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Abstract 

Reliability evaluation by analytic modelling constitute an important issue of 

designing a reliable multiprocessor system. In this thesis, a model for 

reliability and fault tolerance analysis of the interconnection network is 

presented, based on graph theory. Reliability and fault tolerance are 

considered as deterministic and probabilistic measures of connectivity. 

Exact techniques for reliability evaluation fail for large multiprocessor 

systems because of the enormous computational resources requiredo 

Therefore, approximation techniques have to be used. Three approaches are 

proposed, the first by simplifying the symbolic expression of reliability; the 

other two by applying a hierarchical decomposition to the system. All these 

methods give results close to those obtained by exact techniques. 
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Chapter 1 

Introduction 

1.1 THE IMPORTANCE OF RELIABILITY 

The reliability of computer systems has been a major concern SInce the 

introduction of the first electronic digital computers which used relays, 

vacuum tubes and another relatively unreliable components. With the 

second generation of computers, semiconductor components with much 

greater reliability were introduced. Nevertheless, today there is a growing 

interest in reliability, because of the increased advances and complexity of 

microelectronics and computer systems, together with the increased 

dependence on such systems, thus demanding for safer, more reliable and 

more available systems. The importance of human safety, mission success, 

equipment protection and data integrity, together with recent trends like 

harsher environments, novice users, increasing repair and maintenance 

costs and the development of larger systems are some of the reasons for the 

requirement to improve reliability in computer systems. 



1.2 RELIABLE SYSTEM DESIGN 

In addition to improvements in component reliability and in test methods 

to avoid the occurrence of failures; redundancy at various levels of system 

organisation has to be used to increase the probability of correct operation, 

providing for tolerance to failures. Fault avoidance and fault tolerance are 

the two major design approaches to increase reliability, that supported by 

system evaluation constitute the basic reliable system design methodology, 

as illustrated in Figure 1.1. Analytic modelling and experimental simulation 

techniques used for the assessment of the reliability requirements constitute 

a very important issue of designing a reliable system. 

Fault 
avoidance 

System 
design 

FIGURE 1.1 

System 
requeriments 

System 
evaluation 

Fault 
tolerance 

Modelling Simulation 

Reliable system design methodology 
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1.3 RELIABILITY IN MULTIPROCESSOR SYSTEMS 

The rapid expansion of multiprocessor or multicomputer systems has been 

possible by the continuous decline of hardware costs, the introduction of 

microprocessors and the development of distributed and parallel systems. 

Design of computing systems incorporating more processing elements has 

resulted in a two-sided relationship involving reliability. On one hand, it 

opened the way to new possibilities of obtaining high reliability and fault 

tolerance by the use of the inherent redundancy without prohibitive 

additional costs. On the other hand, as the number of elements increases, 

the probability of failure existing somewhere in the system at any time also 

increases. 

1.4 PURPOSE OF THIS WORK 

The purpose of this work is the study and implementation of models for 

reliability and fault tolerance analysis of multiprocessor systems. The 

attention is basically given to the intercommunication structure, i.e. the 

interconnection network, so models can be based mainly in graph theory. 

Reliability and fault tolerance are considered as deterministic or probabilistic 

measures of connectivity, i.e. the successful communication among the 

nodes (computers) throughout the network in spite of faults in the 

communication paths (node and/or link failures) for several rooted and 

unrooted connectivity problems. 

The trend towards constructing multiprocessor systems with large 

number of processors has meant that exact reliability modelling techniques 

cannot be applied without prohibitive computational overheads. Therefore, 
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it is proposed to employ approximate techniques for reliability modelling of 

large multiprocessor systems based in a hierarchical decomposition of the 

system. 

1.5 OUTLINE OF THE THESIS 

Chapter 2 provides a general overview and introduces some aspects of fault 

tolerance and reliability in computer systems, considering basic concepts and 

definitions of fault tolerance and fault avoidance techniques, 

characterisation of faults, redundancy and system service where the main 

reliability measures are introduced. The application areas for fault tolerant 

systems are described, the need for reliability assessment is highlighted and 

a general design methodology is suggested for implementing fault tolerance 

and consequently high reliability in computer systems. 

Chapter 3 describes the characteristics of multiprocessor systems 

followed by the principal considerations and methodology to implement 

fault tolerance and reliability in such systems. A theoretical model based in 

graph theory is proposed to study the reliability in the intercommunication 

network, considering the deterministic or structural as well as the 

probabilistic, stationary and dynamic, aspects of the network. 

Chapter 4 is devoted to the implementation of a deterministic model 

and a probabilistic model for reliability analysis of multiprocessor systems. 

An evaluation of some network architectures is also presented. 

Chapter 5 presents a description of the hierarchical clustering method 

and the subsequent hierarchical reliability evaluation of large 

multiprocessor systems as well as the results obtained when applying this 

method to some multiprocessor configurations. 
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Chapter 6 presents a summary, conclusions and recommendations for 

future work. 

Appendix A describes some basic concepts of graph theory related to 

the graph model for reliability. 

Appendix B presents computer implementation details of the 

reliabili ty model. 
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Chapter 2 

Aspects of Fault Tolerance and 
Reliability 

2. 1 INTRODUCTION 

In this chapter are presented some aspects of fault tolerance and reliability in 

computer systems, considering basic concepts and definitions of fault 

tolerance and fault avoidance techniques, characterisation of faults, 

redundancy and system service where the main reliability measures are 

introduced. The application areas for fault tolerant systems are described, 

the need for reliability assessment is highlighted and a general design 

methodology is suggested for implementing fault tolerance and 

consequently high reliability in computer systems. 



2.2 BASIC ASPECTS AND TERMINOLOGY 

2.2.1 FAULT AVOIDANCE AND FAULT TOLERANCE 

There are two major approaches for attempting to improve or maintain 

normal performance and consequently reliability of a system. These two 

approaches can be combined and are applicable to all parts of the system. 

The first approach is called fault avoidance in which the reliability of 

the system is assured by preventing the cause of unreliability, i.e. of faults. 

This can be achieved by techniques such as design review, quality control on 

components and system testing. 

The second approach is by fault tolerance, which is defined as: "the 

ability of the system to continue to perform its specified functions regardless 

of the presence of faults" [A VI 78]. 

Fault tolerance can be achieved in one of two ways: 

(a) Static: through the masking or hiding of the effects of faults 

(fault masking), or 

(b) Dynamic: by identification of sources of failure, followed by 

undertaking actions to appropriately compensate for the effects of 

identified failures. 

2.2.2 CHARACTERISATION OF FAULTS 

A fault is defined as any erroneous state of the system. In a computer system 

there are two types of faults: hardware and software faults. Hardware faults 

are caused by physical factors resulting from component failures (wear-out 

or manufacturing defects), external disturbances, and design or 

implementation mistakes. Software faults result from design or 
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implementation mistakes. An error is the manifestation of a fault in the 

system. A failure or malfunction is the effect of an error in the system 

service or behaviour as it is perceived by the user. An error will lead to the 

failure of a system unless tolerance to such fault has been provided UOH 84]. 

The general effects of faults in a system are illustrated in Figure 2.1. 

FIGURE 2. 1 
Couse and effect relationship of faults 

Faults may be further characterised by other properties besides their 

type and cause: 

• value: determinate (such as stuck-at models) or indeterminate; 

• duration : permanent, intermittent, transient or latent; 

• level: fault in a component, module, subsystem, etc.; 

• extent: local or global. 

Figure 2.2 shows the barriers constructed against faults by fault 

avoidance, static and dynamic fault tolerance. 
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2.2.3 REDUNDANCY 
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Redundancy is the key issue in all fault tolerant systems, it consists in the 

addition of resources beyond what is needed for normal system operation. 

Redundancy may take several forms UOH 84]: 

(a) information redundancy, e.g. error detecting codes; 

(b) hardware redundancy, i.e. physical replication of hardware; 

(c) software redundancy, replication of software or programs to perform 

validity checks, self-tests, etc.; 

(d) time redundancy, uses additional time mainly to distinguish between 

permanent and intermittent failures. 
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In fault masking systems, generally hardware redundancy is employed 

in the form of replication and voting (n-modular redundancy), where 

multiple copies of an entity are utilised with outputs decided by majority 

vote. A common method is triple modular redundancy or TMR which is 

illustrated in Figure 2.3 with an ideal voter. 

module 1 

module 2 

input 

module 3 

FIGURE 2.3 
TMR with ideal voter 

voter 
(Ideal) 

ou1put 

In contrast to masking failures which requIres a large amount of 

resources, by using the second (dynamic) approach of fault tolerance, the 

amount of adittional resources can be minimised. This approach is formally 

categorised into [KUH 86]: 

(1) Fault detection: the ability of the system to recognise that a fault has 

occurred; 

(2) Fault location (diagnosis): the process of determining the location of a 

fault or faults in the system; 

(3) Fault containment: the process of isolating a fault and preventing its 

effects from propagating throughout the system; 
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(4) System reconfiguration or repair: the logical or physical removal of the 

failed component, along with rearrangement of the remaining non

faulty elements to compensate for the loss of the failed component. 

(5) System recovery: the restoring of data and computations to a consistent 

operational state. This may involve rolling back computations to a pre

failure state and then restoring them. 

2.2.4 SYSTEM SERVICE 

The life of a system is perceived by the user as an alternation between two 

states of the delivered service with respect to the specified service [AVI86]. 

• proper service where the service is delivered as specified; 

• improper service where the delivered service is different from the 

specified. 

The events which constitute the transitions between these two states 

are the failure and the restoration of service or repair. Quantifying the 

alternation between delivery of proper and improper service leads to the 

two main measures of system reliability. 

• reliability: a measure of the continuous delivery of proper service 

from a reference initial instant. 

• availability: a measure of the delivery of proper serVIce with 

respect to the alternation of delivery of proper and improper 

service. 

Reliability and availability are formally described in chapter 3. 
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2.3 APPLICATION AREAS FOR FAULT TOLERANT SYSTEMS 

The application area determines the requirements placed upon a system. To 

employ fault tolerance in a computer system involves trading off the cost of 

failure against the cost of implementation. Based in this criteria there have 

been defined five primary application areas [REN 80] (ordered by the most to 

the less stringent fault tolerance requirements and cost). 

(a) Critical applications : systems on which failure can place human lives 

in danger. They require high reliability and short reconfiguration time, 

such as real time control systems. Examples are: passenger transport, 

patient monitoring, control of nuclear power plants, etc. 

(b) Long life control systems: systems in environments that do not allow 

access for manual maintenance such as spacecrafts, satellites, 

underwater stations, etc .. 

(c) High availability general purpose applications: the maIn characteristic 

of these systems is that they can allow frequent outages as long as the 

duration of each outage is smalL Examples of these systems are large 

resource sharing systems like telephone switching, book-keeping 

systems, etc. 

(d) High performance computing: systems where expected performance 

cannot be achieved without the use of fault tolerance. 

(e) Maintenance postponement is required when maintenance IS very 

costly or difficult to perform, such as remote processing stations. The 

main goals are to postpone maintenance until convenient times and 

still have a system that can perform at least a subset of its service. 
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In addition to the above areas, fault tolerance offers significant 

psychological support for human users who depend on or interact with a 

computer system. 

2.4 RELIABILITY EVALUATION 

The choice of fault tolerant functions and redundancy techniques needs to 

be supported by a quantitative or qualitative assessment whether the system 

possesses the expected reliability. There are two approaches to reliability 

evaluation [AVI78]: 

(a) Analytic approach, in which fault tolerant and reliability measures are 

obtained from a mathematical or graph model of the system. 

(b) Experimental approach, in which faults are inserted either into a 

simulated model of the system or into a prototype, and fault tolerance 

and reliability measures are estimated from statistical data. 

A variety of models have been created for analytical studies of fault 

tolerance and reliability, that can be broadly divided into two classes: 

(a) Deterministic models. For the investigation of problems to describe the 

architecture, connectivity, diagnosability, robustness, reconfigurability 

and other aspects related with fault tolerance, reliability and 

performance. 

(b) Probabilistic models allowing the computation of reliability and 

performance parameters such as the probability of success, reliability, 

availability, MTTF, MTBF, survivability, etc. 
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2.5 FAULT TOLERANCE AND RELIABILITY DESIGN ISSUES 

Fault tolerance can be introduced into the system architecture through 

a systematic sequence of design activities [A VI 78], [DEP 77]. A general 

methodology can be summarised as follows : 

(1) Specification of the computational task and description of system 

requirements (I/O interfaces, etc.). 

(2) Determination of the basic system architecture. 

(3) Specification of the reliability goals according with the application area. 

(a) Identification of classes of faults to be tolerated: implementation 

errors, component failures or external disturbances. 

(b) Quantitative reliability requirements 

(c) Postulation of the methods for evaluation. 

(4) Fault detection mechanisms: initial testing, concurrent detection (on

line) or scheduled detection (off-line), as well as redundant testing. 

(5) System reconfiguration and recovery algorithms: manually controlled 

or automatic; full recovery, degraded recovery (graceful degradation or 

soft fail operation) or safe shutdown (fail-safe operation). A special case 

of recovery results from fault masking. 

(6) Evaluation of the fault tolerance and reliability of the design by means 

of analytic modelling, experimental simulation or both. Physical, 

structural and reliability parameters are used In generating the 

reliability prediction. 

(7) Design refinement. The goal is to balance the protection provided to 

each subsystem in such a way that reliability goals are obtained without 

a single dominating contributor of unreliability and at the lowest cost 

of additional hardware and software. 
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Chapter 3 

Fault Tolerance and Reliability 
Multiprocessor Systems 

3.1 INTRODUCTION 

• In 

A key issue for successful operation of a multiprocessor system is the 

exchange of information between the processing nodes. Therefore, one of 

the critical problems in designing multiprocessor systems is to provide an 

appropriate, highly reliable and fault tolerant communication subsystem, so 

that all the processing nodes are able to communicate at all times. 

In this chapter are described the main characteristics of multiprocessor 

systems, followed by the considerations and methodology to implement 

fault tolerance and reliability in such systems. A theoretical model based in 

graph theory is proposed to study the reliability in the intercommunication 

network, considering the deterministic or structural as well as the 

probabilistic, stationary and dynamic, aspects of the network. 



3.2 PROPERTIES OF MULTIPROCESSOR SYSTEMS 

The term multiprocessor systems is used here to represent systems which 

are known with different names, such as: computer networks, 

multicomputers, distributed processing systems, parallel processors, etc. 

Multiprocessor systems extend from geographically distributed networks up 

to VLSI systems which interconnect a large number of simple processing 

cells in a single chip. 

Multiprocessor architectures can be categorised by their degree of 

integration and processor granularity [PRA 86] as it is shown in Table 3.1. 

TABLE 3.1 
Network structures 

Degree of Processor Network 
integration granularity examples 
LOW LARGE Long-haul 

networks 
MEDIUM MEDIUM Local area 

networks 
MEDIUM MEDIUM Multiprocessor 

systems 
HIGH SMALL VLSI based 

systems 

Despite the different names, degree of integration and granularity, 

multiprocessor systems have the following basic properties: [KUH 86] 

(a) Autonomy: A number of autonomous, cooperating processIng 

elements (PEs) interconnected between them. At the system level, 

these PEs and their interconnection links are viewed as the basic 

components of the system. Each PE has its own local memory and 

there is no shared memory between PEs. The interconnection schemes 
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allow high bandwidth communication between the PEs generally 

through message passing and can be classified into three categories: 

• Link oriented 

• Bus oriented 

• Connection network based. 

(b) Modularity: A high degree of distribution of control or operating 

system functions among the PEs (resources distribution). 

(c) Parallelism: Highly parallel computations, on the classes of SIMD 

and/ or MIMD. 

These properties make the system inherently redundant, thus allowing 

the implementation of fault tolerance capabilities in multiprocessor 

systems, minimising the need for additional redundancy. 

3.3 METHODOLOGY AND CONSIDERATIONS FOR FAULT TOLERANCE 
AND RELIABILITY 

Most of the same design issues described in section 2.5 apply also to 

multiprocessor systems, but in order to extend this methodology specifically 

for such systems, the following considerations must be taken in account: 

[REN 80], [KUH 86] 

3.3.1 GENERAL 

(a) The design methodology can be applied locally (within each processor) 

and/ or globally (across the collection of processors and their 

in terconnections). 

17 



(b) Redundant partitioning. Whole processor partitioning or sub-modules 

partitioning. In general, for multiprocessor systems, the appropriate 

level to consider is at the processor level and communication paths in 

the interconnection structure. 

(c) Protection of hard core items: Clocks, common control, power supplies, 

recovery mechanisms, etc. 

3.3.2 REPLICATION AND MASKING 

(d) Dynamic (selective) redundancy. In contrasting with traditional static 

redundancy, selective redundancy is implemented according to the 

needs and requirements of a specific application and can be adjusted to 

protect critical computations with higher levels of redundancy 

compared with less important computations. 

3.3.3 FAULT TOLERANCE THROUGH DIAGNOSIS, REPAIR AND RECOVERY 

(e) Fault detection. At processor level can be distinguished in two ways: 

external (generally neighbouring processors) and internal detection. 

(f) Fault diagnosis. Traditional system level diagnosis can be employed, 

but extended to consider diagnosis of failures in interconnection paths. 

(g) Reconfiguration and recovery. Preferable logical to physical hardware 

reconfiguration due to the non-scarce redundancy in PEs, and the cost 

and reliability involved in hardware reconfiguration to switch-in spare 

modules, redirect communication paths, etc. Two important situations 

can be distinguished related with reconfiguration: configurations with 

spare nodes in which there is no degraded performance and graceful 

degradation. 
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(h) Effectiveness of fault detection and recovery: Coverage. 

3.3.4 COMMUNICATION FACILITIES 

(i) Intercommunication structure and redundancy: If several processors 

are required to work cooperatively on a task, a frequent exchange of 

data among them is expected. The amount of data, the frequency with 

which they are transmitted, the speed of their transmission and the 

route that they take are all significant in affecting the 

intercommunication and its reliability. 

The key structural consideration in the design of fault tolerant and 

high performance multiprocessor systems IS the system 

interconnection. Ideally if one processor wants to communicate with 

another, then it should do it over a channel that directly connects the 

two. Such a system would be prohibitively expensive. A channel 

between every pair of processors would require O(n 2) channels for n 

processors. So it is necessary to trade cost for speed and reliability. The 

compromise that is made involves routing data from one processor to 

another via intermediate processors so creating communication paths. 

A redundant connection that is made to increase reliability, must allow 

for fault tolerance so that any node can be reached by a different path if 

one path should fail (robustness and reconfigurability). 

Broadly speaking, a viable interconection strategy must have a small 

number of channels and easy routing rules, should provide for fault 

tolerance, re-routing and gracefully recover in case of failures. 
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3.3.5 OTHER CONSIDERATIONS 

(j) Type and importance of modules, capability, I/O, peripherals 

connected, etc. The functions that depend on the connected hardware, 

in case of reconfiguration, can only be delegated to predeterminate 

modules of the same type. 

(k) Performance. The structure of the system also affects other factors, such 

as interprocessor distance, delays, message routing, expansion 

capability, etc. In degradable systems there is also a degradation in 

performance (mode of operation or service rate), which is of 

considerable importance. 

3.4 RELIABILITY MODELLING 

The operation of a multiprocessor system is a function of the success of 

many factors; our goals in reliability modelling or assessment are to obtain a 

measure of a system utility which contributes to its overall performance. 

For this work we have concentrated basically on reliability from the 

point of view of the intercommunication structure of the system, i.e. the 

interconnection network. Communication network reliability is defined as 

"the ability of a network to carry out a desired operation" [COL 87]. 

Necessary network operations have been identified so as to continue to 

afford communication routes between some target nodes when other nodes 

or link fail. 

The measures of network reliability fall into two classes: 

(a) Deterministic: depend only on the structure of the network, that is, on 

the number of nodes and links and the way they are connected. 

(b) Probabilistic: depend not only on the structure but also on the 

probabilities of failure of nodes and links. 
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3.4.1 GRAPH MODEL 

An important approach to fault tolerant design and reliability modelling is 

the utilisation of models based in graph theory [HAY 76]. Graph models 

have been utilised within the field of fault tolerance for the design of 

algorithms for fault detection, diagnosis [PRE 67], [MEY 85], [MAE 86], 

reconfiguration [MAE 86], recovery [YAN 86] and replication [CHE 85] 

among others. 

The basic concepts of graph theory related to the reliability model can 

be found in Appendix A. 

Graph representation 

A multiprocessor system can be viewed as a directed or undirected graph 

G = (N, E) in which the set of nodes or vertices N represents the set of n 

processors, N = {Xl' X2, ... , xn} and the set of links or edges E represents the 

unidirectional or bidirectional interconnection channels between the PEs, 

E = {el , e2, ... } ; an example of an undirected graph is shown in Figure 3.1 and 

a directed graph in Figure 3.2. 

FIGURE 3.1 
Undirected Graph 

~ bidirectional edge 
(connecting path) 
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FIGURE 3.2 
Directed Graph 

...... unidirectional edge 
(connecting path) 

In a graph model, the representation of faults in nodes and faults in 

edges is shown in Figures 3.3a and 3.3b respectively. A node or edge failure 

has the effect of modifying the graph topology creating a subgraph (Gs ) of the 

graph G when faulty nodes and/or edges are removed from the system 

graph; it is assumed that removing a node includes removing all its 

incident edges. 

Successive failures can, eventually, result in a disconnection of the 

system, and therefore prevent some processors from communicating to 

some other processors. 

(a) 

............ / faulty node 
--"0 

FIGURE 3.3 

(b) 

Representation of faults: (a) fault in a node; (b) fault 
in an edge. 
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Assumptions 

The following is generally assumed : 

(a) Information is directly relating to the topology. 

(b) Elements (nodes and edges) have two states: operational and failed. 

(c) If the system cannot maintain a specified level of service then is failed. 

(d) There is no correlation between the failure of elements (statistically 

independent failures). 

(e) A situation where the graph topology is disconnected is equivalent to a 

state of total system failure. 

Based on these assumptions the reliability goal is then to determine 

the effect of the topology on the operational states of the network 

represented as a deterministic or probabilistic graph. 

3.4.2 REUABILIlY PROBLEMS 

In a graph model of the interconection network it is assumed that any two 

nodes can communicate if they are both operative and if there is a path of 

operative nodes and edges between them. Reliability calculation is based not 

only on the operation of a path but also on the total number of 

communications of such paths. Based in this criterion, reliability is a 

measure of connectivity. 

Reliability problems in a probabilistic communication network are 

identified and classified in [SAT 82] and [COL 87] as either unrooted or 

rooted problems. Rooted problems represent tree connectivity problems 

which are useful, for example, in studying the reliability of successful 
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broadcasting of information originated by a central controller (source node) 

to a set of target nodes in a network. For our model it is proposed to extend 

this classification to be used also to characterise the deterministic reliability 

model. For a graph G, the reliability problems considered for deterministic 

and probabilistic models include: 

Unrooted problems 

(a) Two-terminal reliability (TT) : a specified node paIr In G can 

communicate each other. TT connectivity is useful because many 

applications of multiprocessing require connection between two nodes 

over a period of time, for example in remote interactive computing. 

(b) Overall reliability (AT) : all node pairs in G can communicate. 

(c) K-terminal reliability (KT) : among a set K of specified nodes in G, all 

node pairs can communicate. It is useful for example in distributed 

computing. 

Rooted problems 

(d) Source to terminal reliability (ST) : a specified node (S) in G can 

comm unica te to another specified node (T). 

(e) Source to all terminal reliability (SAT) : a specified node (S) in G can 

communicate to all other nodes. 

(f) Source to K-terminal reliability (SKT) : a specified node (S) in G can 

communicate to a set K of specified nodes. 

(g) K-source to K-terminal reliability (KSKT): a set (Ks) of specified source 

nodes in G can communicate to a set (Kt) of specified terminal nodes. 

For undirected graphs, TT and ST can be viewed as equivalent 

problems since each link can communicate in both ways. Likewise AT and 

SAT are equivalent, and KT with SKT are equivalent as well. For a graph G 
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with n nodes, TT and AT are special cases of KT with K =2 and K = n 

respectively. 

Another reliability problem that has been considered for the 

probabilistic model due to its importance as the general model of redundant 

systems is: 

(h) K-out-of-N system reliability (KON) : probability that K out of N 

components in G must work for system success. 

The general mechanism to define a reliability problem is as follows 

[COL 87]: 

For any graph G = (N, E) it is defined a state of G to be a subset S of G; 

this is interpreted to mean that all elements (edges and nodes) in S are 

operational and all elements in G - S are failed. 

The universe of possible states is the power set U(C) = 2ne, where ne is 

the total number of elements (ne = n + e). A network operation is specified 

by defining the set 0 P (G) subset of 2ne ; here 0 P (G) is the set of states 

considered to be operational. Equivalently, network operation can be 

defined in terms of FA(G) = U(G) - OP(G) the set of failed states. 

3.4.3 DETERMINISTIC MODEL 

The graph model is utilised for the deterministic reliability model to analyse 

the characteristics, in terms of reliability, fault tolerance and structural 

performance, of the interconnection structure. The most important 

deterministic measures, related to reliability, taken from the graph theory 

domain are: 
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Degree of node. Is the number of neighbours nodes, or equivalently the 

number of edges incident on a node, it represents the number of 

communication ports. The largest degree of all nodes is denoted by dmax and 

the smallest by dmin , if dmllX = dmin then the graph is regular of degree d . 

Distance. Distance or length between two nodes I ( i I j) is the number of 

edges in the shortest path between node i and node j . Average distance (lav) 

is the internode distance averaged over all the node pairs; it is a measure of 

the average delay. Diameter (lmax) is the maximum internode distance. 

Size (e). Is the total number of edges. Denseness (8). Is a measure of how well 
e 

connected the graph is. Formally, 8 = n. Usually, 8 = log2 n is considered a 

fairly dense graph, 8 = 0(1) is sparse while s = O(n) is a very dense graph. 

N ode connectivity (Kn ). Is the minimum number of nodes which when 

removed will disconnect the graph. Edge connectivity (Ke ). Is the minimum 

number of edges whose removal will disconnect the graph. 

The degree of fault tolerance (K) has been defined as the maximum number 

of elements (nodes and/or edges) which can become faulty without 

disconnecting the graph, i.e. K = Kn - 1. 

These parameters can also can be used for: 

(a) Analysing the diagnosability of different configurations, which IS a 

. direct function of connectivity. 

(b) Analysing the suitability of various configurations for a desired 

application from the point of view of fault tolerance, diagnosability, 

reconfigurability (number of possible configuration states for a given 
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application without degradation) and structural performance (such as 

distance) in order to determine an appropriate (optimal or near 

optimal) configuration in terms of minimum hardware investment , 

i.e. minimum size and number of nodes. 

(c) Selective redundancy can be incorporated in the model, allowing a 

critical task to be replicated for two PEs (mutual monitoring) (Fig. 3.4a) 

or three PEs (2-out-of-3 decision) (Fig. 3.4b), if the configuration allows 

direct connection between the processors. 

2 2 

(a) (b) 

FIGURE 3.4 
Replication of modules: (a) two nodes (1 and 2); 
(b) three nodes (1, 2 and 3). 

(d) In a gracefully degrading system it is possible to reconfigure the system 

(reassign or reduce the computational tasks from the faulty processor(s) 

to the remaining operational ones) for different degraded 

configurations down to a minimum configuration allowable or until 

the graph becomes disconnected, being also possible to analyse the 

parameters mentioned (connectivity, diameter, distance, etc.) for each 

degraded configuration in order to obtain a measure of survivability 

(how gracefully the system degrades). 
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3.4.4 PROBABILISTIC MODEL 

The probabilistic model is concerned with the probability that the 

interconnection network is able to perform a desired operation in an 

environment of random component failures. 

The reliability of a system can be derived In terms of the individual 

reliabilities of the components used to build it. The various reliability 

modelling techniques that have been developed tend to fall into one of two 

classes [STI86]: 

(a) Combinatorial models: attempt to categorise the set of operational 

states (or conversely the number of unoperational states) of a system in 

terms of the functional states of its components in such a way that the 

probabilities of each of these states can be determined by combinatorial 

means. 

(b) Continuous-time discrete-state Markov models: concentrate on the 

transition rates between the possible states of the system (state 

probability) and then use this information to determine the 

probabilities that the system is in each of these states at any given time. 

Markov models are applicable when the system states are dependent 

on parameters such as reconfiguration, degradation, repair, coverage, 

etc. 

Markov models have been widely used in the modelling of reliability 

and behaviour of simple multiprocessor systems since they have the 

characteristics above explained. Several models have been developed for 

specific applications. Some of them present a model which also includes 

performance analysis [BEA 78] (performance & reliability = performability). 
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Others also have considered parameters such as intermittent and transient 

faults [MAL 81]. 

A considerable effort has been expended for several researchers to 

develop a complete model based on Markov methods which deal with the 

problem of reliability prediction of complex fault tolerant computer systems, 

mainly for critical applications where ultrahigh reliability is required (e.g. in 

the order of 1-10-9). The most representative Markov models are reviewed 

and criticized in [GEI83] : ARIES, SURF, CAST, and CARE-III, where is 

concluded that all these models suffer from multiple limitations, and 

therefore they propose a new model: HARP. 

The main disadvantage of all Markov methods is that they require to 

enumerate all possible states of the system, which is impractical for systems 

of medium to large size. For each probabilistic event considered, the 

number of states is directly proportional to the branching factor, existence of 

cross links and the depth of the network. Also, when availability is needed 

the state diagram has to be expanded to account for the non-homogeneity 

when the failure and repair rates are different for the different components 

[MAK83]. 

On the other hand, an equivalent analysis of interconnection network 

reliability is obtained by combinatorial techniques as demonstrated in 

[MAK 83]. By using a combinatorial Boolean algebraic approach it is possible 

to achieve efficiency and functionality of the model, as it is described in the 

following subsection. 

3.4.4.1 Combinatorial approach 

Several combinatorial methods for system reliability are given in [HW A 81]; 

these methods are classified as : 
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(a) State enumeration 

(b) Reduction to series-parallel networks 

(c) Path enumeration 

(d) Cutset enumeration 

(e) Others 

Type (a) methods present the same disadvantages as Markov models 

because of the large number of states to be enumerated. Type (b) methods 

are not applicable when both nodes and links are unreliable and since most 

of the networks cannot be reduced to series-parallel subnetworks. In 

methods of type (c), the reliability expression is obtained by finding the set of 

possible paths for the reliability problem to solve, and then applying 

Boolean algebra and probability theory to modify the set of paths to an 

equivalent set of mutually exclusive (disjoint) paths. Cutset enumeration 

methods (type (d» are equivalent to path enumeration methods to obtain 

the unreliability instead of the reliability. The disadvantage is that it is more 

difficult to implement algorithms for cutsets than for paths. 

For the reliability analysis, it is desirable to use a symbolic expression 

because it presents several advantages [HAR 86] : 

(a) when the network has a fixed topology the reliability of its elements 

can change with time, reliability can be calculated by simply 

substituting the values of the element reliabilities in the symbolic 

expression and the effects of their changes can be estimated. 

(b) In some applications it is desired to improve reliability of a network 

under a given cost constraint. The symbolic expression can be used to 

identify the critical elements to optimise the reliability. 
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Probabilistic graph 

For the probabilistic model, in addition to the graph model of a 

multiprocessor system, a probabilistic graph having a probability of 

operation associated with each node and edge, is also required. 

Assumptions 

First, it is assumed that the system is coherent, i.e. : 

(a) when the system has failed, no failure will restore the system to a 

successful state, 

(b) when the system is operating successfully, no repair will cause the 

system to fail, 

(c) failure of components causes the system to fail, 

(d) when all components are working the system is successful. 

It is also generally assumed that the probability of failures of the 

elements are statistically independent, i.e. there is no correlation between 

failures of different nodes and links. 

3.4.4.2 Stationary reliability 

In the static or stationary reliability analysis, the processing nodes and the 

communication links are associated with probabilities of being operational, 

i.e. reliabilities. It is assumed that these reliabilities are constant during the 

time interval in which the system is being analysed. 
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The reliability of the ith component (node and/or edge) is given by : 

Pi = Pr { i th component is working} 

and the unreliability is given by : 

qi = 1 - Pi 

3.4.4.3 Dynamic reliability 

... (3.1) 

... (3.2) 

In practice the parameters that are associated with reliability evaluation are 

described by probability distributions [BIL 83]. The times-to-failure describe 

the probability that a given component fail within or survive beyond a 

certain specified time. To study dynamic or time dependent analysis of the 

various connectivity problems, there are considered two different operating 

environments, namely, closed or non repairable, i.e. no repair of failed 

elements (nodes and links) is possible during the time interval of interest, 

and repairable when the failed elements are repaired and made operational. 

Dynamic reliability analysis has several advantages [MAK 83], such as: 

(a) the provision for incorporation of different probability distributions for 

failure and recovery times, 

(b) the computation of task and mission related measures such as MTTF 

and MTBF (as explained below), 

(c) system design is based on the dynamic behaviour of the individual 

network elements, where a single probability of success Pi is 

inadequate. 

The most important dynamic reliability measures for the design and 

evaluation of the intercommunication network are the following [BIL 83], 

[RAG 86]: 

32 



For closed (non repairable) systems: 

Reliability R(t): Is the probability that the network has not failed by time tf 

given that it was fully operational at time zero (all components operating). 

There may be many failures of components but the network remains 

operational throughout the interval [0, t]. 

Mean time to failure (MTTF): Is the average time it takes for the network 

to enter the failed state for the first time, given that it was fully operational 

at time zero. Is the average time to first failure or expected life of the system. 

For repairable systems: 

Availability A( t): Is the probability that the network is operational at time 

t, given that it was fully operational at time zero. The network might have 

been failed and repaired one or more times during the interval [0, t] but it 

was made operational again by repairing or replacing the failed elements. 

Mean time to repair (MTTR) : Is the average time it takes to repair the 

network. Usually this time is very small compared to MTTF. 

Mean time between failures (MTBF): Is the average cycle time between 

successive failures for repairable networks. 

Steady-state availability (SA) : Is the probability of the system being 

operational once it has reached a steady-state (t = 00). It is a measure of the 

fraction of time the communication system is operational. 

Dynamic reliability evaluation for individual system components. 

Failure rate (Ai): Is the average measure of the rate at which failures occur. 

It is generally assumed to be constant for the normal operating period 

(useful life) of the system, it is characterised by the exponential distribution. 

Repair rate (f.1i): Is the average measure of the rate at which repair occur. It 

is generally assumed to be constant (exponential distribution). 
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Figure 3.5 shows the typical bath-tub curve for failure rate of a 

component. Region I is known as the infant mortality phase; region II is the 

useful life period or normal operating phase in which the failure rate is 

constant; and region III represents the wear-out phase. 

failure 
rate 

bum-In 

FIGURE 3.5 
8ath-tub CUNe 

II 

useful life wear-out 

time 

Under this assumption, the time dependent measures of element Xi in 

the useful period of the system are : 

For closed systems: 

The reliability at time t 

Mean time to failure: 

1 
MTTF (Xi ) = f R (Xi ,t) d t = 

o Ai 

00 

where At is the failure rate of element Xi 

... (3.3) 

... (3.4) 
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For repairable systems: 

The availability at time t is obtained with Markov modelling for a 

single repairable component: [BIL 83] 

... (3.5) 

Mean time to repair and mean time between failures are given by: 

1 
MTTR (Xi) = 

f.1i 

1 
MTBF (Xi ) = MTTF (Xi ) + MTTR (Xi ) = 

... (3.6) 

... (3.7) 

where Ai is the failure rate and f.1i is the repair rate of element Xi . 

The steady-state availability is the availability at time 00. 

f.1i MTTF (Xi) 
SA (Xi) = A (Xi' 00) = Ai + f.1i = MTTF (Xi) + MTTR (Xi) ... (3.8) 

Figure 3.6 shows the average cycle time performance for a repairable 

component. 

If the component failures and repairs are described by other general 

probability distribution functions, it is required to use Laplace transform 

techniques to solve for the reliability measures of network components. 

The symbolic expression for reliability based in the probability of 

elements Pi is transformed into a time dependent expression by substituting 

R (Xi ,t) or A (Xi ,t) for Pi. 
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FIGURE 3.6 
Average cycle time 

3.4.4.4 KON system reliability 

MTBF 
1 
1 
1 .,1 

A system can be represented as a reliability network for the general model of 

redundancy, which includes series, parallel and k-out-of-n systems defined 

as follows: 

Series system. A series system represents a non redundant system, where 

the elements of the system are said to be in series from a reliability point of 

view if they all must be operational for the system to be operational (Rs) or 

only one needs to fail for system failure (Qs). 

Rs = Pr {all elements are operating} is given by : 

... (3.9) 

and Qs = 1- Rs 

where Pi is the probability of element i working 

Parallel system. A parallel system represents a fully redundant system, 

where the elements of the system are said to be in parallel from a reliability 

point of view if only one needs to be operational for the system to be 

operational (Rp) or all must fail for system failure (Qp). 
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Rp = Pr {at least one element is operating} is given by : 
n 

Rp = 1 - II (1 - p) ... (3.10) 
i =1 

and Qp = 1- Rp 

where Pi is the probability of element i working 

K-out-of-n system. In a k-out-of-n system or partially redundant system, at 

least k elements out of n must be operational for the system to be 

operational (Rk) or n -k +1 must fail for system failure (Qk). 

A k-out-of-n system is the general model of active redundant systems, 

where series and parallel systems are particular cases with k=n and k= 1 

respectively. Therefore, the implementation of a reliability model for k-out

of-n systems is sufficient for the modelling of series and parallel systems as 

well. 

In a k-out-of-n system the number of components operating has a 

binomial distribution with parameters n and Pi. Assuming that the n 

components have the same probability (p): 

Rk = Pr {at least k out of n elements are operating} is given by : 
n 

Rk = L C~ P j (1 - P ) j ••• (3.11) 

j=k 

where C~ is the number of combinations of j from n elements and is 

given by: 
n! 

C~ = j! (n - j )! 
... (3.12) 

and Qk = 1- Rk 

This system can also be analysed for the dynamic (time dependent) 

environment by substituting the component reliability for the appropriate 

dynamic parameter. 
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3.4.5 COMPLETE NETWORK RELIABILITY MODEL 

After the specification of the deterministic and probabilistic reliability 

models, we can propose a methodology for the design and analysis of a fault 

tolerant multiprocessor system incorporating both models for the 

intercommunication network in order to cover the different aspects 

described previously in sections 2.3 and 3.2. Broadly speaking, the basic 

methodology could be as follows: 

(1) Specification of the initial requirements and constraints: 

(a) Suitable system topologies for an application and if applicable the 

possible degraded configurations. 

(b) Structural parameters related with fault tolerance and 

performance, such as maximum number of elements, degree of node, 

maximum distance, degree of fault tolerance, diagnosability and 

reconfigurability, etc. 

(c) Parameters for the reliability model: Reliability and performance 

goals, physical parameters such as failure rates; behavioural 

parameters, such as repair rate (or no repair), coverage, etc. 

(2) Deterministic evaluation of these topologies, by studying the results in 

terms of fault tolerance, diagnosis, reconfiguration, cost, etc. These 

results are then used as the basis for the structural parameters in the 

probabilistic model. 

(3) Probabilistic evaluation: This model utilises the structural parameters 

(obtained in (2)) and the reliability parameters specified in (l.c) to 

compute the reliability, availability, MTTF, etc. If the required goals are 

met, then the most suitable configuration is chosen; If not, it IS 

necessary a refinement of the design, which involves returning to 

stage (l) to obtain a different configuration. 

38 



Chapter 4 

Model Implementation 

4. 1 INTRODUCTION 

In this chapter is described the implementation of a deterministic 

(structural) model and a combinatorial probabilistic model for reliability 

analysis of multiprocessor systems. Both models are based in concepts of 

graph theory and the criteria of reliability as a measure of connectivity, i.e. 

the operation of the communication paths among the different elements in 

the system which is relative to the number and structure of such paths for 

specific reliability problems. 

In a deterministic model, reliability is dependent of the distance, degree 

and mainly number of edge and node disjoint paths (connectivity) between 

the nodes in the graph representing the system. In a probabilistic model it is 

assumed that the elements (nodes and edges) of the system fail with some 

known probability, stationary (time invariant) or dynamic (time dependent) 

in an environment of statistically independent failures. 



The computer representation of a graph is described in section 4.2; the 

deterministic model is presented in section 4.3 and the probabilistic model 

in section 4.4. 

4.2 GRAPH REPRESENTATION 

The efficiency of a graph algorithm as well as the ease of implementation 

depends on the graph representation. For our model two data structures for 

representing directed and undirected graphs have been used: 

• Adjacency lists 

• List of edges. 

4.2.1 UNDIRECTED GRAPHS 

Adjacency lists 

An undirected graph (Figure 4.1) can be described by the list of all 

neighbours of each node Adj(i). An example of adjacency lists for the graph 

of Figure 4.1 is shown in Figure 4.2 where the relative order in Adj(n) is 

unimportant. This structure is implemented by an array of n linearly linked 

lists. 

nl 

FIGURE 4.1 
Undirected Graph 

n2 

n4 

n3 
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n Ad} (n) 

' : 1 21 .1 31 ~ 
2: 1 '1 .1 31 .1 41 q 
3: 1 '1 ~121 ~I 41 q 
4: 121 ·131 ~ 

FIGURE 4.2 
Adjacency lists for undirected graphs 

List of edges 

The list of edges in the graph is represented as pair of nodes; it can be 

implemented by two linear arrays: g = (glt g2, ... , ge) and h = (h lt h2' .. " he). 

Each entry in these arrays is a node label, the i th edge ej is between nodes gj 

and hj' For example, the graph in Figure 4.1 would be represented as : 

g = (1,1,2,2,3 ) 

h = (2,3,3,4,4 ) 

4.2.2 DIRECTED GRAPHS 

Adjacency lists 

In a directed graph, the adjacency lists represent the lists of all succesors of 

each node, as it is shown in Figure 4.4 for the digraph of Figure 4.3. 
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List of edges 

nl 

FIGURE 4.3 
Directed Graph 

n 

1 : 

2: 

3: 

4: 

FIGURE 4.4 

n2 

n3 

Ad} (n) 

121 

131 

121 

Adjacency lists for digraph 

n4 

--,31 q 
~I 41 q 
~I 41 q 

For a digraph, the ith edge ej is from node gj (predecessor) in the first array to 

node hj (succesor) in the second array. The graph in Figure 4.3 would be 

represented as : 

g = (1, 1, 3, 2, 3 ) 

h = (2,3,2,4,4 ) 
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4.3 DETERMINISTIC MODEL 

The implementation of the deterministic model consists in the calculation 

of the different topological parameters affecting reliability: denseness, 

degree, distance, and edge and node connectivity for the different reliability 

problems; also, the variation of these parameters is calculated when the 

graph is degraded by the simulation of faults in one or more nodes and/or 

edges, which is called t-edge and t-node deleted denseness, degree, distance 

and connectivity respectively. 

4.3.1 DENSENESS 

Denseness is simply obtained by dividing the number of edges by the 

number of nodes in the system graph. Figure 4.5 illustrates denseness for 

some graph representations of multiprocessor topologies. 

3~--~----~---.---.----.----:---,~--, 

""'" ring 

- mesh ring ; 1111 III 
: 1111111111 ........ mesh", (:1 .... 11111111 

1111111 
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:3 2 
GI 

1111 binary cube III'" 1 .... 
111 ! 

-+---+.-r: ...... 

C 
GI 
YI • • 
~ 1.5 -+------+-IOtIIIlIIi!!;Ji1 : : ....... :-:.:.:.: .. :.".:.:-:.::.:.:-:.:.:.: ... ::: ..... :.:.;.:.:.:.:.:.:.: ....... . 

--+-----i'4::j=i=-""""""~-~-"""l 
0.5 -+-~~--"-r-r-+,.-,-r+ ...... --r-i'-r-,---y--h-,-ri-.,.,--rlh-,--rl 

o 4 8 12 16 20 24 28 32 

No. nodes 

FIGURE 4.5 
Denseness (e/n) versus number of nodes 
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4.3.2 DEGREE 

4.3.2.1 Out-degree 

Degree for each node of an undirected graph (number of neighbours) and 

out-degree for each node of a directed graph (number of succesors) are 

computed in the same way; it is easily done by counting their number from 

the adjacency lists representation of the graph. The procedure is described as 

follows (Algorithm 4.1). 

procedure GetDegree; 

for all i E N do 

degree_outliJ := 0; 

for all j E Adj[i] do 

degree_outliJ := degree_outliJ + 1; 

end; {for iJ 

Obtain maximum, minimum and average degree or out-degree; 

end; {GetDegree J 

ALGORITHM 4.1 
Degree for undirected graphs and out-degree for 
directed graphs 

Figure 4.6 shows the maximum degree for some undirected 

configurations. 
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FIGURE 4.6 
Max. degree versus number of nodes 

4.3.2.2 In-degree 

Procedure GetlnDegree obtains the in-degree (number of predecessors) for a 

directed graph, it also obtains the maximum, minimum and average among 

all nodes. This can be done by searching the adjacency lists for each node i in 

the graph to get each succesor Adj[i}; then by updating the variable 

degree_in[Adj[iJ] we obtain the number of predecessors for each node, as it is 

shown in Algorithm 4.2. 
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procedure GetInDegree; 

for all i EN do 

degree_in[iJ := 0; 

for all i ENd 0 

for all j E Adj[il do 

degree_in[jl := degree_in[jl + 1; 

Obtain maximum, minimum and average in-degree; 

end; {GetInDegree} 

ALGORITHM 4.2 
In-degree for a directed graph 

4.3.3 DISTANCE 

The procedure TotalDistance obtains the distance (lenght of the shortest 

path) between pairs of nodes in a way corresponding to the specified 

reliability problem for a directed or undirected graph. This is done by one or 

more calls to procedure BFS (breadth-first search) which is used to obtain 

the distance from a specified node to every other node in the graph. 

TotalDistance also obtains the maximum and average distance values 

among all relevant nodes. This procedure is described in Algorithm 4.3, and 

BFS in subsection 4.3.3.1. 
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procedure TotalDistance; 

case problem of 

IT: BFS (nodel, dist_array); 

distance[1, 1] := dist_array[node2J; 

ST: BFS (source, dist_array); 

distance[1, 1] := disCarray[terminaIJ; 

AT: fori=l to n do 

BFS (i, dist_array); 

for j=l to n do 

distance[i, jJ := dist_array[jJ; 
end; 

SAT: BFS (source, disCarray); 

for j=l to n do 

distance[source, jJ:= dist_array[jJ; 

KT: for i=l to k do 

BFS (k_set[iJ, dist_array); 

for j=l to k do 

distance[i, jJ := dist_array[k_set[j]]; 

end; 

(get distance between nodel ... ) 
( ... and node2) 

(get distance from source ... ) 

(... to terminal) 

(get distance between ... ) 

( ... every pair of nodes) 

(get distance from source ... ) 

(... to every other node) 

(get distance between nodes ... ) 

( ... in k_set) 

SKT : BFS (source, dist_array); (get distance from source ... ) 

for j=l to k do ( ... to every node in k_set) 

distance[source, jJ:= dist_array[k_set[j]]; 

KSKT: for i=l to k_source do (get distance from every ... ) 

BFS (k_source_set[iJ, dist_array); ( ... node in source_set to ... ) 

for j=l to k_terminal do ( ... every node in term_set) 

distance[i, jJ := dist_array[k_terminaCset[j]]; 

end; (for i) 

end; (case) 

Obtain maximum (diameter) and average distance; 

end; (TotalDistance) 

ALGORITHM 4.3 
Distance for each reliability problem 
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4.3.3.1 Breadth-first search (BFS) 

An algorithm which finds the distance of the shortest path from a source 

node (root) to every other node in a directed or undirected unweighted 

graph is obtained by conducting a breadth-first search [REI 77], as described in 

Algorithm 4.4. This algorithm uses a queue which is a FIFO data structure, 

i.e. data is removed in the same order that they are added. The queue used 

in BFS stores progressively the nodes ordered by their distance to the root. 

procedure BFS (root, dist_array); 

(1) for all i EN do 

(2) dist_array[iJ := unlabel; 

(3) Initial empty queue; 

(4) dist := 0; {dist = distance to the root} 

(5) disCarray[root]:= 0; 

( 6) Add root to the queue; 

(7) while the queue is not empty do 

(8) Remove a node from the queue, call it succesor; 

(9) if dist_array[succesorJ :F dist then 

(10) dist := dist + 1; 

(11) for all i E Adj[succesorJ do 

(12) if disCarray[iJ = unlabel then 

(13) disCarray[iJ := dist + 1; 

(14) Add i to the queue; 

end; {if} 

end; {for} 

end; {while} 

end; {BFS} 

ALGORITHM 4.4 
BFS algorithm used to find distance 
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4.3.3.2 Examples 

Figure 4.7 shows the overall diameter (maximum distance) obtained for 

some topologies and Figure 4.8 shows the normalised average distance 

(average degree multiplied by average distance) for the same topologies. 
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4.3.4 EDGE CONNECTIVITY 

Edge connectivity (Ke) as defined for the different connectivity problems can 

be found by calling one or more times the maximum flow algorithm 

(MaxFiow). This algorithm (explained in section 4.3.4.2) obtains the 

maximum flow throughout a directed graph from a source node to a 

terminal node which is equivalent to the minimum number of disjoint 

paths between those nodes (Menger's connectivity theorem) [GIB 85]. 

To calculate edge connectivity for SAT in a directed graph we can solve 

directly those maximum flow problems for which a particular node is the 

source. The remaining nodes are then taken as the terminal in turn. For 

SKT we follow the same procedure taking the k-terminal set of nodes in 

turn. For KSKT we follow the same procedure as SKT but using a modified 

graph (described in section 4.3.4.1). ST is obtained directly from MaxFlow. 

To solve for the unrooted problems (AT, KT and TT) in undirected 

graphs we follow the same procedure as before taking any node as the 

source, but before to do so, the graph should be transformed to directed as 

follows: (1) construct a new graph G' with the same set of nodes as G, and (2) 

replace each edge of G by two antiparallel edges. each of unit capacity. A 

practical advantage of the adjacency lists representation of a graph is that to 

perform this transformation from undirected to directed graph the data 

structure remains the same. The procedure to obtain edge connectivity is 

described in Algorithm 4.5. 
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procedure EdgeConnectivity; 

case problem of 

TT, ST: 

flow_max := MaxFlow (source, terminal); 

Ke := flow_max; 

end; {TT ... } 

AT, SAT: 

Initialise Ke:= I E I ; 

for all i E N - {source} do 

flow_max := MaxFlow (source, i); 

if flow_max < Ke then 

Ke := flow_max; 

end; {for} 

end; {AT ... } 

KT, SKT, KSKT: 

Initialise Ke:= I E I; 

for all i E terminaCset do 

flow_max := MaxFlow (source, 0; {note: for KSKT, source is a new ... } 

( ... node S, see section 4.3.4.1) 

if flow_max < Ke then 

Ke := flow_max; 

end; {for} 

end; {KT ... } 

end; {case} 

Output Ke; 

end; {EdgeConnectivity} 

ALGORITHM 4.5 
Edge connectivity (Ke) of a graph 

4.3.4.1 KSKT problem 

A generalisation of the SKT problem is to have several source nodes, which 

is the K-source to K-terminal problem (KSKT). 

Let Ks = {Sl' S21 ,.,' sn} be the set of source nodes of a graph C. To solve 

this problem it is necessary to modify the graph. This is done by adding a 
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new source node S to each original source Si, as shown in Figure 4.9. The 

new node and new edges added, as they do not belong to the original system 

graph, are considered to be perfectly reliables in order to perform the proper 

reliability calculations. 

nl el n3 n5 eO 

S=n7 
, , , , , 

Ks= {n7, n2} 
, 

n7 ¢ 
" " Kt={n5,n6} " " " " 

" e4 e8 

FIGURE 4.9 
Modified graph for KSKT problem 

4.3.4.2 Maximum flow algorithm 

To find efficiently the maximum flow throughout a directed graph G, from 

a source node to a terminal node, it has been used the method of Edmonds 

& Karp described in [GIB 85] to finding flow augmenting paths in G which is 

equivalent to finding direct paths in an associate graph GF. This is the case if 

G and GF have the same set of nodes and if for any two nodes i and j, (if j) is 

an edge of GF if and only if either : 

(if j) E E and ~ (i, j) = capacity (if j) - flow (i, j) > 0 

or Vf i) E E and ~ (if j) = flow Vf i) > 0 

(forward edge) 

(reverse edge) 

MaxFlow algorithm is outlined in Algorithm 4.6 and the procedure to 

construct the associate graph GF in Algorithm 4.7. 



function MaxFlow (source, terminal) : flow; 

for all (i, j) E E do 

capacity (i, j) := 1; 

flow (i, j) := 0; 

path := true; 

while path do 

( unit capacity ) 

( path records whether or not an ... ) 

( ... augmentation path exists for GF ) 

ConstructAssociateGraph; 

AugmentingPath (GF, path, path_list); 

if path then 

Find .1 := min .1 (i, j), among all (i, j) E path_list; 

for all (i, j) E path_list do 

if (i, j) is a forward edge of path_list then 

flow (i, j) := flow (i, j) + .1; 

end; (if path) 

end; (while path) 

MaxFlow := I flow (source, j), for all j E Adj[sourceJ 

end; (MaxFlow) 

ALGORITHM 4.6 
Maximum flow algorithm 

procedure ConstructAssociateGraph; 

for all (i, j) E E do 

.1 (i, j) := capacity (i, j) - flow (i, j); 

if .1 (i, j) > 0 then 

Add node j to Adj[iJ, recording a forward edge and .1 (i, j); 

if flow (i, j) > 0 then 
Add node i to Adj[jJ, recording a reverse edge and .1 (j, i) := flow (i, j); 

end; [for) 

end; (ConstructAssociateGraph) 

ALGORITHM 4.7 
Construct associate graph Gf 
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4.3.4.3 Augmenting path algorithm 

To find the augmenting path in G, i.e. a directed path in the associate graph 

GF from a source node (s) to a terminal node (t), the distance from s to t is 

computed using BFS algorithm as described in Algorithm 4.4, but keeping 

track of pre(i) as the algorithm progresses (that is the node preceding the 

node i along the shortest path) in order to find the path itself. This is done 

by editing BFS algorithm (BFS_Path) , after line (14) inserting: 

(15') pre[i] := succesor; 

Hence the nodes of the path are : 

s, ... , pre(pre(pre(t))), pre(pre(t)), pre(t), t. 

The augmenting path algorithm is described in Algorithm 4.8. 

procedure AugmentingPath (CF, path, path_list); 

BFS_Path (CF, disCarray, pre): 

if dist_array[terminall = unlabel then 

path := false 

else path := true; 

if path then 

for all i E pre do 

Add node pre[i] to path_list; 

end; (if) 

end; (AugmentingPath) 

ALGORITHM 4.8 
Augmenting path 

4.3.5 NODE CONNECTIVITY 

The procedure to obtain node connectivity (Kn) is very similar to that for 

edge connectivity, but with some modifications. Based on the node 
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connectivity theorem of Menger, we have also to solve the maximum flow 

problem but for an auxiliary graph G' derived from G. Such graph is 

constructed as follows : 

For every node n E N in G, G' contains two nodes n' and nil and an 

edge (n', nil) called an internal edge. In addition for every edge (ni' nj) E E in 

G, G' contains two edges (n(, n/) and (n/" n/) which are called external 

edges. The capacity of each internal edge is one, and each external edge has 

an infinite capacity. Figure 4.10 shows G' for an undirected graph and Figure 

4.11 for a directed graph. The maximum flow is obtained from source node 

s' to terminal node til. 

n2' 

n2 

n7 n4 nl' n4' 

n3 

n3' 

G G' 

FIGURE 4. 10 
Auxiliary graph G' derived from undirected graph 
G, n 7 is source and n4 is terminal 
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n1 

n2 

n2 

n4 n1' 

n3 

,-.3' 

G G' 

FIGURE 4. 7 7 
Auxiliary graph G' derived from directed graph G, 
n 7 is source and n4 is terminal 

TT, ST and KSKT node connectivity problems are solved with one call 

to MaxFlow with s" as source and t' as terminal (for KSKT using the 

modified graph). SAT and SKT are solved with s" as source and taking in 

turn every other node as terminal for SAT and every node in terminal_set 

for SKT. 

AT node connectivity is guaranteed to be solved with the following 

process: First, we solve all those MaxFlow problems with nl as the source 

(taking in turn each of nj' j = 2, 3, ... , n as terminal, provided (nll nj) (C E) then 

those with n2 as the source (taking in turn nj' j = 3, 4, ... , n as terminal, 

provided (n2, nj) (C E) and so on until nk has taken a turn as the source where 

k = Kn(G) + 1. This process solves all maximisation problems with nj as 

source, nj E {nI, n2, ... , nk}, to find node connectivity. 

A similar process is used for KT, but solving only for the nodes 

belonging to k-set. Algorithm 4.9 outlines the procedure for node 

connectivity based in the preceding considerations. 
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procedure NodeConnectivity; 

(1) Generate auxiliary graph G'; 

(2) Initialise Kn := n - 1; 

(3) case problem of 

(4) IT, ST, KSKT : 

(5) flow_max := MaxFlow (source', terminal"); 

( 6) Kn := flow_max; 

end; (TT, ST, KSKT) 
(7) SAT: 

(8) for all i EN - (source) do 

(9) flow_max := MaxFlow (source', i"); 

(10) if flow_max < Kn then 

(11) Kn := flow_max; 

end; (for) 

end; (SAT) 

(12) SKT : 

(13) As SAT but substituting line (8) for: (8') for all i E terminal_set do 
(14) AT: 

(15) i := 0; 

(16) while i ~ Kn do 

(17) i:=i+1; 

(18) for j:=i+1 to n do 

(19) if (ni, nj) ~ E then 

(20) flow_max:= MaxFlow (nj', n(); 

(21) if flow_max < Kn then 

(22) Kn := flow_max; 

end; (if, for) 

end; (while) 

end; (AT) 

(23) KT : 

(24) As AT but changing n to k in line (18), 

(25) (ni, nj) to (nk-set[ij, nk-set[jj) in line (19), and 

(26) (ni', n/') to (nk-set[i]', nk-set[j() in line (20) 

end; (case) 

end; (NodeConnectivity) 

ALGORITHM 4.9 
Node connectivity 
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4.3.5.1 Examples 

The following graph (Figure 4.12) illustrates edge and node connectivity 

results obtained for the AT problem in some graph configurations. 

~ 
.~ -o 
Q) 
c: 
c: 
o 
() 

meshed ring 

a 4 8 12 16 20 24 28 

No. nodes 

FIGURE 4. 72 
Edge and node AT connectivity versus number of 
nodes (note: ring and rectangular mesh have the 
same connectivity) 

4.3.6 FAULT SIMULATION 

32 

The removal of edges and/or nodes have been simulated in the 

deterministic reliability model in such a way that edge or node connectivity 

is always decreased by one with the removal of a edge or node. All 

deterministic parameters such as denseness, degree, distance and edge and 

node connectivity are computed for the degraded configurations, being of 

particular interest the diameter of the remaining graph, called t-node (edge) 

deleted distance. 
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Simulation of a fault in an edge is accomplished by selecting any edge 

(i, j) incident to a node i of minimum degree among all nodes and 

generating a subgraph Ger by removing edge (i, j) from the original system 

graph G; simulation of a fault in a node is accomplished by selecting any 

node j, neighbour or predecessor of a node i with minimum degree and 

creating a subgraph Gnr by removing node j from the original graph G as 

well as its incident edges; proceeding in this way it is guaranteed that the 

edge or node connectivity is reduced by one when the edge (i, j) or the node 

j is deleted. An example is shown in Figure 4.13. 

nl nl 

nl n3 n7 

n5 n5 

nl nl 

", ....... 
fl8 ", ......... n2 

" ...... n p---- ------ ----* 
I I I \ 

I I • \ 

" I '. I , 
I , 

~ I 'n3 

(c) 

n5 n5 

FIGURE 4. 73 
Example of fault simulation in a 4x2 meshed ring (a), 
one node removed in (b), two nodes removed in 
(c) and three nodes removed in (d) 
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After computing the deterministic parameters of interest, the 

procedure is repeated succesively until the remaining graph become 

disconnected. In Algorithm 4.10 is outlined the above procedure. 

procedure SimulaFaults; 

repeat 

case class of 

edgeJault 

i := node with minimum degree; 

(i, j) := incident edge; 

Ger := Obtain subgraph (G, (i, j»; 

G:= Ger; 

end; (edge_fault) 

nodeJault : 

i := node with minimum degree; 

j := neighbour or predecessor node; 

Gnr := Obtain subgraph (G, j); 

G:= Gnr; 

end; {nodeJault} 

end; {case} 

Compute deterministic reliability parameters for G; 

until G is disconnected; 

end; {SimulaFaults} 

ALGORITHM 4. 10 
Simulation of faults in edges and nodes 

4.3.6.1 Examples 

Denseness, diameter, normalised average distance and edge and node 

connectivity have been evaluated for some configurations when faults are 

simulated as described above. Figures 4.14 to Figure 4.17 show the results 

obtained. 
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4.4 PROBABILISTIC MODEL 

Each of the different rooted and unrooted probabilistic reliability problems 

for directed and undirected graphs is computationally difficult to solve 

[COL 87], thus efficiently computable algorithms are of significant interest. 

In other related work found in the literature, TT and AT problems have 

been widely studied but treated separately, and very few results apply to KT 

and to rooted problems in directed graphsl. Therefore for this work a simple 

and efficient methodology has been developed to deal with all reliability 

problems in a general framework. The general method suggested consists 

basically of three steps: 

(1) Taking either (i) all simple paths between a given pair of nodes for TT 

problem, or (ii) all spanning trees for AT problem, or (iii) all Steiner 

trees for KT problem for undirected graphs, or (iv) all the directed 

paths from source to terminal node for ST problem, or (v) all the 

spanning out-trees for SAT problem; or (vi) all the Steiner out-trees for 

SKT, or (vii) all the Steiner out-trees of the modified graph for KSKT 

problem for directed graphs; as the events in the system probability 

space and represent them by cubes as explained in subsection 4.4.1. 

(2) Performing some Boolean operations on the cubes to arrive at a 

Boolean algebraic expression. In this case the "sharp" operation among 

the cubes is applied, as described in subsection 4.4.1. 

(3) Interpreting the Boolean expression as a symbolic probability 

expression in order to obtain the measures for the probabilistic event of 

1 For reference to TT problem see [GRN 80], [TOR 83] and [HAR 86] as the most efficient 
algorithms; for AT problem, see [AGG 81] and [XU 86]; for KT problem see [PAG 88], for rooted 
problems, particularly SKT, see [SAT 82]. 
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interest, by representing the expression as a disjoint sum. The 

measures can be stationary probability of success and/or time 

dependent reliability measures. 

Steps (1) and (2) could be applied sequentially, finding first all 

appropriated trees in the system corresponding to the specified problem, and 

then obtaining a Boolean expression, but the requirement of generating and 

storing all trees first makes this approach not practical for large systems 

since the number of trees grows exponentially with the number of nodes 

and links. 

In our method, based on an algorithm developed for overall reliability 

by [XU 86], steps (1) and (2) are executed recursively in order to gradually 

obtain a disjoint sum of terms (Boolean expression); the advantage of this 

approach is that reduces considerably the storage and computing time since 

no all trees generated have to be stored. This method is explained in detail 

in subsection 4.4.2. 

4.4.1 CUBE REPRESENTATION AND "SHARP" OPERATION 

For a graph consisting of n nodes and e edges, a identifier for a tree is 

defined by the following : 

Definition 1 

The tree identifier ITa for the tree Ta is defined as a string of k binary 

variables 

where 

~=C 
if the ith element of the graph is included in the tree 

otherwise 
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and k is the number of elements subject to failure, i.e. : 

k=e 

k=n 

k=e+n 

in the case of links subject to failure 

in the case of nodes subject to failure 

in the case of both links and nodes subject to failure 

As an example, consider the undirected graph of Fig. 4.1. A simple path 

from nl to n4 is Tl = (nv ev n2, e4, n4) (see Figure 4.18); if only imperfect links 

are considered, the path is represented by the identifier: [T1(e) = 1xx1x, 

corresponding to (ev e2, e3, e4f es); if faults in nodes are considered: [TUn) = 

11x1 corresponding to (nv n2t n3f n4); and for faults in nodes and in links: 

n2 

nl n4 

FIGURE 4. 18 
Simple Path, IT1(e+n) = 7xx7x 7 7x 7 

A spanning tree T2 = (n2t ev nv e3f n3, e4f n4) (shown in Figure 4.19) is 

represented by the identifiers: 

(a) IT2(e) = 1x11x 

(b) IT2(n) = 1111 

for faults in links. 

for faults in nodes (obviously, since a 

spanning tree spans over all nodes). 

(c) IT2(e+n) = 1x11x 1111 for faults in links and in nodes. 
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' .. .. .. 
' .. .. 

e2 .... 

FIGURE 4. 19 

n2 

.... .... 
n3 

e3 n4 

Spanning Tree, IT2(e+n) = 7x7 7x 7777 

The minimum Steiner tree (T3 ) shown in Figure 4.20, which spans 

over nll n2 and n31 T3 = (nll ev n2' e2, n3) is represented as : 

(a) IT3(e) = llxxx 

(b) IT3(n) = lllx 

(c) IT3(e+n) = llxxx lllx 

nl 

FIGURE 4. 20 

for faults in links. 

for faults in nodes. 

for faults in links and in nodes. 

n2 

, ' .. 
: ", e4 , .... , .... , .. , ", 
'93 ' n4 , JJ , ~ , ~~ 

I ~~ 
I ~ 

I ~~e5 , ~~ 
I ~ 

~ 
~ 

n3 

Steiner Tree, IT3(e+n) = 77xxx 77 7x 

An example of a digraph was presented in Fig. 4.3; a directed path, 

spanning out-tree and Steiner out-tree with their corresponding tree 

identifiers represented as cubes (for edges and nodes) are shown in Figures 

4.21,4.22 and 4.23 respectively. 

66 



n2 

nl 

FIGURE 4.21 

Directed Path, IT(e+n) = 7xx7x 77x7 

, , nl 

FIGURE 4.22 
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Spanning Out-tree, IT(e+n) = x 7 7x 7 7 77 7 
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n3 

FIGURE 4.23 
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,,,' e5 

Steiner Out-tree, IT(e+n) = 77xxx 77 7x 

A cube in Boolean algebra is a geometrical representation of a Boolean 

function by mapping a function of n-variables onto a n-dimensional unit 

(n-cube) [MIL 65]. 

From Definition 1 it can be seen that a tree identifier has the form of a 

cube, thus a cube will be used to represent a tree in Boolean algebra. 
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Definition 2 

Let Sj be the state of the element Xi of the system graph, where: 

s, = E if Xj has a failure 
if Xj is good 
arbitrary 

A cube is a string of the type: 

C = Sl1 Sz, ... , Sj, •.• , Sk 

where k, as before, is the number of elements in the system graph. 

A Boolean expression is generated by applying the "sharp" operation 

(#-operation) between two cubes, denoted as A # B, in this way the set of 

subcubes of A not included in B is obtained, which is the disjoint sum. 

Definitions 3 and 4 constitute the algebraic description of the #-operation : 

Definition 3 

The coordinate #-operation is defined as given in Table 4.1. 

TABLE 4.1 
Coordinate #-operation, a, # b; 

b, 

# 0 1 x 

0 z y z 

0, 1 y z z 

x 1 0 z 

Note that ai # bi ~ bi # ai 
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Definition 4 

The #-operation between two cubes A = av a21 "'I an and B = b
v 

b
21 

'''I b
n 

is defined as : 

o if aj # bj = z for all i 
A#B= 

n 

u Cj otherwise 
j =1 

where 

aj # bj = CXj = 0 or 1 

and aj bj is the coordinate intersection as defined in Table 4,2 

TABLE 4.2 
Coordinate intersection operation, a, b, 

(1 0 1 x 

0 0 0 0 

1 0 1 1 

x 0 1 x 

The intersection between two cubes is defined as: 

Definition 5 

l'f a-b- = 0 I I 

otherwise 

The following are the properties of #-operation : 
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(a) 

(b) 

A#B=A 

A#B=0 

ifAnB=0 

ifAnB=A 

(c) if A # B = u Cj then Cj n Ck = 0 (j:¢:. k), B n Cj = 0, 

namely all cubes C j in u Cj are pair-disjoint. Therefore 

u can be replaced by L, i.e. 
n 

A # B = LCj 

j =1 

4.4.2 ALGORITHM FOR BOOLEAN EXPRESSION 

The basic recursive algorithm for the derivation of the Boolean expression 

(generation of the total set of pair-disjoint cubes) of a graph G can now be 

described In pseudo-code by Algorithm 4.11. The variable 

BooleanExpression, which represents the symbolic boolean expression, is 

stored on disc in a sequential file to be used later to calculate the different 

numerical reliability measures. 

The initial conditions for the procedure are: Y is the universal of the 

sample space: Y = (x, ... ,x) and BooleanExpression is empty, before calling 

Get BooleanExpression. 
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procedure GetBooleanExpression (Y, G ); 

(1) case problem of 

IT: Find a shortest simple path T of the graph G , 

AT: Find a minimum spanning tree T of the graph G 

KT: Find a minimum Steiner tree T of the graph G ; 

ST: Find a shortest directed path of the graph G ; 

SAT: Find a minimum spanning out-tree of the graph G ; 

SKT : Find a minimum Steiner out-tree of the graph G ; 

KSKT: Find a minumum Steiner out-tree of a modified graph G' ; 

end; {case} 

(2) Represent T as a cube A I ; 

(3) A = Y n A' ; {Intersection operation to get the real cube representation} 
(4) BooleanExpression:= BooleanExpression + A ; 

r 
(5) Find Y # A = L Bj (0 < r ~ n) to get a set r of pair-disjoint cubes ; 

j =1 

Bj corresponds to a subgraph Gj of G, the correspondence is : 

Xj ~ Gj if bj = 0 

Xj E Gj otherwise, (i.e. bj = 1 or x) 

(6) Apply this procedure (GetBooleanExpression) recursively to every connected 

subgraph Gj until all the resulting subgraphs are disconnected : 

fori := 1 to r do 

begin 

Find the corresponding subgraph Gj of Bj 

if Gj is connected then 

GetBooleanExpression (B j , Gi ); 

end; {for} 

(7) end; {GetBooleanExpression} 

ALGORITHM 4. 7 7 
Get Boolean expression 

4.4.2.1 Computer analysis 

The whole recursive computation of the algorithm can be described by a 

computation tree; the root of the tree indicates the first time the algorithm 

is called (when the first cube or subgraph is generated). Each subset of cubes 
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(subgraphs) generated from it is represented by each branch of this node in 

the computation tree. Subsequent subgraphs, recursively generated, are 

represented by successive branching of the tree. 

In Figure 4.24 is shown an example for the computation of TT problem 

from nl to n4 for the graph in Fig. 4.1, considering only faults in edges. A 

terminal node (square) denotes a disconnected subgraph, an internal node 

(circle) denotes a connected subgraph and the labels in the circles denote the 

order of path generation (preorder traversal of the tree). 

B1 = Oxxxx 
A1 =01xx1 

Y=xxxxx 
A=lxx1x 

B121 = 01xOO Bl22 = 01010 B211 = 10x00 B212 = 10001 

Boolean Expression = A + A 1 + A 12 + A2 + A21 

FIGURE 4.24 
Computation Tree of graph G (IT problem) 

level 

o 

2 

As the recursive algorithm goes deeper (the level of the computation 

tree is increased), there are more zeros in the cube, i.e. there are fewer edges 

in the corresponding sub graph (each time a #-operation is done, there is one 

more zero in the cubes generated). When a subgraph has less than n-l edges 

it is disconnected, therefore the depth of the computation tree cannot be 

higher than e-n+ 1. 
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4.4.3 ApPROXIMATION METHOD 

In the deeper levels of the computation tree, as the number of zeros is large, 

the contribution of a cube to the symbolic expression for the reliability 

measures of interest can be very small depending of their reliability values. 

If a tolerant error is given, then a level L can be decided such if a small 

contribution is obtained in all levels deeper than L, the algorithm will not 

go beyond it, i.e. only part (the most significant) of the paths or trees are 

obtained for the graph; thus saving storage and computation time which 

can be significan tl y. 

4.4.4 UNROOTED PROBLEMS 

In section 3.4.2 it was mentioned that TT and AT problems are special cases 

of KT with k =2 and k =n respectively. So it would be possible to use only 

one algorithm to generate Steiner trees and generalise it for shortest paths 

and spanning trees. Unfortunately this approach was not followed since the 

construction of a minimum Steiner tree is the most difficult and time 

consuming problem and this generalisation would affect considerably the 

efficiency of the algorithm. Thus, a different algorithm has been 

implemented for each of the problems: spannIng tree for AT problem, 

shortest path for TT and Steiner tree for KT. 

To represent computationally the graph, it has been used the adjacency 

lists and list of edges as explained in section 4.2.1. The later representation is 

very useful for this model because the indices in arrays g and h correspond 

to the indices in a cube representation of edges, which allow an easy 

identification of the state of graph elements. 
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4.4.4.1 Spanning tree 

Given the adjacency lists and the list of edges representation of a undirected 

graph, by conducting on it a BFS (breadth-first search) (see section 4.3.3.1) 

taking any node as source, a breadth-first spanning tree is constructed, 

which is a minimum spanning tree. The set of edges obtained which belong 

to the tree are represented by a cube which is obtained by editing B F 5 

(Algorithm 4.4) as follows : 

(a) Initialising a cube array, 

for all i E E do 

cube[iJ := x; 

(b) Inserting after line (11): 

(12') cube[index[iJ] := G; 

4.4.4.2 Shortest path 

An algorithm to find the shortest distance between two nodes was 

described in section 4.3.3.1 using BFS, which is modified as explained in the 

previous section. Both edges and nodes belonging to the path are 

represented by a cube. 

4.4.4.3 Steiner tree 

A minimum spanning tree can be obtained with an algorithm like BFS or 

DFS (depth-first search). However for a problem which appears to be closely 

related: the minimum Steiner tree problem, there is not a polynomial

bounded solution [LAW 76]. This difficulty can be largely overcome by using 
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heuristic algorithms, as the one developed for this model which is described 

in the following (Algorithm 4.12): 

procedure FindSteinerTree; 

(1) Considering the subset K of nodes, the distance among them is calculated 

applying the BFS procedure (K - 1) times. 

(2) The pair of nodes in K with minimum distance between them is selected if at 

least one of the nodes has not been selected before. The shortest path between 
them is obtained. 

(3) The Steiner tree is constructed by adding to it the path obtained. 

(4) Repeat steps (2) and (3) with the next shortest distance between two nodes until 

all K nodes are selected and the Steiner tree is completed. 

(5) end. (FindSteinerTree) 

ALGORITHM 4.12 
Find Steiner tree 

With this algorithm it is possible to construct a near-minimal Steiner 

tree for the majority of graph configurations in which is applied. 

4.4.5 ROOTED PROBLEMS 

Two of the algorithms utilised to implement the model for undirected 

graphs can be used for directed graphs: (0 to find the directed paths for ST 

problem (same as shortest path for TT) and (ii) to find the spanning out

trees for SAT (same as spanning tree for AT). But for SKT problem a new 

algorithm was implemented to find a Steiner out-tree, which is also used in 

the modified graph for KSKT problem. 
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4.4.5.1 Steiner out-tree 

The algorithm developed to find a Steiner out-tree IS described In the 

following (Algorithm 4.13): 

procedure FindSteinerOutTree; 

(1) Obtain the distance from root node R to the nodes belonging to the K-terminal set 
(Kt) using BFS algorithm; 

(2) Initially nodes in Kt have not been visited yet; 

repeat 

(3) Find node t with longest distance from R, which has not been visited; 

(4) Obtain shortest path from R to t; 

(5) Visit all nodes along the path which belong also to Kt ; 

(6) until all nodes in Kt have been visited; 

(7) end. {FindSteinerOutTree} 

ALGORITHM 4.13 
Find Steiner out-tree 

4.4.6 RELIABILIlY MEASURES 

Once a Boolean expression has been obtained, which consists of a disjoint 

sum of cubes, it can be transformed into a symbolic or numerical reliability 

expression by substituting the cube values for the different stationary and 

time dependent (for closed and repairable systems) reliability measures 

described in section 3.4.4. 

4.4.6.1 Stationary reliability 

The stationary probability of success, corresponding to a cube C j in the 

Boolean expression can be calculated as : 
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where 

p = II Pi for all i satisfying Si = 1 

for all i satisfying Si = 0 

Pi = Pr {element i is working} 

The symbolic reliability expression R (e) is then: 

T 

R (e) = L Pr {Cj } 

j =1 

where 

r is the total number of cubes, 

e is the reliability problem (TT, AT, KT, etc.) 

The respective unreliability U (e) IS: 

U (e) = 1 - R (e) 

... (4.1) 

... (4.2) 

... (4.3) 

In order to test the algorithms that have been implemented, TT, AT 

and KT stationary reliability were computed for the undirected graph of Fig. 

4.1; ST, SAT and SKT for the directed graph of Fig. 4.3 and KSKT for the 

directed graph of Fig. 4.5. Figure 4.25 to Figure 4.27 show the results 

obtained. 
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FIGURE 4.25 
Two-terminal stationary reliability of Fig. 4. 7, 
considering faults in edges R(e), in nodes R(n) and 
in both R(e+n), t, = n" t2= n4 
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FIGURE 4.26 
Overall (AT) and k-terminal (I<T) with K = {n1. n2, nJl 

stationary reliability of Fig. 4. 7, considering only 
faults in edges 
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reliability of Fig. 4.5 considering faults in edges. 

1.00 

The approximation algorithm was applied to a medium SIze 

configuration (4x4 rectangular mesh) as illustrated by the following graph 

(Figure 4.28); in this graph we can observe that it is not necessary to go 

beyond level 5 or 6 in the computation tree (see section 4.4.3) to obtain a 

very accurate reliability value. 
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FIGURE 4.28 
Double Y graph: Reliability and computation time 
vs. level of approximation for a 4x4 rectangular 
mesh graph. 

4.4.6.2 Closed systems 

Reliability, R (e, t) 

12 

~ 
:c 
..: 
:l 
Q. 

E 
0 
u 

As it was seen in section 3.4.4, assuming exponential distribution, the 

reliability of element i is: 

... (4.4) 

where Ai is the failure rate for element i 

The time dependent system reliability expression R (e, t) is obtained by 

substituting R (XiI t) for Pi in the symbolic expression for R (e) (equations 4.1 
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and 4.2). Numerical values of R (e, t) can be obtained by calculating for 

different values of t in a given interval [tl, t2]. 

Mean time to failure, MTTF (e) was defined as : 

00 

MTTF (e ) = J R (e, t) dt ... (4.5) 
o 

Since it is not possible in the general case to substitute MTTF (x) 

directly from the symbolic expression, it is required to employ numerical 

integration for this problem. Given the appropriate limits to the integral 

(for the upper limit, a very high value; and for the lower limit, zero) and 

enough number of t intervals, a very accurate value of MTTF can be derived 

using Simpson rule for numerical integration [CHU 81]. 

Given the array of values for reliability at different time: 

R (e, 0), R (e, t1 ), ••• , R (e, tn ) 

where n is the number of t intervals, 

MTTF is derived using Simpson rule as follows: 

MTTF (e) = ;~ [R(e, 0) + 2 ~ R(e, 1,;+1) + 4~ R(e, 1,;) + R(e, In)] ... (4.6) 

4.4.6.3 Repairable systems 

Availability, A (e, t) 

The availability of element 1, assuming exponential distribution IS 

given by: 
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A (Xi' t) = 
J.l. 

I + 
).,. + II. 

I r-I 

).,. 
'1 I exp [ - Ai t ] /\,.. + II. 

I r-I 

... (4.7) 

The availability expression A (e, t) is obtained in the same manner as 

R (e, t) by substituting A (Xi' t) for Pi in the symbolic expression. 

Steady-state availability, SA (e) 

The availability at time 00 of element i IS: 

... (4.8) 

SA (e) is obtained also by substituting SA (Xi) for Pi in the symbolic 

expression, as R (e, t ) and A (e, t ). 

Mean time between failures, MTBF (e) is calculated from the equation: 

MTTF (e) 
MTBF (e) = SA (e) 

4.4.6.4 Examples 

... (4.9) 

Time dependent measures were computed for the undirected graph of Fig. 

4.1, as presented in Figure 4.29 for R(t) and A(t) and in Table 4.3 for MTTF, 

SA and MTBF. 
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FIGURE 4.29 
Time-dependent measures, R(t) and A(t) for 
Fig. 4. 1, AT problem,' the time units are normalised, 
i. e. are the product of failure rate (A) and time; A(t) 
is obtained for different ratios J.l / A 

TABLE 4.3 
MTTF, SA and MTBF (graph in Fig. 4. 1, AT problem) 
for different ratios J.l / A 

iliA MTTF SA MTBF 

0 716.18 1.0000 716.18 

1 - 0.9999 716.18 

10 - 0.9998 716.32 

100 - 0.9811 730.00 

1000 - 0.4375 1636.98 
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4.4.7 FAULT SIMULATION 

As for th~ deterministic model, faults in nodes and edges have been 

simulated as described in section 4.3.6. To calculate probabilistic reliability 

measures for degraded configurations, line (12) in Algorithm 4.10 is replaced 

by: 

(12') Compute probabilistic reliability measures 

Figure 4.30 shows an example of stationary reliability when the selected 

graph configurations have been succesively degraded until they become 

disconnected. 
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FIGURE 4.30 
t-node deleted AT stationary reliability versus 
number of nodes deleted for edge reliability = 0.9 

3 

4.4.8 K-OUT-OF-N PROBLEM 

., k f t m is the general model of As it was seen In section 3.4.4, a -out-o -n sys e 

active redundant syst~ms, where series and parallel systems are particular 
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cases with k=n and k=1 respectively. Therefore, in the implementation of a 

reliability model for k-ou t-of-n systems there are included series and 

parallel systems. 

If equations (3.11) and (3.12) are used directly to calculate Rk , for large n 

the number of terms obtained is very large and the algorithm is 

computationally inefficient. Also, the algorithm becomes more complicated 

when the element reliabilities are different and for calculation of time 

dependent measures. 

Some efficient methods have been presented in the literature for 

evaluating the reliability of k-out-of-n systems which reduce the number of 

terms by avoiding the generation of cancelling terms, see for example 

[LOC 84], [BAR 84], [JAI85], [RIS 87]. For this model, it has been developed a 

very efficient algorithm based in the method for network reliability 

(described in sections 4.4.1 and 4.4.2); the algorithm for k-out-of-n systems 

uses the same principle of recursive sum of disjoint products where the 

generation of cancelling terms is avoided and uses the same data structures 

for cube representation and symbolic expression. 

4.4.8.1 Algorithm for Boolean expression 

The procedure developed for the derivation of a Boolean expression for 

evaluation of k-out-of-n system reliability can be summarised as follows 

(Algorithm 4.14): 
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(1) Enter and check the initial data for the problem. 

( a) Enter problem : k-out-of-n system reliability (KON) 
(b) Enter nand k 

( c) Check 1 ~ k ~ n 

(2) Use symmetry to do the shortest calculation. 

Because of duality, the probability of success for a k-out-of-n system is the 

complement of the probability of failure for a (n-k+1)-out-of-n system. 
'f k n+1 t > -2- then 

begin 

k := n - k + 1; 

Pi := 1 - Pi for all elements; {or a time dependent measure} 
ct := true {ct is a Boolean indicator} 

end 

else ct := false; 

(3) Step (1) in proc. GetBooleanExpression (section 4.3.1.2) is modified as follows: 
case problem of 

TT,AT,KT,S~SA~SKT,KSKT: 

KON : Find a tree representation (cube) with k working elements (in good 

state (1) or arbitrary state (x» from the cube Y of n elements. This cube is 

obtained by finding the first k elements in state 1 or x from cube Y and 

changing those in state x to 1, so a cube of at least k good elements is obtained. 
end; {case} 

(4) Proceed as steps (2) to (5) in algorithm GetBooleanExpression. 

(5) Step (6) in GetBooleanExpression is modified since it is not required to check for 

connectedness and it is possible to know beforehand the maximum level of the 

computation tree for this recursive procedure in order to reduce the number of 

calculations, which is: n-k. 

(6) Once a Boolean expression has been obtained, the reliability measure of interest 

is calculated as for network reliability, but if symmetry was employed to reduce 

the calculations (ct is true) Rsys is substituted by 1 - Rsys. (Rsys is R(e), R(e, t), 

A(e, t), or SA(e». 

end; {K_out_of-n} 

ALGORITHM 4. 14 
K-out-of-n system reliability 

86 



4.4.8.2 Computer analysis 

An example of the recursive computation of a 3-out of 5 t . h - - sys em IS s own in 

the following computation tree (Figure 431) Each subset f b 
. . 0 cu es generated 

(B's) at each computation is represented by each of the branches of a 

previous node in the tree. The A's are the terms of the Boole . an expressIon. 

y = xxxxx 
A= lllxx 

1 

Boolean Expression = A + A 1 + A 11 + A 12 + A 13 + A2 + A21 + A22 + A3 + A31 

FIGURE4.31 
Computation tree of 3-out-of-5 system 

4.4.8.3 Example 

level 

o 

2 

3 

at level 3 
all trees are 

dsconnected 

As an example of partially redundant systems, in a distributed system 

environment, consider the following problem: k computers are required to 

execute a given program; to improve its reliability, one, two or more 

computers (in general r computers) can be added to the set of k computers. 

This is a k-ou t-of-n system with n = k + r; considering r as the level of 

redundancy. 
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For a distributed system with k = 2, 5 and 10, the reliability 

improvemen~ when increasing the level of redundancy (r) was obtained as 

it is shown in Figure 4.32 for an element (computer) reliability, Pi = 0.8. 
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Chapter 5 

Reliability Modelling of Large 
Multiprocessor Systems 

5. 1 INTRODUCTION 

Multiprocessor systems have been increasing in size rapidly over the last 

few years. Many system control functions, routing, performance modelling, 

reliability modelling, etc. cannot be carried out in a large environment 

because of prohibitive overheads. 

Reliability evaluation of a general multiprocessor network has been 

proved to be NP-hard to compute [BAL 86], due to the exponential growth of 

the system state space. An exact evaluation technique on a 'flat' network 

requires a very large computational effort in both, computation time and 

memory, which will be prohibitive if the system to evaluate is large. 

The idea of decomposing the system structure in a set of smaller 

subsystems is a viable solution to overcome such limitations. Such 



decomposition can be achieved by a mth-Ievel hierarchical clustering of the 

system. 

Two cases have been addressed in this work: 

(a) A system has been hierarchically decomposed for the purpose of 

simplifying control functions, routing, etc .. Reliability is evaluated for 

such hierarchical network, or 

(b) It is desired only to simplify reliability evaluation of a large flat 

network; in this case by imposing a decomposable hierarchical 

structure we can obtain an approximation (lower bound) for each of 

the various reliability measures. 

In both cases we can think of the entire network as a tree of hierarchies, 

in which each node at a higher level is made up of one or more nodes from 

lower levels. Once a hierarchy exists we can use a hierarchical solution to 

the problem of reliability modelling. The basic strategy can proceed in the 

same manner for both cases: 

(1) To obtain a hierarchical structure by a mth-level hierarchical clustering 

of the graph representing the system. 

(2) To evaluate reliability for such structure. 

In the rest of this chapter is presented a detailed description of the 

hierarchical clustering method and the subsequent hierarchical reliability 

evaluation of the system, as well as the results obtained by applying this 

method to some multiprocessor configurations. 
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5.2 HIERARCHICAL CLUSTERING 

5.2.1 DEFINITIONS 

A cluster is defined as a group of objects, entities, elements, etc. connected 

together according to some rules or relations. The goal of the clustering 

problem is to find groups containing objects most homogeneous (similar) 

within these groups, while at the same time the groups are heterogeneous 

(dissimilar) between themselves as much as possible. The homogeneity or 

similarity is measured by using a set of rules called the similarity criteria. 

Each criterion could be qualitative (e.g. small, tall, etc.) or quantitative (i.e. 

some kind of numerical measure). Clustering has been used mainly for 

clasiffication purposes of sets of unclassified data leading to a multitude of 

methods [EVE 80]. 

5.2.2 REVIEW OF CLUSTERING TECHNIQUES 

Clustering techniques have been classified roughly into five types: 

hierarchical, optimisation, density, clumping and other techniques. For this 

work, we are concerned basically with hierarchical techniques where the 

data are not grouped all in only one step, rather they are grouped 

progressively into steps. 

Essentially, hierarchical techniques may be subdivided into 

agglomerative (bottom-up) methods which proceed by a series of succesive 

fusions of the n objects into groups (classes, clusters, etc.), and divisive (top

down) methods which partition the set of n objects successively into finer 

partitions. Both techniques may be represented by inverted tree structures 

which are two dimensional diagrams illustrating the fusions or divisions 

that have been made at each successive step of the procedure, the only 

91 



difference between the two methods is the direct· A . Ion. tree representation 

of agglomerative and divisive clustering is shown in Figure 5.1. 

Cluster Level 

Virtual node (cluster) m 

Virtual node (cluster) m - 1 

Virtual node (cluster) m-2 

Virtual node (cluster) 

Physical node o 

FIGURE 5. 7 
Tree representation of hierarchical clustering 

The most commonly used methods, like single linkage, complete 

linkage, Ward's method, etc., are of hierarchical type and agglomerative. 

These methods follow the general procedure of successively pairing off the 

most similar objects and then replacing them by one representative, using 

in most cases a similarity criteria based in the smallest distance between two 

elements. This procedure always leads to the creation of a degree two 

(binary) tree, which is known to have the maximum height among all trees. 

The disadvantage of these methods is that the time required to execute the 

clustering algorithm is maximum if a binary tree is to be generated; this 

time succesively decreases with the degree of the tree [RAM 86]. 

Another disadvantage of these standard clustering algorithms is that 

they are suited to use with the distance matrix between all elements, 

requiring the recalculation of the matrix at each step of the algori thm. 

Therefore they can handle efficiently only a small number of objects, since 
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the dimension of the matrix grows proportionally to the square of the 

number of nodes. 

From these drawbacks it is concluded that standard clustering 

techniques are not suitable for use in clustering of large multiprocessor 

networks. In [RAM 86] is presented an efficient heuristic algorithm designed 

for the clustering of computer networks which is suitable to adapt for our 

hierarchical reliability model. 

5.2.3 GENERAL MODEL 

The general model consists of objects connected by relations where 

clustering is done based on these relations. The basic graph model for 

multiprocessor systems described in section 3.4.1 can be used, where the 

objects are modeled as weighted nodes and the relationships between them 

are modelled by weighted edges (interconnection network). The weights 

represent the strength of the relation, in this case a reliability measure. This 

model is adequate enough for the clustering problem. 

5.2.3.1 Solution objectives 

Solving the clustering problem involves achieving one or more objectives. 

For a hierarchical network can be: to minimise communication cost, 

connectivity and link-failure resilience, balanced clustering structures, 

minimise routing tables, etc. For the approximate reliability evaluation of 

flat multiprocessor systems, the problem is to find an optimal clustering 

structure in such a way that the error in the reliability expression (or values) 

obtained is minimised compared to the exact expression (or values). 
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As it was observed with the deterministic reliabl·ll·ty m d 1 . . o e In sectlOn 

4.3, reliability factors like edge and node connectivity decrease with an 

increase in the diameter of the network Therefore . t ·t· 1 1 . , In UI lve y, c usters 

should be chosen as to correspond to highly connected sets of nodes which 

result in a small diameter. Also, since reliability evaluation is dependent on 

the communication paths or trees internal to the cluster, the cluster 

subnetwork must contain the shortest paths between its nodes in that 

cluster. 

The following factors have to be taken into account to find an optimal 

clustering structure: 

• 
• 

• 

• 

Appropriate similarity criteria 

Optimum number of clusters 

Optimum number of nodes constituting each cluster 

Optimum number of hierarchical levels 

5.2.4 METHOD 

As discused in section 5.2.2 there are basically two different methods of 

solving the hierarchical clustering problem: the divisive and the 

agglomerative; the former method uses graph partitioning and has been 

found to be NP-complete [RAM 86]. The agglomerative method starts with 

the original graph in which each node represents a single element (Oth-level 

duster). These elements are grouped and merged to form 1 st-Ievel clusters. 

Every such cluster is then collapsed and replaced by a single representative 

node. The process is repeated, 1st-level clusters are also grouped and merged 

into 2nd-level clusters and so on, until the graph is reduced to a single node 

at the top level (mth-Ievel cluster). 
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The agglomerative approach has been adopted for our clustering 

algorithm. The basic procedure and the heuristic factors considered are 

explained in the following subsections. 

Along with the hierarchical clustering of nodes, we must select special 

type of nodes: the exchange nodes or gates for all clusters at all levels. The 

function of the gate in a cluster is to represent the cluster and to handle the 

communication between the set of nodes in that cluster and those outside 

in another clusters. (k+l)Bt-level gates are selected among the kth-Ievel gates 

at any level. 

5.2.4.1 Assumptions 

The following is assumed about the communication paths between the 

nodes [KLE 80] : 

(a) Communication between nodes in the same cluster, at any level, only 

take paths which are internal to that cluster (paths contained in the 

local subnetwork). 

(b) Communication between nodes in different kth-Ievel clusters, but 

which belong to the same (k+ 1 )st-Ievel cluster is directed via its local 

subnetwork to a (k+l)st-Ievel gate of the originating cluster; then it 

takes the (k+ l)st-Iayer subnetwork to reach a (k+ l)st-Ievel gate of the 

destination cluster, then its local subnetwork is used to finally reach 

the destination node. 

A kth-Iayer subnetwork is defined as a network connecting kth-level 

gates which belong to the same kth-Ievel cluster. Figure 5.2 illustrates the 

preceding definitions for a two-level hierarchical network. Clustering leads 

to the tree representation shown in Figure 5.3. 
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1 st level gate 

2nd level gate 

2nd layer subnet 

1 st layer subnet 

FIGURES.2 
Two-level hierarchical network 

2 3 456 789 

FIGURES.3 

Oth level cluster 
(physical node) 

1 st level cluster 

2nd level cluster 

o : virtual node (cluster) 

• : physical node 

o :gate 

Tree representation of a two-level hierarchical network 

5.2.4.2 Basic procedure 

The procedure for our agglomerative clustering method follows four basic 

steps: 

(1) The nodes in the current graph are sorted into a list and the first one is 

chosen (centre). 

96 



(2) The neighbours of the selected node (centre) are sorted as well in some 

manner to form a list and some of them are chosen to create a cl us ter 

together with the centre. 

(3) A exchange node or gate is selected from the nodes that constitute the 

cluster according to some criteria. 

(4) The selected nodes (centre and selected neighbours) are merged into a 

single node, thus reducing the size of the graph. This single node is a 

virtual node, which is the representative at the next level of clustering 

of all the nodes (physical or virtual) that are its constituents. 

These four steps describe a single cluster creation. They are repeated in 

sequence, firstly until all nodes in the current graph have been clustered, 

completing one level of clustering, and finally until the graph is reduced to 

a single node which is the top level cluster. A cluster created in such 

manner can be temporary if its weight has not reached the maximum 

weight and more nodes can be added to it. It is permanent if it has not more 

capacity for growing because it has reached the maximum weight or there 

are no more nodes which can be merged to it. Figure 5.4 shows an example 

of the above procedure for the network of Fig. 5.2. 

This agglomerative method does not use global topology information 

since each node has information about its neighbours only; thus this 

a pproach is inheren tl y heuristic. 
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(1) (2) (3) 

centre = 6 centre = 9 

clus-l 
gate =3 

clus-3 
~gate=7 

cI.US~ 
gate = 5 

centre = clus-1 

(4) 

dus-4 

- .... ~ 0 

centre = 1 
sel-nelghs = {2, 3} sel-nelghs = {4, 5} sel-nelghs = {7, 8} sel-nelghs = {clus-2, clus-3} 

7st clusterIng level 2nd clustering level 

FIGURE 5.4 
Example of the basic clustering procedure 

5.2.4.3 Factors for clustering 

The selection of centres and neighbours to be merged are very important for 

achieving the desired objectives. There are three main factors to be 

considered in agglomerative clustering [RAM 86]: 

(1) Sorting of nodes. 

Two parameters that can be used as keys to sort the nodes in order to select a 

centre are: 

(a) Degree, or number of incident edges to a node 

(b) Weight, or number of nodes merged to create a virtual node at the 

current clustering level (physical nodes have weight=1) 

Both could be used simultaneously, with one being used as the 

primary key and the other as the secondary key. Sorting is done in a non

decreasing magnitude order; thus the node with smallest degree and weight 

is selected as the centre. 
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To sort the neighbours of a centre, another parameter is employed in 

addition: 

(c) Strength between neighbour and centre, which is the number of 

parallel edges between each neighbour and its centre. 

Sorting for parameters (a) and (b) is done in a non-decreasing 

magnitude order and for parameter (c) in a non-increasing order. Thus, 

neighbours with the smallest degree, smallest weight and largest strenght 

are selected first. 

(2) Binary/multiple merging. 

As it was discussed before in section 5.2.2, binary merging in which only one 

neighbour is selected to be merged with the centre every time, leads to the 

creation of a binary tree; in contrast, in multiple merging the aim is to select 

as many neighbours as possible (but not exceding the maximum size 

allowed to each cluster) leading to the creation of higher order trees; thus 

reducing the number of steps. Therefore, for our model is employed 

multiple merging. 

(3) Centre selection. 

There are devised three different approaches of centre selection: the 

aggressive, the moderate and the pacific. 

In the aggressive approach, once a centre is chosen it is retained as the 

centre as long as its cluster can grow, but this can lead to uneven sized 

clusters. In the pacific approach, at every step a new centre is chosen among 

the candidate nodes. In the moderate approach, the centre chosen in the 

previous step is also put in the list of possible candidates for the next step. Its 

being chosen as centre again depends on whether it comes to the head of the 

list after subsequent sorting. 
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Based in the results obtained in [RAM 86] where the pacific and 

moderate methods gave better balanced structures, it has been chosen the 

moderate approach for centre selection in our algorithm. 

5.2.5 DESCRIPTION OF THE ALGORITHM 

The clustering algorithm is described in the following, as well as its most 

relevant local procedures. This description is detailed enough to specify all 

the steps involved in the clustering process, while at the same time 

language implementation details are not specified. 

5.2.5.1 Main procedure 

The main procedure of the clustering algorithm is described in pseudo-code 

in Algorithm 5.1, where cgraph = (cnodes, cedges) is the current graph 

which describes the clustering at any step of the algorithm. Initially cgraph 

represents the entire network. 

Following is the terminology used: 

cgraph = the current graph 

cnodes = the set of nodes of the current graph 

cedges = the set of interconnection edges of the current graph 

cgraphrecord = record 

clustered : Boolean {indicates if a node is clustered or not} 

weight: integer { current weight of a node} 

degree: integer { current degree of a node} 

end; 
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clusterlevel = the current level of clustering 

candset = the set of candidates to chose the next centre from 

neighset = the set of neighbours of the centre 

selecset = the set of nodes selected to be merged with the centre 

centre = the node chosen as the next centre 

key1, key2 = each can be either the weight or the degree of a node 

key3 = the strenght between centre and neighbour 

htree = hierarchical tree representation of the clustering structure 

clusterset = nodes constituting a cluster 
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procedure Clustering; 

cgraph = graph; 

cnodes = n; 

cedges = e; 

clusterlevel = 0; 

while cnodes > 1 do 

for node = 1 to cnodes do 

with cgraphrecord[nodel do 

clustered = false; 

weight = 1; 

end; (with) 

end; (for) 

clusterlevel = clusterlevel + 1; 

while NoCall_clustered (cnodes) do 

Obtain_degree (cnodes, degree); 

Obtain_candidate_set (candset); 

Sort (candset, key1, key2); 

centre = first (candset); 

( initially cgraph is the entire '" ) 
( ... network, graph = (n, e) } 

( start a new clustering level) 

( while not all nodes have been ... ) 

( '" clustered at the current level) 

( obtain adjacent nodes of each node) 

( obtain all nodes with clustered=false ) 
( return candset sorted ) 

Obtain_neigh_set (centre, neighset); ( obtain adjacent nodes to centre ... ) 

( ... not already clustered ) 
Sort (neighset, key1, key2, key3); ( return neighset sorted) 

Select_neighbours (selectset); 

if I selectset I :? 1 then ( if some neighs. selected ) 

Record_cluster (htree); ( record a new cluster or update a ... ) 

( .. , cluster; select gate) 

Reduce-$raph (cgraph); ( merge centre and selected neighs ... ) 

( .. , in one coalesced node (cluster) } 
end (if then) 

else ( if no neighs. selected) 

cgraphrecord[centrel.clustered = true; 

if cgraphrecord[centrel.weight = 1 then 

Record_cluster (htree); ( record a one node cluster ) 

end; (else) 

end; (while Not_aU_clustered ) 

end; (while cnodes > 1 ) 

end; (Clustering) 

ALGORITHM 5.1 
Main procedure of clustering algorithm 
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The local procedures Sort, Record_cluster and Reduce_graph are 

described in detail in the following subsections. 

5.2.5.2 Sort 

A general sorting method has a complexity of O(n log2 n). Since in our 

problem, any key in which sorting is to be done lies in the range 0 ~ key ~ n 

we can use a linear time sorting algorithm like radix distribution sort 

[REI 77]. This will reduce the complexity to O(kn2), where k is a constant. 

Let nodev node2' ... , nodem be a list of nodes in the range 1 to n. The list 

can be sorted for one key in the following manner. 

(1) Initialise n empty queues, each queue represents a pile. 

(2) Scan the list of nodes, placing the node with the key value v in the v th 

pile. 

(3) Concatenate the queues to obtain the sorted list. 

Assume that a link field linki is associated with each nodei and is used 

to link the nodes to form an input queue Q which is the list of nodes to be 

sorted. This field is used also to link the nodes into the queues that 

represent the piles Ql - Qn. After the nodes have been distributed into piles, 

the queues representing those piles are concatenated together to reform the 

queue Q but now with the nodes sorted in non-decreasing order, starting 

with the front of queue Q. The outline of this sorting algorithm is shown in 

Algorithm 5.2. 
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procedure Sort; 

Input queue (Q); 

for j = 1 to num_keys do 

Initialise queues QO-Qn to be empty; 

while Q not empty do 

nodej = next node in Q; 

case keyfjl of 

{ for each key } 

{ distribute in piles} 

weight: v = weight (nodej ); {non-decreasing order} 

degree: v = degree(nodej ); {non-decreasing order} 

strenght : v = n - num-paralleCedges( nodej); {non-increasing order} 

end; {case} 

Add nodej to Qv; 

end; {while} 

Concatenate queues QO-Qn together to form the sorted queue Q; 

end; [for} 

end; {Sort} 

ALGORITHM 5.2 
Radix distribution sort 

5.2.5.3 Record_cluster 

This procedure creates the hierarchical tree representation of the clustering 

structure and selects a gate for each cluster. Two cases can be presented: 

(a) To update a cluster: add a node to a temporary cluster 

(b) To create a new cluster 

The data structure used for the hierarchical tree (htree) is an array of 

dynamic linked lists. Each element of the array, which corresponds to one 

cluster, has an associated dynamic list of the nodes forming such cluster. An 

example is shown in Figure 5.5. 

104 



n-2 n-3 n-4 n-5 n-6 
c = cluster (1st - mth level) 
n = physical node (Oth level) 
g = gate 

clustering structure 

FIGURES.S 
Data structure of htree 

Gate selection 

B --I n-l I H n-2 I ~ 
~ .J V 

~n-3IHn-4I~ 
~ . .J V 

~n-5IHn-6I~ 
~ • .J V 

~IHc-21~ 

data structure 

Each time a cluster is created or updated, a cluster representative or gate is 

chosen among the nodes constituting the cluster. 

It has been used a simple criteria for gate selection: the node with more 

'external' adjacent nodes (nodes in other clusters), since such node (gate) has 

to handle the communication between all nodes within the cluster to nodes 

in other clusters. 

5.2.5.4 Reduce-Kt'aph 

After a permanent or temporary cluster has been created or updated, the 

nodes constituting such cluster are merged into a single node, thus reducing 

the size of the graph. A description of the merging procedure is presented in 
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Algorithm 5.3; the basic steps involved are shown graphically In the 

example of Figure 5.6. 

procedure Reduce~raph 

Select node identifier of cluster : for simplicity its chosen the centre; 
for i=l to num_selected_nodes do 

Obtain neighbours of nodej (neigh_set); 

for j=l to num_neigh do 

if neighj (nodej ) in selected set then 

Remove edge (neighjl nodej); 

else if nodej <> centre then 

Remove edge (neighjl nodej); 

{ for each node forming the cluster } 

{ for each neighbour of nodei } 

{ remove internal edges between ... } 

{ ... nodes in cluster } 

{ remove external edges ... } 

{ ... if nodej is not the centre} 
if neighj is external neighbour of centre then 

Update capacity _edge (neighjf centre) 

else 

Add edge (neighjl centre); 

Include neighj as new neighbour of centre 

end; {else} 

end; {else} 

end; {for j} 

end; {for i} 

Update number of nodes and edges of current graph; 

Obtain new weight of centre = I weights of coalesced nodes 

end; {Reduce_graph} 

ALGORITHM 5.3 
Reduce_graph (Merging of nodes) 
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(7) Select cluster Identifler=centre (2) Remove Intemal edges 

centra =4 
sal-neighs = {S, 6} 

(4) For each removed extemal edge: 

(a) Update capacity of 
edges to centre (b) Add new edges to centre 

2 __ ~---",.n4 2 
__ ~~n4 

0 6 

3 3 

FIGURE 5.6 

(3) Remove extemal edges 
of each node in sel-neighs 

(5) Obtain new weight 
of centre 

2 
__ ~~n4 

3 

0 6 

Example of the merging of nodes to reduce the graph 

5.3 HIERARCHICAL RELIABILITY MODEL 

Reliability evaluation methods using a hierarchical approach to obtain an 

approximation of the system reliability have been suggested by [50185] and 

[MAN 87] but only for overall (AT) reliability evaluation of flat computer 

networks. In this work it is intended to solve for the various reliability 

problems defined in section 3.4.2 and for both cases: reliability 

approximation in a flat network and reliability evaluation of a hierarchical 

network, using a general methodology. 

After decomposing the network in a hierarchical structure, reliability 

evaluation can proceed as follows. 
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(1) As 1 st-Ievel clusters are composed of Oth-Ievel clusters, i.e. physical 

nodes, the appropriate reliability measure, relevant to the problem, for 

the 1st-level clusters can be calculated using the general procedure (RM) 

described in chapter 4. These clusters are managed as independent 

subgraphs of the current graph. 

(2) Each 1 st-Ievel cluster is treated as a new virtual node with its reliability 

as calculated in step 1. Reliability of 2nd-level clusters is obtained again 

by using RM on the new graphs formed by these virtual nodes. 

(3) Step 2 is repeated for the subsequent levels until the reliability of the 

mth-Ievel cluster is obtained which is the system reliability. 

This method has been called I-hierarchical reliability model (IHRM). In 

Figure 5.7 is illustrated an example for calculating AT reliability. 

5.3.1 IHRM METHOD 

The IHRM model has been implemented for reliability evaluation of 

the various problems. Particularly, for each of the different reliability 

problems is considered the following : 

(a) ST, TT, SKT or KT with the nodes in the same local cluster: 

• obtain the corresponding shortest paths or Steiner trees uSIng 

only the local subnetwork. 

(b) ST or TT with the nodes in different clusters: 

(1) obtain ST or TT reliability for the 1 st--Ievel source cluster from 

source node to the corresponding local gate and ST or TT 

reliability for the l st--Ievel terminal cluster from the local gate to 

terminal node. 
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(2) repeat the above procedure for the subsequent levels until ST or 

TT reliability of the mth--level cluster is obtained. 

(c) SAT and AT : 

(1) obtain SAT or AT reliability for each of the lst--level clusters using 

the spanning trees on the 1 st--layer subnetworks. 

(2) repeat the above procedure for the subsequent levels until SAT or 

AT reliability of the mth--level cluster is obtained. 

steps of clustering 

current graph 

----~ 

----~ 

----.-

FIGURES.7 

IHRM 

2 

3 

6 

~ 

6 

clus-2 clus-l 

obt. AT reI. of clus-l as 
Independent subgraph 

obt. AT reI. of clus-2 as 
Independent subgraph 

obt. AT reI. of clus-3 as 
Independent subgraph 

Example of AT reliability using IHRM 
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(d) SKT and KT in different clusters : 

(1) obtain SKT or KT reliability for the corresponding 1 st--Ievel 

clusters using the Steiner trees on the l st--Iayer subnetworks. 

(2) repeat the above procedure for the subsequent levels until SKT or 

KT reliability of the mth--Ievel cluster is obtained. 

The hierarchical paths from (k-l)st-Ievel source cluster to kth-Ievel local 

gate and from kth-Ievel local gate to (k-l)st-Ievel terminal cluster (using the 

corresponding kth-Iayer subnetwork) are used for all these procedures. 

The basic structure of the IHRM method is presented in Algorithm 5.4. 

lt is assumed that a graph configuration representing the system has been 

already selected, as well as the problem, class and reliability measures to 

solve. In the set problem_set are contained the nodes concerning to the 

problem, i.e. all nodes for SAT or AT, k-node set for SKT or KT, and source 

and terminal nodes for ST or TT. 

procedure IHRM; 

Hierarchical clustering (graph, htree); 

current~raph = graph; 

for i=l to num_clusters do 

{ obtain the hierar. structure in htree } 

if ( I clusterj I > 1) and ((clusterj n problem_set) <> 0) then 

Obtain independent subgraph (current~aph, clusterj , Csubgraph); 

RM (reCproblem, reCclass, reCmeasure, i_subgraph, reliab j); 

Reduce~raph (current~raph); 

Set reliab j for new collapsed node; 

end; {if} 

end; (for) 

systemJeliability = reliab j 

end; {IHRM} 

ALGORITHM 5.4 
I-hierarchical reliability model 
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5.3.2 KHRM METHOD 

In addition to the IHRM procedure, another hierarchical method is 

suggested for reliability evaluation. We can solve for the AT problem by 

using the set of nodes of each cluster as a k-node subset of the current graph 

(KT problem) at each step of clustering. Since the graph is reduced in size at 

every step of the clustering process, the reliability calculation is simplified. 

This method does not use the proper hierarchical routing through the 

gates and local subnetworks as described in section 5.2.4, so it is useful only 

to obtain a better approximation of system reliability in a flat network. A 

similar procedure is applied to the KT and TT problems, using only the 

appropriate clusters which have nodes belonging to the problem. 

The procedure developed has been called the K-hierarchical reliability 

model (KHRM) and is described in Algorithm 5.5. The same considerations 

as for the IHRM model are assumed. 
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procedure KHRM; 

Hierarchical clustering (graph, htree); 

current~raph = graph; 

for i=l to num_clusters do 

( obtain the hierar. structure in htree ) 

if ( I clusteri I > 1) and «clusteri n problem_set) <> 0) then 

Obtain k-subset d clusterj; 

RM (KT, reCclass, reCmeasure, Csubgraph, reHabi); 

Reduce~raph (current~raph); 

Set reliabdor new collapsed node; 
end; (if) 

end; (for) 

system_reliability = reliabi 
end; {KHRM} 

ALGORITHM 5.5 

K-hierarchical reliability model 

5.4 EXAMPLES 

Our hierarchical model has been tested in some graph configurations to 

demonstrate it and to evaluate its implementation, comparing results 

against the exact and the other approximation method described in section 

4.4.3. 

For these examples it is assumed for simplicity that nodes are perfectly 

reliable and all edges have the same reliability. It is calculated the numerical 

value of stationary system reliability with edge reliability varying in a wide 

range from 0.6 to 1.0, although in practical systems each edge is expected to 

have a value of reliability higher than 0.9. 

5.4.1 MESHED RING 3X2 

Our hierarchical algorithm was first tested in a 3x2 undirected meshed ring 

shown in figure S.8a. In this example it is calculated the overall (AT) 
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reliability when (a) the exact technique is used, (b) IHRM and KHRM are 

used with clusters chosen to be constituted for a maximum of three nodes , 

thus creating a two-level hierarchical tree (figure 5.8b), and (c) with clusters 

chosen to be maximum of two nodes, creating a three-level hierarchical tree 

(figure 5.8c). The error percentage in the approximation is calculated by, 

R -R 
ex ap X 100 
Rex ... (5.1) 

Figures 5.9 and 5.10 show a plot of AT as a function of edge reliability 

for IHRM and KHRM respectively; Figures 5.11 and 5.12 show the error 

percentage also as a function of edge reliability. Figure 5.13 is a comparison 

of computer time and the number of cubes generated which is proportional 

to the memory required for the various methods. 

(0) meshed ring 3x2 

o virtual nodes 
• physical nodes 
o gates 

FIGURES.S 

2 3 456 2 4 6 5 3 

(b) H-3 (c) H-2 

(0) 3 X 2 meshed ring, (b) 3-node clusters (2-level 
tree), (c) 2-node clusters (3-level tree) 
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5.4.2 MESHED RING 6X2 

The second example is a 6 x 2 undirected meshed ring which has 12 nodes 

and 24 edges. Overall reliability and two terminal reliability from node 3 to 9 

is obtained when (a) the exact technique is used, (b) IHRM and KHRM are 

used with clusters having 6 nodes maximum (2-level tree), (c) with clusters 

having 4 nodes (2-level tree) and (d) with clusters having 3 nodes (3-1evel 

tree), as illustrated in Figure 5.14. 

Figures 5.15 and 5.16 show a plot of AT as a function of edge reliability 

for IHRM and KHRM respectively; Figures 5.17 and 5.18 show the error 

percentage for AT al~6 as a function of edge reliability. Figure 5.19 is a 

comparison of computer time and the number of cubes generated. Figures 

5.20 to 5.24 show the above measures for TT reliability. 
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[J gates • terminal nodes (for TT problem) 

FIGURES. 14 
(0) 6 X 2 meshed ring, (b) 6-node clusters (2-level 
tree), (c) 4-node clusters (2-level tree), (d) 3-node 
clusters (3-/eve/ tree) 
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FIGURE 5.20 
Two-terminal reliability for a 6 x 2 meshed ring. EX is 
by using a exact method, IH-6, IH-4 and IH-3 by 
using IHRM with 6 nodes, 4 nodes and 3 nodes per 
cluster respectively, the terminal nodes are at a 
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gates as terminal nodes. 
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5.4.3 RING 12 

A ring network is an example of a sparse graph. Figure 5.25 shows such 

graph with 12 nodes and 12 edges and the hierarchical structure tested: 

clusters formed by 4 nodes maximum. Figure 5.26 show a plot of overall 

system reliability against edge reliability for the 3 methods: exact, ll-IRM and 

KHRM; and Figure 5.27 shows the computer time and number of cubes. 

(0) ring 72 (b) H-4 

2 8 

CJ gates 

FIGURE 5.25 
(0) 72 node ring, (b) clustering with 4 nodes per 

cluster (2-level tree) 
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KHRM with 4 nodes per cluster. 

:f) 
·t:: " . 
. ~.m: 

12 _ 
:{ 

:{: 

11 : 

10 
9 : o Num. cubes 

8 
: 
: rn Compo time (sec) 

7 
6 ~~ 
5 .... 1= 4 

I 3 .. 
2 

: 

1 .;a ~B 
I---

0 :~* L--

EX 1H-4 KH-4 

FIGURE 5.27. 
IHRM and KHRM computation time and memory 
(number of cubes) for AT reliability in a 72 node ring 

124 



5.5 DISCUSSION OF RESULTS 

The following observations can be made about the results obtained in the 

above examples. 

(a) The precision of reliability evaluation when using the IHRM or 

KHRM methods for approximate evaluation of flat systems depends 

on the choice of the clustering structure, i.e. number of levels in the 

hierarchical tree, number of nodes per cluster and connectivity of each 

cluster. Therefore, in general, to obtain better results, closer to those 

obtained by exact methods, the number of levels should be low, the 

number of nodes should be high, and the subgraph constituting the 

cluster should be highly connected. 

(b) The error percentage of system reliability is always decreasing as the 

value of element reliability increases. Therefore for practical values of 

edge reliability, i.e. from 0.9 to 1.0, the hierarchical method gives 

approximate results quite close to that obtained by the exact method. 

(c) For IHRM the computer time and memory is greatly reduced, but the 

results are not very exact when compared to the results obtained by the 

exact method for lower values of element reliability. 

(d) KHRM gives always more precise results than those obtained by IHRM, 

but the savings in computation time and memory are less. For some 

problems and some classes of graphs it is worthwhile to use KHRM, 

but for some others like ring networks it is not, since the computation 

time and number of cubes is higher than for the exact method as is 

explained below in (f). 

(e) For TT and KT reliability approximation using IHRM and KHRM, the 

accuracy also vary according to the nodes being chosen as gates in each 

cluster, since TT and KT reliability of each local subnetwork is 



dependent on the distance and network structure between the 

corresponding nodes and the local gate. Generally with nodes closer to 

the gate a higher reliability is obtained. In our example it was used a 

mean distance between gate and nodes. 

(f) The system configuration also affects the approximation. Some 

structures are not suitable to decompose hierarchically to simplify its 

reliability evaluation when no highly connected subnetworks can be 

formed, such as ring and sparse structures. For this class of graphs the 

number of cubes generated for the exact method, which is dependent of 

the number of communication paths, is always low since there are few 

paths. Thus, in this case, by employing hierarchical decomposition, we 

can create an overhead, more evident with KHRM where the number 

of cubes and computation time are higher than for the exact method as 

it could be seen in Figure 5.27. 
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Chapter 6 

Summary and Conclusions 

6. 1 ANAL YSIS OF WORK 

The main goals of this work are the study and implementation of models 

for reliability and fault tolerance analysis of multiprocessor systems; 

basically of their intercommunication structure, i.e. the interconnection 

network. Two classes of models were defined: deterministic and 

probabilistic. Both are based on graph theory concepts and the criteria of 

reliability and fault tolerance as measures of connectivity, i.e. the successful 

communication between the nodes of the system. Different connectivity 

problems were identified and classified into: unrooted problems, like two

terminal (TT), overall (AT) and k-node (KT) connectivity; and rooted 

problems, such as source to terminal (ST), source to all terminal (SAT), 

source to k-terminal (SKT) and k-source to k-terminal (KSKT) connectivity. 

Another problem of interest is k-out-of-n reliability as the general model of 

redundancy. 



In the deterministic model, reliability is dependent upon denseness, 

distance and degree but above all on the number of edge and node disjoint 

paths (edge and node connectivity) required for the intercommunication 

among some nodes, according to the connectivity problem. Efficient 

algorithms were implemented to compute the different deterministic 

parameters. 

For the probabilistic model it was assumed that the system components 

(edges and nodes) fail with some known probability distribution in an 

environment of statistically independent failures. A stationary measure of 

reliability is the probability of success; dynamic (time dependent) measures 

of interest are: reliability and MTTF for closed systems (non-repairable), and 

availability, MTBF and steady-state availability for repairable systems. 

An efficient general combinatorial method for probabilistic reliability 

modelling (RM) was developed to deal with all reliability problems, this 

method consists basically of three steps: 

(1) Obtain the paths corresponding to the connectivity problem, take them 

as the events in the probability space, represent these paths as cubes in 

Boolean algebra. 

(2) Perform the "sharp" Boolean operation on the cubes to arnve at a 

Boolean algebraic expression. 

(3) Interpret the Boolean expression as a disjoint sum of terms, i.e. a 

symbolic probability expression. From this expression any stationary or 

dynamic reliability measure can be easily calculated for any given 

probability distributions by direct substitution of their values into the 

expression. 

In RM, steps (1) and (2) are executed recursively in order to gradually 

obtain the Boolean expression; the advantage of this method is that it 

reduces considerably the computer requirements: storage and computer 

time. 
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For large multiprocessor systems probabilistic reliability calculations 

require enormous computational resources, therefore approximation 

techniques have to be employed. The first approach was as described above, 

but taking only those paths that contribute more significantly to the 

symbolic expression. This is easily done in the recursive method RM by 

limiting the depth of the computation to a certain predefined limit. 

The second approach was to employ hierarchical decomposition of the 

system. First, by the use of hierarchical clustering, the system is partitioned 

into smaller subsystems or clusters; second, the general reliability model 

RM is hierarchically applied in a bottom-up fashion to each cluster in order 

to obtain an approximation of reliability. For each connectivity problem 

different hierarchical connectivity strategies were identified. This 
I 

hierarchical approach led to the development of two methods: IHRM and 

KHRM. The latter method gives results closer to the exact method, but in 

some cases the savings in computation time and memory are insignificant; 

on the other hand, with IHRM the computer requirements are greatly 

reduced, but the results are not very exact for lower values of element 

reliability. 

6.2 MODEL PERFORMANCE 

It is difficult to directly compare the performance of our model 

implementation to other published models, since performance is 

determined by several factors: (a) the algorithms, (b) the implementation, (c) 

the compiler and (d) the host computer. Also, quite often, the computation 

time and memory requirements reported do not include the whole 

computation, including the generation of paths, numerical reliability 

calculations, etc. 
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computation, including the generation of paths, numerical reliability 

calculations, etc. 

It is believed that our implementation, although quite general for 

several reliability problems and measures, is quite efficient. For several 

examples tested in medium size configurations, satisfactory solution times 

can now be obtained on a Macintosh personal computer whereas 

previously, mainframe computers might have been required. It is also a 

recursive method that requires less memory. 

6.3 APPLICATIONS 

The models explained above can be applied to evaluate reliability of 

systems of different granularity as long as they can be represented as simple 

graphs, from VLSI embedded multiprocessors to geographically distributed 

computer networks. Some application examples are: 

• Computer networks, such as national networks, telephone networks, 

LANs, etc., where all connectivity problems, rooted and unrooted are 

of interest. 

• Distributed systems, as the computer resources (processes, databases, 

etc.) are distributed among the nodes (computers, memories, etc.) of 

the system. It is desirable to obtain reliability for connectivity problems 

such as: KT, TT and AT, or k-out-of-n redundancy like in the example 

of section 4.4.8. 

• Multistage interconnection networks, where the switches, inputs and 

outputs can be represented as nodes of a directed graph. In this case, 
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• 

rooted problems such as SKT and KSKT can be used to obtain the 

reliability of communication from the inputs to the outputs. 

For medium-power multiprocessors and VLSI multiprocessor arrays 

several parallel architectures have been proposed. Basic configurations 

are ring, rectangular mesh, binary tree, binary cube, etc.. These 

architectures can be augmented or combined by adding links in order 

to improve their reliability and fault tolerance, like meshed rings, 

meshed trees, etc. All reliability problems are of interest, particularly 

overall reliability and the degree of fault tolerance, since it is desired to 

compare the different architectures and their fault tolerant variations. 

6.4 RECOMMENDATIONS FOR FUTURE WORK 

It has been stated previously the difficulties associated to the evaluation of 

reliability in multiprocessor systems; this has led to the development of 

simplified models such as the one presented in this report. 

Some parameters have not been considered here, but are important 

areas for future research needed for the reliability modelling of 

multiprocessor systems. Among them are: 

(a) Development of parallel algorithms to improve the computation 

efficiency. 

(b) Exploiting fault tolerant routing and control algorithms to help 

develop more realistic reliability models to establish simple and 

practical paths of communication between the remaning nodes in case 

of node or link failures. Reliability calculations can be simplified if 
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only the real paths (those generated for the routing algorithm) are 

considered. 

(c) Optimisation and reinforcement of reliability. Investigation of 

applicable methods for optimisation in redundancy allocation, 

subjected to some reliability constraints; and the reinforcement 

techniques, i.e. if the topology does not meet a specified level of 

reliability then an identification and reinforcement of the weak points 

of the system is required. 

(d) Development of better models for software/hardware reliability and 

availability in distributed systems. 

(e) Development of unified reliability and performance models. 

(f) Inclusion of fault coverage analysis. 

(g) Statistical dependency among failures of different components. A 

hierachical model can be used for failure dependency problems In 

which several modules are dependent upon each other, as when they 

are placed in a single unit. 
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Appendix A 

Basic Concepts of Graph Theory 

A graph G = (N, E) consists of a set of objects N = {Xl, X2, ... , xn} called nodes or 

vertices, which are interconnected by another set E = {el, e2, ... , em} whose 

elements are called edges. Each edge ek is identified with a pair (Xi, Xj) of 

nodes which are called the end-nodes of ek . The number of nodes in a graph 

is denoted by n = 1 N 1 and the number of edges by e = 1 E I. An example of a 

graph is shown in Figure A.1. 

An edge having the same node as both its end-nodes is called a self

loop (edge el in Fig. A.l). If more than one edge is associated with a given 

pair of nodes, these edges are referred as parallel edges, such as edges e4 and 

es in Fig. A.1. A graph that has neither self-loops nor parallel edges is called 

a simple graph. 



xl e3 

e4 e5 e2 

e6 

FIGUREA.l 
Graph with 6 nodes and 7 edges 

el 

e7 

lID 

o 

If an edge ek has Xi as an end-node, then ek is incident with Xi; if (Xi, Xj) E 

E then node Xj is adjacent or neighbour to Xi. For example in Fig. A.1 edges 

e2, e6 and e7 are incident with X4 which is adjacent to X2, X3 and Xs. Also, two 

non-parallel edges are adjacent if they have a common end-node, such as e2 

and e6 in Fig. A.1. 

The degree of a node Xi, denoted as d(Xi), is the number of edges 

incident with Xi. A node Xi for which d(Xi) = 0 is called an isolated node, if 

d(xi) = 1 is called a pendant node (X6 and Xs respectively in Fig. A.1). A graph 

is regular if every node has the same degree. 

Two graphs GI and G2 are said to be isomorphic if there is a one-to-one 

correspondence between their nodes ~uch that the number of edges joining 

any two nodes in G I is equal to the number of edges joining the 

corresponding two nodes in G2' A (proper) subgraph of G is a graph 

obtainable by the removal of a number of edges and/or nodes of G. The 

removal of a node necessarily implies the removal of every edge incident to 

it. 

A path from Xl to Xi is a sequence P = Xl, el, X2, e2, ... , ei-l, Xi of alternating 

nodes and edges such that for 1 ~ j < i, ej is incident with Xj and Xj+l' If Xl = Xi 

then P is a circuit. If in a path each node only appears once, then is called 
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simple path. Two paths are edge-disjoint if they do not have any edges in 

common. 

The length of a path or circuit is the number of edges it contains, and 

distance between two nodes is the length of the shortest path. 

A graph G is said to be connected if there is at least one path between 

every pair of nodes in G. Otherwise G is disconnected. 

A tree T is a connected graph without any circuit, so a simple path can 

be seen also as a tree. A tree is said to be a spanning tree of a connected graph 

GifT is a subgraph of G and contains all nodes of G. A tree T is a Steiner tree 

if T spans over a subset of nodes of G. 

A directed graph or digraph is a graph in which edges have assigned a 

direction. If ek = (Xi, Xj) is an edge of a digraph, then ek is understood to be 

directed from the first node Xi to the second node Xj (ek is incident from Xi 

and incident to Xj ). Xj is called a succesor of Xi , and Xi is the predecessor of Xj . 

The number of edges incident from a node Xi is called the out-degree of 

Xi and is written as d+ (Xi); the number of edges incident to Xi is called the in

degree and is written as d- (Xi)' An out-tree is a connected digraph that has 

no circuits and there is precisely one node R of zero in-degree. So, in an out

tree there is a directed path from the root R to every other node. Similarly, 

an in-tree is obtained reversing the direction of every edge. 

Finally, in a graph G, when a number or weight is assigned to each edge 

and/ or node, G is called a weighted graph. 
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Appendix B 

Computer Implementation 
Details 

The computer program for both reliability models, deterministic and 

probabilistic, have been implemented on an Apple Macintosh™ personal 

computer. The computer program has been written in the language Pascal, 

using Think Lightspeed PascaFM version 2.0 as the integrated environment 

for development (compiler, linker, editor and debugger). 

The entire program consists of about 3,000 lines of source code, 

including documentation and blank lines. 

The program is divided into the following modules (Figure B.1): 

(a) Generation of the graph representation 

(b) Deterministic evaluation 

(c) Probabilistic evaluation, which is subdivided into: 

(1) Generation of the symbolic Boolean expression 

(2) Evaluation of the probabilistic measures. 



input: graph configuration 

input: rellab. problem and class 

Fault simulation 
(generate subgraph) 

EVALUATE 
DETERMIN ISTIC 

MEASURES 

output: denseness, degree, 
distance, edge and node 

connectivity 

FIGURE 8.1 
Main program modules 

GENERATE 
GRAPH 

REPRESENTATION 

input: static prob .. 

input: rellab. problem. closs 
and evaluation method 

GENERATE 
SYMBOLIC 
EXPRESSION 

fail. rate. repair rate. ---....., 
time InteNal 

EVALUATE 
PROBABILISTIC 

MEASURES 

output: R. R(t). A(t). 
M1TF. MTBF. SA 

Each of these modules is subdivided into units; each unit contains the 

global and/or local constants, variables, data structures and procedures 

corresponding to each module. 

Figure B.2 shows the major units in each module. There is also 

another set of global units, which contains the common structures to all the 

modules; these structures are: global constants, variables and data structures 

and global procedures for error handling, initialisation and several graph 

manipulation routines: input a graph, transform its data representation, add 

and remove nodes and/or edges, generate a subgraph, obtain paths and 

trees, etc. It also contains other global procedures. 
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Genera Graph Deterministic ProbabilisHc 

Input Max flow Initialisation 
configuration Get degree Get boolean 

Get In-degree expr. 
Genera graph Denseness Clustering 
representation Total distance IHRM, KHRM 

Edge conn. Gen. final expr. 
Node conn. I 
Simula faults Rellab. paramo 
Compute det. Compute prob. 
measures measures 

/ 
Globals Error handling 

Initialisation 

Constants, types, Graph manipulation 
data structures 

FIGUREB.2 
Module units 

Rellab. problem & class 
Distance, path (BFS), 
spanning and Steiner tree 

Due to the memory and speed limitations of the Macintosh computer 

(Mac Plus with 68000 processor and 1M memory running at 6.7 MHz), the 

maximum number of nodes and edges combined cannot exceed 64 in our 

implementation. 

The program has been coded in standard Pascal and the user interface 

for interactive input and output is text based, simple and self explained; 

therefore the program can be easily transferred to any other computer 

system. A more sophisticated graphics interface is out of the scope of this 

work. 
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