
Reliability and Fault Tolerance
Modelling of Multiprocessor
Systems

by

Roberto Abraham VALDIVIA Beutelspacher MSc

A thesis presented to BruneI University in part fulfillment of the

regulations for the degree of Doctor of Philosophy.

December 1989

-'ylfi ~ l
• _ i i 1'\,: I

.Or _

• 0 v 3~7 --

Abstract

Reliability evaluation by analytic modelling constitute an important issue of

designing a reliable multiprocessor system. In this thesis, a model for

reliability and fault tolerance analysis of the interconnection network is

presented, based on graph theory. Reliability and fault tolerance are

considered as deterministic and probabilistic measures of connectivity.

Exact techniques for reliability evaluation fail for large multiprocessor

systems because of the enormous computational resources requiredo

Therefore, approximation techniques have to be used. Three approaches are

proposed, the first by simplifying the symbolic expression of reliability; the

other two by applying a hierarchical decomposition to the system. All these

methods give results close to those obtained by exact techniques.

Dedication

To my daughters, Marissa and Melissa,

to my wife Maria Isabel and

to my parents, Roberto Valdivia P. and

Marcela B. de Valdivia

Table of Contents

Acknowledgements iv

1 Introduction 1

1.1 The importance of reliability ... 1
1.2 Reliable system design ... 2
1.3 Reliability in multiprocessor systems .. 3
1.4 Purpose of this work .. 3
1.5 Outline of the thesis ... 4

2 Aspects of Fault Tolerance and Reliability 6

2.1 Introduction ... 6
2.2 Basic aspects and terminology ... 7

2.2.1 Fault avoidance and fault tolerance ... 7
2.2.2 Characterisation of faults .. 7
2.2.3 Redundancy ... 9
2.2.4 System service ... 11

2.3 Application areas for fault tolerant systems ... 12
2.4 Reliability evaluation .. 13
2.5 Fault tolerance and reliability design issues ... 14

tl

3 Fault Tolerance and Reliability in Multiprocessor Systems 15

3.1 Introduction ... 15
3.2 Properties of multiprocessor systems ... 16
3.3 Methodology and considerations for fault tolerance and

reliability .. 17
3.3.1 General ... 17
3.3.2 Replication and masking .. 18
3.3.3 Fault tolerance through diagnosis, repair and recovery

.. 18
3.3.4 Communication facilities ... 19
3.3.5 Other considerations ... 20

3.4 Reliability modelling ... 20
3.4.1 Graph model ... 21
3.4.2 Reliability problems ... 23
3.4.3 Deterministic model. '" .. 25
3.4.4 Probabilistic modeL ... 28
3.4.5 Complete network reliability modeL .. 38

4 Model Implementation 39

4.1 Introduction ... 39
4.2 Graph representation ... 40

4.2.1 Undirected graphs .. 40
4.2.2 Directed graphs ... 41

4.3 Deterministic model .. 43
4.3.1 Denseness ... 43
4.3.2 Degree ... 44
4.3.3 Distance .. 46
4.3.4 Edge connectivity ... 50
4.3.5 Node connectivity .. 54
4.3.6 Fault simulation ... 58

4.4 Probabilistic model ... 63
4.4.1 Cube representation and "sharp" operation 64
4.4.2 Algorithm for Boolean expression ... 70
4.4.3 Approximation method ... 73
4.4.4 Unrooted problems .. 73
4.4.5 Rooted problems .. 75
4.4.6 Reliability measures .. 76
4.4.7 Fault simulation ... 84
4.4.8 K-out-of-n problem .. 84

Hl

5 Reliability Modelling of Large Multiprocessor Systems 89

5.1 Introduction 89
5.2 Hierarchical clustering 91

5.2.1 Definitions 91
5.2.2 Review of clustering techniques 91
5.2.3 General model 93
5.2.4 Method 94
5.2.5 Description of the algorithm ... 100

5.3 Hierarchical reliability model. ... 107
5.3.1 IHRM method ... 108
5.3.2 KHRM method ... 111

5.4 Examples ... 112
5.4.1 Meshed ring 3x2 .. 112
5.4.2 Meshed ring 6x2 .. 116
5.4.3 Ring 12 .. 123

5.5 Discussion of results .. 125

6 Summary and Conclusions 127

6.1 Analysis of work 127
6.2 Model performance 129
6.3 Applications 130
6.4 Recommendations for future work ... 131

References 133

Appendices

A Basic Concepts of Graph Theory 138

B Computer Implementation Details 141

Acknowledgements

First, I am indebted to my supervisor Dr. A. P. Ambler for his invaluable

guidance, suggestions and supervision throughout this research project.

The research work reported in this thesis was performed in the

Department of Electrical Engineering and Electronics at BruneI University.

Thanks to the departmental staff, led by Prof. G. Musgrave for providing the

facilities to undertake this project.

Thanks also to my colleagues and staff at BruneI for their helpful

suggestions and comments.

The financial support received from the "Consejo Nacional de Ciencia

y Tecnologia" (National Council for Science and Technology of Mexico) is

gratefully acknowledged, as well as the support from the "Instituto de

Investigaciones Electricas" (Institute for Electrical Research).

Lastly, I would like to thank my wife Maria Isabel who has given me

support, encouragement, assistance and two beautiful daughters during this

work; thanks to my brother-in-law Miguel Angel for his help and thanks to

my family for their support and encouragement.

tV

Chapter 1

Introduction

1.1 THE IMPORTANCE OF RELIABILITY

The reliability of computer systems has been a major concern SInce the

introduction of the first electronic digital computers which used relays,

vacuum tubes and another relatively unreliable components. With the

second generation of computers, semiconductor components with much

greater reliability were introduced. Nevertheless, today there is a growing

interest in reliability, because of the increased advances and complexity of

microelectronics and computer systems, together with the increased

dependence on such systems, thus demanding for safer, more reliable and

more available systems. The importance of human safety, mission success,

equipment protection and data integrity, together with recent trends like

harsher environments, novice users, increasing repair and maintenance

costs and the development of larger systems are some of the reasons for the

requirement to improve reliability in computer systems.

1.2 RELIABLE SYSTEM DESIGN

In addition to improvements in component reliability and in test methods

to avoid the occurrence of failures; redundancy at various levels of system

organisation has to be used to increase the probability of correct operation,

providing for tolerance to failures. Fault avoidance and fault tolerance are

the two major design approaches to increase reliability, that supported by

system evaluation constitute the basic reliable system design methodology,

as illustrated in Figure 1.1. Analytic modelling and experimental simulation

techniques used for the assessment of the reliability requirements constitute

a very important issue of designing a reliable system.

Fault
avoidance

System
design

FIGURE 1.1

System
requeriments

System
evaluation

Fault
tolerance

Modelling Simulation

Reliable system design methodology

2

1.3 RELIABILITY IN MULTIPROCESSOR SYSTEMS

The rapid expansion of multiprocessor or multicomputer systems has been

possible by the continuous decline of hardware costs, the introduction of

microprocessors and the development of distributed and parallel systems.

Design of computing systems incorporating more processing elements has

resulted in a two-sided relationship involving reliability. On one hand, it

opened the way to new possibilities of obtaining high reliability and fault

tolerance by the use of the inherent redundancy without prohibitive

additional costs. On the other hand, as the number of elements increases,

the probability of failure existing somewhere in the system at any time also

increases.

1.4 PURPOSE OF THIS WORK

The purpose of this work is the study and implementation of models for

reliability and fault tolerance analysis of multiprocessor systems. The

attention is basically given to the intercommunication structure, i.e. the

interconnection network, so models can be based mainly in graph theory.

Reliability and fault tolerance are considered as deterministic or probabilistic

measures of connectivity, i.e. the successful communication among the

nodes (computers) throughout the network in spite of faults in the

communication paths (node and/or link failures) for several rooted and

unrooted connectivity problems.

The trend towards constructing multiprocessor systems with large

number of processors has meant that exact reliability modelling techniques

cannot be applied without prohibitive computational overheads. Therefore,

3

it is proposed to employ approximate techniques for reliability modelling of

large multiprocessor systems based in a hierarchical decomposition of the

system.

1.5 OUTLINE OF THE THESIS

Chapter 2 provides a general overview and introduces some aspects of fault

tolerance and reliability in computer systems, considering basic concepts and

definitions of fault tolerance and fault avoidance techniques,

characterisation of faults, redundancy and system service where the main

reliability measures are introduced. The application areas for fault tolerant

systems are described, the need for reliability assessment is highlighted and

a general design methodology is suggested for implementing fault tolerance

and consequently high reliability in computer systems.

Chapter 3 describes the characteristics of multiprocessor systems

followed by the principal considerations and methodology to implement

fault tolerance and reliability in such systems. A theoretical model based in

graph theory is proposed to study the reliability in the intercommunication

network, considering the deterministic or structural as well as the

probabilistic, stationary and dynamic, aspects of the network.

Chapter 4 is devoted to the implementation of a deterministic model

and a probabilistic model for reliability analysis of multiprocessor systems.

An evaluation of some network architectures is also presented.

Chapter 5 presents a description of the hierarchical clustering method

and the subsequent hierarchical reliability evaluation of large

multiprocessor systems as well as the results obtained when applying this

method to some multiprocessor configurations.

4

Chapter 6 presents a summary, conclusions and recommendations for

future work.

Appendix A describes some basic concepts of graph theory related to

the graph model for reliability.

Appendix B presents computer implementation details of the

reliabili ty model.

5

Chapter 2

Aspects of Fault Tolerance and
Reliability

2. 1 INTRODUCTION

In this chapter are presented some aspects of fault tolerance and reliability in

computer systems, considering basic concepts and definitions of fault

tolerance and fault avoidance techniques, characterisation of faults,

redundancy and system service where the main reliability measures are

introduced. The application areas for fault tolerant systems are described,

the need for reliability assessment is highlighted and a general design

methodology is suggested for implementing fault tolerance and

consequently high reliability in computer systems.

2.2 BASIC ASPECTS AND TERMINOLOGY

2.2.1 FAULT AVOIDANCE AND FAULT TOLERANCE

There are two major approaches for attempting to improve or maintain

normal performance and consequently reliability of a system. These two

approaches can be combined and are applicable to all parts of the system.

The first approach is called fault avoidance in which the reliability of

the system is assured by preventing the cause of unreliability, i.e. of faults.

This can be achieved by techniques such as design review, quality control on

components and system testing.

The second approach is by fault tolerance, which is defined as: "the

ability of the system to continue to perform its specified functions regardless

of the presence of faults" [A VI 78].

Fault tolerance can be achieved in one of two ways:

(a) Static: through the masking or hiding of the effects of faults

(fault masking), or

(b) Dynamic: by identification of sources of failure, followed by

undertaking actions to appropriately compensate for the effects of

identified failures.

2.2.2 CHARACTERISATION OF FAULTS

A fault is defined as any erroneous state of the system. In a computer system

there are two types of faults: hardware and software faults. Hardware faults

are caused by physical factors resulting from component failures (wear-out

or manufacturing defects), external disturbances, and design or

implementation mistakes. Software faults result from design or

7

implementation mistakes. An error is the manifestation of a fault in the

system. A failure or malfunction is the effect of an error in the system

service or behaviour as it is perceived by the user. An error will lead to the

failure of a system unless tolerance to such fault has been provided UOH 84].

The general effects of faults in a system are illustrated in Figure 2.1.

FIGURE 2. 1
Couse and effect relationship of faults

Faults may be further characterised by other properties besides their

type and cause:

• value: determinate (such as stuck-at models) or indeterminate;

• duration : permanent, intermittent, transient or latent;

• level: fault in a component, module, subsystem, etc.;

• extent: local or global.

Figure 2.2 shows the barriers constructed against faults by fault

avoidance, static and dynamic fault tolerance.

8

~-,

I
I
I
I
I
I fault
I avoidance

~--

FIGURE 2.2

~-,

I

: static
I fault tolerance

~ _ .J (fault masking)

Barriers against faults

2.2.3 REDUNDANCY

: dynamic
~ _ fault tolerance

Redundancy is the key issue in all fault tolerant systems, it consists in the

addition of resources beyond what is needed for normal system operation.

Redundancy may take several forms UOH 84]:

(a) information redundancy, e.g. error detecting codes;

(b) hardware redundancy, i.e. physical replication of hardware;

(c) software redundancy, replication of software or programs to perform

validity checks, self-tests, etc.;

(d) time redundancy, uses additional time mainly to distinguish between

permanent and intermittent failures.

9

In fault masking systems, generally hardware redundancy is employed

in the form of replication and voting (n-modular redundancy), where

multiple copies of an entity are utilised with outputs decided by majority

vote. A common method is triple modular redundancy or TMR which is

illustrated in Figure 2.3 with an ideal voter.

module 1

module 2

input

module 3

FIGURE 2.3
TMR with ideal voter

voter
(Ideal)

ou1put

In contrast to masking failures which requIres a large amount of

resources, by using the second (dynamic) approach of fault tolerance, the

amount of adittional resources can be minimised. This approach is formally

categorised into [KUH 86]:

(1) Fault detection: the ability of the system to recognise that a fault has

occurred;

(2) Fault location (diagnosis): the process of determining the location of a

fault or faults in the system;

(3) Fault containment: the process of isolating a fault and preventing its

effects from propagating throughout the system;

10

(4) System reconfiguration or repair: the logical or physical removal of the

failed component, along with rearrangement of the remaining non

faulty elements to compensate for the loss of the failed component.

(5) System recovery: the restoring of data and computations to a consistent

operational state. This may involve rolling back computations to a pre

failure state and then restoring them.

2.2.4 SYSTEM SERVICE

The life of a system is perceived by the user as an alternation between two

states of the delivered service with respect to the specified service [AVI86].

• proper service where the service is delivered as specified;

• improper service where the delivered service is different from the

specified.

The events which constitute the transitions between these two states

are the failure and the restoration of service or repair. Quantifying the

alternation between delivery of proper and improper service leads to the

two main measures of system reliability.

• reliability: a measure of the continuous delivery of proper service

from a reference initial instant.

• availability: a measure of the delivery of proper serVIce with

respect to the alternation of delivery of proper and improper

service.

Reliability and availability are formally described in chapter 3.

11

2.3 APPLICATION AREAS FOR FAULT TOLERANT SYSTEMS

The application area determines the requirements placed upon a system. To

employ fault tolerance in a computer system involves trading off the cost of

failure against the cost of implementation. Based in this criteria there have

been defined five primary application areas [REN 80] (ordered by the most to

the less stringent fault tolerance requirements and cost).

(a) Critical applications : systems on which failure can place human lives

in danger. They require high reliability and short reconfiguration time,

such as real time control systems. Examples are: passenger transport,

patient monitoring, control of nuclear power plants, etc.

(b) Long life control systems: systems in environments that do not allow

access for manual maintenance such as spacecrafts, satellites,

underwater stations, etc ..

(c) High availability general purpose applications: the maIn characteristic

of these systems is that they can allow frequent outages as long as the

duration of each outage is smalL Examples of these systems are large

resource sharing systems like telephone switching, book-keeping

systems, etc.

(d) High performance computing: systems where expected performance

cannot be achieved without the use of fault tolerance.

(e) Maintenance postponement is required when maintenance IS very

costly or difficult to perform, such as remote processing stations. The

main goals are to postpone maintenance until convenient times and

still have a system that can perform at least a subset of its service.

12

In addition to the above areas, fault tolerance offers significant

psychological support for human users who depend on or interact with a

computer system.

2.4 RELIABILITY EVALUATION

The choice of fault tolerant functions and redundancy techniques needs to

be supported by a quantitative or qualitative assessment whether the system

possesses the expected reliability. There are two approaches to reliability

evaluation [AVI78]:

(a) Analytic approach, in which fault tolerant and reliability measures are

obtained from a mathematical or graph model of the system.

(b) Experimental approach, in which faults are inserted either into a

simulated model of the system or into a prototype, and fault tolerance

and reliability measures are estimated from statistical data.

A variety of models have been created for analytical studies of fault

tolerance and reliability, that can be broadly divided into two classes:

(a) Deterministic models. For the investigation of problems to describe the

architecture, connectivity, diagnosability, robustness, reconfigurability

and other aspects related with fault tolerance, reliability and

performance.

(b) Probabilistic models allowing the computation of reliability and

performance parameters such as the probability of success, reliability,

availability, MTTF, MTBF, survivability, etc.

13

2.5 FAULT TOLERANCE AND RELIABILITY DESIGN ISSUES

Fault tolerance can be introduced into the system architecture through

a systematic sequence of design activities [A VI 78], [DEP 77]. A general

methodology can be summarised as follows :

(1) Specification of the computational task and description of system

requirements (I/O interfaces, etc.).

(2) Determination of the basic system architecture.

(3) Specification of the reliability goals according with the application area.

(a) Identification of classes of faults to be tolerated: implementation

errors, component failures or external disturbances.

(b) Quantitative reliability requirements

(c) Postulation of the methods for evaluation.

(4) Fault detection mechanisms: initial testing, concurrent detection (on

line) or scheduled detection (off-line), as well as redundant testing.

(5) System reconfiguration and recovery algorithms: manually controlled

or automatic; full recovery, degraded recovery (graceful degradation or

soft fail operation) or safe shutdown (fail-safe operation). A special case

of recovery results from fault masking.

(6) Evaluation of the fault tolerance and reliability of the design by means

of analytic modelling, experimental simulation or both. Physical,

structural and reliability parameters are used In generating the

reliability prediction.

(7) Design refinement. The goal is to balance the protection provided to

each subsystem in such a way that reliability goals are obtained without

a single dominating contributor of unreliability and at the lowest cost

of additional hardware and software.

14

Chapter 3

Fault Tolerance and Reliability
Multiprocessor Systems

3.1 INTRODUCTION

• In

A key issue for successful operation of a multiprocessor system is the

exchange of information between the processing nodes. Therefore, one of

the critical problems in designing multiprocessor systems is to provide an

appropriate, highly reliable and fault tolerant communication subsystem, so

that all the processing nodes are able to communicate at all times.

In this chapter are described the main characteristics of multiprocessor

systems, followed by the considerations and methodology to implement

fault tolerance and reliability in such systems. A theoretical model based in

graph theory is proposed to study the reliability in the intercommunication

network, considering the deterministic or structural as well as the

probabilistic, stationary and dynamic, aspects of the network.

3.2 PROPERTIES OF MULTIPROCESSOR SYSTEMS

The term multiprocessor systems is used here to represent systems which

are known with different names, such as: computer networks,

multicomputers, distributed processing systems, parallel processors, etc.

Multiprocessor systems extend from geographically distributed networks up

to VLSI systems which interconnect a large number of simple processing

cells in a single chip.

Multiprocessor architectures can be categorised by their degree of

integration and processor granularity [PRA 86] as it is shown in Table 3.1.

TABLE 3.1
Network structures

Degree of Processor Network
integration granularity examples
LOW LARGE Long-haul

networks
MEDIUM MEDIUM Local area

networks
MEDIUM MEDIUM Multiprocessor

systems
HIGH SMALL VLSI based

systems

Despite the different names, degree of integration and granularity,

multiprocessor systems have the following basic properties: [KUH 86]

(a) Autonomy: A number of autonomous, cooperating processIng

elements (PEs) interconnected between them. At the system level,

these PEs and their interconnection links are viewed as the basic

components of the system. Each PE has its own local memory and

there is no shared memory between PEs. The interconnection schemes

16

allow high bandwidth communication between the PEs generally

through message passing and can be classified into three categories:

• Link oriented

• Bus oriented

• Connection network based.

(b) Modularity: A high degree of distribution of control or operating

system functions among the PEs (resources distribution).

(c) Parallelism: Highly parallel computations, on the classes of SIMD

and/ or MIMD.

These properties make the system inherently redundant, thus allowing

the implementation of fault tolerance capabilities in multiprocessor

systems, minimising the need for additional redundancy.

3.3 METHODOLOGY AND CONSIDERATIONS FOR FAULT TOLERANCE
AND RELIABILITY

Most of the same design issues described in section 2.5 apply also to

multiprocessor systems, but in order to extend this methodology specifically

for such systems, the following considerations must be taken in account:

[REN 80], [KUH 86]

3.3.1 GENERAL

(a) The design methodology can be applied locally (within each processor)

and/ or globally (across the collection of processors and their

in terconnections).

17

(b) Redundant partitioning. Whole processor partitioning or sub-modules

partitioning. In general, for multiprocessor systems, the appropriate

level to consider is at the processor level and communication paths in

the interconnection structure.

(c) Protection of hard core items: Clocks, common control, power supplies,

recovery mechanisms, etc.

3.3.2 REPLICATION AND MASKING

(d) Dynamic (selective) redundancy. In contrasting with traditional static

redundancy, selective redundancy is implemented according to the

needs and requirements of a specific application and can be adjusted to

protect critical computations with higher levels of redundancy

compared with less important computations.

3.3.3 FAULT TOLERANCE THROUGH DIAGNOSIS, REPAIR AND RECOVERY

(e) Fault detection. At processor level can be distinguished in two ways:

external (generally neighbouring processors) and internal detection.

(f) Fault diagnosis. Traditional system level diagnosis can be employed,

but extended to consider diagnosis of failures in interconnection paths.

(g) Reconfiguration and recovery. Preferable logical to physical hardware

reconfiguration due to the non-scarce redundancy in PEs, and the cost

and reliability involved in hardware reconfiguration to switch-in spare

modules, redirect communication paths, etc. Two important situations

can be distinguished related with reconfiguration: configurations with

spare nodes in which there is no degraded performance and graceful

degradation.

18

(h) Effectiveness of fault detection and recovery: Coverage.

3.3.4 COMMUNICATION FACILITIES

(i) Intercommunication structure and redundancy: If several processors

are required to work cooperatively on a task, a frequent exchange of

data among them is expected. The amount of data, the frequency with

which they are transmitted, the speed of their transmission and the

route that they take are all significant in affecting the

intercommunication and its reliability.

The key structural consideration in the design of fault tolerant and

high performance multiprocessor systems IS the system

interconnection. Ideally if one processor wants to communicate with

another, then it should do it over a channel that directly connects the

two. Such a system would be prohibitively expensive. A channel

between every pair of processors would require O(n 2) channels for n

processors. So it is necessary to trade cost for speed and reliability. The

compromise that is made involves routing data from one processor to

another via intermediate processors so creating communication paths.

A redundant connection that is made to increase reliability, must allow

for fault tolerance so that any node can be reached by a different path if

one path should fail (robustness and reconfigurability).

Broadly speaking, a viable interconection strategy must have a small

number of channels and easy routing rules, should provide for fault

tolerance, re-routing and gracefully recover in case of failures.

19

3.3.5 OTHER CONSIDERATIONS

(j) Type and importance of modules, capability, I/O, peripherals

connected, etc. The functions that depend on the connected hardware,

in case of reconfiguration, can only be delegated to predeterminate

modules of the same type.

(k) Performance. The structure of the system also affects other factors, such

as interprocessor distance, delays, message routing, expansion

capability, etc. In degradable systems there is also a degradation in

performance (mode of operation or service rate), which is of

considerable importance.

3.4 RELIABILITY MODELLING

The operation of a multiprocessor system is a function of the success of

many factors; our goals in reliability modelling or assessment are to obtain a

measure of a system utility which contributes to its overall performance.

For this work we have concentrated basically on reliability from the

point of view of the intercommunication structure of the system, i.e. the

interconnection network. Communication network reliability is defined as

"the ability of a network to carry out a desired operation" [COL 87].

Necessary network operations have been identified so as to continue to

afford communication routes between some target nodes when other nodes

or link fail.

The measures of network reliability fall into two classes:

(a) Deterministic: depend only on the structure of the network, that is, on

the number of nodes and links and the way they are connected.

(b) Probabilistic: depend not only on the structure but also on the

probabilities of failure of nodes and links.

20

3.4.1 GRAPH MODEL

An important approach to fault tolerant design and reliability modelling is

the utilisation of models based in graph theory [HAY 76]. Graph models

have been utilised within the field of fault tolerance for the design of

algorithms for fault detection, diagnosis [PRE 67], [MEY 85], [MAE 86],

reconfiguration [MAE 86], recovery [YAN 86] and replication [CHE 85]

among others.

The basic concepts of graph theory related to the reliability model can

be found in Appendix A.

Graph representation

A multiprocessor system can be viewed as a directed or undirected graph

G = (N, E) in which the set of nodes or vertices N represents the set of n

processors, N = {Xl' X2, ... , xn} and the set of links or edges E represents the

unidirectional or bidirectional interconnection channels between the PEs,

E = {el , e2, ... } ; an example of an undirected graph is shown in Figure 3.1 and

a directed graph in Figure 3.2.

FIGURE 3.1
Undirected Graph

~ bidirectional edge
(connecting path)

21

FIGURE 3.2
Directed Graph

...... unidirectional edge
(connecting path)

In a graph model, the representation of faults in nodes and faults in

edges is shown in Figures 3.3a and 3.3b respectively. A node or edge failure

has the effect of modifying the graph topology creating a subgraph (Gs) of the

graph G when faulty nodes and/or edges are removed from the system

graph; it is assumed that removing a node includes removing all its

incident edges.

Successive failures can, eventually, result in a disconnection of the

system, and therefore prevent some processors from communicating to

some other processors.

(a)

............ / faulty node
--"0

FIGURE 3.3

(b)

Representation of faults: (a) fault in a node; (b) fault
in an edge.

22

Assumptions

The following is generally assumed :

(a) Information is directly relating to the topology.

(b) Elements (nodes and edges) have two states: operational and failed.

(c) If the system cannot maintain a specified level of service then is failed.

(d) There is no correlation between the failure of elements (statistically

independent failures).

(e) A situation where the graph topology is disconnected is equivalent to a

state of total system failure.

Based on these assumptions the reliability goal is then to determine

the effect of the topology on the operational states of the network

represented as a deterministic or probabilistic graph.

3.4.2 REUABILIlY PROBLEMS

In a graph model of the interconection network it is assumed that any two

nodes can communicate if they are both operative and if there is a path of

operative nodes and edges between them. Reliability calculation is based not

only on the operation of a path but also on the total number of

communications of such paths. Based in this criterion, reliability is a

measure of connectivity.

Reliability problems in a probabilistic communication network are

identified and classified in [SAT 82] and [COL 87] as either unrooted or

rooted problems. Rooted problems represent tree connectivity problems

which are useful, for example, in studying the reliability of successful

23

broadcasting of information originated by a central controller (source node)

to a set of target nodes in a network. For our model it is proposed to extend

this classification to be used also to characterise the deterministic reliability

model. For a graph G, the reliability problems considered for deterministic

and probabilistic models include:

Unrooted problems

(a) Two-terminal reliability (TT) : a specified node paIr In G can

communicate each other. TT connectivity is useful because many

applications of multiprocessing require connection between two nodes

over a period of time, for example in remote interactive computing.

(b) Overall reliability (AT) : all node pairs in G can communicate.

(c) K-terminal reliability (KT) : among a set K of specified nodes in G, all

node pairs can communicate. It is useful for example in distributed

computing.

Rooted problems

(d) Source to terminal reliability (ST) : a specified node (S) in G can

comm unica te to another specified node (T).

(e) Source to all terminal reliability (SAT) : a specified node (S) in G can

communicate to all other nodes.

(f) Source to K-terminal reliability (SKT) : a specified node (S) in G can

communicate to a set K of specified nodes.

(g) K-source to K-terminal reliability (KSKT): a set (Ks) of specified source

nodes in G can communicate to a set (Kt) of specified terminal nodes.

For undirected graphs, TT and ST can be viewed as equivalent

problems since each link can communicate in both ways. Likewise AT and

SAT are equivalent, and KT with SKT are equivalent as well. For a graph G

24

with n nodes, TT and AT are special cases of KT with K =2 and K = n

respectively.

Another reliability problem that has been considered for the

probabilistic model due to its importance as the general model of redundant

systems is:

(h) K-out-of-N system reliability (KON) : probability that K out of N

components in G must work for system success.

The general mechanism to define a reliability problem is as follows

[COL 87]:

For any graph G = (N, E) it is defined a state of G to be a subset S of G;

this is interpreted to mean that all elements (edges and nodes) in S are

operational and all elements in G - S are failed.

The universe of possible states is the power set U(C) = 2ne, where ne is

the total number of elements (ne = n + e). A network operation is specified

by defining the set 0 P (G) subset of 2ne ; here 0 P (G) is the set of states

considered to be operational. Equivalently, network operation can be

defined in terms of FA(G) = U(G) - OP(G) the set of failed states.

3.4.3 DETERMINISTIC MODEL

The graph model is utilised for the deterministic reliability model to analyse

the characteristics, in terms of reliability, fault tolerance and structural

performance, of the interconnection structure. The most important

deterministic measures, related to reliability, taken from the graph theory

domain are:

25

Degree of node. Is the number of neighbours nodes, or equivalently the

number of edges incident on a node, it represents the number of

communication ports. The largest degree of all nodes is denoted by dmax and

the smallest by dmin , if dmllX = dmin then the graph is regular of degree d .

Distance. Distance or length between two nodes I (i I j) is the number of

edges in the shortest path between node i and node j . Average distance (lav)

is the internode distance averaged over all the node pairs; it is a measure of

the average delay. Diameter (lmax) is the maximum internode distance.

Size (e). Is the total number of edges. Denseness (8). Is a measure of how well
e

connected the graph is. Formally, 8 = n. Usually, 8 = log2 n is considered a

fairly dense graph, 8 = 0(1) is sparse while s = O(n) is a very dense graph.

N ode connectivity (Kn). Is the minimum number of nodes which when

removed will disconnect the graph. Edge connectivity (Ke). Is the minimum

number of edges whose removal will disconnect the graph.

The degree of fault tolerance (K) has been defined as the maximum number

of elements (nodes and/or edges) which can become faulty without

disconnecting the graph, i.e. K = Kn - 1.

These parameters can also can be used for:

(a) Analysing the diagnosability of different configurations, which IS a

. direct function of connectivity.

(b) Analysing the suitability of various configurations for a desired

application from the point of view of fault tolerance, diagnosability,

reconfigurability (number of possible configuration states for a given

26

application without degradation) and structural performance (such as

distance) in order to determine an appropriate (optimal or near

optimal) configuration in terms of minimum hardware investment ,

i.e. minimum size and number of nodes.

(c) Selective redundancy can be incorporated in the model, allowing a

critical task to be replicated for two PEs (mutual monitoring) (Fig. 3.4a)

or three PEs (2-out-of-3 decision) (Fig. 3.4b), if the configuration allows

direct connection between the processors.

2 2

(a) (b)

FIGURE 3.4
Replication of modules: (a) two nodes (1 and 2);
(b) three nodes (1, 2 and 3).

(d) In a gracefully degrading system it is possible to reconfigure the system

(reassign or reduce the computational tasks from the faulty processor(s)

to the remaining operational ones) for different degraded

configurations down to a minimum configuration allowable or until

the graph becomes disconnected, being also possible to analyse the

parameters mentioned (connectivity, diameter, distance, etc.) for each

degraded configuration in order to obtain a measure of survivability

(how gracefully the system degrades).

27

3.4.4 PROBABILISTIC MODEL

The probabilistic model is concerned with the probability that the

interconnection network is able to perform a desired operation in an

environment of random component failures.

The reliability of a system can be derived In terms of the individual

reliabilities of the components used to build it. The various reliability

modelling techniques that have been developed tend to fall into one of two

classes [STI86]:

(a) Combinatorial models: attempt to categorise the set of operational

states (or conversely the number of unoperational states) of a system in

terms of the functional states of its components in such a way that the

probabilities of each of these states can be determined by combinatorial

means.

(b) Continuous-time discrete-state Markov models: concentrate on the

transition rates between the possible states of the system (state

probability) and then use this information to determine the

probabilities that the system is in each of these states at any given time.

Markov models are applicable when the system states are dependent

on parameters such as reconfiguration, degradation, repair, coverage,

etc.

Markov models have been widely used in the modelling of reliability

and behaviour of simple multiprocessor systems since they have the

characteristics above explained. Several models have been developed for

specific applications. Some of them present a model which also includes

performance analysis [BEA 78] (performance & reliability = performability).

28

Others also have considered parameters such as intermittent and transient

faults [MAL 81].

A considerable effort has been expended for several researchers to

develop a complete model based on Markov methods which deal with the

problem of reliability prediction of complex fault tolerant computer systems,

mainly for critical applications where ultrahigh reliability is required (e.g. in

the order of 1-10-9). The most representative Markov models are reviewed

and criticized in [GEI83] : ARIES, SURF, CAST, and CARE-III, where is

concluded that all these models suffer from multiple limitations, and

therefore they propose a new model: HARP.

The main disadvantage of all Markov methods is that they require to

enumerate all possible states of the system, which is impractical for systems

of medium to large size. For each probabilistic event considered, the

number of states is directly proportional to the branching factor, existence of

cross links and the depth of the network. Also, when availability is needed

the state diagram has to be expanded to account for the non-homogeneity

when the failure and repair rates are different for the different components

[MAK83].

On the other hand, an equivalent analysis of interconnection network

reliability is obtained by combinatorial techniques as demonstrated in

[MAK 83]. By using a combinatorial Boolean algebraic approach it is possible

to achieve efficiency and functionality of the model, as it is described in the

following subsection.

3.4.4.1 Combinatorial approach

Several combinatorial methods for system reliability are given in [HW A 81];

these methods are classified as :

29

(a) State enumeration

(b) Reduction to series-parallel networks

(c) Path enumeration

(d) Cutset enumeration

(e) Others

Type (a) methods present the same disadvantages as Markov models

because of the large number of states to be enumerated. Type (b) methods

are not applicable when both nodes and links are unreliable and since most

of the networks cannot be reduced to series-parallel subnetworks. In

methods of type (c), the reliability expression is obtained by finding the set of

possible paths for the reliability problem to solve, and then applying

Boolean algebra and probability theory to modify the set of paths to an

equivalent set of mutually exclusive (disjoint) paths. Cutset enumeration

methods (type (d» are equivalent to path enumeration methods to obtain

the unreliability instead of the reliability. The disadvantage is that it is more

difficult to implement algorithms for cutsets than for paths.

For the reliability analysis, it is desirable to use a symbolic expression

because it presents several advantages [HAR 86] :

(a) when the network has a fixed topology the reliability of its elements

can change with time, reliability can be calculated by simply

substituting the values of the element reliabilities in the symbolic

expression and the effects of their changes can be estimated.

(b) In some applications it is desired to improve reliability of a network

under a given cost constraint. The symbolic expression can be used to

identify the critical elements to optimise the reliability.

30

Probabilistic graph

For the probabilistic model, in addition to the graph model of a

multiprocessor system, a probabilistic graph having a probability of

operation associated with each node and edge, is also required.

Assumptions

First, it is assumed that the system is coherent, i.e. :

(a) when the system has failed, no failure will restore the system to a

successful state,

(b) when the system is operating successfully, no repair will cause the

system to fail,

(c) failure of components causes the system to fail,

(d) when all components are working the system is successful.

It is also generally assumed that the probability of failures of the

elements are statistically independent, i.e. there is no correlation between

failures of different nodes and links.

3.4.4.2 Stationary reliability

In the static or stationary reliability analysis, the processing nodes and the

communication links are associated with probabilities of being operational,

i.e. reliabilities. It is assumed that these reliabilities are constant during the

time interval in which the system is being analysed.

31

The reliability of the ith component (node and/or edge) is given by :

Pi = Pr { i th component is working}

and the unreliability is given by :

qi = 1 - Pi

3.4.4.3 Dynamic reliability

... (3.1)

... (3.2)

In practice the parameters that are associated with reliability evaluation are

described by probability distributions [BIL 83]. The times-to-failure describe

the probability that a given component fail within or survive beyond a

certain specified time. To study dynamic or time dependent analysis of the

various connectivity problems, there are considered two different operating

environments, namely, closed or non repairable, i.e. no repair of failed

elements (nodes and links) is possible during the time interval of interest,

and repairable when the failed elements are repaired and made operational.

Dynamic reliability analysis has several advantages [MAK 83], such as:

(a) the provision for incorporation of different probability distributions for

failure and recovery times,

(b) the computation of task and mission related measures such as MTTF

and MTBF (as explained below),

(c) system design is based on the dynamic behaviour of the individual

network elements, where a single probability of success Pi is

inadequate.

The most important dynamic reliability measures for the design and

evaluation of the intercommunication network are the following [BIL 83],

[RAG 86]:

32

For closed (non repairable) systems:

Reliability R(t): Is the probability that the network has not failed by time tf

given that it was fully operational at time zero (all components operating).

There may be many failures of components but the network remains

operational throughout the interval [0, t].

Mean time to failure (MTTF): Is the average time it takes for the network

to enter the failed state for the first time, given that it was fully operational

at time zero. Is the average time to first failure or expected life of the system.

For repairable systems:

Availability A(t): Is the probability that the network is operational at time

t, given that it was fully operational at time zero. The network might have

been failed and repaired one or more times during the interval [0, t] but it

was made operational again by repairing or replacing the failed elements.

Mean time to repair (MTTR) : Is the average time it takes to repair the

network. Usually this time is very small compared to MTTF.

Mean time between failures (MTBF): Is the average cycle time between

successive failures for repairable networks.

Steady-state availability (SA) : Is the probability of the system being

operational once it has reached a steady-state (t = 00). It is a measure of the

fraction of time the communication system is operational.

Dynamic reliability evaluation for individual system components.

Failure rate (Ai): Is the average measure of the rate at which failures occur.

It is generally assumed to be constant for the normal operating period

(useful life) of the system, it is characterised by the exponential distribution.

Repair rate (f.1i): Is the average measure of the rate at which repair occur. It

is generally assumed to be constant (exponential distribution).

33

Figure 3.5 shows the typical bath-tub curve for failure rate of a

component. Region I is known as the infant mortality phase; region II is the

useful life period or normal operating phase in which the failure rate is

constant; and region III represents the wear-out phase.

failure
rate

bum-In

FIGURE 3.5
8ath-tub CUNe

II

useful life wear-out

time

Under this assumption, the time dependent measures of element Xi in

the useful period of the system are :

For closed systems:

The reliability at time t

Mean time to failure:

1
MTTF (Xi) = f R (Xi ,t) d t =

o Ai

00

where At is the failure rate of element Xi

... (3.3)

... (3.4)

34

For repairable systems:

The availability at time t is obtained with Markov modelling for a

single repairable component: [BIL 83]

... (3.5)

Mean time to repair and mean time between failures are given by:

1
MTTR (Xi) =

f.1i

1
MTBF (Xi) = MTTF (Xi) + MTTR (Xi) =

... (3.6)

... (3.7)

where Ai is the failure rate and f.1i is the repair rate of element Xi .

The steady-state availability is the availability at time 00.

f.1i MTTF (Xi)
SA (Xi) = A (Xi' 00) = Ai + f.1i = MTTF (Xi) + MTTR (Xi) ... (3.8)

Figure 3.6 shows the average cycle time performance for a repairable

component.

If the component failures and repairs are described by other general

probability distribution functions, it is required to use Laplace transform

techniques to solve for the reliability measures of network components.

The symbolic expression for reliability based in the probability of

elements Pi is transformed into a time dependent expression by substituting

R (Xi ,t) or A (Xi ,t) for Pi.

35

1 1 1

1 MTTR 1 MTTF 1

I.,. ~I" ~I

1 1 1
up 1 1 1

1 1 1

------~ ~--------~

down
--------- -- - +-----J

FIGURE 3.6
Average cycle time

3.4.4.4 KON system reliability

MTBF
1
1
1 .,1

A system can be represented as a reliability network for the general model of

redundancy, which includes series, parallel and k-out-of-n systems defined

as follows:

Series system. A series system represents a non redundant system, where

the elements of the system are said to be in series from a reliability point of

view if they all must be operational for the system to be operational (Rs) or

only one needs to fail for system failure (Qs).

Rs = Pr {all elements are operating} is given by :

... (3.9)

and Qs = 1- Rs

where Pi is the probability of element i working

Parallel system. A parallel system represents a fully redundant system,

where the elements of the system are said to be in parallel from a reliability

point of view if only one needs to be operational for the system to be

operational (Rp) or all must fail for system failure (Qp).

36

Rp = Pr {at least one element is operating} is given by :
n

Rp = 1 - II (1 - p) ... (3.10)
i =1

and Qp = 1- Rp

where Pi is the probability of element i working

K-out-of-n system. In a k-out-of-n system or partially redundant system, at

least k elements out of n must be operational for the system to be

operational (Rk) or n -k +1 must fail for system failure (Qk).

A k-out-of-n system is the general model of active redundant systems,

where series and parallel systems are particular cases with k=n and k= 1

respectively. Therefore, the implementation of a reliability model for k-out

of-n systems is sufficient for the modelling of series and parallel systems as

well.

In a k-out-of-n system the number of components operating has a

binomial distribution with parameters n and Pi. Assuming that the n

components have the same probability (p):

Rk = Pr {at least k out of n elements are operating} is given by :
n

Rk = L C~ P j (1 - P) j ••• (3.11)

j=k

where C~ is the number of combinations of j from n elements and is

given by:
n!

C~ = j! (n - j)!
... (3.12)

and Qk = 1- Rk

This system can also be analysed for the dynamic (time dependent)

environment by substituting the component reliability for the appropriate

dynamic parameter.

37

3.4.5 COMPLETE NETWORK RELIABILITY MODEL

After the specification of the deterministic and probabilistic reliability

models, we can propose a methodology for the design and analysis of a fault

tolerant multiprocessor system incorporating both models for the

intercommunication network in order to cover the different aspects

described previously in sections 2.3 and 3.2. Broadly speaking, the basic

methodology could be as follows:

(1) Specification of the initial requirements and constraints:

(a) Suitable system topologies for an application and if applicable the

possible degraded configurations.

(b) Structural parameters related with fault tolerance and

performance, such as maximum number of elements, degree of node,

maximum distance, degree of fault tolerance, diagnosability and

reconfigurability, etc.

(c) Parameters for the reliability model: Reliability and performance

goals, physical parameters such as failure rates; behavioural

parameters, such as repair rate (or no repair), coverage, etc.

(2) Deterministic evaluation of these topologies, by studying the results in

terms of fault tolerance, diagnosis, reconfiguration, cost, etc. These

results are then used as the basis for the structural parameters in the

probabilistic model.

(3) Probabilistic evaluation: This model utilises the structural parameters

(obtained in (2)) and the reliability parameters specified in (l.c) to

compute the reliability, availability, MTTF, etc. If the required goals are

met, then the most suitable configuration is chosen; If not, it IS

necessary a refinement of the design, which involves returning to

stage (l) to obtain a different configuration.

38

Chapter 4

Model Implementation

4. 1 INTRODUCTION

In this chapter is described the implementation of a deterministic

(structural) model and a combinatorial probabilistic model for reliability

analysis of multiprocessor systems. Both models are based in concepts of

graph theory and the criteria of reliability as a measure of connectivity, i.e.

the operation of the communication paths among the different elements in

the system which is relative to the number and structure of such paths for

specific reliability problems.

In a deterministic model, reliability is dependent of the distance, degree

and mainly number of edge and node disjoint paths (connectivity) between

the nodes in the graph representing the system. In a probabilistic model it is

assumed that the elements (nodes and edges) of the system fail with some

known probability, stationary (time invariant) or dynamic (time dependent)

in an environment of statistically independent failures.

The computer representation of a graph is described in section 4.2; the

deterministic model is presented in section 4.3 and the probabilistic model

in section 4.4.

4.2 GRAPH REPRESENTATION

The efficiency of a graph algorithm as well as the ease of implementation

depends on the graph representation. For our model two data structures for

representing directed and undirected graphs have been used:

• Adjacency lists

• List of edges.

4.2.1 UNDIRECTED GRAPHS

Adjacency lists

An undirected graph (Figure 4.1) can be described by the list of all

neighbours of each node Adj(i). An example of adjacency lists for the graph

of Figure 4.1 is shown in Figure 4.2 where the relative order in Adj(n) is

unimportant. This structure is implemented by an array of n linearly linked

lists.

nl

FIGURE 4.1
Undirected Graph

n2

n4

n3

40

n Ad} (n)

' : 1 21 .1 31 ~
2: 1 '1 .1 31 .1 41 q
3: 1 '1 ~121 ~I 41 q
4: 121 ·131 ~

FIGURE 4.2
Adjacency lists for undirected graphs

List of edges

The list of edges in the graph is represented as pair of nodes; it can be

implemented by two linear arrays: g = (glt g2, ... , ge) and h = (h lt h2' .. " he).

Each entry in these arrays is a node label, the i th edge ej is between nodes gj

and hj' For example, the graph in Figure 4.1 would be represented as :

g = (1,1,2,2,3)

h = (2,3,3,4,4)

4.2.2 DIRECTED GRAPHS

Adjacency lists

In a directed graph, the adjacency lists represent the lists of all succesors of

each node, as it is shown in Figure 4.4 for the digraph of Figure 4.3.

41

List of edges

nl

FIGURE 4.3
Directed Graph

n

1 :

2:

3:

4:

FIGURE 4.4

n2

n3

Ad} (n)

121

131

121

Adjacency lists for digraph

n4

--,31 q
~I 41 q
~I 41 q

For a digraph, the ith edge ej is from node gj (predecessor) in the first array to

node hj (succesor) in the second array. The graph in Figure 4.3 would be

represented as :

g = (1, 1, 3, 2, 3)

h = (2,3,2,4,4)

42

4.3 DETERMINISTIC MODEL

The implementation of the deterministic model consists in the calculation

of the different topological parameters affecting reliability: denseness,

degree, distance, and edge and node connectivity for the different reliability

problems; also, the variation of these parameters is calculated when the

graph is degraded by the simulation of faults in one or more nodes and/or

edges, which is called t-edge and t-node deleted denseness, degree, distance

and connectivity respectively.

4.3.1 DENSENESS

Denseness is simply obtained by dividing the number of edges by the

number of nodes in the system graph. Figure 4.5 illustrates denseness for

some graph representations of multiprocessor topologies.

3~--~----~---.---.----.----:---,~--,

""'" ring

- mesh ring ; 1111 III
: 1111111111 mesh", (:1 11111111

1111111

2.5

:3 2
GI

1111 binary cube III'" 1
111 !

-+---+.-r:

C
GI
YI • •
~ 1.5 -+------+-IOtIIIlIIi!!;Ji1 : : :-:.:.:.: .. :.".:.:-:.::.:.:-:.:.:.: ... ::: :.:.;.:.:.:.:.:.:.:

--+-----i'4::j=i=-""""""~-~-"""l
0.5 -+-~~--"-r-r-+,.-,-r+ --r-i'-r-,---y--h-,-ri-.,.,--rlh-,--rl

o 4 8 12 16 20 24 28 32

No. nodes

FIGURE 4.5
Denseness (e/n) versus number of nodes

43

4.3.2 DEGREE

4.3.2.1 Out-degree

Degree for each node of an undirected graph (number of neighbours) and

out-degree for each node of a directed graph (number of succesors) are

computed in the same way; it is easily done by counting their number from

the adjacency lists representation of the graph. The procedure is described as

follows (Algorithm 4.1).

procedure GetDegree;

for all i E N do

degree_outliJ := 0;

for all j E Adj[i] do

degree_outliJ := degree_outliJ + 1;

end; {for iJ

Obtain maximum, minimum and average degree or out-degree;

end; {GetDegree J

ALGORITHM 4.1
Degree for undirected graphs and out-degree for
directed graphs

Figure 4.6 shows the maximum degree for some undirected

configurations.

44

5-r----:----:--~r_--~--_:----._--~--~
: 11111111111
: 11111111111111
: 1111,,'1111

4 [:: ~......... 1I
111

!,11I1I1

.,.,~,~.:~.,:~.~.~.~~.~.~.~] •.. .:.::::.:.:;.:.:.
.-!:~:::":'"

ell ... ::::-:.'

~ 3 ·).:.:· .. ; .. · · f , · · .. ·

ell "::':::"'j •

~ 2 r;::+--r-+~«=+-r-0"~"
: :
! ! 0»,. ring '.:.:.:.' mesh

.... mesh ring 1111 binary cube

a 4 8 12 16 20 24 28 32

No. nodes

FIGURE 4.6
Max. degree versus number of nodes

4.3.2.2 In-degree

Procedure GetlnDegree obtains the in-degree (number of predecessors) for a

directed graph, it also obtains the maximum, minimum and average among

all nodes. This can be done by searching the adjacency lists for each node i in

the graph to get each succesor Adj[i}; then by updating the variable

degree_in[Adj[iJ] we obtain the number of predecessors for each node, as it is

shown in Algorithm 4.2.

45

procedure GetInDegree;

for all i EN do

degree_in[iJ := 0;

for all i ENd 0

for all j E Adj[il do

degree_in[jl := degree_in[jl + 1;

Obtain maximum, minimum and average in-degree;

end; {GetInDegree}

ALGORITHM 4.2
In-degree for a directed graph

4.3.3 DISTANCE

The procedure TotalDistance obtains the distance (lenght of the shortest

path) between pairs of nodes in a way corresponding to the specified

reliability problem for a directed or undirected graph. This is done by one or

more calls to procedure BFS (breadth-first search) which is used to obtain

the distance from a specified node to every other node in the graph.

TotalDistance also obtains the maximum and average distance values

among all relevant nodes. This procedure is described in Algorithm 4.3, and

BFS in subsection 4.3.3.1.

46

procedure TotalDistance;

case problem of

IT: BFS (nodel, dist_array);

distance[1, 1] := dist_array[node2J;

ST: BFS (source, dist_array);

distance[1, 1] := disCarray[terminaIJ;

AT: fori=l to n do

BFS (i, dist_array);

for j=l to n do

distance[i, jJ := dist_array[jJ;
end;

SAT: BFS (source, disCarray);

for j=l to n do

distance[source, jJ:= dist_array[jJ;

KT: for i=l to k do

BFS (k_set[iJ, dist_array);

for j=l to k do

distance[i, jJ := dist_array[k_set[j]];

end;

(get distance between nodel ...)
(... and node2)

(get distance from source ...)

(... to terminal)

(get distance between ...)

(... every pair of nodes)

(get distance from source ...)

(... to every other node)

(get distance between nodes ...)

(... in k_set)

SKT : BFS (source, dist_array); (get distance from source ...)

for j=l to k do (... to every node in k_set)

distance[source, jJ:= dist_array[k_set[j]];

KSKT: for i=l to k_source do (get distance from every ...)

BFS (k_source_set[iJ, dist_array); (... node in source_set to ...)

for j=l to k_terminal do (... every node in term_set)

distance[i, jJ := dist_array[k_terminaCset[j]];

end; (for i)

end; (case)

Obtain maximum (diameter) and average distance;

end; (TotalDistance)

ALGORITHM 4.3
Distance for each reliability problem

47

4.3.3.1 Breadth-first search (BFS)

An algorithm which finds the distance of the shortest path from a source

node (root) to every other node in a directed or undirected unweighted

graph is obtained by conducting a breadth-first search [REI 77], as described in

Algorithm 4.4. This algorithm uses a queue which is a FIFO data structure,

i.e. data is removed in the same order that they are added. The queue used

in BFS stores progressively the nodes ordered by their distance to the root.

procedure BFS (root, dist_array);

(1) for all i EN do

(2) dist_array[iJ := unlabel;

(3) Initial empty queue;

(4) dist := 0; {dist = distance to the root}

(5) disCarray[root]:= 0;

(6) Add root to the queue;

(7) while the queue is not empty do

(8) Remove a node from the queue, call it succesor;

(9) if dist_array[succesorJ :F dist then

(10) dist := dist + 1;

(11) for all i E Adj[succesorJ do

(12) if disCarray[iJ = unlabel then

(13) disCarray[iJ := dist + 1;

(14) Add i to the queue;

end; {if}

end; {for}

end; {while}

end; {BFS}

ALGORITHM 4.4
BFS algorithm used to find distance

48

4.3.3.2 Examples

Figure 4.7 shows the overall diameter (maximum distance) obtained for

some topologies and Figure 4.8 shows the normalised average distance

(average degree multiplied by average distance) for the same topologies.

16

14

12

OJ
10 -GI

E 8
c a 6

4

2

0

18

16

14
iii
0

12 c::
c -'" :0 10
C,
> c 8
..:
0
Z 6

4

2

o

W« ring
.... mesh ring
.;-:.;.;. mesh

1111 binary cube

4 8

FIGURE 4.7

12 16 20

No. nodes

AT diameter versus number of nodes

0

:<~~. ring

- mesh ring
........ mesh

11111 binary cube

4 8

FIGURE 4.8

12 16 20

No. nodes

24 28

24 28

AT normalised average distance versus number of

nodes

32

32

49

4.3.4 EDGE CONNECTIVITY

Edge connectivity (Ke) as defined for the different connectivity problems can

be found by calling one or more times the maximum flow algorithm

(MaxFiow). This algorithm (explained in section 4.3.4.2) obtains the

maximum flow throughout a directed graph from a source node to a

terminal node which is equivalent to the minimum number of disjoint

paths between those nodes (Menger's connectivity theorem) [GIB 85].

To calculate edge connectivity for SAT in a directed graph we can solve

directly those maximum flow problems for which a particular node is the

source. The remaining nodes are then taken as the terminal in turn. For

SKT we follow the same procedure taking the k-terminal set of nodes in

turn. For KSKT we follow the same procedure as SKT but using a modified

graph (described in section 4.3.4.1). ST is obtained directly from MaxFlow.

To solve for the unrooted problems (AT, KT and TT) in undirected

graphs we follow the same procedure as before taking any node as the

source, but before to do so, the graph should be transformed to directed as

follows: (1) construct a new graph G' with the same set of nodes as G, and (2)

replace each edge of G by two antiparallel edges. each of unit capacity. A

practical advantage of the adjacency lists representation of a graph is that to

perform this transformation from undirected to directed graph the data

structure remains the same. The procedure to obtain edge connectivity is

described in Algorithm 4.5.

50

procedure EdgeConnectivity;

case problem of

TT, ST:

flow_max := MaxFlow (source, terminal);

Ke := flow_max;

end; {TT ... }

AT, SAT:

Initialise Ke:= I E I ;

for all i E N - {source} do

flow_max := MaxFlow (source, i);

if flow_max < Ke then

Ke := flow_max;

end; {for}

end; {AT ... }

KT, SKT, KSKT:

Initialise Ke:= I E I;

for all i E terminaCset do

flow_max := MaxFlow (source, 0; {note: for KSKT, source is a new ... }

(... node S, see section 4.3.4.1)

if flow_max < Ke then

Ke := flow_max;

end; {for}

end; {KT ... }

end; {case}

Output Ke;

end; {EdgeConnectivity}

ALGORITHM 4.5
Edge connectivity (Ke) of a graph

4.3.4.1 KSKT problem

A generalisation of the SKT problem is to have several source nodes, which

is the K-source to K-terminal problem (KSKT).

Let Ks = {Sl' S21 ,.,' sn} be the set of source nodes of a graph C. To solve

this problem it is necessary to modify the graph. This is done by adding a

51

new source node S to each original source Si, as shown in Figure 4.9. The

new node and new edges added, as they do not belong to the original system

graph, are considered to be perfectly reliables in order to perform the proper

reliability calculations.

nl el n3 n5 eO

S=n7
, , , , ,

Ks= {n7, n2}
,

n7 ¢
" " Kt={n5,n6} " " " "

" e4 e8

FIGURE 4.9
Modified graph for KSKT problem

4.3.4.2 Maximum flow algorithm

To find efficiently the maximum flow throughout a directed graph G, from

a source node to a terminal node, it has been used the method of Edmonds

& Karp described in [GIB 85] to finding flow augmenting paths in G which is

equivalent to finding direct paths in an associate graph GF. This is the case if

G and GF have the same set of nodes and if for any two nodes i and j, (if j) is

an edge of GF if and only if either :

(if j) E E and ~ (i, j) = capacity (if j) - flow (i, j) > 0

or Vf i) E E and ~ (if j) = flow Vf i) > 0

(forward edge)

(reverse edge)

MaxFlow algorithm is outlined in Algorithm 4.6 and the procedure to

construct the associate graph GF in Algorithm 4.7.

function MaxFlow (source, terminal) : flow;

for all (i, j) E E do

capacity (i, j) := 1;

flow (i, j) := 0;

path := true;

while path do

(unit capacity)

(path records whether or not an ...)

(... augmentation path exists for GF)

ConstructAssociateGraph;

AugmentingPath (GF, path, path_list);

if path then

Find .1 := min .1 (i, j), among all (i, j) E path_list;

for all (i, j) E path_list do

if (i, j) is a forward edge of path_list then

flow (i, j) := flow (i, j) + .1;

end; (if path)

end; (while path)

MaxFlow := I flow (source, j), for all j E Adj[sourceJ

end; (MaxFlow)

ALGORITHM 4.6
Maximum flow algorithm

procedure ConstructAssociateGraph;

for all (i, j) E E do

.1 (i, j) := capacity (i, j) - flow (i, j);

if .1 (i, j) > 0 then

Add node j to Adj[iJ, recording a forward edge and .1 (i, j);

if flow (i, j) > 0 then
Add node i to Adj[jJ, recording a reverse edge and .1 (j, i) := flow (i, j);

end; [for)

end; (ConstructAssociateGraph)

ALGORITHM 4.7
Construct associate graph Gf

53

4.3.4.3 Augmenting path algorithm

To find the augmenting path in G, i.e. a directed path in the associate graph

GF from a source node (s) to a terminal node (t), the distance from s to t is

computed using BFS algorithm as described in Algorithm 4.4, but keeping

track of pre(i) as the algorithm progresses (that is the node preceding the

node i along the shortest path) in order to find the path itself. This is done

by editing BFS algorithm (BFS_Path) , after line (14) inserting:

(15') pre[i] := succesor;

Hence the nodes of the path are :

s, ... , pre(pre(pre(t))), pre(pre(t)), pre(t), t.

The augmenting path algorithm is described in Algorithm 4.8.

procedure AugmentingPath (CF, path, path_list);

BFS_Path (CF, disCarray, pre):

if dist_array[terminall = unlabel then

path := false

else path := true;

if path then

for all i E pre do

Add node pre[i] to path_list;

end; (if)

end; (AugmentingPath)

ALGORITHM 4.8
Augmenting path

4.3.5 NODE CONNECTIVITY

The procedure to obtain node connectivity (Kn) is very similar to that for

edge connectivity, but with some modifications. Based on the node

54

connectivity theorem of Menger, we have also to solve the maximum flow

problem but for an auxiliary graph G' derived from G. Such graph is

constructed as follows :

For every node n E N in G, G' contains two nodes n' and nil and an

edge (n', nil) called an internal edge. In addition for every edge (ni' nj) E E in

G, G' contains two edges (n(, n/) and (n/" n/) which are called external

edges. The capacity of each internal edge is one, and each external edge has

an infinite capacity. Figure 4.10 shows G' for an undirected graph and Figure

4.11 for a directed graph. The maximum flow is obtained from source node

s' to terminal node til.

n2'

n2

n7 n4 nl' n4'

n3

n3'

G G'

FIGURE 4. 10
Auxiliary graph G' derived from undirected graph
G, n 7 is source and n4 is terminal

55

n1

n2

n2

n4 n1'

n3

,-.3'

G G'

FIGURE 4. 7 7
Auxiliary graph G' derived from directed graph G,
n 7 is source and n4 is terminal

TT, ST and KSKT node connectivity problems are solved with one call

to MaxFlow with s" as source and t' as terminal (for KSKT using the

modified graph). SAT and SKT are solved with s" as source and taking in

turn every other node as terminal for SAT and every node in terminal_set

for SKT.

AT node connectivity is guaranteed to be solved with the following

process: First, we solve all those MaxFlow problems with nl as the source

(taking in turn each of nj' j = 2, 3, ... , n as terminal, provided (nll nj) (C E) then

those with n2 as the source (taking in turn nj' j = 3, 4, ... , n as terminal,

provided (n2, nj) (C E) and so on until nk has taken a turn as the source where

k = Kn(G) + 1. This process solves all maximisation problems with nj as

source, nj E {nI, n2, ... , nk}, to find node connectivity.

A similar process is used for KT, but solving only for the nodes

belonging to k-set. Algorithm 4.9 outlines the procedure for node

connectivity based in the preceding considerations.

56

procedure NodeConnectivity;

(1) Generate auxiliary graph G';

(2) Initialise Kn := n - 1;

(3) case problem of

(4) IT, ST, KSKT :

(5) flow_max := MaxFlow (source', terminal");

(6) Kn := flow_max;

end; (TT, ST, KSKT)
(7) SAT:

(8) for all i EN - (source) do

(9) flow_max := MaxFlow (source', i");

(10) if flow_max < Kn then

(11) Kn := flow_max;

end; (for)

end; (SAT)

(12) SKT :

(13) As SAT but substituting line (8) for: (8') for all i E terminal_set do
(14) AT:

(15) i := 0;

(16) while i ~ Kn do

(17) i:=i+1;

(18) for j:=i+1 to n do

(19) if (ni, nj) ~ E then

(20) flow_max:= MaxFlow (nj', n();

(21) if flow_max < Kn then

(22) Kn := flow_max;

end; (if, for)

end; (while)

end; (AT)

(23) KT :

(24) As AT but changing n to k in line (18),

(25) (ni, nj) to (nk-set[ij, nk-set[jj) in line (19), and

(26) (ni', n/') to (nk-set[i]', nk-set[j() in line (20)

end; (case)

end; (NodeConnectivity)

ALGORITHM 4.9
Node connectivity

57

4.3.5.1 Examples

The following graph (Figure 4.12) illustrates edge and node connectivity

results obtained for the AT problem in some graph configurations.

~
.~ -o
Q)
c:
c:
o
()

meshed ring

a 4 8 12 16 20 24 28

No. nodes

FIGURE 4. 72
Edge and node AT connectivity versus number of
nodes (note: ring and rectangular mesh have the
same connectivity)

4.3.6 FAULT SIMULATION

32

The removal of edges and/or nodes have been simulated in the

deterministic reliability model in such a way that edge or node connectivity

is always decreased by one with the removal of a edge or node. All

deterministic parameters such as denseness, degree, distance and edge and

node connectivity are computed for the degraded configurations, being of

particular interest the diameter of the remaining graph, called t-node (edge)

deleted distance.

58

Simulation of a fault in an edge is accomplished by selecting any edge

(i, j) incident to a node i of minimum degree among all nodes and

generating a subgraph Ger by removing edge (i, j) from the original system

graph G; simulation of a fault in a node is accomplished by selecting any

node j, neighbour or predecessor of a node i with minimum degree and

creating a subgraph Gnr by removing node j from the original graph G as

well as its incident edges; proceeding in this way it is guaranteed that the

edge or node connectivity is reduced by one when the edge (i, j) or the node

j is deleted. An example is shown in Figure 4.13.

nl nl

nl n3 n7

n5 n5

nl nl

",
fl8 ", n2

" n p---- ------ ----*
I I I \

I I • \

" I '. I ,
I ,

~ I 'n3

(c)

n5 n5

FIGURE 4. 73
Example of fault simulation in a 4x2 meshed ring (a),
one node removed in (b), two nodes removed in
(c) and three nodes removed in (d)

59

After computing the deterministic parameters of interest, the

procedure is repeated succesively until the remaining graph become

disconnected. In Algorithm 4.10 is outlined the above procedure.

procedure SimulaFaults;

repeat

case class of

edgeJault

i := node with minimum degree;

(i, j) := incident edge;

Ger := Obtain subgraph (G, (i, j»;

G:= Ger;

end; (edge_fault)

nodeJault :

i := node with minimum degree;

j := neighbour or predecessor node;

Gnr := Obtain subgraph (G, j);

G:= Gnr;

end; {nodeJault}

end; {case}

Compute deterministic reliability parameters for G;

until G is disconnected;

end; {SimulaFaults}

ALGORITHM 4. 10
Simulation of faults in edges and nodes

4.3.6.1 Examples

Denseness, diameter, normalised average distance and edge and node

connectivity have been evaluated for some configurations when faults are

simulated as described above. Figures 4.14 to Figure 4.17 show the results

obtained.

60

2-r"':~'::<::=::::'::~'::-::-'---------;------------~--------__ ~

..
··r:::::::::-.-

.",;.;.. 1.5 -jil0l>i!lli;=--------+---.::::; :.: .. ~--

......... :
.... • 1 : :

• 1111 :

...... ring 8
- mesh ring 2x4 & bin. cube
:.:.:.:. mesh ring 4x2
11111 mesh4x2

1···_····
O.5-r---------------r---------------r------------~

a 2

No. nodes deleted

FIGURE 4. 74
t-node deleted denseness versus number of
nodes deleted (t)

6-T--------------~----------------~-------------.
.. :.:~~-::>-~~:··l

" ' ring 8
<-;~::~~:~::;'F·· :,

5 -+---.":-: .. :w:,, """ .. "~I-----------'-
<-'~~ lilli"~ :

""'" mesh ring 2x4
...... mesh ring 4x2

• :o;"'~~~" ""II'" l
,.::,,~:<"','I'I"" :

<"111" • .. 1' 4
1111 mesh4x2

.. - bin. cube 8

3 .. = ~ ... -}.~ *"'" -----::: .. ::.:.:.:.:.:.::"'~:.: .. :.:-:-:.:-:.:.:.;.: :<.:

.... .;.:.::.:.;:.::.:.::-::.:.;

2 ;.;.;.;.;.;.;.;.:.:.:.;.:.:.:.;.;.;.: .. ;.:.;.:.;.;;;;;:::::::;':';':'::::::4':::::::':':::::::'~:::::':':· j- .. .
: :
: :
: : : ;

a 2

No. nodes deleted

FIGURE 4. 75
t-node deleted AT diameter versus number of
nodes deleted (t)

3

3

61

GI
0 c c
~
'0

tit
~
~
0 c
'0
QI -QI
~
'0
QI
'0
0
C
I -

~
~
"0
QI
c c
o
o
'0

~
~
QI

g
I -

6.0

5.5 .:::::::::>:::::::::::::::::::::;.;:;;:::::::::.: ·········l········
. ":':-.-

5.0 ----- -- -...... .;..

4.5

.... ring 8
>060(mesh ring 2x4
.:.:.:.:. mesh ring 4x2
11111 mesh 4x2
- bln. cube 8

4.0 ···t········ ::::

3.5

3.0

.. ! ··································1················'"':"'" ~;

o 2

No. nodes deleted

FIGURE 4. 16
t-node deleted AT normalised overage distance
versus number of nodes deleted (t)

3

,-.:-::.:.-

-, ring 8 & mesh 4x2
>060(mesh ring 2x4 & bin. cube 8
.;.:.:.:. mesh ring 4x2

.,.-.;.-

2
'-:::::-:'"

. _. -..... -.. --.. -.... -. -_ .. _ ::: ~:;:::: :::~:.i.;::::::::::::;;:::;:;:;.;::::::':':''-::'.'"''

"':-:;-::-:-
.-.;.::-> ..

-+-------=~------~---------= ...

O~------------_+-------------T-------------i

o 2

No. nodes deleted

FIGURE 4. 17
t-node deleted AT connectivity versus number of
nodes deleted (t)

3

62

3

4.4 PROBABILISTIC MODEL

Each of the different rooted and unrooted probabilistic reliability problems

for directed and undirected graphs is computationally difficult to solve

[COL 87], thus efficiently computable algorithms are of significant interest.

In other related work found in the literature, TT and AT problems have

been widely studied but treated separately, and very few results apply to KT

and to rooted problems in directed graphsl. Therefore for this work a simple

and efficient methodology has been developed to deal with all reliability

problems in a general framework. The general method suggested consists

basically of three steps:

(1) Taking either (i) all simple paths between a given pair of nodes for TT

problem, or (ii) all spanning trees for AT problem, or (iii) all Steiner

trees for KT problem for undirected graphs, or (iv) all the directed

paths from source to terminal node for ST problem, or (v) all the

spanning out-trees for SAT problem; or (vi) all the Steiner out-trees for

SKT, or (vii) all the Steiner out-trees of the modified graph for KSKT

problem for directed graphs; as the events in the system probability

space and represent them by cubes as explained in subsection 4.4.1.

(2) Performing some Boolean operations on the cubes to arrive at a

Boolean algebraic expression. In this case the "sharp" operation among

the cubes is applied, as described in subsection 4.4.1.

(3) Interpreting the Boolean expression as a symbolic probability

expression in order to obtain the measures for the probabilistic event of

1 For reference to TT problem see [GRN 80], [TOR 83] and [HAR 86] as the most efficient
algorithms; for AT problem, see [AGG 81] and [XU 86]; for KT problem see [PAG 88], for rooted
problems, particularly SKT, see [SAT 82].

63

interest, by representing the expression as a disjoint sum. The

measures can be stationary probability of success and/or time

dependent reliability measures.

Steps (1) and (2) could be applied sequentially, finding first all

appropriated trees in the system corresponding to the specified problem, and

then obtaining a Boolean expression, but the requirement of generating and

storing all trees first makes this approach not practical for large systems

since the number of trees grows exponentially with the number of nodes

and links.

In our method, based on an algorithm developed for overall reliability

by [XU 86], steps (1) and (2) are executed recursively in order to gradually

obtain a disjoint sum of terms (Boolean expression); the advantage of this

approach is that reduces considerably the storage and computing time since

no all trees generated have to be stored. This method is explained in detail

in subsection 4.4.2.

4.4.1 CUBE REPRESENTATION AND "SHARP" OPERATION

For a graph consisting of n nodes and e edges, a identifier for a tree is

defined by the following :

Definition 1

The tree identifier ITa for the tree Ta is defined as a string of k binary

variables

where

~=C
if the ith element of the graph is included in the tree

otherwise

64

and k is the number of elements subject to failure, i.e. :

k=e

k=n

k=e+n

in the case of links subject to failure

in the case of nodes subject to failure

in the case of both links and nodes subject to failure

As an example, consider the undirected graph of Fig. 4.1. A simple path

from nl to n4 is Tl = (nv ev n2, e4, n4) (see Figure 4.18); if only imperfect links

are considered, the path is represented by the identifier: [T1(e) = 1xx1x,

corresponding to (ev e2, e3, e4f es); if faults in nodes are considered: [TUn) =

11x1 corresponding to (nv n2t n3f n4); and for faults in nodes and in links:

n2

nl n4

FIGURE 4. 18
Simple Path, IT1(e+n) = 7xx7x 7 7x 7

A spanning tree T2 = (n2t ev nv e3f n3, e4f n4) (shown in Figure 4.19) is

represented by the identifiers:

(a) IT2(e) = 1x11x

(b) IT2(n) = 1111

for faults in links.

for faults in nodes (obviously, since a

spanning tree spans over all nodes).

(c) IT2(e+n) = 1x11x 1111 for faults in links and in nodes.

65

nl

'
'

e2

FIGURE 4. 19

n2

....
n3

e3 n4

Spanning Tree, IT2(e+n) = 7x7 7x 7777

The minimum Steiner tree (T3) shown in Figure 4.20, which spans

over nll n2 and n31 T3 = (nll ev n2' e2, n3) is represented as :

(a) IT3(e) = llxxx

(b) IT3(n) = lllx

(c) IT3(e+n) = llxxx lllx

nl

FIGURE 4. 20

for faults in links.

for faults in nodes.

for faults in links and in nodes.

n2

, ' ..
: ", e4 , , , .. , ",
'93 ' n4 , JJ , ~ , ~~

I ~~
I ~

I ~~e5 , ~~
I ~

~
~

n3

Steiner Tree, IT3(e+n) = 77xxx 77 7x

An example of a digraph was presented in Fig. 4.3; a directed path,

spanning out-tree and Steiner out-tree with their corresponding tree

identifiers represented as cubes (for edges and nodes) are shown in Figures

4.21,4.22 and 4.23 respectively.

66

n2

nl

FIGURE 4.21

Directed Path, IT(e+n) = 7xx7x 77x7

, , nl

FIGURE 4.22

,
e1 ,,' , , ,

",

n2

n3

, ,
'" e4 , , , , , ,

Spanning Out-tree, IT(e+n) = x 7 7x 7 7 77 7

n2

, ,
'" e4 , , ,

n4

n4

nl 93 "'~ n4

,
"

n3

FIGURE 4.23

" ,
,,'

"
,,,' e5

Steiner Out-tree, IT(e+n) = 77xxx 77 7x

A cube in Boolean algebra is a geometrical representation of a Boolean

function by mapping a function of n-variables onto a n-dimensional unit

(n-cube) [MIL 65].

From Definition 1 it can be seen that a tree identifier has the form of a

cube, thus a cube will be used to represent a tree in Boolean algebra.

67

Definition 2

Let Sj be the state of the element Xi of the system graph, where:

s, = E if Xj has a failure
if Xj is good
arbitrary

A cube is a string of the type:

C = Sl1 Sz, ... , Sj, •.• , Sk

where k, as before, is the number of elements in the system graph.

A Boolean expression is generated by applying the "sharp" operation

(#-operation) between two cubes, denoted as A # B, in this way the set of

subcubes of A not included in B is obtained, which is the disjoint sum.

Definitions 3 and 4 constitute the algebraic description of the #-operation :

Definition 3

The coordinate #-operation is defined as given in Table 4.1.

TABLE 4.1
Coordinate #-operation, a, # b;

b,

0 1 x

0 z y z

0, 1 y z z

x 1 0 z

Note that ai # bi ~ bi # ai

68

Definition 4

The #-operation between two cubes A = av a21 "'I an and B = b
v

b
21

'''I b
n

is defined as :

o if aj # bj = z for all i
A#B=

n

u Cj otherwise
j =1

where

aj # bj = CXj = 0 or 1

and aj bj is the coordinate intersection as defined in Table 4,2

TABLE 4.2
Coordinate intersection operation, a, b,

(1 0 1 x

0 0 0 0

1 0 1 1

x 0 1 x

The intersection between two cubes is defined as:

Definition 5

l'f a-b- = 0 I I

otherwise

The following are the properties of #-operation :

69

(a)

(b)

A#B=A

A#B=0

ifAnB=0

ifAnB=A

(c) if A # B = u Cj then Cj n Ck = 0 (j:¢:. k), B n Cj = 0,

namely all cubes C j in u Cj are pair-disjoint. Therefore

u can be replaced by L, i.e.
n

A # B = LCj

j =1

4.4.2 ALGORITHM FOR BOOLEAN EXPRESSION

The basic recursive algorithm for the derivation of the Boolean expression

(generation of the total set of pair-disjoint cubes) of a graph G can now be

described In pseudo-code by Algorithm 4.11. The variable

BooleanExpression, which represents the symbolic boolean expression, is

stored on disc in a sequential file to be used later to calculate the different

numerical reliability measures.

The initial conditions for the procedure are: Y is the universal of the

sample space: Y = (x, ... ,x) and BooleanExpression is empty, before calling

Get BooleanExpression.

70

procedure GetBooleanExpression (Y, G);

(1) case problem of

IT: Find a shortest simple path T of the graph G ,

AT: Find a minimum spanning tree T of the graph G

KT: Find a minimum Steiner tree T of the graph G ;

ST: Find a shortest directed path of the graph G ;

SAT: Find a minimum spanning out-tree of the graph G ;

SKT : Find a minimum Steiner out-tree of the graph G ;

KSKT: Find a minumum Steiner out-tree of a modified graph G' ;

end; {case}

(2) Represent T as a cube A I ;

(3) A = Y n A' ; {Intersection operation to get the real cube representation}
(4) BooleanExpression:= BooleanExpression + A ;

r
(5) Find Y # A = L Bj (0 < r ~ n) to get a set r of pair-disjoint cubes ;

j =1

Bj corresponds to a subgraph Gj of G, the correspondence is :

Xj ~ Gj if bj = 0

Xj E Gj otherwise, (i.e. bj = 1 or x)

(6) Apply this procedure (GetBooleanExpression) recursively to every connected

subgraph Gj until all the resulting subgraphs are disconnected :

fori := 1 to r do

begin

Find the corresponding subgraph Gj of Bj

if Gj is connected then

GetBooleanExpression (B j , Gi);

end; {for}

(7) end; {GetBooleanExpression}

ALGORITHM 4. 7 7
Get Boolean expression

4.4.2.1 Computer analysis

The whole recursive computation of the algorithm can be described by a

computation tree; the root of the tree indicates the first time the algorithm

is called (when the first cube or subgraph is generated). Each subset of cubes

71

(subgraphs) generated from it is represented by each branch of this node in

the computation tree. Subsequent subgraphs, recursively generated, are

represented by successive branching of the tree.

In Figure 4.24 is shown an example for the computation of TT problem

from nl to n4 for the graph in Fig. 4.1, considering only faults in edges. A

terminal node (square) denotes a disconnected subgraph, an internal node

(circle) denotes a connected subgraph and the labels in the circles denote the

order of path generation (preorder traversal of the tree).

B1 = Oxxxx
A1 =01xx1

Y=xxxxx
A=lxx1x

B121 = 01xOO Bl22 = 01010 B211 = 10x00 B212 = 10001

Boolean Expression = A + A 1 + A 12 + A2 + A21

FIGURE 4.24
Computation Tree of graph G (IT problem)

level

o

2

As the recursive algorithm goes deeper (the level of the computation

tree is increased), there are more zeros in the cube, i.e. there are fewer edges

in the corresponding sub graph (each time a #-operation is done, there is one

more zero in the cubes generated). When a subgraph has less than n-l edges

it is disconnected, therefore the depth of the computation tree cannot be

higher than e-n+ 1.

72

4.4.3 ApPROXIMATION METHOD

In the deeper levels of the computation tree, as the number of zeros is large,

the contribution of a cube to the symbolic expression for the reliability

measures of interest can be very small depending of their reliability values.

If a tolerant error is given, then a level L can be decided such if a small

contribution is obtained in all levels deeper than L, the algorithm will not

go beyond it, i.e. only part (the most significant) of the paths or trees are

obtained for the graph; thus saving storage and computation time which

can be significan tl y.

4.4.4 UNROOTED PROBLEMS

In section 3.4.2 it was mentioned that TT and AT problems are special cases

of KT with k =2 and k =n respectively. So it would be possible to use only

one algorithm to generate Steiner trees and generalise it for shortest paths

and spanning trees. Unfortunately this approach was not followed since the

construction of a minimum Steiner tree is the most difficult and time

consuming problem and this generalisation would affect considerably the

efficiency of the algorithm. Thus, a different algorithm has been

implemented for each of the problems: spannIng tree for AT problem,

shortest path for TT and Steiner tree for KT.

To represent computationally the graph, it has been used the adjacency

lists and list of edges as explained in section 4.2.1. The later representation is

very useful for this model because the indices in arrays g and h correspond

to the indices in a cube representation of edges, which allow an easy

identification of the state of graph elements.

73

4.4.4.1 Spanning tree

Given the adjacency lists and the list of edges representation of a undirected

graph, by conducting on it a BFS (breadth-first search) (see section 4.3.3.1)

taking any node as source, a breadth-first spanning tree is constructed,

which is a minimum spanning tree. The set of edges obtained which belong

to the tree are represented by a cube which is obtained by editing B F 5

(Algorithm 4.4) as follows :

(a) Initialising a cube array,

for all i E E do

cube[iJ := x;

(b) Inserting after line (11):

(12') cube[index[iJ] := G;

4.4.4.2 Shortest path

An algorithm to find the shortest distance between two nodes was

described in section 4.3.3.1 using BFS, which is modified as explained in the

previous section. Both edges and nodes belonging to the path are

represented by a cube.

4.4.4.3 Steiner tree

A minimum spanning tree can be obtained with an algorithm like BFS or

DFS (depth-first search). However for a problem which appears to be closely

related: the minimum Steiner tree problem, there is not a polynomial

bounded solution [LAW 76]. This difficulty can be largely overcome by using

74

heuristic algorithms, as the one developed for this model which is described

in the following (Algorithm 4.12):

procedure FindSteinerTree;

(1) Considering the subset K of nodes, the distance among them is calculated

applying the BFS procedure (K - 1) times.

(2) The pair of nodes in K with minimum distance between them is selected if at

least one of the nodes has not been selected before. The shortest path between
them is obtained.

(3) The Steiner tree is constructed by adding to it the path obtained.

(4) Repeat steps (2) and (3) with the next shortest distance between two nodes until

all K nodes are selected and the Steiner tree is completed.

(5) end. (FindSteinerTree)

ALGORITHM 4.12
Find Steiner tree

With this algorithm it is possible to construct a near-minimal Steiner

tree for the majority of graph configurations in which is applied.

4.4.5 ROOTED PROBLEMS

Two of the algorithms utilised to implement the model for undirected

graphs can be used for directed graphs: (0 to find the directed paths for ST

problem (same as shortest path for TT) and (ii) to find the spanning out

trees for SAT (same as spanning tree for AT). But for SKT problem a new

algorithm was implemented to find a Steiner out-tree, which is also used in

the modified graph for KSKT problem.

75

4.4.5.1 Steiner out-tree

The algorithm developed to find a Steiner out-tree IS described In the

following (Algorithm 4.13):

procedure FindSteinerOutTree;

(1) Obtain the distance from root node R to the nodes belonging to the K-terminal set
(Kt) using BFS algorithm;

(2) Initially nodes in Kt have not been visited yet;

repeat

(3) Find node t with longest distance from R, which has not been visited;

(4) Obtain shortest path from R to t;

(5) Visit all nodes along the path which belong also to Kt ;

(6) until all nodes in Kt have been visited;

(7) end. {FindSteinerOutTree}

ALGORITHM 4.13
Find Steiner out-tree

4.4.6 RELIABILIlY MEASURES

Once a Boolean expression has been obtained, which consists of a disjoint

sum of cubes, it can be transformed into a symbolic or numerical reliability

expression by substituting the cube values for the different stationary and

time dependent (for closed and repairable systems) reliability measures

described in section 3.4.4.

4.4.6.1 Stationary reliability

The stationary probability of success, corresponding to a cube C j in the

Boolean expression can be calculated as :

76

where

p = II Pi for all i satisfying Si = 1

for all i satisfying Si = 0

Pi = Pr {element i is working}

The symbolic reliability expression R (e) is then:

T

R (e) = L Pr {Cj }

j =1

where

r is the total number of cubes,

e is the reliability problem (TT, AT, KT, etc.)

The respective unreliability U (e) IS:

U (e) = 1 - R (e)

... (4.1)

... (4.2)

... (4.3)

In order to test the algorithms that have been implemented, TT, AT

and KT stationary reliability were computed for the undirected graph of Fig.

4.1; ST, SAT and SKT for the directed graph of Fig. 4.3 and KSKT for the

directed graph of Fig. 4.5. Figure 4.25 to Figure 4.27 show the results

obtained.

77

~
:a
.Q
!
g
~
QI -I

0
;!

~
:a
.Q

!
t-
l>o::
"0
c c
t-
e(

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.70 0.75 0.80 . 0.85 0.90 0.95

Element reliability (stationary)

FIGURE 4.25
Two-terminal stationary reliability of Fig. 4. 7,
considering faults in edges R(e), in nodes R(n) and
in both R(e+n), t, = n" t2= n4

1.00

0.95

0.90

0.85

0.80

0.75

0.70 0.75 0.80 0.85 0.90 0.95

Element reliability (stationary)

FIGURE 4.26
Overall (AT) and k-terminal (I<T) with K = {n1. n2, nJl

stationary reliability of Fig. 4. 7, considering only
faults in edges

78

1.00

1.00

~
1i
..!2
!
.....
~
CI)
~

"C c
c
~
CI)

~
CI)

.....-
CI)

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.70 0.75 0.80 0.85 0.90 0.95

Element reliability (stationary)

RGURE 4.27
Source to terminal (source = n " terminal = n4),
source to all terminal (source = n 1), source to K
terminal (source = n 1 ' Kt = (n2, nJl) of Fig. 4.3 and K
source to K-terminal (Ks = {n" n2} , Kt = (ns, n6})
reliability of Fig. 4.5 considering faults in edges.

1.00

The approximation algorithm was applied to a medium SIze

configuration (4x4 rectangular mesh) as illustrated by the following graph

(Figure 4.28); in this graph we can observe that it is not necessary to go

beyond level 5 or 6 in the computation tree (see section 4.4.3) to obtain a

very accurate reliability value.

79

1.00 I--!--r-~---r----r----

0.95

~
:a 0.90
.2 lCXXl

~

0.85 50J

0.80 -t---r---i-...... -+--==-~4-""'T'""-+----r-+--r---L 0
o 2 4 6 8 10

-C- Reliability
Level of approximation

.. Comput. time

FIGURE 4.28
Double Y graph: Reliability and computation time
vs. level of approximation for a 4x4 rectangular
mesh graph.

4.4.6.2 Closed systems

Reliability, R (e, t)

12

~
:c
..:
:l
Q.

E
0
u

As it was seen in section 3.4.4, assuming exponential distribution, the

reliability of element i is:

... (4.4)

where Ai is the failure rate for element i

The time dependent system reliability expression R (e, t) is obtained by

substituting R (XiI t) for Pi in the symbolic expression for R (e) (equations 4.1

80

and 4.2). Numerical values of R (e, t) can be obtained by calculating for

different values of t in a given interval [tl, t2].

Mean time to failure, MTTF (e) was defined as :

00

MTTF (e) = J R (e, t) dt ... (4.5)
o

Since it is not possible in the general case to substitute MTTF (x)

directly from the symbolic expression, it is required to employ numerical

integration for this problem. Given the appropriate limits to the integral

(for the upper limit, a very high value; and for the lower limit, zero) and

enough number of t intervals, a very accurate value of MTTF can be derived

using Simpson rule for numerical integration [CHU 81].

Given the array of values for reliability at different time:

R (e, 0), R (e, t1), ••• , R (e, tn)

where n is the number of t intervals,

MTTF is derived using Simpson rule as follows:

MTTF (e) = ;~ [R(e, 0) + 2 ~ R(e, 1,;+1) + 4~ R(e, 1,;) + R(e, In)] ... (4.6)

4.4.6.3 Repairable systems

Availability, A (e, t)

The availability of element 1, assuming exponential distribution IS

given by:

81

A (Xi' t) =
J.l.

I +
).,. + II.

I r-I

).,.
'1 I exp [- Ai t] /\,.. + II.

I r-I

... (4.7)

The availability expression A (e, t) is obtained in the same manner as

R (e, t) by substituting A (Xi' t) for Pi in the symbolic expression.

Steady-state availability, SA (e)

The availability at time 00 of element i IS:

... (4.8)

SA (e) is obtained also by substituting SA (Xi) for Pi in the symbolic

expression, as R (e, t) and A (e, t).

Mean time between failures, MTBF (e) is calculated from the equation:

MTTF (e)
MTBF (e) = SA (e)

4.4.6.4 Examples

... (4.9)

Time dependent measures were computed for the undirected graph of Fig.

4.1, as presented in Figure 4.29 for R(t) and A(t) and in Table 4.3 for MTTF,

SA and MTBF.

82

~
:0
..!2

~
atS

~
:0
..!2
'ii
CII:

A1(t).11 0 .=100
1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

:~ I I

-~ ~
A2(t). ,.,.11.=10 -

\
r-...... = -= " "-.... = r--....

: ~ -.;;.:
t---- A3 (t). 11/1. = 1 ::

\ r-

\ ,
0.20

0.10

: " :

'" :

t'-- R (t)
0.00 T T'I I I

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

TIme (normalised)

FIGURE 4.29
Time-dependent measures, R(t) and A(t) for
Fig. 4. 1, AT problem,' the time units are normalised,
i. e. are the product of failure rate (A) and time; A(t)
is obtained for different ratios J.l / A

TABLE 4.3
MTTF, SA and MTBF (graph in Fig. 4. 1, AT problem)
for different ratios J.l / A

iliA MTTF SA MTBF

0 716.18 1.0000 716.18

1 - 0.9999 716.18

10 - 0.9998 716.32

100 - 0.9811 730.00

1000 - 0.4375 1636.98

83

4.4.7 FAULT SIMULATION

As for th~ deterministic model, faults in nodes and edges have been

simulated as described in section 4.3.6. To calculate probabilistic reliability

measures for degraded configurations, line (12) in Algorithm 4.10 is replaced

by:

(12') Compute probabilistic reliability measures

Figure 4.30 shows an example of stationary reliability when the selected

graph configurations have been succesively degraded until they become

disconnected.

0-
d
u 0.9 GI
Q.

~ :c 0.8
.Q
!
.....
-< 0.7
"0
GI -GI
'ii
"0 0.6
GI

g
I - 0.5

. ·························· ... ·························r·:':':':-:':':':':':';';':'-:-:':':':':-:';":':':':':-::':':':':':":';';'"

......• :.:.'1".:.::.:.::.::::.::.:.::.::::.::.::.:::::::-::.::.::-::::::::::.:: ...

III :
II : :

IIII : :
IIII : :

IIIII i .
~ ~~hlllii················+··············..................... + .. .
"\~" 1111 : •

.". II1111 i i
............. ~'\:~.: ~~~hll\· ··· ······ · +.. ,..,. ring 8

":;(: ,' i i-mesh ring 2x4

....................... ~ .. 1. :~~:a

o 2

No. nodes deleted

FIGURE 4.30
t-node deleted AT stationary reliability versus
number of nodes deleted for edge reliability = 0.9

3

4.4.8 K-OUT-OF-N PROBLEM

., k f t m is the general model of As it was seen In section 3.4.4, a -out-o -n sys e

active redundant syst~ms, where series and parallel systems are particular

84

cases with k=n and k=1 respectively. Therefore, in the implementation of a

reliability model for k-ou t-of-n systems there are included series and

parallel systems.

If equations (3.11) and (3.12) are used directly to calculate Rk , for large n

the number of terms obtained is very large and the algorithm is

computationally inefficient. Also, the algorithm becomes more complicated

when the element reliabilities are different and for calculation of time

dependent measures.

Some efficient methods have been presented in the literature for

evaluating the reliability of k-out-of-n systems which reduce the number of

terms by avoiding the generation of cancelling terms, see for example

[LOC 84], [BAR 84], [JAI85], [RIS 87]. For this model, it has been developed a

very efficient algorithm based in the method for network reliability

(described in sections 4.4.1 and 4.4.2); the algorithm for k-out-of-n systems

uses the same principle of recursive sum of disjoint products where the

generation of cancelling terms is avoided and uses the same data structures

for cube representation and symbolic expression.

4.4.8.1 Algorithm for Boolean expression

The procedure developed for the derivation of a Boolean expression for

evaluation of k-out-of-n system reliability can be summarised as follows

(Algorithm 4.14):

85

(1) Enter and check the initial data for the problem.

(a) Enter problem : k-out-of-n system reliability (KON)
(b) Enter nand k

(c) Check 1 ~ k ~ n

(2) Use symmetry to do the shortest calculation.

Because of duality, the probability of success for a k-out-of-n system is the

complement of the probability of failure for a (n-k+1)-out-of-n system.
'f k n+1 t > -2- then

begin

k := n - k + 1;

Pi := 1 - Pi for all elements; {or a time dependent measure}
ct := true {ct is a Boolean indicator}

end

else ct := false;

(3) Step (1) in proc. GetBooleanExpression (section 4.3.1.2) is modified as follows:
case problem of

TT,AT,KT,S~SA~SKT,KSKT:

KON : Find a tree representation (cube) with k working elements (in good

state (1) or arbitrary state (x» from the cube Y of n elements. This cube is

obtained by finding the first k elements in state 1 or x from cube Y and

changing those in state x to 1, so a cube of at least k good elements is obtained.
end; {case}

(4) Proceed as steps (2) to (5) in algorithm GetBooleanExpression.

(5) Step (6) in GetBooleanExpression is modified since it is not required to check for

connectedness and it is possible to know beforehand the maximum level of the

computation tree for this recursive procedure in order to reduce the number of

calculations, which is: n-k.

(6) Once a Boolean expression has been obtained, the reliability measure of interest

is calculated as for network reliability, but if symmetry was employed to reduce

the calculations (ct is true) Rsys is substituted by 1 - Rsys. (Rsys is R(e), R(e, t),

A(e, t), or SA(e».

end; {K_out_of-n}

ALGORITHM 4. 14
K-out-of-n system reliability

86

4.4.8.2 Computer analysis

An example of the recursive computation of a 3-out of 5 t . h - - sys em IS s own in

the following computation tree (Figure 431) Each subset f b
. . 0 cu es generated

(B's) at each computation is represented by each of the branches of a

previous node in the tree. The A's are the terms of the Boole . an expressIon.

y = xxxxx
A= lllxx

1

Boolean Expression = A + A 1 + A 11 + A 12 + A 13 + A2 + A21 + A22 + A3 + A31

FIGURE4.31
Computation tree of 3-out-of-5 system

4.4.8.3 Example

level

o

2

3

at level 3
all trees are

dsconnected

As an example of partially redundant systems, in a distributed system

environment, consider the following problem: k computers are required to

execute a given program; to improve its reliability, one, two or more

computers (in general r computers) can be added to the set of k computers.

This is a k-ou t-of-n system with n = k + r; considering r as the level of

redundancy.

Si

For a distributed system with k = 2, 5 and 10, the reliability

improvemen~ when increasing the level of redundancy (r) was obtained as

it is shown in Figure 4.32 for an element (computer) reliability, Pi = 0.8.

1.00

0.90
= ---- -----=

0.80
= k=2 ./"

~ ~ = -
~

0.70

:a 0.60
.!2
~ 0.50
E 0.40 G> -on
>- 0.30 en

0.20

0.10

= .,/ ::
=V k=5 =
:: /' -
: /
_V

-:/
=V ::
=

0.00 =

o
for element
reliability = 0.8

FIGURE 4.32

~ ~ ----... V ~
k= 10 ./"

V

/'
V

2 3

Level of redundancy (r)

Example of k-out-of-n reliability, (n = k + r)

~

4

Chapter 5

Reliability Modelling of Large
Multiprocessor Systems

5. 1 INTRODUCTION

Multiprocessor systems have been increasing in size rapidly over the last

few years. Many system control functions, routing, performance modelling,

reliability modelling, etc. cannot be carried out in a large environment

because of prohibitive overheads.

Reliability evaluation of a general multiprocessor network has been

proved to be NP-hard to compute [BAL 86], due to the exponential growth of

the system state space. An exact evaluation technique on a 'flat' network

requires a very large computational effort in both, computation time and

memory, which will be prohibitive if the system to evaluate is large.

The idea of decomposing the system structure in a set of smaller

subsystems is a viable solution to overcome such limitations. Such

decomposition can be achieved by a mth-Ievel hierarchical clustering of the

system.

Two cases have been addressed in this work:

(a) A system has been hierarchically decomposed for the purpose of

simplifying control functions, routing, etc .. Reliability is evaluated for

such hierarchical network, or

(b) It is desired only to simplify reliability evaluation of a large flat

network; in this case by imposing a decomposable hierarchical

structure we can obtain an approximation (lower bound) for each of

the various reliability measures.

In both cases we can think of the entire network as a tree of hierarchies,

in which each node at a higher level is made up of one or more nodes from

lower levels. Once a hierarchy exists we can use a hierarchical solution to

the problem of reliability modelling. The basic strategy can proceed in the

same manner for both cases:

(1) To obtain a hierarchical structure by a mth-level hierarchical clustering

of the graph representing the system.

(2) To evaluate reliability for such structure.

In the rest of this chapter is presented a detailed description of the

hierarchical clustering method and the subsequent hierarchical reliability

evaluation of the system, as well as the results obtained by applying this

method to some multiprocessor configurations.

90

5.2 HIERARCHICAL CLUSTERING

5.2.1 DEFINITIONS

A cluster is defined as a group of objects, entities, elements, etc. connected

together according to some rules or relations. The goal of the clustering

problem is to find groups containing objects most homogeneous (similar)

within these groups, while at the same time the groups are heterogeneous

(dissimilar) between themselves as much as possible. The homogeneity or

similarity is measured by using a set of rules called the similarity criteria.

Each criterion could be qualitative (e.g. small, tall, etc.) or quantitative (i.e.

some kind of numerical measure). Clustering has been used mainly for

clasiffication purposes of sets of unclassified data leading to a multitude of

methods [EVE 80].

5.2.2 REVIEW OF CLUSTERING TECHNIQUES

Clustering techniques have been classified roughly into five types:

hierarchical, optimisation, density, clumping and other techniques. For this

work, we are concerned basically with hierarchical techniques where the

data are not grouped all in only one step, rather they are grouped

progressively into steps.

Essentially, hierarchical techniques may be subdivided into

agglomerative (bottom-up) methods which proceed by a series of succesive

fusions of the n objects into groups (classes, clusters, etc.), and divisive (top

down) methods which partition the set of n objects successively into finer

partitions. Both techniques may be represented by inverted tree structures

which are two dimensional diagrams illustrating the fusions or divisions

that have been made at each successive step of the procedure, the only

91

difference between the two methods is the direct· A . Ion. tree representation

of agglomerative and divisive clustering is shown in Figure 5.1.

Cluster Level

Virtual node (cluster) m

Virtual node (cluster) m - 1

Virtual node (cluster) m-2

Virtual node (cluster)

Physical node o

FIGURE 5. 7
Tree representation of hierarchical clustering

The most commonly used methods, like single linkage, complete

linkage, Ward's method, etc., are of hierarchical type and agglomerative.

These methods follow the general procedure of successively pairing off the

most similar objects and then replacing them by one representative, using

in most cases a similarity criteria based in the smallest distance between two

elements. This procedure always leads to the creation of a degree two

(binary) tree, which is known to have the maximum height among all trees.

The disadvantage of these methods is that the time required to execute the

clustering algorithm is maximum if a binary tree is to be generated; this

time succesively decreases with the degree of the tree [RAM 86].

Another disadvantage of these standard clustering algorithms is that

they are suited to use with the distance matrix between all elements,

requiring the recalculation of the matrix at each step of the algori thm.

Therefore they can handle efficiently only a small number of objects, since

92

the dimension of the matrix grows proportionally to the square of the

number of nodes.

From these drawbacks it is concluded that standard clustering

techniques are not suitable for use in clustering of large multiprocessor

networks. In [RAM 86] is presented an efficient heuristic algorithm designed

for the clustering of computer networks which is suitable to adapt for our

hierarchical reliability model.

5.2.3 GENERAL MODEL

The general model consists of objects connected by relations where

clustering is done based on these relations. The basic graph model for

multiprocessor systems described in section 3.4.1 can be used, where the

objects are modeled as weighted nodes and the relationships between them

are modelled by weighted edges (interconnection network). The weights

represent the strength of the relation, in this case a reliability measure. This

model is adequate enough for the clustering problem.

5.2.3.1 Solution objectives

Solving the clustering problem involves achieving one or more objectives.

For a hierarchical network can be: to minimise communication cost,

connectivity and link-failure resilience, balanced clustering structures,

minimise routing tables, etc. For the approximate reliability evaluation of

flat multiprocessor systems, the problem is to find an optimal clustering

structure in such a way that the error in the reliability expression (or values)

obtained is minimised compared to the exact expression (or values).

93

As it was observed with the deterministic reliabl·ll·ty m d 1 . . o e In sectlOn

4.3, reliability factors like edge and node connectivity decrease with an

increase in the diameter of the network Therefore . t ·t· 1 1 . , In UI lve y, c usters

should be chosen as to correspond to highly connected sets of nodes which

result in a small diameter. Also, since reliability evaluation is dependent on

the communication paths or trees internal to the cluster, the cluster

subnetwork must contain the shortest paths between its nodes in that

cluster.

The following factors have to be taken into account to find an optimal

clustering structure:

•
•

•

•

Appropriate similarity criteria

Optimum number of clusters

Optimum number of nodes constituting each cluster

Optimum number of hierarchical levels

5.2.4 METHOD

As discused in section 5.2.2 there are basically two different methods of

solving the hierarchical clustering problem: the divisive and the

agglomerative; the former method uses graph partitioning and has been

found to be NP-complete [RAM 86]. The agglomerative method starts with

the original graph in which each node represents a single element (Oth-level

duster). These elements are grouped and merged to form 1 st-Ievel clusters.

Every such cluster is then collapsed and replaced by a single representative

node. The process is repeated, 1st-level clusters are also grouped and merged

into 2nd-level clusters and so on, until the graph is reduced to a single node

at the top level (mth-Ievel cluster).

94

The agglomerative approach has been adopted for our clustering

algorithm. The basic procedure and the heuristic factors considered are

explained in the following subsections.

Along with the hierarchical clustering of nodes, we must select special

type of nodes: the exchange nodes or gates for all clusters at all levels. The

function of the gate in a cluster is to represent the cluster and to handle the

communication between the set of nodes in that cluster and those outside

in another clusters. (k+l)Bt-level gates are selected among the kth-Ievel gates

at any level.

5.2.4.1 Assumptions

The following is assumed about the communication paths between the

nodes [KLE 80] :

(a) Communication between nodes in the same cluster, at any level, only

take paths which are internal to that cluster (paths contained in the

local subnetwork).

(b) Communication between nodes in different kth-Ievel clusters, but

which belong to the same (k+ 1)st-Ievel cluster is directed via its local

subnetwork to a (k+l)st-Ievel gate of the originating cluster; then it

takes the (k+ l)st-Iayer subnetwork to reach a (k+ l)st-Ievel gate of the

destination cluster, then its local subnetwork is used to finally reach

the destination node.

A kth-Iayer subnetwork is defined as a network connecting kth-level

gates which belong to the same kth-Ievel cluster. Figure 5.2 illustrates the

preceding definitions for a two-level hierarchical network. Clustering leads

to the tree representation shown in Figure 5.3.

95

1 st level gate

2nd level gate

2nd layer subnet

1 st layer subnet

FIGURES.2
Two-level hierarchical network

2 3 456 789

FIGURES.3

Oth level cluster
(physical node)

1 st level cluster

2nd level cluster

o : virtual node (cluster)

• : physical node

o :gate

Tree representation of a two-level hierarchical network

5.2.4.2 Basic procedure

The procedure for our agglomerative clustering method follows four basic

steps:

(1) The nodes in the current graph are sorted into a list and the first one is

chosen (centre).

96

(2) The neighbours of the selected node (centre) are sorted as well in some

manner to form a list and some of them are chosen to create a cl us ter

together with the centre.

(3) A exchange node or gate is selected from the nodes that constitute the

cluster according to some criteria.

(4) The selected nodes (centre and selected neighbours) are merged into a

single node, thus reducing the size of the graph. This single node is a

virtual node, which is the representative at the next level of clustering

of all the nodes (physical or virtual) that are its constituents.

These four steps describe a single cluster creation. They are repeated in

sequence, firstly until all nodes in the current graph have been clustered,

completing one level of clustering, and finally until the graph is reduced to

a single node which is the top level cluster. A cluster created in such

manner can be temporary if its weight has not reached the maximum

weight and more nodes can be added to it. It is permanent if it has not more

capacity for growing because it has reached the maximum weight or there

are no more nodes which can be merged to it. Figure 5.4 shows an example

of the above procedure for the network of Fig. 5.2.

This agglomerative method does not use global topology information

since each node has information about its neighbours only; thus this

a pproach is inheren tl y heuristic.

97

(1) (2) (3)

centre = 6 centre = 9

clus-l
gate =3

clus-3
~gate=7

cI.US~
gate = 5

centre = clus-1

(4)

dus-4

- ~ 0

centre = 1
sel-nelghs = {2, 3} sel-nelghs = {4, 5} sel-nelghs = {7, 8} sel-nelghs = {clus-2, clus-3}

7st clusterIng level 2nd clustering level

FIGURE 5.4
Example of the basic clustering procedure

5.2.4.3 Factors for clustering

The selection of centres and neighbours to be merged are very important for

achieving the desired objectives. There are three main factors to be

considered in agglomerative clustering [RAM 86]:

(1) Sorting of nodes.

Two parameters that can be used as keys to sort the nodes in order to select a

centre are:

(a) Degree, or number of incident edges to a node

(b) Weight, or number of nodes merged to create a virtual node at the

current clustering level (physical nodes have weight=1)

Both could be used simultaneously, with one being used as the

primary key and the other as the secondary key. Sorting is done in a non

decreasing magnitude order; thus the node with smallest degree and weight

is selected as the centre.

98

To sort the neighbours of a centre, another parameter is employed in

addition:

(c) Strength between neighbour and centre, which is the number of

parallel edges between each neighbour and its centre.

Sorting for parameters (a) and (b) is done in a non-decreasing

magnitude order and for parameter (c) in a non-increasing order. Thus,

neighbours with the smallest degree, smallest weight and largest strenght

are selected first.

(2) Binary/multiple merging.

As it was discussed before in section 5.2.2, binary merging in which only one

neighbour is selected to be merged with the centre every time, leads to the

creation of a binary tree; in contrast, in multiple merging the aim is to select

as many neighbours as possible (but not exceding the maximum size

allowed to each cluster) leading to the creation of higher order trees; thus

reducing the number of steps. Therefore, for our model is employed

multiple merging.

(3) Centre selection.

There are devised three different approaches of centre selection: the

aggressive, the moderate and the pacific.

In the aggressive approach, once a centre is chosen it is retained as the

centre as long as its cluster can grow, but this can lead to uneven sized

clusters. In the pacific approach, at every step a new centre is chosen among

the candidate nodes. In the moderate approach, the centre chosen in the

previous step is also put in the list of possible candidates for the next step. Its

being chosen as centre again depends on whether it comes to the head of the

list after subsequent sorting.

99

Based in the results obtained in [RAM 86] where the pacific and

moderate methods gave better balanced structures, it has been chosen the

moderate approach for centre selection in our algorithm.

5.2.5 DESCRIPTION OF THE ALGORITHM

The clustering algorithm is described in the following, as well as its most

relevant local procedures. This description is detailed enough to specify all

the steps involved in the clustering process, while at the same time

language implementation details are not specified.

5.2.5.1 Main procedure

The main procedure of the clustering algorithm is described in pseudo-code

in Algorithm 5.1, where cgraph = (cnodes, cedges) is the current graph

which describes the clustering at any step of the algorithm. Initially cgraph

represents the entire network.

Following is the terminology used:

cgraph = the current graph

cnodes = the set of nodes of the current graph

cedges = the set of interconnection edges of the current graph

cgraphrecord = record

clustered : Boolean {indicates if a node is clustered or not}

weight: integer { current weight of a node}

degree: integer { current degree of a node}

end;

100

clusterlevel = the current level of clustering

candset = the set of candidates to chose the next centre from

neighset = the set of neighbours of the centre

selecset = the set of nodes selected to be merged with the centre

centre = the node chosen as the next centre

key1, key2 = each can be either the weight or the degree of a node

key3 = the strenght between centre and neighbour

htree = hierarchical tree representation of the clustering structure

clusterset = nodes constituting a cluster

101

procedure Clustering;

cgraph = graph;

cnodes = n;

cedges = e;

clusterlevel = 0;

while cnodes > 1 do

for node = 1 to cnodes do

with cgraphrecord[nodel do

clustered = false;

weight = 1;

end; (with)

end; (for)

clusterlevel = clusterlevel + 1;

while NoCall_clustered (cnodes) do

Obtain_degree (cnodes, degree);

Obtain_candidate_set (candset);

Sort (candset, key1, key2);

centre = first (candset);

(initially cgraph is the entire '")
(... network, graph = (n, e) }

(start a new clustering level)

(while not all nodes have been ...)

('" clustered at the current level)

(obtain adjacent nodes of each node)

(obtain all nodes with clustered=false)
(return candset sorted)

Obtain_neigh_set (centre, neighset); (obtain adjacent nodes to centre ...)

(... not already clustered)
Sort (neighset, key1, key2, key3); (return neighset sorted)

Select_neighbours (selectset);

if I selectset I :? 1 then (if some neighs. selected)

Record_cluster (htree); (record a new cluster or update a ...)

(.. , cluster; select gate)

Reduce-$raph (cgraph); (merge centre and selected neighs ...)

(.. , in one coalesced node (cluster) }
end (if then)

else (if no neighs. selected)

cgraphrecord[centrel.clustered = true;

if cgraphrecord[centrel.weight = 1 then

Record_cluster (htree); (record a one node cluster)

end; (else)

end; (while Not_aU_clustered)

end; (while cnodes > 1)

end; (Clustering)

ALGORITHM 5.1
Main procedure of clustering algorithm

102

The local procedures Sort, Record_cluster and Reduce_graph are

described in detail in the following subsections.

5.2.5.2 Sort

A general sorting method has a complexity of O(n log2 n). Since in our

problem, any key in which sorting is to be done lies in the range 0 ~ key ~ n

we can use a linear time sorting algorithm like radix distribution sort

[REI 77]. This will reduce the complexity to O(kn2), where k is a constant.

Let nodev node2' ... , nodem be a list of nodes in the range 1 to n. The list

can be sorted for one key in the following manner.

(1) Initialise n empty queues, each queue represents a pile.

(2) Scan the list of nodes, placing the node with the key value v in the v th

pile.

(3) Concatenate the queues to obtain the sorted list.

Assume that a link field linki is associated with each nodei and is used

to link the nodes to form an input queue Q which is the list of nodes to be

sorted. This field is used also to link the nodes into the queues that

represent the piles Ql - Qn. After the nodes have been distributed into piles,

the queues representing those piles are concatenated together to reform the

queue Q but now with the nodes sorted in non-decreasing order, starting

with the front of queue Q. The outline of this sorting algorithm is shown in

Algorithm 5.2.

103

procedure Sort;

Input queue (Q);

for j = 1 to num_keys do

Initialise queues QO-Qn to be empty;

while Q not empty do

nodej = next node in Q;

case keyfjl of

{ for each key }

{ distribute in piles}

weight: v = weight (nodej); {non-decreasing order}

degree: v = degree(nodej); {non-decreasing order}

strenght : v = n - num-paralleCedges(nodej); {non-increasing order}

end; {case}

Add nodej to Qv;

end; {while}

Concatenate queues QO-Qn together to form the sorted queue Q;

end; [for}

end; {Sort}

ALGORITHM 5.2
Radix distribution sort

5.2.5.3 Record_cluster

This procedure creates the hierarchical tree representation of the clustering

structure and selects a gate for each cluster. Two cases can be presented:

(a) To update a cluster: add a node to a temporary cluster

(b) To create a new cluster

The data structure used for the hierarchical tree (htree) is an array of

dynamic linked lists. Each element of the array, which corresponds to one

cluster, has an associated dynamic list of the nodes forming such cluster. An

example is shown in Figure 5.5.

104

n-2 n-3 n-4 n-5 n-6
c = cluster (1st - mth level)
n = physical node (Oth level)
g = gate

clustering structure

FIGURES.S
Data structure of htree

Gate selection

B --I n-l I H n-2 I ~
~ .J V

~n-3IHn-4I~
~ . .J V

~n-5IHn-6I~
~ • .J V

~IHc-21~

data structure

Each time a cluster is created or updated, a cluster representative or gate is

chosen among the nodes constituting the cluster.

It has been used a simple criteria for gate selection: the node with more

'external' adjacent nodes (nodes in other clusters), since such node (gate) has

to handle the communication between all nodes within the cluster to nodes

in other clusters.

5.2.5.4 Reduce-Kt'aph

After a permanent or temporary cluster has been created or updated, the

nodes constituting such cluster are merged into a single node, thus reducing

the size of the graph. A description of the merging procedure is presented in

105

Algorithm 5.3; the basic steps involved are shown graphically In the

example of Figure 5.6.

procedure Reduce~raph

Select node identifier of cluster : for simplicity its chosen the centre;
for i=l to num_selected_nodes do

Obtain neighbours of nodej (neigh_set);

for j=l to num_neigh do

if neighj (nodej) in selected set then

Remove edge (neighjl nodej);

else if nodej <> centre then

Remove edge (neighjl nodej);

{ for each node forming the cluster }

{ for each neighbour of nodei }

{ remove internal edges between ... }

{ ... nodes in cluster }

{ remove external edges ... }

{ ... if nodej is not the centre}
if neighj is external neighbour of centre then

Update capacity _edge (neighjf centre)

else

Add edge (neighjl centre);

Include neighj as new neighbour of centre

end; {else}

end; {else}

end; {for j}

end; {for i}

Update number of nodes and edges of current graph;

Obtain new weight of centre = I weights of coalesced nodes

end; {Reduce_graph}

ALGORITHM 5.3
Reduce_graph (Merging of nodes)

106

(7) Select cluster Identifler=centre (2) Remove Intemal edges

centra =4
sal-neighs = {S, 6}

(4) For each removed extemal edge:

(a) Update capacity of
edges to centre (b) Add new edges to centre

2 __ ~---",.n4 2
__ ~~n4

0 6

3 3

FIGURE 5.6

(3) Remove extemal edges
of each node in sel-neighs

(5) Obtain new weight
of centre

2
__ ~~n4

3

0 6

Example of the merging of nodes to reduce the graph

5.3 HIERARCHICAL RELIABILITY MODEL

Reliability evaluation methods using a hierarchical approach to obtain an

approximation of the system reliability have been suggested by [50185] and

[MAN 87] but only for overall (AT) reliability evaluation of flat computer

networks. In this work it is intended to solve for the various reliability

problems defined in section 3.4.2 and for both cases: reliability

approximation in a flat network and reliability evaluation of a hierarchical

network, using a general methodology.

After decomposing the network in a hierarchical structure, reliability

evaluation can proceed as follows.

107

(1) As 1 st-Ievel clusters are composed of Oth-Ievel clusters, i.e. physical

nodes, the appropriate reliability measure, relevant to the problem, for

the 1st-level clusters can be calculated using the general procedure (RM)

described in chapter 4. These clusters are managed as independent

subgraphs of the current graph.

(2) Each 1 st-Ievel cluster is treated as a new virtual node with its reliability

as calculated in step 1. Reliability of 2nd-level clusters is obtained again

by using RM on the new graphs formed by these virtual nodes.

(3) Step 2 is repeated for the subsequent levels until the reliability of the

mth-Ievel cluster is obtained which is the system reliability.

This method has been called I-hierarchical reliability model (IHRM). In

Figure 5.7 is illustrated an example for calculating AT reliability.

5.3.1 IHRM METHOD

The IHRM model has been implemented for reliability evaluation of

the various problems. Particularly, for each of the different reliability

problems is considered the following :

(a) ST, TT, SKT or KT with the nodes in the same local cluster:

• obtain the corresponding shortest paths or Steiner trees uSIng

only the local subnetwork.

(b) ST or TT with the nodes in different clusters:

(1) obtain ST or TT reliability for the 1 st--Ievel source cluster from

source node to the corresponding local gate and ST or TT

reliability for the l st--Ievel terminal cluster from the local gate to

terminal node.

108

(2) repeat the above procedure for the subsequent levels until ST or

TT reliability of the mth--level cluster is obtained.

(c) SAT and AT :

(1) obtain SAT or AT reliability for each of the lst--level clusters using

the spanning trees on the 1 st--layer subnetworks.

(2) repeat the above procedure for the subsequent levels until SAT or

AT reliability of the mth--level cluster is obtained.

steps of clustering

current graph

----~

----~

----.-

FIGURES.7

IHRM

2

3

6

~

6

clus-2 clus-l

obt. AT reI. of clus-l as
Independent subgraph

obt. AT reI. of clus-2 as
Independent subgraph

obt. AT reI. of clus-3 as
Independent subgraph

Example of AT reliability using IHRM

109

(d) SKT and KT in different clusters :

(1) obtain SKT or KT reliability for the corresponding 1 st--Ievel

clusters using the Steiner trees on the l st--Iayer subnetworks.

(2) repeat the above procedure for the subsequent levels until SKT or

KT reliability of the mth--Ievel cluster is obtained.

The hierarchical paths from (k-l)st-Ievel source cluster to kth-Ievel local

gate and from kth-Ievel local gate to (k-l)st-Ievel terminal cluster (using the

corresponding kth-Iayer subnetwork) are used for all these procedures.

The basic structure of the IHRM method is presented in Algorithm 5.4.

lt is assumed that a graph configuration representing the system has been

already selected, as well as the problem, class and reliability measures to

solve. In the set problem_set are contained the nodes concerning to the

problem, i.e. all nodes for SAT or AT, k-node set for SKT or KT, and source

and terminal nodes for ST or TT.

procedure IHRM;

Hierarchical clustering (graph, htree);

current~raph = graph;

for i=l to num_clusters do

{ obtain the hierar. structure in htree }

if (I clusterj I > 1) and ((clusterj n problem_set) <> 0) then

Obtain independent subgraph (current~aph, clusterj , Csubgraph);

RM (reCproblem, reCclass, reCmeasure, i_subgraph, reliab j);

Reduce~raph (current~raph);

Set reliab j for new collapsed node;

end; {if}

end; (for)

systemJeliability = reliab j

end; {IHRM}

ALGORITHM 5.4
I-hierarchical reliability model

110

5.3.2 KHRM METHOD

In addition to the IHRM procedure, another hierarchical method is

suggested for reliability evaluation. We can solve for the AT problem by

using the set of nodes of each cluster as a k-node subset of the current graph

(KT problem) at each step of clustering. Since the graph is reduced in size at

every step of the clustering process, the reliability calculation is simplified.

This method does not use the proper hierarchical routing through the

gates and local subnetworks as described in section 5.2.4, so it is useful only

to obtain a better approximation of system reliability in a flat network. A

similar procedure is applied to the KT and TT problems, using only the

appropriate clusters which have nodes belonging to the problem.

The procedure developed has been called the K-hierarchical reliability

model (KHRM) and is described in Algorithm 5.5. The same considerations

as for the IHRM model are assumed.

111

procedure KHRM;

Hierarchical clustering (graph, htree);

current~raph = graph;

for i=l to num_clusters do

(obtain the hierar. structure in htree)

if (I clusteri I > 1) and «clusteri n problem_set) <> 0) then

Obtain k-subset d clusterj;

RM (KT, reCclass, reCmeasure, Csubgraph, reHabi);

Reduce~raph (current~raph);

Set reliabdor new collapsed node;
end; (if)

end; (for)

system_reliability = reliabi
end; {KHRM}

ALGORITHM 5.5

K-hierarchical reliability model

5.4 EXAMPLES

Our hierarchical model has been tested in some graph configurations to

demonstrate it and to evaluate its implementation, comparing results

against the exact and the other approximation method described in section

4.4.3.

For these examples it is assumed for simplicity that nodes are perfectly

reliable and all edges have the same reliability. It is calculated the numerical

value of stationary system reliability with edge reliability varying in a wide

range from 0.6 to 1.0, although in practical systems each edge is expected to

have a value of reliability higher than 0.9.

5.4.1 MESHED RING 3X2

Our hierarchical algorithm was first tested in a 3x2 undirected meshed ring

shown in figure S.8a. In this example it is calculated the overall (AT)

112

reliability when (a) the exact technique is used, (b) IHRM and KHRM are

used with clusters chosen to be constituted for a maximum of three nodes ,

thus creating a two-level hierarchical tree (figure 5.8b), and (c) with clusters

chosen to be maximum of two nodes, creating a three-level hierarchical tree

(figure 5.8c). The error percentage in the approximation is calculated by,

R -R
ex ap X 100
Rex ... (5.1)

Figures 5.9 and 5.10 show a plot of AT as a function of edge reliability

for IHRM and KHRM respectively; Figures 5.11 and 5.12 show the error

percentage also as a function of edge reliability. Figure 5.13 is a comparison

of computer time and the number of cubes generated which is proportional

to the memory required for the various methods.

(0) meshed ring 3x2

o virtual nodes
• physical nodes
o gates

FIGURES.S

2 3 456 2 4 6 5 3

(b) H-3 (c) H-2

(0) 3 X 2 meshed ring, (b) 3-node clusters (2-level
tree), (c) 2-node clusters (3-level tree)

113

~
:c
.Q

~

E
GI
>
0

~ :c
.Q

~
E
GI
>
0

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

---~ ---V-- -;/
~ EX

~
~ V

/
V ./ V

V V
-

~ V -
-V -,/

~
~

~ ~H-2
I I I " I I I I

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Edge reliability

FIGURE 5.9
Overall reliability for a 3 x 2 meshed ring. EX is by
using a exact method, IH-3 by using IHRM with 3
nodes per cluster and IH-2 with 2 nodes per cluster

1.00

0.98

0.96

0.94

0.92

0.90

0.88

0.86

0.84

____ t.---I--

: ..;V
: /' :
: ~~

f
A
,.

ff
~ !-EX

~ "'-
KH-3
KH-2

0.82 I

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Edge reliability

FIGURE 5. 10
Overall reliability for a 3 x 2 meshed ring. EX is by
using a exact method, KH-3 and KH-2 by using
KHRM with 3 nodes per cluster and 2 nodes per
cluster respectively

114

0
t:::
Qj

at

2
Q;
~ 0

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

~
~

I"-....
-
- '" :~

'" : t--....
: -............. IH-2

'" - ~
:

........

~ '~ -
IH-3 ~ "'-~ ~

~ r---~~
11 TT I I I I I. 0.00

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

2.00

1.80

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

Edge reliability

FIGURES.11

Error percentage of overall reliability for a 3 x 2
meshed ring by using IHRM

:
:

:1\ :
: \ :

-: '\ ::
KH-2 : ,

: ~ =,
= \ -::
~KH~ " : -

~' I'\..

" r-....."" : '"""-b--
;;

-roo . 1-'

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Edge reliability

FIGURES. 12
Error percentage of overall reliability for a 3 x 2
meshed ring by using KHRM

115

~-r----,----,----~--~----

::j:I~' --r----r----~--~--~
250 -~ [l[\i:.:t---t-----+-----l-------l----~

: =: \1.,.1.1 .. ::1---+-____ \-----__ -+-__ --:1-__ ---1

rw
100 -=1- :::::::r---+-----\-------~::::::3-----l-------1

~~~I En - _ I .. 

[] Num. cubes 

e Compo time (sec) 

1:-
EX IH-3 IH-2 KH-3 KH-4 

FIGURES. 13 
IHRM and KHRM computation time and memory 
(number of cubes) for AT reliability in 0 3 x 2 
meshed ring 

5.4.2 MESHED RING 6X2 

The second example is a 6 x 2 undirected meshed ring which has 12 nodes 

and 24 edges. Overall reliability and two terminal reliability from node 3 to 9 

is obtained when (a) the exact technique is used, (b) IHRM and KHRM are 

used with clusters having 6 nodes maximum (2-level tree), (c) with clusters 

having 4 nodes (2-level tree) and (d) with clusters having 3 nodes (3-1evel 

tree), as illustrated in Figure 5.14. 

Figures 5.15 and 5.16 show a plot of AT as a function of edge reliability 

for IHRM and KHRM respectively; Figures 5.17 and 5.18 show the error 

percentage for AT al~6 as a function of edge reliability. Figure 5.19 is a 

comparison of computer time and the number of cubes generated. Figures 

5.20 to 5.24 show the above measures for TT reliability. 

116 



5 
(0) meshed ring 6><2 

8 

(b) H-6 

(c) H-4 

(d) H-3 

[J gates • terminal nodes (for TT problem) 

FIGURES. 14 
(0) 6 X 2 meshed ring, (b) 6-node clusters (2-level 
tree), (c) 4-node clusters (2-level tree), (d) 3-node 
clusters (3-/eve/ tree) 

117 



~ 
:0 
.2 
~ 
E 
QI 
> 
0 

>-
:!: 
:0 
.2 
~ 
"0 
Qi 
> 
0 

1.00 

0.90 

0.80 

0.70 

0.60 

0.50 

0.40 

0.30 

0.20 

----~ ~~ -
~ ..........:: ~ 

V EX ./ V/ V I 

IH-6 / ~/ V 

.,-~-{' V 
: 
~ V /iH-3 : 

~~ V/ 
;V./I' 
:V" 
: 

I " I I I I 0.10 

0.60 0.65 0.70 0.75 0,80 0.85 0.90 0.95 1.00 

Edge reliability 

FIGURES. IS 
Overall reliability for a 6 x 2 meshed ring. EX is by 
using a exact method, IH-6, IH-4 and IH-3 by using 
IHRM with 6 nodes, 4 nodes and 3 nodes per cluster 
respectively. 

1.00 

0.95 

0.90 

0.85 

0.80 

0.75 

0.70 

0.65 

0.60 

~ ~ 

.A ~ 

~ tp' 
W 

: A r' -

-v~ "EX 
" KH-6 

~V/~ i' KH-4 
r---. KH-3 

:V I : 
I I I I I" 

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

Edge reliability 

FIGURE 5. 16 
Overall reliability for a 6 x 2 meshed ring. EX is by 
using a exact method, KH-6, KH-4 and KH-3 by 
using KHRM with 6 nodes, 4 nodes and 3 nodes per 
cluster respectively. 

118 



2 
~ 
~ 

... 
g 
GI 

~ 

80.00 -
70.00 

60.00 

SO.OO 

40.00 

30.00 

20.00 

10.00 

~ 
:~' "-: 

'" ~ '" ~ ~" ~-3 
~ 'IH-0 ""'-
~ ~'" to..... 

~ ~ 
~ ~ 

0.00 T I I I I I I r r 

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

Edge reliability 

FIGURES. 17 
Error percentage of overall reliability for a 6 x 2 
meshed ring by using IHRM 

14.00 

12.00 

10.00 

8.00 

6.00 

4.00 

2.00 

0.00 

\ KH-3 

\ 
~H-4 I\. 

" ,'" ~ ~ 
~ ~ ~ 

I I I I I I I I 

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

Edge reliability 

FIGURES.1S 
Error percentage of overall reliability for a 6 x 2 
meshed ring by using KHRM 

119 



10000 -= ;!l:rnrt--I---1--+--t--;=;----+--J 
t' 
::: . 

t 
~=: 

::. ~>---
k :: } :: 

1 000 ~ ::;:t:i §to -t---t--+---l--jW:~ 

o Num. cubes '.' " .;. 

100 -:: ;;;H: ::t+-f1-----+----l----L ... : :!l 

10, j'M: ~;t-; f-Hhm--H:':l-jf-.l:'j-- .•.• , 

rn Compo time (sec) :: ., 

Log 
Scale 

>-
:t:: 

:0 
.2 
~ 
1= 

i : .. ~ ~ 
I ~ .:::; I :~.;: 

::; ~ ::: 
{ : .::' ::;':' 

EX IH-6 IH-4 IH-3 KH-6 KH-4 KH-3 

FIGURE 5. 19 
IHRM and KHRM computation time and memory 
(number of cubes) for AT reliability in a 6 x 2 
meshed ring 

1.00 

0.95 

0.90 

0.85 

0.80 

0.75 

0.70 

0.65 

0.60 

0.55 

0.50 

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

Edge reliability 

FIGURE 5.20 
Two-terminal reliability for a 6 x 2 meshed ring. EX is 
by using a exact method, IH-6, IH-4 and IH-3 by 
using IHRM with 6 nodes, 4 nodes and 3 nodes per 
cluster respectively, the terminal nodes are at a 
mean distance from the gate. IH-6a is with the 

gates as terminal nodes. 

120 



~ 
:0 
.12 
~ 
l= 

.... 
~ 
Qi 
~ 

1.00 -
0.98 

0.96 

0.94 

0.92 

0.90 

0.88 

0.86 

0.84 

0.82 

0.80 

---~ 
.... ::::::;:;-

~ ~ 
./ V// v 

/~ " / 
/V // 

L if// 
/71 V 
//~ ""," EX 

-~~ ~KH-6 KH-4 

/ ........... KH-3 

V 
0.78 I I 

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

Edge reliability 

FIGURES.21 
Two-terminal reliability for a 6 x 2 meshed ring. EX is 
by using a exact method, KH-6, KH-4 and KH-3 by 
using KHRM with 6 nodes, 4 nodes and 3 nodes per 
cluster respectively. 

40.00 

35.00 

30.00 

25.00 

20.00 

15.00 

10.00 

5.00 

0.00 

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

Edge reliability 

FIGURES.22 
£"or percentage of two-terminal reliability for a 
6 x 2 meshed ring by using IHRM 

121 



10.00 

9.00 

8.00 

7.00 

... 6.00 
g 

5.00 QI 

a! 4.00 

3.00 

2.00 

1.00 

! 
I 

i i 

i I 
i 
I 

"'-
:: "-

'" " '" KH-3 

~ t-...KH-4 '" : KH-6 ~ " r--... ~ ............ 
"-

............... 1--,--t---
0.00 I I I 

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

Edge reliability 

FIGURE 5.23 
Error percentage of two-terminal reliability for a 
6 x 2 meshed ring by using KHRM 

100000· ~ 

18597 

10000 ~ ffi}:_ -1--+---11---1--6402 -6658 -6381 -

: 1~685 ~ I ~ I ~ 
:: , ,931 ,959 ,929 

1000 ~ :: 

Log 
Scale 

: 
- o Num.cubes 

m Compo time (sec) 

FIGURE 5.24 
IHRM and KHRM computation time and memory 
(number of cubes) for IT reliability in a 6 x 2 

meshed ring 

122 



5.4.3 RING 12 

A ring network is an example of a sparse graph. Figure 5.25 shows such 

graph with 12 nodes and 12 edges and the hierarchical structure tested: 

clusters formed by 4 nodes maximum. Figure 5.26 show a plot of overall 

system reliability against edge reliability for the 3 methods: exact, ll-IRM and 

KHRM; and Figure 5.27 shows the computer time and number of cubes. 

(0) ring 72 (b) H-4 

2 8 

CJ gates 

FIGURE 5.25 
(0) 72 node ring, (b) clustering with 4 nodes per 

cluster (2-level tree) 

123 



~ 
:0 
.2 
~ 

"2 
QI 
> 
0 

16 
15 
14 
13 

1.00 

0.90 

0.80 

0.70 

0.60 

0.50 

0.40 

0.30 

0.20 

0.10 

= ,/!J = 
:: ~ , / 
= J / 
: 

/. V V 
: 
: // / -

EX 
/ V / 

- V/KH-y 

~ V /' V IH-4 

~ V ............ V 
: ~ ~ .... 

0.00 I I I I I I I I I I 

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

Edge reliability 

FIGURE 5.26 
Overall reliability for a 72 node ring. EX is by using a 
exact method, IH-4 and KH-4 by using IHRM and 
KHRM with 4 nodes per cluster. 

:f) 
·t:: " . 
. ~.m: 

12 _ 
:{ 

:{: 

11 : 

10 
9 : o Num. cubes 

8 
: 
: rn Compo time (sec) 

7 
6 ~~ 
5 .... 1= 4 

I 3 .. 
2 

: 

1 .;a ~B 
I---

0 :~* L--

EX 1H-4 KH-4 

FIGURE 5.27. 
IHRM and KHRM computation time and memory 
(number of cubes) for AT reliability in a 72 node ring 

124 



5.5 DISCUSSION OF RESULTS 

The following observations can be made about the results obtained in the 

above examples. 

(a) The precision of reliability evaluation when using the IHRM or 

KHRM methods for approximate evaluation of flat systems depends 

on the choice of the clustering structure, i.e. number of levels in the 

hierarchical tree, number of nodes per cluster and connectivity of each 

cluster. Therefore, in general, to obtain better results, closer to those 

obtained by exact methods, the number of levels should be low, the 

number of nodes should be high, and the subgraph constituting the 

cluster should be highly connected. 

(b) The error percentage of system reliability is always decreasing as the 

value of element reliability increases. Therefore for practical values of 

edge reliability, i.e. from 0.9 to 1.0, the hierarchical method gives 

approximate results quite close to that obtained by the exact method. 

(c) For IHRM the computer time and memory is greatly reduced, but the 

results are not very exact when compared to the results obtained by the 

exact method for lower values of element reliability. 

(d) KHRM gives always more precise results than those obtained by IHRM, 

but the savings in computation time and memory are less. For some 

problems and some classes of graphs it is worthwhile to use KHRM, 

but for some others like ring networks it is not, since the computation 

time and number of cubes is higher than for the exact method as is 

explained below in (f). 

(e) For TT and KT reliability approximation using IHRM and KHRM, the 

accuracy also vary according to the nodes being chosen as gates in each 

cluster, since TT and KT reliability of each local subnetwork is 



dependent on the distance and network structure between the 

corresponding nodes and the local gate. Generally with nodes closer to 

the gate a higher reliability is obtained. In our example it was used a 

mean distance between gate and nodes. 

(f) The system configuration also affects the approximation. Some 

structures are not suitable to decompose hierarchically to simplify its 

reliability evaluation when no highly connected subnetworks can be 

formed, such as ring and sparse structures. For this class of graphs the 

number of cubes generated for the exact method, which is dependent of 

the number of communication paths, is always low since there are few 

paths. Thus, in this case, by employing hierarchical decomposition, we 

can create an overhead, more evident with KHRM where the number 

of cubes and computation time are higher than for the exact method as 

it could be seen in Figure 5.27. 

126 



Chapter 6 

Summary and Conclusions 

6. 1 ANAL YSIS OF WORK 

The main goals of this work are the study and implementation of models 

for reliability and fault tolerance analysis of multiprocessor systems; 

basically of their intercommunication structure, i.e. the interconnection 

network. Two classes of models were defined: deterministic and 

probabilistic. Both are based on graph theory concepts and the criteria of 

reliability and fault tolerance as measures of connectivity, i.e. the successful 

communication between the nodes of the system. Different connectivity 

problems were identified and classified into: unrooted problems, like two

terminal (TT), overall (AT) and k-node (KT) connectivity; and rooted 

problems, such as source to terminal (ST), source to all terminal (SAT), 

source to k-terminal (SKT) and k-source to k-terminal (KSKT) connectivity. 

Another problem of interest is k-out-of-n reliability as the general model of 

redundancy. 



In the deterministic model, reliability is dependent upon denseness, 

distance and degree but above all on the number of edge and node disjoint 

paths (edge and node connectivity) required for the intercommunication 

among some nodes, according to the connectivity problem. Efficient 

algorithms were implemented to compute the different deterministic 

parameters. 

For the probabilistic model it was assumed that the system components 

(edges and nodes) fail with some known probability distribution in an 

environment of statistically independent failures. A stationary measure of 

reliability is the probability of success; dynamic (time dependent) measures 

of interest are: reliability and MTTF for closed systems (non-repairable), and 

availability, MTBF and steady-state availability for repairable systems. 

An efficient general combinatorial method for probabilistic reliability 

modelling (RM) was developed to deal with all reliability problems, this 

method consists basically of three steps: 

(1) Obtain the paths corresponding to the connectivity problem, take them 

as the events in the probability space, represent these paths as cubes in 

Boolean algebra. 

(2) Perform the "sharp" Boolean operation on the cubes to arnve at a 

Boolean algebraic expression. 

(3) Interpret the Boolean expression as a disjoint sum of terms, i.e. a 

symbolic probability expression. From this expression any stationary or 

dynamic reliability measure can be easily calculated for any given 

probability distributions by direct substitution of their values into the 

expression. 

In RM, steps (1) and (2) are executed recursively in order to gradually 

obtain the Boolean expression; the advantage of this method is that it 

reduces considerably the computer requirements: storage and computer 

time. 

128 



For large multiprocessor systems probabilistic reliability calculations 

require enormous computational resources, therefore approximation 

techniques have to be employed. The first approach was as described above, 

but taking only those paths that contribute more significantly to the 

symbolic expression. This is easily done in the recursive method RM by 

limiting the depth of the computation to a certain predefined limit. 

The second approach was to employ hierarchical decomposition of the 

system. First, by the use of hierarchical clustering, the system is partitioned 

into smaller subsystems or clusters; second, the general reliability model 

RM is hierarchically applied in a bottom-up fashion to each cluster in order 

to obtain an approximation of reliability. For each connectivity problem 

different hierarchical connectivity strategies were identified. This 
I 

hierarchical approach led to the development of two methods: IHRM and 

KHRM. The latter method gives results closer to the exact method, but in 

some cases the savings in computation time and memory are insignificant; 

on the other hand, with IHRM the computer requirements are greatly 

reduced, but the results are not very exact for lower values of element 

reliability. 

6.2 MODEL PERFORMANCE 

It is difficult to directly compare the performance of our model 

implementation to other published models, since performance is 

determined by several factors: (a) the algorithms, (b) the implementation, (c) 

the compiler and (d) the host computer. Also, quite often, the computation 

time and memory requirements reported do not include the whole 

computation, including the generation of paths, numerical reliability 

calculations, etc. 

129 



computation, including the generation of paths, numerical reliability 

calculations, etc. 

It is believed that our implementation, although quite general for 

several reliability problems and measures, is quite efficient. For several 

examples tested in medium size configurations, satisfactory solution times 

can now be obtained on a Macintosh personal computer whereas 

previously, mainframe computers might have been required. It is also a 

recursive method that requires less memory. 

6.3 APPLICATIONS 

The models explained above can be applied to evaluate reliability of 

systems of different granularity as long as they can be represented as simple 

graphs, from VLSI embedded multiprocessors to geographically distributed 

computer networks. Some application examples are: 

• Computer networks, such as national networks, telephone networks, 

LANs, etc., where all connectivity problems, rooted and unrooted are 

of interest. 

• Distributed systems, as the computer resources (processes, databases, 

etc.) are distributed among the nodes (computers, memories, etc.) of 

the system. It is desirable to obtain reliability for connectivity problems 

such as: KT, TT and AT, or k-out-of-n redundancy like in the example 

of section 4.4.8. 

• Multistage interconnection networks, where the switches, inputs and 

outputs can be represented as nodes of a directed graph. In this case, 

130 



• 

rooted problems such as SKT and KSKT can be used to obtain the 

reliability of communication from the inputs to the outputs. 

For medium-power multiprocessors and VLSI multiprocessor arrays 

several parallel architectures have been proposed. Basic configurations 

are ring, rectangular mesh, binary tree, binary cube, etc.. These 

architectures can be augmented or combined by adding links in order 

to improve their reliability and fault tolerance, like meshed rings, 

meshed trees, etc. All reliability problems are of interest, particularly 

overall reliability and the degree of fault tolerance, since it is desired to 

compare the different architectures and their fault tolerant variations. 

6.4 RECOMMENDATIONS FOR FUTURE WORK 

It has been stated previously the difficulties associated to the evaluation of 

reliability in multiprocessor systems; this has led to the development of 

simplified models such as the one presented in this report. 

Some parameters have not been considered here, but are important 

areas for future research needed for the reliability modelling of 

multiprocessor systems. Among them are: 

(a) Development of parallel algorithms to improve the computation 

efficiency. 

(b) Exploiting fault tolerant routing and control algorithms to help 

develop more realistic reliability models to establish simple and 

practical paths of communication between the remaning nodes in case 

of node or link failures. Reliability calculations can be simplified if 

131 



only the real paths (those generated for the routing algorithm) are 

considered. 

(c) Optimisation and reinforcement of reliability. Investigation of 

applicable methods for optimisation in redundancy allocation, 

subjected to some reliability constraints; and the reinforcement 

techniques, i.e. if the topology does not meet a specified level of 

reliability then an identification and reinforcement of the weak points 

of the system is required. 

(d) Development of better models for software/hardware reliability and 

availability in distributed systems. 

(e) Development of unified reliability and performance models. 

(f) Inclusion of fault coverage analysis. 

(g) Statistical dependency among failures of different components. A 

hierachical model can be used for failure dependency problems In 

which several modules are dependent upon each other, as when they 

are placed in a single unit. 

132 



References 

[AGG 81] K.K. Aggarwal and S. Rai, ''Reliability evaluation in computer -

communication networks", IEEE Trans. Reliab., Vol. R-30, No. I, 

April 1981, pp. 32-35. 

[A VI 78] A. Avizienis, "Fault-tolerance: the survival attribute of digital 

systems", Proc. IEEE, Vol. 66, No. 10, Oct. 1978, pp. 1109-1125. 

[AVI86] A. Avizienis, "Dependable computing: from concepts to design 

diversity", Proc. IEEE, Vol. 74, No.5, May 1986, pp. 629-638. 

[BAL 86] M.O. Ball, "Computational complexity of network reliability 

analysis: an overview", IEEE Trans. Reliab., Vol. R-35, No.3, 

1986, pp. 230-239. 

[BAR 84] R.E. Barlow and K.D. Heidtmann, "Computing k-out-of-n 

system reliability", IEEE Trans. Reliab., Vol. R-33, No.4, Oct. 1984, 

pp. 322-323. 



[BEA 78] M.D. Beaudry, "Performance-related reliability measures for 

computing systems", IEEE Trans. Computers, Vol. C-27, No.6, 
Jun. 1978, pp. 540-547. 

[BIL 83] R. Billington and R.N. Allan, Reliability evaluation of 

engineering systems : concepts and techniques, Pitman, London, 
1983. 

[CRE 85] Y. Chen and T. Chen, "DFT : Distributed fault tolerance - analysis 

and design", Dig. 15th Int'l Symp. Fault-Tolerant Computing 
(FTCS-15), 1985, pp. 280-285. 

[CHU 81] R.F. Churchhouse, Ed., Handbook of applicable mathematics, 
Vol. 3 : Numerical methods, Wiley, Chichester, 1981. 

[COL87] C.J. Colbourn, The combinatorics of network reliability, Oxford 

University Press, Oxford, 1987. 

[DEP 77] P.G. Depledge, "Reliability considerations for airborne 

microcomputers", PhD Thesis, UMlST, 1977. 

[EVE 80] B. Everitt, Cluster Analysis (2nd Ed.), Heinemann Educational 

Books, Halsted Press, London, 1980. 

[GEl 83] R.M. Geist and K.S. Trivedi, ''Utrahigh reliability prediction for 

fault-tolerant computer systems", IEEE Trans. Computers, Vol. 

C-32, No. 12, Dec. 1983, pp. 1118-1127. 

[GIB 85] A. Gibbons, Algorithmic graph theory, Cambridge University 

Press, Cambridge, 1985. 

[GRN 80] A. Grnarov, L. Kleinrock and M. Gerla, "A new algorithm for 

symbolic reliability analysis of computer communication 

networks", Pacific Telecomm. Conf., Jan. 1980, pp. lA.11-lA.19. 

[HAR 86] S. Hariri and C.S. Raghavendra, "SYREL : A symbolic reliability 

algorithm based on path and cut set methods", IEEE Infocom 86, 

Miami, Fla., Apr. 1986, pp. 293-302. 

134 



[HAY 76] J.P. Hayes, "A graph model for fault-tolerant computing 

systems", IEEE Trans. Computers, Vol. C-25, No.9, Sep. 1976, 
pp. 875-884. 

[HW A 81] C.L. Hwang, F.A. Tillman and M.H. Lee, "System-reliability 

evaluation techniques for complex/large systems - A review", 

IEEE Trans. Reliab., Vol. R-30, No.5, Dec. 1981, pp. 416-423. 

[JAI 85] S.P. Jain and K. Gopal, "Recursive algorithm for reliability 

evaluation of k-out-of-n :G system", IEEE Trans. Reliab., Vol. R-

34, No.2, Jun. 1985, pp. 144-147. 

[JOH 84] B.W. Johnson, "Fault-tolerant microprocessor-based systems", 

IEEE Micro, Vol. 4, No.6, Dec. 1984, pp. 6-21. 

[KLE 80] L. Kleinrock and F. Kamoun, "Optimal clustering structures for 

hierarchical topological design of large computer networks", 

Networks, Vol. 10, 1980, pp. 221-248. 

[KUH 86] J.G. Kuhl and S.M. Reddy, "Fault-tolerance considerations in 

large, multiple processor systems", IEEE Computer, Vol. 19, 

No.3, Mar. 1986, pp. 56-67. 

[LAW 76] E. Lawler, Combinatorial optimization : Networks and matroids, 

Holt, Rinehart and Winston, New York, 1976. 

[LOC84] M.O. Locks, "Comments on: Improved method of inclusion 

exclusion applied to k-out-of-n systems", IEEE Trans. Reliab., 

Vol. R-33, No.4, Oct. 1984, pp. 321-322. 

[MAE 86] E. Maehle, et.al., "A graph model for diagnosis and 

reconfiguration and its application to a fault-tolerant 

multiprocessor system", Dig. 16th Int'l Symp. Fault-Tolerant 

Computing (FTCS-16), 1986, pp. 292-297. 

[MAK83] S.V. Makam and C.S. Raghavendra, "Dynamic reliability 

modeling and analysis of computer networks", Proc. 1983 lnt'l 

Conf. Parallel Processing, pp. 496-502. 

135 



[MAL 81] Y.K. Malaiya and S.Y.H. Su, "Reliability measure of hardware 

redundancy fault-tolerant digital systems with intermittent 

faults", IEEE Trans. Computers, Vol. C-30, No.8, Aug. 1981, 
pp.600-604. 

[MAN 87] D. Mandaltsis and J.M. Kontoleon, "A decomposition technique 

for the overall reliability evaluation of large computer 

communication networks", Microelectron. Reliab., Vol. 27, 
No.2, 1987, pp. 299-312. 

[MEY 85] F.J. Meyer, "Dynamic testing strategy for distributed systems", 

Dig. 15th Int'l Symp. Fault-Tolerant Computing (FTCS-15), 1985, 
pp.84-90. 

[MIL 65] R.E. Miller, Switching theory, vol. I Combinatorial circuits, 
Wiley, New York, 1965. 

[PAG 88] L.B. Page and J.E. Perry, "A practical implementation of the 

factoring theorem for network reliability", IEEE Trans. Reliab., 
Vol. R-37, No.3, Aug. 1988, pp. 259-267. 

[PRA 86] D.K. Pradhan, "Fault-tolerant multiprocessor and VLSI-based 

system communication architectures", Chapter 7 in Fault

Tolerant Computing, Theory and Techniques, Vol. II, O.K. 

Pradhan, (Ed.), Prentice-Hall, Englewood Cliffs, NJ, 1986. 

[PRE 67] F.P. Prep arata, G. Metze and R.T. Chien, "On the connection 

assignement problem of diagnosable systems", IEEE Trans. Electr. 

Computers, Vol. EC-16, No.6, Dec. 1967, pp. 848-854. 

[RAM 86] C.V. Ramamoorthy, J. Srivastava and W-T. Tsai, "Clustering 

techniques for large distributed systems", Proc. IEEE Infocom 86, 

Miami, Fla., Apr. 1986, pp. 395-404. 

[REI 77] E.M. Reingold, J. Nievergelt and N. Deo, Combinatorial 

algorithms : Theory and practice, Prentice-Hall, Englewood 

Cliffs, NJ, 1977. 

136 



[REN 80] D.A. Rennels, "Distributed fault-tolerant computer systems", 

IEEE Computer, Vol. 13, No.3, Mar. 1980, pp. 55-65. 

[RIS 87] T. Risse, "On the evaluation of the reliability of k-ou t-of-n 

systems", IEEE Trans. Reliab., Vol. R-36, No.4, Oct. 1987, pp. 433-
435. 

[SAT 82] A. Satyanarayana, "A unified formula for analysis of some 

network reliability problems", IEEE Trans. Reliab., Vol. R-31, 
No.1, Apr. 1982, pp. 23-32. 

[SOl 85] LM. Soi and K.K. Aggarwal, "Overall reliability evaluation for 

large computer communication networks: An MHC approach", 

Microelectron. Reliab., Vol. 25, No.2, 1985, pp. 215-222. 

[STI86] J.J. Stiffler, "Computer-aided reliability estimation", Chapter 9 in 

Fault-Tolerant Computing, Theory and Techniques, Vol. II, D.K. 

Pradhan, (Ed.), Prentice-Hall, Englewood Cliffs, NJ, 1986. 

[TOR 83] J. Torrey, "A pruned tree approach to reliability computation", 

IEEE Trans. Reliab., Vol. R-32, No.2, Jun. 1983, pp. 170-174. 

[XU 86] W. Xu and X. Lin, "A new algorithm for the reliability 

evaluation of computer communication networks", 

Microelectron. Reliab., Vol. 26, No.6, 1986, pp. 1013-1017. 

[YAN 86] R.M. Yanney and J.P. Hayes, "Distributed recovery in fault

tolerant multiprocessor networks", IEEE Trans. Computers, Vol. 

C-35, No. 10, Oct. 1986, pp. 871-879. 

137 



Appendix A 

Basic Concepts of Graph Theory 

A graph G = (N, E) consists of a set of objects N = {Xl, X2, ... , xn} called nodes or 

vertices, which are interconnected by another set E = {el, e2, ... , em} whose 

elements are called edges. Each edge ek is identified with a pair (Xi, Xj) of 

nodes which are called the end-nodes of ek . The number of nodes in a graph 

is denoted by n = 1 N 1 and the number of edges by e = 1 E I. An example of a 

graph is shown in Figure A.1. 

An edge having the same node as both its end-nodes is called a self

loop (edge el in Fig. A.l). If more than one edge is associated with a given 

pair of nodes, these edges are referred as parallel edges, such as edges e4 and 

es in Fig. A.1. A graph that has neither self-loops nor parallel edges is called 

a simple graph. 



xl e3 

e4 e5 e2 

e6 

FIGUREA.l 
Graph with 6 nodes and 7 edges 

el 

e7 

lID 

o 

If an edge ek has Xi as an end-node, then ek is incident with Xi; if (Xi, Xj) E 

E then node Xj is adjacent or neighbour to Xi. For example in Fig. A.1 edges 

e2, e6 and e7 are incident with X4 which is adjacent to X2, X3 and Xs. Also, two 

non-parallel edges are adjacent if they have a common end-node, such as e2 

and e6 in Fig. A.1. 

The degree of a node Xi, denoted as d(Xi), is the number of edges 

incident with Xi. A node Xi for which d(Xi) = 0 is called an isolated node, if 

d(xi) = 1 is called a pendant node (X6 and Xs respectively in Fig. A.1). A graph 

is regular if every node has the same degree. 

Two graphs GI and G2 are said to be isomorphic if there is a one-to-one 

correspondence between their nodes ~uch that the number of edges joining 

any two nodes in G I is equal to the number of edges joining the 

corresponding two nodes in G2' A (proper) subgraph of G is a graph 

obtainable by the removal of a number of edges and/or nodes of G. The 

removal of a node necessarily implies the removal of every edge incident to 

it. 

A path from Xl to Xi is a sequence P = Xl, el, X2, e2, ... , ei-l, Xi of alternating 

nodes and edges such that for 1 ~ j < i, ej is incident with Xj and Xj+l' If Xl = Xi 

then P is a circuit. If in a path each node only appears once, then is called 

139 



simple path. Two paths are edge-disjoint if they do not have any edges in 

common. 

The length of a path or circuit is the number of edges it contains, and 

distance between two nodes is the length of the shortest path. 

A graph G is said to be connected if there is at least one path between 

every pair of nodes in G. Otherwise G is disconnected. 

A tree T is a connected graph without any circuit, so a simple path can 

be seen also as a tree. A tree is said to be a spanning tree of a connected graph 

GifT is a subgraph of G and contains all nodes of G. A tree T is a Steiner tree 

if T spans over a subset of nodes of G. 

A directed graph or digraph is a graph in which edges have assigned a 

direction. If ek = (Xi, Xj) is an edge of a digraph, then ek is understood to be 

directed from the first node Xi to the second node Xj (ek is incident from Xi 

and incident to Xj ). Xj is called a succesor of Xi , and Xi is the predecessor of Xj . 

The number of edges incident from a node Xi is called the out-degree of 

Xi and is written as d+ (Xi); the number of edges incident to Xi is called the in

degree and is written as d- (Xi)' An out-tree is a connected digraph that has 

no circuits and there is precisely one node R of zero in-degree. So, in an out

tree there is a directed path from the root R to every other node. Similarly, 

an in-tree is obtained reversing the direction of every edge. 

Finally, in a graph G, when a number or weight is assigned to each edge 

and/ or node, G is called a weighted graph. 

140 



Appendix B 

Computer Implementation 
Details 

The computer program for both reliability models, deterministic and 

probabilistic, have been implemented on an Apple Macintosh™ personal 

computer. The computer program has been written in the language Pascal, 

using Think Lightspeed PascaFM version 2.0 as the integrated environment 

for development (compiler, linker, editor and debugger). 

The entire program consists of about 3,000 lines of source code, 

including documentation and blank lines. 

The program is divided into the following modules (Figure B.1): 

(a) Generation of the graph representation 

(b) Deterministic evaluation 

(c) Probabilistic evaluation, which is subdivided into: 

(1) Generation of the symbolic Boolean expression 

(2) Evaluation of the probabilistic measures. 



input: graph configuration 

input: rellab. problem and class 

Fault simulation 
(generate subgraph) 

EVALUATE 
DETERMIN ISTIC 

MEASURES 

output: denseness, degree, 
distance, edge and node 

connectivity 

FIGURE 8.1 
Main program modules 

GENERATE 
GRAPH 

REPRESENTATION 

input: static prob .. 

input: rellab. problem. closs 
and evaluation method 

GENERATE 
SYMBOLIC 
EXPRESSION 

fail. rate. repair rate. ---....., 
time InteNal 

EVALUATE 
PROBABILISTIC 

MEASURES 

output: R. R(t). A(t). 
M1TF. MTBF. SA 

Each of these modules is subdivided into units; each unit contains the 

global and/or local constants, variables, data structures and procedures 

corresponding to each module. 

Figure B.2 shows the major units in each module. There is also 

another set of global units, which contains the common structures to all the 

modules; these structures are: global constants, variables and data structures 

and global procedures for error handling, initialisation and several graph 

manipulation routines: input a graph, transform its data representation, add 

and remove nodes and/or edges, generate a subgraph, obtain paths and 

trees, etc. It also contains other global procedures. 

142 



Genera Graph Deterministic ProbabilisHc 

Input Max flow Initialisation 
configuration Get degree Get boolean 

Get In-degree expr. 
Genera graph Denseness Clustering 
representation Total distance IHRM, KHRM 

Edge conn. Gen. final expr. 
Node conn. I 
Simula faults Rellab. paramo 
Compute det. Compute prob. 
measures measures 

/ 
Globals Error handling 

Initialisation 

Constants, types, Graph manipulation 
data structures 

FIGUREB.2 
Module units 

Rellab. problem & class 
Distance, path (BFS), 
spanning and Steiner tree 

Due to the memory and speed limitations of the Macintosh computer 

(Mac Plus with 68000 processor and 1M memory running at 6.7 MHz), the 

maximum number of nodes and edges combined cannot exceed 64 in our 

implementation. 

The program has been coded in standard Pascal and the user interface 

for interactive input and output is text based, simple and self explained; 

therefore the program can be easily transferred to any other computer 

system. A more sophisticated graphics interface is out of the scope of this 

work. 

143 


	235881_0001
	235881_0002
	235881_0002a
	235881_0003
	235881_0004
	235881_0005
	235881_0006
	235881_0007
	235881_0008
	235881_0009
	235881_0010
	235881_0011
	235881_0012
	235881_0013
	235881_0014
	235881_0015
	235881_0016
	235881_0017
	235881_0018
	235881_0019
	235881_0020
	235881_0021
	235881_0022
	235881_0023
	235881_0024
	235881_0025
	235881_0026
	235881_0027
	235881_0028
	235881_0029
	235881_0030
	235881_0031
	235881_0032
	235881_0033
	235881_0034
	235881_0035
	235881_0036
	235881_0037
	235881_0038
	235881_0039
	235881_0040
	235881_0041
	235881_0042
	235881_0043
	235881_0044
	235881_0045
	235881_0046
	235881_0047
	235881_0048
	235881_0049
	235881_0050
	235881_0051
	235881_0052
	235881_0053
	235881_0054
	235881_0055
	235881_0056
	235881_0057
	235881_0058
	235881_0059
	235881_0060
	235881_0061
	235881_0062
	235881_0063
	235881_0064
	235881_0065
	235881_0066
	235881_0067
	235881_0068
	235881_0069
	235881_0070
	235881_0071
	235881_0072
	235881_0073
	235881_0074
	235881_0075
	235881_0076
	235881_0077
	235881_0078
	235881_0079
	235881_0080
	235881_0081
	235881_0082
	235881_0083
	235881_0084
	235881_0085
	235881_0086
	235881_0087
	235881_0088
	235881_0089
	235881_0090
	235881_0091
	235881_0092
	235881_0093
	235881_0094
	235881_0095
	235881_0096
	235881_0097
	235881_0098
	235881_0099
	235881_0100
	235881_0101
	235881_0102
	235881_0103
	235881_0104
	235881_0105
	235881_0106
	235881_0107
	235881_0108
	235881_0109
	235881_0110
	235881_0111
	235881_0112
	235881_0113
	235881_0114
	235881_0115
	235881_0116
	235881_0117
	235881_0118
	235881_0119
	235881_0120
	235881_0121
	235881_0122
	235881_0123
	235881_0124
	235881_0125
	235881_0126
	235881_0127
	235881_0128
	235881_0129
	235881_0130
	235881_0131
	235881_0132
	235881_0133
	235881_0134
	235881_0135
	235881_0136
	235881_0137
	235881_0138
	235881_0139
	235881_0140
	235881_0141
	235881_0142
	235881_0143
	235881_0144
	235881_0145
	235881_0146
	235881_0147
	235881_0148
	235881_0149

