producing results 
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that are almost identical (Hughes, Parker 2009). WIA, however, has the advantage that 

it does not rely upon the assumption of periodicity that is essential for Fourier analysis 

techniques (Avolio et al. 2009). However, whilst WIA seems to describe the pattern of 

waves and their intensities very well, the aortic “reservoir effect” is neglected.  

There are some anomalies in the separation of arterial pressure into its forward 

and backward components using either impedance or wave intensity analysis (Hughes, 

Parker 2009). This is particularly noticeable in diastole when the pressure decays 

exponentially while flow at the aortic root is almost zero which, according to wave 

theory, can only be explained by self-cancelling forward and backward waves of nearly 

equal magnitudes. This could be the result of standing waves in the aorta, but other 

evidence, such as the extended exponential pressure decay during extended diastole due 

to ectopic or missing heart beats, mitigates against this (Figure 6, in (Wang, et al. 2003). 

The first time domain approach to couple the reservoir effect and the wave 

propagation theory at the aortic root was proposed by Wang et al. (Wang et al. 2003). 

The reservoir-wave model was extended to the venous system (Wang et al. 2006) and 

was further developed for any arbitrary location in the arterial system (Aguado-Sierra et 

al. 2008a). This model is based on the heuristic assumption that the measured pressure 

in the aorta (P) is the sum of a reservoir pressure (Pr), due to the storage of blood in the 

compliant aorta, and an excess pressure (Pe), due to the waves. This new approach 

resolves the self-cancelling waves that appear in the separation of the flow waveforms 

using the measured pressure (Davies et al. 2007; Tyberg et al. 2009). The subtraction of 

the reservoir pressure, which accounts for the potential energy stored in the aorta, 

allows the study of wave propagation employing wave intensity analysis (WIA) using 

Pe instead of P. Since the Windkessel function seems to improve left ventricle relaxation 

(Ochi et al. 1991) and coronary blood flow (Watanabe et al. 1993), the study of the 

buffering function of the aorta in terms of Pr could be a useful tool to better understand 

the mechanics of the heart and the coronary circulation. The reservoir-wave model has 

been applied to human (Davies et al. 2007), animal (Wang et al. 2006) and numerical 

data (Aguado-Sierra et al. 2008a). Davies et al. (Davies et al. 2010a) reported that the 

augmentation index (AIx) in humans depends mainly on the arterial reservoir rather 

than wave reflection. The authors also found that the reservoir pressure increases with 

age probably due to the increase in aortic stiffness, which suggests that this is the main 

reason for the change in morphology of the aortic pressure waveform with age. 
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Recent work has suggested a slight modification of the definition of reservoir 

pressure to account for the time of propagation of waves through the aortic system 

(Parker et al. 2012). They define P(x,t) = Pr(t – (x)) + Pe(x,t) where (x) is the time of 

wave propagation from the aortic root (x=0) to the location x in the arterial system. 

Since =0 at the aortic root, this definition is consistent with previous work analysing 

flow in the aortic root, but extends the concept to other parts of the arterial system in a 

way that overcomes the obvious objection that the reservoir pressure cannot be uniform 

throughout the arterial system (as assumed in the simple Windkessel model) because 

arterial wave speeds are finite. Parker et al. showed that Pr, so-defined, represented the 

pressure waveform that resulted in minimal hydraulic work by the left ventricle to 

generate a given waveform of flow from the ventricle (Parker et al. 2012).  

A study of pressure and flow measurements in the canine aorta has shown that 

the excess pressure waveform, obtained by subtracting the reservoir pressure from the 

measured pressure, is virtually identical in shape to the measured flow waveform at 

control conditions (Wang et al. 2003; Tyberg et al. 2009). The similarity between the 

waveforms indicates that there are no significant backward waves in the aortic root for 

those conditions. In contradistinction, another study based on WIA of the measured 

pressure, not taking Pr into account, showed that backward waves were evident in the 

canine aortic root (Khir, Parker 2005).  

Although the reservoir-wave approach is based on a solid mathematical 

formulation, some authors have questioned the validity of this technique (Maynard et al 

2012; Segers et al. 2012). Mynard et al. showed that the use of Pe for determining the 

intensity of the waves leads to a reduction or elimination of the backward compression 

waves and to an increase or artefactual introduction of expansion waves. On the other 

hand Wang et al. (Wang et al. 2011) demonstrated that the wave pattern after 

subtraction of Pr is more physiologically consistent than that calculated using traditional 

WIA. As a contribution to the on-going debate regarding the two models, in this chapter 

the similarities and differences between the results of two models are assessed, and a 

physiological explanation based on the anatomy of the arterial system is considered.       

Since the subtraction of the reservoir pressure from the measured pressure 

results in a smaller component of the pressure due to local waves, it can be hypothesised 

that using the reservoir-wave approach would produce smaller values of wave speed and 

intensities than those produced using the measured pressure. The aim of this work is 
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thus to provide a detailed, quantitative study of the differences when arterial flow 

properties are calculated using the measured pressure (wave-only technique) and using 

the excess pressure (reservoir-wave technique). The data are from measurements in the 

canine ascending aorta when the effects of total occlusion at four different sites were 

studied (Khir, Parker 2005). This enables us to study the effect of the reservoir pressure 

in normal conditions and in conditions where reflected waves are certain to be present. 

 

3.2 Material and Methods 

3.2.1 Wave only and reservoir-wave theory 

The mathematical equations used in this chapter for the wave only analysis are 

reported in chapter 2, section 2.2.1, 2.2.2, 2.2.3 and 2.2.4. The equations used for the 

reservoir-wave analysis are reported in chapter 2, sections 2.2.8. 

3.2.2 Experimental protocol 

Experiments were performed in 11 anaesthetised mongrel dogs (average weight 

22 ± 3 kg, 7 males). All experiments were performed at the University of Calgary 

(Alberta, Canada) by Professor Tyberg’s Cardiovascular Research Group. The surgery 

was executed by dog surgeons Cheryl Meek and Gerry Groves and the data were 

collected by Ashraf Khir and Greg Nelson (Page 2009). All experiments in this study 

adhered to the University of Calgary’s guiding principles in the care and use of animals 

and were approved by the appropriate ethics committee. These data that were used to 

investigate the size and effect of reflections in the systemic arterial system using WIA 

(Khir & Parker 2005) are suitable for the work presented here since they provide a 

strong and clear reflection. 

The dogs were anaesthetised with sodium pentobarbital, 30 mg/kg-body weight 

intravenously and a steady dose of 75 mg/h was given throughout the experiment. The 

dogs were endotracheally intubated and mechanically ventilated using a constant-

volume ventilator (Model 607, Harvard Apparatus Company, Millis, MA, USA). 

           An ultrasonic flow probe (Model T201, Transonic Systems Inc., Ithaca, NY, 

USA) was fixed around the ascending aorta approximately 1 cm distal to the aortic 

valve. Pressure at the aortic root, just downstream of the flow probe, was measured with 

a high-fidelity pressure catheter (Millar Instruments Inc., Houston, Texas, USA) 

inserted from the right or left brachial artery. Snares were placed at four different sites: 
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the upper descending thoracic aorta at the level of the aortic valve (thoracic); the lower 

thoracic aorta at the level of the diaphragm (diaphragm); the abdominal aorta between 

the renal arteries (abdominal) and the left iliac artery, 2 cm downstream from the aorta 

iliac bifurcation (iliac). The right iliac artery was occluded throughout each experiment 

to allow for inserting a transducer-tipped pressure catheter used for measuring the 

pressure upstream of each occlusion. Figure 3.1 illustrates the aorta and the occlusion 

sites. Data were collected for 30 s before the occlusion (control) and during the 

occlusion; 3 min after the snare was applied. An interval of 10–15 min was allowed 

between each occlusion in order to return to control conditions (Van Den Bos et al. 

1976). The sequence of the four occlusions was varied between dogs using a 4X4 Latin-

square to remove possible time effects. In order to convert the measured flow rate into 

velocity, the circumference of the ascending aorta was measured post-mortem. All data 

were recorded at a sampling rate of 200 Hz and stored digitally. The relative time delay 

between the P and U signals due to the phase differences of the transducers and to the 

small displacement between their locations was eliminated by the appropriate shifting of 

the velocity signal (Swalen & Khir 2009). 

 

Figure 3.1: Schematic representation of the aorta and the sites where it was occluded. 
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3.2.3 Analysis 

The reservoir pressure was calculated using an algorithm similar to that 

described in (Aguado-Sierra et al. 2008a). Briefly, the start of diastole is defined as the 

time of the first point of inflection in the measured pressure after the systolic peak 

(minimum of the first derivative of the measured pressure). The diastolic pressure is 

fitted to the model P(t) – P∞ = (P0 – P∞) e-t/RC, where P0 is the pressure at the start of 

diastole, to find the time constant RC and the asymptotic pressure P∞. The method is 

based on the two assumptions that (i) the arteries are well-matched for forward waves 

and (ii) the volume flow rate into the aorta is proportional to the excess pressure Pe(t). 

The value of this constant of proportionality is determined iteratively by minimising the 

mean square error between the model and the measured pressure during the whole 

cardiac period. Given this constant, Pr(t) and Pe(t) can be calculated directly. In Figure 

3.2 P, Pr and Pe and the separation in forward and backward waves are shown for 

control and all occlusions. In Table 3.1, the averaged values of measured pulse pressure 

(PP), reservoir pulse pressure (PPr) and excess pulse pressure (PPe) are reported together 

with the averaged value of diastolic pressure (Pd).  

Wave speed in the ascending aorta, was determined from the slope of the linear 

part of the PU-loop (c) and PeU-loop (ce), before and during total occlusion (Figure 

3.3). The net wave intensity was calculated using P (dI) and Pe (dIe) in all of the 

experimental conditions and was then separated in forward (dI+, dIe+) and backward (dI-, 

dIe-) wave intensity. In all cases the forward wave intensity displayed a positive peak at 

the start of systole indicating a forward compression wave (FCW) and another at the 

end of systole indicating a forward expansion wave (FEW). In some conditions a 

negative peak in the backward wave intensity was discernible during mid-systole 

indicating a backward compression wave (BCW). The magnitude of the forward peaks 

(dIFCW, dIeFCW and dIFEW, dIeFEW) and backward peaks (dIBCW, dIeBCW) and the 

Reflection Indices (RI and RIe), calculated as dIBCW/dIFCW and dIeBCW/ dIeFCW, were 

determined. Also, the time of the peaks (tFCW, teFCW, tBCW, teBCW, tFEW, teFEW) and the 

onset time of the backward compression (tBCWonset, teBCWonset) and forward expansion 

waves (tFEWonset, teFEWonset) were determined using the two models and the results were 

compared.  
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Wave speed and intensity calculated with P and Pe before and during the total 

occlusion are the average of all cardiac beats over the 30 s period of measurement. Four 

control recordings were sampled in each dog; one before each occlusion. Since there 

were no significant differences between these four control measurements, they were 

pooled for each dog and considered the control state. Data are presented in the text as 

mean values ± SD and in figures as mean values ± SEM (mean was calculated by 

averaging the mean values of all dogs). Paired two-sided t-tests were used to assess 

differences between parameters calculated using P and Pe. Paired t-tests were also used 

to assess differences between parameters calculated during control and occlusion 

conditions. The relationship between PPr and PP with the stroke volume (Vin, calculated 

by integrating the area of under the flow waveform during systole) was assessed using 

bivariate correlation. Values of p<0.05 were considered statistically significant. 

Statistical analyses were performed using SPSS 17.0 (SPSS Inc., Chicago, Illinois, 

USA).  

 

Table 3.1: Aortic pulse pressures and diastolic pressure.  

Pressure 
(mmHg) 

Control 
(n = 11) 

Thoracic 
(n=10) 

Diaphragm 
(n=11) 

Abdominal 
(n=11) 

Iliac 
(n=9) 

PP 37 ± 11 64 ± 18** 40 ± 17 33 ± 10 37 ± 10 

PP+ 31 ± 10 43 ± 10* 27 ± 11 28 ± 10 31 ± 10 

PP- 15 ± 5 27 ± 8** 19 ± 8 15 ± 5 16 ± 6 

PPr 30 ± 9 52 ± 20* 35 ± 16 28 ± 8 28 ± 9 

PPe 20 ± 8 21 ± 7 17 ± 6 17 ± 8 21 ± 9 

Pd 83 ± 19 112 ± 21** 104 ± 21** 88 ± 18 82 ±0 

Values are mean ± SD. * indicates p<0.05 compared to the control and ** indicates p<0.001 compared to 
the control. PP, PP+ and PPr are calculated as the difference between the peak and the diastolic values. 
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Figure 3.2: Examples of pressure waveforms in control and during the four occlusions. 

In the upper panel of each condition is shown the measured pressure (P, dashed black) 

separated into its forward (P+, solid black) and backward (P-, gray) components and in 

the lower panel the excess pressure (Pe, thin black) separated into its forward (Pe+, solid 

black) and backward (Pe-, gray) components (right axis), measured pressure (P, dashed 

black) and reservoir (Pr, dashed gray) component (left axis). 
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Figure 3.3: a) Typical examples of a PU-loop in the control (blue) and during thoracic 

occlusion (red). b) Examples of a PeU-loop in the control (blue) and during thoracic 

occlusion (red). The dashed black line is the linear part of the loop used to calculate the 

wave speed. Note the different scales between a and b. 

3.3 Results 

3.3.1 Wave speed 

There is a significant difference in the morphology of the PU and PeU loops in 

all cases. The PU-loop is a distinct loop with large hysteresis between the systolic and 

diastolic portions of the curve. The PeU-loop exhibits much less hysteresis and in many 

cases, such as the control conditions shown in Figure 3.3, the loop collapsed almost 

completely to a single curve. In all cases, the early systolic portion of the loop was 

linear enabling a measurement of the wave speed from the slope. In every condition the 

wave speed determined from the PU-loop, c, was greater than the wave speed 

determined from the PeU-loop, ce, and all of the differences were statistically 

significant. ce is 29% smaller than c in the control state and 44%, 31%, 36% and 27% 

smaller during the thoracic, diaphragm, abdominal and iliac occlusions respectively. 

The values of c and ce and their ratio are reported for all conditions in Table 3.2. The 

wave speeds determined during the four occlusions are shown, together with the control 

conditions, in Figure 3.4. We also see that c during the thoracic occlusion is 

significantly higher than in control conditions (9.9±2.5 m/s vs. 6.0±2.6 m/s, p<0.05). ce 

calculated during the thoracic occlusion was also higher than in the control, but the 

difference was not statistically significant. There were no significant differences 

between either c or ce during any of the other occlusions compared to control 

conditions. 
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Table 3.2: Averaged values of wave speed and intensity parameters calculated using Pe 
and P and their percentage ratio.  

 Control Thoracic Diaphragm Abdominal Iliac 
c  (m/s) 

ce  (m/s) 

ce/c  (%) 

5.8 ± 1.8 

4.1 ± 1.7 

71 

9.9 ± 2.6 

5.5 ± 1.6 

56 

5.8 ± 1.3 

4.0 ± 1.2 

69 

5.8 ± 1.5 

3.7 ± 1.3 

64 

5.9 ± 3.0 

4.3 ± 1.6 

73 

dIFCW  (W/m2) 

dIeFCW  (W/m2) 

dIeFCW/dIFCW  (%) 

51.2 ± 47.4 

32.2 ± 31.7 

63 

34.3 ± 27.2 

24.4 ± 19.3 

71 

34.9 ± 38.2 

23.4 ± 25.2 

67 

49.2 ± 48.3 

29.5 ± 34.8 

60 

53.6 ± 49.8 

32.2 ± 33.2 

60 

dIFEW  (W/m2) 

dIeFEW  (W/m2) 

dIeFEW/dIFEW  (%) 

34.7 ± 15.5 

25.7 ± 13.3 

74 

22.5 ± 12.6 

21.6 ± 12.1 

96 

23.9 ± 12.6 

20.8 ± 10.4 

87 

29.3 ± 14.8 

20.5 ± 13.5 

70 

41.4 ± 20.9 

27.7 ± 16.3 

67 

dIBCW  (W/m2) 

dIeBCW  (W/m2) 

dIeBCW/dIBCW  (%) 

4.4 ± 3.5 

1.1 ± 1.6 

24 

8.7 ± 7.7 

2.0 ± 2.5 

23 

10.2 ± 9.0 

2.4 ± 2.8 

24 

4.1 ± 3.4 

1.3 ± 2.0 

32 

4.3 ± 4.0 

1.3 ± 2.2 

31 

RI 

RIe 

RIe/RI 

0.10 ± 0.05 

0.03 ± 0.03 

29 

0.25 ± 0.15 

0.07 ± 0.04 

30 

0.33 ± 0.12 

0.12 ± 0.06 

36 

0.11 ± 0.06 

0.04 ± 0.03 

37 

0.09 ± 0.04 

0.03 ± 0.02 

30 

Values are mean ± SD.  
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Figure 3.4: Wave speed calculated using measured pressure (c, black) and excess 

pressure (ce, dashed) at control and during occlusions at thoracic, diaphragm, abdominal 

and iliac levels. Bars are SEMs,* indicates p < 0.05. 

3.3.2 Wave intensity and reflection index 

As seen in Figure 3.5, there were both similarities and differences between the 

wave intensity calculated with P, dI = dPdU, and with Pe, dIe = dPedU.  In all cases, the 

forward wave intensities, dI+ and dIe+, were similar in shape with large peaks at the start 

(FCW) and end (FEW) of systole. As discussed below, the morphology of these peaks 

was unchanged, but there were differences in their magnitudes. However, the backward 

wave intensities, dI- and dIe-, showed large differences with no peaks discernible in the 

dIe- waveforms for many of the cases. The magnitude of the three main wave intensity 

peaks, dIFCW, dIFEW, dIBCW, dIeFCW, dIeFEW and dIeBCW  are shown in Figure 3.6. For both 

of the forward waves, FCW and FEW, dI > dIe and the difference is statistically 

significant in all cases except for the thoracic and diaphragm occlusions for the FEW 

wave. dIeFCW is 37% smaller than dIFCW in the control and 29%, 33%, 40% and 40% 
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smaller during the thoracic, diaphragm, abdominal and iliac occlusions, respectively. 

dIeFEW is 26% smaller than dIFEW in control and 29% and 33% smaller for abdominal 

and iliac respectively during occlusions. The results for the BCW are qualitatively 

different from the results for the forward waves. In all cases dIe << dI with the 

differences being highly significant statistically. dIeBCW is 76% smaller than dIBCW in 

control condition and 77%, 76%, 68% and 69% smaller during the thoracic, diaphragm, 

abdominal and iliac occlusions, respectively. The percentage ratio between the 

magnitudes of the three main wave intensity peaks calculated using P and Pe are shown 

in Table 3.2.  

The reflection index, which is related to the effective reflection coefficient, 

shows a similar pattern. For control conditions the difference between RI and RIe is 

large and statistically significant, as shown in Figure 3.6. In particular RIe is 71% 

smaller than RI in control conditions and is 70%, 64%, 63% and 70% smaller for 

thoracic, diaphragm, abdominal and iliac occlusions respectively. The values of 

percentage ratio of RIe/RI in all conditions are reported in Table 3.2.   

The times of the forward and backward peak intensities and the times of the 

onset of the BCW and FEW when calculated using the reservoir-wave and the wave 

only model are reported in Table 3.4. As can be seen from the table, there is no 

significant difference in time between the two analyses in all conditions apart from the 

time of the onset of the forward expansion wave that comes earlier when the analysis is 

performed with Pe, both, in control and during the four occlusions. 

Comparing wave intensities and reflection indices between occlusion and control 

conditions a broadly similar pattern emerges. For both the FCW and the FEW there is a 

slight but statistically significant decrease in the peak values of dI when the occlusion is 

in the thoracic and diaphragm positions and no significant differences when the 

occlusion is in the more distal locations. This is true for the wave intensity calculated 

using the measured pressure dI or the excess pressure dIe. For the BCW there is a large 

and highly significant increase in the dI for the thoracic occlusion, an even larger 

increase for the diaphragm occlusion and no significant difference for the abdominal 

and iliac occlusions. Although dIe is significantly smaller than dI for all of the cases, 

this pattern persists for dIe; a significant increase for the thoracic occlusion, an even 

larger increase for the diaphragm occlusion and no differences for the two more distal 

occlusions. 
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The reflection index shows this pattern more clearly. For the reflection index 

calculated using P, RI is more than double for the thoracic occlusion, more than triple 

for the diaphragm occlusion and is not significantly different from control conditions 

for the abdominal and iliac occlusions. The reflection index calculated using the Pe, RIe, 

is significantly smaller than the correspondent RI, but follows the same pattern; a large 

increase for the thoracic occlusion, an even larger increase for the diaphragm occlusion 

and no significant difference from control conditions for the two more distal occlusions. 

Table 3.3: Wave timing. 

Time (ms) Control Thoracic Diaphragm Abdominal Iliac 

tFCW 29 ± 4 34 ± 5 30 ± 5 28 ± 4 28 ± 6 
teFCW 32 ± 3 32 ± 5 33 ± 2 31 ± 3 34 ± 3 
tBCW 92 ± 12 103 ± 9 96 ± 15 89 ± 14 91 ± 23 
teBCW 83 ± 14 98 ± 9 97 ± 14 81 ± 19 81 ± 27 
tFEW 161 ± 25 157 ± 19 157 ± 36 150 ± 34 164 ± 23 
teFEW 161 ± 25 157 ± 24 157 ± 27 151 ± 35 165 ± 22 

tBCWonset 56 ± 7 41 ± 9 48 ± 6 56 ± 11 55 ± 13 
teBCWonset 51 ± 6 43 ± 5 46 ± 3 49 ± 4 54 ± 7 
tFEWonset 87 ± 12 108 ± 12 109 ± 21 77 ± 14 84 ± 14 
teFEWonset 71 ± 8** 83 ± 14** 74 ± 18** 65 ± 9** 72 ± 6* 

Values are mean ± SD. * indicates p<0.05 compared to the traditional wave intensity analysis based on P 
and ** indicates p<0.001 compared to wave intensity analysis based on P. 
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Figure 3.5: a and b) Typical example of wave intensity analysis in control condition 

calculated with P and Pe, respectively. c and d) wave intensity analysis during the 

thoracic occlusion using P and Pe, respectively . Black lines are forward intensities (dI+ 

and dIe+) and gray lines backward intensities (dI- and dIe-). Solid black arrows indicate 

the onset of the forward compression wave (FCW), gray arrows indicate the onset of the 

backward compression wave (BCW) and the dashed black arrow show the onset of the 

forward expansion wave (FEW). 
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Figure 3.6: a) Peak of forward compression (dIFCW), b) peak of backward compression 

(dIBCW), c) peak of forward expansion (dIFEW) wave intensities and d) reflection index 

(RI) calculated using P (black) and Pe (dashed) at control and during occlusions at 

thoracic, diaphragm, abdominal and iliac levels. Bars are SEMs,* indicates p < 0.05 and 
** indicates p<0.001. 

3.3.3 Reservoir pressure 

P, Pr and Pe in the ascending aorta for a typical case are shown in Figure 3.2. As 

seen in the figure, the aortic pressure increased significantly when the occlusion was in 

the thoracic aorta. There was a smaller increase when the occlusion was at the 

diaphragm position and there were no significant differences from control when the 

occlusion was in the abdominal or iliac position. The averaged values of measured, 

reservoir and excess pulse pressures (PP, PPr and PPe, respectively) and diastolic 

pressure Pd for all conditions are reported in Table 3.1. As can be seen from the table, 

PP and PPr are significantly higher during thoracic occlusion compared to the control, 
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while PPe does not change significantly compared to the control state for all the other 

occlusion conditions.  

Figure 3.7 shows the relationship between the reservoir pulse pressure (PPr) and 

the stroke volume (Vin) in the control condition and during the occlusions for each dog. 

The Pearson correlation factors between these two parameters were 0.70, 0.83, 0.87, 

0.70, 0.72 in control and during thoracic, diaphragm, abdominal and iliac occlusion 

(p<0.05 in all conditions). The slope of the linear regression is higher for the thoracic 

occlusion than the control, even higher for the diaphragm occlusion but not significantly 

different from the control for the abdominal and iliac occlusions. A similar relationship 

is also found between pulse pressure and stroke volume (correlation coefficients were 

0.76, 0.85, 0.87, 0.78, 0.74 for control and occlusions, p<0.05 in all conditions) (Figure 

3.8). 

 

 

Figure 3.7: Relationship between reservoir pulse pressure (PPr) and stroke volume (Vin) 

in control condition and during occlusions at the thoracic (a), diaphragm (b), abdominal 

(c) and iliac (d) level.  
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Figure 3.8: Relationship between pulse pressure (PP) and stroke volume (Vin) in control 

condition and during occlusions at the thoracic (a), diaphragm (b), abdominal (c) and 

iliac (d) level.  

3.4 Discussion 

This study compares measures of various hemodynamic parameters in the 

ascending aorta of the dog calculated using P and Pe, which is obtained by subtracting 

the reservoir pressure as proposed by Wang et al. (Wang et al. 2003). The data used in 

this analysis were originally used to investigate hemodynamics in the ascending aorta 

using WIA and the experiment has been designed to provide definitive reflection sites at 

different locations along the aorta to increase the magnitude of reflected waves seen in 

the ascending aorta (Khir & Parker 2005). A similar experiment was originally carried 

out by Van den Bos et al. (Van Den Bos et al. 1976a) who analysed the data using 

impedance analysis (Westerhof et al. 1972; Westerhof et al. 1971). In this chapter, the 

reservoir-wave model is applied for the first time in these atypical conditions and the 

similarities and differences between this model and the wave only model are 

investigated. 
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The wave speed calculated from the slope of the PeU-loop (ce) was less than the 

wave speed calculated from the PU-loop (c) in all cases (see Table 3.2 and Figure 3.4). 

For the control condition the ratio was ce/c = 71% and was not significantly different 

from those calculated during all of the occlusions except for the thoracic occlusion 

where the reduction was even greater (ce/c = 56%). The aortic pressure was significantly 

greater during the thoracic occlusion and this increase in pressure probably influenced 

the wave speed in the ascending aorta due to its dependence on pressure (Histand, 

Anliker 1973). ce was higher during thoracic occlusion than in control but the increase 

was not statistically significant.  

Very few significant differences were seen in the arrival times of the waves 

calculated using Pe compared to those calculated using P. The notable exception is the 

arrival time of the FEW, where the arrival time is earlier when calculated from dIe than 

for dI (Table 3.3) because the maximum of Pe generally occurs early than the maximum 

of P.  

The wave intensities calculated for the three main waves, the forward 

compression wave (FCW) at the start of systole, the forward expansion wave (FEW) at 

the end of systole and the backward compression wave (BCW) during mid-systole are 

reported in Table 3.2 and Figure 3.6. In every case the magnitude of dIe was less than 

the magnitude of the corresponding peak of dI. For the forward waves the ratio of 

magnitudes was similar to the ratio of wave speeds, (dIeFCW/dIFCW ~ 60%) and 

(dIeFEW/dIFEW ~ 70%). For the backward wave the decrease was much greater 

(dIeBCW/dIBCW ~ 25%). Unsurprisingly, the reflection index, which is related to the 

magnitudes of the backward and forward wave intensity peaks, showed a similarly 

marked decrease (RIe/RI ~ 30%).  

Another finding, common to the two methods, is that the averaged values of RI 

during diaphragm occlusions are slightly higher than during the thoracic occlusion 

(Figure 3.5) and in some dogs reflections due to the diaphragm occlusion are bigger 

than those due to the thoracic occlusion. Due to the more proximal position of the 

thoracic occlusion and thus, less dissipation in travelling back, bigger reflected waves at 

the aortic root during this condition were expected. A possible explanation of this result 

is that during this proximal occlusion the aortic arch branches (subclavian and 

brachiocephalic arteries) play a greater role than during the diaphragm occlusion. 

Westerhof et al. (Westerhof et al. 1973) previously suggested that the behaviour of the 
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aorta clamped at the diaphragm level is more similar to a uniform tube with a closed end 

compared to the aorta occluded at a more proximal location, such as the thoracic level. 

The authors explained this finding by considering the uniform tube when clamped 

proximally as “short-circuited” because of the considerable role of the cephalic vessels 

and collaterals in this condition.   

Despite the decrease in the magnitude of the wave intensity calculated using Pe, 

the pattern of the magnitudes measured during the different occlusions was remarkably 

similar. For the FCW, there was a significant decrease in peak wave intensity during the 

two more proximal occlusions compared to the control conditions and no significant 

differences during the two more distal occlusions using both dIe and dI. Also for the 

FEW, differences from control conditions were seen in dI for the more proximal 

occlusions but not for the more distal occlusions, but these differences were not seen 

using dIe. Interestingly, the difference between dIe and dI were not statistically 

significant for the two more proximal occlusions whereas a statistically significant 

decrease was observed for all other conditions including control. 

For the BCW, although the magnitude of dIe was much smaller than dI, the 

variations from control conditions during the different occlusions were strikingly 

similar. The magnitude of dIe was approximately doubled during the more proximal 

occlusions compared to control conditions and not significantly different during the 

more distal occlusions; almost exactly the same pattern of results previously reported 

using dI (Khir, Parker 2005). The pattern for RIe and RI were similar except that values 

during the more proximal occlusions were approximately three times as large as during 

control conditions.  

Similar results in WIA using the two techniques have been recently reported 

(Mynard et al. 2012). The authors performed WIA in computational and animal data 

and found lower values of backward compression waves and reflection coefficient when 

the reservoir-wave system was applied compared to the traditional WIA. These results 

are in line with the findings here reported. However, they also found bigger backward 

expansion waves using the reservoir-wave approach that were not present in this study. 

The decrease of the backward compression wave intensity calculated using Pe is 

one of the most significant results of this chapter. The previous study based on the 

measured pressure found a significant increase in the backward wave during the 

thoracic and diaphragm occlusions and no increase during the abdominal and iliac 
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occlusions (Khir & Parker 2005). Since the experiment was designed to produce 

significant reflections, this lack of reflected waves from the distal occlusions was a 

surprise, although it was consistent with the lack of differences in the impedance spectra 

reported by Van den Bos et al. (Van Den Bos et al. 1976).  

Despite the reduction in the magnitude, dIeBCW and dIBCW showed a similar 

pattern with significant reflections during the more proximal and no reflections from the 

more distal occlusion. The substantial reduction of backward compression waves using 

the reservoir.wave approach can be explained if we consider that the arterial system is 

well-matched in the forward but not in the backward direction (Gosling et al. 1971; 

Newman et al. 1972; Greenwald & Newman 1982; Papageorgiou et al. 1990). We 

calculated the reflection coefficients from the trifurcation of the aortic arch (Figure 3.9) 

in forward direction as  
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and for the backward direction as  
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where Y0, Y1, Y2, Y3,  are the characteristic admittances (Y=1/Z=A/ρc) for the 

ascending aorta, brachiocefalic artery, left subclavian artery, and descending aorta, 

respectively. These values were calculated using the characteristic impedances for the 

different vessels reported by Cox and Pace (Cox & Pace 1975) in anesthetized dogs in 

control condition, in which values of vascular impedance have been calculated by 

averaging between 8 and 15 Hz. It was found that the reflection coefficient is 0.02 in the 

forward direction and -0.48 in the backward direction. This means that approximately 

half of the energy carried by a backward wave in the thoracic aorta will be reflected in 

the aortic arch. This may be the main reason for the observation of small backward 

waves at the aortic root, even during the occlusion, using the reservoir-wave model.  

The pulse of the reservoir pressure is strongly related to the stroke volume as 

shown in Figure 3.7. In particular, a different linear relationship can be observed during 

occlusion of the aorta at the thoracic and diaphragm level compared to the control for 

both pressures, caused by the different pulse pressure in these conditions.  

Davies et al. (Davies et al. 2010a) studied the contribution of reservoir and 

excess pressure in humans in relation with age. They found that the contribution of the 
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reservoir pressure to the increase of AIx with age is larger than that of the reflected 

wave contribution; the increase is largely due to the decrease of the aorta compliance 

and other elastic vessels. The results reported here are related to their findings since the 

increase of pulse pressure due to the thoracic occlusion can be compared to the increase 

of pressure due to age or to cardiovascular diseases such as hypertension. The findings 

of this chapter confirm that the reservoir pressure makes a larger contribution to the 

pressure waveform than the excess pressure (Table 3.1) as previously reported by other 

authors (Davies et al. 2010a, Vermeersch et al. 2009). 

 

 

Figure 3.9: Schematic representation of the aortic arch. Z0, characteristic impedance of 

the ascending aorta; Z1, characteristic impedance of the brachiocephalic artery; Z2 

characteristic impedance of the left subclavian artery and Z3, characteristic impedance 

of the descending aorta. 

3.5 Conclusion 

The reservoir-wave and the wave only analyses produce remarkably similar 

WIA curves, although the magnitudes are strikingly different. Both models lead to the 

conclusion that distal occlusions have little or no effect on hemodynamics in the 

ascending aorta. The models yield different values of wave speed and different wave 

magnitudes, despite using the same analytical techniques of the pressure-velocity loop 

and WIA. The reservoir-wave model always yielded lower values for all hemodynamic 

parameters studied.  
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The separation of aortic pressure into reservoir and excess components gives 

information about the Windkessel and wave contribution. The small magnitude of BCW 

in the aortic root during occlusions, using the reservoir-wave analysis, could be 

explained by considering the geometry of the aortic arch and reflection coefficients, 

although this requires a larger study to confirm this observation. The differences found 

between the results of WIA based on the measured pressure and the reservoir/excess 

pressures do not mean that the values based on excess pressure are erroneous. In the 

absence of other independent technique or evidence it is currently not possible to decide 

which of the two models compared in this work is more correct. 
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Chapter 4 : Noninvasive determination of wave 
speed and intensity in healthy human 

4.1 Introduction 

As mentioned at the end of chapter 1, this chapter investigates the potential use 

of a new non-invasive technique to determine wave speed and separate the waves in 

human arteries and the changes of mechanical properties of carotid and femoral arteries 

with age and gender. Part of this chapter was published in Borlotti et al. 2012 (see list of 

publication). 

There is an increasing interest in assessing arterial mechanical properties as they 

offer valuable prognostic information. Of particular physiological and clinical interest is 

the “pulse wave velocity” (PWV) or wave speed (c) as it gives a direct measure of 

arterial distensibility. c is widely used to determine arterial stiffness, which is 

considered an early phenotype of vascular damage and a potential prognostic factor in 

assessing cardiovascular risk (Blacher et al. 1999, Laurent et al. 2001, O'Rourke et al. 

2002, Laurent et al. 2006). PWV has also been used as a surrogate marker for 

cardiovascular disease including atherosclerosis (Meaume et al. 2001) and proposed as 

an independent risk factor for cardiovascular events such as coronary disease and stroke 

(Laurent et al. 2007, Boutouyrie et al. 2008). Although carotid-femoral PWV is widely 

used in clinical practice, it gives regional information about the lumped properties of the 

vessels. A better understanding of the local properties of the arterial wall would be 

useful. For this reason in the past few decades several methods have been introduced to 

determine local c. Khir et al. (Khir et al. 2001) introduced the PU-loop method, which 

requires simultaneous measurements of pressure (P) and velocity (U) at the same site. 

The method relies on the linear relationship between pressure and velocity in the 

absence of reflections; the slope of the initial linear portion of the loop equals ρc, where 

ρ is blood density. Rabben et al., used a similar technique; flow–area loop, which is 

based on the definition of the characteristic impedance (Rabben et al. 2002). To 

accommodate the co-existence of incident and reflected waves, Davies et al. introduced 

the sum of squares technique (Davies et al. 2006), although the effectiveness of this 
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technique in the coronary circulation has been questioned (Kolyva et al. 2008).  

To understand the propagation of waves along the arterial system in the time 

domain, Parker and Jones, introduced the theoretical basis of Wave Intensity Analysis 

(WIA) (Parker & Jones 1990). The method requires the simultaneous measurements of 

P and U at the same site, and has been successfully applied to several locations along 

the arterial system; aorta (Parker et al. 1988; Khir & Parker 2005; Ramsey & Sugawara 

1997); coronary and carotid arteries (Davies et al. 2006; Sun et al. 2000; Niki et al. 

2002; Zambanini  et al. 2002); venous system (Wang et al. 2006); left and right 

ventricles (MacRae et al. 1997; Smolich et al. 2010); and intra-operatively in patients 

using the intra-aortic balloon pump (Kolyva et al. 2009). The usefulness of this analysis 

has been recently documented (Sugawara et al. 2009), including the evaluation of the 

working conditions of the heart and its interaction with the arterial system. To by-pass 

the invasive nature of acquiring pressure, applanation tonometry has been used to 

provide pressure waveforms by calibrating arterial pressure waveforms (Segers et al. 

2005). However, applanation tonometry can only be used with superficial arteries as 

well as the need to accept the assumption that diastolic, and mean or systolic pressure at 

the brachial artery are equal to those at the measurement site. 

To avoid the difficulties of acquiring invasive measurements of P and U for the 

calculation of local c and WIA, Feng and Khir presented the theoretical basis of non-

invasive techniques that require the measurements of diameter (D) and U (Feng & Khir 

2010). Local c is determined from the slope of the linear portion of the lnDU-loop and 

the non-invasive wave intensity (ndI) is defined as the product of change of diameter 

and change of velocity. Similar to traditional WIA, the method allows for the separation 

of waves into their forward and backward components and has recently been validated 

in vitro (Li & Khir 2011). In this chapter the method is used for the first time with 

clinical data acquired using ultrasound measurements of D and U in the carotid and 

femoral arteries.  

As mentioned in chapter 1, in this section the wave speed and intensity were 

determined noninvasively in a population of healthy subjects. The overall aim of this 

study is to use the new non-invasive techniques to quantify the effect of age and gender 

on the arterial mechanical properties and hemodynamic parameters in the carotid and 

femoral arteries of a population of healthy subjects. The specific objectives are to non-

invasively 1) determine local c using direct measurements of D and U, from which 
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distensibility can be calculated, 2) separate D and U waveforms into their forward and 

backward components, and 3) carry out the non-invasive wave intensity analysis in 

healthy human vessels. 

The main aims of this investigation are to study the lnDU-loop method in humans and 

the changes of some hemodynamic parameters with age and gender.  

4.2  Material and Methods 

4.2.1 The Asklepios population 

The Asklepios Study is a longitudinal population study aiming to investigate the 

interaction between ageing, cardiovascular haemodynamics and inflammation in 

(preclinical) cardiovascular disease (Rietzschel et al. 2007). The total cohort included 

2524 participants (1301 women) of 35–55-year-old individuals, free from overt 

cardiovascular disease at study initiation, randomly sampled from the twinned Belgian 

communities of Erpe–Mere and Nieuwerkerken. Measurements were performed during 

a continuous 2-year period, between October 2002 and September 2004 in Erpe–Mere. 

The examination was the following for all participants: (1) informed consent and the 

study questionnaire were revised; (2) measurements of basic clinical data; (3) blood 

samples examination (4) echocardiographic examination (5) vascular echographic and 

tonometric measurements. All measurements were single centre, single device and 

single observer. The study protocol was approved by the ethics committee of Ghent 

University Hospital and all subjects gave a written informed consent. 

4.2.2 Study population 

In this study data were drawn from the Asklepios study database and comprised 

data from 1774 subjects (934 women) aged 35-55 years (average age 45.8±6 years). The 

data used in this chapter were given to our group with the only purpose of investigating 

the new non-invasive technique. Only subjects with diameter and flow velocity 

measurements available both, in carotid and femoral arteries, were considered. Basic 

clinical and hemodynamic characteristics of the population are presented in Table 4.1.  
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Table 4.1: Physical and hemodynamic characteristics of subjects. 

Parameter Gender 35-40 41-45 46-50 51-56 
No. Male 218 219 219 184 

 
Female 242 247 221 224 

Age (years) Male 38.3±1.7 43.7±1.4 48.4±1.4 53.7±1.7 

 
Female 38.2±1.8 42.4± 1.5 48.4±1.5 53.6±1.7 

Height (cm) Male 177.5±5.3 176.0±6.8 175.1±6.3 174.1±5.9 

 
Female 164.6±6.1ξ 164.1± 6.3ξ 162.6±5.9*,ξ 160.9±5.7*,ξ 

Weight (kg) Male 81.8±11.5 81.8±12.2 82.4±11.4 80.9±11.7 

 
Female 65.5±11.1ξ 65.4± 11.3ξ 67.5±12.5ξ 68.8±12.0ξ 

SBP (mmHg) Male 131.5±11.4 128.9±15.0 134.6±14.0 137.8±15.3 
Female 123.4±16.0ξ 133.6±12.0*,ξ 131.3±15.3ξ 135.6±16.7

* 
DBP (mmHg) Male 75.3±9.4 78.4±10.4* 80.3±10.3 80.6±10.8 

Female 74.3±10.9 76.7± 10.7* 76.7±10.2 78.8±10.8 

MAP (mmHg) Male 98.0±9.6 101.3±11.1* 102.9±11.4 104.4±12.1 
Female 96.0±12.0 99.4±12.0* 100.1±11.8ξ 103.6±12.5

* PP (mmHg) Male 56.5±9.3 55.1±7.9 54.9±8.6 57.6±10.1* 

 
Female 50.1±8.0ξ 51.9±9.8ξ 54.3±10.6* 57.9±11.8* 

HR (beat/min) Male 61.4±8.6 61.6±9.1 63.5±11.2 61.4±9.9 
Female 65.3± 8.4ξ 66.7±8.5ξ 65.3±8.4 65.4±9.0ξ 

Carotid 
     SDc (mm) Male 7.19±1.19 7.05±0.93 7.27±1.20 7.18±1.03 

 
Female 6.48±0.81ξ 6.51±0.98ξ 6.41±0.97ξ 6.66±0.95*,ξ 

MDc (mm) Male 6.41±0.60 6.42±0.68 6.65±0.92* 6.69±0.88 

 
Female 5.83±0.57ξ 5.86±0.75ξ 5.85±0.65ξ 6.10±0.82*,ξ 

DDc (mm) Male 5.90±0.75 5.93±0.75 6.12±1.03 6.14±1.01 

 
Female 5.41±0.61ξ 5.49±0.78ξ 5.44±0.69ξ 5.75±0.85*,ξ 

Femoral 
     SDf (mm) Male 9.13±1.22 9.36±1.30 9.59±1.77 9.71±1.57 

 
Female 7.35±1.44ξ 7.67±1.63ξ 7.56±1.42ξ 8.09±1.79*,ξ 

MDf (mm) Male 8.70±1.00 8.87±1.19 8.97±1.39 9.08±1.39 

 
Female 6.86±0.97ξ 6.93±1.00ξ 6.97±1.00ξ 7.27±1.13*ξ 

DDf (mm) Male 8.46±1.03 8.61±1.21 8.72±1.45 8.88±1.42 

 
Female 6.61±0.98ξ 6.68±1.03ξ 6.70±1.04ξ 6.99±1.18*,ξ 

     Values are mean ± SD. SBP: systolic blood pressure; DBP: diastolic blood pressure; MAP: mean arterial 
pressure; PP: pulse pressure; HR: heart rate; SD: systolic inner diameter; MD: mean inner diameter; DD: 
diastolic inner diameter. * indicates significant change (p<0.01) compared to the immediate previous half-
age group. ξ indicates a significant change (p<0.01) between male and female in the same age group. 

 



  Chapter 4: Noninvasive wave speed and intensity in human 

 62   
 

4.2.3 Vascular echography 

The subjects undertook a scan examination of the left and right carotid and 

femoral arteries using a commercially available ultrasonographic system (VIVID 7; GE 

Vingmed Ultrasound, Horten, Norway) equipped with a vascular transducer (12L 7.3–

11.4 MHz; linear array transducer set at 10 MHz) (Rietzschel et al. 2007). 

Subjects were lying in recumbent position with the neck in slight hyperextension 

and turned approximately 30º contralateral for the carotid artery scan and with the legs 

slightly apart and exorotated for the femoral artery examination. All measurements were 

ECG gated and consisted of cineloops or recordings of at least five (up to 30) cardiac 

cycles during normal breathing. Sweep speeds for M-mode, pulsed wave (PW) or 

continuous wave (CW) Doppler was set at 100 mm/s. Images and loops were exported 

in raw DICOM format. All recordings were performed by a single trained sonographer, 

on a single echo system. 

4.2.3.1 Flow velocity measurement 

Systolic centreline blood flow velocity was measured (PW Doppler) in the 

carotid and femoral arteries. At least five ECG-gated cardiac cycles were acquired. 

Images, in raw DICOM format (Figure 4.1), were processed offline with home-written 

programs in MatLab (The Mathworks, Natick, MA, USA). After a preliminary filtering 

of the images, a morphological operation derived from a combination of the 

fundamental morphological operations dilation and erosion was applied in order to 

smooth image contours. Thus, maximum and minimum velocity envelopes were 

detected based on a grey scale threshold and the average profile (Figure 4.2) was used 

to calculate the local c using the lnDU-loop method. The correction for the angle 

between the flow and the ultrasound beam was applied where needed. 

4.2.3.2 Diameter measurement 

            During the vascular echography the sonographer selected a region of interest 

(ROI) over a section of the artery that includes both the posterior and the anterior walls. 

Inside the ROI radio frequency data (RF) data at 209 frames/s were acquired along eight 

beams. B-mode images and RF data were imported in MatLab, one beam was selected 

and its RF data were shown as an RF M-mode together with a 4 mm-wide section of the 

B-mode image around the selected beam. At this point, to obtain the diameter 

waveform, the vessel boundary was selected manually at a given moment in time and its 
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movement was automatically tracked using a modified autocorrelation estimator 

(Rabben et al. 2002, Rabben et al. 2004, Segers et al. 2005, Vermeersch et al. 2008). In 

this study the inner vessel diameter was detected by tracking the lumen-intima boundary 

on both the anterior and posterior walls. The use of the RF data allowed for a higher 

axial resolution compared to the conventional M-mode (Rietzschel et al. 2007). 

4.2.3.3 Velocity and diameter alignment 

U and D were not recorded simultaneously, but they were acquired during the 

same vascular examination (Rietzschel et al. 2007). To perform the analysis two 

representative beats for each subject with similar heart rate were selected and aligned 

using the peak of the R-wave of the ECG.  

 

 

Figure 4.1: Examples of DICOM images of velocity flow waveforms and the ECG in 

the carotid (top) and femoral (b) arteries of a 45 years old male. 
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Figure 4.2: The maximum and minimum envelopes (blue lines) detected from the 

femoral DICOM image of Figure 4.1 (top) and the flow velocity profile (red) obtained 

by averaging the two envelopes (bottom).  

4.2.4 Biochemistry 

Serum concentrations of glucose, cholesterol and high-density lipoprotein 

(HDL) cholesterol were measured using commercial reagents according to the 

manufacturers’ recommendations at 37ºC on a Modular P system (Roche Diagnostics) 

in an ISO 9002 certified reference laboratory. Serum glucose was evaluated using a 

standard hexokinase enzymatic method. Total serum cholesterol was assayed by means 

of the enzymatic colorimetric CHOD–PAP method. Serum HDL cholesterol was 

assessed by the homogenous enzymatic method that involves the use of dextran sulfate 

and polyethylene glycol-modified cholesterol esterase and cholesterol oxidase. The 

coefficient of variation of all tests was < 3%. Biochemical parameters of the population 

are reported in Table 4.2. 
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Table 4.2: Biochemical data of the subjects. 

Parameter Gender 35-40 41-45 46-50 51-56 
     Total cholesterol 

(mg/dl) 
Male 211±39 217±36 224±37 223±35 

Female 205±32 208±33ξ 215±35 227±36* 

HDL cholesterol 
(mg/dl) 

Male 55±14 56±13 57±14 56±13 
Female 71±16ξ 70± 18ξ 70±18ξ 72±17ξ 

Glycemia (mg/dl) Male 92±9 93±12 94±12 96±17 
Female 87±7ξ 87± 7ξ 89±9*,ξ 93±19* 

Values are mean ± SD. HDL: high density lipoprotein. * indicates significant change (p<0.01) compared 
to the immediate previous half-age group. ξ indicates a significant change (p<0.01) between male and 
female in the same age group. 

4.2.5 Determination of local wave speed and distensibility 

Local c can be determined using equation 2.32 




Dd

dUc
ln2

1                                                                                                             
 

where dU and dlnD are the changes of velocity and diameter natural logarithm, (+) and 

(-) indicate the forward and backward directions, respectively. Equation 2.32 describes a 

linear relationship between lnD and U for unidirectional waves. To identify 

automatically the linear portion of the loop an algorithm recently proposed has been 

used (Swalen, Khir 2009). Firstly, diameter and velocity measurements were smoothed 

using a Savitsky-Golay filter and afterwards the program calculates the local slope at 

each sampling time from the onset of the pressure waveform and calculates the relative 

difference between the current slope and the average of all the previous slopes starting 

from the beginning of the linear part. The procedure stops when the difference between 

the current slope and the average of the previous ones is larger than a selected threshold. 

Figure 4.3 shows two typical examples of lnDU-loops, velocity and diameter 

waveforms at the carotid and femoral arteries for the same subject.  

        Substituting Equation 2.32 in the Bramwell-Hill equation allows for the 

determination of local distensibility (nDs)  
2ln4








dU
DdDsn 

                                                                                                     (4.1)                                                                                                      

where the fluid density ρ is assumed 1050 kg/m3. 
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Figure 4.3: (a) Diameter natural logarithm waveforms, (b) lnDU-loop and (c) velocity 

flow waveform in the carotid artery; (d) velocity flow waveform, (e) lnDU-loop and (f) 

diameter natural logarithm waveforms in the femoral artery in a 40 years old female. 

Local wave speed is 5.02 m/s and 9.59 m/s for the carotid and femoral artery, 

respectively. The dashed blue line indicates the initial linear part of the loop.  
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Figure 4.4: The measured, calculated forward (+) and backward (-) diameter (D), 

velocity (U) and non-invasive wave intensity (ndI) in the carotid (left) and in the femoral 

artery (right) in a 40 years old female. The black solid lines show the measured 

parameter, gray solid lines show the forward waves and the black dashed lines show the 

backward waveforms.  
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4.2.6 Wave separation and intensities of the waves 

D and U waveforms can be separated in their forward and backward component 

using Equations 2.34 and 2.35 described in chapter 2 and the non-invasive wave 

intensity is determined as ndI=dDdU (Feng, Khir 2010). The knowledge of c, ndI can be 

separated into its forward and backward components  

 
2

22/4
1







  dU

c
DdD

cD
dIn                                                                              (4.2)                           

Equation 4.2 shows that the non-invasive wave intensity analysis has the same 

useful characteristic of the traditional analysis, being positive for forward and negative 

for backward waves. Peak intensities of the forward and backward compression waves 

(ndI+max and ndI−min) were determined. The ratio of ndI−min to ndI+max, termed in this 

chapter as the Reflection Index (nRI), was calculated at the carotid and at the femoral 

sites. Figure 4.4 shows two examples of D, U and wave intensity separation in the 

carotid and in the femoral artery. 

4.2.7 Statistical analysis 

Data are presented as mean values  SD and bars in figures are SEM. The 

population has been subdivided by gender into four half-decades of age: 35-40, 41-45, 

46-50 and 51-55 years. Effects of age and gender on c, nDs, ndI+max, ndI−min and nRI were 

studied using analysis of the covariance technique (ANCOVA). These parameters were 

adjusted for mean arterial pressure (MAP) that was calculated as the averaged value of 

the calibrated brachial artery waveforms, heart rate (HR) and body height. The analysis 

was carried out also including glycemia, total cholesterol and HDL cholesterol as 

covariates. Paired Student’s t-tests were used to asses any significant difference between 

the same parameter in carotid and femoral artery. Values p<0.01 were considered 

statistically significant. Statistical analyses were performed using SPSS 17.0 (SPSS 

Inc., Chicago, Illinois, USA). All data were collected by the same operator and analysed 

by one analyser. Reproducibility analysis was not carried out. 

4.3 Results 

4.3.1 Local wave speed  

Figure 4.3 shows two typical examples of lnDU-loops, velocity and diameter 

waveforms at the carotid and femoral arteries for the same subject. In the femoral artery 



  Chapter 4: Noninvasive wave speed and intensity in human 

 69   
 

c was on average higher than that at the carotid (10.98±4.70 m/s vs. 4.03±1.64 m/s, 

p<0.001). 

4.3.1.1 The effects of age and gender on the wave speed 

In the carotid artery c increased significantly with age (p<0.001) but the 

difference between male and female was not statistically significant. In the femoral 

artery c did not change with age but was found higher in men than women (11.43±5.07 

m/s vs. 10.52±4.92 m/s, p<0.001). Both, carotid and femoral wave speeds did not reveal 

an age-gender interaction. When the biochemistry parameters were included to the 

analysis as covariates, the differences between male and female c in the femoral artery 

was attenuated. Figure 4.5 shows the changes of c with age and gender at the carotid 

and femoral arteries. 

 

Figure 4.5: Local wave speed, c, is shown as a function of age and gender at the carotid 

and femoral arteries. c was adjusted for mean arterial pressure (MAP), heart rate (HR) 

and body height. Error bars are SEMs. 

4.3.2 Local distensibility 

Carotid artery nDs was on average higher than that of the femoral artery 

(87±67·10-3 kPa-1 vs. 15±14·10-3 kPa-1, p<0.001). 
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4.3.2.1 The effects of age and gender on the arterial distensibility 

Carotid nDs decreased with age (apart from men age 41-45 and 46-50, p<0.001) 

and it was higher in female than males (91±74∙10-3 kPa-1 vs. 77±53∙10-3 kPa-1, p<0.01). 

In the femoral artery, nDs did not change with age and was higher in females than males 

(17±15·10-3 kPa-1 vs. 13±11·10-3 kPa-1, p<0.001). Inclusion of glycemia, total 

cholesterol and HDL cholesterol to the analysis led to a decrease in the distensibility 

differences between male and female at the femoral artery. Figure 4.6 shows the 

changes of nDs in the carotid and femoral arteries with age and gender. 

 

 
Figure 4.6: Local distensibility nDs is shown as a function of age and gender at the 

carotid and femoral arteries. nDs was adjusted for mean arterial pressure (MAP), heart 

rate (HR) and body height. Error bars are SEMs. 

4.3.3 Wave intensity parameters 

Figure 4.4 shows a typical D, U and ndI waveforms in the carotid and femoral 

arteries, separated into their forward and backward components. Examining ndI 

waveforms, three peaks can be identified: a forward compression wave in early systole 

(first positive peak) due to the left ventricle (LV) contraction, a backward compression 

wave in mid-systole (negative peak) due to reflections from the periphery, and a 

forward expansion wave at the end of systole (second positive peak) due to the 
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reduction in LV rate of contraction. Those peaks are similar in shape and timing to 

those of traditional WIA. The average peak intensities of the forward compression wave 

were 2.60±1.41∙10-7m2/s and 2.08±1.14∙10-7 m2/s for the carotid and femoral artery, 

respectively and those of the backward compression wave were 0.38±0.30∙10-7m2/s and 

0.42±0.34∙10-7 m2/s. 

4.3.3.1 The effects of age and gender on the intensities of the compression waves 

Average peak forward and backward wave intensities decreased with age in the 

carotid (p<0.001) and a significant dependence of the peak intensity of the forward 

compression wave on gender in this vessel was found; higher in males (2.92±1.51∙10-7 

m2/s vs. 2.29±1.10∙10-7 m2/s, p<0.001). In the femoral artery average peak forward and 

backward wave intensities did not change significantly with age and peak intensity of 

the forward compression wave is higher in females than males (2.28±1.50∙10-7 m2/s vs. 

1.93±1.16∙10-7 m2/s, p<0.001). Figure 4.7 displays the changes of peak intensity of the 

forward (ndI+max) and backward (ndI−min) compression wave with halfdecade age and 

gender at the carotid (top) and femoral (bottom) arteries. 

4.3.3.2 The effects of age and gender on the reflection index 

nRI indicating wave reflections from the left leg were higher than those in the 

carotid artery indicating reflections from the head (0.22± 0.14 vs. 0.15± 0.12, p< 0.001). 

The reflection indices for both genders did not change significantly with age but in the 

carotid artery nRI is higher in females than males (0.16±0.11 vs. 0.14±0.11, p<0.01). 

Changes with age and gender of the nRI from the head and left leg are shown Figure 

4.8.  

4.4 Discussions 

In the present chapter, newly introduced non-invasive methods have been 

applied to determine local c, distensibility and wave intensity in the carotid and femoral 

arteries in a population of healthy human subjects. The technique has already been 

validated in flexible tubes using in vitro experiments for the determination of c and ndI 

(Li & Khir 2011). However, the new techniques are applied in this work for the first 

time in vivo to assess the mechanical properties of arteries in a relatively large healthy 

population. Local c was determined using the lnDU-loop method and then was used 

with the Bramwell-Hill equation to determine local distensibility. Non-invasive wave 
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intensity analysis was carried out and peak intensity and the reflection index were 

calculated. Changes of these parameters with age and gender were investigated in 4 

halfdecade classes. 

 

Figure 4.7: Forward (black scale and lines) and backward (gray scale and lines) 

compression wave intensities (ndI+max and ndI-min) at the carotid (top) and femoral 

arteries (bottom) as a function of age and gender. Parameters were adjusted for mean 

arterial pressure (MAP), heart rate (HR) and body height. Error bars are SEMs. 
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Figure 4.8: Changes of reflection index (nRI) from the upper (top) and from the lower 

(bottom) part of the body with age and gender. Reflection index was adjusted for mean 

arterial pressure (MAP), heart rate (HR) and body height. Error bars are SEMs. 

Local c in the femoral artery is on average higher and the distensibility is lower 

than in the carotid artery. These dissimilarities between the two arteries were somewhat 

expected and can be explained taking into account their different geometry and wall 

composition. The femoral artery internal diameter is on average larger than that of the 

carotid artery (7.9±1.6 mm and 6.2±0.7mm respectively, p<0.001). Also, content of 

smooth muscle in the femoral artery is higher than that in the carotid artery (Learoyd & 
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Taylor 1966). 

The results show an increase of carotid local c and decrease of distensibility with 

age.  In contrast, it has been found that local c and distensibility in the femoral artery do 

not change with age but are higher and lower in men than women, respectively. The 

results presented in this chapter are in line with those reported by Vermeersch et al. 

(Vermeersch et al. 2008) who used the same population and derived local carotid and 

femoral distensibility and local PWV using applanation tonometry and ultrasound wall 

tracking techniques. Other investigators (Benetos et al. 1993, Bortolotto et al. 1999) that 

have studied the different behavior of elastic and muscular arteries reported that in 

general elastic arteries are more affected by aging process than the muscular one. In 

particular, Benetos et al., studying the mechanical properties of carotid and femoral 

arteries in normotensive and hypertensive subjects, found that the carotid artery is a 

very compliant vessel in young subjects, but with age and increasing blood pressure, the 

distensibility of this artery decreases dramatically (Benetos et al. 1993). This decrease is 

partially limited by the increase in diameter with age. On the other hand, they found that 

the femoral artery is less compliant, but is not affected by either age or high blood 

pressure. Further, Bortolotto et al. compared the mechanical properties of central and 

peripheral arteries (Bortolotto et al. 1999). In this case the comparison was made 

between an old and a young group of subjects. Their findings showed that age affects 

the carotid but not the radial mechanical properties. Since they found that both arteries 

dilated with age, they concluded that at the level of the carotid artery, the increase in 

diameter does not compensate for the change in the elastic properties of the vessel. 

However, as seen in Table 4.1, these results indicate the increase in diameter with age 

is not significant. This is most likely due to the narrow age range of our population. The 

causes behind the effect of age on central arteries are still not certain; elastic fibers can 

degenerate with age which can lead to the dilation of the vessel but also atherosclerosis 

could be a key factor with the increase of age (Safar 1990).  

Whether or not including biochemical parameters (HDL-cholesterol, total 

cholesterol and glycemia) in the analyses would impact either the findings on gender, or 

the results on the differential carotid and femoral age-dependencies differences has been 

considered. Overall, inclusion of these biochemical parameters (which are heavily 

lifestyle-influenced) did not materially affect the findings. Only, the small gender 

difference in femoral c and distensibility were attenuated by including HDL-cholesterol 
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in the model (as could in part be expected because of the known, pronounced gender 

difference in HDL-cholesterol). 

In this study the vessel inner diameter has been detected by tracking the intima-

lumen boundary for consistency with the mathematical formulation. This boundary may 

give a greater relative change in diameter compared to the media-adventitia due to the 

assumption of wall incompressibility (Tanaka et al. 2009). Therefore, higher values of 

local c and lower values of distensibility using the outer diameter are expected. Arterial 

diastolic diameter is on average larger in males than females in both sites (6.02±0.90 

mm vs. 5.52±0.75 mm, p<0.001 at the carotid and 8.65 mm±1.29 vs. 6.74 mm±1.07 mm 

mm, p<0.001 at the femoral). However, significant dependence of local c on gender has 

been found only at the femoral artery. This is most likely due to the greater difference in 

diameter between males and females at this site (28% vs. 9% at the femoral and carotid 

arteries, respectively).    

           The travelling of waves in arteries implicates an exchange between the kinetic 

energy of the blood and the potential energy of the distending vessel wall. Therefore, 

changes in P, U and D in arteries are inextricably related. Any perturbation of one of 

these parameters will cause a change in the other two. Since the distension of the arterial 

wall is linked with a change in pressure, waves can be defined as pressure-velocity 

waves or as diameter-velocity waves. In the present work WIA is defined in terms of D 

and U for the useful, non-invasive benefits. Therefore, although the reported intensity 

values may not have an apparent physical meaning the non-invasive WIA is still 

considered a natural approach that does not contradict any of the other methods 

reporting intensity using P and U with different units (Parker & Jones 1990, Sugawara 

et al. 2009).   

Examination of the basic mathematical formulation of invasive; dI=dPdU and 

non-invasive; ndI=dDdU wave intensity indicated a potentially useful relationship 

between both techniques. Considering the relation between the changes in pressure and 

diameter, dP
c

DdD 22
 ; equation (3) in Feng and Khir (Feng & Khir 2010), it can be 

shown that dI
c

DdIn 22
 . Niki et al. (Niki et al. 2002) studied wave intensity analysis 

at the carotid artery using the P and U traditional formulation in a population of 135 

healthy subjects, with an age range of under 25 to above 65 years. In agreement with the 
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findings reported here of the significant increase of local c with age, Niki et al., found a 

significant increase in the stiffness parameter β with age, but the authors did not find 

significant changes in dI indices with age. Therefore the wave intensity results of the 

two studies are in line and the results presented here follow the theoretical prediction; 

using the no significant change of dI reported by (Niki et al. 2002), together with the 

results of no significant change in D (apart from female in the last age halfdecade, 

Table 4.1) and a significant increase of c, all with respect to age, lead to a significant 

decrease in ndI. Since this is the first detailed study of measurement of non-invasive 

wave intensity in human, there are no other similar results available for comparison.   

Traditional WIA has already been used to determine the ratio of the reflected 

wave to that of the incident wave energy (Jones et al. 2002, Manisty et al. 2009) as an 

indicator of reflection. In this study the ratio of peak intensity of the reflected wave to 

that of the forward compression wave was termed as the Reflection Index (nRI). The nRI 

carries a similar physical meaning to that of the well-established reflection coefficient. 

The latter provides a theoretical measure of the local reflection (at a single mismatched 

bifurcation, for example) and is calculated as the ratio of the local reflected to the 

incident pressure, however, the former gives an estimation of the accumulative reflected 

intensities (from several mismatched discontinuities, for example) arriving back at the 

measurement site. nRI can therefore give information about the peripheral arteries 

downstream of the measurement site. The results show that nRI in the left femoral 

artery, indicating reflections from the left leg, is higher than in the carotid, indicating 

wave reflections from the head (0.22±0.14 vs. 0.15±0.12 respectively, p<0.001). This 

difference is most likely due to the different geometry of the bifurcations that the 

incident wave encounters along its path and the different mechanical properties of the 

vessel downstream. Changes of nRI with age are not statistically significant. 

4.4.1 Methodological considerations 

Several methods to assess local c non-invasively in human have been developed 

over the years. Some methods require either a linear relationship between brachial 

pressure waveform or the diameter waveform at the measurement site (Sugawara et al. 

2000: Harada et al. 2002; Reneman & Hoeks 1996; Meinders & Hoeks 2004). Some 

other methods convert the diameter waveform of a local superficial artery into the local 

pressure waveform by calibrating the former using SBP, DBP or MAP at the brachial 
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artery (Vermeersch et al. 2008; Papaioannou et al. 2009). The lnDU-loop method does 

not make any assumptions about the relation between pressure and diameter and it does 

not require the measurement of the pressure waveform, its systolic, diastolic or mean 

value in order to calibrate the diameter waveform of another artery. The main advantage 

of the new technique is that it is based only on D and U measurements that can be easily 

recorded non-invasively in the clinical environment with an ultrasound system.  

The lnDU-loop and the ndI methods provide an integrated analytical system that 

allows for the non-invasive assessment of local c and intensity in any location along the 

arterial tree. Moreover, diameter, velocity and intensity waveforms can be separated 

into the forward and backward components to study the propagation of waves and 

obtain useful hemodynamic information about the downstream events, for example 

from the arrival time of reflected waves. 

4.5 Limitations 

Although the theoretical basis of wave intensity analysis requires simultaneous 

acquisition of the D and U waveforms, the measurements of this study were not 

synchronised. D and U were aligned using the peak of the R-wave of the ECG in similar 

heart rate beats. Furthermore, due to the shortness of the interval time between the two 

recordings of D and U,  it can be safely assumed that hemodynamics parameters did not 

alter significantly. 

4.6 Conclusion  

This work demonstrates that local c and wave intensity can be calculated in the 

human carotid and femoral arteries from direct non-invasive measurements of vessel 

diameter and flow velocity. The lnDU-loop and the ndI are potential relevant tools to 

assess local arterial distensibility and the nature of wave reflections in the clinical 

environment as they can be obtained totally non-invasively. Another important feature 

of these methods is that, relying only on diameter and velocity waveforms, it can be 

carried out with ultrasonographic measurements, which are nowadays readily available 

in clinical practice. The new techniques allow also for the separation of diameter, flow 

velocity and non-invasive intensity waveforms into their forward and backward 

components, which enables the determination of the Reflection Index. The carotid 

artery is more affected by the aging process than the femoral artery, even in healthy 

subjects. Local c, distensibility and hemodynamic wave intensity parameters (except 
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nRI) have strong correlations with age at the carotid artery. The mechanical properties 

and hemodynamics parameters of the femoral artery are not significantly age-

dependent, but local c, distensibility and forward wave intensity are significantly 

gender-dependent. The validation of these findings strengthens the reliability and 

robustness of the new proposed technique. 
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Chapter 5 : Reservoir pressure and velocity in 
the human carotid artery 

5.1  Introduction 

This chapter focuses on the potential use of the reservoir-wave approach to study 

the hemodynamics in the carotid artery of healthy human investigating the changes of 

the reservoir and excess pressure and velocity components with age and gender. Also, in 

this chapter a study of the effect of the arterial asymptotic pressure on reservoir and 

excess components of pressure and velocity is presented. 

The reservoir-wave approach proposed by Wang et al. that has been applied in 

chapter 3 separates the measured pressure in a component due to the elastic properties 

of the aorta and another component due to the waves (Wang et al. 2003). This approach 

relies on the assumption that the flow is zero during diastole, which is true only at the 

aortic root. This concept has been further developed by Aguado-Sierra et al. (Aguado-

Sierra et al. 2008a) to use this approach at different locations along the arterial tree. 

Their work further extends the reservoir-wave approach to study the concept of 

reservoir (Ur) and excess (Ue) velocities related to the reservoir (Pr) and excess (Pe) 

pressures, respectively. They proposed a new algorithm, based on empirical hypotheses 

to derive the reservoir pressure from pressure measurements alone at an arbitrary 

arterial location and to separate velocity flow waveforms. The empirical hypotheses are 

based on two observations; a) the pressure waveform decay measured at different 

locations in the arterial system is very similar in diastole and b) the Pe at the aortic root 

is very similar in shape to the flow waveform (Q).  

The same authors applied this approach to the left and right carotid arteries of a 

small population of 8 young healthy subjects in order to study wave speed and 

intensities using Pe and Ue (Aguado-Sierra et al. 2008b). In this chapter the 

hemodynamics of the left carotid artery using the reservoir-wave approach will be 

studied in the same healthy population used in chapter 4, where pressure was measured 

using the applanation tonometry technique. The large number of subjects involved in 

this study will allow for an in depth investigation of the changes of pressure, velocity 

and intensities parameters with age and gender and for a better understanding of the 
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physical meaning of these components. The overall aim of this chapter is to give a new 

physiological insight into the carotid hemodynamics considering the two components of 

pressure and velocity.  

In chapter 3, a reservoir-wave algorithm that allows for the determination of the 

arterial asymptotic pressure (P∞) from the fitting of the exponential pressure decay was 

used. However, Vermeersch et al. (Vermeersch et al. 2009) studying the reservoir 

pressure component in the same population used in this chapter reported that the values 

found by the free fitting algorithm were not physiological. In their work they decided to 

fix P∞ to the venous pressure that they assumed to be 0 mmHg. 

Since the reservoir-wave approach was introduced, different assumptions about 

P∞ were considered; Veermersch et al. (Vermeersch et al. 2009) and Aguado-Sierra et 

al. (Aguado-Sierra et al. 2008a) used 0 mmHg assuming P∞ equal to the venous 

pressure. In another work, Aguado-Sierra et al. (Aguado-Sierra et al. 2008b) used 25 

mmHg referring to the work of Schipke et al. (Schipke et al. 2003). Sridharan et al. 

(Sridharan et al. 2012) used 35 mmHg that was the value found by Wang et al. (Wang et 

al. 2006) in dogs using a free fitting algorithm. 

It can be hypothesized that using a free fitting method and fixing a value for P∞ 

lead to different values of the hemodynamic parameters studied in this chapter. For this 

reason, also a parametric study using the free fitting algorithm and using a fixed value 

of P∞ is presented here. 

5.2 Material and Methods 

5.2.1 Study population 

The data were drawn from the Asklepios study database and involved data from 

2003 subjects (1024 women) aged 35-55 years (average age 46±6 years). Only subjects 

with pressure and flow velocity measurements available in the carotid artery were 

considered. Basic clinical and hemodynamic characteristics of the population are 

presented in Table 5.1. 

5.2.2 Applanation tonometry 

The detailed description of the applanation tonometry procedure used to measure 

carotid pressure can be found in (Rietzschel et al. 2007). Applanation tonometry was 

performed with a Millar pentype tonometer (SPT 301; Millar Instruments, Houston, 
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Texas, USA). All tonometry data were recorded continuously for 20 s with a sampling 

rate of 200 samples/s. 

 

Table 5.1: Physical and hemodynamic characteristics of subjects. 

Parameter Gender 35-40 41-45 46-50 51-56 
No. Male 252 249 248 230 

 
Female 253 265 253 253 

Age (years) Male 38±2 44±1 48±1 54±2 

 
Female 38±2 43±1 48±1 54±2 

Height (cm) Male 178±7 176±6 175±7 174±6 

 
Female 165±6ξ 164±6ξ 163±6*,ξ 161±6*,ξ 

Weight (kg) Male 82±12 80±12 83±12 81±11 

 
Female 65±11ξ 65±11ξ 66±12ξ 67±11ξ 

SBP (mmHg) Male 132±11 133±12 135±14 138±16 
Female 125±15ξ 128±15*,ξ 131±15ξ 137±18 

DBP (mmHg) Male 75±10 79±10* 80±10 81±11 
Female 74±11 76±11* 76±10 78±11 

MAP (mmHg) Male 98±10 101±11* 103±11 105±13 
Female 96±12 99±12* 100±12ξ 104±13 

PP (mmHg) Male 57±9 55±8 55±9 57±11* 

 
Female 50±8ξ 52±10ξ 55±11* 58±13* 

HR (beat/min) Male 61±9 62±9 64±11 62±10 
Female 65±8ξ 66±9ξ 65±9 65±9ξ 

          Values are mean ± SD. SBP: systolic blood pressure; DBP: diastolic blood pressure; MAP: mean arterial 
pressure; PP: pulse pressure; HR: heart rate. Pressure was recorded at the brachial artery. * indicates 
significant change (p<0.01) compared to the immediate previous halfdecade group. ξ indicates a 
significant change (p<0.01) between males and females in the same age group. 

The signal was filtered and divided into individual beats using the foot of the 

wave as a starting point of individual cardiac cycles. An ensemble average curve was 

calculated and considered as the tonometry recording for that measuring location. 

Tonometry was first performed at the brachial artery, and the tonometric recording was 

calibrated by appointing the peak and trough of the waveform the value of systolic 

blood pressure (SBP)ba and diastolic blood pressure (DBP)ba (obtained through 

oscillometric recordings), respectively, leading to a scaled brachial artery pressure 

tracing, Pba. Mean arterial pressure (MAP)ba was calculated by numerically averaging 

the curve. Next, tonometry was performed at the carotid artery, assuming that diastolic 

and mean pressures remain fairly constant in the large arteries. Thus, the trough and 
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mean of all tonometric recordings were assigned the values of DBPba and MAPba 

giving scaled carotid artery pressure waveforms (P).  

5.2.3 Flow velocity measurements 

The flow velocity measurements used in this chapter were the same used in 

chapter 4. The sequence of cardiac cycle was divided in single beats and an ensemble 

average beat was calculated as done for the pressure measurements. The two 

measurements were aligned using the algorithm proposed by (Swalen, Khir 2009). 

5.2.4 Determination of reservoir and excess pressure 

Reservoir pressure (Pr) was determined from the measured pressure (P) using the 

algorithm proposed by (Aguado-Sierra et al. 2008a). Pr at an arbitrary location can be 

determined using the following equations:  

    PPbPPa
dt

dP
rr

r                                                                                       (5.1) 

where, a and b (1/τ) are the rate constants of the system and P∞ is the asymptotic 

pressure. 

The solution of equation 5.1 is given by: 
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where T is duration of the cardiac cycle and TN is time of the dicrotic notch. 

The constant parameters Pr(TN), P∞ and b can be determined by minimizing the 

sum of squares of the error between fitted and measured pressure data using equation 

5.2. An unconstrained nonlinear optimization routine (fminsearch in Matlab) was used. 

To estimate the parameter a, continuity of Pr at t=TN is enforced (equation 5.3) and a is 

fitted from experimental data using the fminsearch Matlab routine. Pr is then obtained 

for the entire period from equations (5.2) and (5.3). Excess pressure (Pe) was 

subsequently calculated as the difference between P and Pr. An example of P separated 

in its reservoir and excess components is shown in Figure 5.1a. From Figure 5.1b it is 

possible to observe the similarity between Pe and U. The peaks of the measured (Ppeak), 

reservoir (Prpeak) and excess (Pepeak) pressure were determined. The pulse of the 

measured and the reservoir pressure (PP and PPr, respectively) were calculated as the 

difference between the corresponding peaks and the diastolic pressure (Pd). Also the 
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integral of reservoir and excess pressure (PRI and PEI, respectively) were determined as 

the area under Pr and Pe curves (Figure 5.1a). 

 
Figure 5.1: a) Example of measured (P, red), reservoir (Pr, blue) and excess (Pe, black) 

pressures in the carotid artery of a 39 years old female. PRI and PEI are the integral of 

the reservoir and excess pressures. b) Pe and U in the same subject.  
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Figure 5.2: Arterial and venous pressures recorded in a subject during the implantation 

of defibrillator devices (taken from Schipk et al. 2003). 

5.2.4.1 Asymptotic pressure (P∞) 

Vermeersch et al. pointed out that a free fitting of P∞ in the Asklepios population 

results in non-physiological values of this parameter in many cases (Vermeersch et al. 

2009). The reason behind this finding could be related to the procedure used to derive 

the carotid pressure from the brachial waveform or it might depend on a too short 

diastolic time that does not allow for a precise estimation of the asymptotic pressure. To 

overcome this problem the authors in their work decided to set P∞ (that they called 

venous pressure, Pv) to 0 mmHg for the entire dataset (Vermeersch et al. 2009). 

However, it was reported in several studies that when the heart stops the arterial 

pressure decays exponentially to a value that is higher compared to the venous pressure 

(Schipke et al. 2003; Jellinek et al. 2000) and that the equilibrium is not reached even 

after 20 s. The explanation of this phenomenon is still unknown, but some authors have 

speculated that it can be due to a waterfall effect (Permutt et al. 1963), to a Starling 

resistor (Starling 1897) or the different compliance of the arterial and venous 

compartment (Jellinek et al. 2000). Due to ethical restrictions not many studies have 

been performed in human to find out a reference value of the arterial asymptotic 

pressure when the heart stops. Recently, two groups managed to record the arterial 

pressure after stopping the heart in patients undergoing implantation of defibrillator 

devices (Schipke et al. 2003; Jellinek et al. 2000). From Figure 1 in Jellinek et al. 

(Jellinek et al. 2000) it is possible to estimate that the asymptotic arterial pressure is 
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about 14 mmHg before the heart starts again. According to Shipke et al., the arterial 

pressure decays to a value of 24.2 mmHg after 13 s from stopping the heart (Schipke et 

al. 2003). Figure 5.2 shows an example of the decay of the arterial pressure and the 

venous pressure recorded when the heart stopped pumping. In this chapter, two analysis 

are reported; once the analysis was carried out using a free fitting algorithm of P∞ and 

separately setting P∞ =19 mmHg which is the average of the two values found in the 

literature in humans. Figure 5.3 shows an example of P and the correspondent Pr 

calculated by free fitting and by setting P∞ to 19 mmHg. 

 

 

Figure 5.3: Example of measured pressure (black) and the correspondent reservoir 

pressures calculated by free of fitting P∞ (solid red) and by setting P∞=19 mmHg 

(dashed red). P∞ calculated using the free fitting algorithm in this case was 80 mmHg. 

5.2.5 Determination of reservoir and excess velocity 

The measured velocity (U) was separated into the reservoir (Ur) and excess (Ue) 

components using the equations presented in (Aguado-Sierra et al. 2008a; Aguado-

Sierra et al. 2008b) and reported here in section 2.2.8 of chapter 2. In their paper, two 

methods to determine the downstream resistance ( R ) are suggested; 1) calculate R  

from the slope of the linear part of the PU-loop during the diastolic phase of the cardiac 
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cycle and 2) determine it as     UPPR / where <P> and <U> are the time-

averaged pressure and velocity in diastole. In this work the second approach was chosen 

since it was difficult to detect the linear part of the loop in diastole in many cases. 

Maximum velocity peaks, Upeak, Urpeak and Uepeak were calculated as the peaks of 

the corresponding waveforms.  

In subjects where the diameter waveform was available, also the flow (Q) and 

the volume (V) were calculated. The former was determined as UA (with A the cross-

sectional area, calculated as πD2
d/4, where Dd is the diastolic diameter) and the latter 

was estimated from the area under the Q curve. 

 
5.2.6 Wave speed and wave intensity analysis 

Wave speed (cee) was determined using the PeUe-loop method and the wave 

intensity was performed replacing P and U with Pe and Ue  in equation 2.25 of chapter 2 

(Aguado-Sierra et al. 2008a). Peaks of forward and backward compression (FCW and 

BCW) waves were determined. 

5.2.7 Statistical analysis 

Data are presented as mean values SD in tables and text and bars in figures are 

SEMs. The population has been subdivided by gender into four halfdecades of age: 35-

40, 41-45, 46-50 and 51-55 years. Effects of age and gender on Ppeak, Prpeak Pepeak, 

PP, PPr, PRI, PEI, Upeak, Urpeak, Uepeak, τ, cee, FCW and BCW were studied using 

analysis of the variance technique (ANOVA) and the covariance technique (ANCOVA). 

Pearson correlation factors were calculated in order to assess any correlation between 

hemodynamic parameters. Values p<0.01 were considered statistically significant. 

Statistical analyses were performed using SPSS 17.0 (SPSS Inc., Chicago, Illinois, 

USA).  

5.3 Results 

As shown in Figure 5.4 systolic pressure in the carotid artery increases 

significantly with age (p<0.001) both in males and females. Diastolic pressure (Pd) 

increases as well with age (p<0.001), but also a significant difference between gender 

was found (p<0.001) with males having a higher diastolic pressure than females (Figure 

5.5). Pulse pressure (PP) increases significantly with age (p<0.001), but the increase is 

more pronounced in women than in men (in the first three age halfdecades PP does not 
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increase in men) (Figure 5.6). Figure 5.7 shows the changes of the velocity peak with 

age and gender. It decreases significantly with age and is significantly higher in males 

than females (both p<0.001). 

 

Figure 5.4: Changes of systolic peak pressure (Ppeak) in the carotid artery with age and 

gender. In the table the p values are reported. Ppeak increases significantly with age. 

 

Figure 5.5: Changes of diastolic pressure (Pd) in the carotid artery with age and gender. 

Pd increases significantly with age and is higher in males than females. 
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Figure 5.6: Changes of pulse pressure (PP) in the carotid artery with age and gender. PP 

pressure increases significantly with age and in females more than males. Also a 

significant interaction between age and gender was found. 

 

Figure 5.7: Changes of peak velocity (Upeak) in the carotid artery with age and gender. 

Upeak decreases significantly with age and is significantly higher in males than females. 

5.3.1 Changes of reservoir and excess pressure with age and gender 

Figure 5.8 shows the changes of P∞ with age and gender as calculated using the 

free fitting method. The average values of P∞ are relatively high for both males and 
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females and in all age halfdecades (50-60 mmHg). P∞ increases significantly with age 

both, in men and women (p<0.001).  

As shown in Figure 5.9, in both analyses Prpeak increases significantly with age 

and is higher in male than female. PPr increases significantly with age (p<0.001), but 

the increase is more pronounced in women than in men (Figure 5.10). Both trends are 

very similar to Ppeak and PP, respectively. Even though the changes are very similar 

using the two analyses, setting P∞ to a fixed value led to smaller values of Prpeak and 

PPr compared to the free fitting. Figure 5.11 shows the changes of the reservoir 

pressure integral (PRI) with age and gender. A statistically significant increase of PRI 

with age (p<0.001) and a significant difference between male and female (p<0.001) 

were found using both techniques. PRI calculated using the free fitting method is higher 

than PRI calculated setting P∞. In Figure 5.12 the changes of Pepeak with age and 

gender are reported. In this case the two techniques led to different results; no 

significant differences with age and gender were found using the free fitting method, but 

a significant difference with age was found setting P∞ (p<0.001), increasing in females 

and decreasing in males. The excess pressure integral (PEI) increases significantly with 

age (p<0.001) and is higher in females than males (p<0.001) using both techniques 

(Figure 5.13). Pepeak and PEI calculated setting P∞ are higher than that calculated using 

the free fitting method. 

 

Figure 5.8: Changes of P∞ calculated using the free fitting method with age and gender. 

P∞ increases significantly with age. It was adjusted for Pd. 
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Figure 5.9: Changes of peak reservoir pressure (Prpeak) in the carotid artery with age 

and gender using the free fitting algorithm (a) and setting P∞=19 mmHg (b). Prpeak 

increases significantly with age and is higher in males compared to females in both 

cases. Prpeak is higher using the free fitting method than setting P∞=19 mmHg. 

Percentage ratios between the values in (a) and (b) are reported in the table (c).  
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Figure 5.10: Changes of pulse reservoir pressure (PPr) in the carotid artery with age and 

gender using the free fitting algorithm (a) and setting P∞=19 mmHg (b). PPr increases 

significantly with age and is higher in males than females in both cases. A significant 

age-gender interaction was found only in (a). PPr is higher using the free fitting method 

than setting P∞=19 mmHg. Percentage ratios between the values in (a) and (b) are 

reported in the table (c).  
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Figure 5.11: Changes of reservoir pressure integral (PRI) in the carotid artery with age 

and gender using the free fitting algorithm (a) and setting P∞=19 mmHg (b). PRI 

increases significantly with age and is higher in males than females in both cases. PRI is 

higher using the free fitting method than setting P∞=19 mmHg. Percentage ratios 

between the values in (a) and (b) are reported in the table (c).  
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Figure 5.12: Changes of peak excess pressure (Pepeak) in the carotid artery with age 

and gender using the free fitting algorithm (a) and setting P∞=19 mmHg (b). Pepeak 

does not change significantly with age or gender in (a), but changes significantly with 

age in (b). A significant age-gender interaction was found in (b). Pepeak is smaller using 

the free fitting method than setting P∞=19 mmHg. Percentage ratios between the values 

in (a) and (b) are reported in the table (c).  
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Figure 5.13: Changes of excess pressure integral (PEI) in the carotid artery with age 

and gender using the free fitting algorithm (a) and setting the value of P∞=19 mmHg (b). 

PEI increases significantly with age and is higher in females than males in both cases. A 

significant age-gender interaction was found in (a). PEI is smaller using the free fitting 

method than setting P∞=19 mmHg. Percentage ratios between the values in (a) and (b) 

are reported in the table (c).  
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5.3.2 Changes of reservoir and excess velocity with age and gender 

            Examples of velocity separation into the Ur and Ue components are shown in 

Figure 5.14 for the two algorithm used to calculate Pr. A strong positive correlation was 

found between the volume (V), estimated as the area under the carotid flow curve, and 

Urpeak (Figure 5.15), but not with Upeak and Uepeak with both techniques.  
 

 

Figure 5.14: Examples of velocity waveform (U, red) separated into reservoir (Ur, blue) 

and excess (Ue, black) components using the free fitting algorithm (a) and setting P∞=19 

mmHg.  

 

Figure 5.15: Relationship between volume and reservoir peak velocity using the free 

fitting algorithm (a) and fixing P∞ (b). The Pearson correlation coefficient is 0.479 for (a) 

and 0.636 for (b). p values are <0.001 in both cases. 
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          Figure 5.16 shows the changes of Urpeak with age and gender. A significant 

increase of this parameter with age was found only using the free fitting method 

(p<0.001). No difference with gender was found in both cases. Urpeak calculated using 

the free fitting algorithm is much higher than that calculated fixing the value of the 

asymptotic pressure. This is due to the fact that the determination of Ur depends on R  

that depends on P∞. As previously discussed, generally, P∞ determined by the free 

fitting algorithm leads to values that appear non-physiological because too high 

(Vermeersch et al. 2009). The Uepeak trend is similar to the Upeak in both cases with a 

significant decrease with age (p<0.001) and significant difference between male and 

female (p<0.001, higher in male than female) (Figure 5.17). As expected the values of 

Uepeak are different using the different techniques to determine Pr, being higher when 

P∞=19 mmHg. 

5.3.3 Time constant decay (τ) 

The time constant decay decreases significantly with age and is different 

between male and female (higher in male than female) in both analyses (Figure 5.18). 

As expected, τ is different in the two techniques because it is affected by P∞. Using the 

free fitting algorithm τ is smaller than that calculated setting P∞; the time to reach a 

plateau is shorter using the free fitting method since the asymptotic pressure is higher. A 

strong negative relationship was found between τ and the parameter related to the 

excess pressure component, Pepeak and PEI, but only in the analysis where P∞ is set to 

19 mmHg (Figure 5.19). 

5.3.4 Changes of wave speed and intensities with age and gender 

           Wave speed (cee), calculated using the pressure and velocity components due to 

the waves (Pe and Ue), is shown in Figure 5.20 as function of age and gender. cee 

increases significantly with age only using the free fitting algorithm (p=0.01) and there 

is no difference between males and females in both cases. cee calculated using the free 

fitting algorithm is slightly smaller than cee calculated setting P∞=19 mmHg, the average 

ratio between the two wave speeds is 90% (Figure 5.20c). 

        The intensity of the forward compression wave (FCW) decreases significantly with 

age and is higher in males than females in both cases (Figure 5.21). Using the free 

fitting algorithm intensity values are smaller than setting P∞. Whilst, the intensity of the 
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backward compression wave (BCW) does not change significantly with age and gender 

in both cases (Figure 5.22). 

 

Figure 5.16: Changes of reservoir peak velocity (Urpeak) in the carotid artery with age 

and gender using the free fitting algorithm (a) and setting the P∞=19 mmHg (b). Urpeak 

increases significantly with age only in (a). Urpeak is higher using the free fitting 

method than setting P∞=19 mmHg. Percentage ratios between the values in (a) and (b) 

are reported in the table (c). 
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Figure 5.17: Changes of excess peak velocity (Uepeak) in the carotid artery with age 

and gender using the free fitting algorithm (a) and setting P∞=19 mmHg (b). Uepeak 

decreases significantly with age and is higher in maleS compare to femaleS in both 

cases. Uepeak is higher using the free fitting method than setting P∞=19 mmHg. 

Percentage ratios between the values in (a) and (b) are reported in the table (c). 
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Figure 5.18: Changes of τ in the carotid artery with age and gender using the free fitting 

algorithm (a) and setting P∞=19 mmHg (b). τ decreases significantly with age and is 

higher in males than females in both cases. Also a significant age-gender interaction 

was found. τ is smaller using the free fitting method than setting P∞=19 mmHg. 

Percentage ratios between the values in (a) and (b) are reported in the table (c). τ was 

adjusted for diastolic pressure Pd. 



  Chapter 5: Reservoir-wave approach in human carotid 

 100   
 

 

 

Figure 5.19: Relationship between τ and the Pepeak using the free fitting algorithm (a) 

and fixing P∞ (b). Relationship between τ and PEI using the free fitting algorithm (c) 

and fixing P∞ (d). A strong negative correlation was found only when a value for the 

asymptotic pressure was set. The Pearson correlation coefficient is -0.712 for (b) and -

0.623 for (d). p values are <0.001 in both cases. 
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Figure 5.20: Changes of wave speed (cee) in the carotid artery with age and gender 

using the free fitting algorithm (a) and setting P∞=19 mmHg (b). cee increases 

significantly with age only in (a). cee is smaller using the free fitting method than setting 

P∞=19 mmHg. Percentage ratios between the values in (a) and (b) are reported in the 

table (c). cee was adjusted for mean arterial pressure MAP. 
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Figure 5.21: Changes of the intensity of the forward compression wave (FCW) in the 

carotid artery with age and gender using the free fitting algorithm (a) and setting P∞=19 

mmHg (b). FCW decreases significantly with age and is significantly higher in male 

than female in both cases. FCW is smaller using the free fitting method than setting 

P∞=19 mmHg. Percentage ratios between the values in (a) and (b) are reported in the 

table (c). FCW was adjusted for mean arterial pressure MAP. 
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Figure 5.22: Changes of the intensity of the backward compression wave (BCW) in the 

carotid artery with age and gender using the free fitting algorithm (a) and setting P∞=19 

mmHg (b). No significant differences were found with age and gender in both cases. 

Percentage ratios between the values in (a) and (b) are reported in the table (c). BCW 

was adjusted for mean arterial pressure MAP. 



  Chapter 5: Reservoir-wave approach in human carotid 

 104   
 

5.4 Discussion 

In this chapter the hemodynamics of the carotid artery in healthy subjects was 

studied using the reservoir-wave approach and changes of excess/reservoir components 

with age and gender were investigated. The findings presented in chapter 4 showed that 

carotid artery is affected by the ageing process also in healthy subjects. The results 

reported in this chapter confirm the previous findings; most of the hemodynamic 

parameters studied here change significantly with age. Reservoir pressure parameters, 

Prpeak and PPr, significantly increase with age (particularly in women) following the 

trend of Ppeak and PP. The same result was found in the same population setting the 

asymptotic pressure to 0 mmHg and considering the carotid pressure waveform a 

surrogate of the central pressure waveform (Vermeersch et al. 2009). Also PRI increases 

significantly with age both in males and females. All the reservoir parameters are 

significantly higher in males than females. Pepeak significantly changes with age only in 

the analysis where the asymptotic pressure was set to a fixed value. In this case, it 

seems to increase in females and decrease in males. No differences between men and 

women were found in both cases. PEI increases significantly with age and is higher in 

women than men. This is an important hemodynamic parameter since it has been found 

to be a marker of cardiovascular events in hypertensive treated subjects (Davies et al. 

2010b).  

          Recently the changes of reservoir and excess central pressure with age of 43 

asymptomatic subjects aged 20-69 years old were reported (Bia et al. 2011). The 

ascending aortic pressure was derived from the radial pulse, measured by applanation 

tonometry, using a transfer function. The authors divided the population in age decades 

and found that the maximum of the reservoir pressure increases almost linearly with age. 

From the decade 30-39 years old to the 50-59 one it increases around 12 mmHg. 

Averaging the mean value for men and women in the first and last half-age decade of 

the population studied in this chapter the increase is around 9 mmHg in both analyses. 

They found a significant increase of the maximum of the excess pressure only in the last 

age decade (60-69 years), and it is almost constant from the 30-39 to the 50-59 years old 

age decade. Also Davies et al. (Davies et al. 2010a) reported an increase of reservoir 

pressure in 18 patients scheduled for coronary angiography (averaged age 54±10 years 

old). Further, it found that maximum excess pressure is statistically higher in male than 

female and that the maximum of reservoir pressure is not different between men and 
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women in a population of 22 asymptomatic subjects (averaged aged 20 years old) 

(Cymberknop et al. 2011). On the contrary, the analysis reported here showed that 

differences in gender are statistically significant in the reservoir but not in the excess 

component. 

           The use of the algorithm applied allows also for the separation of the velocity in 

its component due to the elasticity of the large vessels (reservoir velocity) and that due 

to the travelling wave (excess velocity). Aguado-Sierra et al. (Aguado-Sierra et al. 

2008b) have already separated the velocity waveforms in the carotid artery, but the 

number of subjects used in the study (8 subjects) was too small to investigate the 

changes of this parameters with age or gender and to assess any relationship with other 

hemodynamic parameters. In this study a full investigation of these parameters with age 

and gender is reported. 

            Upeak and Uepeak decrease with age in both male and female and are 

significantly higher in male. Urpeak increases significantly with age but only using the 

algorithm of free fitting P∞ and there is no difference in gender in both analyses. It was 

also found that there is a strong positive relation between the volume entering the 

carotid artery, estimated as the area under the flow curve, and Urpeak. This is an 

important finding since the physical meaning of the reservoir and excess components is 

still not fully understood. This relationship indicates that the reservoir velocity is related 

to the buffering capacity of the elastic vessels.   

             The time constant decay, τ, was also studied in relation with age and gender. It 

was found that it is strongly affected by the ageing process; in particular it decreases 

significantly with age. τ is equal to RC and  decreases because the compliance of the 

vessel decreases with age, since R, estimated as the mean pressure over mean flow, does 

not change significantly with age (Figure 5.23). τ was found to be different between 

males and females (higher in males than females). The time constant decay is negatively 

related to the excess pressure parameters, Pepeak and PEI, but only in the analysis 

where P∞ was fixed. This is a surprising finding since τ is related to the diastolic part of 

the cycle, while the excess pressure has a larger contribution in the systolic part. 

Moreover, τ depends on global resistance and compliance whilst it is believed that Pe is 

stronger related to the local property of the vessel. 

         In this chapter, also the changes of wave speed and intensity determined using the 

pressure and velocity components due to the waves were investigated for the first time 
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as function of age and gender. cee increases with age only using the free fitting 

algorithm and there is no significant difference between males and females in both cases. 

cee is almost double compared to the wave speed found in the same population using the 

lnDU-loop. Since a gold standard for the determination of the local wave speed in 

arteries has not been established yet, is not possible to say which calculation is more 

correct. It might be possible that in this particular case, the measurements of pressure, 

flow velocity and diameter were taken too close to a positive reflection site. This 

situation has been demonstrated, to lead to an overestimation of the real wave speed if 

calculated using the PU-loop (Li et al. 2011) and it might lead to an underestimation 

using the lnDU-loop.   

       The peak of the forward compression wave decreases significantly with age and is 

higher in males than females. This finding may be related to a decrease of ventricular 

contractility with age. The peak of the backward compression wave seems not to be 

affected by the ageing process. 

 

 
Figure 5.23: Changes of resistance (R) with age and gender. R is significantly higher in 

male than female, but it does not change significantly with age. 

 

           In this chapter the same data were analysed using two different methods to 

calculate Pr. One method is based on the free fitting of the asymptotic pressure, P∞, from 

the diastolic decay of the measured pressure. This method, as previously reported by 
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Vermeersch et al., leads to high value of P∞ in the specific case of this population 

(Vermeersch et al. 2009). The reason for this is unknown but it can be related to the 

technique used to derive the carotid pressure from the brachial pressure or to the fact 

that the diastolic decay is too short and the fitting is not precise. Wang et al. (Wang et 

al. 2003) found a P∞ around 35 mmHg using a free fitting algorithm to derive Pr in dogs 

when a long beat was generated.  

         Many studies were carried out in animals (Guyton et al. 1954; Drees & Rothe 

1974; Samar & Coleman 1978; Yamamoto et al. 1980; Sylvester et al. 1981; Versprille 

et al. 1985) to find the mean circulatory filling pressure that is, according to Guyton, 

“the pressure that would be measured at all points in the entire circulatory system if the 

heart were stopped suddenly and the blood were redistributed instantaneously in such a 

manner that all pressures were equal” (Guyton et al. 1954). The average value found 

from these studies was 8 mmHg, but in most of these cases the arterial and the venous 

pressure were forced to equilibrium after the heart stopped pumping. More recent 

studies in humans have shown that the arterial and the venous pressure do not reach the 

same value even after 20 s (Schipke et al. 2003; Jellinek et al. 2000). The pressure of the 

arterial side is higher than the venous side. The average of the values found in these two 

works was used as P∞ in the second analysis performed in this chapter.  

           Generally, the trends and the changes with age and gender were not affected by 

the choice of the algorithm used (apart from Pe and Ur), but the averaged absolute 

values were largely dependent on P∞. Pr was larger using the free fitting method and 

peak of Pe was smaller resulting in higher Prpeak, PPr, PRI and smaller Pepeak and PEI. 

The reservoir and excess components of the measured velocity were greatly affected by 

P∞ because their determination depends on the resistance that was calculated using the 

asymptotic pressure. Using the free fitting algorithm Ur is much higher than that 

calculated fixing P∞ and in some cases the peak of this velocity was higher than the 

measured velocity peak.  

         Also τ was affected by the choice of the analysis. In particular, the average values 

were almost half when P∞ was free fitted. That means that the arterial pressure reaches 

an asymptotic value earlier compared to the method were P∞ was set to 19 mmHg. This 

result was expected since free fitting P∞ leads, on average, to values higher than 19 

mmHg.  
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5.5 Conclusion 

In this chapter the hemodynamic of the carotid artery in healthy was studied 

using the reservoir-wave approach. Here for the first time, both pressure and velocity 

were separated in their reservoir and excess components and their changes with age and 

gender were investigated. Most of the hemodynamic parameters related to pressure and 

velocity studied here are affected by the ageing process, confirming the results 

presented in chapter 4 where the non-invasive technique was applied to the same 

population.  

         A strong positive relationship was found between the volume entering the carotid 

artery and the velocity component due to the buffering capacity of vessels and a strong 

negative relationship between the constant decay and pressure component due to the 

waves.  

         A free fitting algorithm to estimate P∞ and another algorithm where P∞ was set to 

a certain value were tested here. The results of the two techniques are different mostly 

in the absolute values, but the pattern of changes with age and gender are very similar. 

       The reservoir-wave approach can be used also at arbitrary location of the arterial 

system to describe the local hemodynamic of the vessel. Here the study was performed 

in a healthy population of subjects included in a relatively narrow age range; a 

comparison of these parameters in an older or pathological population would be 

interesting in order to investigate potential markers of cardiovascular diseases that can 

be used to detect the pathology earlier. 
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Chapter 6 : Reservoir and excess pressure 
changes with vascular compliance and stroke 
volume  

6.1 Introduction 

As mentioned in chapter 1, the main aim of this chapter is to study the reservoir 

(Pr) and excess (Pe) pressure components of the measured aortic pressure and their 

respective changes with compliance and stroke volume in a mock circulatory system 

(MCS).  

As previously discussed, the concept of a reservoir pressure due to the buffering 

effect of the aorta and an excess pressure due to the traveling waves, is relatively new 

and needs further investigation. Recent studies have shown that the pulse pressure is 

predominantly due to Windkessel properties (Wang et al. 2003, Mohiuddin et al. 2012) 

and that reservoir pressure increases with age (Davies et al. 2010a, Vermeersch et al. 

2009) because of the increasing stiffness of the aorta with age. Davies et al. also found 

that the reservoir pressure is the main determinant of the Augmentation Index (AIx) and 

they have also reported that the integral of the excess pressure is a good predictor of 

cardiovascular events in a population of treated hypertensive patients (Davies et al. 

2010b). The clinical and physiological relevance of Pr and Pe is not yet fully understood. 

It would be useful from a clinical point of view to relate these parameters with 

particular pathological hemodynamic conditions, in order to use them as screening or 

diagnostic parameters.  

For this purpose, the aim of this work is to study the effect of aortic compliance 

and stroke volume on P, Pr and Pe. Aortic compliance is related to physiological (age) 

and pathological (such as hypertension, atherosclerosis and arterial wall diseases) events 

and stroke volume is related to left ventricle contractility. Both, compliance and stroke 

volume are believed to be related to Pr since it is determined by the Windkessel capacity 

of the aorta and it is related to the volume “trapped” in the aorta that depends on the 

volume ejected. Pe can be affected by the arterial stiffness as well since a change in the 

mechanical properties of the vessel is going to affect the wave speed of pressure and 
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flow waveforms. The way Pr and Pe are affected by the aortic compliance and the stroke 

volume has not been investigated before.  

This study was carried out in a MCS that includes a vascular system and a 

pumping system that simulates the pumping action of the heart. A similar MCS was 

previously designed and tested by Kolyva et al. (Kolyva et al. 2012) to be used with the 

intra-aortic balloon pump; in this work the same MCS was modified in order to suit the 

purpose of the experiments. The use of a MCS rather than in vivo experiments allows 

for a selective control of the variation of aortic compliance and stroke volume resulting 

in changes of these variables that are almost independent of each other.  

6.2 Material and Methods 

6.2.1 Mock circulatory system (MCS) 

The MCS is composed of two main units (Figure 6.1):  

1) The vascular system that includes: the artificial aorta with its main branches, 

the capillary system (that act as resistances) and the venous return;  

2) The pumping system, which includes the left ventricle assist device (LVAD), 

a stepper motor and a control unit.  

 

Figure 6.1:  Schematic representation of the experimental set-up. 

The LVAD was connected respectively to the piston pump through the 

ventricular connection, to the reservoir by means of the atrial connection and to the 
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aorta through the aortic valve (Figure 6.1). Each branch of the aorta was fitted with the 

corresponding resistance tube and then to a drainage tube acting as a venous return, 

which was joined to the overhead reservoir (Figure 6.2). All experiments were carried 

out at room temperature (about 20ºC) and water was used as test fluid. The same 

artificial aorta was used in all the experiments and its mechanical properties were 

changed by wrapping it in different ways using different materials. The stroke volume 

was varied by setting different profiles in the software that controls the LVAD. 

 

Figure 6.2: Experimental set-up. The artificial aorta is connected to the LVAD and each 

branch is connected to a capillary tube that acts as terminal resistance. Capillary tubes 

are connected to the venous return that is joined to the reservoir. The LVAD was 

connected to the stepper motor with a plastic tube. 

6.2.1.1 Artificial aorta 

The aorta model used in these experiments is a 1:1 replica of the human aorta 

and its main branches: left and right coronary arteries; innominate artery bifurcating to 

the right subclavian and right carotid arteries; left carotid artery; left subclavian artery; 

celiac artery; left and right renal arteries; aorto-iliac bifurcation leading to left and right 

iliac arteries. A schematic representation of the model is shown in Figure 6.3. In Table 

6.1 dimensions of the aorta and its main branches are given. 
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Figure 6.3: Schematic representation of the artificial aorta. Arterial segments: (1) right 

coronary, (2) left coronary, (3) right subclavian, (4) right carotid, (5) left subclavian, (6) 

left subclavian, (7) celiac, (8) right renal, (9) left renal, (10) right iliac, (11) left iliac. 

6.2.1.2 Resistances and compliances 

In order to reproduce the physiological distribution of flow in the artificial aorta, 

resistances and compliances were implemented in the model. Distribution of resistances 

and compliances used in this chapter are mainly based on Kolyva’s work (Kolyva et al. 

2012) that refers to the Stergiopolous model (Stergiopulos et al. 1992).  

Total resistance is the sum of a proximal and a terminal resistance. The 

geometry of the aorta model accounts for the proximal resistance and the capillary tubes 

connected to the main branches and the venous return account for the terminal 

resistances reported by Stergiopolous (Stergiopulos et al. 1992). According to Kolyva et 

al. (Kolyva et al. 2012)  the proximal resistance is three orders of magnitude smaller 

than the terminal one. For this reason total resistance was considered equal to the 
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terminal one. The same dimensions of capillary tubes calculated in Kolyva’s were used 

in these experiments (Kolyva  et al. 2012).  

Table 6.1: Dimensions of the arterial segments. 

Vessel Number Internal Diameter 
(mm) 

Wall Thickness 
(mm) 

Length 
(cm) 

     Outflow tract 1 30 1.63 2.0 
Coronary artery 2 4 0.05 25.0 
Ascending aorta 1 30 1.63 4.0 

Arch 1 1 23 1.32 6.3 
Innominate artery 1 12 0.86 23.4 
Left carotid artery 1 8 0.63 25.9 

Left subclavian 
artery 

1 8 0.67 23.4 
Arch 2 1 22 1.27 4.9 

Thoracic aorta 1 20 1.20 16.6 
Celiac artery 1 8 0.64 12.0 

Abdominal aorta 1 1 12 0.84 5.3 
Renal artery 2 6 0.52 23.2 

Abdominal aorta 2 1 10 0.82 10.4 
Iliac artery 2 8 0.63 25.8 

 

The total compliance of the system is also a sum of proximal and terminal (or 

distal) compliances. The value of proximal compliance is the compliance of the aorta 

and it gives the main contribution to the total compliance of the model. Distal 

compliances reported by Stergiopulos were reproduced in Kolyva’s by means of trapped 

volume of air held in syringes. Since the aim of these experiments was to investigate the 

changes in reservoir and excess components by varying the aortic compliance and as it 

has been reported that distal compliances do not affect markedly the central waveforms 

they were not implemented in the system (Matthys et al. 2007). The compliance of the 

aorta was determined according to a method reported by Segers et al. (Segers et al. 

1998). The details are reported in section 6.2.2.  

6.2.1.3 The venous return and the reservoir 

Each capillary tube was connected to a drainage tube acting as venous return as 

shown in Figure 6.2. An overhead reservoir was joined to the venous return and to the 

atrial chamber of the LVAD. The height of the water inside the reservoir was about 14 

cm in order to provide an atrial pressure of about 10 mmHg. 
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6.2.1.4 The left ventricular assist device 

A left ventricular assist device (LVAD) has been used in order to produce a 

pulsatile flow inside the mock circulatory system (Abiomed BVS 5000, Abiomed Inc, 

MA, USA). The LVAD consists of two chambers in series, the left atrium (LA) and the 

left ventricle (LV) and two valves, the mitral valve placed between LA and LV and the 

aortic valve that separates LV from the aortic root (Figure 6.4). During the experiments 

the LA was connected to the reservoir. The LV is a silicon sac which is filled and 

compressed by water from the LA and from the piston which is operated by a stepper 

motor driver, respectively. Figure 6.5 illustrates the systolic and diastolic phases of the 

LVAD. The capacity of the LVAD is 100 ml, but preliminary tests have shown that the 

stability of the device at high stroke volume is compromised (Hunt 2012). For this 

reason in these experiments the stroke volume (V) was set to 30 ml, 40 ml, 50 ml and 

60 ml. 

 

Figure 6.4: LVAD Abiomed BVS 5000. 

6.2.1.5 The stepper motor driver and the control unit 

An external stepper motor (Heart Pump Simulator, Placepower, Norfolk, UK) 

was connected to the LV in order to drive the LVAD. The motor is driven by a stepper 

drive, controlled from a PC using a dedicated software (Easitools, v 1.5, Parker 

Hannifin Corp, Dorset, UK). In Figure 6.6 the heart simulator is shown together with 

the driver and the PC unit. Through the software it is possible to generate different flow 

profiles controlling V (related to the number of steps of the piston) and the timing of 

systole and diastole (varying the acceleration and deceleration of the piston movement). 
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An Excel spread sheet was provided with the driver for the calculation of the required 

pump performance. In these experiments four values of V were used and acceleration 

and deceleration values were changed in order to have a cardiac cycle of 1s and a ratio 

systole/total cycle of approximately 1/3. 

 

Figure 6.5: Schematic representation of the LVAD during diastolic and systolic phases. 

(Modified from Dowling & Etoch 2000). 
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Figure 6.6: Heart Pump Simulator. 

Table 6.2: Different preparations used for wrapping the aorta to provide different 
compliances.  

Aorta Preparation Wrapping 

A1 1 plastic net sleeve  

A2 2 plastic net sleeves 

A3 3 plastic net sleeves 

A4 1 plastic net sleeve + 1 fabric sleeve 

A5 1 plastic net sleeve + clingfilm 

A6 1 plastic net sleeve + tape 
A1 is the aorta with the highest value of compliance and A6 the lowest. The aorta was wrapped also in the 
configuration of highest compliance because the value found for the aorta itself was too high for the aim 
of the experiments.  

6.2.2 Determination of the static compliance (Cs) 

In order to vary the aortic compliance, the main trunk of the aorta was wrapped 

in different ways using sleeves, clingfilm and tape as reported in Table 6.2. Six 

different aorta preparations corresponding to six different values of compliance were 

obtained (termed A1, A2, A3, A4, A5, A6 from the highest to the lowest compliance).  
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Compliance is defined as dV/dP (with dV variation of volume and dP variation 

of pressure). To determine the value of aortic static compliance (Cs) the aorta and the 

main branches were closed and filled with water. The volume was increased by 

injecting water in steps of 5 ml using a graduated syringe and was decreased by 

removing water also in steps of 5 ml. 

An 8F transducer-tipped pressure catheter (Millar Instruments Inc., Houston, 

Texas, USA) was placed inside the aorta and at each step of increased/decreased volume 

the value of pressure was recorded. For each aorta preparation, the compliance was 

determined after the experiment in order to reach the pressure values recorded during 

the experiment. However, it was not always possible to determine the value of Cs in the 

same range of pressure obtained during the experiment in particular for the aorta with 

lower values of compliance.  

Volume of water was plotted against pressure during the loading and unloading 

phase as shown in Figure 6.7. For the same aorta preparation, the pulse pressure at the 

aortic root was different for the four different stroke volumes ejected in the system and, 

as can be observed from Figure 6.7, the slope of the curves depends on the pressure 

range considered. In Figure 6.7 the ranges of pressure at different volume are also 

shown. The procedure of loading and unloading was repeated at least three times for 

each aorta. Values of Cs for each stroke volume were determined by averaging the 

slopes of the loading and unloading curves in the range of pressure reached during the 

experiment (Table 6.3). It is possible to observe from the table that the values of Cs for 

the more compliant aorta (A1, A2, A3) are more affected by the pressure range selected 

to determine the slope and thus by the stroke volume compared to the stiffer aorta (A4, 

A5, A6). The ratio between the minimum and maximum values calculated for the same 

aorta preparation are 0.53, 0.60, 0.60, 0.81, 0.96 and 0.88 for A1, A2, A3, A4, A5 and 

A6, respectively. For A4, A5 and A6, the value of compliance was almost constant 

throughout the pressure range found in the experiment for each stroke volume. Cs was 

calculated in the same range of pressure for stroke volumes of 50 and 60 ml. 
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Figure 6.7: Example of calculation of aortic compliance in the third configuration (A3). 

A pressure-volume curve relating the change in volume and the change in pressure 

inside the aorta was obtained during the loading and unloading phases. The average of 

the slopes of linear fits over the loading and unloading curves in the pressure range 55-

100 mmHg for 30 ml (horizontal stripes), 90-115 mmHg for 40 ml (vertical stripes) and 

above 115 mmHg (oblique stripes) for 50 and 60 ml yielded the values of C3. The 

hysteresis relates to the viscoelastic properties of the material of the aortic wall. 

Table 6.3: Values of Cs for each aorta preparation (A1-A6) determined in the range of 
pressure obtained during the experiments for the different ejected volumes. 

 
Compliance (Cs) 

Volume 
(ml) 

A1 
(ml/mmHg) 

A2 
(ml/mmHg) 

A3 
(ml/mmHg) 

A4 
(ml/mmHg) 

A5 
(ml/mmHg) 

A6 
(ml/mmHg) 

30 1.29±0.01 1.13±0.03 0.78±0.06 0.63±0.01 0.54±0.02 0.30±0.00 

40 1.94±0.12 1.64±0.24 1.07±0.08 0.68±0.07 0.52±0.00 0.32±0.00 

50 2.41±0.24 1.87±0.35 1.29±0.18 0.78±0.20 0.53±0.01 0.34±0.00 
60 2.41±0.24 1.87±0.35 1.29±0.18 0.78±0.20 0.53±0.01 0.34±0.00 

Values are mean ± SD. Cs was calculated by averaging the slopes of the loading and unloading curves in 
the range of pressure reached during the experiment. The procedure of loading and unloading was 
repeated at least three times for each aorta preparation. 
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6.2.3 Pressure and flow measurements  

Pressure (P) and flow (Q) were measured at the same position at the aortic root 

as shown in Figure 6.8.  

Pressure was measured with an 8F transducer-tipped pressure catheter (Millar 

Instruments Inc., Houston, Texas, USA) inserted from the iliac artery. The frequency 

response of the Millar catheter according to manufacturer specifications is: DC to 

1000Hz (-3dB).  

The pressure transducer was calibrated using the method of a vertical column of 

water. The transducer output in voltage was recorded after changing the level of water 

acting on the catheter inside the column. The range of pressure for the calibration was 

based on the pressure range expected during the experiment. The recorded voltages and 

applied pressures were plotted and the equation of the regression line relating these 

values was calculated (Figure 6.9). Pressure data during the calibration and the 

experiments were acquired at 500 Hz with Sonolab software (Sonometrics Corporation, 

London, Ontario, Canada).  

 

Figure 6.8: Flow probe and pressure catheter at the aortic root measuring P and Q. 

 

Flow was measured with an ultrasonic flow probe 32 mm size (Transonic, 

Ithaca, NY, USA) placed at the aortic root.  

The flow probe was calibrated on the aorta; the inlet of the aorta was connected 

to a pump that generates continuous flow which was varied using a tap valve placed on 

the circuit. The fluid was collected for a certain period of time from the venous return 

using a measuring cylinder whilst the flow measured with the flow probe was recorded. 
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Flow in voltage was plotted against flow in l/min and the linear regression line for 

conversion was obtained (Figure 6.10). Flow data during the calibration and the 

experiments were also acquired at 500 Hz with Sonolab sofware (Sonometrics 

Corporation, London, Ontario, Canada).  

 

Figure 6.9: Example of the pressure transducer calibration regression line. 

 

Figure 6.10: Example of the flow transducer calibration regression line. 
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6.2.4 Experimental procedures 

The profiles corresponding to stroke volume of 30, 40, 50, 60 ml were 

consecutively set in the software that drives the control unit. For each V approximately 

10 beats were recorded. After that, the aorta was disconnected from the LVAD, the 

branches were closed and the compliance was determined as described in section 6.2.2. 

For all the aorta preparations (A1-A6) the same procedure was followed. Figure 6.11 

shows the comparison of two pressure recordings at the same site to assess the 

reproducibility of the measurements. 

 

Figure 6.11: Comparison of two pressure measurements at the same site. The 

waveforms superimpose one another, giving confidence of good reproducibility of 

measurements. 

6.2.5 Analysis 

The recorded pressure and flow data were filtered in Matlab by means of a 

Savitzky-Golay filter and further processed with the same software. Pr was calculated 

from P as described in Aguado-Sierra et al. (Aguado-Sierra et al. 2008a). Thus, Pe was 

determined as P-Pr. The following parameters were calculated for all the experiment by 

averaging the values of three beats for each combination Cs-V: 
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 Ppeak – Maximum of P; 

 Prpeak – Maximum of Pr; 

 Pepeak – Maximum of Pe; 

 Pd – Diastolic pressure; 

 MAP – Mean arterial pressure, calculated as Pd+1/3(Ppeak-Pd) (Li et al. 2006); 

 PP – Pulse pressure, calculated as Ppeak-Pd; 

 PPr – Pulse reservoir pressure, calculated as Prpeak-Pd; 

 PPr/PP – Ratio of pulse reservoir pressure over pulse pressure; 

 Pinf – asymptotic pressure, calculated by fitting the diastolic part of the cycle 

(Aguado-Sierra et al. 2008a); 

 τ – Time constant of the pressure exponential decay in diastole, calculated by 

fitting the diastolic part of the cycle (Aguado-Sierra et al. 2008a); 

 c – Wave speed, calculated from the slope of the linear part of the PU-loop 

(where U is the velocity determined from Q) (Khir, Parker 2001); 

 ce – Wave speed, calculated from the slope of the linear part of the PeU-loop, as 

determined in chapter 3; 

 Cp – Dynamic compliance calculated as V/PP (Chemla et al. 1998); 

 Cpr – Dynamic compliance calculated as V/PPr. 

6.2.5.1 Statistical analysis 

The changes of the parameters reported in section 6.2.5 with Cs and V were 

investigated and the results are reported in section 6.3.2 and 6.3.3, respectively.. Values 

of Cs are the ones reported in Table 6.3. p values <0.05 were considered statistically 

significant. Note that changes in relation to Cs were plotted with the x-axis reversed 

(from A1 to A6) to show more intuitively the analogy of reduced compliance with age. 

In graphs and tables the mean values of three beats ± SD are reported. The experimental 

data were fitted with linear or exponential curves, based on highest R2. In graphs the 

fitting is reported with its equation, its R2 and the p value of the regression analysis.  
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6.3 Results 

6.3.1 Static vs. dynamic compliance 

The values of Cs were compared to the values of compliance estimated using 

dynamic methods: the stroke volume to pulse pressure ratio (Cp) and the stroke volume 

to pulse reservoir pressure ratio (Cpr). In Figure 6.12 the comparison between the three 

methods is reported for all the aorta configurations for each value of stroke volume. 

Figure 6.12 shows that, at lower stroke volume (lower pressure range) the values of 

compliance are markedly smaller in the case of a more compliant (A1, A2, A3) aorta. 

That is due to the higher slope of the pressure-volume curve for high range of pressure 

(Figure 6.7). In Table 6.4 the percentage difference between Cs and Cp and between 

Cs and Cpr are reported. Considering that the volume/pulse pressure ratios are an 

estimation of the compliance in a single point, different results are expected. 

 

Figure 6.12: Comparison between Cs, Cp and Cpr, for V=30 ml (a), V=40 ml (b), V=50 

ml (c) and V=60 ml (d) for all the aorta preparations. 
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Table 6.4: Percentage differences between Cs, Cp and Cpr.  

Volume 
(ml) 

 
A1 A2 A3 A4 A5 A6 

30 
Cp 17% 18% 7% 5% 4% -13% 

Cpr 10% 13% -1% -6% -12% -26% 

40 
Cp 22% 7% 2% -4% -2% -22% 

Cpr 15% -2% -9% -15% -15% -34% 

50 
Cp -7% -7% -25% -8% -8% -24% 

Cpr -20% -21% -40% -18% -20% -36% 

60 
Cp -18% 4% -28% -7% 3% -19% 

Cpr -40% -5% -62% -20% -10% -31% 
The percentage differences were calculated as (Cs-Cp)/Cs)*100 and (Cs-Cpr)/Cs)*100. 

6.3.2 Changes with compliance 

6.3.2.1 Measured pressure (P) 

Figure 6.13 shows typical measured pressure waveforms recorded at different 

aorta configurations for a stroke volume of 30 ml. Changes of systolic pressure (Ppeak) 

with compliances are reported in Figure 6.14. As expected, a significant linear increase 

of Ppeak with decreasing compliance was found (for all the stroke volume, p<0.05). In 

the figure also the linear fitting for each volume is reported. In Figure 6.15 changes of 

diastolic pressure (Pd) with compliances are shown. Although there is a decreasing trend 

of Pd with decreasing compliance, the relationship is not statistically significant. As 

shown in Figure 6.16 there is no significant change in MAP with changing compliance 

for all the stroke volumes. Figure 6.17 shows the changes of pulse pressure (PP) with 

compliance. PP exponentially increases with decreasing compliance (for all stroke 

volume, p<0.001). 
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Figure 6.13: Example of measured pressure waveforms at V=30 ml for all the aorta 

preparations. Diastolic pressure was subtracted from the initial value of pressure. 

Curves were aligned with the upstroke of the measured pressure. 

 

Figure 6.14: Changes of Ppeak with Cs. Ppeak linearly increases with decreasing Cs 

(for all V p<0.05). 
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Figure 6.15: Changes of Pd with Cs. No significant relationship between Pd and Cs was 

found. 

 

Figure 6.16: Changes of MAP with Cs. No significant relationship between MAP and 

Cs was found. 
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Figure 6.17: Changes of PP with Cs. PP exponentially increases with decreasing Cs (for 

all V p<0.05).  

 

Figure 6.18: Reservoir pressure waveforms at V=30 ml for all the aorta preparations, 

calculated from the measured pressures reported in Figure 6.13. Diastolic pressure was 

subtracted from the initial value of pressure. Curves were aligned with the upstroke of 

the measured pressure. 
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6.3.2.2 Reservoir pressure (Pr) 

Figure 6.18 shows the reservoir pressure waveforms calculated from the 

measured pressures shown in Figure 6.13 and Figure 6.19 shows an example of P, Pr 

and Pe. Changes of peak reservoir pressure (Prpeak) with compliances are reported in 

Figure 6.20. A significant linear increase of Prpeak with decreasing compliance was 

found for stroke volume of 40, 50 and 60 ml. An increasing trend was found also for the 

stroke volume of 30 ml but it was not statistically significant. In Figure 6.20 the linear 

fitting for each volume is also reported. Figure 6.21 shows the changes of pulse 

reservoir pressure (PPr) with compliance. PPr exponentially increases with decreasing 

compliance (for all stroke volume, p<0.001). Changes of the PPr/PP ratio with 

compliances are reported in Figure 6.22. No significant difference of this parameter 

was found with compliance. 

6.3.2.3 Excess pressure (Pe) 

Figure 6.23 shows typical examples of excess pressure waveforms calculated 

from the measured pressures shown in Figure 6.13. Changes of peak excess pressure 

(Pepeak) with compliance are reported in Figure 6.24. A significant exponential 

increase of Pepeak with decreasing compliance was found for stroke volume of 40 and 

50 ml. An increasing exponential trend was found also for the stroke volumes of 30 ml 

and 60 ml but it was not statistically significant.  

 

Figure 6.19: Example of measured pressure (black) and calculated reservoir (red) and 

excess (blue) pressure. 
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Figure 6.20: Changes of Prpeak with Cs. Prpeak increases significantly with decreasing 

Cs (for all V p<0.05, a part from V=30ml).  

 

Figure 6.21: Changes of PPr with Cs. PPr increases exponentially with decreasing Cs 

(for all V p<0.05).  
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Figure 6.22: Changes of PPr/PP with Cs. No significant relationship between PPr/PP 

and Cs was found. 

 

Figure 6.23: Excess pressure waveforms at V=30 ml for all the aorta preparations, 

calculated from the measured pressures reported in Figure 6.13. Curves were aligned 

with the upstroke of the measured pressure. 
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Figure 6.24: Changes of Pepeak with Cs. Pepeak increases significantly with decreasing 

Cs for V=40 ml and V=50 ml (p<0.05), but not for V=30 ml and V=60 ml. 

 

Figure 6.25: Changes of τ with Cs. τ decreases significantly in a linear way with 

decreasing Cs (for all V p<0.05, apart from V=60ml). For V=30 ml, V=40 ml and V=50 

ml the best fitting of the experimental data is a linear curve. 



  Chapter 6: Changes of reservoir and excess pressure with compliance 

 132   
 

Table 6.5. Values of the time constant decay calculated by fitting the exponential decay 
(τ) and estimated as RC (τRC). 

V (ml)  A1 A2 A3 A4 A5 A6 

30 
τ (s) 1.8±0.2 1.6±0.1 1.2±0.1 0.6±0.1 0.6±0.0 0.5±0.0 

τRC (s) 1.4±0.1 1.0±0.0 0.8±0.1 0.7±0.1 0.4±0.1 0.4±0.1 

40 
τ (s) 2.0±0.1 1.6±0.0 1.4±0.1 0.7±0.0 0.6±0.0 0.6±0.0 

τRC (s) 2.1±0.1 1.9±0.1 1.3±0.3 0.7±0.0 0.6±0.1 0.4±0.1 

50 
τ (s) 1.8±0.1 1.1±0.1 1.1±0.0 0.8±0.1 0.8±0.0 0.9±0.1 

τRC (s) 1.8±0.0 2.6±0.3 1.8±0.0 0.8±0.1 0.5±0.0 0.5±0.1 

60 
τ (s) 1.0±0.0 1.0±0.1 0.8±0.1 0.9±0.0 1.0±0.1 1.0±0.0 

τRC (s) 1.8±0.0 1.9±0.3 1.2±0.0 0.7±0.0 0.6±0.0 0.4±0.1 

6.3.2.4 Time constant decay (τ) 

τ was calculated by fitting the exponential decay of the pressure waveform in 

diastole. It decreases linearly with decreasing Cs for V of 30, 40 and 50 ml (p<0.05) 

(Figure 6.25). The slope of the linear curve decreases from V=30 ml to V=40 ml. For 

the highest stroke volume no relationship was found between τ and Cs and the linear 

fitting is very poor.  

τ can also be calculated as RC (with R resistance and C compliance). Table 6.5 

includes values of τ found by fitting the exponential decay are reported with the time 

constant calculated as RC, where R was estimated as the ratio of the time-averaged P 

over the time-averaged Q and C is Cs. 

6.3.2.5 Wave speed 

Wave speed calculated using the excess pressure (ce) is always smaller than that 

calculated using measured pressure (c) (Figure 6.26). Both wave speeds, increase 

exponentially with a decrease in Cs (all p<0.05, apart from c for stroke vol In Table 6.6 

the percentage ratio of the two wave speeds is reported.  

6.3.3 Changes with stroke volume (V) 

In this section the changes of the same hemodynamic parameter are investigated 

in relation to a variation of V. Results are reported for each aorta preparation (A1-A6) 

although for the highest compliances (A1-A3) the value of compliance cannot be 

considered constant with increasing stroke volume. 
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Figure 6.26: Changes of c and ce with Cs for a) 30 ml, b) 40 ml, c) 50 ml and d) 60 ml. 

c and ce increase significantly with decreasing Cs (for all V p<0.05, a part from c in case 

of V=60 ml).  

Table 6.6: Percentage ratio of c and ce, calculated as ce/c∙100. 
V (ml) A1 A2 A3 A4 A5 A6 

30 69% 79% 60% 53% 55% 54% 

40 67% 74% 74% 65% 65% 53% 
50 94% 60% 47% 58% 59% 74% 

60 73% 64% 67% 76% 92% 92% 

6.3.3.1 Measured pressure 

Figure 6.27 shows typical pressure waveforms recorded at different values of 

stroke volume at the aorta preparation A5. Changes of Ppeak with V are reported in 
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Figure 6.28. A linear increase of Ppeak with increasing V was found (p<0.05 for all the 

aorta preparations, apart from A2 and A3). In the figure also the linear fitting is 

reported. In Figure 6.29 changes of Pd with V are shown. A significant linear increase 

of Pd with V for all the aorta configurations was found. As shown in Figure 6.30 also 

the MAP increases linearly with increasing V (all p<0.05, apart from A3). Figure 6.31 

shows the changes of PP with V. Two different behaviors can be observed. For high 

values of compliance (A1-A3) PP decreases linearly with increasing V (p<0.05, apart 

from C2). For low values of compliance (A4-A6) PP increases linearly with increasing 

V (all p<0.05). 

 

 

Figure 6.27: Typical example of measured pressure waveforms at different V and at the 

same aorta preparation (A5). Diastolic pressure was subtracted from the initial value of 

pressure. Curves were aligned with the upstroke of the measured pressure. 
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Figure 6.28: Changes of Ppeak with V for a) A1, b) A2, c) A3, d) A4, e) A5 and f) A6. 

Ppeak increases linearly with increasing V (p<0.05, apart from A2 and A3). Black lines 

are the linear fitting.  
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Figure 6.29: Changes of Pd with V for a) A1, b) A2, c) A3, d) A4, e) A5 and f) A6. Pd 

increases linearly with increasing V (all p<0.05). Black lines are the linear fitting.  
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Figure 6.30: Changes of MAP with V for a) A1, b) A2, c) A3, d) A4, e) A5 and f) A6. 

MAP increases linearly with increasing V (all p<0.05, apart from A3). Black lines are 

the linear fitting.  
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Figure 6.31: Changes of PP with V for a) A1, b) A2, c) A3, d) A4, e) A5 and f) A6. 

Two different trends can be observed; PP decreases linearly with increasing V for A1, 

A2 and A3 (p<0.05, apart from A2) and it increases linearly for A4, A5 and A6 

(p<0.05). Black lines are the linear fitting.  
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6.3.3.2 Reservoir pressure 

Figure 6.32 shows typical reservoir pressure waveforms calculated from the 

measured pressures shown in Figure 6.27. Changes of Prpeak with volumes are 

reported in Figure 6.33. A linear increase of Prpeak with increasing volume was found 

(p<0.05 for all aorta preparations). Figure 6.34 shows the changes of PPr with stroke 

volume. Two different behaviors can be observed as for PP. For high values of 

compliance (A1-A3) PPr decreases linearly with increasing V (p<0.05, apart from A2). 

For a stiffer aorta (A4-A6) PPr increases linearly with increasing V (all p<0.05). 

Changes of the PPr/PP ratio with V are reported in Figure 6.35.  

 

Figure 6.32: Reservoir pressure waveforms calculated from the measured pressure 

shown in Figure 6.27. Diastolic pressure was subtracted from the initial value of 

pressure. Curves were aligned with the upstroke of the measured pressure. 
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Figure 6.33: Changes of Prpeak with V for a) A1, b) A2, c) A3, d) A4, e) A5 and f) A6. 

Prpeak increases with increasing V (all p<0.05). Black lines are the linear fitting.  
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Figure 6.34: Changes of PPr with V for a) A1, b) A2, c) A3, d) A4, e) A5 and f) A6. 

Two different trends can be observed; PPr decreases with increasing V for A1, A2 and 

A3 (p<0.05, apart from C2) and it increases for A4, A5 and A6 (p<0.05). Black lines are 

the linear fitting.  
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Figure 6.35: Changes of PPr/PP with V for a) A1, b) A2, c) A3, d) A4, e) A5 and f) A6. 

Experimental data are well fitted by an exponential curve (apart from A4) but the 

relationship with V is not significant. 

 

6.3.3.3 Excess pressure 

Figure 6.36 shows excess pressure waveforms corresponding to the measured 

pressures shown in Figure 6.27. Changes of peak excess pressure (Pepeak) with V are 

reported in Figure 6.37. An increasing pattern of Pepeak with increasing V can be 

identified. For less stiffer aorta experimental data are well fitted by an exponential 
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curve, but the relationship between the two variables is not significant (p>0.05). For 

stiffer aorta Pepeak increases linearly and the increase is significant for A4 and A6. 

 

Figure 6.36: Excess pressure waveforms calculated from the measured pressures in 

Figure 6.27. Curves were aligned with the upstroke of the measured pressure. 

6.3.3.4 Time constant decay (τ) 

Changes of τ with increasing V are reported in Figure 6.38. Also in this case 

two different trends can be noticed; a decreasing pattern for less stiffer aorta and an 

increasing pattern for the stiffer ones. Apart from A6 none of the increasing trend is 

statistically significant.   
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Figure 6.37: Changes of Pepeak with V for a) A1, b) A2, c) A3, d) A4, e) A5 and f) A6. 

Pepeak increases with increasing V in two different ways. Experimental data of A1, A2 

and A3 are well fitted by an exponential curve, but a relationship between Pepeak and V 

was not found (p>0.05). Experimental data of A4, A5 and A6 are well fitted by a linear 

curve (all p<0.05, apart from A5). 
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Figure 6.38: Changes of τ with V for a) A1, b) A2, c) A3, d) A4, e) A5 and f) A6. For 

high values of compliance (A1-A3) τ tends to decrease with increasing volume but 

changes are not statistically significant (p>0.05). For low values of compliance (A4-A6) 

τ seems to increase, but not significantly, apart from A6.  
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6.3.3.5 Wave speed 

Wave speed changes with V are shown in Figure 6.39. There was no significant 

difference between either c or ce with V. As previously shown, the differences between 

c and ce are larger at high values of compliance. 

 

Figure 6.39: Changes of wave speeds (c and ce) with stroke volume for a) A1, b) A2, c) 

A3, d) A4, e) A5 and f) A6.  
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6.4 Discussion 

In this chapter the effects of varying vascular compliance and stroke volume on 

P, Pr, Pe, τ and wave speeds were investigated in a mock circulatory system. To change 

vascular compliance, the artificial aorta was wrapped and 6 different aortas were 

obtained. Only aortic compliance was varied because it gives the biggest contribution to 

total compliance. The range of compliance investigated was 0.30-2.41 ml/mmHg 

(Table 6.3) which is comparable to the range 0.34-2.80 ml/mmHg which was found by 

Chemla et al. (Chemla et al. 1998) in a population of healthy and non-healthy subjects 

aged 20-74 years old using the V/PP ratio method.  

The use of a mock circulatory system has some advantages compare to in-vivo 

experiments. First, it allows for a selective variation of compliance and stroke volume. 

Second, it eliminates confounding effects, such as the change in heart rate that has been 

shown to affect the Windkessel properties of the arterial system (Mohiuddin et al. 2007) 

and the arterial tone response of the vessel which in turn may result in a change of 

peripheral resistance. Third, the volume ejected by the ventricle does not vary with 

changing compliance.  

 

Figure 6.40: In-vivo volume-pressure relationship for a human aortic arch segment 

during loading phase. Symbols are experimental data and lines are three different types 

of fitting (Taken from Liu et al. 1986). 
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It can be observed that the example of pressure-volume curve shown in Figure 

6.7 for the artificial aorta is different from the anatomical aorta volume-pressure curve 

(Figure 6.40, note the axes are reversed). The curve shown in Figure 6.40 is the 

pressure-volume curve for a human aortic arch segment during the loading phase found 

in a very similar static way. Both show a nonlinear behavior, the compliance of the real 

aorta decreases with increasing pressure while in the artificial aorta the slope of the 

curve increases with increasing pressure. That is due to the different material of the real 

and artificial aorta. The in vivo aorta is composed by two main components: elastin and 

collagen. The former acts at low values of strain and the latter at higher values resulting 

in a nonlinear behavior of the pressure-volume relationship (Metafratzi  et al. 2002). 

The artificial aorta used in this work showed a linear pressure-volume curve 

only when it was wrapped to create stiff aorta (A4-A6). Table 6.3 shows that in these 

cases the compliance values are almost constant for all the stroke volumes and therefore 

for different pressure ranges. For higher values of compliance (A1-A3) the pressure-

volume relationship is nonlinear (Figure 6.7) and the difference between low values of 

pressure (low stroke volume) and high values of pressure (high stroke volume) can also 

be 50% (Table 6.3). This can explain the two different behaviors between A1-A3 and 

A4-A6 reported in the results section 6.3.3 for some hemodynamic parameters that will 

be discussed in section 6.4.2.  

Cs was compared to Cp, which was demonstrated to be a good estimator of total 

arterial compliance (Chemla et al. 1998). However, it was also reported that the 

dynamic compliance is usually 20-30% smaller than the static one (Langewouters et al. 

1984).  Table 6.4 shows that static compliance is higher than the dynamic one in most 

of the cases. Since the reservoir pressure is related to the volume stored in the aorta 

during systole, compliance values were also compared to Cpr. Generally the differences 

of these values of compliance with the static values were higher than those found 

comparing Cp and Cs (Table 6.4).  

6.4.1 Changes of hemodynamic parameters with aortic compliance 

Wrapping the artificial aorta in different ways allowed for the investigation of a 

wide range of values of compliance that can then be compared to different ages or to 

physiological and pathological (such as hypertension, atherosclerosis) conditions.  
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The results presented in this chapter show that systolic pressure (Ppeak) 

increases linearly with decreasing compliance, diastolic pressure (Pd) tends to decrease 

but not significantly, mean arterial pressure (MAP) does not change and pulse pressure 

(PP) increases exponentially with decreasing compliance. These trends were expected 

and are in line with those of the literature (Liu et al. 1989, Cohn 1999, Kuecherer et al. 

2000). With decreasing aortic compliance a smaller portion of stroke volume is stored 

in the aorta during ejection and more is forwarded to the periphery. That causes an 

increase in systolic and pulse pressure and an increase of the left ventricular workload. 

The stroke volume stored in the aorta during systole is unloaded during diastole to help 

maintain diastolic pressure, a decrease of the stroke volume stored results in a decrease 

in diastolic pressure if the peripheral resistance does not change.  

Here, for the first time, a study of the changes of parameters related to Pr and Pe 

with aortic compliance in a mock circulatory system is reported. A linear increase of the 

reservoir peak with decreasing aortic compliance and a non-linear increase of the pulse 

of the reservoir pressure were found. These relationships are very similar to those found 

for PP and Ppeak. Regarding the relationship of Pe with aortic compliance, a significant 

exponential increase of its peak with decreasing compliance was found only for a stroke 

volume of 40 and 50 ml (p values smaller compared to those found for PPr). It can be 

speculated that Pr is affected more by the change in aortic compliance than Pe and the 

pressure component due to the reservoir function is the major determinant of P when the 

elastic characteristic of the aorta varies. Moreover, from A1 to A6 PPr increases 3, 4, 6 

and 8 times for 30, 40, 50 and 60 ml, respectively while Pe increases 3, 4, 5 and 3 times 

for 30, 40, 50 and 60 ml, respectively.  

Increase of Pr with age was recently reported both in healthy (Vermeersch et al. 

2009) and non-healthy subjects (Davies et al. 2010a). Since arterial stiffness increases 

with age, the results presented here confirm previous findings. Furthermore, the 

findings reported in this chapter have the advantage of only being dependent on the 

aortic compliance variation, since others confounding factors like heart rate, peripheral 

resistance and vascular remodeling were eliminated using the mock circulatory system. 

Variation of compliance seems not to affect the PPr/PP ratio which is always 

about 0.9. 

Another parameter studied here was the diastolic decay time constant (τ) 

calculated from the exponential pressure decay. As was expected the relationship 
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between this parameter and the compliance is linear since τ is also equal to RC and R in 

this study does not vary.  

The wave speed at the aortic root was calculated by means of the PU-loop (c) 

and PeU-loop (ce) methods. Wave speeds increase exponentially with decreasing aortic 

compliance. Trends are significant in all cases apart from c using 60 ml as stroke 

volume. This result was expected since wave speed is related to the inverse square root 

of the distensibility (2.11a). As previously shown in chapter 3, Table 3.2 and Figure 

3.4, ce is always smaller than c, but the difference seems to be smaller for high values of 

compliance. 

6.4.2 Changes of hemodynamic parameters with stroke volume 

The same hemodynamic parameters were studied at different stroke volumes to 

simulate different LV contractility. Due to a limitation of the pump, it was not possible 

to reproduce physiological values of stroke volume. To have a good range of stroke 

volume it was decided to set the pump at 30, 40, 50 and 60 ml. 

It is worth noting that although the changes with stroke volumes were reported 

for each aorta preparation (A1-A6) in section 6.3.3, for high compliance (A1-A3) the 

values calculated are quite different at different stroke volumes. That means that it is not 

possible to draw the same conclusions as for the other aortas (A4-A6) where the values 

of compliance are almost the same irrespective of stroke volume and changes in the 

hemodynamic parameters studied depend only on the change in stroke volume.  

Systolic, diastolic and mean pressures have a linear relationship with stroke 

volume (p<0.05 in most of the cases). All these parameters increase with increasing 

stroke volume. For the systolic pressure the increase with stroke volume is steeper when 

the aorta was stiffer (A4-A6) than for higher compliance (A1-A3). This results in 

different trends of pulse pressure; it linearly decreases with increasing stroke volume for 

A1, A2, and A3 and increases linearly with stroke volume for A4, A5 and A6. Decrease 

in PP for A1, A2 and A3 does not depend on increasing stroke volume but on a 

substantial increase of compliance from 30 ml to 60 ml (Table 6.3).  

Also in this case the parameters related to Pr, Prpeak and PPr, follow the same 

pattern of Ppeak and PP. PPr/PP ratio does not change significantly with stroke volume. 

Pepeak presents different behaviors for more and less compliant aorta. It does not 

change significantly with stroke volume for high value of compliance (A1-A3) and it 
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increases linearly with increasing stroke volume for lower compliance with an 

increasing steepness of the linear regression from A4 to A6. That means in a stiffer 

aorta the change in the pressure component due to the waves is more affected by a 

change in stroke volume than in a more compliant vessel. Both Pr and Pe seems to be 

highly related to a change in stroke volume.  

Generally there are no significant changes of τ and wave speeds with stroke 

volume in all the aorta preparations.  

As discussed before the results for high compliance presented here are biased by 

a change of compliance although the experiments were carried out in the same aorta 

preparation due to a nonlinear pressure-volume relationship. For lower compliance the 

pressure-volume relationship is linear and the values of compliance calculated from the 

curve do not change at different pressure ranges. Only for A4, A5 and A6 it is possible 

to say that the hemodynamic parameter trends found here depend on the variation of the 

stroke volume and not on other factors. 

6.5 Conclusion 

In this chapter the reservoir and excess components of the measured aortic 

pressure, τ and wave speeds were investigated whilst changing the aortic compliance 

and the stroke volume in a mock circulatory system. This allows the study of different 

physiological and pathological conditions, such as age, hypertension, atherosclerosis 

and ventricular contractility in relation to vascular compliance and ventricular function. 

The pressure component due to the buffering activity of the aorta (Pr) and the one due to 

the wave (Pe) are both significantly related to aortic compliance and stroke volume, but 

Pr has a stronger relationship with aortic compliance compared with Pe and its 

magnitude increases more when the aorta becomes stiffer. Moreover, Pr seems to follow 

the same trend as the measured pressure and it is the major determinant of the total 

pressure. Increasing the stroke volume the magnitude of Pr and Pe linearly increase. 

Wave speeds, calculated using PU-loop and PeU-loop, follow the same pattern, c is 

always greater than ce. Wave speed is strongly related to aortic compliance, but does not 

change with stroke volume.  
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Chapter 7 : Discussions and Conclusions 

The clinical and biomechanical relevance of the thesis is related to its potential 

application for better understanding the cardiovascular system in healthy and non-

healthy subjects, and how the mechanical properties of the arteries changes with age and 

gender. In particular, this thesis introduces of a new noninvasive technique to determine 

arterial stiffness in humans and it deeply investigates the changes of other parameters in 

relation to different hemodynamic conditions that could be related to age, hypertension, 

stroke and other diseases.  

Differences in wave speed, wave intensities and reflection index were observed 

in the canine aorta in control condition and during occlusions comparing the reservoir-

wave and the wave only approaches (chapter 3). In particular, using the reservoir-wave 

approach wave speed, intensities and reflection index were smaller in all conditions. 

Notably, the reservoir-wave approach led to surprisingly small values of backward 

waves and reflection indices also during proximal aorta occlusions, such as at the 

thoracic level. These findings could be explained considering that the arterial system is 

well matched in forward but not in backward direction. Both approaches led to the 

conclusion that distal occlusions (abdominal and iliac) do not affect the hemodynamics 

of the aorta at the level of the aortic root. 

In this study, lnDU-loop technique to determine the wave speed and the 

noninvasive wave intensity analysis was applied in a relative large population of healthy 

humans (chapter 4). These techniques were already validated in bench experiments (Li 

& Khir 2011), but a study in human was lacking. Using the Bramwell-Hill equation the 

arterial distensibility was determined from the wave speed. These noninvasive methods 

were used in two different types of artery; in the carotid artery that is an elastic vessel 

and in the femoral artery that is a muscular vessel to assess how they differently change 

in relation to age and gender. It was found that the carotid artery is more affected by the 

ageing process compared to the femoral artery. Since the lnDU-loop and the 

noninvasive wave intensity analysis methods rely only on the diameter and velocity 

measurements, which can be both determined noninvasively, they have a potential use 

for screening and diagnosis in clinical practice. 
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The reservoir-wave approach was found to be useful also to describe the arterial 

hemodynamics at arbitrary locations (Aguado-Sierra et al. 2008a). In chapter 5 of this 

thesis this algorithm was used to investigate the carotid hemodynamics of the same 

population studied in chapter 4. The use of this approach allows for the separation of the 

pressure and the velocity into reservoir (related to the buffering capacity of the vessel) 

and excess (related to the wave propagation) components. The study of the changes of 

these parameters with age and gender shows that they are affected by age. This finding 

confirms the results in chapter 4 about the changes of mechanical properties of the 

elastic vessels with age. However, the wave speed calculated using the lnDU-loop was 

smaller than the one calculated using the PeUe-loop. 

Two different analyses were carried out; a free fitting algorithm of the 

asymptotic pressure and an algorithm where this parameter was set to a fixed value. 

Generally, the two analyses led to similar results in terms of changes with age and 

gender, but to different values. In particular the average time constant decay τ is much 

smaller using the free fitting technique.  

In this chapter, the same study carried out in the carotid artery was not repeated 

for the femoral artery. This is because the algorithm used is based on the assumption 

that pressure’s exponential decay in the location considered is similar to the aortic one. 

The similarity between carotid and aortic pressure waveforms is established (Segers et 

al. 2005a), but in the femoral artery the exponential decay can be quite different due to 

the larger distance from the aorta, the different nature of the vessel and the different 

reflection wave pattern at that location.      

Reservoir and excess pressure components in chapter 5 were studied in healthy 

and relative young subjects. To investigate how they change in pathological conditions 

they were also studied in bench experiments using a mock circulatory system which 

included an artificial aorta with its main branches and an LVAD able to reproduce a 

cardiac beat (chapter 6). Aortic compliance was changed by wrapping the aorta in 

different ways to replicate the change of aortic stiffness with age or cardiovascular 

diseases such as hypertension. Also the stroke volume was changed to mimic different 

heart contractility. It was found that Ppeak, PP, Prpeak, PPr, Pepeak increase with 

decreasing aortic compliance, but the relationship between compliance and reservoir 

pressure is stronger than the one between compliance and excess pressure. 
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Moreover, the aortic wave speed increases exponentially with decreasing 

compliance. As found in chapter 3, wave speed calculated using excess pressure is 

always smaller than the wave speed calculated using the measured pressure. Reservoir 

and excess pressures are highly related with the stroke volume; in particular, if the 

compliance does not change they increase with increasing volume.  

7.1 Conclusions 

This thesis has met the objectives set out in section 1.10.  

The main findings drawn from this study are: 

1) From the comparison of the reservoir-wave and the wave only approach in 

canine aorta it was found: a) in control condition and during occlusion wave speed and 

intensities are smaller using the excess pressure rather than the measured one; b) 

intensities of the reflected waves and the reflection coefficient are surprisingly small 

also during proximal occlusions using the reservoir-wave approach; c) both methods led 

to the conclusion that distal occlusions do not affect aortic hemodynamics.  

2) The algorithm derived in a previous study (Feng, Khir 2010) for determining 

wave speed and wave intensity noninvasively using measurement of diameter and 

velocity at same site has been applied here in carotid and femoral arteries of healthy 

humans. The findings confirm that elastic arteries are more affected by the ageing 

process than muscular arteries and the distensibility of the carotid is higher than of the 

femoral. Moreover, the results are in line with the one reported for the same population 

obtained using pressure waveforms, although the wave speed found here in the carotid 

artery is smaller than the one calculated using pressure (Vermeersch et al 2008). These 

techniques are reliable for the determination of wave speed, distensibility and wave 

intensities in human arteries. 

3) The main advantage of the lnDU-loop technique is that it is based only on 

diameter and velocity measurements, it does not make any assumptions about the 

relation between pressure and diameter and it does not require the measurement of the 

pressure waveform, its systolic, diastolic or mean value in order to calibrate the 

diameter waveform of another artery. Therefore, it that can be easily used in the clinical 

environment to determine arterial mechanical properties noninvasively at any location 

of the arterial tree using only an ultrasound system.  
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4) An algorithm was used in this thesis to separate pressure and velocity into  

reservoir and excess components in healthy subjects to study carotid hemodynamics and 

the changes of these parameters with age and gender. It was found that they are strongly 

related to the ageing process, also in healthy human. Moreover, when the asymptotic 

pressure is fixed to a certain value, the time constant decay τ has a strong negative 

correlation with the excess pressure parameters. The reservoir component of the 

velocity was found to be positively related to the volume, estimated as the area under 

the flow curve. 

5) The findings of the experiments carried out in the mock circulatory system 

showed that: a) the reservoir pressure, as the measured pressure, is strongly inversely 

correlated with compliance; b) wave speed calculated using the excess and measured 

pressure increases exponentially with decreasing compliance; c) the reservoir and 

excess pressures increase linearly with increasing stroke volume if the compliance is 

constant; d) wave speed calculated using the excess and the measured pressure is not 

correlated with the stroke volume. 

6) Throughout the thesis valuable information about arterial hemodynamics in 

healthy and non-healthy subjects was found. This is relevant in the development of new 

techniques and new hemodynamic indices that can be used for screening, diagnosis and 

prognosis of cardiovascular diseases.   

7.2 Future works 

1) Following the findings of the comparison between the wave propagation in 

the canine ascending aorta described using the wave-only and the reservoir-wave 

approach presented in chapter 3 it would be useful to establish which analysis is more 

correct using a technique independent from reservoir pressure; 

2) From the study of the lnDU-loop and the non-invasive wave intensity analysis 

in carotid and femoral arteries presented in chapter 4 it would be useful to carry out a 

clinical trial, involving healthy and non-healthy subjects;  

3) The hemodynamics of the carotid artery was also studied considering the 

reservoir and excess components of pressure and velocity in healthy human (chapter 5). 

A clinical study designed to: a) compare excess and reservoir pressure components in 

healthy and hypertensive subjects; b) establish a way to distinguish between different 
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causes of hypertension (wave reflections, aorta compliance, resistances) in order to 

create a patient specific treatment should be carried out; 

4) Following the study presented in chapter 6 it would be useful to investigate 

the effect of other parameters such as the resistance of the mock circulatory system on 

Pr, Pe, Ur, Ue, τ and wave speed. 
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