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A youth who had begun to read geometry with Euclid, when he had learnt

the first proposition, enquired, “What do I get by learning these things?” So

Euclid called a slave and said “Give him threepence, since he must make a

gain out of what he learns.”

⇠ Euclid of Alexandria (325-265 BCE)



Abstract

Free vibrations of a thin elastic circular cylindrical panel localized near the

rectilinear edge, propagating along the edge and decaying in its circumferential

direction, are investigated in the framework of the two-dimensional equations in

the Kircho↵-Love theory of shells. At first the panel is assumed to be infinite

longitudinally and semi-infinite along its length of curvature (of course not real-

istically possible), followed by the assumption that the panel is then finite along

its length of curvature and fixed and free conditions are imposed on the second

resulting boundary.

Using the comprehensive asymptotic analysis detailed in Kaplunov et al.

(1998) “Dynamics of Thin Walled Elastic Bodies”, leading order asymptotic so-

lutions are derived for three types of localized vibration, they are bending, ex-

tensional, and super-low frequency. Explicit representation of the exact solutions

cannot be obtained due to the degree of complexity of the solving equations and

relevant boundary conditions, however, computational methods are used to find

exact numerical solutions and graphs. Parameters, particularly panel thickness,

wavelength, poisson’s ratio, and circumferential panel length, are varied, and their

e↵ects on vibration analyzed.

This analysis is further extended to investigate localized vibration on the

interface (perfect bond) of two cylindrical panels joined at their respective recti-

linear edges, propagating along the interface and decaying in the circumferential

direction away from the interface. An earlier, similar, localized vibration problem

presented in Kaplunov et al. (1999) “Free Localized Vibrations of a Semi-Infinite

Cylindrical Shell” and Kaplunov and Wilde (2002) “Free Interfacial Vibrations in

Cylindrical Shells” is replicated for comparison with all cases. The asymptotics

are similar, however in this problem the numerics highlight the stronger e↵ect of

curvature on the decay of the super-low frequency vibrations, and to some extent

on the leading order bending vibration.
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Chapter 1

Introduction

1.1 Dynamics of Elastic Structures

The popularity of shell dynamics over the last century has been increasing,

in no small part due to the mathematical modelling of real world problems in-

volving thin structures which vibrate and transmit waves. Since the dawn of the

industrial age in the west, many problems have arisen in engineering due to the

catastrophic behaviour of structures vibrating at resonant frequencies. Indeed,

wave and vibration problems are widespread throughout various related subjects.

Most recent developments arise from the desire to understand the behaviour of

waves propagating along the edge of thin walled structures, most notably in non-

destructive evaluation methods (NDE). Non-destructive evaluation techniques

are being developed as a response to the growing need in industry to be able to

assess the health of materials and structures, distinguish and ascertain deformi-

ties, assess safety, and potentially apply fixes without conceding excess time and

resources, see Alleyne and Crawley (1992) and Alleyne and Crawley (1996) The

elastic structures, waves and vibrations in these problems can be understood by

mathematical modelling.

Modelling of these dynamic shell problems are carried out in the two dimen-

sional configuration. Three dimensional configurations lead to complex systems

of PDEs which are extremely di�cult to solve analytically, and require compli-

cated numerical schemes for computation. It then becomes necessary to introduce

1



1.1. DYNAMICS OF ELASTIC STRUCTURES

assumptions in the case of thin bodies to simplify the three dimensional model.

The assumptions are aimed at neglecting terms and quantities of such an order

that they do not substantially alter the formulation and solution of the problem,

but do simplify the analytical procedure. Thereby reducing the three dimensional

problem into a two dimensional approximation where the explicit mathematical

structure is relatively simpler and more responsive to numerical computation and

qualitative analysis. It is these assumptions that are important in shell theory,

and have been strengthened, refined, debated and expanded upon over many

years. This idea of simplification was described by A. E. H. Love in his famous

book Love (1906) “A Treatise on the Mathematical Theory of Elasticity”:

‘In a theory ideally worked out, the progress which we should be able to trace

would be, in other particulars, one from less to more, but we may say that, in

regard to the assumed physical principles, progress consists in passing from more

to less’.

The modern approach to reduction is an asymptotic one based on a small

relative thickness which originates from pioneering work by Goldenveizer (1961),

Friedrichs (1955a), Green (1963), and Kolos (1965) mainly in statics.

1.1.1 Mathematical Theories

For several centuries now, philosophers alike have been analysing waves and

vibration in continuous structures in order to predict the stresses and displace-

ments which arise as a result of given forces and boundary conditions. Arguably

the first philosopher (albeit self-proclaimed), Pythagoras, along with his disciples,

made important contributions to various scientific subjects, but it was their in-

vestigations into the relationship between mathematics and music that led them

to observe the vibrations of strings (around 500BC). They noted that the vibra-

tion of a string is influenced by several important parameters, particularly the

thickness, length, and tension of the string. This experimental observation paved

the way for later researchers to analyse experimental data in order to attempt to

describe the physical with the mathematical.

It was not until a thousand years later that the French mathematician and

theologian Marin Marsenne, known since as the father of acoustics, influenced

2



1.1. DYNAMICS OF ELASTIC STRUCTURES

by his teacher René Descartes (who introduced the use of x, y, z as variables),

published a book entitled “Marsenne’s Law” in which he is the first to accu-

rately note the relationship between the frequency of the vibration to the length

and cross sectional area of a string. Gallileo Gallilei, who was in contact with

Marsenne, also made a meaningful contribution to shell theory by making as-

tute observations from experimental data. It was in fact Gallilei himself who,

whilst experimenting with pendulums, discovered that given a specific relation-

ship between mass and length of string, the mass itself could swing with harmonic

oscillation, or resonance. Later that century in 1678, Robert Hooke proposed his

law of elasticity which stated that for relatively small deformations of a body,

the deformation is directly proportional to the deforming load, which became a

fundamental law in the theory of elasticity for describing stresses and strains.

Hooke’s contemporary, Sir Isaac Newton, formulated ‘Newton’s laws of motion’

in 1687, whilst both he and Gottfried Leibniz independently developed infinitesi-

mal (di↵erential) calculus (although Newton’s version, ‘fluxions’, was disregarded

after some time). What followed in the period from the late seventeenth century

to the late nineteenth century were a series of instrumental discoveries and pub-

lications in the field of waves and vibration by notable academics such as Brook

Taylor, Leonard Euler, Daniel Bernoulli, Le Rond d’Alembert, Ernst Chladni,

Sophie Germaine, Siméon Poisson, Joseph Boussinesq, Gabriel Lamé and many

more. In 1850 the German physicist Gustav Kirchho↵ formulated his theory of

thin elastic plates, which was the first self-contained theory of out-of-plane loaded

structures (see Kurrer (2008)) where he gives di↵erential equations for plates. His

equations, although similar to those proposed by Poisson, retained Poisson’s ratio

as an unknown parameter, whereas Poisson used a value of 0.5. Kircho↵ showed

that Poisson’s three boundary conditions for a plate could not be satisfied, and

by reducing them to two became the first to formulate consistent boundary con-

ditions. This problem was fully resolved by Friedrichs (1950), and Goldenveizer

and Kolos (1965).

Lord Rayleigh in 1885 found that a class of surface waves, which were usually

apparent on the interface of two fluids with di↵erent densities, could also propa-

gate near the free surface of an infinite homogeneous, isotropic, elastic solid. He

showed that these surface waves decay very slowly with distance on the surface,

3



1.1. DYNAMICS OF ELASTIC STRUCTURES

decay exponentially away from the surface, and occupy a surface layer which is

of the same order of thickness as the wavelength. These ‘localised’ surface waves

became known as ‘Rayleigh Waves’, and opened the field to various studies of

localised phenomena such as earthquakes, crack detection, wave guides etc. For

surface waves in pre-stressed elastic materials see Hayes and Rivlin (1961), and

Rogerson (1997), and in anisotropic elasticity Stroh (1962), Chadwick and Smith

(1977) and many more.

The behaviour of the edge wave in an isotropic plate under plane stress is

rather similar to the classical Rayleigh wave in the case of plane stress, for example

see appendix in Kaplunov et al. (1999) Recently such edge waves were investigated

by Pichugin and Rogerson (2011) for pre-stressed, incompressible plates.

In 1888 Love proposed a theory of shells using the Kirchho↵ assumptions that

every straight line perpendicular to the mid-surface remain straight after defor-

mation and perpendicular to the mid-surface, all elements of the mid-surface

remain unstretched, and the thickness of the plate does not change during defor-

mation. By this examination, Love was able to merge Rayleigh’s earlier works on

shell vibration (see Lord Rayleigh (1881)) and produce a set of linear equations of

motion and boundary conditions for shells experiencing both infinitesimal exten-

sional and bending strains from three-dimensional elasticity theory. This theory

was known as the Kirchho↵-Love theory of shells, a two dimensional first order

approximation theory, and at the time was the foremost complete and general

linear theory of thin elastic shells. Love’s shell theory and solutions to vari-

ous shell problems have been improved and justified using asymptotic analysis

by Kaplunov et al. (1998), Green (1963), Kolos (1965), Friedrichs (1955a), and

others.

Furthermore, it should be mentioned that in 1917, Lamb discovered a guided

dispersive wave in an elastic isotropic plate with traction free boundaries, and

related them to bulk and Rayleigh waves. As Lamb waves can travel long dis-

tances and be guided by structures such as cylindrical pipes and tubes, they are of

particular interest to research in non-destructive evaluation methods (see Alleyne

and Crawley (1992), and Alleyne and Crawley (1996)).

The load applied to a Kirchho↵ plate results in a transverse bending wave

on the plate, also known as a flexural wave. The equation of motion is obtained
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by balancing the bending and rotational moments, and shear forces in the plate

in the absence of external loading. However, the equation of motion can also

be derived from the above mentioned Kirchho↵-Love equations for a shell as the

radius tends to infinity.

The existence of a flexural edge wave guided by the free edge of a semi-infinite,

isotropic, elastic thin plate was first predicted in 1960 by Konenkov, but unfortu-

nately due to certain factors his work was also not known to western researchers

until much later. Also unbeknown to the west, a paper by Ishlinskii in 1954 formu-

lated an eigenvalue problem using the theory of plate stability which was akin to

flexural edge waves. Independently, Sinha (1974), and Thurston and McKenna

(1974), derived expressions for the wave speed and dispersion relation. These

were summarised by Norris et al. (1998) in their review of flexural edge waves

as a response to Kau↵mann (1998a) in which he thought he had been the first

to discover the bending wave solution for the classical plate equation! (A clear

example of how the hindrance of information flow can inhibit research). Many

other papers on the subject of edge waves in isotropic and anisotropic plates ex-

ists (see Lawrie and Kaplunov (2011) and the references therein), however edge

waves are not investigated as popularly as the Rayleigh wave due to their less

explicit nature and possibly less practical value. Konenkov named this type of

edge wave as a Rayleigh-type Flexural Wave because it has properties analogous

to the Rayleigh surface wave on an elastic half-space in that they both decay ex-

ponentially away from the area of localisation of the wave, but it should be noted

that they are not the same due to the dispersive nature of the flexural edge wave,

a point stressed by Kau↵mann (1998b) in his response to Norris et al. (1998).

Various refined models of the Kircho↵-Love theory have been proposed, for

example Reissner (1945) and then Mindlin (1951) took into account shear defor-

mations and rotation inertia to calculate the bending vibrations with reference to

larger plate thickness. The accuracies of these refined theories can be tested using

exact analysis of three dimensional setups and then comparing the exact data to

the approximate results. Asymptotic refinement was done by Goldenveizer et al.

(1993), and also more recently by Zakharov (2004). S. A. Ambartsumyan (1994)

used applied engineering theories for analysing edge waves.

In 1924 Stoneley questioned whether a Rayleigh type surface wave could prop-
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agate along the surface of separation, or the interface, of two solids. His moti-

vation was to further the understanding of seismic activity by investigating the

behaviour of such waves within the earth’s crust and mantle which propagate on

the interface of two layers, and decay away from the interface. Such interfacial

waves have since became known as Stoneley-waves. The derivation of this interfa-

cial wave found by Stoneley was dependent upon the ratio of densities and elastic

constants between the two concerned media to be equal, and was not stated for

ranges of parameters. These were later investigated by Sezawa and Kanai (1939)

who derived a range of applicability, and for a fluid-solid interface by Scholte

(1942), Scholte (1947), and Gogoladse (1948). Research concerning anisotropic

and pre-stressed media has been conducted by Stroh (1962), Chadwick and Jarvis

(1979a), Barnett et al. (1985), Dowaikh and Ogden (1991), Chadwick and Borejko

(1994), and more. A Stoneley type flexural edge wave has been predicted to prop-

agate at an interface by Silbergleit and Suslova (1983), with research in this area

being slightly limited as mentioned earlier, see Baylis (1986) and D.P. Kouzov

(1989).

Ever since Gallilei’s observations, resonance has been investigated thoroughly

for elastic rods, plates and shells. In 1956 Shaw experimented with vibrations

on barium titanate disks and observed earlier unknown resonant edge vibrations.

These localised resonances had lower cuto↵ frequencies and were seemingly unas-

sociated with the thickness parameters. Mindlin and Onoe (1957) o↵ered the

first explanation of this, followed by further improvement over the years by Torvik

(1967) as well as rigorous mathematical justification for zero Poisson ratio (⌫ = 0)

by I. Roitberg and Weidl (1998). The problem of edge resonance in the case of ar-

bitrary ⌫ was recently independently resolved by V. Zernov and Kaplunov (2006)

and Pagneux (2011). See also Kaplunov et al. (2004), Zernov and Kaplunov

(2008), Krushynska (2011), Lawrie and Kaplunov (2011) and Pagneux (2011).

Further information on the dynamics of plates and shells can be found in Le

(1999), Kaplunov et al. (1998) and Berdichevskii (1977).

In addition to the two-dimensional studies, localised edge waves have also

been studied in the three-dimensional theory. Kaplunov et al. (2004) investi-

gated three dimensional waves localised near the edge of semi-infinite isotropic

(and then prestressed isotropic incompressible) plates with traction free edges
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and mixed boundary conditions on its faces. For a more general case of three

dimensional edge waves in plates see ?.

Edge waves and resonance can be observed not only in flat plates, but also in

shells. Edge and interfacial vibrations in longitudinally semi-infinite and infinite

non homogeneous elastic shells of revolution, and in particular short-waves, were

investigated by Kaplunov and Wilde (2000). The authors reveal the link between

localised Rayleigh-type edge waves and Stoneley-type edge waves, and show that

long-wave vibrations may exist.

Andrianov (1991) and Andrianov and Awrejcewicz (2004) studied localised

edge vibrations and buckling in isotropic and orthotropic cylindrical shells with

free boundaries and proposed asymptotic two dimensional expressions.

G.R. Gulgazaryan and Srapionyan (2007), G.R. Gulgazaryan and Saakyan

(2008), and G.R. Gulgazaryan and Srapionyan (2012) investigate the existence

of localised natural vibrations of an elastic orthotropic thin-walled solid struc-

ture composed of identical cylindrical panels which are hinged at their rectilinear

edges. They derive asymptotic expressions and eigenfrequencies, and show that

under certain conditions are analogous to the Rayleigh type bending and exten-

sion of a strip and plate.

The most complete and through analysis of localised edge waves in thin cylin-

drical shells was presented by Kaplunov et al. (1999) “Free Localized Vibrations

of a Semi-Infinite Cylindrical Shell(1999)”. The authors solve the problem of

free localised vibrations of an isotropic, homogeneous, longitudinally semi-infinite

cylindrical shell. They investigated the conditions and existence of localised and

quasi-localised vibration, with complex frequency and a small oscillating part,

which propagates on the circumferential edge and decays in the rectilinear direc-

tion, with the shell subject to mixed boundary conditions and governed by the

Kirchho↵-Love theory of shells. Asymptotic methods from Goldenveizer (1961),

Goldenveizer et al. (1979), and Kaplunov et al. (1998) were used. The authors

showed that by analysis of the governing system and traction free boundary con-

ditions for cylindrical shells, the reduction produced asymptotic equations analo-

gous to the equations of extensional and flexural edge vibrations of a semi-infinite

plate. That is, taking into consideration that shell curvature is small compared
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to the wavenumber in the circumferential direction. Although the e↵ect of the

curvature is often relatively small, it causes low-level radiation damping of the ex-

tensional edge vibration, and so while the natural bending frequencies are real, the

extensional ones posses small imaginary parts. Analysis also yielded a third type

of vibration, super-low frequency, occurring within the so called semi-membrane

shell motion as a result of the coupling between bending and extensional waves.

The exact Kirchho↵-Love eigenvalues were compared with three sets of asymp-

totic ones. Due to the strong influence of curvature on the existence of super-low

frequency vibration, there is no flat plate analogue, however it does match the

asymptotic behaviour from semi-membrane theory (see Goldenveizer (1961)). It

is also important to mention that related work has been carried out for thick

shells, for example a numerical investigation of edge resonance in thick pipes was

carried out by Ratassepp et al. (2008).

The second paper on this subject by Kaplunov and Wilde (2002) “Free In-

terfacial Vibrations in Cylindrical Shells (2002)”, extends the problem to free

interfacial vibrations of cylindrical shells. The cylindrical shell being longitudi-

nally non-homogeneous, infinite, and composed of two semi-infinite homogeneous

shells perfectly bonded to form an interface. Analysis yielded asymptotic solu-

tions analogous to the Stoneley type bending and extensional waves, and super-

low frequency vibrations exist provided a combination of material parameters

between the two shells are equal.

These assumptions and results are applicable to finite shell models where the

length of the shell is much greater than the distance of decay of the vibrations,

with the e↵ect of the second boundary at the other edge of a finite shell are neg-

ligible on the behaviour of the localised vibration.

This thesis investigates the free vibrations of a thin cylindrical panel, localised

near the straight rectilinear edge, propagating along the edge and decaying in the

circumferential direction, an analogous problem to that mentioned above. We

derive the leading order two dimensional asymptotic expressions by adopting

techniques from Kaplunov et al. (1998) and Goldenveizer et al. (1979) for both

a semi-infinite homogeneous panel and an infinite non-homogeneous perfectly

bonded panel, and highlight that these too become analogues of the Rayleigh and

8
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Stoneley type bending and flexural waves of a plate, and the super-low frequency

- of semi-membrane theory. Two eigenvalue problems arise within each problem,

one eigenvalue problem deals with solving a system to find the wavenumbers, and

the second more di�cult eigenvalue problem deals with solving a larger system to

find the essential natural frequencies. The eigenvalue problems are solved numer-

ically, and the vibration modes associated with each case of vibration are studied.

Furthermore, in the case of localised vibration on a homogeneous panel, free and

fixed boundary conditions are imposed at the other edge to make the panel finite,

and are taken into account in the numerical computation. The circumferential

length is varied to examine the e↵ect of distance and the boundary conditions

on the vibration fields. When solving with second boundary conditions the prob-

lem becomes more di�cult as we will need to find the determinant of an eight by

eight matrix system with many parameters. Here specialised computational tech-

niques are used to isolate the modes and solutions. The results from Kaplunov

et al. (1999) and Kaplunov and Wilde (2002) are replicated to draw comparisons,

and specific analysis is focussed on the e↵ect of curvature and material parame-

ters between the two problems. The former paper is also extended in a similar

manner to investigate localised vibration of a homogeneous, longitudinally finite

shell. Finally we discuss some preliminary results when adding two additional

boundaries to the interfacial problem, thereby creating a circumferentially finite

non-homogeneous cylindrical panel.

1.1.2 Framework of the Thesis

This thesis is composed of four chapters. Chapter 1 gives a background to shell

theory with an overview of the industrial motivations of studying bending and

extensional waves in thin shells. Following this we consider the two dimensional

edge vibration of a semi-infinite flat plate, in order to gain a better idea of the

limiting problem of a thin shell.

In Chapter 2 we start by considering the two-dimensional equations of Kirchho↵-

Love theory of shells, and consider the model of a cylindrical panel which is semi-

infinite in the circumferential direction, and infinite in the longitudinal direction.

We analyse edge vibration on the straight longitudinal edge, which propagates
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on the edge and decays in the circumferential direction. This is a simplified

formulation, meaning that we do not take into account the e↵ect of the second

longitudinal edge on vibration. Although this is an approximate set up, it does

prove to be a good approximation as the circumferential length becomes large,

as we will see in Chapter 3 where the second longitudinal edge will be taken

into account, and the circumferential length will be finite. The formulation in

Chapter 2 will be called ‘Problem 1A’ from here on, and when we refer to the

semi-infinite panel we mean semi-infinite in the circumferential direction and in-

finite in the longitudinal direction. The related problem from Kaplunov et al.

(1999) is replicated for comparison, with an extension to a finite shell in Chapter

3. In this paper they consider a closed semi-infinite circular cylindrical shell,

which is semi-infinite in its longitudinal direction, and they analyse edge vibra-

tion on the circumferential edge, which propagates on the edge and decays in the

longitudinal direction. This is a more realistic model when considering structures

such as pipes and tubes, where the longitudinal length of the structure can be

modelled as very large. This formulation will be called Problem 2A, and the

semi-infinite setup here will be used as described.

The governing system describing edge waves is considered within the frame-

work of the Kirchho↵-Love theory, are shown to be analogous to the bending and

extensional edge vibration of a semi-infinite flat plate in the short-wave limit,

and the super-low frequency vibration has no flat plate analogue. Expressions for

the three types of edge eigenmodes are found. Numerical analysis of the exact

system follows this with comparison to the asymptotics, the natural frequencies

are tabulated and the natural modes are illustrated graphically. The main focus

is on the e↵ect of curvature and Poisson’s ratio on the decay of vibration, and

how this compares with Problem 2A.

In Chapter 3 we analyse a modified formulation of Problems 1A and 2A, called

Problems 1B and 2B. To formulate Problem 1B we extend 1A to take into ac-

count the e↵ect of a second longitudinal edge at a finite circumferential distance

from the first, and impose traction free and then fixed boundary conditions at

that edge. Similarly with Problem 2B, we extend 2A by adding a second circum-

ferential edge at a finite longitudinal distance from the first, and impose traction
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free and then fixed boundary conditions at that edge. The exact solutions are nu-

merically computed, along with the asymptotic forms, and results are presented

for comparison. Particular attention is paid to the e↵ect of the second edge on

the decay of the vibration, the parameters mentioned previously are again varied,

but this time also with a change of circumferential length in Problem 1B, and a

change of longitudinal length in Problem 2B.

Chapter 4 extends Problems 1A and 2A by considering a simplified formu-

lation of free interfacial vibration occurring at the join, or perfect bond, of two

semi-infinite homogeneous cylindrical panels, without taking into account the ef-

fects of a second edge. These will be called Problems 1C and 2C. In Problem

1C the vibration propagates on the longitudinal join of the panels, and decays in

the positive and negative circumferential directions of both panels. We impose

boundary conditions on the longitudinal join to simulate perfect contact between

the panels. In Problem 2C the semi-infinite homogeneous panels are perfectly

joined at their respective circumferential edges, and vibration propagates on the

join and decays in the positive and negative longitudinal directions of both panels.

Asymptotic analysis of the interfacial equilibrium system for both problems are

compared with the bending and extensional Stoneley type analogues. A similar

numerical scheme is applied to the exact governing system as it was before, with

mention of the greater variety of problem parameters that need to be considered.

Numerical solutions are compared to the asymptotic solutions, and the e↵ects of

the curvature is analysed in both problems. This chapter is finalised with con-

cluding remarks about the applicability of asymptotic models and peculiarities

of the numerical schemes designed to compute the exact solutions. Further infor-

mation about consistent higher order asymptotic theories in plates can be found

in Goldenveizer et al. (1993) and Kaplunov et al. (1998).
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1.2 Preliminaries

This section will give a brief mathematical description of the principles and

equations used throughout this thesis. Those describing plate bending and ex-

tension are extensively documented in mathematics and engineering. The main

equations of motion, boundary conditions, and solutions of the flexural and exten-

sional edge waves on the edge of a semi-infinite, elastic plate, and at the interface

of two semi-infinite elastic plates, are derived and shown explicitly in terms of

displacements. These will be referred to in later chapters.

1.2.1 Rayleigh-Type Flexural Edge Wave

The Rayleigh-type flexural wave was first discovered by Konenkov in 1960,

derivation follows below. Consider an isotropic, elastic, thin semi-infinite plate of

thickness 2h. The plate occupies the region �1 < y < 1 and 0  x  1. For

time harmonic vibrations with time dependence exp(�i!t), the two-dimensional

classical governing equation of bending of a plate in Cartesian coordinates from

the Kirchho↵ plate theory is
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Here W is the transverse displacement to the plane, ⇢ is the density of the mate-

rial, and D is the flexural rigidity of the plate and is written as

D =
2Eh

3

3(1� ⌫

2)
, (1.2)

where E is Young’s modulus which is a measure of stress to strain, and ⌫ is Pois-

son’s ratio which is a measure of the proportional decrease in lateral measurement

to the proportional increase in length.

At the free edge there are three boundary conditions corresponding to no bending

and twisting moments, and no verticle shear forces (see Kirchho↵ (1850)). Deli-

cate asymptotic analysis by Friedrichs (1955b) showed that the three conditions

can be combined to form two. So the homogeneous boundary conditions at x = 0

in terms of displacements are
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We now introduce non-dimensional coordinates

 =
x

l

, and ⇠ =
y

l

, (1.4)

and dimensionless parameters

⌘ =
h

l

, and � =
⇢!

2

l

2

E

, (1.5)

where l is the typical wavelength, ⌘ is the relative half-thickness, and � is the

dimensionless frequency parameter.

for waves that are localised near the boundary at  = 0, and decay exponentially

away from the boundary as  ! 1. These solutions take the form of

W =
X

i

w

i

e

i�⇠�mi 
, (1.6)

where w

i

are constants and m > 0.

Substituting this into (1.1) gives
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Solving this yields four roots, two positive and two negative, and so the two

possible values for m are

m

1,2

=

s

�

2 ±
p
3�(1� ⌫

2)

⌘

. (1.8)

The solution can then be rewritten as

W = we

i�⇠(e�m1 + Ce

�m2 ), (1.9)

where C is a constant to be determined.

Substituting (1.9) into (1.3) at  = 0 gives

(m2

1

� ⌫�

2) + C(m2

2

� ⌫�

2) = 0,

m

1

[m2

1

� (2� ⌫)�2] + Cm

2

[m2

2

� (2� ⌫)�2] = 0.
(1.10)

Rearranging and equating to eliminate C yields the following equation relating �

and �
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Substituting (1.8) into this gives
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For this expression to have roots � must satisfy the inequality
p
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Solving equation (1.12) gives
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which relates the edge wavenumber � to the dimensionless frequency �.

1.2.2 Rayleigh-Type Extensional Edge Wave

Consider the plate from the previous subsection, except now it is subject

to generalized plane stress, where the normal and shear components of stress

perpendicular to the plane are zero. In contrast to the previous subsection, here

we are only interested in extensional motions of the surface. From the famous

publication by Rayleigh in 1885, the system of equations governing extensional

waves in the plate are
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where U and V are the tangential displacements of the mid-surface along the x

and y, and the dimensionless frequency parameter, �, is as before.

Boundary conditions at the edge x = 0 are written as

@U
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+ ⌫
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= 0, (1.16a)

@U

@y

+
@V

@x

= 0. (1.16b)

With the same notation as (1.4) and (1.5), we look for solutions of (1.15) which
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satisfy (1.16), for extensional waves that are localised near the boundary at  = 0

and decay as  ! 1. As such, solutions of the displacements will take the form
0
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where u

i

and v

i

are constants. Substituting (1.17) into the governing system

(1.15) gives
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yielding the equation

m

4


1

2
(1� ⌫)

�
+m

2

�

2


�(1� ⌫) +

1

2
�(3� ⌫)(1 + ⌫)

�
+

�

4

1

2
(1� ⌫)� �

2

�

1

2
(1� ⌫

2)(3� ⌫) + �

2(1� ⌫)4 = 0,

(1.19)

which solves to give four roots such that the two positive ones are
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We can also find the constants u
i

and v

i

from (1.18) and re-write the solution as
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Substituting this into the boundary conditions (1.16) and eliminating the constant

C gives an equation relating the dimensionless frequency and edge wavelength
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For (1.22) to exist and yield a real frequency, and for the roots (1.20) to be real

and di↵erent, � and � should satisfy the inequality

0 < 2(1 + ⌫)� < �

2

. (1.23)

The relation (1.22) can be re-written in the form of the secular equation for the

Rayleigh wave speed
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where v
l

is the longitudinal wave speed, v
s

is the shear wave speed, and v

r

is the

Rayleigh wave speed. We should note that this is not the typical Rayleigh wave

due to plane stress, but is an analogue of the Rayleigh wave counterpart due to

plane strain.
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1.2.3 Stoneley-Type Flexural Wave

The problem of a wave propagating over the surface of separation of two

media was solved first by Stoneley (1924). Analysis yields two analogues in the

theory of plates, flexural and extensional, thus the terms Stoneley-type bending

and extensional waves arose.

We now detail the problem of a flexural wave localised at the interface of two

plates perfectly bonded at their longitudinal edges, propagating on the edge and

decaying away. This type of localised wave was first investigated by Silbergleit

and Suslova in 1983 who found that the wave behaviour is a flexural analogue to

that of the Stoneley-type surface wave at the interface of two semi-infinite media.

Consider two isotropic, elastic, thin semi-infinite plates of constant thickness

2h, perfectly joined to form an infinite non-homogeneous plate. The plates are

joined at their respective edges, x = 0, and the non-homogeneous plate they

form occupies the region �1 < y < 1 and �1 < x < 1. The plate occupying

�1 < x  0 will be referred to as ‘plate 2’ and related quantities denoted by

superscript (2). The plate occupying the region 0  x < 1 will be referred to

as ‘plate 1’ with related quantities denoted by subscript (1). The equation of

motion governing the bending of the mid-surface of both plates is

@

4

W

(k)

@x

4

+ 2
@

4

W

(k)

@x

2

@y

2

+
@

4

W

(k)

@y

4

=
2(!(k))2⇢(k)h

D

(k)

W

(k)

, (1.25)

with

D

(k) =
2E(k)

h

3

3(1� ⌫

(k)

2
)
.

We use the same notation as in subsection 1.2.1, only here k = 1, 2 correspond

to the plates 1 and 2.

At the join, x = 0, perfect contact boundary conditions between the plates take
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the form

W

(1) = W
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@
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2
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@
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◆
,

⌘
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2)E(1)

✓
@

3

W

@x

3

+ (2� ⌫

(1))
@

3

W

@x@y

2

◆

= � ⌘

2

3(1� ⌫

(2)

2)E(2)

✓
@

3

W

@x

3

+ (2� ⌫

(2))
@

3

W

@x@y

2

◆
.

(1.26)

We introduce the same non-dimensional notation as (1.4) and the notation from

(1.5) is also used except � is now

� =
⇢

(1)

!

2

R

2

E

(1)

, (1.27)

A new parameter q is also introduced

q

(k) =
E

(1)

⇢

(k)

E

(k)

⇢

(1)

. (1.28)

So that �q(k) is consistent for both plates.

We seek solutions of (1.25) in the form

W

(k) =
X

i

w

(k)

i

e

i�⇠+(�1)

k
m

(k)
i  

, (1.29)

where w

(k)

i

are constants and the (�1)k term ensures that (�1)km(k)

i

is negative

for m(k)

> 0 when k = 1, and positive when k = 2.

Substituting a factor of (1.29)

W

(k) = w

(k)

e

i�⇠+(�1)

k
m

(k)
 

, (1.30)

into (1.25) gives

(m(k))4 � 2(m(k))2�2 + �

4 =
3�q(k)(1� ⌫

(k)

2
)

⌘

2

. (1.31)

We obtain the roots of this equation in the same manner as in Subsection 1.2.1

and write them as

m

(k)

1,2

=

vuut
�

2 ±

q
3�q(k)(1� ⌫

(k)

2
)

⌘

. (1.32)
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We can now write (1.29) with summation from i = 1, 2

W

(k) =
2X

i=1

w

(k)

i

e

i�⇠+m

(k)
i (�1)

k
. (1.33)

Substituting this into (1.26) gives the system of equations

w

(1)

1

+ w

(1)

2

=w

(2)

1

+ w

(2)

2

, (1.34a)

w
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(1)

1

+ w
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2

m

(1)

2

=� w
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1

m
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� w

(2)
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2

, (1.34b)
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(1)

2

=w

(2)
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(2)

1
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(2)
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(2)

2

, (1.34c)
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(1.34d)

with

↵̂

(k)

i

=
m

(k)

2

i

� ⌫

(k)

�

2

(1� ⌫

(k)

2)Ê(k)

, and �̂

(k)

i

=
m

(k)

i

(m(k)

2

i

� (2� ⌫

(k))�2)

(1� ⌫

(k)

2)Ê(k)

, (1.35)

where Ê(k) = E

(1)

E

(k) , and we use the ‘hat’ to distinguish from notation that is used

in Chapter 2.

The system of equations (1.34) can be written as

M

1

.w = 0, (1.36)

where M

1

is the matrix

M

1

=

2

6666664

1 1 �1 �1

m

(1)

1

m

(1)

2

m

(2)

1

m

(2)

2

↵̂

(1)

1

↵̂

(1)

2

�↵̂(2)

1

�↵̂(2)

2

�̂

(1)

1

�̂

(1)

2

�̂

(2)

1

�̂

(2)

2

3

7777775
, (1.37)

and w is the vector

w =

2

6666664

w

(1)

1

w

(1)

2

w

(2)

1

w

(2)

2

3

7777775
= 0 . (1.38)

The equation

detM
1

= 0, (1.39)

is an expression relating the dimensionless frequency � to the wavenumber �.

Solving for � and substituting into (1.37) allows us to find the constants w(k)

i

and

hence the natural form (1.33).

18



1.2. PRELIMINARIES

1.2.4 Stoneley-Type Extensional Wave

We examine here the extensional analogue of the Stoneley-type wave propa-

gating over the surface relating to plane stress. Consider the two isotropic plates

configured as in subsection 1.2.3. We are only interested in extensional motions

of the mid-surface of the plate. The equations of motion governing extensional

waves in the plate are

@
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(k)

@x
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✓
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(k)
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2

)�q(k)U (k) = 0,

(1.40a)
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+
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(k)
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+ (1� ⌫

(k)

2

)�q(k)V (k) = 0.

(1.40b)

The continuity conditions for perfect contact at the joined edge x = 0 are

U

(1) = U

(2)

,

V

(1) = V

(2)

,

@U

(1)

@x

+ ⌫

(1)

@V

(1)

@y

=
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(2)
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(1)
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+
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(1)

@x

=
@U

(2)

@y

+
@V

(2)

@x

.

(1.41)

The same notation shall be applied as in (1.4) to scale the coordinates, and we

use the notation for � and introduce the parameter q(k) from (1.27) and (1.28).

A possible solution to (1.40) can be written as
0

@ U

(k)( , ⇠)

V

(k)( , ⇠)

1

A =
X

i

0

@ u

(k)

i

v

(k)

i

1

A
e

i�⇠+(�1)

k
m

(k)
i  

. (1.42)

Substituting a factor of this into the governing system (1.40) yields
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1� ⌫
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�
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(1.43)

we can obtain the characteristic equation

m

(k)

4


1

2
(1� ⌫

(k))

�
+m

(k)

2

�

2


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2
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2
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2
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(1.44)
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giving the four roots

m

(k)

1

=
q
�

2 � 2�q(k)(1 + ⌫

(k)) and m

(k)

2

=
q
�

2 � �q

(k)(1� ⌫

(k)

2
). (1.45)

Substituting these roots into (1.43) we can find the constants u
i

and v

i

and rewrite

the solution as
0
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, with k = 1, 2.

(1.46)

Substituting (1.46) into conditions (1.41) gives
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(1.47)

The system above can be written as

M

2

.C = 0, (1.48)

where
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and

C =
h
C

(1)

1

, C

(1)

2

, C

(2)

1

, C

(2)

2

i0
. (1.50)

Then the equation

detM
2

= 0, (1.51)

gives the relationship between dimensionless frequency � and wavelength �. Sub-

stituting these values into (1.48) to find the constants C

(k)

i

allow us to find the

natural form (1.46).
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Chapter 2

Vibration of a Thin Semi-Infinite

Cylindrical Shell

2.1 Statement of the Problem

Let an orthogonal curvilinear coordinate system be defined as (↵, �), where

↵ and � are the two coordinates on the surface �. With reference to �, the

fundamental form of the infintesimal distance ds is

(ds)2 = A

2(d↵)2 +B

2(d�)2, (2.1)

where A and B are the Lamé parameters.

Now let � be the mid-surface of a circular cylindrical shell with radius R of

the mid-surface. The curvilinear longitudinal coordinate is y, and the angular

coordinate is  . Then A = 1 and B = R and (2.1) becomes

(ds)2 = (dy)2 +R

2(d )2. (2.2)
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2.1. STATEMENT OF THE PROBLEM

2.1.1 Problem 1A

Consider free harmonic vibrations of a homogeneous, isotropic, circular cylin-

drical panel assumed to be semi-infinite in the circumferential direction i.e, there

is only one edge at  = 0 and no second edge, and the mid-surface � occupies

the domain 0 6  < 1 and �1 < ⇠ < 1. The waves are localized near the

longitudinal edge of the panel at  = 0, propagate on the longitudinal edge and

decay in the circumferential direction.

Figure 2.1: Panel configuration for problem 1A

Together with the coordinates  and y, the non-dimensional coordinate ⇠ is in-

troduced as

⇠ =
y

R

. (2.3)

This is a simplified formulation in which the e↵ect of a second longitudinal edge

on vibration is not taken into account, and so although the set up is approximate

in that the panel is semi-infinite circumferentially, it does become a good approx-

imation as the circumferential length becomes large and vibrations are localised

at  = 0. This assumption will be justified in chapter 3 where the panel will

be considered to be finite in its circumferential length and the e↵ect of a second

longitudinal edge, at some finite distance from the first edge, will be taken into

account.

The formulation outlined above for chapter 2 will be called Problem 1A from here

on.
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2.1. STATEMENT OF THE PROBLEM

2.1.2 Problem 2A

The related problem in Kaplunov et al. (1999) is reproduced for comparison.

The authors considered free harmonic vibration of a homogeneous, isotropic cylin-

drical shell, assumed to be semi-infinite in its longitudinal direction with only one

edge at ⇠ = 0. The mid-surface � of the shell occupies the domains 0 6  < 2⇡

and 0 6 ⇠ < 1, and the waves are localised near the circumferential edge ⇠ = 0,

propagating on the circumferential edge and decaying in the longitudinal direc-

tion.

Similarly to Problem 1A, this set up will be modified is also a simplified for-

Figure 2.2: Panel configuration for problem 2A

mulation which will be verified in chapter 3 upon the introduction of a second

circumferential edge at a finite distance from the first. This formulation will be

called Problem 2A from here on.
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2.1. STATEMENT OF THE PROBLEM

2.1.3 Equations of Motion

The governing equations from the Kirchho↵-Love theory of shells (Love (1988)),

expressed in terms of displacements as a system of three partial di↵erential equa-

tions are
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(2.4c)

Here � is the non-dimensional frequency parameter written as

� =
⇢!

2

R

2

E

, (2.5)

and ⌘ is the small geometrical parameter traditional in the theory of thin shells,

written as

⌘ =
h

R

. (2.6)

! is the circular frequency, ⇢ is the mass density, E is Young’s modulus, h is the

half-thickness, and ⌫ is Poisson’s ratio.

The tangential displacements of the mid-surface will be denoted as U and V , while

the transverse displacement which is normal to the mid-surface will be denoted

as W . Equations (2.4a) and (2.4b) are the longitudinal and shear forces, which

are in essence analogues of the boundary conditions for a plate. Equation (2.4c)

describes the tangential shear force and bending moment.

2.1.4 Traction-Free Boundary Conditions

Problem 1A

At  = 0, traction free boundary conditions at the longitudinal edge cor-

responding to the longitudinal force, longitudinal shear force, bending moment,
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2.2. EXACT SOLUTION

and modified transverse shear force, take the form

⌫
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Problem 2A

At ⇠ = 0 the traction free boundary conditions at the circumferential edge

similarly to before are,
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2.2 Exact Solution

2.2.1 Problem 1A

For Problem 1A, a solution of the governing system (2.4) can be written in

the form 0

BBB@

U( , ⇠)

V ( , ⇠)

W ( , ⇠)

1

CCCA
=
X

i

0

BBB@

u

i

v

i

w

i

1

CCCA
e

i�⇠�mi (2.9)

where u
i

, v
i

and w

i

are constants, � is the real positive longitudinal wavenumber,

and m should be chosen such that

<(m
i

) > 0, or if <(m
i

) = 0 then =(m
i

) > 0, (2.10)
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where the root decays to infinity in the circumferential direction or satisfies the

radiation condition (see Sommerfeld (1912)). Substituting a factor of (2.9)
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into the governing equations (2.4) results in a linear homogeneous system of three

equations with constant coe�cients
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3
(2� ⌫)

◆�
= 0,

(2.12b)

u [�i�⌫] + v


m

3

✓
⌘

2

3

◆
�m

✓
1 + �

2

⌘

2

3
(2� ⌫)

◆�
+

w


m

4

✓
�⌘

2

3

◆
+m

2

✓
�

2

2⌘2

3

◆
+ �(1� ⌫

2)� �

4

⌘

2

3
� 1

�
= 0.

(2.12c)

This system can be written in a matrix form as

M

1A

.X = 0, (2.13)

where

M

1A

=

2

6664

m

2

ã+ b̃ mc̃ �d̃

mc̃ m

2

f̃ + r̃ �m

3

h̃+mp̃

d̃ �m

3

h̃+mp̃ �m

4

h̃+m

2

q̃ + s̃

3

7775
, (2.14)

X =

2

6664

u

v

w

3

7775
, (2.15)
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2.2. EXACT SOLUTION

and

ã =
1

2
(1� ⌫) , b̃ = �

�
1� ⌫

2

�
� �

2

, c̃ =
1

2
� (1 + ⌫) i,

d̃ = �⌫i, f̃ =
1

3
⌘

2 + 1, h̃ =
1

3
⌘

2

,

p̃ = 1 +
1

3
�

2

⌘

2 (2� ⌫) , q̃ =
2

3
�

2

⌘

2

,

r̃ = �

�
1� ⌫

2

�
� 1

2
�

2 (1� ⌫)� 1

3
⌘

2

�

2 (2� 2⌫) ,

s̃ = �

�
1� ⌫

2

�
� 1� 1

3
�

4

⌘

2

.

The tilde terms are used to only present the problem in a simpler form and do

not bring any extra physical meaning.

The system of equations (2.12) corresponds to an eigenvalue problem for m,

however the final, more di�cult, eigenvalue problem for � results from solving

the required boundary conditions.

Equating the determinant of matrix M

1A

in (2.13) to zero gives an algebraic

equation in m corresponding to the characteristic equation

det|M
1A

| = m

8(ah2 + afh) +m

6(h(bh� 2ap+ c

2 � bf � ar) + afq)

+m

4(2cdh� 2bhp+ afs+ arq + bfq � brh+ ap

2 � c

2

q)

+m

2(brq + bfs+ ars� 2cdp+ bp

2 + d

2

f � c

2

s)

+brs+ d

2

r = 0,

(2.16)

which can be written more simply as

a

8

m

8 + a

6

m

6 + a

4

m

4 + a

2

m

2 + a

0

= 0, (2.17)
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2.2. EXACT SOLUTION

where a

8

to a

0

are

a

8

=⌘2, a

6

= ⌘

2[�(1 + ⌫)(3� ⌫)� 4�2 + 2],

a

4

=2�2⌘2(1� ⌫

2)(1 + ⌫) + �(1 + ⌫)[�3�2⌘2(2� ⌫)+

⌘

2(3 + ⌫)� 3(1� ⌫)]� ⌘

4

�

4

3
(1� ⌫

2) + 6�4⌘2 � 8�2⌘2 + ⌘

2

a

2

=� �

2(1� ⌫

2)(1 + ⌫)(⌘2(4�2 + 2) + 3(3� ⌫))� �

(1 + ⌫)

3
(�2⌘4�4(1� ⌫

2)+

⌘

2(�9�4(3� ⌫) + 6�2(2� ⌫)� 6)� 18�2(1� ⌫)� 9(1� ⌫))� 4

3
�

6

⌘

4�

2�4⌘2(3�2 � (6� ⌫

2))� 4�2⌘2

a

0

=� 6�3(1� ⌫

2)2(1 + ⌫) + �

2(1� ⌫

2)(1 + ⌫)(2�4⌘2 + 4�2⌘2(1� ⌫)� 3�2(3� ⌫) + 6)

+ �[
1

3
(1 + ⌫)�6⌘2(�4⌘2(1� ⌫)� 3(3� ⌫))� �

4(1� ⌫

2)(4⌘2 + 3)�

�

2(1� ⌫

2)(4⌘2 + 3(3 + 2⌫))]

The characteristic equation (2.17) has three parameters �, ⌘, and �, assuming

that ⌫ is a constant. The natural forms of (2.4) cannot be explicitly written due

to the very complicated nature of the characteristic equation above.

Solving (2.17) yields eight roots of m. The four roots chosen using (2.10) are

substituted into (2.13) to find the constants u, v, and w.

A solution to (2.12) can then be written as
0

BBB@

U( , ⇠)

V ( , ⇠)

W ( , ⇠)

1

CCCA
=

4X

i=1

C

i

0

BBB@

u

i

v

i

w

i

1

CCCA
e

i�⇠�mi 
, (2.18)

where C

i

are arbitrary constants to be found by using the boundary conditions

(2.7). Substituting (2.18) into (2.7) gives,

b

(1A)

ij

C

j

= 0, for i, j = 1..4, (2.19)

where

b

(1A)

1j

= u

j

(⌫�i)� v

j

m

j

� w

j

, (2.20a)

b

(1A)

2j

= �u

j

m

j

+ v

j

�i , (2.20b)

b

(1A)

3j

= �v

j

m

j

+ w

j

(m2

j

� ⌫�

2) , (2.20c)

b

(1A)

4j

= v

j

⇥
m

2

j

� 2(1� ⌫)�2
⇤
+ w

j

⇥
(2� ⌫)m

j

�

2 �m

3

j

⇤
, (2.20d)

28



2.2. EXACT SOLUTION

The equation

det b(1A)

ij

= 0, (2.21)

will result in the sought for eigenvalue problem for the edge wave frequency. This

is the essence of problem 1A and cannot be solved without using numerics. The

characteristic equation (2.17) should first be solved numerically to find the four

roots m
i

satisfying (2.10). These are substituted back into the matrix (2.13) to

find the vector X
i

for each root. The non-dimensional frequency � can be solved

for which in turn allows the natural forms to be found using these values.

2.2.2 Problem 2A

For the problem of vibration propagating on the circumferential edge and

decaying longitudinally, a solution to the equations of motion (2.4) can be written

as 0

BBB@

U( , ⇠)

V ( , ⇠)

W ( , ⇠)

1

CCCA
=
X

i

0

BBB@

u

i

v

i

w

i

1

CCCA

0

BBB@

sinn 

cosn 

sinn 

1

CCCA
e

�ri⇠
. (2.22)

where u
i

, v
i

and w

i

are constants, n is the real positive circumferential wavenum-

ber, and r is chosen using

<(r
i

) > 0, or if <(r
i

) = 0 then =(r
i

) > 0, (2.23)

to satisfy the decay to infinity of the vibration in the longitudinal direction, or

the radiation condition.

Substituting a factor of (2.22)

0

BBB@

U( , ⇠)

V ( , ⇠)

W ( , ⇠)

1

CCCA
=

0

BBB@

u

v

w

1

CCCA

0

BBB@

sinn 

cosn 

sinn 

1

CCCA
e

�r⇠

, (2.24)
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2.2. EXACT SOLUTION

into the equations of motion (2.4) gives

u


r

2 � 1� ⌫

2
n

2 + �(1� ⌫

2)

�
+ v


�1 + ⌫

2
rn

�
+ w [�⌫r] = 0, (2.25)

u


1 + ⌫

2
rn

�
+ v


1� ⌫

2
r

2 � n

2 +
⌘

2

3

�
2(1� ⌫)r2 � n

2

�
+ (1� ⌫

2)�

�

+ w


⌘

2

3
n((2� ⌫)r2 � n

2)� n

�
= 0,

(2.26)

u [�⌫r] + v


n� ⌘

2

3
n

�
(2� ⌫)r2 � n

2

��
+ w


1 +

⌘

2

3
(r4 � 2n2

r

2 + n

4)� (1� ⌫

2)�

�
= 0.

(2.27)

The system (2.27) can be written in matrix form as

M

2A

.X = 0, (2.28)

where

M

2A

=

2

6664

r

2 + b̂ �rĉ �rd̂

rĉ r

2

f̂ + r̂ r

2

ĥ� p̂

�rd̂ �r

2

ĥ+ p̂ r

4

t̂� r

2

q̂ + ŝ

3

7775
, (2.29)

and

b̂ = �

�
1� ⌫

2

�
� 1� ⌫

2
n

2

, ĉ =
1

2
n (1 + ⌫) ,

d̂ = ⌫r, f̂ =
1� ⌫

2
+

2

3
(1� ⌫) ⌘2, ĥ =

1

3
(2� ⌫) ⌘2n,

p̂ = n

✓
1

2
⌘

2

n

2 + 1

◆
, q̂ =

2

3
�

2

⌘

2

,

r̂ = �

�
1� ⌫

2

�
� �

2

✓
1 +

1

2
⌘

2

◆
,

ŝ = 1� �

�
1� ⌫

2

�
+

1

3
⌘

2

n

4

, t̂ =
1

3
⌘

2

.

The hat terms are only used to present the problem in a simpler form. Similarly to

Problem 1A, the system of equations (2.27) corresponds to an eigenvalue problem

for r, where the more complicated eigenvalue problem for � will be formed using

the boundary conditions. Equating the determinant of matrix M

2A

in (2.28) to

zero gives

detM
2A

= r

8(f̂ t̂) + r

6(ĉ2t̂+ b̂f̂ t̂� f̂ q̂ + r̂t̂+ ĥ

2)

+ r

4(b̂ĥ2 + b̂r̂t̂+ 2ĉd̂ĥ+ f̂ ŝ� 2ĥp̂� b̂f̂ q̂ � d̂

2

f̂ � r̂q̂ � ĉ

2

q̂)

+ r

2(p̂2 + b̂f̂ ŝ+ ĉ

2

ŝ+ r̂ŝ� 2b̂ĥp̂� d̂

2

r̂ � 2ĉd̂p̂� b̂r̂q̂) + p̂

2

b̂+ b̂r̂ŝ = 0,

(2.30)
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2.2. EXACT SOLUTION

which can be written in a simpler notation as

b

8

r

8 + b

6

r

6 + b

4

r

4 + b

2

r

2 + b

0

= 0, (2.31)

where b

8

to b

0

are given in the paper Kaplunov et al. (1999).

Characteristic equation (2.31) is dependent upon three parameters, n, ⌘, and

�, assuming ⌫ is a constant. Similarly to problem 1A this can be numerically

solved for the roots r which are used to find the constants u, v, and w, enabling

a solution to (2.4) to be able to be written on the form

0

BBB@

U( , ⇠)

V ( , ⇠)

W ( , ⇠)

1

CCCA
=

4X

i

B

i

0

BBB@

u

i

v

i

w

i

1

CCCA

0

BBB@

sinn 

cosn 

sinn 

1

CCCA
e

�ri⇠
, (2.32)

where B

i

are arbitrary constants to be found.

Substituting (2.32) into the traction free boundary conditions for Problem 2A

(2.8) yields

b

(2A)

ij

B

j

= 0, for i, j = 1..4, (2.33)

where

b

(2A)

1j

= u

j

r

j

+ v

j

⌫n+ w

j

⌫ , (2.34a)

b

(2A)

2j

= u

j

n� v

j

r

j

� 4

3
⌘

2

r

j

(v
j

+ w

j

n) , (2.34b)

b

(2A)

3j

= �v

j

⌫n+ w

j

(r2
j

� ⌫n

2) , (2.34c)

b

(2A)

4j

= v

j

nr

j

(2� ⌫)� w

j

(r3
j

� (2� ⌫)r
j

n) , (2.34d)

with j = 1..4. Using matrix notation for the boundary conditions

det b(2A)

ij

= 0, (2.35)

yields an equation which can be solved to establish the relationship between the

non-dimensional frequency � and the wavenumber n, and from here the natural

forms.
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2.3. ASYMPTOTIC ANALYSIS

2.3 Asymptotic Analysis

To find the leading order behaviour to problems 1A and 2A it is possible to

separate the stress-strain states (SSS) into the sum of the basic SSS, subscript

(b), and the additional SSS, subscript (a). The displacements can be written as

0

BBB@

U( )

V ( )

W ( )

1

CCCA
=

0

BBB@

U

b

( )

V

b

( )

W

b

( )

1

CCCA
+ ⌘



0

BBB@

U

a

( )

V

a

( )

W

a

( )

1

CCCA
. (2.36)

This is known as the separation method (Goldenveizer et al. (1979) and therein)

and describes the separation of the leading order stresses and strains from the ad-

ditional, less prevalent ones. The asymptotic terms associated with the basic SSS

will yield homogeneous equations which represent the leading order behaviour of

the forces and moments acting on the mid-surface of the panel. This thesis is

only concerned with the basic SSS and will hence be referred to as the leading

order behaviour.

Utilising the results of the model problems for a plate, of the Rayleigh-type

flexural and extensional waves studied in subsections 1.2.1 and 1.2.2, the char-

acteristic equation in problem 1A (2.17) is subject to asymptotic analysis by

representing all terms using the small parameter ⌘, and the leading order terms

are analysed. Three types of vibration are uncovered, these are the Rayleigh-type

flexural and extensional vibration, and super-low frequency vibration, and will

be clarified in what follows.

The interest here is in waves which are long compared to the thickness of the

panel, and short compared to the radius of the panel, thus

1 << � << ⌘

�1

, (2.37)

The main small geometrical parameter ⌘ is used to write the wavelength as having

the order

� ⇠ ⌘

�q

. (2.38)

With 0 < q < 1 from the consideration of (2.37). Then all parameters can be

expressed through ⌘.
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2.3. ASYMPTOTIC ANALYSIS

2.3.1 Asymptotic Justification for Problem 1A

Flexural Vibration:

From subsection 1.2.1 the range of applicability given by the inequality (1.13)

for wavelength � and dimensionless frequency � is

p
3�(1� ⌫

2)

⌘

2

< �

2

<

p
3�(1 + ⌫)

⌘

2

. (2.39)

Looking at the governing equation (1.7) of flexural waves on a plate

m

4 � 2m2

�

2 + �

4 =
3�(1� ⌫

2)

⌘

2

, (2.40)

the edge wavelength � and the root m have the same order such that

m ⇠ �, and m 6= �. (2.41)

From here it is evident that � is of order

� ⇠ ⌘

2

�

4

. (2.42)

Writing the parameters in terms of ⌘ gives

� = �

⇤
⌘

�q

, m = m

⇤
⌘

�q

, � = �

⇤
⌘

2�4q

, (2.43)

where all starred terms are of order 1. Substituting these into the characteristic

equation (2.17) of problem 1A and retaining only the leading order terms in the

range 1

2

 q < 1 yields

1

2
�

⇤
(1� ⌫

2)(1� ⌫)(m
⇤
2 � �

⇤

2)2 � 1

6
(1� ⌫)(m

⇤
2 � �

⇤

2)4 = 0, (2.44)

which simplifies to an equation that is equivalent to the governing equation of

flexural waves on a plate (2.40).

The next order terms in characteristic equation (2.17) are of relative order

⌘

2�2q and ⌘4q�2

1

2
�

⇤
(1� ⌫

2)(1� ⌫)(m
⇤
2 � �

⇤

2)2 � 1

6
(1� ⌫)(m

⇤
2 � �

⇤

2)4

� ⌘

4q�2

⇢
(1� ⌫

2)
(1� ⌫)

2
�

4

�
+ ⌘

2�2q

⇢
�

⇤
(1� ⌫

2)
3� ⌫

6
(3�

⇤
(1� ⌫

2)(m
⇤
2 � �

⇤

2)� 1)

�
= 0.

(2.45)
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2.3. ASYMPTOTIC ANALYSIS

For q in the range 2

3

 q < 1, the terms of relative order ⌘2�2q will dominate

those of order ⌘4q�2. When this happens equation (2.45) reduces to (2.44) which

is the leading order equation. However, when 1

2

 q <

2

3

, the terms of relative

order ⌘4q�2 will be dominant, giving

1

2
�

⇤
(1� ⌫

2)(1� ⌫)(m
⇤
2 � �

⇤

2)2 � 1

6
(1� ⌫)(m

⇤
2 � �

⇤

2)4 � (1� ⌫

2)
(1� ⌫)

2
�

4 = 0.

(2.46)

This special case has been investigated in Kaplunov (1990) and ?.

Extensional Vibration:

From subsection (1.2.2) the inequality (1.23) describing the relationship be-

tween the dimensionless frequency and the wavelength is

0 < 2�(1 + ⌫) < �

2

. (2.47)

From this and the characteristic equation of the Rayleigh-type extensional wave

in a plate

m

4


1

2
(1� ⌫)

�
+m

2

�

2


(1� ⌫) +

1

2
�(3� ⌫)(1 + ⌫)

�
+

�

4

1

2
(1� ⌫)� �

2

�

1

2
(1� ⌫

2)(3� ⌫) + �

2(1� ⌫)4 = 0,

(2.48)

the non-dimensional frequency is deduced to have order

� ⇠ �

2

, (2.49)

and � and m are related as (2.41). Writing the parameters in terms of ⌘ gives

� = �

⇤
⌘

�q

, m = m

⇤
⌘

�q

, � = �

⇤
⌘

�2q

. (2.50)

Substituting these into the characteristic equation (2.17) and retaining only the

leading order terms in the range of q � 0 leavesan equation which is equivalent

to equation (2.48) for extensional waves on a plate, and the range of q satisfies

0 < q. (2.51)
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Super-Low Frequency:

Unfortuntely for this type of vibration there is no flat plate analogues. The

super-low frequency vibration is typical for a curved body due to the coupling

between bending and extensional motions.

It is possible to deduce from the previous analyses that for � << 1 and � >> 1

�

4 ⇠ ⌘

2

m

8

, and � ⇠ ⌘

2

m

4

. (2.52)

Writing parameters

� = �

⇤
⌘

�q

, m = m

⇤
⌘

� q

2

�1

4

, � = �

⇤
⌘

1�2q

. (2.53)

The leading order terms of the characteristic equation (2.17) are

�m

⇤
8

1

3
+m

⇤
4

�

⇤
(1� ⌫

2)� �

⇤

4(1� ⌫

2) = 0. (2.54)

Including the next order terms of relative order ⌘
3

4

�9q

2 [⌘m2] and ⌘1
3

4

�3q

2 [1/m2]

gives

� 1

3
[m

⇤
8 � 4m

⇤
6

�

⇤

2 +2m
⇤
6] + �

⇤
(1� ⌫

2)[m
⇤
4 � 2m

⇤
2

�

⇤

2 �m

⇤
2]� �

⇤

4(1� ⌫

2) = 0. (2.55)

The next relative order terms ⌘
3

2

�9q [⌘2m4], ⌘2
1

4

�13q

1

2 [⌘3m6] and ⌘4�8q [⌘4m8] can

be taken into account to obtain

� 1

3
[(m

⇤
2 � �

⇤

2)4 + 2m
⇤
6] + �

⇤
(1� ⌫

2)[(m
⇤
2 � �

⇤

2)2 �m

⇤
2]� �

⇤

4(1� ⌫

2) = 0. (2.56)

This is the simplest expression of the leading order terms for super-low frequency

vibration, and q satisfies the range

0 < q <

1

2

. (2.57)
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2.3.2 Asymptotics for Problem 2A

The asymptotics for this problem are obtained from Kaplunov et al. (1998)

and Kaplunov et al. (1999).

Flexural Vibration (

1

2

 q < 1):

n = n

⇤
⌘

�q

, r = r

⇤
⌘

�q

, � = �

⇤
⌘

2�4q

,

u = u

⇤
⌘

q

, v = v

⇤
⌘

q

, w = w

⇤
⌘

0

.

(2.58)

Extensional Vibration (q � 0):

n = n

⇤
⌘

�q

, r = r

⇤
⌘

�q

, � = �

⇤
⌘

�2q

,

u = u

⇤
⌘

�q

, v = v

⇤
⌘

q

, w = w

⇤
⌘

0

.

(2.59)

Super-Low Frequency (0  q <

1

2

):

n = n

⇤
⌘

�q

, r = r

⇤
⌘

1
2�2q

, � = �

⇤
⌘

2�4q

,

u = u

⇤
⌘

1
2
, v = v

⇤
⌘

q

, w = w

⇤
⌘

0

.

(2.60)

The asymptotic analysis in Problem 2A applied to the system of equations

(2.27) that are used in conjuction with a numerical scheme can be found in

Kaplunov et al. (1999).
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2.4. FLEXURAL VIBRATIONS

2.4 Flexural Vibrations

Substituting the leading order asymptotic behaviour from subsection (2.5.1)

into the governing equations (2.12) and considering analysis of the leading order

displacements, it is found that

u = u

⇤
⌘

q

, v = v

⇤
⌘

q

, w = w

⇤
⌘

0

. (2.61)

This means that the transverse displacements to the mid-surface � are larger,

and the tangential displacements of the mid-surface are smaller.

Substituting the leading order behaviours into the governing equations (2.12)

yields

u

⇤

✓
1� ⌫

2

◆
m

2

⌘

�q + �(1� ⌫

2)⌘2�3q � �

2

⌘

�q

�
+ v

⇤

✓
1 + ⌫

2

◆
i�m⌘�q

�

+ w

⇤

⇥
i⌫�⌘�q

⇤
= 0,

(2.62a)

u

⇤


im�

✓
1 + ⌫

2

◆
⌘

�q

�
+ v

⇤

"
m

2

✓
⌘

2

3
+ 1

◆
⌘

�q + �(1� ⌫

2)⌘2�3q

� �

2

✓
1� ⌫

2
� 2⌘2

3
(1� ⌫)

◆
⌘

�q

#

+ w

⇤


m

3

✓
�⌘

2

3

◆
⌘

�3q +m

✓
⌘

�q + �

2

⌘

2�3q

3
(2� ⌫)

◆�
= 0,

(2.62b)

u

⇤

⇥
�i�⌫⌘0

⇤
+ v

⇤


m

3

✓
⌘

2�2q

3

◆
�m

✓
⌘

0 + �

2

⌘

2�2q

3
(2� ⌫)

◆�

+ w

⇤


m

4

✓
�⌘

2�4q

3

◆
+m

2

✓
�

2

2⌘2�4q

3

◆
+ �(1� ⌫

2)⌘2�4q � �

4

⌘

2�4q

3
� ⌘

0

�
= 0.

(2.62c)

Neglecting lower order terms and keeping only leading order terms, system (2.63)

becomes,

u

⇤

✓
1� ⌫

2

◆
m

2 � �

2

�
⌘

�q + v

⇤

✓
1 + ⌫

2

◆
i�m

�
⌘

�q + w

⇤
[i⌫�] ⌘�q = 0, (2.63a)

u

⇤


im�

✓
1 + ⌫

2

◆�
⌘

�q + v

⇤

"
m

2 � �

2

✓
1� ⌫

2

◆#
⌘

�q + w

⇤
[m] ⌘�q = 0, (2.63b)

w

⇤


m

4

✓
�1

3

◆
+m

2

✓
�

2

2

3

◆
+ �(1� ⌫

2)� �

4

3

�
⌘

2�4q = 0. (2.63c)
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The equation (2.63c) is analogous to the governing equation of the Rayleigh-

type flexural wave on a plate (1.7), and equations (2.63a) and (2.63b) can be used

to find U and V .

Now substituting (2.61) and (2.43) into the boundary conditions (2.33) gives b(1A)

ij

as

b

(1A)

1j

= [u
j

⇤
i⌫�

⇤
� v

j

⇤
m

j

⇤
� w

j

⇤
]⌘0 ,

b

(1A)

2j

= [�u

j

⇤
m

j

⇤
+ v

j

⇤
i�
⇤
]⌘0 ,

b

(1A)

3j

= �v

j

⇤
m

j

⇤
⌘

0 + w

j

⇤
(⌫�2 +m

j

⇤

2)⌘�2q

,

b

(1A)

4j

= v

j

⇤
[m

j

⇤

2 � 2(1� ⌫)�
⇤

2]⌘2�5q + w

j

⇤
[(2� ⌫)m

j

⇤
�

⇤

2 �m

j

⇤

3]⌘�3q

.

Eliminating the lower order terms leaves

b

(1A)

1j

= w

⇤
[⌫�

⇤

2 +m

⇤
2] , (2.64a)

b

(1A)

2j

= w

⇤
[(2� ⌫)m

⇤
�

⇤

2 �m

⇤
3] . (2.64b)

Where (2.64a) and (2.64b) are the same as the free boundary conditions (1.3) of

flexural waves in a plate. From subsection 1.2.1 the solution to this problem is

W = we

i�⇠(e�m1 + Ce

�m2 ), (2.65)

and the frequency equation is

� =
⌘

2

�

4

⇣
3⌫ � 1 + 2

p
(1� ⌫)2 + ⌫

2

⌘

3(1 + ⌫)
. (2.66)
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2.4. FLEXURAL VIBRATIONS

2.4.1 Numerical Results

In all results sections we refer to the numerically found frequency as �ex and

the asymptotically found frequency as �as. All results in this section use a thick-

ness of ⌘ = 0.01, and each figure displays the numerical value of the smallest root,

m and r, of the asymptotic and numerical forms (m
as

and r

as

are the same) to

illustrate their e↵ect on decay of the wave. In addition, the graphs of displace-

ment will only show the transverse displacement W in red, and the asymptotic

displacement with a red dashed line.

Comparing the asymptotic with the numerical results, Figures 2.3c and 2.3d

show the forms of the flexural edge wave for parameters �, n = 40 ⇠ ⌘

�4

5 and

⌫ = 0.45. The displacements decay smoothly with no sign change, and the

asymptotics are very accurate. Figures 2.3a and 2.3b for Poisson ratio of ⌫ =

0.495, close to that of incompressible material, show more rapid decay over a

shorter distance, whereas in Figures 2.4c and 2.4d for ⌫ = 0.2 the decay is slower

and over a longer distance. Figure 2.5 shows percentage error plots between

asymptotic and numeric displacements for the cases shown in Figures 2.3 and

2.4. The dark red lines are the percentage errors in Problem 1A, and the blue

lines are the percentage errors in Problem 2A . The results show that for � ⇠ ⌘

� 4
5

the percentage error in Problem 1A drastically increases as ⌫ ! 0.2, and there is

no significant di↵erence between Figures 2.5c and 2.5d for ⌫ = 0.45 and ⌫ = 0.495.

Figure 2.6 shows three graphs for each problem with �/n = 30 ⇠ ⌘

�3

4 and

di↵erent ⌫ displayed under each graph. It is clear again that the asymptotics are

less accurate for smaller ⌫. The graph for ⌫ = 0.495 has been omitted as there is

no significant di↵erence with the graph of ⌫ = 0.45.

The results indicate that in Problem 1A the rate of decay of the numerical line

is more rapid than the asymptotic one when compared to Problem 2A. Examining

the rootsm and r of the characteristic equations for both problems, we see a larger

di↵erence in Problem 1A corresponding to the larger percentage errors. The

asymptotics remain accurate for Problem 2A in all cases within the applicable

range of parameters. This seems to indicate that the curvature increases the rate

of decay in Problem 1A more than expected, whereas in Problem 2A curvature

has less e↵ect and the asymptotics remain accurate.
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Figure 2.3: Asymptotic and numeric forms for the flexural edge waves of Problems

1A in the left column, and 2A in the right column, with given fixed parameters

⌘ = 0.01, �/n = 40, and for (a) and (b) ⌫ = 0.495, and (c) and (d) ⌫ = 0.45.
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Figure 2.4: Asymptotic and numeric forms for the flexural edge waves of Problems

1A in the left column, and 2A in the right column, with given fixed parameters

⌘ = 0.01, �/n = 40, and for (a) and (b) ⌫ = 0.3, and (c) and (d) ⌫ = 0.2.
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(c) ⌫ = 0.45
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(d) ⌫ = 0.495

Figure 2.5: Percentage error between asymptotic and numeric forms for the flex-

ural edge waves of Problem 1A in dark red and Problem 2A in blue, with fixed

parameters ⌘ = 0.01, �/n = 40, and ⌫ shown below each graph.
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Figure 2.6: Asymptotic and numeric forms for the flexural edge waves of Problems

1A in the left column, and 2A in the right column, with given fixed parameters

⌘ = 0.01, �/n = 30, and for ⌫ shown below each graph.
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(b) ⌫ = 0.3
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(c) ⌫ = 0.45

Figure 2.7: Percentage error between asymptotic and numeric forms for the flex-

ural edge waves of Problem 1A in dark red and Problem 2A in blue, with fixed

parameters ⌘ = 0.01, �/n = 30, and ⌫ shown below each graph.
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Some relevant numerical data are presented in table 2.1.

Table 2.1: Natural Frequencies with ⌘ = 0.01, and ⌫ = 0.3.

�, n 1A �

ex 2A �

ex Asymptotic �as

25 14.975647 14.179650 14.25435
30 30.319554 29.437033 29.557826
40 94.202452 93.210426 93.417329
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2.5. EXTENSIONAL VIBRATIONS

2.5 Extensional Vibrations

Using the asymptotics from subsection 2.5.1 to analyse the governing system

(2.12) yields

U = u

⇤
⌘

�q

, V = v

⇤
⌘

�q

, W = w

⇤
⌘

0

. (2.67)

Which corresponds to the tangential displacements of the mid-surface being the

leading order displacements.

Substituting (2.67) and (2.50) into the governing equations gives

u

⇤


m

⇤
2

✓
1� ⌫

2

◆
+ �

⇤
(1� ⌫

2)� �

⇤

2

�
⌘

�3q + v

⇤


im

⇤
�

⇤

✓
1 + ⌫

2

◆�
⌘

�3q

+ w

⇤
[i�

⇤
⌫]⌘�q = 0,

(2.68a)
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
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⇤
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⇤

✓
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2

◆�
⌘

�3q + v

⇤

"
m

⇤
2

✓
⌘

2

3
+ 1

◆
+ �

⇤
(1� ⌫

2)

� �

⇤

2

✓
1� ⌫

2
� 2⌘2

3
(1� ⌫)

◆#
⌘

�3q

+ w

⇤


m

⇤
3

✓
�1

3

◆
⌘

2�3q +m

⇤

✓
⌘

�q + �

⇤

2

1

3
(2� ⌫)⌘2�3q

◆�
= 0,

(2.68b)
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
�i�

⇤
⌫

�
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⇤


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⇤
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✓
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2
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◆
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2�3q �m

⇤

✓
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⇤
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✓
�1
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◆
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✓
�

⇤

2

2

3

◆
⌘

2�4q + �

⇤
(1� ⌫

2)⌘�2q �
�

⇤
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3
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3
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(2.68c)

Keeping leading order terms gives

u

⇤


m

⇤
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✓
1� ⌫

2

◆
+ �

⇤
(1� ⌫

2)� �

⇤

2

�
+ v


im

⇤
�

⇤

✓
1 + ⌫

2

◆�
= 0, (2.69a)

u

⇤


im

⇤
�

⇤

✓
1 + ⌫

2

◆�
+ v

"
m

⇤
2 + �

⇤
(1� ⌫

2)� �

⇤

2

✓
1� ⌫

2

◆#
= 0, (2.69b)

u

⇤


�i�

⇤
⌫

�
+ v

h
�m

⇤

i
+ w

h
�

⇤
(1� ⌫

2)
i
= 0. (2.69c)

Equations (2.69a) and (2.69b) are the leading order equations and are analogous

to the governing equations of the Rayleigh-type extensional waves on a plate

(1.15). Equation (2.69c) can be used to find W .

Then substituting (2.67) and (2.50) into the traction free boundary conditions
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(2.33) where
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and eliminating lower order terms leaves in particular
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Equations (4.43b) and (2.71b) are the same as the free edge boundary conditions

for extensional waves on a plate (1.16). As such a solution to this problem can

be written as
0

@ U( , ⇠)
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�iu
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mj
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and the equation for the non-dimensional frequency can be written as

(�2 � (1 + ⌫)�)2 =
p
�

2 � 2�(1 + ⌫)
p
�

2 � �(1� ⌫

2)�2. (2.73)
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2.5.1 Numerical Results

The forms of the extensional waves in this section are illustrated using green

for displacement U and blue for displacement V , with their asymptotic counter-

parts with dashed lines. Figures 2.8, 2.9, and 2.10 show that the behaviour of U

in problem 1A and V in problem 2A is very similar, with both decaying rapidly

and changing sign before tending to zero. Conversely, the behaviours of V in

problem 1A and U in problem 2A are similar, both decaying smoothly with no

change of sign. Figure 2.11 shows the percentage di↵erence between asymptotic

and numeric forms for �/n = 5 ⇠ ⌘

�1

4 , and in the first row ⌫ = 0.2 and the second

row ⌫ = 0.45. We see that the accuracy of U in Problem 1A and V in Problem

2A spikes significantly at a shorter distance from the edge. As the distance from

the edge tends to infinity the very small numbers cause numerical irregularities in

the percentage errors. The erratic behaviour that can be observed in many of the

percentage error figures is due to the e↵ect of complex numerical values. Larger

�/n and change in Poisson’s ratio can be seen in Figure 2.12 for �/n = 15 ⇠ ⌘

�2

5

with ⌫ = 0.2 and ⌫ = 0.45. These results seem to indicate that the percentage

error between asymptotic and numeric forms is much greater for smaller edge

wave numbers, in particular �/n < 10 ⇠ ⌘

�1

3 .
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(f) n = 15

Figure 2.8: Asymptotic and numeric forms for the extensional edge waves of

Problems 1A in the left column, and 2A in the right column, with given fixed

parameters ⌘ = 0.001, ⌫ = 0.02, and ⌫ displayed under each graph.
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(f) n = 15

Figure 2.9: Asymptotic and numeric forms for the extensional edge waves of

Problems 1A in the left column, and 2A in the right column, with given fixed

parameters ⌘ = 0.001, ⌫ = 0.3, and �/n are displayed below each graph.
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(f) n = 15

Figure 2.10: Asymptotic and numeric forms for the extensional edge waves of

Problems 1A in the left column, and 2A in the right column, with given fixed

parameters ⌘ = 0.001, ⌫ = 0.45, and �/n displayed below each graph.
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(c) ⌫ = 0.45
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(d) ⌫ = 0.45

Figure 2.11: Percentage error between asymptotic and numeric forms for the

extensional edge waves of Problems 1A in the left column, and 2A in the right

column, with given fixed parameters ⌘ = 0.001, �/n = 5, and ⌫ displayed below

each graph.
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(b) ⌫ = 0.2
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(c) ⌫ = 0.45
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(d) ⌫ = 0.45

Figure 2.12: Percentage error between asymptotic and numeric forms for the

extensional edge waves of Problems 1A in the left column, and 2A in the right

column, with given fixed parameters ⌘ = 0.001, �/n = 15, and ⌫ displayed below

each graph.

Table 2.2 gives some relevant numerical data about the natural frequencies

for the parameters ⌘ = 0.001 and ⌫ = 0.3.

Table 2.2: Natural Frequencies with ⌘ = 0.001, and ⌫ = 0.3

�, n 1A �

ex 2A �

ex Asymptotic �as

5 8.197372 8.197371 8.071620
10 32.410630 32.994823 32.286483
15 72.768512 72.837266 72.644588
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2.6 Super-Low Frequency Vibration

Taking into account the asymptotic behaviours from subsection 2.3.1 with the

governing equations (2.12) and analysing the orders of the displacements gives

U = u

⇤
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1
2
, V = v

⇤
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1
4+

q
2
, W = w

⇤
⌘

0

. (2.74)

Substituting (2.74) into (2.12) gives
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Introducing the notation
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for convenience and neglecting terms O(⌘
3
2�q), and smaller terms of ⌘✏, ⌘✏2, ⌘2

and ⌘2✏, gives
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In the last line of the above equation the terms of order ✏3 and ✏4 are retained in

order to test their influence in the asymptotics. Keeping only the leading order

terms, the characteristic equation is then
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This equation is the same as (2.54). A solution takes the form
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whereby using (2.77) it is possible to write u
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The constants C
i

are found from the boundary conditions (2.33). Applying the

asymptotic terms to the traction free boundary conditions at  = 0 in which
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or taking into account (2.80) and (2.81) and neglecting terms O(⌘✏), (2.82) can
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2.6. SUPER-LOW FREQUENCY VIBRATION

In comparison with the asymptotics of the super-low frequency Problem 2A

investigated in Kaplunov et al. (1999), it has not yet been possible to find an

explicit frequency equation for Problem 1A. Instead, the asymptotics investigated

thus far will be solved using a numerical scheme and compared with the exact

numerical results.
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2.6. SUPER-LOW FREQUENCY VIBRATION

2.6.1 Numerical Results

In this results subsection an additional red dotted line will be used to illustrate

the form of the asymptotic approximate result which uses the leading order terms

plus some additional smaller ones. A red dashed line will be used to illustrate

the approximate forms found by applying a numerical scheme to the asymptotic

equations. The graphs for Problem 2A have been omitted as they do not show

any significant divergence between asymptotic and numeric forms.

Figure 2.13 shows the numerical and approximate results of problem 1A for

⌘ = 0.001, � = 2 ⇠ ⌘

� 1
10 and ⌫ = 0.3. The displacements decay and oscillate

as they approach zero, with the leading order approximate line decaying more

rapidly.

Figure 2.14 is for � = 5 ⇠ ⌘

� 1
4 . There is greater di↵erence between the approx-

imate and numeric forms with the wave decaying more rapidly. The percentage

error for this case is shown in figure 2.15.

Figure 2.13: Asymptotic approximate and numeric form for the super-low fre-

quency edge wave of Problem 1A with fixed parameters ⌘ = 0.001, ⌫ = 0.3, and

� = 2
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2.6. SUPER-LOW FREQUENCY VIBRATION

Figure 2.14: Asymptotic approximate and numeric forms for the super-low fre-

quency edge wave of Problem 1A with fixed parameters ⌘ = 0.001, ⌫ = 0.3, and

� = 5.
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Figure 2.15: Percentage error between asymptotic approximate and numeric form

for the super-low frequency edge wave of Problem 1A with fixed parameters

⌘ = 0.001, ⌫ = 0.3, and � = 5.

Taking a larger wavenumber, this time � = 10 ⇠ ⌘

� 1
3 , the results in Figure

2.16 show that the wave decays quicker as � increases. The percentage error for
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2.6. SUPER-LOW FREQUENCY VIBRATION

this case is shown in Figure 2.17.

Figure 2.16: Asymptotic approximate and numeric form for the super-low fre-

quency edge wave of Problem 1A with fixed parameters ⌘ = 0.001, ⌫ = 0.3, and

� = 10.
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Figure 2.17: Percentage error between asymptotic approximate and numeric form

for the super-low frequency edge wave of Problem 1A with fixed parameters

⌘ = 0.001, ⌫ = 0.3, and � = 10.
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2.6. SUPER-LOW FREQUENCY VIBRATION

Table 2.3 lists some relevant numerical data with fixed parameters ⌘ = 0.001

and ⌫ = 0.3.

Table 2.3: Natural Frequencies with ⌘ = 0.001, and ⌫ = 0.3

�, n 1A �

ex 2A �

ex 1A Asymptotic �as 2A Asymptotic �as

2 0.000625 0.00000264 0.00000264 0.000653

5 0.004843 0.00020285 0.00020287 0.004797

10 0.02484 0.0035422 0.0035546 0.02362
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Chapter 3

Vibration of a Thin Finite

Cylindrical Shell

3.1 Statement of the Problem

In this chapter Problems 1A and 2A are modified by the addition of a second

edge in the circumferential direction in 1A and the longitudinal direction in 2A,

thereby the panels become finite in the direction of decay of the waves. Free

and then fixed boundary conditions will be imposed on the second edge, and

the numerical results will be compared with the results from chapter 2. These

problems will be called problems 1B and 2B.

3.1.1 Problem 1B

Problem 1A is modified so that the e↵ect of a second longitunal edge at a

finite circumferential distance from the first will be taken into account. The mid-

surface � now occupies the domain 0     

1

and �1 < ⇠ < 1. The edge

at  = 0 remains free, and on the second edge at  =  

1

either traction free or

fixed boundary conditions will be imposed.

The governing equations and free boundary conditions at  = 0 are the same

as (2.12) and (2.20) in subsection 2.2.1, and the free or fixed boundary conditions

at  =  

1

are
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3.1. STATEMENT OF THE PROBLEM

Figure 3.1: Cylinder...
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@ @⇠

2

= 0,

(3.1)

or

U = 0, V = 0, W = 0,
dW

d 

= 0. (3.2)

The same notation is used as in chapter 2.

3.1.2 Problem 2B

Problem 2A is now similarly modified so that the e↵ect of a second circum-

ferential edge at a finite longitudinal distance from the first will be taken into

account. The mid-surface � now occupies the domain 0  ⇠  ⇠

1

and 0    2⇡.

The circumferential edge at ⇠ = 0 remains free, and on the second edge at ⇠
1

either

traction free or fixed boundary conditions will be imposed.

Figure 3.2: Cylinder...

As before, the governing equations and free boundary conditions at ⇠ = 0 are

the same as (2.27) and (2.34) in subsection 2.2.2, and the free or fixed boundary
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3.2. EXACT SOLUTION

conditions at ⇠ = ⇠

1

are
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(3.3)

or

U = 0, V = 0, W = 0,
dW

d⇠

= 0. (3.4)

3.2 Exact Solution

3.2.1 Problem 1B

A solution to this problem can now be written as

0

BBB@

U( , ⇠)

V ( , ⇠)

W ( , ⇠)

1

CCCA
=

8X

i=1

c̃

i

0

BBB@

u

i

v

i

w

i

1

CCCA
e

�⇠i�mi 
, (3.5)

where for computational convenience

c̃

i

=

8
><

>:

c

i

for i = 1..4

c

i

e

mi 1 for i = 5..8,
(3.6)

and

m

i

=

8
><

>:

<(m
i

) > 0, or if <(m
i

) = 0 then =(m
i

) > 0 for i = 1..4,

<(m
i

) < 0, or if <(m
i

) = 0 then =(m
i

) < 0 for i = 5..8.
(3.7)

A similar procedure to chapter 2 is followed in substituting (3.5) into (2.4),

however this gives an eigenmatrix inm of order 8x8. Once the roots and constants

are found, these must then be substituted into the boundary conditions, giving

a more complicated eigenmatrix of 16x16. The solution to this problem, taking

into account the second longitudinal edge, can only be numerically computed.
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3.2. EXACT SOLUTION

3.2.2 Problem 2B

A possible solution to this problem takes the form

0
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U( , ⇠)
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where again for computational convenience
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8
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c

i
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c

i

e

ri⇠1 for i = 5..8,
(3.9)

and

r

i
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8
><
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<(r
i

) > 0, or if <(r
i

) = 0 then =(r
i

) > 0 for i = 1..4,

<(r
i

) < 0, or if <(r
i

) = 0 then =(r
i

) < 0 for i = 5..8.
(3.10)

This also leads to two eigenvalue problems, the first of order 8x8 in r, which

leads to the essential eigen problem using the boundary conditions, to be solved

numerically.

64



3.3. NUMERICAL RESULTS FOR FLEXURAL VIBRATION

3.3 Numerical Results for Flexural Vibration

3.3.1 Free-Free

Figures 3.3 and 3.4 illustrate the comparison between both problems 1B and

2B and their asymptotics, for ⌘ = 0.01, ⌫ = 0.45, � = 30 and length  , ⇠ = 4.

The asymptotics work very well here and the dashed lines are hardly visible.

Figure 3.3: 1B

Figure 3.4: 2B
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3.3. NUMERICAL RESULTS FOR FLEXURAL VIBRATION

Table 3.1 shows the exact frequencies of Problems 1B and 2B for ⌘ = 0.01,

⌫ = 0.3 and � = 30. The panel length  in Problem 1B, and shell length ⇠

in Problem 2B are varied from 1 to 4. The errors ✏
1

and ✏

2

are the di↵erence

between the frequencies of 1A,2A and 1B,2B.

Table 3.1: Natural Frequencies, ⌘ = 0.01, ⌫ = 0.3, and � = 30

 , ⇠ 1B �

ex 2B �

ex

1 30.552841 29.354299

2 30.333525 29.428899

3 30.320804 29.447651

4 30.319437 29.447652

Figure 3.5: 1A

Figures 3.5 and 3.6 show the asymptotics and numerics for a length of  , ⇠ = 3

with ⌘ = 0.01, ⌫ = 0.3 and � = 30 in Problems 1B and 2B.
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3.3. NUMERICAL RESULTS FOR FLEXURAL VIBRATION

Figure 3.6: 2B

Examining a slightly longer distance of  , ⇠ = 4 in Figures (3.7) and (3.8)

shows that the asymptotics improves for 2B but not for 1B.

Figure 3.7: 1B
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3.3. NUMERICAL RESULTS FOR FLEXURAL VIBRATION

Figure 3.8: 2B

The e↵ect of changing edge wavelength is minimal on the behaviour of vibra-

tion in 1B, as � and � increase, the vibration decays slightly slower. However in

2B the increase in edge wavelength increases the rate of decay.
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3.3. NUMERICAL RESULTS FOR FLEXURAL VIBRATION

3.3.2 Free-Fixed

For larger � there is more accuracy between asymptotics and numerics so it

is not necessary to visit graphs of � = 40 again. Figure 3.9 for � = 25 ⇠ ⌘

� 2
3

and  , ⇠ = 1 shows a smooth decay to the fixed edge of the numerics, however as

expected the asymptotics are not so accurate.

Figure 3.9: 1B

Similarly, Figure (3.10) for 2B shows the influence of the second fixed edge on

on the decay of the solution. Although decay is smooth, the fixed edge has some

e↵ect. Longer distances improve the accuracy of the asymptotics for Problem 2B,

but not so for Problem 1A.
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3.3. NUMERICAL RESULTS FOR FLEXURAL VIBRATION

Figure 3.10: 1B

Figures (3.11) and (3.12) show a shorter and longer length of  , ⇠ = 0.5 and

 , ⇠ = 2. It is clear that in all cases the decay is smooth and the e↵ect of the

fixed edge decreases as length increases. For problem 2B the asymptotics work

well.

Figure 3.11: 1B
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3.3. NUMERICAL RESULTS FOR FLEXURAL VIBRATION

Figure 3.12: 2B
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3.4. NUMERICAL RESULTS FOR EXTENSIONAL VIBRATION

3.4 Numerical Results for Extensional Vibra-

tion

3.4.1 Free-Free

The results for extensional vibration observed in the previous chapter showed

that the graphs are pretty similar. When a second free edge is introduced, al-

though frequencies slightly di↵er, the leading order asymptotic forms remain ac-

curate. For this section one graph per case will be shown as the graphs for

Problems 1B and 2B are very visibily similar. Where in the legends of the graphs

it is written ‘numeric,asymptotic U, V ’ it means that the corresponding line is U

for Problem 1B and V for Problem 2B, and visa versa. They are not the same,

but only visibily similar.

Figure 3.13: 1C

Figure (3.13) with ⌘ = 0.001, ⌫ = 0.3, � = 15 ⇠ ⌘

2
5 and  , ⇠ = 0.8, shows that

the asymptotics are accurate within a short length, however within this distance

the second boundary has a large e↵ect. When the length of the panel is increased

to  , ⇠ = 3 the asymptotics become more accurate as seen in Figure 3.14. In fact,

the dashed asymptotic lines cannot even be seen.
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3.4. NUMERICAL RESULTS FOR EXTENSIONAL VIBRATION

Figure 3.14: 1B and 2B

3.4.2 Free-Fixed

Fixed boundary conditions on the other edge do not significantly a↵ect the

di↵erence between the leading order extensional vibration for 1B and 2B. Figure

3.15 is for � = 15 and  , ⇠ = 0.4. Although this is a very short length, close to

 , ⇠ = 0 the asymptotics are reliable.

Figure 3.15: 1B and 2B
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3.4. NUMERICAL RESULTS FOR EXTENSIONAL VIBRATION

For a longer panel length of  , ⇠ = 1.5, Figure 3.16 shows that the asymptotics

are very accurate.

Figure 3.16: 1B and 2B
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3.5. NUMERICAL RESULTS FOR SUPER-LOW FREQUENCY

3.5 Numerical Results for Super-Low Frequency

3.5.1 Free-Free

In the previous chapter it was seen that the curvature of the panel greatly

increases the decay of the wave in Problem 1A, whereas in Problem 2A without

the e↵ect of curvature the decay is much slower in comparison. Figure (3.17)

shows the e↵ect of the second free edge on the super-low frequency vibration at

a length of  , ⇠ = 1, with ⌘ = 0.001, ⌫ = 0.3 and � = 10.

Figure 3.17: Asymptotic approximate and numeric form for the super-low fre-

quency edge wave of Problem 1B with fixed parameters ⌘ = 0.001, ⌫ = 0.3, and

� = 10
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3.5. NUMERICAL RESULTS FOR SUPER-LOW FREQUENCY

Figure 3.18: Asymptotic approximate and numeric form for the super-low fre-

quency edge wave of Problem 1B with fixed parameters ⌘ = 0.001, ⌫ = 0.3, and

� = 10

Figure 3.18 for similar values to before, except with  , ⇠ = 0.5 and  , ⇠ = 1.4.

As was found in subsection 2.5.3, changes in ⌫ in Problem 1A had very little

e↵ect on the form of W . Again the same result is observed here.

For the same values of ⌫, ⌘ and �, but a shell length of ⇠ = 11, Figures 3.19

for ⇠ = 5 and 3.20 for ⇠ = 11 show that the asymptotics are reasonably accurate

over short shell lengths. Although both numeric and asymptotic curves seem

to decay at a similar rate, the numerics indicate that there is some behaviour

very close to the boundaries which a↵ects the initial decay. This could be due

to numerical error. As the shell length increases, however, the asymptotic and

numeric lines become closer. Furthermore, results with change of ⌫ do not a↵ect

the wave much.
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3.5. NUMERICAL RESULTS FOR SUPER-LOW FREQUENCY

Figure 3.19: Asymptotic approximate and numeric form for the super-low fre-

quency edge wave of Problem 2B with fixed parameters ⌘ = 0.001, ⌫ = 0.3, and

� = 10

Figure 3.20: 2B
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3.5. NUMERICAL RESULTS FOR SUPER-LOW FREQUENCY

3.5.2 Free-Fixed

Figure 3.21 is for � = 10 and  = 0.7. All results here are similar to this and

subsection 2.5.3 due to the rapid decay of the wave in Problem 1A.

Figure 3.21: 1A
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Chapter 4

Interfacial Vibration of

Composite Cylindrical Shell

4.1 Statement of the Problem

In this chapter Problems 1A and 2A are extended by considering a simplified

formulation of free interfacial vibration occuring at the join, or perfect bond, of

two non homogeneous cylindrical panels of the same curvature and thickness but

di↵erent material properties, without taking into account the e↵ects of a second

edge on both smaller panels. These formulations will be called Problem 1C and

2C.

4.1.1 Problem 1C

Consider free harmonic vibrations of a circumferentially non homogeneous,

infinite, isotropic, cylindrical panel which is composed of two panels of the same

curvature and thickness which are perfectly bonded at their respective longitu-

dinal edges, and are each homogeneous and isotropic. The surface is composed

of two surfaces �
1

and �
2

which occupy the domains 0   < a, �1 < ⇠ < 1

and �b <   0, �1 < ⇠ < 1 respectively. The values a and b are constant,

and in this simplified set up similar to problem 1A, assume that a ! 1 and

b ! �1. The panels corresponding to �
1

and �
2

will be called panels 1 and

2 respectively. The non homogeneous panel that is formed is infinite in the cir-

cumferential direction, with one edge which is located at the interface  = 0.
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4.1. STATEMENT OF THE PROBLEM

The waves are localised at the perfect join, propagate along the longitudinal edge

and decay in the circumferential direction away from the join in the positive and

negative circumferential directions. In this simplified set up in which the e↵ect of

a second and third longitudinal edge, which make the panel finite, are not taken

into account. However, as the waves are localised at the longitudinal join, this

does become a good approximation as the circumferential length becomes large

and the waves are localised at the join  = 0 and decay to infinity.

Figure 4.1

4.1.2 Problem 2C

This problem is studied in Kaplunov and Wilde (2002) and is replicated here

for comparison. The authors considered free harmonic vibrations of a longitudi-

nally non homogeneous, isotropic, infinite circular cylindrical shell composed of

two semi-infinite homogeneous shells of the same curvature and thickness, which

are perfectly joined together at their respective circumferential edges, and are

each homogeneous, isotropic, and semi-infinite in the longitudinal direction. The

mid-surface � occupies the domain �1 < ⇠ < 1 and 0    2⇡. The panel

corresponding to ⇠ � 0 will be called panel 1, and the panel corresponding to

⇠  0 will be called panel 2. The non homogeneous panel which is formed is

infinite in its longitudinal direction with one edge which is located at the inter-

face at ⇠ = 0. The waves are localised at the perfect join, propagate along the

circumferential edge and decay in the longitudinal direction away from the join

in both the positive and negative longitudinal directions, ⇠ ! ±1.
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4.1. STATEMENT OF THE PROBLEM

Figure 4.2

4.1.3 Equations of Motion

The governing equations from the Kirchho↵-Love theory of shells (2.4) can be

rewritten as
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(4.3)

where superscript k = 1, 2 corresponds to panels 1 and 2 respectively, and non-

dimensional frequency � and the material parameter ⇢ are defined as

� =
⇢

(1)

!

2

R

2

E

(1)

, ⇢

(k) = E
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, (4.4)

where

E

(k)

=
E

(1)

E

(k)

. (4.5)

All other parameters are as chapter 2 except that they are now with superscript

k.
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4.1. STATEMENT OF THE PROBLEM

4.1.4 Perfect Contact Boundary Conditions

Problem 1C

The boundary conditions at  = 0, the join between panels 1 and 2 at their

respective longitudinal edges are written as
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bd1(1) � bd1(2) = 0, bd2(1) � bd2(2) = 0, bd3(1) � bd3(2) = 0, bd4(1) � bd4(2) = 0,

(4.7)
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bd1(k) =
1

(1� ⌫

(k)

2)E
(k)

✓
⌫

(k)

@U

(k)

@⇠

+
@V

(k)

@ 

�W

(k)

◆
,

bd2(k) =
1

2(1 + ⌫

(k))E
(k)

✓
@U

(k)

@ 

+
@V

(k)

@⇠

◆
,

bd3(k) =
⌘

2

3(1� ⌫

(k)

2)E
(k)

✓
@V

(k)

@ 

+
@

2

W

(k)

@ 

2

+ ⌫

(k)

@

2

W

(k)

@⇠

2

◆
,

bd4(k) =� ⌘

2

3(1� ⌫

(k)

2)E
(k)

✓
@

2

V

(k)

@ 

2

+ 2(1� ⌫

(k))
@

2

V

(k)

@⇠

2

+
@

3

W

(k)

@ 

3

+ (2� ⌫

(k))
@

3

W

(k)

@ @⇠

2

◆
,

and with E

(k)

= E

(1)

E

(k) .

Problem 2C

At the join between the respective circumferential edges of the two panels,

⇠ = 0, boundary conditions for perfect contact take the form

U

(1) � U

(2) = 0, V

(1) � V

(2) = 0, W

(1) �W

(2) = 0,
@W

(1)

@⇠

� @W

(2)

@⇠

= 0,

(4.8)

bd1(1) � bd1(2) = 0, bd2(1) � bd2(2) = 0, bd3(1) � bd3(2) = 0, bd4(1) � bd4(2) = 0,

(4.9)
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4.2. EXACT SOLUTION

where the following notation is used

bd1(k) =
1

(1� ⌫

(k)

2)E
(k)

✓
@U

(k)

@⇠

+ ⌫

(k)

@V

(k)

@ 

� ⌫

(k)

W

(k)

◆
,

bd2(k) =
1

2(1 + ⌫

(k))E
(k)

✓
@U

(k)

@ 

+
@V

(k)

@⇠

+
2

3
⌘

2

✓
@V

(k)

@⇠

+
@

2

W

(k)

@ @⇠

◆◆
,

bd3(k) =
⌘

2

3(1� ⌫

(k)

2)E
(k)

✓
⌫

(k)

@V

(k)

@ 

+
@

2

W

(k)

@⇠

2

+ ⌫

(k)

@

2

W

(k)

@ 

2

◆
,

bd4(k) =� ⌘

2

3(1� ⌫

(k)

2)E
(k)

✓
(2� ⌫

(k))
@

2

V

(k)

@⇠@ 

+
@

3

W

(k)

@⇠

3

+ (2� ⌫

(k))
@

3

W

(k)

@ 

2

@⇠

◆
,

4.2 Exact Solution

4.2.1 Problem 1C

A possible solution to the governing equation (4.3) can be written as

0

BBB@

U

(k)( , ⇠)

V

(k)( , ⇠)

W

(k)( , ⇠)

1

CCCA
=

0

BBB@

u

(k)

v

(k)

w

(k)

1

CCCA
e

i�⇠+(�1)

k
m

(k)
 

, (4.10)

where the longitudinal wavenumber � is given, u(k), v(k), and w

(k) are constants,

and m should satisfy (2.10) taking into account decay at 1.

Substitutingthis into (4.3) yields the linear system

u

(k)


m

(k)

2

✓
1� ⌫

(k)

2

◆
+ �⇢

(k)(1� ⌫

(k)

2

)� �

2

�

+ v

(k)


im(k)

�

✓
1 + ⌫

(k)

2

◆�
+ w

(k)[i�⌫(k)] = 0,

(4.11a)

u

(k)


im(k)

�

✓
1 + ⌫

(k)

2

◆�
+ v

(k)

"
m

(k)

2

✓
⌘

2

3
+ 1

◆
+ �⇢

(k)(1� ⌫

(k)

2

)

� �

2

✓
1� ⌫

(k)

2
� 2⌘2

3
(1� ⌫

(k))

◆#

+ w

(k)


m

(k)

3

✓
�⌘

2

3

◆
+m

(k)

✓
1 + �

2

⌘

2

3
(2� ⌫

(k))

◆�
= 0,

(4.11b)

u

(k)

⇥
�i�⌫(k)

⇤
+ v

(k)


m

(k)

3

✓
⌘

2

3

◆
�m

(k)

✓
1 + �

2

⌘

2

3
(2� ⌫

(k))

◆�
+

w

(k)


m

(k)

4

✓
�⌘

2

3

◆
+m

(k)

2

✓
�

2

2⌘2

3

◆
+ �⇢

(k)(1� ⌫

(k)

2

)� �

4

⌘

2

3
� 1

�
= 0.

(4.11c)
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4.2. EXACT SOLUTION

This system can be written in a matrix form as

M

(k)

1C

X

(k) = 0, (4.12)

where

M

(k)

1C

=

2

6664

m

(k)

2
ã+ b̃ m

(k)

c̃ �d̃

m

(k)

c̃ m

(k)

2
f̃ + r̃ �m

(k)

3
h̃+m

(k)

p̃

d̃ �m

(k)

3
h̃+m

(k)

p̃ �m

(k)

4
h̃+m

(k)

2
q̃ + s̃

3

7775
, (4.13)

X

(k) =

2

6664

u

(k)

v

(k)

w

(k)

3

7775
, (4.14)

and

ã

(k) =
1

2

�
1� ⌫

(k)

�
, b̃

(k) = �⇢

(k)

⇣
1� ⌫

(k)

2
⌘
� �

2

, c̃

(k) =
1

2
�

�
1 + ⌫

(k)

�
i,

d̃

(k) = �⌫

(k)i, f̃

(k) =
1

3
⌘

2 + 1, h̃

(k) =
1

3
⌘

2

,

p̃

(k) = 1 +
1

3
�

2

⌘

2

�
2� ⌫

(k)

�
, q̃

(k) =
2

3
�

2

⌘

2

,

r̃

(k) = �⇢

(k)

⇣
1� ⌫

(k)

2
⌘
� 1

2
�

2

�
1� ⌫

(k)

�
� 1

3
⌘

2

�

2

�
2� 2⌫(k)

�
,

s̃

(k) = �⇢

(k)

⇣
1� ⌫

(k)

2
⌘
� 1� 1

3
�

4

⌘

2

.

The equations of motion (4.11) correspond to two eigenvalue problems for the

roots m of panels 1 and 2. These must both be solved in order to formulate and

solve the more di�cult eigenvalue problem for � using the boundary conditions.

Equating the determinant of matrix M

(k)

1C

for k = 1, 2 in (4.12) to zero gives two

algebraic equations in m

(k) which corresponds to the characteristic equation

detM (k)

1C

= 0, (4.15)
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4.2. EXACT SOLUTION

where,

detM (k)

1C

= m

(k)

8
(ã(k)h̃(k)

2
+ ã

(k)

f̃

(k)

h̃

(k))

+m

(k)

6
(h̃(k)(b̃(k)h̃(k) � 2ã(k)p̃(k) + c̃

(k)

2 � b̃

(k)

f̃

(k) � ã

(k)

r̃

(k)) + ã

(k)

f̃

(k)

q̃

(k))

+m

(k)

4
(2c̃(k)d̃(k)h̃(k) � 2b̃(k)h̃(k)

p̃

(k) + ã

(k)

f̃

(k)

s̃

(k) + ã

(k)

r̃

(k)

q̃

(k) + b̃

(k)

f̃

(k)

q̃

(k)

�b̃

(k)

r̃

(k)

h̃

(k) + ã

(k)

p̃

(k)

2 � c̃

(k)

2
q̃

(k))

+m

(k)

2
(b̃(k)r̃(k)q̃(k) + b̃

(k)

f

(k)

s̃

(k) + ã

(k)

r̃

(k)

s̃

(k) � 2c̃(k)d̃(k)p̃(k)

+b̃

(k)

p̃

(k)

2
+ d̃

(k)

2
f̃

(k) � c̃

(k)

2
s̃

(k))

+b̃

(k)

r̃

(k)

s̃

(k) + d̃

(k)

2
r̃

(k)

.

(4.16)

This equation can be written as

a

(k)

8

m

(k)8 + a

(k)

6

m

(k)6 + a

(k)

4

m

(k)4 + a

(k)

2

m

(k)2 + a

(k)

0

= 0, (4.17)

where a

(k)

8

to a

(k)

0

are

a

(k)

8

=⌘2, a

6

= ⌘

2[�⇢(k)(1 + ⌫

(k))(3� ⌫

(k))� 4�2 + 2],

a

(k)

4

=2�⇢(k)
2

⌘

2(1� ⌫

(k)

2

)(1 + ⌫

(k)) + �⇢

(k)(1 + ⌫

(k))[�3�2⌘2(2� ⌫

(k))

+ ⌘

2(3 + ⌫

(k))� 3(1� ⌫

(k))]� ⌘

4

�

4

3
(1� ⌫

(k)

2

) + 6�4⌘2 � 8�2⌘2 + ⌘

2

,

a

(k)

2

=� �⇢

(k)

2

(1� ⌫

(k)

2

)(1 + ⌫

(k))(⌘2(4�2 + 2) + 3(3� ⌫

(k)))

� �⇢

(k)

(1 + ⌫

(k))

3
(�2⌘4�4(1� ⌫

(k)

2

) + ⌘

2(�9�4(3� ⌫

(k)) + 6�2(2� ⌫

(k))� 6)

� 18�2(1� ⌫

(k))� 9(1� ⌫

(k)))� 4

3
�

6

⌘

4 � 2�4⌘2(3�2 � (6� ⌫

(k)

2

))� 4�2⌘2,

a

(k)

0

=� 6�⇢(k)
3

(1� ⌫

(k)

2

)2(1 + ⌫

(k)) + �⇢

(k)

2

(1� ⌫

(k)

2

)(1 + ⌫

(k))(2�4⌘2 + 4�2⌘2(1� ⌫

(k))

� 3�2(3� ⌫

(k)) + 6) + �⇢

(k)[
1

3
(1 + ⌫

(k))�6⌘2(�4⌘2(1� ⌫

(k))� 3(3� ⌫

(k)))

� �

4(1� ⌫

(k)

2

)(4⌘2 + 3)� �

2(1� ⌫

(k)

2

)(4⌘2 + 3(3 + 2⌫(k)))].

Similarly to chapter 2, solving (4.17) yields four roots for k = 1, 2 which can then

be used to find u

(k), v(k) and w

(k). The solution to (4.11) is then
0

BBB@

U

(k)( , ⇠)

V

(k)( , ⇠)

W

(k)( , ⇠)

1

CCCA
=

4X

i

C

(k)

i

0

BBB@

u

(k)

i

v

(k)

i

w

(k)

i

1

CCCA
e

i�⇠+(�1)

k
m

(k)
i  

. (4.18)

The constants C(k)

i

are found using the boundary conditions. Substituting (4.18)

into the perfect contact boundary conditions (4.7) yields the equation

b

(1C)

ij

C

(k)

j

= 0, for i, j = 1..8, (4.19)
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4.2. EXACT SOLUTION

where

b

(1C)

1j

= bd1(1)
j

� bd1(2)
j

, b

(1C)

2j

= bd2(1)
j

� bd2(2)
j

, (4.20a)

b

(1C)

3j

= bd3(1)
j

� bd3(2)
j

, b

(1C)

4j

= bd4(1)
j

� bd4(2)
j

, (4.20b)

b

(1C)

5j

= bd5(1)
j

� bd5(2)
j

, b

(1C)

6j

= bd6(1)
j

� bd6(2)
j

, (4.20c)

b

(1C)

7j

= bd7(1)
j

� bd7(2)
j

, b

(1C)

8j

= bd8(1)
j

� bd8(2)
j

, (4.20d)

with the notation

bd1(k)
1,j

= u

(k)

j

, bd2(k)
1,j

= v

(k)

j

, (4.21a)

bd3(k)
1,j

= w

(k)

j

, bd4(k)
1,j

= w

(k)

j

(�1)km(k)

j

, (4.21b)

bd5(k)
1,j

=
1

(1� ⌫

(k)

2)E
(k)

h
u

(k)

j

(⌫(k)�i) + v

(k)

j

(�1)km(k)

j

+ w

(k)

j

i
, (4.21c)

bd6(k)
2,j

=
1

2(1 + ⌫

(k))E
(k)

h
u

(k)

j

(�1)km(k)

j

+ v

(k)

j

�i
i
, (4.21d)

bd7(k)
3,j

=
⌘

2

3(1� ⌫

(k)

2)E
(k)

h
v

(k)

j

(�1)km(k)

j

� w

(k)

j

(m(k)

2

j

� ⌫

(k)

�

2)
i
, (4.21e)

bd8(k)
4,j

= � ⌘

2

3(1� ⌫

(k)

2)E
(k)


v

(k)

j

[m(k)

2

j

� 2(1� ⌫

(k))�2]

� w

(k)

j

[�(2� ⌫

(k))(�1)km(k)

j

�

2 + (�1)km(k)

3

j

]

�
,

(4.21f)

where j = 1..4 for k = 1 and j = 5..8 for k = 2. From (4.3) the following

equation can be written

det|b(1C)

ij

| = 0. (4.22)

This is the essential eigenvalue problem for the edge wave freqency of interfacial

waves, and should be solved numerically using the roots from (4.17) and the con-

stants u(k)

j

, v(k)
j

and w

(k)

j

. The numerical scheme to solve (4.22) iterates through a

region of � where a root is predicted to lie using the asymptotics. A sign change

then occurs where the root lies, and so through further careful iteration � can be

isolated to a good accuracy.

4.2.2 Problem 2C

For the problem of vibration propagating on the circumferential edge and

decaying longitudinally, a solution to the equations of motion (2.4) can be written
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as 0

BBB@

U

(k)( , ⇠)

V

(k)( , ⇠)

W

(k)( , ⇠)

1

CCCA
=

0

BBB@

u

(k)

v

(k)

w

(k)

1

CCCA

0

BBB@

sinn 

cosn 

sinn 

1

CCCA
e

(�1)

k
r

(k)
⇠

. (4.23)

where the circumferential wavenumber n is given, u(k), v(k) and w

(k) are constants,

and the roots r are chosen using condition (2.23) and satisfying decay at 1.

Substituting this into the governing equations (4.3) gives

u

(k)


r

(k)

2 � 1� ⌫

(k)

2
n

2 + �⇢

(k)(1� ⌫

(k)

2
)

�

+ v

(k)


�1 + ⌫

(k)

2
r

(k)

n

�
+ w

(k)

⇥
�⌫(k)r(k)

⇤
= 0,

(4.24)

u

(k)


1 + ⌫

(k)

2
r

(k)

n

�
+ v

(k)


1� ⌫

(k)

2
r

(k)

2 � n

2 +
⌘

2

3

�
2(1� ⌫

(k))r(k)
2

� n

2

�
+ (1� ⌫

(k)

2
)�⇢(k)

�
+ w

(k)


⌘

2

3
n((2� ⌫

(k))r(k)
2 � n

2)� n

�
= 0,

(4.25)

u

(k)

⇥
�⌫(k)r(k)

⇤
+ v

(k)


n� ⌘

2

3
n

⇣
(2� ⌫

(k))r(k)
2 � n

2

⌘�
(4.26)

+ w

(k)


1 +

⌘

2

3
(r(k)

4 � 2n2

r

(k)

2
+ n

4)� (1� ⌫

(k)

2
)�⇢(k)

�
= 0. (4.27)

This can be written in matrix form as

M

(k)

2C

X

(k) = 0, (4.28)

where

M

(k)

2C

=

2

6664

r

(k)

2
+ b̂ �r

(k)

ĉ �r

(k)

d̂

r

(k)

ĉ r

(k)

2
f̂ + r̂ r

(k)

2
ĥ� p̂

�r

(k)

d̂ �r

(k)

2
ĥ+ p̂ r

(k)

4
t̂� r

(k)

2
q̂ + ŝ

3

7775
, (4.29)

and

b̂ = �⇢

(k)

⇣
1� ⌫

(k)

2
⌘
� 1� ⌫

(k)

2
n

2

, ĉ =
1

2
n

�
1 + ⌫

(k)

�
,

d̂ = ⌫

(k)

r

(k)

, f̂ =
1� ⌫

(k)

2
+

2

3

�
1� ⌫

(k)

�
⌘

2

, ĥ =
1

3

�
2� ⌫

(k)

�
⌘

2

n,

p̂ = n

✓
1

2
⌘

2

n

2 + 1

◆
, q̂ =

2

3
n

2

⌘

2

,

r̂ = �⇢

(k)

⇣
1� ⌫

(k)

2
⌘
� n

2

✓
1 +

1

2
⌘

2

◆
,

ŝ = 1� �⇢

(k)

⇣
1� ⌫

(k)

2
⌘
+

1

3
⌘

2

n

4

, t̂ =
1

3
⌘

2

.
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The system of equations (4.27) corresponds to two eigenvalue problems for r

for k = 1, 2. Numerically solving these two problems allows solving for the

more complicated larger eigenvalue problem for � formed using the boundary

conditions. Equating the determinant of matrix M

2C

in (2.28) to zero yields the

characteristic equation

detM (k)

2A

= 0, (4.30)

where

det|M (k)

2A

| = r

(k)

8
(f̂ t̂) + r

(k)

6
(ĉ2t̂+ b̂f̂ t̂� f̂ q̂ + r̂t̂+ ĥ

2)

+ r

(k)

4
(b̂ĥ2 + b̂r̂t̂+ 2ĉd̂ĥ+ f̂ ŝ� 2ĥp̂� b̂f̂ q̂ � d̂

2

f̂ � r̂q̂ � ĉ

2

q̂)

+ r

(k)

2
(p̂2 + b̂f̂ ŝ+ ĉ

2

ŝ+ r̂ŝ� 2b̂ĥp̂� d̂

2

r̂ � 2ĉd̂p̂� b̂r̂q̂) + p̂

2

b̂+ b̂r̂ŝ,

(4.31)

which in a simpler notation is written as

b

8

r

(k)8 + b

6

r

(k)6 + b
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2

r
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0

= 0, (4.32)

where b

8

to b

0

are given in the paperKaplunov and Wilde (2002).

The characteristic equation (4.32) is numerically solved for all roots r with

k = 1, 2, which are used to find the constants u

(k)

i

, v(k)
i

, and w

(k)

i

, enabling a

solution to (4.27) to be written in the form
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where B

(k)

i

are constants to be found by using the boundary conditions.

The main eigenvalue problem is now formulated by substituting (4.33) into

the perfect contact boundary conditions (4.9) giving

b

(2C)

ij

B

(k)

j

= 0, for i, j = 1..8, (4.34)
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where
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where j = 1..4 for k = 1 and j = 5..8 for k = 2. Equation (4.34) is the main

important eigenvalue problem. It represents a system of size 8x8 from which the

equation

det|b(2C)

ij

| = 0, (4.37)

can be solved numerically to find the non-dimensional frequency �. The asymp-

totic analysis for Problem 2C can be found in Kaplunov and Wilde (2002).
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4.3 Flexural Vibrations

The asymptotics and relations between terms are taken from subsection 2.3.1.

From section 2.4 the leading order asymptotic equation is known and can be

rewritten with as

m
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4 � 2m(k)

2
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2 + �
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3�⇢(k)(1� ⌫
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2
)
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2

. (4.38)

This equation is analogous to the governing equation of the Stoneley-type flexural

wave on a plate (1.31). As a result the solution to this equation is
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e
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k
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Also from section 2.4 the leading order boundary conditions are known, and

applying the asymptotic terms to conditions (4.6) allows writing the interfacial

boundary conditions as where bd

(1C)

ij

are

bd

(1C)

1j

= w

(1)

j

� w

(2)

j

, bd

(1C)

2j

= �w

(1)

j

m

(1)

j

� w

(2)

j

m

(2)

j

, (4.40a)

bd

(1C)

3j

= � ⌘

2

3(1� ⌫

(1)

2)E
(1)

h
w

(1)

j

(m(1)

2

j

� ⌫

(1)

�

2)
i

+
⌘

2

3(1� ⌫

(2)

2)E
(2)

h
w

(2)

j

(m(2)

2

j

� ⌫

(2)

�

2)
i
,

(4.40b)

bd

(1C)

4j

=
⌘

2

3(1� ⌫

(1)

2)E
(1)

h
w

(1)

j

⇣
(2� ⌫

(1))m(1)

j

�

2 �m

(1)

3

j

⌘i

+
⌘

2

3(1� ⌫

(2)

2)E
(2)

h
w

(2)

j

⇣
�(2� ⌫

(2))m(2)

j

�

2 +m

(2)

3

j

⌘i
,

(4.40c)

which are analogous to the perfect contact boundary conditions for the Stoneley-

type flexural waves on a plate (1.26) and (1.34). and the frequency can be found

from (1.39) as shown in subsection 1.2.3.
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4.3.1 Numerical Results

Some relevant data have been presented in table 4.1 for � and n from 20 to

40.

Table 4.1: Natural Frequencies with ⌫(1) = 0.3, ⌫(2) = 0.4, and ⌘ = 0.001

�, n 1C �

ex 2C �

ex asymptotic �as

20 7.19071633 6.2775268 6.328183596

25 16.3388262 15.3715586 15.44966698

30 32.9367056 31.92394078 32.03642946

40 102.513922 101.046959 101.2509375

Similarly to subsection 2.4.1, the results indicate that for larger wavenumbers

the asymptotics are more accurate in Problem 1C, but at smaller wavenumbers

the asymptotics become less reliable. For all of the graphs here ⌫(1) = 0.3 and

⌫

(2) = 0.4. Figure 4.3 for � = 40 shows a clear di↵erence between asymptotic and

numeric forms, which increases as � decreases, seen in Figure 4.4. For � = 25 in

Figure 4.5 the di↵erence is extremely visible, especially in the decay as  ! �1.

In comparison to Problem 2C in Figure 4.6 the asymptotics remain more accurate

for smaller �.

Figure 4.3: Asymptotic and numeric forms for the interfacial flexural edge wave

of Problem 1C with fixed parameters ⌘ = 0.01, ⌫(1) = 0.3, ⌫(2) = 0.4, and � = 40
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Figure 4.4: Asymptotic and numeric forms for the interfacial flexural edge wave

of Problem 1C with fixed parameters ⌘ = 0.01, ⌫(1) = 0.3, ⌫(2) = 0.4, and � = 35

Figure 4.5: Asymptotic and numeric forms for the interfacial flexural edge wave

of Problem 1C with fixed parameters ⌘ = 0.01, ⌫(1) = 0.3, ⌫(2) = 0.4, and � = 25

92



4.4. EXTENSIONAL VIBRATIONS

Figure 4.6: Asymptotic and numeric forms for the interfacial flexural edge wave

of Problem 2C with fixed parameters ⌘ = 0.01, ⌫(1) = 0.3, ⌫(2) = 0.4, and n = 25.

4.4 Extensional Vibrations

The asymptotics and relations are taken from subsection 2.3.1, and from sec-

tion 2.5. (4.4), the leading order asymptotic equations can be rewritten as
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(4.41)

These equations are analogous to the governing equations of the Stoneley-type

extensional waves on a plate (1.43) derived in subsection 1.2.4. A solution to this

equation can be written as

0

@ U

(k)( , ⇠)

V

(k)( , ⇠)

1

A =
2X

j=1

0

B@
u

(k)

0

iu(k)

0

✓
(�1)

k
m

(k)
j

�

◆
3�2j

1

CAC

(k)

j

e

i�⇠+(�1)

(k)
m

(k)
j  

. (4.42)
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Using the results from section 2.5 and applying the asymptotic terms to (4.6),
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(4.43c)

This is the same as the perfect contact boundary conditions for the Stoneley-type

extensional waves on a plate (1.41) and (1.47).

4.4.1 Numerical Results

Table 4.2 below presents some relevant interfacial frequencies for di↵erent

wavenumbers, with ⌫ = 0.3 and ⌘ = 0.01.

Table 4.2: Natural Frequencies with ⌫(1) = 0.3, ⌫(2) = 0.4, and ⌘ = 0.01

�, n 1C �

ex 2C �

ex asymptotic �as

5 8.039828 8.6551465 8.394243987

10 33.2883071 33.8576356 33.57697594

15 75.271057 75.653902 75.54819588

As mentioned earlier in chapters 2 and 3 the results are very similar for both

problems, and again here too. Only several graphs have been presented to illus-

trate this.

Figure 4.7 for Problem 1C for ⌫(1) = 0.3, ⌫(2) = 0.4, ⌘ = 0.01 and � = 15,

the asymptotics have been coloured black to show their good agreement with the

numerics. There is smooth decay away from the interface in both directions with

very similar behaviour to that mentioned before. The larger ⌫ causes more rapid

decay with no change of sign, whereas the smaller ⌫ causes a sign change in U .
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Figure 4.7: Asymptotic and numeric forms for the interfacial extensional edge

wave of Problem 1C with fixed parameters ⌘ = 0.001, ⌫(1) = 0.3, ⌫(2) = 0.4, and

� = 15

Figures 4.8 and 4.9 for Problem 2C with n = 5 and n = 10 illustrate that when

the wavenumber is smaller, the rate of decay reduces. However the asymptotics

remain accurate and cannot be seen on the graphs.

Figure 4.8: Asymptotic and numeric forms for the interfacial flexural edge wave

of Problem 2C with fixed parameters ⌘ = 0.001, ⌫(1) = 0.3, ⌫(2) = 0.4, and n = 5
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Figure 4.9: Asymptotic and numeric forms for the interfacial flexural edge wave

of Problem 1C with fixed parameters ⌘ = 0.001, ⌫(1) = 0.3, ⌫(2) = 0.4, and n = 10

4.5 Super-Low Frequency Vibrations

Using the asymptotics and notations from subsection 2.3.1 and 2.5.2 the lead-

ing order system of equations (2.77) can be rewritten with all quantities having

superscript (k), and using the notation (4.4). The characteristic equation (2.78)

then becomes
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A solution to this problem is written as
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Similarly to what was done in subsection 2.5.2 for Problem 1A, the boundary con-

ditions (4.3) can be rewritten with subscript (k) notation and expressed through

v

(k)

i

using (4.46) and(4.47).
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4.5.1 Numerical Results

The results in this subsection are very similar to those in subsection 2.5.2.

Figure 4.10 for Problem 1C with ⌫ = 0.3, ⌘ = 0.001 and � = 10 shows the good

agreement between the numerics and the asymptotics with leading order terms

and some smaller terms.

Figure 4.10: Asymptotic and numeric forms for the interfacial super-low edge

wave of Problem 1C with fixed parameters ⌘ = 0.001, ⌫(1) = 0.3, ⌫(2) = 0.4, and

� = 10

Figure 4.11 with the same values for Problem 2C is shown for comparison.

Figure 4.11: Asymptotic and numeric forms for the interfacial flexural edge wave

of Problem 2C with fixed parameters ⌘ = 0.001, ⌫(1) = 0.3, ⌫(2) = 0.4, and � = 10
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4.6 Concluding Remarks

We observed three di↵erent types of edge and interfacial vibrations, they

are the Rayleigh-type and Stoneley-type flexural and extensional vibrations, and

super-low frequency. For the first two there are counterparts in plate edge waves.

The third one is specific only for shells, being a↵ected by curvature. Throughout

the thesis we compared the results with the former investigation for a cylindrical

shell in the papers by Kaplunov et al. (1999) and Kaplunov and Wilde (2002).

All of the asymptotics were tested by comparison with the exact solution which

basically consists of two eigenvalue problems. The first eigenvalue problem is used

to find eigen forms for the equations of motion, and the second one takes into

account the boundary conditions leading to the sought for dispersion relation.

It appears that the asymptotic results for the Rayleigh and Stoneley-type

extensional vibrations are very accurate for both problems investigated. How-

ever, for the Rayleigh and Stoneley-type flexural vibrations that propagate on

the cylindrical panel with straight longitudinal edge and decay over the curva-

ture of the cylindrical panel, the asymptotics are not a good approximate for

some cases. This is due to the e↵ect of curvature which is not taken into account

in the asymptotics. Unfortunately for the so called super-low frequency vibra-

tion there is a greater deviation, in this case it was not possible to formulate an

explicit frequency equation using the leading order terms. Instead, we suggest a

numerical scheme to treat the leading order equations of motion and boundary

conditions. Another new insight we made in this thesis is the e↵ect of the second

edge on the localised vibration. We compare these results with the semi infinite

setup. The results obtained have the potential to be extended to more sophis-

ticated situations including non-circular cylindrical shells as well as anisotropic

structures, and also for more realistic setups of interfaces including a shell with

a patch of di↵erent material.
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