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Network growth model with intrinsic vertex fitness
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We study a class of network growth models with attachment rules governed by intrinsic node fitness. Both
the individual node degree distribution and the degree correlation properties of the network are obtained as
functions of the network growth rules. We also find analytical solutions to the inverse, design, problems of
matching the growth rules to the required (e.g., power-law) node degree distribution and more generally to the
required degree correlation function. We find that the design problems do not always have solutions. Among the
specific conditions on the existence of solutions to the design problems is the requirement that the node degree
distribution has to be broader than a certain threshold and the fact that factorizability of the correlation functions
requires singular distributions of the node fitnesses. More generally, the restrictions on the input distributions and
correlations that ensure solvability of the design problems are expressed in terms of the analytical properties of
their generating functions.
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I. INTRODUCTION

Numerous problems arising in a variety of social and natural
sciences (biology, sociology, information systems, etc.) can be
cast in terms of assemblies of interacting agents. Network
theory, built on the basis of graph theory, became a powerful
tool for the study of such systems in the past dozen years [1–3].
In the language of network theory, agents are represented as
nodes of a graph, while edges encode interactions.

Many of the experimentally observed networks exhibit
common topological features [2]. In particular, low average
path lengths (small-world property) and power-law degree
distributions characterize the class of networks known as
scale-free networks [4]. Most of the theoretical effort is geared
towards modeling and explaining these topological features of
the networks.

The two broad classes of network models are static models,
where the set of nodes is fixed, and dynamic network growth
models. In the former case, edges are distributed among a
given set of nodes according to a (typically probabilistic) rule.
In effect, the model is a fixed-size (symmetric if the graph is
unoriented) random adjacency matrix. In the latter case, the
network is modeled as a stochastic process with both nodes
and edges added sequentially according to a set of microscopic
rules specific to a given model.

The simplest static model is the classical Erdős-Rényi (ER)
random graph model [5], where a set of n edges is distributed
among N nodes, usually with n ∼ O(N ). Every pair of nodes
receives an edge with equal probability 2n/N (N − 1) and the
resulting degree distribution p(k) is Poisson in the N → ∞
limit, decaying considerably faster with large k than most
empirically observed networks.

A paradigmatic example of a dynamical network growth
model is the Barabási-Albert (BA) preferential attachment
network [6], which successfully reproduces key empirical
observations: the small-world features and the power-law
decay of degree distribution p(k) ∼ k−α , with the exponent
α = 3. Despite its enormous success in modeling the basic
features of empirically observed networks, the BA model
possesses several limitations. In particular, the preferential
attachment rule implies perfect knowledge on the part of the

newly joining node about the current degrees of every node of
the growing network, which may not be possible in some real-
life situations. Possibly reflective of this limitation is the fact
that empirical studies of growing networks tend to show many
instances where the growth mechanism is inconsistent with
preferential attachment, yet power-law degree distributions
still emerge in the macroscopic limit [7].

The models that avoid the need to assume perfect knowl-
edge about network topology are sometimes known as hidden
variable models [8–12]. The linking rules for edges in such
models are governed by some measure of the intrinsic quality
of the nodes, commonly called fitness. The argument behind
this type of model can be illustrated using the example of
business relationships between companies: An entrepreneur
is unlikely to know all buyer-supplier relationships or other
contractual relations of the prospective business partner, but
information on its general attractiveness (reputation, market
capitalization, gross sales, etc.) may be readily available and
moreover easily compared to that of other companies. Hence
the perfect information aspect is still retained, but a different
type of information is required compared to the preferential
attachment model.

A static model of this type has been introduced in Ref. [8].
Every node i in the network is assigned a fitness value xi ,
drawn from a probability distribution ρ(x). An element ij

of the adjacency matrix is equal to 1 with probability which
depends on the fitnesses xi and xj of the nodes i and j via some
linking function f (x,y). It can be viewed as a generalization
of the ER model, which in this language corresponds to all
nodes having identically equal fitness.

Several variations of this model have been studied. A solu-
tion geared towards producing broad power-law distributions
(which treats the distribution of degrees for nodes of the same
fitness as negligibly narrow compared to the global degree
distribution) has been found in Ref. [9], where it has been
shown that for a given ρ(x) there always exists an f (x,y)
such that the global degree distribution is asymptotically
governed by a power law and vice versa. Another approach
towards fitness-based static networks that exhibit power-law
node degree distributions can also be found in [13].
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Since most real-life networks feature growth in the number
of nodes with time, static models have inherently restricted
applicability as a modeling tool. Dynamic growth models
incorporating fitness-based growth rules have been considered
in Refs. [10–12]. Some of these models are based on mixed
rules incorporating both the fitness and the instantaneous
degree of a node, hence still requiring perfect information
about current network topology. Pure fitness-based growth
rules were investigated using a mixture of analytical and
numerical techniques in [12], where numerical evidence was
found tying power-law degree distributions to a similarly broad
distribution of node fitnesses.

Dynamic fitness-based network models are the subject of
the present paper. We obtain the full analytical description
of the degree distribution and degree correlation for a class
of fitness-based growth models. We show that the resulting
degree distribution is parametrized by a single function, the
distribution of node linking propensities.

The proposed scheme provides both the solution to the
problem of determining the degree distribution given the
growth rules and the closed form solution to the design problem
of finding the growth rules that would model a network given
the degree distribution and correlation properties. We show
that this class of network growth models has an upper bound
on how fast the degree distribution can decay at large k: not
faster than ek ln(1−q/2), where 0 < q � 1 is the asymptotic ratio
of the number of nodes to the number of edges. In the class of
models considered below, the networks are sparse, so this ratio
is O(1). In accordance with previous findings for models with
preferential attachment rules [4], the qualitative explanation
for this bound on the degree distribution is the fact that a
growing network is comprised of nodes that have different
ages and therefore different amounts of time to acquire their
neighborhoods. We also show that for the same reason, node
degree correlations in growing networks of this type are almost
always present and possess distinctive properties.

II. MODEL

Following the standard convention, the growth model is
formulated in discrete time. At every time step t , a new edge
is added to the network in one of the following two ways.

(i) With probability q, a new node is created and endowed
with fitness x drawn from a fixed distribution ρ(x). It is
joined to the network by adding an edge connecting the new
node to a target node inside the network. The probability
to choose a particular target node i for this connection is
f (x,xi)/

∑N(t)
j=1 f (x,xj ), where f (x,y) is the linking function

that depends on two fitness variables, xi is the fitness of the
target node, and N (t) is the total number of nodes in the
network at time t .

(ii) With probability 1 − q, a new edge is added connecting
two existing nodes in the network. A particular pair of nodes
ij is chosen with the probability f (xi,xj )/

∑N(t)
m<n f (xm,xn).

We consider only the case of finite q � 1, hence the total
number of edges at any time is O(N (t)) and the probability of
adding a second edge connecting an already connected pair
of nodes is O(1/N (t)), which is negligible in the leading
approximation. We also do not consider oriented graphs, hence
the linking function f (x,y) is assumed to be a symmetric

function of its arguments. When q = 1, however, the growth
rules explicitly differentiate between new and existing nodes,
therefore this symmetry assumption is not essential in the
formalism below and may be relaxed.

Consider now an existing node with fitness x. The proba-
bility that it receives a link at time t to a node whose fitness
lies in the interval [y,y + dy) is

γ (x,y,t)dy

=
[
q

f (x,y)ρ(y)∑N(t)
j=1 f (xj ,y)

+ (1 − q)
f (x,y)σ (y,t)∑N(t)

i<j f (xi,xj )

]
dy, (1)

where σ (x,t) = ∑N(t)
i=1 δ(x − xj ) is the instantaneous node

fitness density and the sums run over all nodes in existence at
time t . The first term accounts for the connections to new nodes
and the second term gives the contribution of the rewiring
process of adding edges between existing nodes.

In the long-time limit t → ∞, the random variable N (t) is
normally distributed with E[N (t)] = qt and variance equal to
q(1 − q)t . All considerations below will be made in the leading
order in 1/t , therefore it is sufficient to set N (t) → qt . It is
also simple to show that σ (x,t) → qtρ(x) and therefore sums
over nodes can be evaluated in the continuous limit as follows:

N(t)∑
j=1

f (x,xj ) =
∫

f (x,ξ )σ (ξ,t)dξ → qt

∫
f (x,ξ )ρ(ξ )dξ,

(2a)
N(t)∑
i<j

f (xi,xj ) → q2t2

2

∫
f (ξ,η)ρ(ξ )ρ(η)dξdη. (2b)

The range of integration over the fitness variable is a matter
of convention since in practice fitness serves as a quantitative
proxy for some, maybe not even easily quantifiable, qualitative
property of a node. We assume, however, that there is no
ambiguity in relative ranking of nodes with respect to their
fitness. In other words, given a group of nodes, it is always
possible to rank order them by their fitness. For this assumption
to hold it is sufficient to ensure that pairwise ordering of nodes
by fitness is a transitive binary operation.

Under this assumption, the choice of label x for fitness is
arbitrary and in the following we will use a universal label u

defined for any initial choice of labeling x via the cumulative
fitness distribution function u(x) = ∫ x

ρ(ξ )dξ , u(xmin) = 0,
u(xmax) = 1. The rank ordering assumption is sufficient to
ensure that u(x) is strictly monotonically increasing, hence
there exists a unique inverse x(u). We therefore redefine the
linking function in terms of these universal ranking variables:

f̃ (u,v)dudv = f (x(u),y(v))ρ(x(u))ρ(y(v))dxdy. (3)

Consequently, Eq. (1) takes the form

γ̃ (u,v,t)

= 1

t

[
f̃ (u,v)∫ 1

0 f̃ (w,v)dw
+ 2(1 − q)

q

f̃ (u,v)∫ 1
0 f̃ (w,w′)dwdw′

]
,

(4)
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where now γ̃ (u,v,t) = γ̃ (u,v)/t is the probability density that
a node with ranking u receives at time t a connection to a node
whose ranking is v.

The node degree distribution will be shown below to
be controlled by the cumulative linking propensity λ(u,t) =∫ 1

0 γ̃ (u,v,t)dv, which gives the overall probability for a node
with ranking u to receive a new connection at time t . Since
γ̃ (u,v,t) is proportional to 1/t in the t → ∞ limit, we define
λ(u) = tλ(u,t),

λ(u) =
∫ 1

0

f̃ (v,u)∫ 1
0 f̃ (v,w)dw

dv + 2(1 − q)

q

∫ 1
0 f̃ (v,u)dv∫ 1

0 f̃ (w,w′)dwdw′
.

(5)

Integrating this definition over u results in the following
normalization condition:∫ 1

0
λ(u)du = 1 + 2(1 − q)/q. (6)

The factor of 2 on the right-hand side (rhs) above arises because
in the sum over all nodes of the probabilities to acquire a
new connection, a link added to a pair of existing nodes is
counted twice. We note that Eqs. (4) and (5) are valid to
the leading order in 1/t in the asymptotic regime when the
expected network size is large, t � 1/q.

In the description of the dynamics of the degree for an
individual node the distinction between forming connections
to new versus existing nodes is irrelevant and the q dependence
of the normalization of λ(u) is the only remnant of the presence
of both joining and rewiring mechanisms. Other topological
properties of the network, however, depend on the details of
the growth rules. For example, networks with q = 1 are trees
and degree correlation properties of such tree networks are
sensitive to the full structure of the linking function f .

As will be shown in the next section, the global degree
distribution pk , given the linking propensity function λ(u), is
stationary in the long-time limit and is given by

pk =
∫ 1

0

du

1 + λ(u)

(
λ(u)

1 + λ(u)

)k−1

. (7)

Before presenting the derivation of Eq. (7), we would like to
discuss some of its key properties. The integrand in Eq. (7)
gives the degree distribution of nodes with a given ranking
u. It has the standard form of exponential distribution with
the parameter [1 + λ(u)]−1 and therefore the mean degree of
nodes with a given ranking u is

E[k|u] ≡ k̄(u) = 1 + λ(u). (8)

It is easy to check that the global average node degree is given
by

k̄ ≡ E[k] =
∫ 1

0
du[1 + λ(u)] = 2

q
, (9)

where the normalization property (6) has been used. This is
consistent with the model growth rules: The average degree is
twice the ratio of the number of edges to the number of nodes,
hence in the t → ∞ limit, 2t/qt = 2/q. We thus recover the
standard result [4] that purely random growing trees having
λ(u) = const = 1 are characterized by the exponential degree
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FIG. 1. Behavior of the integrand dk(z) in Eq. (11) for several
values of k, normalized to pk , for a power-law model pk = 1/kαζ (α).
The corresponding ρ̃(λ) is given below in Eq. (21).

distribution. This conclusion is now also shown to hold for
a constant λ(u) = 2/q − 1 when the rewiring process (ii) is
included.

An alternative labeling of nodes is by their linking propen-
sity λ. To avoid trivial technical issues, we will make a natural
assumption that λ(u) is a monotonic function and define the
effective density ρ̃(λ) = 1/(dλ/du). The degree distribution
is alternatively written as

pk =
∫ ∞

0

ρ̃(λ)dλ

1 + λ

(
λ

1 + λ

)k−1

, (10)

which is better suited to analyzing the large-k behavior. In any
specific model the range of possible values of λ may be smaller
than the whole R+, however, this is easily taken into account
by assuming a finite support for ρ̃. Changing the variables to
λ = ez, we obtain

pk =
∫ ∞

−∞

dzρ̃(ez)ez

1 + ez

(
ez

1 + ez

)k−1

=
∫ ∞

−∞
dzdk(z). (11)

Since ρ̃(λ) is a normalizable density, it must decay at large λ

faster than 1/λ, hence faster than e−z as z → ∞. Therefore,
the integrand in pk has the form of the product of a bounded
function ezρ̃(ez), with a function that is peaked at z ∼ ln k

and decays exponentially away from this value. The behavior
of the integrand is shown in Fig. 1 for several characteristic
values of k.

The width of the peak is of order 1 in the z variable. It
therefore follows that if ρ̃ is peaked at a much narrower scale,
the distribution of degrees gets broadened to at least the shape
of this peak. In the opposite limit of a power-law decay at large
λ, ρ̃(λ) ∼ Cαλ−α , where Cα is the normalization constant, the
dominant contribution to the integral is proportional to ρ̃(z ∼
ln k). Hence the power-law behavior with the same exponent
is inherited by pk in the large-k limit, pk ≈ Cα�(α)k−α .
The latter result has been observed numerically in [12]. This
behavior will be confirmed and further investigated in the next
section using the exact inversion of Eq. (10).

III. DYNAMICS OF NODE DEGREES

Since the degree of a given node at time t depends on the
amount of time it had to accumulate its neighborhood, node
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degree dynamics is restored from pk(t |u,τ ), the conditional
probability that a node with ranking u that joined the network
at time τ has degree k at time t . The evolution of pk(t |u,τ ) is
governed in the large-t regime t � 1/q by the following rate
equation (see also [11,12]):

pk(t + 1|u,τ ) = pk−1(t |u,τ )λ(u,t) + pk(t |u,τ )[1 − λ(u,t)].

(12)

We define the corresponding generating function as

G̃(s,t |u,τ ) =
∞∑

k=1

skpk(t |u,τ ), (13)

taking into account the fact that the growth rules ensure that
the network is connected at all times, hence every node has at
least one edge emanating from it so that p0(t |u,τ ) = 0. Using
the long-time asymptotics λ(u,t) = λ(u)/t and approximating
discrete time differences by derivatives, we find the following
equation on G̃(s,t |u,τ ):

t
∂G̃(s,t |u,τ )

∂t
= G̃(s,t |u,τ )λ(u)(s − 1). (14)

The boundary condition is obtained from the observation that
at the moment of joining the network, each node has a single
connection to its parent, therefore limt→τ+ pk(t |u,τ ) = δk1

and limt→τ+ G̃(s,t |u,τ ) = s. The equation is solved by

G̃(s,t |u,τ ) = s

(
t

τ

)(s−1)λ(u)

. (15)

The global degree distribution is obtained by averaging over
the ranking of the node joining at time τ and over the times τ

of joining the network. Since the incoming nodes are drawn
from a time-independent distribution, the order of averaging
can be reversed. Introducing ζ = τ/t , we have

G(s) =
∫ 1

0
du

∫ t

0

dτ

t
G̃(s,t |u,τ ) =

∫ 1

0
du

∫ 1

0
dζ sζ (1−s)λ(u)

=
∫ 1

0

sdu

(1 − s)λ(u) + 1
. (16)

The t dependence of the global distribution function is
suppressed in the notation since the result is t independent,
showing that the global degree distribution of the network
is stationary in the long-time limit. Expanding G(s) =∑∞

k=1 pksk and reading off the coefficients of sk recovers the
global degree distribution given in Eq. (7).

We now turn to the design problem: Given a global degree
distribution pk , the task is to determine the growth rules
required to produce it, i.e., to solve Eq. (10) with respect
to ρ̃(λ). Rewriting it in terms of the generating function, one
obtains the following singular integral equation:

G(s) = s

∫ ∞

0

ρ̃(λ)dλ

(1 − s)λ + 1
. (17)

Up to a change of variables, the rhs is the Stieltjes transform
of the density ρ̃(λ) [14].

The general constraints on the admissible global distri-
butions are evident from the analytical properties of the rhs
of Eq. (17). Its analytical continuation outside the |s| � 1
circle has a cut that extends along the real axis over the

support of ρ̃(λ) mapped by 1 + 1/λ. Also, since the average
of λ weighted by ρ̃(λ) is 2/q − 1, the lower edge of the cut
must be at or below 2/(2 − q). Consequently, this bounds the
radius of convergence of the series defining G(s) and therefore
gives the bound on the rate of decay of pk quoted in the
Introduction. It is interesting to note that there does not exist a
fitness-based growth mechanism within this model that would
produce the degree distribution of the static ER network since
the generating function of the Poisson distribution is entire.

Consider now a given global distribution whose generating
function G(s) has an analytical continuation that satisfies the
constraints elucidated above. Except for the degenerate case
of constant λ, corresponding to pure exponential decay of pk ,
the generating function must have a cut along at least some
portion of the ray [1,∞). The solution of the singular integral
equation on ρ̃(λ) is obtained by evaluating the jump of the
(analytically continued) G(s) across this cut [14]:

ρ̃(λ) = 1

π

1

1 + λ
Im G

(
1 + 1

λ
+ i0

)
. (18)

Equation (18) provides a general solution to the design
problem of finding the linking propensity that generates a
preset degree distribution. In terms of the original labeling
x, the linking propensity λ(x) satisfies ρ̃(λ)(dλ/dx) = ρ(x),
hence it is given by substituting Eq. (18) into the implicit
relation ∫ λ(x)

0
ρ̃(λ)dλ = u(x). (19)

We now investigate Eq. (18) in application to several
empirically interesting cases. In the case of a pure power law
pk = k−α/ζ (α), we have

G(s) = 1

ζ (α)
Liα(s) = s

ζ (α)�(α)

∫ ∞

0

tα−1dt

et − s
(20)

and applying Eq. (18) we find

ρ̃(λ) = 1

1 + λ

1 + 1/λ

ζ (α)�(α)

∫ ∞

0
dttα−1δ(et − 1 − 1/λ)

= 1

ζ (α)�(α)

lnα−1(1 + 1/λ)

1 + λ
. (21)

Consistent with the qualitative observations earlier, ρ(λ)
decays asymptotically as λ−α .

As noted above, the growth rules fix the average node
degree to be 2/q, therefore, the exponent α cannot be chosen
arbitrarily: 2/q = k̄ = ζ (α)−1 ∑∞

k=1 kk−α = ζ (α − 1)/ζ (α).
Since 0 < q � 1, this relation restricts α to the (2,2.478 . . .]
range, where α(k̄ = 2) ≈ 2.478 and α(k̄ → ∞) → 2. Curi-
ously, this range is close to the range of α in empirically
observed networks [2]. However, the origin of the constraint is
the assumption of a pure power law at small k, which is very
unlikely to be universal.

For example, the degree distribution in the BA model is
4/k(k + 1)(k + 2) [15], decaying asymptotically with α = 3
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and having k̄ = 2. The generating function in this case is

G(s) = 2

s2

{
3

2
s2 − s − (1 − s)2 ln(1 − s)

}
(22)

and the application of Eq. (18) gives

ρ̃(λ) = 2

(1 + λ)3
(23)

for the effective density that would mimic the BA degree
distribution using fitness-based growth rules. It exhibits, as
expected, the matching 1/λ3 decay at large λ. Inverting the
ρ̃(λ)dλ = du relation gives λBA(u) = 1/

√
1 − u − 1.

To illustrate the fact that generically the degree distribution
is broader than the distribution of λ, as the last example we
consider the intermediate case of the stretched exponential
degree distribution. Such distributions have been observed
empirically [16] and they arise theoretically in sublinear pref-
erential attachment models [15,17]. Setting pk = Akn/2a

√
k ,

where A is the appropriate normalization constant, we find

G(s) = A
∂n

∂(ln a)n
s ln a

2
√

π

∫ ∞

0

t−3/2e− ln2 a/4t dt

s − et
(24)

and correspondingly

ρ̃(λ) = A
∂n

∂(ln a)n
ln a

2
√

π (1 + λ)
ln−3/2

(
1 + 1

λ

)
× exp

{
− ln2 a

4 ln(1 + 1/λ)

}
. (25)

The asymptotic behavior at large λ is exponential, ρ̃(λ) ∼
λn+1/2e−λ ln2 a/4, considerably narrower than the postulated
stretched exponential degree distribution.

It should be noted that Eq. (17) is supplemented by
restrictions on ρ̃(λ) stemming from its probabilistic origin.
To begin with, ρ̃(λ) � 0 for all non-negative λ. Therefore,
the existence of a formal inverse given by Eq. (18) does
not guarantee that there actually exists a growth model
that reproduces a given degree distribution. An instructive
counterexample is given by the following generating function:

G(s) = −12

s2
+ 20

s
− 7 − 2(6 − s)(1 − s)2

s3
ln(1 − s)

= 4
∞∑

k=1

5k − 3

k(k + 1)(k + 2)(k + 3)
sk. (26)

The degree distribution corresponding to Eq. (26) behaves
as k−3 at large k and is characterized by G′(1) = k̄ = 4,
so a putative growth model would have q = 1/2. However,
applying Eq. (18) gives ρ̃(λ) = (5λ − 1)/(λ + 1)4, which
obviously changes sign at λ = 1/5. Hence a growth model
satisfying the set of rules stated at the beginning of Sec. II that
would reproduce the degree distribution (26) does not exist.

Further, both the normalizing integral 1 = ∫ ∞
0 ρ̃(λ)dλ and

the relation (6), rewritten in terms of ρ̃,∫ ∞

0
λρ̃(λ)dλ = 1 + 2(1 − q)/q, (27)

impose conditions on ρ̃(λ) to ensure convergence of these
integrals. Therefore, the behavior of G(s) as s → ∞ is severely
restricted by the properties of the integral in Eq. (17). If

∫ ∞
0 dλρ̃(λ)/λ is convergent at the lower limit [it automatically

converges at the upper limit since ρ̃(λ) has to be normalizable
and the extra power of 1/λ improves convergence], we
have G(s) → const as s → ∞. If the integral is divergent,
convergence of the normalizing integral for ρ̃(λ) at the
lower limit bounds its rate of growth as λ → 0 to 1/λ with
logarithmic corrections and hence G(s) cannot grow faster
than linear with the corresponding logarithmic corrections.
For example, this immediately excludes distributions whose
generating functions have polynomial terms corresponding to
extra spikes at one or more special values of k.

We now turn to the question of matching the growth rules
to the required ρ̃(λ) [or, equivalently, λ(u)]. Obviously the
rules are massively nonunique, as one effectively imposes a
single constraint on a function of two variables. Nevertheless,
resolving this constraint is not entirely trivial, as one has to
simultaneously ensure that f̃ (u,v) is a symmetric and positive
operator.

The simplest example is to assume factorizable f̃ (u,v) =
g(u)g(v). Equation (5) then implies that up to an arbitrary
constant factor g(u) = λ(u) for any q and consequently
γ̃ (u,v) = λ(u) for q = 1.

Another possible simple choice is the additive ansatz
f̃ (u,v) = g(u) + g(v). Curiously, however, it is not always
possible to satisfy the positivity requirement on f̃ with this
choice. Since the relation between λ(u) and f̃ (u,v) is invariant
under arbitrary rescaling of f̃ , we can set

∫ 1
0 dvg(v) = 1. In

the q = 1 case we then have

λ(u) =
∫ 1

0
dv

g(u) + g(v)

1 + g(v)
(28)

and hence g(u) = 1 + (λ(u) − 1)/H , where H = ∫ 1
0 dv/[1 +

g(v)]. We therefore obtain a self-consistency condition

1 =
∫

ρ̃(λ)dλ

2H − 1 + λ
. (29)

If λ ranges from 0 (as it does in the examples considered
above), the positivity requirement implies H � 1 and then the
rhs of Eq. (29) is bounded by∫

ρ̃(λ)dλ

2H − 1 + λ
�

∫
ρ̃(λ)dλ

1 + λ
<

∫
ρ̃(λ)dλ = 1, (30)

making the self-consistency condition impossible to satisfy.
Additive solutions are possible, however, if the support of ρ̃ is
limited to some range λ � λmin. The sufficient condition for
this is that ∫ ∞

λmin

dλρ̃(λ)

λ + 1 − 2λmin
� 1.

More generally, f̃ (u,v) can be parametrized as
g(u)K(u,v)g(v), where K(u,v) is an arbitrary symmetric
positive operator and g(u) is adjusted to fit the required λ(u).
Explicitly, the condition on g(u) reads

λ(u) = g(u)
∫ 1

0
dvK(u,v)

1∫ 1
0 dwK(v,w)g(w)

. (31)

This is a nonlinear integral equation that can be solved by
iterations. Starting from an arbitrary positive g0(u), we have
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FIG. 2. Generating kernel and the linking function in the assortative case: (a) example of a generating kernel favoring assortative linking
K(u,v) = 1/[1 + 10(u − v)2] and (b) linking function f̃ (u,v) generated using Eq. (32) from the generating kernel in (a).

for the (n + 1)st iteration gn+1(u) the following recursion:

gn+1(u) = λ(u)∫ 1
0 dvK(u,v)(

∫ 1
0 dwK(v,w)gn(w))−1

. (32)

Convergence properties of this iteration procedure require a
separate investigation, however, numerical studies show that it
converges fast for all reasonably smooth choices of the generat-
ing kernel K . Figures 2 and 3 show two examples of the initial
generating kernel K and the corresponding linking functions
f̃ (u,v) obtained via iterations of Eq. (32), with λ(u) given by
inversion of Eq. (23) to match the degree distribution of the
BA model. The first pair of surfaces models assortative linking
between nodes with similar ranking, while the second pair
corresponds to the choice of strongly disassortative behavior
of the generating kernel K , both matched to produce the degree
distribution of the BA model. It is seen that the linking function
automatically favors connections to high-ranking nodes in
order to ensure the power-law degree distribution.

IV. CORRELATION PROPERTIES OF THE NETWORK

Since each node of the network can be characterized by
both its intrinsic fitness and its degree, there are two basic

types of correlation function that can be defined. The simpler
of those is the edge density

C(u,v,t) = E

[
1

2t

N(t)∑
i,j=1

Cij (t)δ(u − ui)δ(v − uj )

]
. (33)

Here Cij (t) is the instantaneous adjacency matrix and the sum
is normalized to the total number of edges, equal to t for
any value of q. The factor of 2 accounts for double counting
the edges in the unordered double sum over nodes. At the
next time step, the change in C is governed by the addition
to the adjacency matrix and the change in the normalization
coefficient. Hence, to the leading order in 1/t

C(u,v,t + 1) =
(

1 − 1

t

)
C(u,v,t)

+ q

2t

{
f̃ (u,v)∫

f̃ (w,v)dw
+ f̃ (u,v)∫

f̃ (u,w)dw

}
+1 − q

t

f̃ (u,v)∫
f̃ (w,w′)dwdw′ . (34)
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FIG. 3. Generating kernel and the linking function in the disassortative case: (a) example of a generating kernel favoring disassortative
linking K(u,v) = (u − v)4 and (b) linking function f̃ (u,v) generated using Eq. (32) from the generating kernel in (a).
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In the continuous time approximation, this takes the form

∂

∂ ln t
C(u,v,t) = −C(u,v,t) + D(u,v), (35)

where

D(u,v) = q

2

{
f̃ (u,v)∫

f̃ (w,v)dw
+ f̃ (u,v)∫

f̃ (u,w)dw

}
+ (1 − q)f̃ (u,v)∫

f̃ (w,w′)dwdw′ . (36)

The contribution of the initial conditions decays as 1/t and
the stationary correlation function is C(u,v) = D(u,v). In the
factorizable case f̃ (u,v) = λ(u)λ(v) this simplifies to

C(u,v) = q2

2(2 − q)
[λ(u) + λ(v)] + q2(1 − q)

(2 − q)2
λ(u)λ(v). (37)

In the examples considered above, such as λBA(u), the function
λ(u) is an increasing function of ranking. Further, this property
is automatically enforced if λ(u) is obtained by solving a
design problem, as evident from Eq. (19). In the corresponding
factorizable models, according to Eq. (37), highly ranked
nodes are much more likely to be connected to each other than
mixed or low-ranked pairs. However, more general behavior
is possible if f̃ is nonfactorizable.

The second class of correlation functions is the degree cor-
relation function Pkk′ , which we define as the joint probability
to find a node of degree k connected to a descendant of degree
k′. Leaving the investigation of the topology of fitness-based
networks with loops to future work, below we consider only
the case q = 1, when the network is a random tree.

Consider a node with ranking u created at time τ . To
illustrate the method, we first rederive constructively the
probability pk(t) that this node has degree k at time t , which
is given by the shifted Poisson distribution according to the
series expansion of Eq. (15). Summing over all possible times
ti , τ < ti � t , when k − 1 descendant nodes could link to the
original node, we obtain

pk(t |u,τ ) = 1

(k − 1)!

∑
{ti }k−1

i=1

k−1∏
i=1

λ(u)

ti

t∏
j=τ+1
j 
=ti

(
1 − λ(u)

j

)
,

(38)

where each factor gives either the probability of linking at time
ti , λ(u)/ti , or the probability (1 − λ(u)

j
) that no linking occurs

at times j other than any of the ti . The factorial in the prefactor
compensates for equivalent permutations. Evaluating the sum
in the continuous limit gives

pk(t |u,τ ) = 1

(k − 1)!

( ∫ t

τ

λ(u)dξ

ξ

)k−1

exp

{
−

∫ t

τ

λ(u)dξ ′

ξ ′

}
= 1

(k − 1)!

(
λ(u) ln

t

τ

)k−1

e−λ(u) ln t/τ , (39)

as expected from Eq. (15). The degree correlation function is
now readily constructed by noting that any one of the k − 1
descendants has degree k′ at time t with probability pk′(t |v,τ ′),
where v is the ranking of the descendant and τ ′ is its time of

joining, which happens with probability γ̃ (u,v)/τ ′:

Pkk′ = 1

(k − 1)!
(k − 1)

∫ 1

0
du

∫ t

0

dτ

t

(
λ(u) ln

t

τ

)k−2

× e−λ(u) ln t/τ

∫ 1

0
dv

∫ t

τ

γ̃ (u,v)dτ ′

τ ′ pk′(t |v,τ ′). (40)

The normalization of this expression is easily checked:∑∞
k=2 Pkk′ = pk′ and

∑∞
k′=1 Pkk′ = (k − 1)pk . The asymmetry

of the normalization is due to the distinction between parent
and descendant nodes and the factor k − 1 comes from the fact
that the parent node of the node u is not included in the count
of its neighbors with degree k′ in the definition of Pkk′ .

Substituting the explicit expression for pk′(t |v,τ ′) and
changing integration variables to z = [1 + λ(u)] ln t/τ , ζ =
λ(v) ln t/τ ′, we find

Pkk′ =
∫ 1

0
du

∫ 1

0
dv

γ̃ (u,v)

λ(u)λ(v)

1

(k − 2)!(k′ − 1)!

×
(

λ(u)

1 + λ(u)

)k−1 ∫ ∞

0
dzzk−2e−z

∫ zλ(v)/[1+λ(u)]

0

× dζζ k′−1e−ζ . (41)

A further change of variables ζ = ξz/[1 + λ(u)] allows us
to evaluate the integral over z, leading to

Pkk′ = �kk′

∫ 1

0
du

∫ 1

0
dv

γ̃ (u,v)

λ(u)λ(v)
[λ(u)]k−1

×
∫ λ(v)

0

ξk′−1dξ

[1 + λ(u) + ξ ]k′+k−1
, (42)

where �kk′ = (k′ + k − 2)!/(k − 2)!(k′ − 1)!. An example of
the correlation function Pkk′ in the case of factorized f̃ (u,v) =
λ(u)λ(v) for the faux-BA model is shown in Fig. 4 together
with the data from direct numerical simulation of such
networks.

We now analyze this expression in the asymptotic regime
k � 1, k′ � 1, with finite η = (k′ − 1)/k ≈ k′/k. The in-
tegral over ξ can be evaluated in the saddle-point ap-
proximation. The “action” F(ξ ) = −(k′ − 1) ln ξ + (k′ + k −
1) ln(1 + λ(u) + ξ ) is extremal at ξ0 = [1 + λ(u)]η, with
F(ξ0) = k ln[1 + λ(u)] + k{(1 + η) ln(1 + η) − η ln η}. In the
same large-k approximation one has

�kk′ = exp{k[(1 + η) ln(1 + η) − η ln η]}
√

k

2πη(1 + η)
,

and taking into account the cutoff of the ξ integral at λ(v), we
find

Pkk′ = 1

2

∫ ∞

0
ρ̃(λ)dλ

∫ ∞

0
ρ̃(λ′)dλ′ γ̃ (λ,λ′)

λλ′ e−(k−1) ln(1+1/λ)

×
{

erf

(√
k

2η(1 + η)

[
λ′

λ
− η

])
+ erf

(√
kη

2(1 + η)

)}
,

(43)

where it was also convenient to change to integrating over
λ = λ(u) and λ′ = λ(v) with the corresponding densities. The
Gaussian approximation in the integral over ξ would of course
break down when the saddle point ξ0 moves far to the right
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FIG. 4. (Color online) Node degree correlations, theory vs numerical simulation (50 runs, 100 000 time steps each), in the faux-BA
factorized model: (a) Pkk′ as a function of k with fixed k′ and (b) Pkk′ as a function of k′ with fixed k.

of λ′, however, this regime can be ignored as its contribution
to the integrals over λ and λ′ is exponentially suppressed. The
factor e−(k−1) ln(1+1/λ) in the large-k regime pushes the main
region of integration over λ to λ ∼ k and the error functions
restrict μ = λ′/λ to be greater than η (which is assumed to be
finite). The combination of the error functions in the large curly
brackets thus effectively behaves as a step function θ (μ − η)
smeared on the scale of 1/

√
k.

We now consider in more detail the factorized case
f̃ (u,v) = λ(u)λ(v), which gives γ̃ (u,v) = λ(u). In the main
case of interest, when the degree distribution is asymptotically
a power law, the structure of the integrals over λ and λ′
picks out the asymptotic regimes of ρ̃(λ) ∼ Cα/λα for both
variables λ and λ′. Integrating first over μ and approximating
e−(k−1) ln(1+1/λ) ≈ e−k/λ, we find

Pkk′ = C2
α

αηα

∫ ∞

0
dλλ−2αe−k/λ = C2

α�(2α − 1)

αηαk2α−1
. (44)

The joint degree distribution of neighboring nodes completely
factorizes in this regime, Pkk′ ∝ kpkpk′ . Curiously, however,
the factorized correlation function shows an enhancement by a
factor of �(2α − 1)/α�2(α) compared to the product kpkpk′ ,
so links between high-degree nodes are more favored by a finite
factor than what would be expected if degree distributions
of neighboring nodes were completely independent. The
enhancement factor tends to 1 in the limiting normalizable case
α → 2 and is equal to 2 if α = 3. This has to be contrasted
with the behavior of the actual BA model in the same regime
[Eq. (44) of Ref. [15]], where the asymptotic expression also
factorizes into power-law functions of k and k′, but the powers
are different from 2 and 3, respectively.

In the complementary limiting case of large k and finite k′,
again assuming factorization of f̃ and the asymptotic power-
law behavior of ρ̃(λ), it is convenient to integrate first over
λ by exploiting the suppression of small-λ contributions by
(1 + 1/λ)−(k−1). This gives

Pkk′ = Cα�(k′ + α − 1)

kα−1(k′ − 1)!

∫ ∞

0

ρ̃(λ′)dλ′

λ′

∫ λ′

0

xk′−1dx

(1 + x)k′+α−1

= Cα�(k′ + α − 1)

kα−1(k′ − 1)!

∫ ∞

0
dλ′ ρ̃(λ′)(λ′)k

′−1

k′

× 2F1(k′ + α − 1,k′; k′ + 1; −λ′), (45)

where we have used �kk′ ∼ kk′
/(k′ − 1)! and 2F1 is the

hypergeometric function. Alternatively, introducing I (λ) =∫ ∞
λ

dμρ̃(μ)/μ, the correlation function can be written as (see
Appendix A)

Pkk′ = Cα�(k′ + α − 1)

kα−1(k′ − 1)!

∫ ∞

0

dλ′(λ′)k
′−1I (λ′)

(1 + λ′)k′+α−1
. (46)

Although this expression is again factorized, it now shows sup-
pression of the joint probability compared to the uncorrelated
product kpkpk′ by a numerical factor. The actual suppression
factor h(k′) = Pkk′/kpkpk′ is sensitive to the details of ρ̃(λ) at
small λ. For example, in the faux-BA case ρ̃(λ) = 2/(1 + λ)3,
explicit evaluation gives for the suppression factor h(1) =
7/16, h(2) = 11/20, h(3) = 5/8, and h(4) = 19/28.

It is seen from Eq. (43) that the degree correlation function is
also sensitive to the details of the linking rules. If factorization
of f̃ is not assumed, the leading approximation to Pkk′ as
k → ∞, k′/k = η, is

Pkk′ =
∫ ∞

0
dλdμρ̃(λ)ρ̃(λμ)

γ̃ (u(λ),u(λμ))
λμ

e−k/λθ (μ − η).

(47)

This expression can be rewritten to emphasize the scaling be-
havior in the case of power-law degree distributions. Defining
γ̃ (u(λ),u(λ′)) = λδ(λ,λ′) (with δ = 1 in the factorized case)
and further introducing a scaling function �α(λ,λ′) via∫ ∞

λ′
δ(λ,l)

dl

lα+1
= 1

α
(λ′)−α�α(λ,λ′), (48)

we now use the asymptotic form of the density ρ̃ and switch
the remaining integration variable to x = k/λ to obtain

Pkk′ = C2
α

ηαk2α−1

∫ ∞

0
dxx2α−2e−x�α

(
k

x
,
kη

x

)
. (49)

Since there is an infinite number of degrees of freedom in
choosing the growth rules for a given ρ̃, the function �α

can enforce a variety of correlation behaviors for a given
degree distribution. The two surfaces in Fig. 5 show the ratio
of the node degree correlation function to the uncorrelated
baseline (k − 1)pkpk′ for the two choices of the linking
function corresponding to Figs. 2 and 3. These examples
very starkly illustrate the fact that, despite producing identical
node degree distributions (the distribution of the BA model
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FIG. 5. Ratio of Pkk′ to the uncorrelated baseline (k − 1)pkpk′ for the case when linking rules favor connections between nodes with
(a) similar rankings and (b) different rankings.

in both cases), these two choices of the linking function
generate very different types of correlation behavior. The
rules that favor connections between nodes of similar degrees
induce a considerably enhanced probability of connections
between nodes of high degree compared to the uncorrelated
null hypothesis and vice versa, the case where connections
between nodes of similar rankings are disfavored results in a
network in which connections between high-degree hubs are
suppressed. Further study is needed to determine whether this
difference qualitatively affects the behavior of the average path
lengths.

The wide latitude in choosing the linking function produc-
ing the same degree distribution, as discussed above, provides
the motivation to investigate a more general design problem:
to match a given function Pkk′ to the network growth rules. We
define the corresponding generating function as

G(s,σ ) =
∞∑

k=2

∞∑
k′=1

Pkk′sk−2σ k′−1. (50)

Substituting the explicit form of Pkk′ from Eq. (42) we obtain,
after evaluating the sums,

G(s,σ ) =
∫ ∞

0
dλ

∫ ∞

0
dλ′ γeff(λ,λ′)

(1 + zλ)(1 + zλ + wλ′)
, (51)

where γeff(λ,λ′) = γ̃ (u(λ),u(λ′))ρ̃(λ)ρ̃(λ′), z = 1 − s, and
w = 1 − σ .

Equation (51) can be interpreted as the integral equation on
γeff if G(s,σ ) is a given function for a network whose structure
the growth rules have to match. In the model considered so far
this makes the problem overdetermined: If the linking function
f̃ (u,v) is required to be a symmetric function of its arguments,
the corresponding function γ̃ (u,v) defines a (continuous state
space) reversible Markov chain. Indeed, the definition (4)
implies

∫
γ̃ (u,v)du = 1, hence the stochasticity property is

satisfied; thus denoting
∫

f̃ (u,v)dv = I (u) we have

γ̃ (u,v)I (v) = f̃ (u,v) = f̃ (v,u) = γ̃ (v,u)I (u), (52)

which is the definition of reversibility. In a generic case, even
assuming that other conditions on the solvability of Eq. (51) are
satisfied (see below), the symmetry in Eq. (52) has no enforcing
mechanism. Nevertheless, this design problem can be given a
meaning by relaxing the symmetry requirement imposed on
f̃ : as noted in Sec. II, in the q = 1 case considered here a

model in which f̃ is not symmetric can be treated within the
same formalism. Note that in such an expanded model, the task
of determining f̃ once γ̃ is known is reduced to determining
the stationary distribution I (v) in the corresponding Markov
chain.

Performing an analytical continuation of G(s,σ ), originally
given by the sum in Eq. (50) with a finite radius of convergence
in s, to |s| > 1 and interpreting z as the variable of the
Laplace transform, the corresponding inverse transform turns
the equation into a double Laplace transform with respect
to the variables 1/λ and λ′/λ. These Laplace transforms are
straightforwardly inverted to give

γeff(λ,λ′) = 1

λ

∫ d+i∞

d−i∞

da

2πi
ea/λ

∫ c+i∞

c−i∞

dw

2πi
ewaλ′/λ

× ∂

∂w

[
w

∫ ∞

−∞

dζ

2π
G(iζ,w)eiζa

]
, (53)

where the real constants d and c are chosen in the usual
way so as to leave all the singularities to the left of the
corresponding contours and G(z,w) = G(1 − z,1 − w). It is
important that the analytical continuations are performed in
the order implied by the sequence of integrations: a and w are
real and positive in the integral over ζ = −iz, after which an
analytical continuation over w is performed with a still real
and positive, and an analytical continuation in a is performed
in the outermost integral.

Similarly to the discussion in Sec. III, the existence of
the formal inverse in Eq. (53) requires that the analytical
properties in z and w implied by the integral in the rhs of
Eq. (51) match those of G(z,w). Further, the formal inverse
does not yet guarantee that the corresponding growth model
exists: The result of integration in Eq. (53) has to be a
non-negative function for all values of its arguments. Note
also that setting either σ or s to one and integrating over the
corresponding λ variable shows that Eq. (51) contains Eq. (10).
Hence the solvability of Eq. (10) is a necessary condition on
the solvability of Eq. (51).

It was shown earlier that a factorizable linking function
leads to a certain residual amount of correlations in the degree
distributions of neighboring nodes. The qualitative explanation
for the persistence of correlations is the presence of a mixture
of different ages of nodes in the network. Armed with Eq. (53),
we are now in a position to investigate whether correlations
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between degrees of neighboring nodes can ever be completely
designed away.

The absence of correlations is encoded in a fully factor-
ized correlation function Pkk′ = (k − 1)pkpk′ . The generating
function is therefore G(s,σ ) = (d/ds)[G(s)/s]G(σ )/σ and
assuming the existence of the corresponding growth process,
we have

G(z,w) =
∫ ∞

0

dλλρ̃(λ)

(1 + zλ)2

∫ ∞

0

dλ′ρ̃(λ′)
1 + wλ′ . (54)

Applying now Eq. (53), a lengthy but straightforward calcula-
tion gives

γeff(λ,λ′) =
(

2λ2 ∂

∂λ
+ λ3 ∂2

∂λ2

) ∫ ∞

λ

dx

x
ρ̃(x)ρ̃

(
xλ′

x − λ

)
.

(55)

A remarkable feature of this expression is that it is not
guaranteed to be non-negative. In other words, degree correla-
tions can indeed be designed away (allowing for nonsymmetric
linking), but only for a subset of densities ρ̃. To classify the
behavior of Eq. (55), it is convenient to rewrite it in terms of
new variables l = 1/λ and μ = λ′/λ. It now takes the form

γeff(1/l,μ/l) = l
∂2

∂l2

∫ 1

0

dy

y
R

(
l

μ
(1 − y)

)
R(ly), (56)

where R(x) = ρ̃(1/x).
The behavior of R(x) is governed by the convergence

requirements on the integrals involving ρ̃(λ), as discussed
in Sec. III: It must decay at least as x3 as x → 0 and is
either constant (possibly 0) as x → ∞ or diverges slower
than x. As a consequence, in the first case, R(x) necessarily
becomes concave at sufficiently large values of l and the second
derivative in Eq. (56) turns negative, invalidating the solution
as a putative linking probability density.

If R(x) is divergent at infinity, one has to distinguish
between divergence slower than x1/2, in which case the integral
grows slower than l and the second derivative is negative
at least in some region of small μ and sufficiently large l.
In the remaining case of singular behavior as x1/2 or faster,
it is possible to ensure that the the second derivative in
Eq. (56) never turns negative. Such a divergence is a necessary
condition for the existence of a growth model with factorizable
degree correlations. It is not a sufficient condition since this
divergence can still coexist with nonmonotonic behavior,
which would turn the second derivative negative. It should
be remarked that the faux-BA density ρ̃(λ) = 2/(1 + λ)3

is nonsingular at λ → 0 and therefore does not allow for
correlationless networks.

The qualitative picture that therefore emerges is that degree
correlations can only be designed away if there is an accumula-
tion of nodes with low linking propensity, so new nodes mostly
connect to a few well-separated hubs, while the majority of
nodes never acquire many connections. This is consistent
with the previously remarked fact of correlations being an
(almost) unavoidable feature of growing networks: Beyond a
certain threshold, descendant nodes acquiring descendants of
their own necessarily generate correlations between degrees of
connected nodes. The particular threshold requiring a square
root or faster divergence of the density of linking propensities

is a surprising technical result, which does not seem to have
an immediate qualitative explanation.

As the second application of this formalism, we find the
linking probability γeff(λ,λ′), which reproduces the correlation
function of the BA model. The details of this somewhat
technical exercise are given in Appendix B. The result,
Eq. (B7), is a non-negative function, albeit not corresponding
to a reversible Markov chain. Hence a static fitness growth
model indeed exists such that it reproduces precisely both
the degree distribution and the degree correlations of the
standard preferential attachment model, although it requires
a nonsymmetric linking function f̃ .

V. DISCUSSION

The key finding of this study is the fact that design problems
of matching the growth rules to the required statistics of node
degrees can be solved in a broad, but still circumscribed, class
of models. The implications of this fact are twofold. On the one
hand, the restrictions on the solvability of the design problems
can be used as diagnostic tools: Given an empirical network, it
may be possible to exclude the hidden variable growth process
if the corresponding design problem cannot be solved based
on the known degree statistics.

On the other hand, the capacity of the fitness models to
mimic the node degree statistics of the preferential attachment
model means that one should be careful in inferring preferen-
tial attachment behavior from empirical networks. Consider
a network whose growth process (for simplicity without
rewiring) can be observed in time. Without knowing whether
a hidden variable mechanism operates, one may assume an
attachment kernel �(k), i.e., the probability that an incoming
node joins a particular node i with degree ki is �(ki)/t , where
�(k) is assumed to be normalized so that

∑
j �(kj ) = t .

[The standard linear preferential attachment model has �(k) =
k/k̄.] Hence the probability that the incoming node chooses
a node of degree k to connect to is �(k)pk , where pk is the
degree distribution, assumed to be stationary. One may use this
correspondence to extract the attachment kernel by observing
which existing nodes the incoming nodes choose to join [13].

Assume now that actually a fitness-based growth process
is in operation, with each node possessing a hidden fitness, or
ranking, label. The probability that the incoming node chooses
a node of ranking u is λ(u) and using Eqs. (7) and (10) we find
the probability that the chosen node has degree k to be∫

duλ(u)pk(t |u) =
∫ ∞

0
dλρ̃(λ)

(
λ

1 + λ

)k

. (57)

If ρ̃(λ) ∼ λ−α , the integral can be estimated as proportional
to k−α+1. Therefore, recalling that a power-law tail in ρ̃

reproduces itself as the corresponding power law in pk , we see
that the integral behaves as kpk , leading one to conclude that
linear preferential attachment is in operation. Remarkably, this
behavior is obtained for any α, not just α = 3 of the orthodox
preferential attachment model.

In conclusion, we mention a few outstanding questions that
may warrant further study. In connection with the iteration
algorithm outlined at the end of Sec. III, it would be useful to
investigate under what conditions on the generating kernel K

the corresponding iteration operator is contracting so that the
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convergence of iterations would follow from the Banach fixed
point theorem.

Another issue is the presence of complementary positivity
requirements: Both ρ̃ and the expansion coefficients pk of
G(s) in Eq. (18) must be positive due to their probabilistic
origins [another such dual pair is γ̃ and G(s,σ )]. Formally, the
requirement is imposed on the analytical structure of G(s):
Both the coefficients of the power-law expansion of G(s)
around 0 and the imaginary part of its jump across the cut
extending from 1 to ∞ have to be positive. It may be interesting
to explore whether the second requirement can be expressed
as a condition on the coefficients pk that does not amount to
solving for ρ̃.

As the final remark, the restrictions on solvability of design
problems can be ultimately traced to the correlations between
degrees of connected nodes stemming from the nature of the
growth process. In a sense, the dynamics of node degrees may
be viewed as a (discrete) flow of node degree density. In this
language, the restrictions on allowed degree distributions that
allow the existence of solutions to Eq. (18) [and similarly
the correlation functions that admit solutions to Eq. (51)] can
probably be understood as conservation laws.

APPENDIX A

Equation (46) is obtained from the first line of Eq. (45)
as follows. As discussed in Sec. III, ρ̃(λ) may be singular
at 0, therefore, in order to integrate by parts over λ′ the first
line of Eq. (45), we define the function I (λ) = ∫ ∞

λ
ρ̃(μ)dμ/μ.

Performing now the integration by parts, we obtain Eq. (46)
plus the boundary terms

lim
λ′→0

I (λ′)
∫ λ′

0

xk′−1dx

(1 + x)k′+α−1
− lim

λ′→∞
I (λ′)

∫ λ′

0

xk′−1dx

(1 + x)k′+α−1
.

(A1)

We now show that both of these contributions are equal to zero.
Since the denominator in the integral over x is regular at 0, the
first term is proportional to limλ′→0(λ′)k

′
I (λ′). This expression

is trivially equal to zero if a finite limλ′→0 I (λ′) exists. If the
limit is infinite,

lim
λ′→0

(λ′)k
′
I (λ′) = lim

λ′→0

I ′(λ′)
−k′/(λ′)k′+1

= lim
λ′→0

(λ′)k
′
ρ̃(λ′)/k′ = 0,

(A2)

where the last equality follows from the fact that ρ̃(λ) has at
most an integrable singularity at 0. As for the second term,
the integral over x is finite for any k′, while the definition of
I (λ′) implies limλ′→∞ I (λ′) = 0, hence their product is equal
to zero.

APPENDIX B

The purpose of this appendix is to calculate the linking
probability γeff(λ,λ′), which would generate a network whose
degree correlations are identical to those of the classical
preferential attachment (BA) model. The degree correlation

function of the BA model is calculated in Ref. [15] as

Pkk′ = 4(k − 1)

k′(k′ + 1)(k′ + k)(k′ + k + 1)(k′ + k + 2)

+ 12(k − 1)

k′(k′ + k − 1)(k′ + k)(k′ + k + 1)(k′ + k + 2)
.

(B1)

Applying the definition in Eq. (50), the corresponding gener-
ating function is calculated to be

G(s,σ ) = 3

σ

∂

∂s

∫ σ

0
dσ ′ J (σ ′) − J (s)

σ ′ − s
+ ∂

∂s

s

σ 2

∫ s

0

× dσ ′(σ − σ ′)
G̃(σ ′)/σ ′2 − G̃(s)/s2

σ ′ − s
, (B2)

where G̃(s) = G(s) − 2
3 s, G(s) is the generating function of

the degree distribution of the BA model given in Eq. (22), and

J (s) =
∫ s

0
ds ′ G̃(s ′)

s ′2 . (B3)

Given the structure of G(s,σ ), the inversion of the integral
equation (51) is easier to perform by switching the order of
integrations over z and w:

γeff(μ
′/l′,1/l′) = −l′

∫ d+i∞

d−i∞

da

2πi
eal′

∫ c+i∞

c−i∞

dz

2πi
ezaμ′

×
∫ b+i∞

b−i∞

dw

2πi
G(z,w)aweaw, (B4)

where l′ = 1/λ′, μ′ = λ/λ′, and all three contours lie to the
right of the corresponding singularities of the integrands. The
integral over w can now be evaluated by deforming the contour
so that it is wrapped around the cut in the w plane extending
from w = 0 to −∞, which can be deduced from Eq. (B2).
Evaluating the jump of G(z,w) across the cut using Eq. (B2),
we have

1

π
ImG(z, − ζ + i0) = 2ζ

(1 + ζ )2

∫ ζ

0
dy

dy

(1 + y)2(z + y)2
,

(B5)

where z is assumed to be real and positive and ζ = −w is the
coordinate along the cut. The analytical continuation over z is
now trivial and after integration we obtain

γeff(μ
′/l′,1/l′)

= l′
∫ d+i∞

d−i∞

da

2πi
eal′a2μ′

∫ ∞

0
dζ

2ζ 2

(1 + ζ )2
e−ζa

×
∫ ζ

0
dy

y2

(1 + y)2
e−yaμ′

. (B6)

The integration over a gives the second derivative of the δ

function, which is easily integrated over to give

γeff(μ
′/l′,1/l′) = l′

∂2

∂l′2

∫ l′

l′/(μ′+1)
dζ

2ζ 2

(1 + ζ )2

(l′ − ζ )2

(l′ + μ′ − ζ )2
.

(B7)
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The remaining integral can be calculated in closed form

γeff(λ,λ′) = 4λ[P1(λ,λ′) + ln(1 + 1/λ′)P2(λ,λ′)]
(λ′ + 1)(λ′ + λ + 1)5

, (B8)

where the polynomials P1 and P2 are

P1(λ,λ′) = 2λ′3 − 8λλ′2 − λ′2 + 2(λ2 − 3λ − 1)λ′ + (λ + 1)2

(B9)

and

P2(λ,λ′) = −2λ′4 + 8λ′3λ − 2λ′(λ2 − 5λ − 3)

+ 2λ′(2 + λ − λ2). (B10)

One can check that this linking probability is indeed non-
negative over the full range of λ and λ′ and that the
Kolmogorov condition for reversibility is not satisfied, hence
the corresponding linking function f̃ is not symmetric.
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