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a b s t r a c t

In this paper, we propose new simple innovational outlier (IO) panel unit root tests with a break. A
bootstrap method for dealing with cross-sectional dependence is provided and small sample properties
of the bootstrap tests are investigated by Monte Carlo experiments. The panel innovational outlier unit
tests are then applied to a panel of 22 OECD inflation rates.
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1. Introduction

Perron (1989) develops unit root tests that are designed to have
power against the trend-break stationary alternative. However
the intrinsic problem of the Perron’s (1998) approach is that the
parameters of the test regression have different interpretations
under the null and alternative hypotheses. To deal with this
problem, Popp (2008) formulates the data generating process as
an unobserved component model and develops a new Perron-
type innovational outlier test for several model specifications. In
this paper, we extend to panel data the new Perron-type test for
the case of a shift in the intercept and not-trending data using a
combination-based approach proposed by Choi (2001). Three new
panel innovational outlier unit root tests are proposed. They are
easy to implement and offers some advantages: (i) there is no need
for a balanced panel, so that individual time series may come in
different lengths and span different sample periods; (ii) the tests
allow for heterogeneous panels since the stochastic as well as the
non stochastic components can be different across individual time
series; (iii) more powerful panel unit root tests can be obtained
with respect to the univariate counterpart by exploiting the cross-
section variation, see Baltagi and Kao (2000).
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Since a serious drawback of the methodology advocated in
Choi (2001) is that it is based on the hypothesis of cross-
sectional independence,we use a sieve bootstrap procedure to deal
with cross-sectional dependence. Small sample properties of the
bootstrap panel innovational outlier unit root tests are investigated
byMonte Carlo experiments. The new panel tests are applied to 22
OECD quarterly inflation rates. Evidence of stationarity is found.

The paper is organized as follows. Section 2 presents the model
and the three panel combination tests. Section 3 describes the
bootstrap procedure. Section 4 presents a Monte Carlo analysis.
Section 5 contains the empirical application.

2. The Perron-type IO panel unit root tests

2.1. The model

Consider the following unobserved component model:

yit = dit + uit ,

uit = ρiuit−1 + εit ,

εit = Ψ ∗

i (L)eit = A∗

i (L)
−1Bi(L)eit ,

(1)

with eit ∼ i.i.d.(0, σ 2
i ) and i = 1, . . . ,N and t = 1, . . . , T . The lag

polynomial Ψ ∗

i (L) can be factored as Ψ ∗

i (L) = A∗

i (L)
−1Bi(L). A∗

i (L)
and Bi(L) are lag polynomials of order p and q, respectively. It is

http://dx.doi.org/10.1016/j.econlet.2011.11.046
http://www.elsevier.com/locate/ecolet
http://www.elsevier.com/locate/ecolet
mailto:lgutierr@uniss.it
http://dx.doi.org/10.1016/j.econlet.2011.11.046


818 M. Costantini, L. Gutierrez / Economics Letters 117 (2012) 817–819
assumed that A∗

i (L) and Bi(L) have all roots outside the unit circle.
The deterministic component is specified as:

dit = αi + Ψ ∗

i (L)θiDUit , (2)

where DUit = 1 if (t > TBi) and 0 otherwise, with TBi = λiT
and λi(0 < λi < 1) being the break date and the break fraction
respectively. The reduced form of the structural model (1) can be
obtained by nesting the null and alternative hypotheses as follows:

yit = ρiyit−1 + α∗

i0 + δiDUit−1 + θiD(TBi)t

+

k
j=1

βij1yit−j + eit , (3)

with α∗

i0 = Ψ ∗

i (1)−1αi(1 − ρi), δi = −φiθi, φi = (ρi − 1) ,
D(TBi)t = 1 if (t = TBi+1) and k the optimal lag-length defined as
the minimum lag-order producing serially uncorrelated residuals.

The unit root hypothesis can be tested using the t-statistics of
the test on H0 : ρi = 1, tρi . In order to construct the dummy
variables of the test regressions and subsequently compute the test
statistics, the true break date for each i in the panel, TBi, has to be
estimated. To this end, we use the following method:TBi = argmax

TBi
|tθ̂i(TBi)|. (4)

In (4), TBi is chosen in such a way that the absolute value of the t-
statistic |tθ̂i(TBi)| for testing the significance of the break dummy θ

is maximized for each i.1

2.2. Combinations tests

The basic idea of the combination tests is to combine the p-
values of the t-statistics tρi in the regression (3) for each unit i
in the panel.2 The null hypothesis of the panel unit root tests is
H0 : ρi = 1 for all i, while the alternative is H1 : |ρi| < 1 for some
i’s.

Assume that pi is the asymptotic p-value of the Perron-type test
for each i. We consider the following panel tests:

Pm = −
1

√
N

N
i=1

[ln(pi + 1)] H⇒
N,T→∞

N(0, 1) (5)

Z =
1

√
N

N
i=1

Φ−1(pi) H⇒
N,T→∞

N(0, 1) (6)

L =
1

π2N/3

N
i=1

ln


pi
1 − pi


H⇒

N,T→∞

N(0, 1), (7)

where pi is the p-value of the test proposed and Φ(·) denotes
a standard normal cumulative distribution function. In order to
construct the panel tests, we need to compute the p-values of the
innovational outlier distribution. To calculate the percentile of the
innovational outlier test, we use a response surface methodology
proposed inMacKinnon (1994). The data generating process under
the null hypothesis H0 is written as follows:

yt = D(TB)t + zt , zt = ρzt−1 + et , (t = 1, .., T + 50) (8)

where the break fractionλ ∼ U(0.1, 0.9) and et ∼ N(0, 1). Sample
series of yt are generated by setting the initial value z0 equal to 0

1 Popp (2008) shows that the criteria in (4) gains the best performance among
other methods.
2 Bai and Carrion-i-Silvestre (2009) also use panel combination tests with

structural breaks and cross-dependence.
and creating T + 50 observations where the first 50 are discarded.
The following steps summarize the method used to compute the
p-values:
Step 1: Generate {yt}I times at T = 30, 33, 35, 37, 40, 43, 45, 50,
55, 60, 65, 70, 75, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275,
300 and λ = 0.1, 0.2, . . . , 0.9. The k-lag parameter has been set
using Schwert (1989) criterion, i.e. fixing k = [12(T/100)(1/4)]
where [..] indicates the integer values.3 The number of replications
is I = 10 000.
Step 2: For each T and λ calculate 399 equally spaced percentile
of the innovational outlier test. This gives a 24 × 9 by 399 matrix
denoted as [qp(T , λ, k)] for p = 0.0025, 0.0050, . . . , 0.9975.
Step 3: Estimate the regression equation

qp(T , λ, k) = θ∞ +

2
i=1

θi(1/T )i +

2
j=1

γj(λ/T )j

+

2
j=1

ωs(
√
k/T )s + εT ,λ,k, (9)

for each p by using the restricted-OLS method. The Newey–West
method has been applied to ensure heteroscedasticity-consistent
standard errors estimates of the parameters. Furthermore, follow-
ing MacKinnon (1991), we have regarded as insignificant those re-
gressors for which the t-statistic in (9) was less (in absolute value)
than unity.4

3. Bootstrap procedure

The sieve bootstrap procedure consists of five steps:
Step 1: For each i = 1, . . . ,N we estimate (3) with the original

data under the null hypothesis (ρ = 1), i.e. we run the regression

yit = yit−1 + θiD(TBi)t +

k
j=1

αj1yit−j + εit (10)

and then select the break using (4). Note that it is necessary to
impose the null of a unit root when generating the artificial data
in bootstrap unit root tests in order to achieve consistency (see
Basawa et al., 1991).

Step 2: Denote by α̂j and θ̂i the OLS estimators of αj and θi and
with ε̂it the OLS residuals in regression (10). In order to preserve
the cross-correlation structure of the error termwe followMaddala
andWu (1999) and resample ε̂it with the cross-section index fixed,
i.e. we resample ε̂0

t =

ε̂0
1t , ε̂

0
2t , . . . , ε̂

0
Nt

′, where ε̂0
it are now

centered residuals

ε̂it − ε̄i


with ε̄i =

T
t=1 ε̂it/T , in order to get

ε̂∗
t =


ε̂∗

1t , ε̂
∗

2t , . . . , ε̂
∗

Nt

′.
Step 3: Generate the pseudo sample y∗

it using the OLS estimates
α̂j, θ̂i and the residuals ε∗

it , i.e.

y∗

it = y∗

it−1 + θ̂iD(TBi)t +

k
i=1

α̂j1y∗

it−j + ε∗

it . (11)

Note that the previous regression (11) must be initialized to obtain
the bootstrap sample. We fix the first k of y∗

ik to zero in order to
avoid possible explosive autoregressive processes.

Step 4:We first run (3) by using the pseudo sample y∗

it , and then
we compute the t-statistics tρi , the corresponding p-value pi and
the Pb

m, Zb and Lb tests using (5)–(7).

3 For T ≤ 75, we use k = [4(T/100)(2/9)] in order to save degrees of freedom.
4 For reason of space, the estimated coefficients of the response surface

regression are not reported. They are available upon request.
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Table 1
Rejection frequencies at the 5%-level of significance of tests.

θ T N ρ = 1 ρ = 0.9
Pm Z L Pm Z L

0 50 10 6.5 5.8 6.0 67.9 72.6 69.2
0 50 25 6.4 5.7 5.9 81.3 87.7 82.9
0 100 10 6.4 5.7 5.9 77.1 88.4 78.6
0 100 25 6.3 5.6 5.7 89.4 96.7 91.2
0 200 10 6.1 5.6 5.7 88.8 95.4 90.5
0 200 25 5.8 5.5 5.6 100.0 100.0 100.0
4 50 10 5.7 5.5 5.7 67.5 72.2 68.9
4 50 25 5.7 5.4 5.5 80.9 87.3 82.5
4 100 10 5.7 5.4 5.6 76.7 88.0 78.2
4 100 25 5.6 5.3 5.5 89.0 96.3 90.8
4 200 10 5.5 5.4 5.5 88.3 94.9 90.1
4 200 25 5.4 5.3 5.3 100.0 100.0 100.0

Step 5: We repeat B = 5000 times from Step 2 to Step 4 in
order to obtain the critical values with a break under the null from
the sorted vector of 5000 test-statistics. If we now define with 1{}
the indicator function and choose a significance level α, then we
reject H0 of the Pm, Z and L tests if

1
B

B
b=1

1

Pb
m > Pm


< α,

1
B

B
b=1

1

Zb < Z


< α,

1
B

B
b=1

1

Lb < L


< α,

(12)

respectively.

4. Monte Carlo study

To examine the small sample properties of the bootstrap tests
under cross-section correlation, we consider the following data
generating process:

yit = D(TBi)t + zit
zit = ρizit−1 + εit

εit = γift + eit

(13)

where ft ∼ i.i.d.N(0, 1), eit ∼ i.i.d.N(0, σ 2
i ), with σ 2

i ∼

U[0.5, 1.5], and γi ∼ i.i.d.U[−1, 3]. In the Monte Carlo analysis
it is assumed that the true break lies in the middle of the sample,
λi = TBi/T = 0.5. All simulations are based on 5000 replications
of yit and were carried out in GAUSS. To avoid any effect of the
initial observation, T + 50 observations are generated and the
first 50 discarded. Two different values for the break parameter θ
are considered, namely 0, 4. Results regarding size and power are
reported in Table 1. Size is computed at the 5% nominal significance
level. The best finite sample performance is obtained with the Z
test which shows an empirical size very close to 5% nominal level.
A slightly larger empirical size is observed with the Pm test. With
respect to the finite-sample properties of the power, results show
that the power increases as T and N increase.

5. Empirical results

The newpanel innovational outlier unit root tests are applied to
a panel of 22 OECD inflation rates over the period 1978:1–2009:4.
Other studies have investigated the stationarity properties of the
inflation rate for OECD countries in presence of structural breaks
using panel tests (see Costantini and Lupi, 2007, Basher and
Westerlund, 2008, among others). The inflation rates are computed
as the rate of growth of the consumer price index (HCPI) using
quarterly data from OECD Prices Indices (MEI) data-set. In Table 2
Table 2
Univariate and panel unit root results.

Test results Bootstrapped critical
values

Statistics TB k 1% 5% 10%

Univariate tests

Australia −5.206 2000:04 1 −3.681 −3.180 −2.858
Austria −1.106 1984:02 4 −3.766 −3.148 −2.825
Belgium −3.235 2001:03 4 −3.873 −3.210 −2.926
Canada −2.257 1991:02 4 −3.944 −3.309 −3.007
Denmark −3.708 1986:03 4 −3.839 −3.255 −2.954
Finland −2.811 1983:01 4 −3.777 −3.080 −2.770
France −3.390 1982:04 4 −3.682 −3.070 −2.742
Germany −0.914 1993:02 4 −3.883 −3.352 −3.050
Greece −2.072 1986:01 4 −3.827 −3.221 −2.877
Ireland −1.894 1981:02 3 −3.677 −3.006 −2.697
Italy −3.550 1981:04 4 −3.641 −2.987 −2.683
Japan −5.170 1989:03 4 −4.031 −3.360 −3.015
Luxembourg −2.836 1986:03 4 −3.904 −3.258 −2.919
Netherlands −1.025 1983:02 4 −3.724 −3.091 −2.775
New Zealand −1.250 1987:01 1 −3.723 −3.203 −2.902
Norway −4.552 2003:02 4 −3.947 −3.204 −2.874
Portugal −2.413 1983:02 4 −3.692 −3.103 −2.795
Spain −3.093 1985:04 4 −3.749 −3.181 −2.858
Sweden −2.352 1990:02 4 −3.937 −3.363 −3.023
Switzerland −2.739 1990:01 4 −3.878 −3.267 −2.974
UK −2.301 1991:03 4 −4.019 −3.350 −3.002
USA −2.200 1983:01 3 −3.743 −3.095 −2.774

Panel tests

Pm 7.985 4.961 2.924 2.060
Z −5.009 −3.989 −2.862 −2.215
L −5.852 −4.143 −2.831 −2.183

Notes: k and TB denote the lag order and the selected break date respectively.

unit root test results are reported. In the univariate case, evidence
of stationarity is found for Australia, Japan and Norway at 1%
significance level, for Belgium, Denmark, France, Japan, and Italy at
5% significance level, and for Finland and Spain at 10% on the basis
of the bootstrapped critical values. With respect to the panel case,
the null hypothesis of unit root is rejected at 1% significance level
with all panel statistics on the basis of the bootstrapped critical
values. In synthesis our results are in favor of the ‘‘I(0) plus breaks’’
hypothesis for the inflation rate.
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