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Statistics of resonance width shifts as a signature of eigenfunction nonorthogonality
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We consider an open (scattering) quantum system under tiioa a€ a perturbation of its closed counterpart.
It is demonstrated that the resulting shift of resonancehgit a sensitive indicator of the nonorthogonality of
resonance wavefunctions, being zero only if those wereogahal. Focusing further on chaotic systems, we
employ random matrix theory to introduce a new type of patamstatistics in open systems, and derive the
distribution of the resonance width shifts in the regime efil coupling to the continuum.
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The classical question of how energy levels of a quantuntics of complex poles and lifetimes in chaotic systems can be
system get shifted under the action of a perturbation kept atverified via accurate scattering experiments in microwake b
tracting renewed attention during the last two decadestlynos liards ] or photonic crystals [22]. It can be also extealct
due to the established universality of such a parametric marom realistic computer simulations of quantum gradﬂ'&; 123]
tion for systems with chaotic dynamics or intrinsic disarde semiconductor superlatticeE[24], dielectric microregors
[EL ﬁ]. In particular, the distributions and correlatioméu [IE] or system of randomly interacting fermiorE[ZG]. As to
tions of parametric derivatives of energy levels (“leveloee  the theoretical framework, it mainly relies on studying take
ities”) ] and their second derivatives (“level curvas’)  evant non-Hermitian RMTIIiﬂ4], understanding of which
[@I] were found explicitly using the methods of random matrix has substantially improved over the last two decades; See, e
theory (RMT) B], and also verified, e.g., in microwave bil- Ref. E’] and references therein. Note that the spatialqrrop
liard experimentsﬂG]. The other reason for such an intesest ties related to the associated bi-orthogonal eigenveetias
the recent development of the fidelity concept as the measuteown to a much lesser exte 30].
of the susceptibility of internal dynamics to perturbatidii]. As is well known [12514] (see also [31] for most recent

Experimentally, the energy levels are mostly accessible byeviews), resonance phenomena involving a grouly afiter-
means of a scattering sett[d) [8]. From such a viewpoint, parédering resonances can be adequately described in terms of th
metric dependencies of scattering characteristics, li@sp effective non-Hermitian Hamiltonian
shifts and time delaysD[Q], conductances| [10] ahanatrix
eIementsl_L_1|1] were under intensive study. As to the parental Hegg = H — inWWT, (1)
discrete energy levels, they are converted into the resmsan
with finite lifetimes, since the original closed system bmes  which governs the dynamics of the open system. Here, the
open (unstable). Such resonances manifest themselves in thlermitianNV x N matrix H corresponds to the Hamiltonian of
energy-dependest matrix as its poles in the complex energy the closed counterpart, whereas the ent¥i€sof the rectan-
plane, and can be analytically described as the complereigegular N x M matrix W are the decay amplitudes that describe
values of an effective non-Hermitian HamiItoniaEﬁEl—M]. coupling of N discrete energy levels, labeled hyto M de-
Notably, the corresponding eigenfunctions are not orthatjo cay channels, labeled lay The coupling strength to the con-
in the conventional sense but rather form a biorthogonal sysinuum is controlled by the dimensionless positive corisfan
tem. Their nonorthogonality plays an important role in manywith v < 1 (v = 1) being the particular case of weak (perfect)
applications, e.g., describing interference in neutrabksys-  coupling. The eigenvalue problem for the full non-Hernitia
tems EB], influencing branching ratios of nuclear cross secmatrix H.¢ reads as follows
tions E‘S], and yielding excess noise in open laser resegato
[17,[18]. It also features in decay laws of quantum chaotic ~ Heg|Rn) = En|Ry) and  (Ly|Hesr = En(Ln| (2)
systems@g] and in dissipative quantum chaotic ms [20]. .

In such a context the question of parametric motion of resoand determines its complex spectrém= E,, — 5I',. Here
nances and associated resonance states in open systess arfg. stands for the resonance positions (energies)land 0
very naturally, but to the best of our knowledge has neveflenotes the corresponding widths[32]. The set of the asso-
been properly addressed. Our goal here is to begin filling irfiated left and right eigenvectors (resonance wavefuns}io
that gap by considering universal statistics of the shiftthe ~ satisfies the conditions of biorthogonality,,,|Rin) = dnim.
resonance widths under a generic perturbation in chaatic syand completenesi:r]:]:1 |R){Ly| = 1.
tems. In particular, we will demonstrate that such shifesar In such a framework a perturbation of the closed counter-
clear manifestation of eigenstate nonorthogonality, fnas ~ part can be modeled by the temV’, whereV is a Hermitian
viding a promising way to probe this spatial characterssdtig NV x N matrix and the real constantis to control the pertur-
purely spectroscopic tools. To this end let us stress thtisst bation strength. The resonance parameters for the pedurbe
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open system are then to be determined from solving the folwhereG,, stands for the following Hermitian operator:
lowing spectral problem for the right eigenstates,
Gn = WWHn)(n|V 4+ Vn) (n|WWT. (7)
(e + aV)|RL) = EL|RY) (3)

Aiming to describe the universal statistics of the resoeanc
and a similar problem for the left eigenstatgs,|. In the  shifts for generic chaotic systems (e.g., open billiardsrg
case of the weak perturbation, < 1, one can follow the tum dots, quantum graphs), we follow the standard paradigm
standard perturbation theory routine and seek each of the tw[5, [§] and modelH by a randomV x N matrix drawn from
eigenvectors corresponding to the new eigenvadljl@s an  the Gaussian orthogonal (GOE) or unitary (GUE) ensemble,
expansion over non-perturbed basis?éfs, with necessary depending on the presence or absence of time-reversal sym-
modifications induced by bi-orthogonality [33]. To the first metry, respectively. Universal fluctuations are then eiquéc
order ina this readily yields the expression for the shift of the to occur in the limitV > 1 at the local scale of the order of
nth resonance in the form the mean level spacing ~ 1/N. Without loss of general-
ity, one can restrict the consideration to the spectrumergnt
whereA = Ar/N and2)\ is the semicircle radiusX needs

generalizing the standard result to the non-Hermitian.case to be rescaled it2 7 0). As to the coupling amplitudes, they
anbe takenLT_iC%] asreal (GOE=1) or complex (GUES=2)

The resonance shiftl(4) contains both real and imaginar
ince L, Rfﬂ( T)' II[34]. At thi mag %aussian random variables with zero mean and the variance
parts, sincé L, | # (|R,))" in genera ]. At this point we <Wawb*> = (A/7)5umd7, the final results being model-

stress that a nonzero value of the imaginary pati&éfis in- | , )
duced solely due to nonorthogonality of the resonance$tate'ndepem,jent provided the number of chanrifs< V. Th's,
readily yields the well-known result for the resonance tidt

This fact becomes apparent in the following equivalenteepr ' 7=~ "/ ™= S :
PP g P distribution in terms ofy2 distribution withv = M 3 degrees

sentation for the resonance width shift, = —2Im(d&,,): .
(96n) of freedom (Porter-Thomas expressionat= 1 ands = 1),
0Ty, = ia({Ln,|V|Ry) — (Rp|V|Ly)) Aiao
2
=i (UnmVinn — VamUnn) , (5) PP (k) = 2/B)"PI a2t g2 7 ®)

6, =& — &, = a(L,|VIR,), 4)

I'(MpB/2)

where we have made use of the completeness condition to ewherex,, = 555 stands for the width measured in units of
pand|L,) = >, |Rm) (Lm|Ly,) and also introduced,,,, =  the mean partial width (per channel). DistributiGh (8) Haes t
(Ru|V|Rm) andUnm = (Ln|Lm). Since by construction mean valugr) = M and variancear(x) = 175 (K)>.

Vi = V%, andU,,,, = U}, only the terms withn # n
contribute to the sunl{5). The matriX is just the Bell-
Steinberger nonorthogonality matr15] (see also a carhpa
description in ]), and/,,,, # dnm in general. Thus, the
resonance width shift]5) would generically vanish onlyhié t

resonance states were orthogonal [35], being thus a sensiti . . .
indicator of their nonorthogonality. same time the width shiftsI",, must clearly have much less

In the rest of the Letter, we concentrate on the regime oﬁg\;.'ggfh(zslg;g lit:qutgt?et'fntge r;_c;qltnwa; ?trrslizga:?em
weak coupling to the continuumy < 1, which permits ! ISTHIDUT XplCitly, we Tl

complete analytical investigation, and is the one that & th shifts in the natural units to get rid of the model-dependent

. . . eatures, and introduce
most easily realized experimentally. Under such an assum;;—

In the limit N > 1, the rescaled matrix elememé’f) =
N({m|V|n)/+/Tr(V?2) of the perturbation in the eigenbasis of
H become normally distributed random variables [36]. This
results in the Gaussian distribution of the energy shiffs
(i.e. “level velocities”) withvar(0 E,,) = EL]\;Tr(VQ). At the

tion the non-Hermitian paryWWWT of H.g can be treated or,, ©)
as the perturbation of the Hermitian pdft To the leading Yn = 29/28var(0Ey)

order in~ the resonance positions coincide with the energy

levels of the closed systemfi,|n) = E,|n), whereas the reso- In close analogy with the case of the closed systems such a
nance widths are given by expression= 2v(n|[WWT|n) =  rescaling is expected to capture universal (local) fluabuat

2y Zi‘il |[Wel2. Similarly, the right eigenvectors G{.¢ are  related to the parametric motion in generic open systems. At
readily found to beR,) = |n) — iy Zm;ﬁn (VEK*I%T Im), the next step |t|:‘ mstructTlve to foll(?l\;v Reﬂ39] ar.1d trelet
while the leftones reat.,| = (n|—ir 3, ., (VEVVKE"m (). scala.lr proo.lucm(WW Jmn = zZm~ @S :?1 projection of the
Substituting such expressions into Hg. (4), oneé finds thiieto 1/ -dimensional vector of the decay amplitudgss W, onto
leading order in botlx and~ the energy shift is given by the the direction determined by the vectdf,, at givenn # m.
standard expression for the closed systdy = a/(n|V|n), As a resullt, the expression for the rescaled width shiftegak
whereas the shift in the resonance width is determined by ~ the following convenient form:

n)x (n)
_ (m|Gnlm) _ VF — ARe(ziui)
0T, =20y Y E B (6) Yn =" > B _E. (10)



The advantage of such a parametrization is that the corre-
sponding modula and angles turn out to be statistically in-
dependenﬂﬂ3]. The projectionéff) can then be shown to
be normally distributed random variables (reajat 1 and
complex at3 = 2) at anyM > 1 [30].

We now compute the probability distributidn, (y) of the
rescaled width shifts (at the spectrum centre) defined as

Pu(y)

N

where the angular brackets denote the spectral average over

both energied’,, and widthsk,,, whereas the bar stands for 1t
the averaging over the quantitieé’f) and v,(ff), all of them

being statistically independent. The latter task can béyeas 0.1+
performed by considering the Fourier transform, yielding

3 0.01F

— |E, — Em|? <

e WYn — . (12)

};[n (En — Em)? + kin(wA/7y/B)?]8/2 0.001}

Substituting this expression back to EQ.](11), one can then 104
make use of the known explicit form of the joint probability

function of all eigenvalues to integrate out thita eigenvalue. -15 -10 -5 0 5 10 15
The distribution can be finally represented as follows y
* dk 8) ® (Y FIG. 1. Distributions of the resonance width shifts for wWgaspen
P (y) = /0 ﬁ Py’ (k) ¢ ﬁ ’ (13) chaotic systems with preserve@£1, top) or broken =2, bottom)

time-reversal symmetry &t/ = 1 (e),2(0),5 (%) and10 (OJ) open

: cp s o (6) . channels. The solid lines show our analytical predictiogs.HI3)
where the width distributiod”;;” () is given by Eq.[(B) and and [I6). The symbols stand for numerics w00 realizations

the functiong® (y) = [ ;l—::ei“ycj(fll(w) is the Fourier-  of 250x 250 GOE (3=1) or GUE (3=2) random matrices (only 25
transform of the following ratio of spectral determinands f levels around the spectrum centre were taken for each agialig.
the (GOE or GUE) matri¥{; of the reduced siz& — 1:

B
vy

_® det(H,)?? Combination of Eq.[{ZI3) with Eqd.}(8) arld {16) completely
(W) =cy_q <d 5 > . (149) . o
et[H? + (wA/m\/B)?]P/2 solves the problem of universal statistics of the resonance
width shifts in a chaotic system weakly coupled to the con-
The constant)), = (det|H,|~#) ensuresC{’ | (0) = 1  tinuum viaM equivalent channels. We see that far tails of the
that automatically guarantees the normalization of distion  distribution decay a®;(y) « y~#*2) due to the Wigner-
(I3) to unity. Objects similar to EJ_(lL4) naturally arisefie ~ Dyson level repulsion at small energy level separations, th
analysis of weakly open chaotic systems as a result of separdeature which such a distribution shares with that for level
ing independent fluctuations in spectra and in wavefunstion curvaturesl__[l4]. In contrast to the level curvature disthiitoo,
Following the methods developed in [18] fér= 1 and in  the broadness of the width shift distributidn}13) can be ad-
[@] for 3 = 2, we have been able to calculate the limiting ditionally controlled and is proportional tg’Af ~ +/var().

expressions a¥v > 1, with the explicit result being Physically, this gives the variance of widths the role of & un
versal parameter that controls the degree of nonorthoignal
CP (W) = & [[w K1 (|w]) + w?Ka(|w])] , in weakly open chaotic systems [29] 30]. In the limit of many

(15)  weakly open channels >> 1 (but still M < N) the widths
cease to fluctuate, so distributi@mh (8) becomes very narmalv a

. peaked around its mean valge) = M. In such a limit the
where K, () stands for the modified Bessel (Macdonald),iqi shifts are still widely distributed, with the probityi

function. Taking the Fourier transform, we finally arrive at density for the scaled variable= 1 /v/M being given just by
442 the fgnction¢<5)(g), Eq. [18). These findings are illustrated
W ’ p=1 on Fig. 1 which shows the distributid®,,(y) at several val-
5 4 (16) ues ofM. Also shown are the results of straightforward nu-
5+ 1y +3y” merical simulations of the width shift§](9) with GOE/GUE
127(14y2)* 7 random matrices, the agreement being flawless.

‘ 3

CP (W) = e~2ll (1 +20w| + L7 + ‘“T) :

P (y) =
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