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1. Introduction

Recently, a number of works have focused on robust estimation
of the slope parameters of a regression model where errors
are spatially correlated. Variants of the Newey and West (1987)
spectral density estimator in time series have been suggested
by Conley (1999) and Driscoll and Kraay (1998) in the context
of GMM estimators of spatial panels where T is large relative
to N (see also Pinkse et al., 2002). More recently, Kelejian
and Prucha (2007) have proposed a spatial version of the non-
parametric heteroskedasticity—autocorrelation consistent (HAC)
estimator introduced by White (1980) for a single cross section
regression with spatially correlated errors. This approach permits
to approximate the true covariance matrix with a weighted
average of cross products of regression errors, where each element
is weighted by a function of (possible multiple) distance between
cross section units. Rather than using a measure of distance
between units, Bester et al. (2011) have recently suggested to
split the sample into groups so that group-level averages are
approximately independent, and then use the HAC estimator based
on a discrete group-membership metric.

In this paper, following the work by Kelejian and Prucha (2007),
we suggest a HAC covariance matrix estimator in the context of a
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panel data model with unobserved fixed effects, where errors are
allowed to be both spatially and serially correlated. Such estimator
is useful in applied work, when dealing with large data sets,
and little is known about the spatio-temporal process generating
the error term. We show that the suggested HAC estimator is
consistent for N going to infinity, with T fixed or T going to infinity.
A small Monte Carlo exercise reported in the paper shows that
this approach is quite robust to various forms of serial and cross
sectional dependence.

2. The framework

Consider the panel data model

Vi=oi+ BXe+ee, i=12,...,N;t=1,2,...,T, (1)

where «; are fixed parameters, X;; are strictly exogenous regres-
sors, and e;; follows the general spatial process:

ey = Ti1€1r + i2€2 + - - + Tinént, (2)

where rj; are (unknown) elements, possibly function of a smaller
set of coefficients, of an N x N non-stochastic matrix, R =

(ri,ro, ..., ry), withr, = (rig, i, ..., Tav)’, and &, for each i,
follows the general linear process:
o0
Eir = Zciafi,t—m (3)
a=0

Following Kelejian and Prucha (2007), we also assume that there
is a meaningful distance measure, d;;, between units i and j, with
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dj = d; > 0, and the researcher can select a threshold distance,
dy, such that dy — ocoas N — oo, and

N
max § lg;<dy < SN, (4)
1<i<N &= b

]:

i.e,, sy is the number of units for which d; < dy. We make the
following assumptions on the error term, regressors, and Sy.

Assumption 1. €; ~ IID(0, 1) with E(;}) < 00; MaXi<i<y Y weq
|Cial < 00.

. N N
Assumption 2. maxi<j<y ) ;i [rjl < 00y maxi<i<n )i, Il <

00, Z]N:1 |r} 1y |dii” < oo.
Assumption 3. sy = O(N%), with0 < « < 0.5.

Assumption 4. x;; and ¢g;; are independently distributed for all
i, t, s. X has finite elements, and limy 1) oo ﬁ Zf’:] )N(l’;(, =Qis
finite and non-singular, with )N(,; = MX;, X = (X1, X2, . .., Xir)
M=1Ir— 1 (117) 7 1}

Assumption 5. K (x) : R — [0, 1] is a kernel function satisfying
K(x) = K(—x),K(©) = 1,K(x) = 0forx > 1,and "‘j’x‘fp” <
C < oo, for |x| < 1and with p > 1.

Under specification (2) and (3), errors are both cross sectionally
and serially correlated, and 0 < |E(eicejs)| = | Zgzl TinTjh D oeo
CiaGjatls—t)]] < oo, for all i,j,t,s. A large variety of spatio-
temporal models can be cast in this model, for example, the
SAR or SMA processes having AR or MA errors. We observe
that the clustered covariance matrix estimator advanced by
Arellano (1987) is inconsistent under this specification, given
that it ignores the cross section dependence present in the data.
Under Assumptions 1 and 2, the covariance matrix of e; =
(ei1, €2, - . ., &), for each i, and that of e, = (e, €y, ..., ent),
for each t, have absolute summable elements, i.e., ZL] |E (eiceis)|

< b Th Yt Yaco Il |Cia+is—e| < oo, and Zszl [E (exceyr)|

< 3 S h Il [rn] 3252 Icial |cja| < o0 Finally, Assumption 5
is satisfied for many of the commonly used kernels (see Potscher
and Prucha, 1997, p. 129).
3. Robust estimation

The FE estimator of B in Eq. (1) is:

N -1 N
B — (zx x) SR, o)
i i=1

withy;, = My; . Under Assumptions 1-4, it is easily seen that
A 1
As .Cov( ): —Q'wQ !, 6
Yy Ber NTQ' Q (6)
with
v = . T)~>oo NT Z Z le ]s lytsr]’ (7)

i,j=1t,s=1
Yis = Vg = diag{yi(It — sD,y2(It — sD, ...,y (It — sD},
E(shtehs) = yu(|t — s|) (see Lemma A.1). We suggest the following
HAC estimator for (6):

5.Cov (Bre) = 7 Qo ¥ ®
where Qur = = YN X X,

. 1 N T

V= N—ZZ X 818K (dy/d), (9)

& = Vir — ﬂ;Ei,-[. Note that for T = 1 expression (8) reduces to
the Kelejian and Prucha (2007) HAC estimator, while in absence of
spatial correlation (i.e., setting K (d;j/dy) = 1 wheni = j and zero
otherwise) it reduces to the Arellano (1987) clustered estimator.

The following theorem establishes the asymptotic normality of /§FE
and the consistency of (8) (see the Appendix for a proof).

Theorem 1. Suppose Assumptions 1-5 are satisfied. Then as N —
o0, for fixed T or T — 00

Jﬁ(/}m - ﬂ) % NGO, ). (10)

Further, let ¥ = NT -Aﬁv (iiFE), where As/y.av (BFE) is given
by (8), then

s 5 (11)

4. Monte Carlo experiments

The data generating process is:
Yie = i + BXir + e, Withxy = a; + vy, (12)

where 8 = 1, o; ~ IIDN(1, 1) do not change across replications,
and

ejr = sijej + €it,
>3 )

1/2
gic = picic—1+ (1—p7) "€, € ~IDN(O, 1),

and s;; are elements of a N x N spatial weights matrix, S. The data
generating process for the regressor error, vy, does not change
across experiments and is given by:

N
vir = 0.5 Zsijvjt + &,

= (14)

1/2

& =058, 1+ (1—05%)"2 %, ¢ ~ IDN(O, 1).
We follow Kelejian and Prucha (2007) and assume that units are
located on a grid at locations (r,s), forr,s = 1,..., /N, and
S is taken to be a row-normalized, rook-type matrix where two

units are neighbors if their Euclidean distance, dy, is less than or
equal to one. We try §; = 0,6; ~ U (0.2,0.4),6; ~ U (0.5,0.7),

in all its combinations with p; = 0,p; ~ U (0.2,0.4), and
pi ~ U(0.5,0.7). We also try with §; ~ U (—0.4, —0.2),8; ~
U (—0.7, —0.5), in all its combinations with p; = 0,p ~

U (—0.4, —0.2), and p; ~ U (—0.7, —0.5). The number of repli-
cations is set to 2,000, and experiments are carried for N =
400,625,900 and T = 5,50. We adopted the Parzen kernel
function.

Table 1 reports the relative bias, computed as the bias of
the proposed HAC estimator divided by the bias of the Arellano
(1987) clustered estimator, the relative RMSE, computed as
the ratio of the RMSEs, as well as size and power of the FE
estimator! both adopting clustered standard errors, and the
proposed HAC standard errors, for various combinations of §; and
pi- The nominal size is set to 5%, while power of the FE estimator
is computed under the hypothesis that 8 = 0.90. Results show
that, as expected, when §; = 0 test statistics using the clustered
standard errors have the correct size. Under this case, the bias and
RMSE of the two estimators are very small, causing the relative bias
and RMSE to be volatile. However, when §; # 0, the bias and RMSE
of the proposed HAC estimator are always smaller than those of
the clustered estimator, making the relative bias and RMSE smaller

1 Bias and RMSE of the FE estimator are available upon request.
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Table 1
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Small sample properties for the Clustered and HAC estimator.

N\T Relative bias Relative RMSE Clustered estimator HAC estimator
5 50 5 50 Size Power Size Power
5 50 5 50 5 50 5 50
8=0, p; ~ U(—0.4, —0.2)
400 7.063 4726 1.972 2.250 0.054 0.049 0.730 1.00 0.053 0.048 0.753 1.00
625 6.029 —4.132 2.234 2.474 0.052 0.055 0.831 1.00 0.050 0.052 0.842 1.00
900 —1.169 3.941 2.436 2.739 0.046 0.055 0.975 1.00 0.046 0.051 0.985 1.00
8i~U(=0.4,-0.2), p; ~ U(—0.4, —0.2)
400 —0.014 0.020 0.806 0.808 0.038 0.021 0.890 1.00 0.051 0.043 0.892 1.00
625 0.043 0.044 0.783 0.745 0.029 0.031 0.965 1.00 0.049 0.053 0.951 1.00
900 0.052 —0.003 0.729 0.701 0.025 0.038 1.00 1.00 0.047 0.054 1.00 1.00
8i~U(=0.7,—0.5), p; ~ U(—0.4, —0.2)
400 0.101 0.117 0.392 0.379 0.022 0.013 0.910 1.00 0.046 0.045 0.921 1.00
625 0.108 0.101 0.368 0.347 0.013 0.014 0.987 1.00 0.052 0.046 0.976 1.00
900 0.095 0.072 0.341 0.319 0.014 0.023 1.00 1.00 0.048 0.049 1.00 1.00
8~ U(=0.7,—0.5), p; ~ U(=0.7, —0.5)
400 0.100 0.121 0.396 0.389 0.017 0.018 0.979 1.00 0.043 0.046 0.987 1.00
625 0.111 0.094 0.375 0.342 0.018 0.012 0.990 1.00 0.046 0.048 0.999 1.00
900 0.090 0.075 0.335 0.313 0.019 0.015 1.00 1.00 0.045 0.050 1.00 1.00
8i=0,p; ~U(0.2,0.4)
400 5.375 3.945 1.862 2.197 0.053 0.051 0.751 1.00 0.052 0.053 0.771 1.00
625 —5.162 —5.412 2.039 2.498 0.052 0.048 0.852 1.00 0.053 0.050 0.860 1.00
900 —1.527 4.055 2.318 2.787 0.049 0.051 0.979 1.00 0.050 0.052 0.980 1.00
8i~U(0.2,0.4), p; ~ U(0.2, 0.4)
400 0.480 0.408 0.963 0.907 0.075 0.068 0.880 1.00 0.054 0.050 0.930 1.00
625 0.347 0.333 0.859 0.860 0.072 0.070 0.985 1.00 0.052 0.055 0.990 1.00
900 0.280 0.345 0.848 0.808 0.070 0.074 1.00 1.00 0.051 0.051 1.00 1.00
8i~U(0.5,0.7), p; ~ U(0.2, 0.4)
400 0.389 0.353 0.598 0.540 0.122 0.106 0.950 1.00 0.070 0.051 0.944 1.00
625 0.296 0.287 0.500 0.478 0.112 0.096 1.00 1.00 0.058 0.053 1.00 1.00
900 0.246 0.277 0.471 0.442 0.108 0.089 1.00 1.00 0.055 0.053 1.00 1.00
8~ U(0.5,0.7), p; ~ U(0.5, 0.7)
400 0.382 0.345 0.609 0.541 0.149 0.103 0.985 1.00 0.064 0.049 0.990 1.00
625 0.292 0.287 0.510 0.478 0.121 0.011 1.00 1.00 0.056 0.053 1.00 1.00
900 0.245 0.271 0.481 0.443 0.109 0.010 1.00 1.00 0.051 0.050 1.00 1.00
than 1, with a decreasing pattern as §; in absolute value of gets andfor i,j,u,v=1,2,...,N,t,s,t',s =1,2,...,T
large. Further, test statistics based on the clustered standard errors
are undersized for values of &; < .O, and oversized for values of Cov (ei[ejh eut,evs,) — r;,)’rt/l'ul',/; Yoo + r;,}’fs/l'ul',/z YT,
8; > 0. On the contrary, test statistics based on the proposed HAC
estimator seem to be quite robust to various patterns of serial and N
cross sectional dependence, also when these are sizable. + Z TieTjeTueTve @, tst's' - (A2)
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Appendix
Lemma A.1. Consider e; in (2) and (3). Then under Assumptions 1
and 2, fori,j=1,2,...,N, t,s=1,2,...,T

E (eitejs) = l’;' )’[sl’]'., (Al)

=1

where we sy = [fLestrs — ve(lt —sDye(It’ =S — ye(It = t'Dye
(Is = s'1) = ye(lt = s'Dye(s —t'D], and pe sy = E(gpc€osor€as)-

Proof. Noting that, under Assumption 1,E (¢2) = 1, we have

N N 0
E (exe) = > rmnE (eneens) = Y rinfin Y Chal |Chacrie—s!|
h=1 h=1 a=0

N
=Y rarinvh (Is — t]) =1}y,
h=1
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which proves (A.1). As for (A.2), we have (see also Ullah, 2004)

Cov (eitejSa eut’evs/)

N
= TilinTupTogE (Exenseperqs) — T, VisTiXy Vst
= ik!jhTuptvq ktShsCpt’/ €qs iV, Vg Ty,
k,h,p,q=1
N N
= E TikljkE (Exc&xs) E TupTupE (Spt’gps’)
k#p=1 p=1
N N
+ } TikTukE (Exe€ie’) E TipTupE (Spsgps’)
k#p=1 p=1
N N
+ E TiklukE (Ektgks’) E rjprupE (8175‘913[’)
k#p=1 p=1
N
+ E TieTjeTueTveE (E0c€es€or es')
=1

J /
LVl Yyl
J/ J/ J/
=Y Tul] Vg To, + T Vg To ] Yo Ty,

+ E TieTjeTueTve @y est's’ - O
=1

Lemma A.2. Consider e; in (2) and (3). Then, under Assumptions 1
and 2,

1
N2T2 Z Z eiejs = O, <NT> (A3)

i,j=1t,s=1

Proof. Note that N2T2 N ZrT,szl eirejs has mean

N2T2 Z Z 1‘ R

i,j=1t,s=1

p)

since, under Assumptions 1 and 2, ZST 1Yhes = 0(1), and

Z T T Z] SN rarn = O(1). Further, using (A.2) its
vatiance satisfies

(N2T2 2 Z e”e’s)

i,j=1t,s=1

(NT) Z Z Cov e,te]s,eu[,evs,)

ijuv=1t¢s,t',s'=1

= G > 3

iju,v=1¢st' s'=1

i,j=1

i,j=1t,s=1

/
T Y Iy T Yog Lo,

/ J
+ 1 YT T Yoty |

E E E TigTjeTueTve@e tst's'
(NT)“

=1ijuv=1tst' s'=1

1
=0\ne2 )0

given that, under Assumptions 1 and 2, riz Z[T,s,[cs/:1 e tst's =
T
Tiz Zt,s,t’,s’:1 E(epeeoseorrery) = 0(1). O

Proof of Theorem 1. Consider

1 Ga
—— Y X|Re,, (A4)
T t=1

where X; = Xy, ..., Xn). Asymptotic normality of (A.4) when
N,T — oo can be proved by applying the Beveridge-Nelson
decomposition to &; (see Phillips and Solo, 1992, for details):

it = Ci(1)€ir + €ir—1 — €ir,

o0 ~ X = ~ o0
where ¢i(1) = Y2 Cia, €it = )_y— Cia€it—a and Cig = Y 1~ 111 Cik-
Hence

~ 1 ~
+ ——X,Ré; — —XRep,
VNT ! JNT !
wherec(1)isa dlagonal matrix with diagonal elements ¢;(1) < oo,
and FX’ Ré 4, fRE r tend to zero as T — oo under Assump-

tions 1 and~2 Hence, asymptotic normality follows by applying to
ﬁ ZtT:l X/,Rc(1)e.; the central limit theorem for triangular ar-
rays provided in Kelejian and Prucha (1998, see p. 112), and noting
that the matrices X/,Rc(1) and X/,Re(1)c(1)’'R'X.;/N have finite el-
ements. To prove consistency of W, consider

Al - - '
— BppXie = & + (ﬂ - ﬁFs) Xit

éit = yit
Ly

=8+ — ) Ziii, (A5)
NT k=1

where z;; = X}, Qy; Xt < K < 0o. Replace the expression for &
into (9), to obtain:

T

N
Z Z XiXjeie;sK (dy/dn)

2‘,_.

N2T2 Z Z Z Xir X eisexzij.c K (dij/dn)

i,j=1 k=1 t,s=1

N3T3 Z Z Z Xit X Z1i ¢ Znj sexeensK (dij/dn).

i,j=1k,h=1t,s=1

Note that we have dropped ~ from e;; given that xffe} = )N(: e;.We
now focus on the (g, m)th element of , given by

. 1 &
Yom = NT Z Z Xg, itXm jseltejsK(du/dN)
i,j=1t,s=
N N T
NZT Z Z Z o itXm.jsZkj,t CisCie K (dij/dn)
i,j=1 k=1 t,s=1
N T
N3T3 Z Z Z Irim,jszki,rzhj,sekrehs
j=1kh=1¢ts5=1
x K(djj/dn). (A.6)
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Note that
] NoT
Pom = - Z Z Xg.itXm.js
z] 1t,5=1
x (Bulis — ewejs) K (dy/dy) (A7)
1N T
TNT DD Reickms (eess — 1 pr;) K(dy/dy) (A8)
i,j=1t,s=1
1N T
T Z Z Xg itXm jsT, V5T, [K(dij/dN) — 1]
NT 4~ £
i,j=1t,5=1
=A+B+C (A.9)

We now prove that A, B,C go to zero. First note that, since
K(d;j/dy) < 1, we have, under Assumption 3,

N N
> _K(di/dy) < ) la<ay < Sy = ON%). (A10)

j=1 j=1

Also, using (A.6), term A satisfies:

(A11)

x K(d;/dy) = A1 + A2. (A.12)

Hence E (A1) satisfies

N T
= N2T2 Z Z ’Xg “ijs

i,j=1 k=1 t,s=1
X |1" Vst |ij t | K(dj/dn)
N2T2 Z Z |l' YisTk. |K(du/dN)

i,j=1 k=1 t,s=1

20 N N
T D] Y K(dy/dy)

ik=1 =1

20 &
= T Z |r§_rkA|
i,k=1

N
< NZ T ZZWZM

h=1 i=1 k=1

|EAD)]

Mz

I /\

IA

(i)

from which it follows that E(A1) = O <N1 ar) Using Lemma A.1,
the variance of A1 satisfies

Var (Al)

)NDIDY

N4 4
i j=1kk=1ts,t's=1

x |Cov (eisex, eysewe)| |zi.e| |2y
x K(djj/dn)K (dyy /dn)
e N T
= N4T4 Z Z
i,i’ kk=1ts,t/ s'=1

J / / /
X }ri.ytt’ri’-rk.yss’rk’- + I Vs T Ty Yy X

X ZK(du/dN) Z K(dyy /dn)

j=1
N T N
Z Z Z Tiel [rive| 1Tke| ITieel
i,i’ k,k'= 1=
N
X |weses Z K (dy/dw) ZK(du//dN)

j=1 j=1

1
=0 <N(272a)’r2> ’

which implies A1 = O, (Nl ar) Using similar lines of reasoning,

it can be proved that A2 = O, (N1 °’T2) Focusing on B, we have
E (B) = 0, and its variance satisfies

Var (B)
1 N T

= N2T2 Z

ij,u,v=1¢;s,t's'=1

S |r;)’tt’ru.rj{}’ss’rv. + rl(}’ts’rv.r],:)’st’ru.|
X K(dij/dN)K(duv/dN)

N2 T2 E E E |r12 TieTueTye e tst's’

ijuv=1¢s,t/ =1 £=1

1
x K(djj/dn)K (dyy/dy) = O <W) :

Finglly, using condition Z}Ll ‘r:r]’ d;i” < oo in Assumption 3, C
satisfies

= &7 Z S s 1 | Ky /e) 1]
1] 1t,s=1
S Z |r Vit ‘ |K(dl]/dN) - 1‘
1] 1
=N Z ‘r L. | ’K(du/dN) — 1|
11 1
< d,, Z]rr,\du =0(dy’).
N i,j=1
It follows that

X 1 1 1
V-V = Op (N(l_a)T) + Op (W) + Op (dﬁ) . (A13)

ands Bz O
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