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Abstract 

Cognitive models of language development have often 
been used to simulate the pattern of errors in children’s 
speech. One relatively infrequent error in English 
involves placing inflection to the right of a negative, 
rather than to the left.  The pattern of negation errors in 
English is explained by Harris & Wexler (1996) in terms 
of very early knowledge of inflection on the part of the 
child.  We present data from three children which 
demonstrates that although negation errors are rare, error 
types predicted not to occur by Harris & Wexler do 
occur, as well as error types that are predicted to occur.  
Data from MOSAIC, a model of language acquisition, is 
also presented. MOSAIC is able to simulate the pattern 
of negation errors in children’s speech. The phenomenon 
is modelled more accurately when a probabilistic 
learning algorithm is used.   

Introduction 
Language has proved to be a very rich domain for 
computational modelling, particularly the modelling of 
language acquisition.  Models of language acquisition 
have often attempted to explain the occurrence of errors 
in child speech.  In recent years, MOSAIC (Model Of 
Syntax Acquisition In Children) has been used to 
explain various error types via a process of extracting 
distributional information from maternal input, 
including optional infinitive errors in English (Croker et 
al., 2000) and in Dutch (Freudenthal et al, 2001, 2002a), 
case-marking errors (Croker et al, 2001) and subject 
omission errors (Freudenthal et al, 2002b).  In all of 
these cases MOSAIC provides a good fit to the data. 
Given MOSAIC’s ability to model relatively common 
errors, an obvious next step is to investigate the extent 
to which it is able to simulate errors that are rare in 
child speech. This is a good way of assessing the 
sensitivity of the model. 

Children’s Negation Errors  
One relatively rare error type in English involves 
placing an inflected verb form (e.g. ‘goes’) to the right 
of the negative particle (i.e. ‘not’) and producing ‘not 
goes’; the correct form, ‘does not go’, is inflected to the 
left of ‘not’. Even in the earliest stages of multi-word 

speech, English-speaking children’s use of inflected and 
uninflected verb forms tends to pattern correctly with 
respect to placement of the negative particle ‘not’. Thus, 
children regularly produce utterances such as ‘he 
doesn’t go’ and ‘he not go’. The first of these utterance 
types is grammatically correct. The second is incorrect 
because of the absence of a tensed form (in this case 
‘does’). However, in both cases the order of the 
negative particle and the verb form used by the child 
conforms to the rules of English grammar.  In contrast, 
children rarely produce utterances such as ‘he not goes’ 
or ‘he goes not’. Both of these utterance types involve 
the incorrect use of tensed forms. The first is 
ungrammatical because it involves the use of a tensed 
verb form to the right of negation. The second is 
ungrammatical because it involves the use of a main 
verb to the left of negation. 

The very low frequency of errors involving tensed 
verb forms in young children’s speech has been taken as 
evidence that, by the time that children begin to produce 
multi-word utterances, they have already correctly set 
all the basic clause structure parameters of their 
language. Thus, Wexler (1994) argues that very young 
English-speaking children already know that inflected 
verb forms must be placed to the left of negation in 
English, and that these forms cannot be main verbs. 
Harris & Wexler (1996) test this prediction by 
examining transcripts of 10 children, considering 
sentences containing negation before a main verb.  
These utterances were analysed for the presence of 
inflection – either the present tense (‘goes’) or the past 
tense (‘went’) - or the lack of inflection.  The use of 
inflection in negatives was then compared with the use 
of inflection in affirmative sentences.  Across all 10 
children, 43% of affirmative sentences were inflected 
and 9.6% of negative sentences were inflected. Harris & 
Wexler use these figures to support the notion that verbs 
are not tensed after negation, dismissing the inflection 
rate for negative utterances as a reflection of 
performance errors in production.  

Harris & Wexler’s account is a well-specified, if 
somewhat complex, nativist account of children’s use of  
negation which assumes that children are born with rich 
domain-specific knowledge of language. An alternative 
school of thought is that children learn language by 



 
 

picking up regularities in the speech that they hear; 
children are essentially distributional analysers.  
Evidence for this position comes from Tomasello  
(2000a, 2000b), who argues that children’s early 
language is item-based, organised around particular 
words and phrases.  Children initially learn a restricted 
morphology for each verb learnt; they are most likely to 
use the same morphological marker on a novel verb as 
was presented to them, rather than immediately 
generalising to other endings, which would suggest that 
a child’s knowledge of language is input-driven. Further 
evidence for lexical specificity with respect to verb 
morphology in children’s speech is presented by Brown 
(1973) and Pine, Lieven & Rowland (1998). An 
argument for the development of language around 
specific lexical items is provided by Lieven, Pine & 
Baldwin (1997), who propose that children’s novel 
utterances are generated using positional patterns where 
a number of variable words or phrases can be combined 
with positionally constant items. These findings are 
consistent with recent work in computational modelling 
(e.g. Cartwright & Brent, 1997; Elman, 1993; 
Redington, Chater & Finch, 1993, 1998) which has 
shown that it is possible to derive a significant amount 
of syntactic information from a distributional analysis 
of the statistics of the language being learned. 

Child Data 
We present data obtained from three children (Anne, 
Aran and Becky), taken from the Manchester corpus 
(Theakston, Lieven, Pine & Rowland, 2000) of the 
CHILDES database (MacWhinney & Snow, 1990).  This 
corpus consists of transcripts of tape recordings made 
twice every three weeks over a period of 12 months, 
between the ages of approximately 2 and 3 years.  Each 
session consists of two half-hour recordings, one made 
during free play and the other during structured play.  
There are two important points that need to be made 
about the way these data were analysed.  First, because 
we were interested in identifying a corpus of utterances 
including verbs and comparing this corpus with the 
output of the model, and because, within the model, 
there is no way of deciding whether a word is being used 
as a verb or not, we needed a way of  identifying verbs 
that was independent of the way in which they were 
used by the child and the model. An analysis was 
therefore made of the frequencies with which words 
were used as verbs in the child’s speech and, for the 
purpose of this research, words were classified as verbs 
if they occurred as verbs in 90% or more of cases in the 
mother’s speech corpus. Second, the data used in 
analysing both the performance of the children and the 
performance of the model consisted of types, not tokens. 
Much of the research in children’s speech is based on 
analyses using tokens as the entire corpus is considered.  
However, in our analyses it was necessary to use only 
types as the model does not produce multiple instances 

of utterances in the same way as the child.  All of 
Anne’s, Aran’s and Becky’s utterances containing both a 
verb and the word ‘not’, or one of its contractions 
(‘shouldn’t’, ‘won’t’ etc.), were analysed for the 
presence of various patterns. This yielded samples of  
478, 360 and 557 utterances for Anne, Aran and Becky, 
respectively.  The patterns used in this analysis are 
‘correct’ (grammatical) utterances such as ‘doesn’t go’ 
or ‘hasn’t gone’, ‘not + untensed verb’ (e.g. ‘not go’), 
‘tensed verb + not’ (e.g. ‘goes not’) and ‘not + tensed 
verb’ (e.g. ‘not goes’).  The former two patterns are 
predicted to occur by Harris & Wexler, whereas the 
latter two are predicted not to occur. We also found it 
necessary to include a further category – ‘untensed verb 
+ not’ (‘go not’) – as Aran made errors of this type.   

Results  
The children’s use of verbs and negation is shown in 
Table 11; grammatically correct utterances have been 
omitted from the table.  The figures in brackets refer to 
the number of errors in the sample, the figures outside 
brackets represent the error rate expressed as a 
percentage of the sample.  An analysis of these data 
shows that as well as forming grammatically correct 
utterances containing the negative particle, all three 
children use untensed verb forms following negation 
(e.g. ‘I not need this’).  In addition, Anne and Becky 
produced errors in which a tensed verb was used after 
negation (e.g. ‘not fits’) and Aran produced the negative 
particle preceded by an uninflected main verb (‘go not’) 
– errors which are predicted not to occur by Harris & 
Wexler. 

MOSAIC 
MOSAIC is a symbolic modelling architecture which 
consists of a hierarchical discrimination network.  The 
network is grown as input is presented to the model.  
When an utterance is presented, each word in the 
utterance is considered in turn, which allows the 
utterance to be sorted to a given node.  If the word 
currently considered has not previously been seen by the 
model, a new node corresponding to that word is  
 

Table 1: Children’s negation errors. 
 
 Anne Aran Becky 

not go (56) 11.7 (59) 16.4 (35) 6.3 
goes not 0 0 0 
not goes  (2) 0.4 0 (1) 0.2 
go not 0 (1) 0.3 0 

 

                                                                 
1 The utterance types to the left of the table are representative 
of classes of error rather than errors involving those particular 
words. 



 
 

created.  The new node is created at the first layer of the 
network, just below the root node.  This first layer may 
be seen as the layer where the ‘primitives’ of the 
network (i.e.,  the individual words that have been seen 
by the mo del) are learned and stored. 

The model learns the distributional statistics of both 
words that follow and words that precede a given word -  
the network contains information about which words 
have been presented as occurring immediately before a 
particular item and which words have been presented as 
occurring immediately afterwards. Figure 1 depicts a 
fragment of a network created in this manner.   

Generative Links  
Once the network has been trained, it can be used to 
produce utterances in two ways: by recognition and by 
generation.  Utterances produced by recognition are 
essentially rote-learned (i.e. they are utterances or 
portions of utterances presented to the model in the 
input corpus).  These are produced by starting at each 
node in turn, and following the test links down the 
network.  Novel utterances can also be produced by a 
process of generation – the ability to follow ‘horizontal’ 
links in the network as well as ‘vertical’ ones.  These 
horizontal, generative links are created as follows:  If  
two words in the network occur frequently in similar 
contexts (e.g. they are preceded and succeeded by the 
same items), then a generative link can be made 
between these items.  The number of common features 
needed to create a generative link (the similarity 
measure) is the degree of overlap between items that 
precede and succeed any two nodes.  This is calculated 
by   taking   all   the  children   of  any   two  nodes  and  
assessing whether the proportion of children shared by  

both nodes exceeds a certain threshold with respect to 
the total number of child nodes.  A number of variations 
with different values have been assessed.  In this paper, 
values of 4%, 8% and 10% have been used.  The value 
is the same in both directions (e.g. 8% is the critical 
value for shared nodes both above and below the nodes 
under consideration).  Figure 2 contains an example of 
generative link creation.  In this figure, ‘does’, can’ and 
‘will’ all precede ‘he’ and ‘she’.  ‘Goes’, ‘likes’ and 
‘jumps’ all follow ‘he’ and ‘she’.  A generative link is 
formed between ‘he’ and ‘she’ as a result of this 
contextual similarity.  

Probabilistic Learning 
In the version of MOSAIC used to model optional 
infinitive errors and case-marking errors (Croker et al., 
2000, 2001), any item presented to the model is learnt at 
once.  The probability of learning any given word is 1 at 
all times.  In addition to data from simulations with p=1, 
we present data from simulations in which a parameter 
is set which determines how likely it is that any given 
word in the input is learnt.  This parameter was set to 
0.1.   This means that, on average, a word must be seen 
10 times before it is added to the network.  This form of 
learning gives a positive bias to words and phrases that 
occur many times in the input corpus. The output is 
therefore a reflection of the frequency with which words 
occur, rather than a reflection of which items are present 
in the input. To offset the fact that little is learned from 
one presentation of the input corpus, the input is 
presented several times before an output is produced. 
For the p=0.1 condition, analyses of the output 
produced by MOSAIC after the input set had been 
presented both 5 and 10 times are included here. 
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Figure 1: Network formed after the phrase ‘he sings loudly’ has been presented to MOSAIC 3 times. 
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Figure 2: Generative link creation. 
 

Model Data: p=1 

Method 
The model was run on input data from the mother of 
Anne, one of the children in the CHILDES database, 
collected in the same sessions as the child’s speech.  
This is a very large corpus of naturalistic input, 
consisting of 33,390 utterances.  Three different versions 
of the model were trained, with varied input sets and 
overlap parameters – two versions with the full input 
corpus and one version with only the first half of the 
corpus.  The overlap parameter was set to 10% for the 
first of these and 4% for the others.  A 4% overlap 
allows more generative links to be made as only 4% of 
the child nodes of any two items need to be shared to 
create a link; this means that MOSAIC becomes much 
more generative than with a 10% overlap.  With the full 
input presented and an overlap value of 10%, MOSAIC 
produced 35,758 utterance types, of which 18,852 were 
produced by recognition and 16,906 by generation.  
With the full input presented and an overlap value of 
4%, MOSAIC produced 586,015 utterance types, of 
which 21,999 were produced by recognition and 564,016 
by generation.  With just half the input and an overlap 
value of 4%, MOSAIC produced 194,303 utterance 
types, of which 10,451 were produced by recognition 
and 183,852 by generation. 

Results  
Results for MOSAIC-Anne, with a learning probability 
of 1 are presented in Table 2.  With an overlap value of 
10%, some ‘not + untensed verb’ errors are produced, 
although no ‘negation +  tensed verb’ errors are made.  
When the overlap percentage was reduced to 4%, 
allowing many more links to be made, errors of this 
type were produced, albeit rarely.  The percentage of 
‘not + untensed verb’ errors is lower,   just 2%,  than the  
 

 
11.7% produced by Anne or the 5.2% produced by 
MOSAIC-Anne with a 10% overlap.  Also, 3 ‘untensed-
verb + negation errors’ are made; Anne does not make 
any errors of this type.  When a smaller input corpus 
was presented to MOSAIC with the overlap percentage 
still set to 4% the number of ‘not + tensed verb’ errors 
was increased to 3.8% which, whilst higher, is still 
nowhere near the quantity produced by Anne. In 
addition, the number of ‘untensed verb + negation’ 
errors also increased to 3.6%.  This latter type of error 
has been observed in child speech (Aran makes a few of 
them), but Anne does not produce such errors.  

Discussion 
Although not a close match for Anne, MOSAIC is still 
producing the sorts of errors children (as a group) make 
and, importantly, MOSAIC does not produce the one 
error type (‘goes not’) that is not made by any of the 
children.  Whilst this is a positive result, the model 
ought to provide a closer fit to Anne than to Aran or 
Becky as it was Anne’s mo ther’s data that MOSAIC 
was trained on.  It is possible that when the probability 
of learning a word is 1, MOSAIC is sensitive enough  to 
the distributional properties of the input to provide a  
  

Table 2: Negation errors (MOSAIC-Anne and 
Anne, p=1). 

 
 MOSAIC-Anne Anne 

 10% 
Overlap 

4% 
Overlap 

Half-input,  
4% Overlap 

 

not go (26) 5.2 (10) 2.0 (19) 3.8 (56) 11.7 
goes not 0 0 0 0 
not goes  0 (2) 0.4 (2) 0.4 (2) 0.4 
go not 0 (3) 0.6 (18) 3.6 0 

 



 
 

model of general child data, but not sensitive enough to 
pick up on the characteristics of the input which 
distinguish Anne from the other children.  This 
motivated the move to a lower learning probability. If 
every word or phrase only has a relatively low 
probability of being learned on each occasion that it is 
encountered in the input, then words are more likely to 
be learned in contexts in which they occur frequently, 
making the model more sensitive to the statistical 
properties of the input language. 
 

Model Data: p=0.1 

Method 
As before, the model was trained on input data from 
Anne’s mother. In this simulation, the overlap 
parameter was set to 8%. The reason for this was that 
when output data from this version of MOSAIC was 
analysed for case-marking errors (Croker, 2002), 8% 
proved to be the optimum parameter value. Any lower 
and too many errors were made, any higher and too few 
were made. Although the results presented in this  paper 
are not concerned with case-marking errors, this value 
was retained as we wanted to explain the occurrence of 
multiple phenomena without parameter fitting.  
Similarly, the number of times the input corpus was 
presented before generating an output set was a number 
arrived at in the analysis of case-marking errors. After 5 
presentations of the input corpus, MOSAIC produced 
98,533 utterance types, of which 8,974 were produced 
by recognition and 89,559 by generation.  After 10 
presentations of the input corpus, MOSAIC produced 
187,574 utterance types, of which 15,772 were 
produced by recognition and 171,802 by generation.  

Results  

Results for MOSAIC-Anne, with a learning probability 
of 0.1 are presented in Table 3.  After both 5 and 10 
presentations of the input corpus, MOSAIC produces 
‘not + untensed verb’ errors at a rate of 10%, consistent 
with Anne’s rate of 11.7% (see Table 1).  Similarly, 
MOSAIC produces 2 ‘not goes’ type errors: ‘not goes an 
egg’ and ‘not he goes’.  Both of these errors are possible 
as a result of the creation of a generative link between 
‘not’ and ‘there’ (which explains how a pronoun 
 

Table 3: Negation errors (MOSAIC-Anne, p=0.1). 
 
 MOSAIC-Anne  

5 x input 
MOSAIC-Anne  
10 x input 

not go (50) 10.0 (50) 10.0 
goes not 0 0 
not goes  (2) 0.4 0 
go not 0 0 

can follow negation in the second of these errors).  After 
10 input presentation cycles, this link ceases to exist and 
so no errors of this type are produced.  In both cases, the 
number of ‘not + untensed verb’ errors is explained in 
terms of generative links between first- or second-person 
pronouns and third-person pronouns.  For example, both 
‘I’ and ‘you’ are linked to ‘he’ and ‘it’, enabling 
utterances such as ‘it don’t like it’ and ‘he don’t want’ to 
be produced. 

Discussion 
With probabilistic learning, MOSAIC is able to provide 
an almost exact fit to Anne’s data.  As theorised, this 
learning algorithm enables MOSAIC to encode more 
frequent word combinations and to fail to learn 
infrequent combinations.  As a result, ‘go not’ type 
errors are not made – Anne does not produce errors of 
this type, but MOSAIC did produce such errors when 
the learning probability was set to 1.  This ability to 
discriminate between items in the input set means that 
MOSAIC is much more sensitive to the distributional 
characteristics of the data.  With a lower learning 
probability, the data from MOSAIC ceases to look like 
an amalgamation of the data from all three children, 
producing a different pattern of errors from that shown 
by Aran and Becky. 

Conclusion 
Harris & Wexler (1996) argue that children produce 
errors involving the use of untensed verbs after negation, 
but do not produce errors involving the use of tensed 
verbs after negation. Analysis of our data shows that as 
well as forming grammatically correct utterances 
containing the negative particle, all three children used 
untensed verbs following negation.  In addition, Anne 
and Becky produced errors in which an inflected verb 
was used after negation and Aran produced the negative 
particle preceded by an inflected verb – errors that are 
predicted not to occur by Harris & Wexler. All of the 
MOSAIC simulations produce errors with untensed 
verbs following negation, and several of them produce 
errors with tensed verbs after negation. When the 
probability of learning any new word is set to 1, 
MOSAIC consistently under-produces ‘not go’ type 
errors, although with an overlap of 4%, ‘not goes’ errors 
are produced at the same rate as they are produced by 
Anne.  When the probability is reduced to 0.1, MOSAIC 
produces a lot more ‘not go’ type errors, and hence 
provides a good fit to Anne’s data.  This modification to 
the model therefore appears to increase its sensitivity to 
patterns in the input. 

It is apparent from the results of this study that Harris 
& Wexler’s account of negation errors is incomplete, 
which raises doubts about the claim that children have 
already correctly set all the clause structure parameters 
of their language.  In contrast, MOSAIC is able to 



 
 

predict children’s negation errors quite accurately.  With 
a learning probability of 1, MOSAIC predicts the types 
of errors made by all three children, but does not provide 
an exact quantitative fit.  With a learning probability of 
0.1, MOSAIC predicts Anne’s errors almost exactly, 
both in terms of error type and error rate.  This version 
of MOSAIC also performs better with respect to case-
marking errors and optional infinitive errors than earlier 
incarnations (Croker, 2002).  The data from this 
simulation also shows that errors can be ‘unlearned’ 
over time – ‘not goes’ type errors are no longer 
produced after the input has been presented 10 times.  
Children, of course, cease to produce these errors as they 
get older.  Although we do not attempt to assess the 
developmental aspects of MOSAIC in any detail in this 
study, the fact that MOSAIC is able to unlearn this error 
can be seen as a positive feature of the model.  

In conclusion, the simulations reported in this study 
show that it is possible to model the pattern of negation 
errors in children’s speech without assuming any 
domain-specific knowledge of linguistic structure. This 
suggests that the claim that this pattern can be taken as 
evidence for innate grammatical knowledge on the part 
of the child is too strong. It also suggests that at least 
some of the patterning of children’s early language can 
be explained in terms of a distributional analysis of the 
statistics of the language being learned. 
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