
Multi-Task Learning and Transfer:

The Effect of Algorithm Representation

Peter C. R. Lane peter.lane@bcs.org.uk

School of Computer Science, University of Hertfordshire, College Lane, HATFIELD AL10 9AB, Hertfordshire,
England

Fernand Gobet fernand.gobet@brunel.ac.uk

School of Social Science and Law, University of Brunel, UXBRIDGE UB8 3PH, Middlesex, England

Abstract

Exploring multiple classes of learning algo-
rithms for those algorithms which perform
best in multiple tasks is a complex problem of
multiple-criteria optimisation. We use a ge-
netic algorithm to locate sets of models which
are not outperformed on all of the tasks. The
genetic algorithm develops a population of
multiple types of learning algorithms, with
competition between individuals of different
types. We find that inherent differences in
the convergence time and performance levels
of the different algorithms leads to misleading
population effects. We explore the role that
the algorithm representation and initial pop-
ulation has on task performance. Our find-
ings suggest that separating the representa-
tion of different algorithms is beneficial in en-
hancing performance. Also, initial seeding is
required to avoid premature convergence to
non-optimal classes of algorithms.

1. Introduction

Meta-learning attempts to understand the interaction
between how learning occurs and the contexts in which
the learning is applied. We explore a concrete applica-
tion of meta-learning: the automatic development of a
cognitive model taken from multiple competing theo-
ries, applicable to multiple experimental tasks. We use
a non-dominated sorting genetic algorithm (NDSGA)
(Srinivas & Das, 1994) to construct a set of models
which are not outperformed on the multiple tasks. Our

Appearing in Proceedings of the ICML-2005 Workshop on
Meta-learning, Bonn, Germany, 2005. Copyright 2005 by
the authors.

application is made more complex by the presence of
multiple kinds of theories. The main focus of this pa-
per is to explore the effect of the underlying algorithm
representation on the composition of the best perform-
ing models, and their performance.

Our application attempts to develop a cognitive model
applicable to multiple experimental tasks. A cogni-
tive model is a specific example of a class of mod-
els (known as a theory), and typically is optimised
to fit the performance of human participants in an
experimental setting. For example, categorisation is
a problem requiring objects to be allocated to cate-
gories. Humans are asked to categorise objects after
seeing some training examples. The performance of
the humans becomes the target behaviour, which we
attempt to model. Theories about categorisation use
different learning algorithms to capture the learning
process, examples being discrimination-networks and
connectionist networks. The cognitive scientist is faced
with the task of locating those learning models which
perform best on all of the multiple datasets. Our ap-
plication of meta-learning with NDSGA attempts to
automate this task, by learning sets of optimal mod-
els.

Optimising the performance of a learning algorithm to
a single task is a relatively straight-forward problem
in optimisation. Genetic algorithms (GAs) (Holland,
1975) may be used to train a population of examples
of the learning algorithm until a high performing ex-
ample is located. The main idea used by a GA is to
sort the evolving population into order of fitness, and
then select the best performing members of the popu-
lation at each turn. Learning multiple tasks presents a
different problem. A single algorithm may do well on
one task, but less well on a second, whereas a different
algorithm may do well on the second task, but less well
on the first. The problem is how to directly compare

the performance of algorithms on multiple tasks in a
way which will fit onto a linear scale.

Formally, attempting to locate those algorithms which
perform well on multiple tasks is known as multi-
criteria optimisation. The particular algorithms of
interest are those which are not dominated by any
other. The set of non-dominated algorithms is the
pareto-optimal set. GAs may be used to locate such
pareto-optimal sets, because they manipulate a collec-
tion of algorithms simultaneously. Schaffer (1984) was
the first to propose the use of GAs in this context.
In this paper, we adopt the approach of Srinivas and
Das (1994), which uses non-dominated sorting within
a genetic algorithm to locate a pareto-optimal set. The
idea of NDSGA is to give those algorithms which are
non-dominated a high fitness, irrespective of their per-
formance on specific tasks.

The NDSGA manages the interaction between multi-
ple constraints in order to learn an optimal set of algo-
rithms. However, one further challenge is the manner
in which a GA combines and uses individuals from
its evolving population to create new individuals. In
particular, a GA will use cross-over to combine the
representations of two separate algorithms. Such a
combination is problematic when the algorithms may
be of different types.

In this paper, we explore the effect that represen-
tation has on the constitution and performance of
pareto-optimal sets evolved for a specific application
of NDSGA. The application is to find those examples
drawn from four classes of learning algorithm which
best fit distinct and multiple experimental data. In
other words, there is a large space of multiple classes
of learning algorithms (the cognitive models), and the
performance of each algorithm is judged by its ability
to match experimental data of multiple kinds.

2. Developing Cognitive Models

An important aspect of cognitive science is the de-
velopment of computational models which can sim-
ulate the behaviour of human experimental partici-
pants. Classes of models are collected together into
theories, where a set of constraints or typical repre-
sentations are used to define a collection of similar
models. Experimental evidence is obtained on differ-
ent tasks. As an example, we consider the problem of
categorisation, which has been studied in intense detail
by psychologists and modellers. Initial experiments by
Medin and Smith (1981) led to a large number of fol-
lowup studies. Smith and Minda (2000) describe a
collection of thirty experimental results, based on a

Table 1. The 5-4 structure used in categorisation exper-
iments (after (Medin & Smith, 1981; Smith & Minda,
2000))

Attribute (A)
Example A0 A1 A2 A3

A examples
E1 1 1 1 0
E2 1 0 1 0
E3 1 0 1 1
E4 1 1 0 1
E5 0 1 1 1

B examples
E6 1 1 0 0
E7 0 1 1 0
E8 0 0 0 1
E9 0 0 0 0

Transfer items
E10 1 0 0 1
E11 1 0 0 0
E12 1 1 1 1
E13 0 0 1 0
E14 0 1 0 1
E15 0 0 1 1
E16 0 1 0 0

similar structure.

The basic experimental structure is known as the 5-4
structure, and is illustrated in Table 1. There are four
binary attributes. The task of the learner is, given the
examples of categories A and B, to categorise the en-
tire set of examples. If this were a machine learning
application, the task would be relatively straightfor-
ward: find a learning algorithm whose generalisation
error was as small as possible. However, for a psycho-
logical experiment, the performance of the learning al-
gorithm is assessed against that of human participants
performing the same experiment.

2.1. Tasks

Table 2 provides three kinds of target data for the
cognitive model. The first column shows the observed
percentage correct for each stimulus in a single experi-
ment. The second column gives the average percentage
correct across thirty experiments. The final column
gives the time required to provide an answer (time for
the transfer items was not measured).

The tasks which a cognitive model must achieve are
then determined in a two-fold manner. First, the form
of assessment being made is chosen: it may be the
(simulated) time required to give an answer, or the
probability of giving a correct answer. Second, the
data against which the model’s performance will be
measured is provided. The model’s performance will
then be assessed: here, we consider the average abso-

Table 2. Target behaviours in 5-4 structure: Probability
of responding A, mean number of errors in training, and
time to make a classification. (Classification times were
not collected for the transfer items.)

P(RA|Ei)
Example 1st Avg Time (s)

E1 0.97 0.83 1.11
E2 0.97 0.82 1.34
E3 0.92 0.89 1.08
E4 0.81 0.79 1.27
E5 0.72 0.74 1.07
E6 0.67 0.30 1.30
E7 0.82 0.28 1.08
E8 0.97 0.15 1.13
E9 0.95 0.11 1.19
E10 0.72 0.62
E11 0.98 0.40
E12 0.27 0.88
E13 0.39 0.34
E14 0.44 0.40
E15 0.77 0.55
E16 0.91 0.17

lute deviation (AAD), and sum-squared error (SSE).

2.2. Cognitive models

We consider four types of cognitive models: two math-
ematical models, which are known as context and
prototype models; a class of discrimination-network
model, known as CHREST; and a simple connectionist

model. Each type of model learns to classify instances
of the 5-4 task. The details of the models are not im-
portant for this paper, and are not included for reasons
of brevity. Some brief details are provided below, and
the references provide fuller descriptions.

The two mathematical models are defined in Smith
and Minda (2000). They each adopt a weighting be-
tween the four attributes, and measure the similarity
of an instance to each of the examples in category A
or B. The context model measures similarity against
all the training examples, whereas the prototype model
measures similarity against a single prototype exam-
ple.

The discrimination-network model, CHREST, is de-
fined in Gobet et al. (2001). CHREST is the most
complex model considered here, and makes the most
serious attempt to model the processes underlying the
learning and processing of examples. As a process
model, it provides more detailed options for capturing
the timing of categorisation, in terms of the number of
tests made and the depth of the trained memory.

The connectionist model (e.g. see McLeod et al., 1998)
is a simple Hebbian network, using four input units

and a single output unit. Time to respond to an input
is provided as a single measure of time taken.

3. Evolving a Model

We may treat the four classes of models as defining a
space, M, of possible models. Our aim is to find one
or more m ∈ M satisfying the multiple experimental
constraints. We refer to each constraint as a function,
mapping a given model to a real number:

fi : M → R

Without loss of generality, we assume that we want to
minimise fi(m) ≥ 0

We say that model m1 dominates model m2 if:

∀i • fi(m1) ≤ fi(m2) ∧ ∃j • fj(m1) < fj(m2)

In other words, m1 does at least as well as m2 ev-
erywhere, but there is at least one task in which m1

does better. The set of non-dominated solutions to
a multi-criteria optimisation problem is known as the
pareto-optimal set. The non-dominated solutions will
be those learning algorithms, selected from multiple
classes, which are not outperformed on all of the mul-
tiple tasks.

We use a non-dominated sorting genetic algorithm
(NDSGA) to locate a pareto-optimal set. NDSGA
was first proposed by Goldberg (1989), and applied
by Srinivas and Das (1994) to learn solutions to math-
ematical functions. We employ a form of NDSGA,
which works as follows:

1. Create an initial population.

2. Form four sets:

set 1 the non-dominated members of the entire
population;

set 2 the non-dominated members of the remain-
ing population, i.e., the entire population
without set 1;

set 3 the non-dominated members of the remain-
ing population, without set 1 and set 2; and

set 4 the remaining population, without sets 1,
2, and 3.

3. Create a new population consisting of the mem-
bers of set 1, and the results of performing cross-
over on individuals selected from the four sets.
The probability of selecting a member of set 3 is

Table 3. Model parameters, and initial maximum random
value.

Name Initial Maximum
Context Model

Weight 0 C0 1.0
Weight 1 C1 1.0
Weight 2 C2 1.0
Weight 3 C3 1.0

Sensitivity Cs 1.0
Guessing Cg 1.0

Response Time Ct 100.0
Prototype Model

Weight 0 P0 1.0
Weight 1 P1 1.0
Weight 2 P2 1.0
Weight 3 P3 1.0

Sensitivity Ps 1.0
Guessing Pg 1.0

Response Time Pt 100.0
Connectionist Model

Output threshold Coθ 1.0
Learning rate Coη 1.0

Attention Coa 1.0
Respone Time Cot 100.0

CHREST Model
Attention CHa 1.0

Reaction Time CHr 100.0
Sorting Time CHs 100.0

double that of selecting from set 4; from set 2
double that of selecting from set 3, and from set 1
double that of selecting from set 2.1

4. Mutation is performed on the whole population.
The probability of changing the model type is
mmt. If the model type is left alone, one param-
eter is selected at random, and modified slightly.
Table 3 lists the model parameters: a parameter
whose initial maximum value is 100 may vary by
±10, else it may vary by ±0.1.

5. The process begins again at step 2, until the max-
imum number of cycles has been reached.

4. Representing the Models

The genetic algorithm manipulates a population of
candidate models, where each individual model is rep-
resented as a list of values indicating the type of model
and its parameter values. As Table 3 illustrates, each
model type is defined by a varying number of param-
eters, each with a distinct role in the model.

In order to perform the generic operations of cross-
over and mutation, it is important for the genetic al-

1The proportions are arbitary, and aim only to bias the
new population to examples of non-dominated algorithms.

Table 4. Usage of gene positions based on representation
type. Empty cells indicate that the gene position had no
use.

Gene Over-lap Separate Mixed
0 Type Type Type
1 C0 P0 Coθ CHa C0 C0 P0

2 C1 P1 Coη CHr C1 C1 P1

3 C2 P2 Coa CHs C2 C2 P2

4 C3 P3 Cot C3 C3 P3

5 Cs Ps Cs Cs Ps

6 Cg Pg Cg Cg Pg

7 Ct Pt Ct Ct Pt Cot

8 P0 Coθ

9 P1 Coη

10 P2 Coa CHa

11 P3 CHr

12 Ps CHs

13 Pg

14 Pt

15 Coθ

16 Coη

17 Coa

18 Cot

19 CHa

20 CHr

21 CHs

gorithm that all the models use the same basic form
of representation as a list of items within a genome.
What varies between the models is the interpretation
placed on each item within its representation. Con-
sidering the different models in this application, there
are three basic ways of combining the representation:

over-lap Where the first item in the gene represents
the model type, and the subsequent items list the
parameters for that model type.

separate Where the first item in the gene represents
the model type, and distinct parts of the gene are
specialised for the parameters of each model type.

mixed Where the first item in the gene represents
the model type, and some of the gene positions
are shared, where parameters perform the same
task in two or more different models.

Table 4 describes the use made of each gene position
in the different representation types. As can be seen,
the over-lap condition forces up to four different pa-
rameter types to use the same gene position, whereas
the separate condition separates out all the parameter
types.

The mixed condition attempts to align parameters
with a similar role and range to the same position of
the gene. For example, both the connectionist and

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0 50 100 150 200

P
er

fo
rm

an
ce

Cycle

Context
Prototype

Connectionist
CHREST

Figure 1. Total performance over training time for all four
models

CHREST models have a probability of attending to a
stimulus. Regardless of the separate performance of
the models, this attention parameter may be expected
to play a similar role in both types. By forcing the pa-
rameter to occupy the same position of the gene (10,
in this case), any modification of this parameter with
respect to either model type will be transferred to the
other type in the event of cross-over.

5. Experiments

The main focus of these experiments is to explore the
effect of the differing representation types described in
Section 4. We also consider how the distribution of
model types within the evolving population affects the
performance of the final models.

5.1. Baseline performance

The NDSGA algorithm is run with a population of
100 and over 200 cycles four times, each time with
a separate class of model type. The probability of
mutating the model type, mmt, is kept at zero, so
that each run is performed with a single type of model.
The aim of the experiment is to locate models and
performance levels without the effect of cross-model
competition.

By summing the values for each of the constraints,
we can obtain a measure of how well the system is
performing in the aggregate. Figure 1 shows how the
summed value varies across the training time of the
system. Table 5 shows the best performance on each
of the separate tasks.

5.2. Varying representations

The NDSGA algorithm is run with a population of 400
individuals, initially seeded with 100 examples of each

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0 20 40 60 80 100

P
er

fo
rm

an
ce

Cycle

Separate
Over-lap

Mixed
Seeded (separate)

Figure 2. Performance of system against time for different
representations.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

N
um

be
r

Cycle

Context
Prototype

Connectionist
CHREST

Figure 3. The number of each model type in the entire pop-
ulation, for the separate representation.

of the four classes of cognitive model. The system is
trained over 100 cycles, with mmt set to 0.05. The
system is run three times, each time with a different
form of representation, as described in Section 4.

Figure 2, which can be compared with Figure 1, shows
the performance of the total set of models as a whole
against the training time, with a separate line for each
of the representation types. Table 5 shows the best
performing model from the final population against
each of the separate tasks. Figures 3 and 4 show the
numbers of each model class in the complete and non-
dominated populations over time for the separate rep-
resentation only. (One representation only shown for
reasons of space.)

5.3. Seeding population

The performance of the mathematical models in the
combined populations is relatively poor against the
other models. One way to create a more balanced
initial pool is to seed the initial population for the
NDSGA with individuals taken from the baseline pool.

Table 5. Best performance on each separate task. C – Context Model, P – Prototype Model, Co – Connectionist Model,
CH – CHREST Model

Task Baseline Over-lap Separate Mixed Seeded
SSE 1 0.226 C 0.204 Co 0.235 Co 0.222 Co 0.180 C
SSE 2 0.111 C 0.266 Co 0.256 Co 0.256 Co 0.143 C
SSE 3 0.111 C 0.266 Co 0.256 Co 0.256 Co 0.143 C
SSE 4 0.095 C 0.253 Co 0.281 Co 0.249 Co 0.121 C
AAD 1 0.091 P 0.096 Co 0.101 Co 0.103 Co 0.083 C
AAD 2 0.066 C 0.083 Co 0.083 Co 0.083 Co 0.063 C
AAD 3 0.066 C 0.083 Co 0.083 Co 0.083 Co 0.063 C
AAD 4 0.052 C 0.094 Co 0.087 Co 0.082 Co 0.058 C

SSE Avg 0.100 P 0.080 Co 0.161 Co 0.151 Co 0.088 C
AAD Avg 0.066 Co 0.058 Co 0.078 Co 0.075 Co 0.059 C
SSE Time 1,292,901 CH 6,242,291 CH 68,535 CH 79,730 CH 74,966 CH
AAD Time 0.341 CH 0.827 CH 0.069 CH 0.080 CH 0.069 CH

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

N
um

be
r

Cycle

Context
Prototype

Connectionist
CHREST

Figure 4. The number of each model type in the non-
dominated population, for the separate representation.

 0

 50

 100

 150

 200

 0 10 20 30 40 50

N
um

be
r

Cycle

Context
Prototype

Connectionist
CHREST

Figure 5. The number of each model type in the entire pop-
ulation, for the separate representation, seeded population.

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50

N
um

be
r

Cycle

Context
Prototype

Connectionist
CHREST

Figure 6. The number of each model type in the non-
dominated population, for the separate representation,
seeded population.

Essentially, the non-dominated individuals trained
from populations with single model types are used to
create the initial population for evolving the models in
competition with other model types.

Using the separate representation, 50 training cycles
were performed with a pool of 200 models, and mmt

of 0.05. Figure 2 shows the aggregate performance
of the seeded population, just for the separate repre-
sentation, compared with the unseeded populations.
Figures 5 and 6 show the proportion of the entire and
non-dominated populations of each model type.

5.4. Discussion of experiments

Figure 1 gives the rate of convergence for the four
types of models when optimised separately. All four
show a similar gradient, or rate of convergence. The
better performance of the CHREST type of model is
due to its superior performance in the timing tasks,
which have a higher ‘cost’: this kind of scaling prob-
lem is typical of the problem arising when attempting

to combine multiple criteria into a single criterion.

Figure 2 shows the rate of convergence for the three
separate representation types and the seeded popula-
tion (separate representation only, note that training
only proceeded for 50 cycles). It can be seen that the
separate representation performs much better than its
two colleagues in terms of its aggregate performance.
However, the total performance does not approach
that of the seeded population.

Figures 3 and 4 illustrate the proportion of each model
type present in the entire and non-dominated sets, re-
spectively. The two proportions are similar, and each
show a domination of the population by the connec-
tionist and CHREST class of models. These graphs
indicate that examples of these models are much eas-
ier to locate and preserve in the population than the
mathematical models. However, Figures 5 and 6 indi-
cate a different story when the population is seeded
with good members from each of the model types.
Now, the CHREST and context models dominate the
population.

Table 5 explains some of these data. As can be seen,
context models mostly outperform the others on the
non-time tasks, whereas CHREST has a significant
advantage on the time tasks. Obtaining good con-
text models to seed the population enables the con-
text models to outperform connectionist models from
the start, and so take over the population. The larger
number of CHREST models in the population indi-
cate a greater range of parameter values for the models
to perform well, whereas the mathematical models re-
quire much tighter bounds on their parameter values.

Looking at the constraints separately, Table 5 indi-
cates that the best overall values are obtained for the
seeded population, with separate representation. This
suggests, as a conclusion, that it is better to separate
the representation of the different algorithms when
performing NDSGA, and also that seeding is useful
to avoid premature convergence to non-optimal model
types. There is little to suggest that combining param-
eters expected to be similar, as in the mixed represen-
tation, has any demonstrable impact on performance.

6. Discussion

6.1. Multi-criteria optimisation

Genetic algorithms are a natural technique for solving
multi-criteria optimisation problems (Coello, 2000).
However, most of these problems have typically ad-
dressed the selection of individuals from a single class.
One of the difficulties of this study has been the exis-

tence of multiple theories, from which models may be
drawn. Few previous studies of such problems exist;
notable is that of Kalousis, Gama and Hilario (2004),
who consider a similar problem with inductive algo-
rithms. Here, we have addressed a real problem within
cognitive science, developing a model of categorisation.

The experiments have shown that the choice of rep-
resentation is important in assisting the development
of effective models. In particular, a naive cross-over
function can prevent competing models of different
types from becoming viable. However, making dif-
ferent models compete is clearly useful in improving
the performance of the models. The clearest example
here is that of the timing task, where CHREST’s per-
formance was substantially improved when it had to
compete with alternative models.

6.2. Cognitive science

One of the important consequences of this work is in
formalising the search for optimal computational mod-
els. Within cognitive science, few modellers routinely
use optimisation algorithms to find optimal models,
even with evidence that superior models are found in
this way. Some earlier, and related, work has used ge-
netic algorithms to locate optimal training parameters
for neural network models (Ritter, 1991) and for more
complex ACT-R/PM models (Tor & Ritter, 2004).
However, both these previous examples used a single
fitness function and a single model type on a single
task. We have instead defined a formal framework for
specifying and comparing models across multiple do-
mains and theories, and, crucially, demonstrated the
validity of meta-learning techniques in locating opti-
mal models. Further discussion of this framework, and
its implications for cognitive science, may be found in
Gobet and Lane (2005).

6.3. Further work

The main focus of further work will be to extend the
number of behavioural tasks and classes of models be-
ing considered. These extensions will generate a larger
search problem for our genetic algorithm, and we an-
ticipate the need for more sophisticated meta-learning
techniques to make the search tractable.

Firstly, we have developed a technique using corre-
lation analysis to locate the optimal values of cer-
tain key parameters within the models, and so con-
strain the evolution of future models to those opti-
mal values (Lane & Gobet, 2005). This technique will
be extended to include more complex sets of corre-
lations, which may require stronger machine learning
techniques to formulate hypotheses about which algo-

rithms are performing the best, and why. Michalski
(2000) has already shown that such stronger machine
learning techniques provide good results over weaker
evolution methods.

Secondly, we aim to exploit the algorithm’s search
through multiple tasks and multiple theories to locate
relations between specific algorithm properties and
task performance. For example, it is well known that
short-term memory size is important and relatively
constant (Cowan, 2001). Our system should be able
to come to such conclusions by aggregating evidence
about short-term memory size across all the compet-
ing model types. Comparisons may be drawn with
the analysis of inductive algorithms against datasets
conducted by Kalousis et al. (2004), where similarities
between algorithms and datasets were analysed using
error correlation and relative performance.

7. Conclusion

We have presented a novel application of NDSGA to
the task of finding optimal cognitive models, where
the models must be chosen from multiple classes of
competing theories, and also each model is evaluated
against multiple constraints. Exploring the effect of
initial population seeding and representation type sug-
gests that competition between model classes is benefi-
cial in locating better models, but that separate repre-
sentations and an initial population seeded with good
models are required for NDSGA to perform well.

Acknowledgements

The authors would like to thank the programme chair
and three anonymous reviewers for their comments on
an earlier version of this paper.

References

Coello, C. A. C. (2000). An updated survey of GA-
based multiobjective optimization techniques. ACM

Computing Surveys, 32.

Cowan, N. (2001). The magical number 4 in short-
term memory: A reconsideration of mental storage
capacity. Behavioral and Brain Sciences, 24, 87–185.

Gobet, F., & Lane, P. C. R. (2005). A distributed
framework for semi-automatically developing archi-
tectures of brain and mind. Proceedings of the First

International Conference on e-Social Science.

Gobet, F., Lane, P. C. R., Croker, S. J., Cheng, P.
C.-H., Jones, G., Oliver, I., & Pine, J. M. (2001).

Chunking mechanisms in human learning. Trends

in Cognitive Science, 5, 236–243.

Goldberg, D. E. (1989). Genetic algorithms in search

optimization and machine learning. Reading, MA:
Addison-Wesley.

Holland, J. H. (1975). Adaptation in natural and arti-

ficial systems. Ann Arbor: The University of Michi-
gan Press.

Kalousis, A., Gama, J., & Hilario, M. (2004). On
data and algorithms: Understanding inductive per-
formance. Machine Learning, 54, 275–312.

Lane, P. C. R., & Gobet, F. (2003). Developing repro-
ducible and comprehensible computational models.
Artificial Intelligence, 144, 251–63.

Lane, P. C. R., & Gobet, F. (2005). Discovering predic-
tive variables when evolving cognitive models. Pro-

ceedings of the Third International Conference on

Advances in Pattern Recognition.

McLeod, P., Plunkett, K., & Rolls, E. T. (1998). Intro-

duction to connectionist modelling of cognitive pro-

cesses. Oxford, UK: Oxford University Press.

Medin, D. L., & Smith, E. E. (1981). Strategies and
classification learning. Journal of Experimental Psy-

chology: Human Learning and Memory, 7, 241–253.

Michalski, R. S. (2000). Learning evolution model:
Evolutionary processes guided by machine learning.
Machine Learning, 38, 9–40.

Ritter, F. E. (1991). Towards fair comparisons of con-
nectionist algorithms through automatically opti-
mized parameter sets. Proceedings of the Annual

Conference of the Cognitive Science Society (pp.
877–881). Hillsdale, NJ: Lawrence Erlbaum.

Schaffer, J. D. (1984). Some experiments in ma-

chine learning using vector evaluated genetic algo-

rithms. Doctoral dissertation, Vanderbilt University,
Nashville.

Smith, J. D., & Minda, J. P. (2000). Thirty cate-
gorization results in search of a model. Journal of

Experimental Psychology, 26, 3–27.

Srinivas, N., & Deb, K. (1994). Multiobjective opti-
mization using nondominated sorting in genetic al-
gorithms. Evolutionary Computation, 2, 221–248.

Tor, K., & Ritter, F. E. (2004). Using a genetic algo-
rithm to optimize the fit of cognitive models. Pro-

ceedings of the Sixth International Conference on

Cognitive Modeling (pp. 308–313). Mahwah, NJ:
Lawrence Erlbaum.

