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ABSTRACT 

This thesis describes a short term water demand forecasting application that is based 
upon a combination of a neural network forecast generator and a rule based system 
that modifies the resulting forecasts. Conventionally, short term forecasting of both 
water consumption and electrical load demand has been based upon mathematical 
models that aim to either extract the mathematical properties displayed by a time series 
of historical data, or represent the causal relationships between the level of demand and 
the key factors that determine that demand. These conventional approaches have been 
able to achieve acceptable levels of prediction accuracy for those days where 
distorting, non cyclic influences are not present to a significant degree. However, when 
such distortions are present, then the resultant decrease in prediction accuracy has a 
detrimental effect upon the controlling systems that are attempting to optimise the 
operation of the water or electricity supply network. The abnormal, non cyclic factors 
can be divided into those which are related to changes in the supply network itself, 
those that are related to particular dates or times of the year and those which are 
related to the prevailing meteorological conditions. If a prediction system is to provide 
consistently accurate forecasts then it has to be able to incorporate the effects of each 
of the factor types outlined above. The prediction system proposed in this thesis 
achieves this by the use of a neural network that by the application of appropriately 
classified example sets, can track the varying relationship between the level of demand 
and key meteorological variables. The influence of supply network changes and 
calendar related events are accounted for by the use of a rule base of prediction 
adjusting rules that are built up with reference to past occurrences of similar events. 
The resulting system is capable of eliminating a significant proportion of the large 
prediction errors that can lead to non optimal supply network operation. 
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CHAPTER! 

INTRODUCTION 

_ 1.1 Introduction to Water Supply Systems in England and Wales. 

1.1.1 History 

Historically the existence of an organised public water supply system can be traced 

back to the first Government involvement in such schemes in the 1840's, when pressure for 

some sort of action to improve drinking water supplies was demanded after a number of 

cholera outbreaks. Over the next hundred years many small water supply bodies were 

established, either as private companies or run by local authorities, this led to a very complex 

and disorganised situation unable to provide for the larger scale and longer term planning 

decisions required by the growth of water demand with industrialisation. 

A succession of Water Acts passed by parliament between 1945 and 1973 led to 

increasing centralisation of control over water resources, with the establishment in 1973 of 

the ten regional Water Authorities of England and Wales. Each having overall control of 

water supply, distribution and sewage treatment within their region but containing semi 

autonomous remnants of pre-existing water companies. 
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The 1989 Water Act led to the privatisation of the ten regional Water Authorities 

which initiated their operation as PLC's while retaining the existing overall geographical 

boundaries and many of the semi autonomous water companies as shown in figure 1.1.1. 

1.1.2 Water Network Structure 

A water network is a structure designed to facilitate the movement of water from a 

source or number of sources, to the locations where the water is required. There are many 

different interrelating levels of network that can be differentiated in terms of their scale. 

There are very large scale network schemes such as the Thames Water London Ring Main, 

which are designed to move large quantities of treated water from sources to distribution 

points. Both Yorkshire Water and North West Water use connecting networks of rivers, 

canals and aqueducts to transport raw water large distances from upland reservoirs to the 

cities where demand is concentrated. A schematic of the North West Water conjunctive use 

scheme is shown in figure 1.1.2. 

The regional water PLC's are subdivided into a number of smaller self contained 

supply areas, some of which being setru autonomous comparues, which 

control the water supply and distribution to one or more towns or a section of a larger city. 

Bulk supplies between such areas and any connections to region-wide networking schemes 

such as described above are generally governed by the regional company strategy, however, 

the day to day operation of the pumping and storage resources within the area is usually self 

contained. Within such supply areas are the elements of a typical water supply network, 

pumping stations for either ground water or surface water abstraction, raw and treated water 

reservoirs, water towers, booster pumps, treatment plants and the pipework itself. This is 

shown in figure 1. 1.3. 
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Figure 1.1.2 North West Water Conjunctive Use Scheme. 
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Over recent years the introduction of new technology, principally telemetry systems 

and automatic control systems for pump and valve operation, has allowed the running of a 

network to be controlled from one or more central control centres with the minimum of 

human operators. Figure 1. 1.4 shows a diagrammatic representation of the telemetry and 

control system set up at Thames Water's Bourne End Control Centre which allows a single 

operator to monitor and control the water network supplying Slough, High Wycombe and 

Aylesbury. 

Within the supply areas outlined above may be a number of pressure zones, these 

-allow the maintenance of adequate water pressure over the varying ground elevations 

present in the network area. Such pressure zones are commonly interconnected via pressure 

controlling valves or booster pumps. Finally, within the pressure zones may be districts 

which are fed through a small number of valves, often with associated pressure or flow 

measuring devices used for leakage monitoring purposes. 

1.1.3 Water Network Technology 

As mentioned in the previous section the application of new technology to the field 

of water network monitoring and control has allowed the gathering of accurate data on the 

behaviour of the network in response to operational changes, and hence the development of 

improved network control strategies. Such data collection and control has been achieved 

principally through the installation of status monitoring devices that transmit information 

about the network to a central location via a SCADA (Supervising Control And Data 

Acquisition) telemetry system. 
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The basic elements that comprise a water network SCADA system are: the field 

instruments such as flow meters, pressure transducers, pump status indicators/switches, 

valve actuators, reservoir level transducers etc~ the telemetry system that carries the signals 

from the field instruments to the control centre, this can be via private or rented telephone 

wires or microwave radio links etc~ the computing hardware and software that receives, 

interprets and stores the incoming telemetry data, provides the interface to the operator and 

generates the appropriate control signals. 

It is the acquisition of such technology that allows control over the operation of the 

- various elements of the network and the results of any changes to be viewed and archived 

for future reference, that has opened the door to the possible cost savings that can be 

achieved by running a network to much finer tolerances than was previously possible. 

Examples of such cost saving applications are programs designed to produce a minimum 

cost pump schedule based on the predicted level of water demand and the electricity tariff 

structure and programs that can assess the security of supply by simulating many 'what if 

scenarios. Applications such as these have in tum highlighted the need for accurate methods 

of predicting future patterns and levels of water consumption. A pump scheduling plan that 

is based on a prediction of demand that turns out to be grossly in error will not represent 

the best use of pumping resources and a security assessment based on erroneous demand 

prediction data could have serious implications on the ability to maintain supplies. 
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1.2 Water Consumption. 

1.2.1 Components of Water Consumption 

Water consumption can be divided into vanous components each contributing 

towards the total observed consumption. Domestic consumption is defined as that 

associated with all forms of domestic activity, this includes drinking water, washing of 

clothes, flushing toilets, garden watering etc. Not only have population levels increased 

thereby increasing the overall demand for water but also the level of water consumption per 

household has been gradually increasing as water consuming domestic appliances such as 

dishwashers, automatic sprinklers etc. have become more commonplace. Estimates of the 

average amount of water consumed per head of population in the UK increased from 150 

l/head/day in 1972 to 230 IIhead/day in 1989 [13,39,99]. 

Industrial and commercial consumption ranges from the large amounts of water 

(typically between 10 to 100 IIsec) used by industries such as chemical, foodstuffs and paper 

manufacturing, through the medium water usage (1 to 10 IIsec) of light industry to the 

relatively small amounts of water used by offices and shops. Many industrial and commercial 

water users have their supplies metered, data from such meters can be of great value in 

accounting for their levels and patterns of water consumption when carrying out such tasks 

as network modelling and demand prediction. 

Agricultural water usage can be divided firstly into water used for irrigation 

purposes, which may be abstracted privately by the farmer from surface or ground water 

sources, usually by licensed agreement with the water company. Secondly there is the water 

consumption associated with such activities as livestock watering, dairy production etc. 
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Losses of water from the network can account for a significant proportion of the 

water pumped into supply. Leakage occurs from both pipework and reservoirs, the amount 

of water lost can be up to 40% of the total supplied in areas with bad leakage problems. 

Other losses can be through activities such as reservoir washing and mains flushing, as well 

as water not registered due to faulty flow meter readings. 

1.2.2 Factors Affecting the Level of Water Consumption 

Each of the above components that contribute to the total amount of consumption is 

influenced by a complex interrelating set of factors that governs both the shape and level of 

the water demand profile. One of the most significant factors in determining the 

characteristics of the water consumption patterns in a particular area, is the relative 

proportions of the domestic, industrial and agricultural components that are geographically 

and demographically present. A mainly rural area with a few small towns will have very 

different demand characteristics to a large urban area with a significant amount of industry. 

The domestic weekday water demand profile typically has the characteristic shape 

displayed in figure 1.2.1. This shows that a low level of usage through the night is followed 

by a sharp pick up in demand in the early morning as people get up, wash and prepare for 

work. A peak is reached between 08.30am and 10.00am and a gradual tail off occurs until 

another pick up in the late afternoon/early evening as people return from work. The demand 

reaches a second peak in mid to late evening then tails off towards the night-time 

consumption level, often with a small pick up just before midnight as people prepare for bed. 

The pattern for weekend consumption is similar to that of a weekday in normal weather 

conditions, but the morning pick up is significantly later and less sharp due to less people 

getting up simultaneously to go to work, this can be seen in figure 1.2.2. The work by 

Cubero [36] and Cembrano [120] highlights the correlation between the patterns of daily 
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Figure 1.2.2 TypicaJ Weekend Demand Profile 
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water consumption which result from the weekly cycle of social behaviour. As table 1.2.2 

shows, the strongest correlation between daily demand values occur at time lags of 1, 7, 14 

and 21 days. This indicates that the current days demand is strongly influenced by the 

previous days demand and the demand experienced on the same day over a number of 

preceding weeks. 

There are many factors that can influence the level of domestic water usage, but to 

be significant they need to produce a change in the water consumption characteristics of a 

large proportion of the population within a particular area. Public Holidays are an example 

of a situation when a significant proportion of the population changes its routine, the 

demand profile of such holidays being closer to that of a Sunday than the normal weekday 

pattern. The effects of public and school holidays on water consumption are particularly 

evident in popular holiday locations which experience a large sudden influx of people 

resulting in a sharp increase in the level of water demand. 

The weather can also have a significant effect upon the population's water usage 

characteristics. Increases can be seen in the level of water consuming activities such as 

clothes washing and car washing. There is also the more direct effect of an increase in 

garden watering during a period of hot, dry weather. Studies have shown [2,13,141] that the 

addition demand caused by garden watering can be between 20% - 40% of the average level 

of demand. The factors influencing the increases in consumption due to hot weather are not 

only the absolute temperature on any given day but also the number of hours of sunshine and 

the length of time since the last rainfall ( termed the number of antecedent dry days). Figure 

1.2.3 shows the profile from a hot day in June, the overall level of demand is increased 

during the day and the evening peak is large and spread over 5 hours. 
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Table 1.2.2 Autocorrelation of total daily demand over 3 weeks. (Reproduced From [102] ) 

No. of Days Prior to Current Day Autocorrelation Function 

1 0.S9 

2 0.06 

3 -0.07 

4 -0.10 

S -0.01 

6 0.3S 

-

7 0.71 

8 0.33 

9 -0.04 
I 

10 -0.14 

11 -O.IS 

12 -0.07 

13 0.30 

14 0.63 

IS 0.26 

16 -0.12 

17 -0.21 

18 -0.21 

19 -0.13 

20 0.21 

21 0.S4 

13 



Figure 1.2.3 Weather Influence On Water Demand 
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Industrial demand may have a unique profile, dependent upon the types and quantity 

of industry present within a supply area. The profiles from a heavily industrialised area can 

show radically different characteristics to that of a mainly urban area, figure 1.2.4 shows the 

diurnal profile form the Knowsley Industrial Park area of Liverpool. However, as previously 

mentioned, most large and medium industrial users either have their own water sources or 

they have their demand metered hence making the task of incorporating their effects into a 

demand prediction easier. The smaller industrial users and the commercial users commonly 

exhibit strong weekday/weekend variations, the weekend usage being significantly less than 

that during the week. The occurrence of public holidays means a large proportion of the 

industrial and commercial water use is reduced while the effects of events such as industrial 

disputes in major users can also reduce demand. 

Agricultural usage for irrigation, if not taken from private sources, will have an effect 

upon observed demand that will be both seasonal and weather dependent. Activities such as 

harvesting can lead to a sudden increase in demand levels when the washing of produce is 

required. 

The amount of water lost from the network due to the effects of leakage is 

dependent on three factors. The first is the condition of the pipework in the ground, this in 

tum is a function of the age of the pipes, the materials from which they are constructed, the 

effectiveness of any coatings applied to the pipes and the chemical characteristics of the 

water passing through them. The poorer the pipe condition the more leakage is likely to 

occur. Secondly, the pressure at which the pipes are operating will have an influence upon 

the leakage level, the higher the pressure the greater the likelihood of a break in the 

pipework and if a burst does occur then the higher pressure will result in a greater volume of 
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water lost. The relationship between pressure and leakage has been documented in an 

industry standard publication, the Water Research Centre Report 26 [154], which showed 

the volume of water lost due to leakage to be a function of pressure. 

The third factor governing the level of leakage, is the amount and effectiveness of the 

leakage repair work carried out by the water company in the area in question. 

It should be emphasised that the factors that have an effect on the level of water 

consumption rarely do so in isolation. It is much more likely that a number of superimposed 

effects will be exerting a degree of influence upon the observed demand at anyone time. 

1.3 Demand forecasting. 

As can be seen from the multiplicity of factors and effects outlined in the previous 

section, the accurate prediction of future levels of water demand is a complex task that 

requires the careful investigation of the demand characteristics of the water network being 

studied. In this respect, the more data that is available on the reactions of the network to 

previous conditions and the resulting variations in the levels of demand, the greater are the 

chances of correctly accounting for similar variations in the future. However, it is by no 

means certain that a complete and comprehensive catalogue of past data will be available. 

Data can be corrupted by the telemetry system, it can be lost due to a computer or 

instrument failure or can be absent altogether, therefore increasing the difficulty of the 

prediction task. 

Predictions of future demand can be divided into three categories, each with their 

own specific uses. Long term demand forecasting is concerned with the prediction of the 
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likely levels of demand several years in the future and is used for long term planning 

decisions such as predicting capacity requirements based upon the expected demographic 

and per-capita water usage changes. This allows the pumping and storage capacity of an 

area to keep pace with the water demands of the local population. Medium term demand 

forecasting is concerned with periods up to a year in advance and is usually aimed at 

contingency planning. This involves ensuring the pumping and storage strategy can cope 

with the peak month, peak week, and peak day predicted demands, carrying out 'What if' 

scenarios to test the ability to maintain supply if a pumping station or reservoir is out of 

service for a significant period of time. 

Short term water demand forecasting is aimed at the successful prediction of water 

demand variations over a period of up to 3 or 4 days in the future, however most water 

utilities run their short term network control strategy over a prediction horizon of 24 hours. 

This 24 hour control strategy involves the production of an efficient pumping schedule based 

on three governing factors which are, meeting the predicted demand, minimising the 

pumping costs within the existing tariff structure and providing a security of supply capacity 

buffer in case of unforeseen circumstances. The studies described in this thesis are concerned 

with development of a methodology for the production of accurate demand forecasts over 

this 24 hour prediction horizon, thereby ensuring that a pump schedule based upon such a 

demand forecast remains valid in the light of the actual pattern of consumption experienced 

during the prediction day. 

1.4 Presentation and Content of this Thesis 

This thesis presents a study of the application of knowledge based and neural 

network techniques to the problem of generating accurate short term water demand 
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forecasts. The development of an operational system and its testing and validation against 

water consumption data supplied by Thames Water are described, together with comparative 

results produced by submitting the consumption data to an auto-regressive integrated 

moving average (ARIMA) algorithm. 

The present chapter gives an introduction to the field of water supply, in particular 

the components and characteristics of water networks and the technology used to monitor 

the behaviour of such networks. The various components identifiable as contributing to 

water consumption patterns are discussed along with the factors that cause variations in 

_these components. The diverse and often interrelating nature of these variations highlights 

the problems to be overcome if a prediction methodology is to be sufficiently accurate for 

use in optimal network operation strategies. 

Chapter 2 presents an overvIew of previously published methods of short term 

forecasting. It is argued that methodologies that have been developed for use in short term 

load forecasting within the electricity generating industry are relevant for study in relation to 

the topic of this thesis. The reason for this being the close similarities between the daily, 

weekly and seasonal cycles displayed by electrical energy usage and those displayed in the 

patterns of water consumption. The previously published work in the field of power systems 

load prediction is discussed, with a division being made between quantitative mathematically 

based methods such as spectral analysis, exponential smoothing and linear regression, and 

heuristic methods such as pattern matching, expert systems and load dissagregation. The 

advantages and disadvantages associated with the various approaches are discussed. A 

review of previous work associated with water systems demand prediction is then presented, 

again with the division being made into quantitative and qualitative approaches. The chapter 

concludes with a discussion of the degrees of success the reviewed approaches have 

achieved in overcoming the problems associated with short term water demand prediction. 
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Chapter 3 describes in detail the development and implementation of an ARIMA 

time series analysis based prediction algorithm. At present, this type of algorithm is 

commonly used by electricity and water supply utilities to generate predictions of future 

demand, it is therefore a suitable algorithm to use in this thesis as a benchmark, against 

which to compare the performance (in terms of prediction accuracy) of the methodologies 

described in Chapters 4, 5 and 6. Examples of predictions generated by the ARIMA 

algorithm for both electrical load data and water consumption data are provided and the 

relative merits and shortcoming of such a prediction methodology are discussed. The 

evidence presented shows that acceptable prediction accuracy can be achieved by an 

ARIMA demand predictor when the level of demand is governed almost solely by the stable 

diurnal and weekly cycles in the pattern of electricity or water usage. However, large 

discrepancies can develop between the predicted and actual demand when the influence of 

non cyclic external factors such as extreme weather conditions become significant. 

Chapter 4 introduces a methodology designed to facilitate the incorporation of 

heuristic knowledge into the process of generating demand forecasts. This heuristic 

knowledge relates to events of a non cyclic nature that distort the demand profile and 

prevent purely mathematical prediction methodologies from consistently achieving the 

required prediction accuracy. The application described in this chapter is a rule based system 

developed within the POPLOG environment and written in the Artificial Intelligence 

orientated programming language POP-II. A subdivision of the non cyclic effects is made 

into Calendar, Network and Weather related effects, this division being useful in the 

categorisation and construction of the rules that are designed to account for the effects. The 

rules themselves are stored in the built in POP-II database and are extracted and applied to 

the raw prediction profiles by a controlling inference engine. This inference engine also 

provides a menu driven user interface that allows the alteration of the rules held in the 

database. 
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The prediction profiles passed to the rule based system described in Chapter 4 are 

generated by a neural network prediction application that is detailed in Chapter 5. Following 

an introduction to the concepts and components of neural networks, a detailed description is 

given of the single layer linear associative network and the training algorithm that is used in 

the demand forecasting application. This network accepts as input a day type classification 

value that is based on the current and historical meteorological conditions and outputs a 24 

hour prediction profile composed of 48 data points. The day type classification method 

provides a degree of coarseness to the meteorological data that avoids the requirement for 

the neural network to provide a mapping of each of the complex relationships between 

---values of individual meteorological variables and resultant demand levels. Results of the 

comparison between predictions generated by the AR1MA algorithm and those produced by 

the neural network show that the neural net is significantly more successful at correctly 

predicting weather dependent demand. 

Chapter 6 provides a review of related work into the use of neural networks for 

electrical load prediction and water demand prediction. Two additional neural network 

based demand forecasting applications are then described, each uses a network architecture 

that is significantly more complex than the single layer linear associator. The first is a back 

propagating neural net that takes as input the values of five meteorological variables and 

generates as output a 48 data point 24 hour prediction profile. The aim in the development 

of this network was to investigate the success or otherwise of doing away with the day type 

classification utilised for the linear associator and attempting to use the neural net to create a 

direct mapping between weather variables and the resultant demand profile. Results 

produced by the back propagating network showed little consistency in the accuracy of the 

predictions. The second type of network investigated was a counterpropagation network. 

This network is composed of two layers, the first layer is a Kohonen layer that attempts to 

perform the day type classification task carried out by the FORTRAN routine in the linear 

21 



associator application. Meteorological variable values from a large number of training day 

examples are applied to the Kohonen layer which performs a classification on this example 

data such that similar examples always trigger the same Kohonen neuron. The Grossberg 

layer that comprises the rest of the network then takes the input from the triggered Kohonen 

neuron and generates a 48 data point prediction. Results generated by this network showed 

that the classifications performed by the Kohonen layer were highly unreliable and therefore 

compromised the prediction accuracy. 

Chapter 7 provides a summary of the work described in the thesis, this highlights the 

problems encountered in developing an accurate demand forecasting system and describes 

the implementation of the novel approaches used in overcoming these problems. A brief 

outline of the possible future development of demand forecasting in the water industry in the 

UK is also provided. 
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CHAPTER 2 

REVIEW OF PREVIOUS WORK 

2.1 Introduction. 

There are several important factors to be considered when designing a system 

for forecasting the future values of some variable or variables. Firstly, there is a need to 

define exactly what is to be forecast, secondly an evaluation must be made of the 

degree of accuracy required of the forecast and thirdly an examination must be 

conducted of the data available to the system upon which the forecast is to be based. 

This requires a careful study of the decision problem the forecasting system is aiming 

to solve. 

Many forecasting problems are examples of attempts to predict future values of 

one or more variables which are dependent on a process that can be almost completely 

explained by one or more causal effects but also include a random element. The 

presence of this random element within such processes ensures a degree of error will 

always be present in the resulting predictions. However, although a degree of forecast 

inaccuracy introduced by the effects of this random element must be accepted as 

inherent, by increasing the understanding of the causal elements of the process we can 

minimise the magnitude of the prediction errors. 
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The degree of accuracy achieved in the modelling of the underlying causal 

processes is largely dependent upon the resources and effort directed towards the 

development of the forecasting system. This in tum is likely to be a reflection of the 

importance of the decisions that are to be based upon the forecasts produced. As the 

costs of developing a more accurate forecasting system increase, so the risk of arriving 

at an erroneous decision is decreased. 

The field of short term prediction of electrical power consumption IS very 

closely related to that of short term water demand prediction due to the similarity of 

the prediction problem. This has resulted in several algorithms which are common to 

both applications. It is therefore necessary to investigate the large body of work that 

has been undertaken into the prediction of electricity consumption (termed electrical 

load prediction) in order to fully understand the influence of such work upon the 

development of water demand prediction methodologies. 

2.2 Load prediction in electrical power systems. 

There are several factors that make investigations into the work carried out in 

the field of short term electrical load prediction relevant to the work described in this 

thesis. A comparison of the typical daily profiles for both electricity usage and water 

consumption for an urban area, highlights strong similarities in the characteristics of 

the two profiles, this can be seen in figure 2.2.1 . The diurnal cyclic variations 

observable in both profiles 
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are generated by the patterns of behaviour of the general population in terms of 

domestic, industrial and commercial activity. 

It is also the case that methodologies developed initially for forecasting 

applications in one field have been adapted for use in the other, a good example being 

that of the ARIMA (Auto Regressive Integrated Moving Average) [ 17,151] algorithm 

described in detail in Chapter 3 of this thesis. This was initially developed and applied 

in the prediction of electrical load (examples are Box and Jenkins in 1970 and Vemuri 

et al in 1981), however, the algorithm was later adapted for use in water demand 

prediction[SS, 120, 143 ]. 

Electrical load data exhibits strong cyclic patterns, these correspond with the 

daily, weekly and seasonal variations in the way the population of the society in which 

we live consumes electricity. Figure 2.2.2 shows a typical weekday electricity 

consumption pattern, termed a load profile. The characteristics of this typical profiles 

are as follows. A low level night usage between the hours of 1 am and Sam is followed 

by a sharp morning pickup beginning an approximately 6.30am. The morning 

consumption peaks between 8am and lOam and there are further peaks around midday 

and in the early evening. During the evening there is a gradual tailing off back to the 

night consumption level. As with water consumption there are significant differences 

between weekday and weekend daily profiles, a typical weekend load profile can be 

seen in figure 2.2.3. 

Deviations from the normal cyclic pattern of electricity consumption can be 

caused by a number of factors, some of which are common to both electricity and 

water networks, though the manifestations of their effect may be different (i.e. the 

effect of a period of high temperatures may be to increase water usage due to garden 
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Figure 2.2.2 TypicaJ Weekday Electric load Profile 
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watering, but the electricity consumption may decrease due to reduced heating 

requirements). Examples of factors that affect the shape of the electrical load profile 

include weather related factors such as temperature, humidity, cloud cover and wind 

speed, all of which have an influence on the heating and lighting requirements of the 

population. Day length also has a significant influence upon the load profile which 

alters as the hours of daylight vary through the seasons, this being particularly evident 

around the transitional periods of spring and autumn. Public holidays have a marked 

effect upon electricity consumption, as can be seen in the August Bank Holiday 

Monday profile shown in figure 2.2.4. Shorter term factors such as the peaks following 

- the ends of important social, media or sporting events have a far greater immediate 

impact upon the electricity consumption than upon that of water. The power supply 

companies have to anticipate the occurrence of such surges in load in order to ensure 

they have enough standby generating capacity (termed spinning reserve) to meet the 

demand, whereas the water utilities have the buffering effect of reservoir storage to 

smooth out the impact of such short term demands. The requirement to maintain 

adequate reserve generating capacity and hence be capable of predicting peaks in 

demand illustrates one of the important uses of short term load forecasting in the 

power industry. Load forecasting is also used in applications such as plant ordering, 

where the on or off status of each generating unit is determined in order that the days 

peak demand can be safely met and economic dispatch, where the output of each 

generating unit determined as being in operation is specified for each time interval of 

the forecast period. 

The importance of load prediction to the power generation industry is reflected 

in the amount of research conducted in this field over the past two to three decades. In 

order to provide a coherent review of the significant published work on electrical load 
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Figure 2.2.4 Bank Holiday Electric Load ProfIle 

2000 

1800 

1600 

1400 

1200 

~ 
~ 

1-Electric Load I -- 1000 
~ 
0 
-l 

800 

600 

400 

200 

o+-~~~~~~~~~~-,~~~~~,-~~~~ 

o 2 4 6 8 10 12 14 16 18 20 22 24 

TIMEHRS 

30 



prediction, a general division of the approaches described in the literature has been 

made into quantitative and heuristic approaches. 

2.2.1 Quantitative Approaches 

Quantitative approaches to load prediction are mathematical and statistical 

methods that involve the examination of historical data in order to determine the 

underlying processes generating the observed variations in the load. Assuming that 

these underlying processes are stable, they can be modelled and then extrapolated to 

produce the required prediction. A subdivision of such quantitative approaches can be 

made into time series based methods, causal approaches and those applications that 

combine elements of both. 

2.2.1.1 Time Series Based Methods 

A time series is a time ordered sequence of observations of a variable. Time 

series analysis is the use of mathematical techniques to develop a model that can 

accurately track the observed variations in these past data values and then be used to 

extrapolate a prediction of their likely future values. Examples of time series based 

methodologies are: 

2.2.1.1.1 Exponential smoothing: 

Simple exponential smoothing is a method of forecasting used in a variety of 

applications, [107,109, 144] it assumes that the average level of demand is stationary or 

only changing very slowly. The process can be modelled as: 
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(2.2.1.1) 

where XI is the actual value of the demand at time t , XI is the expected value 

of the demand and el is a random error component having zero mean. Given a time 

series of past demand data xl'x2 ' .... , XI an estimate of the value of XI at time t can be 

calculated as an exponentially weighted average: 

(2.2.1.2) 

Substituting (t - 1) for t and multiplying through by (1- a) yields 

(2.2.1.3) 

Subtracting equation 2.2.1.2 from equation 2.2.1.3 gIves 

(2.2.1.4) 

Where a is the smoothing constant, having a value between 0 and 1. 

If the current trend T. of the smoothed values is calculated then an estimate of 
I 

the future smoothed values can be made 

.,.., 
" "" 

(2.2.1.5) 



- -
XI+I = XI + 7; (2.2.1.6) 

Where C is a constant with a value between 0 and 1. 

Exponential smoothing is a procedure which adjusts the estimate of the new 

smoothed value by an amount proportional to the most recent forecast error. The 

simple exponential smoothing equation can be augmented by the inclusion of factors 

that are designed to account for trends in the data such as seasonal effects [28,1 09]. It 

should be noted that the values chosen for constants such as a have a direct effect 

upon the sensitivity of the forecast results to sudden changes in the data. Lower values 

for a produce a forecast that is more influenced by data further back in the time series 

and less affected by sudden random changes in the more recent data. Conversely higher 

values of a produce a faster response to the more recent changes in the data. An 

application dependent compromise has to be found between stability and sensitivity of 

the algorithm. 

2.2.1.1.2 Discussion on Exponential Smoothing 

Exponential smoothing has the advantages of requiring little computing time 

and not requiring the storage of large amounts of past data. It is also relatively easy to 

adjust the sensitivity of the equation to changes in the process being modelled. The 

chief disadvantage in terms of application to water systems demand prediction being 

that the prediction period is typically very short, ranging from minutes ahead up to two 

hours ahead. The problem being that values chosen for the smoothing constant and any 

seasonal and/or trend constants do not remain valid over the 24 period of a typical 

demand profile. The short prediction period is not a problem for some applications in 

electrical load forecasting [107], the much faster response times involved in plant 

]) 

---- .---~~~-~ 



switching means that forecasts of minutes ahead are required to allow operators to 

react within the short prediction horizon. 

2.2.1.1.3 Spectral analysis/expansion 

Most power generation/distribution utilities or companies maintain records of 

past electrical load data, however they are less likely to keep records of 

contemporaneous meteorological data. It is therefore desireable to have a method of 

prediction that only requires past load values for the prediction process i.e. it is not 

necessary to obtain historical records of weather data. Such a method of prediction 

based on spectral expansion was first proposed for use in the power supply industry by 

Farmer [ 48 ] in 1963 and involves the dissagregation of the load into a base load and a 

weather dependent component. 

The basic premise of the spectral expansion methodology is the division of the 

load into a slowly varying base component and a residual component that can be 

attributed to variations in meteorological conditions. In order to generate a prediction, 

it is assumed that the level of this weather related component will not change 

significantly over the prediction period. The base load is calculated and then the 

current consumer response to the existing weather conditions is identified and 

extrapolated to produce the prediction. 

Mathewman and Nicholson [100] proposed that since the load pattern repeats 

itself every 24 hours it is possible to consider the time series for each day, whether 



continuous or discrete, as being a member of an ensemble of time series. The problem 

then becomes one of predicting a nonstationary process, given an ensemble of sample 

functions. The daily load curve can be divided into overlapping part day periods of 

between 4 and 24 hours duration. By taking the part day load curves for a particular 

period over a number of days, it is possible to define the value of the load on day m at 

time t as xml where: 

(2.2.1.8) 

In the above equation .f (T ) f (L ) .f (w ) JIm' 2 m ,J3 m are functions of mean 

temperature, illumination and wind speed respectively. For the duration of the period 

under consideration these functions are considered to be linear. The quantity ami 

represents the base load and the factors Pmt' r mt ' Sml account for the varying 

importance of these individual weather components with the time of day. Each load 

vector is therefore linearly dependent upon the vectors a,p, r, S . 

A method of calculating the values of the weather dependent component 

without specific reference to the actual meteorological data is provided by use of 

Karhunen's spectral expansion of stochastic processes [83]. For a part day period made 

up of N discrete values taken from M example past days it is possible to set up a K 

dimensional linear manifold in which Karhunen's spectral expansion can be written: 

K I 

X mt - L a mk A ~ ¢ kl + e ml 

k = I t=1,2, ... ,N (2.2.1.9) 

35 



Where emt is the error In the predicted value. Equation 2.2.1.9 can be 

expressed in matrix notation as: 

Where: 

Xmt EX;dim(X) = Mx N 

amk E C;dim(C) = M x K 

¢kt E <I>;dim(<I» = K x N 

emt E ~;dim(~) = M x N 

( IJ [I I I I ] 
diag A2 = Ail ,A~2 , .... Aik , .... ,AiK 

(2.2.1.10) 

From the above form of the expansion it is possible [100] to derive a matrix 

eigenvector equation which when solved yields eigenvectors which are equivalent to 

the vectors a,P,r,C; of equation 2.2.1.8. 

Various methods have been proposed for finding the set of coefficients a k 

including the approach described by Farmer [50] which is to calculate the most 

probable value of the coefficients using the method of conditional probability outlined 

by Kalman [81]. 



2.2.1.1.4 Discussion on Spectral Expansion 

The main advantage of this method of prediction is that recognition is made of 

the fact that weather conditions have an impact on the consumption of electricity and a 

way of accounting for this impact is made without the requirement for large volumes 

of past meteorological data . In addition, some of the derived versions of the 

methodology [144] are relatively computationally efficient, requiring only the first 

and/or second eigenvalues to be calculated. The disadvantage with the methodology is 

that it assumes a static relationship between the weather related factors and the load 

over the prediction period. This is not a problem as long as weather conditions remain 

the same during the prediction day, but if sudden changes do occur in the 

meteorological conditions then serious errors can be introduced. In addition, abnormal 

days such as bank holidays are not accounted for unless a separate model is derived for 

each occurrence. 

2.2.1. 1.5 ARMA and ARIMA Time Series Models 

A brief overview of this class of time series model and their application to load 

forecasting is given in this section. Because an ARIMA prediction algorithm is used to 

provide comparison results for the accuracy assessment of the proposed new 

prediction methodologies described within this thesis, a more detailed study of this 

algorithm is provided in the following chapter. 

The use of time series methods such as exponential smoothing assumes that an 

element of the time series in question will consist of the mean of the series plus a 

random error component. However, there are many examples of time series where the 

elements of the series are clearly not independent and forecasting techniques have 
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been developed which are designed to exploit the dependency displayed by time series 

observations. Such techniques were described by Box and Jenkins [17] and are known 

as Auto Regressive Moving Average (ARMA) techniques. 

The variations displayed by a time series of past electrical load data can be 

thought of as the result of a number of cyclic processes acting upon the data, plus a 

random non deterministic element. If all the cyclic processes can be correctly identified 

and modelled then the residual noise remaining after their removal should display a 

Gaussian distribution. The general form of the ARMA models used in the prediction of 

electrical load is given below. 

(2.2.1.12) 

Where a is a Gaussian noise sequence W is a stationary time series of load 
I I 

data obtained by the transformation: 

(2.2.1.13) 

Where 21(1 = 1,2, .... ,N) is the non stationary time series, 

V the backward difference operator 

d and D the difference orders 
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B the backward shift operator 

B
S 
the seasonal backshift operator of period S 

The Auto regressive components are: 

(2.2. l. 14) 

(2.2.1.15) 

Where p is the order of the AR component and P is the seasonal difference order. 

The Moving Average components are 

(2.2.1.16) 

(2.2.l.17) 
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The general form of the model given here is modified to a form that is relevant 

to the actual time series data being used. Statistical analysis methods such as sample 

autocorrellation are used to identify the cyclic periods operating upon the data and 

hence the significant ARMA components. The fitting of the specific form of the model 

to the data requires determination of the values of these ARMA components such that 

the sum of the squares of the residuals due to the parameter fit are minimised. 

Several hill climbing procedures have been used to achieve this minimisation 

[46,57,90,118,139], however a computationally efficient method is described by 

Sterling and Bargiela[ 147] based on a derivative of the Newton Raphson iterative 

procedure. This uses an approximation to the Hessian matrix calculated by the 

Davidon, Fletcher, Powell[ 146] method, which provides additional information on the 

state of the function to be minimised in the current search direction and avoids the 

possible problems of non convergence often associated with complex non-linear 

problems of this type. 

A prediction is produced from the fitted model by expanding the model 

forward in time for the length of the required prediction and assuming that the values 

of the noise series at are equal to zero over this prediction period. 

2.2.1.1.6 Discussion on ARIMA and ARMA Methods 

ARIMA algorithms have been shown [90,118,146] to be capable of accurately 

modelling the cyclic patterns displayed in a typical electrical load time series as long as 

the series remains stable or only changes slowly. The methodology will successfully 

track the slow changes in consumption due to the general weather patterns of the 

seasons, however it cannot take account of the more sudden changes in load due to 
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the day to day variation in weather conditions. This is particularly true during the 

transitional seasons such as spring where marked fluctuations in the weather conditions 

often occur and hence large differences in electrical consumption are common. Hagan 

[63] developed a multivariate ARIMA model that included the most influential weather 

factor upon load, namely the temperature of the prediction day. However, little 

improvement was found in the accuracy of results achieved, this probably being due to 

the non-existence of a constant relationship between variations in temperature and the 

corresponding changes in load. 

The results produced by the ARlMA algorithm are also distorted by the 

occurrence of abnormal days such as Bank Holidays, not only in terms of the reduction 

in prediction accuracy for the particular abnormal day in question, but also in terms of 

the distorting effect of the presence of the abnormal day within the past data that is 

used to produce future predictions. 

2.2.1.2 Causal Methods 

Causal approaches seek to explain the variations in a time series 

of electrical load data by examination of the variations in one or more causal variables, 

in the case of the load forecasting examples described below, it is the weather variables 

that are deemed significant in determining the variations in the time series [24,46]. 
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2.2.1.2.1 Weather Weighting 

The method of weather weighting described by Dryar [44] was an early attempt 

at describing in mathematical terms the effect weather conditions have upon load. The 

technique involves the division of the load into two components, a base load and a 

weather dependent load. The value for the base load is fixed at a level determined from 

past data by removing the estimated effects of the weather conditions at the time the 

readings were taken. The correct estimates of these past weather influences are 

determined by trial and error as shown below, the significant weather factors chosen 

for this application are temperature, cloud cover and wind speed. Tables are 

constructed so that for a given time of year and a given set of values for temperature, 

cloudiness and wind speed, the percentage weighting to be applied to the base load to 

account for these weather conditions is derived. An example of such a table for 

determining the weighting values for different temperatures at different times of year is 

shown in table 2.2.1 reproduced from [44]. 
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Figure 2.2.1 Weight Values for Load Prediction. 

Weights Dec Jan Feb Apr Nov May Oct Jun Sept Jul Aug 

% DegF DegF DegF DegF DegF 
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Once an estimate of the base load has been made for the prediction period, a 

forecast of the weather conditions for the coming 24 hours is used to generate an 

estimate of the weather dependent load via reference to the weather weighting tables. 

Re-estimates can be made of the weather weightings as more accurate weather 

forecasts become available during the prediction period. 

- 2.2.1.2.2 Discussion on Weather Weighting 

The accuracy achievable by a method such as weather weighting is dependent 

on a number of factors. Firstly, the consistency of the base load profiles upon which 

the weather weights are superimposed is essential if the predictions produced are to 

reflect the true load values. For example the peak load needs to occur at the same 

point in the day for each week day and have roughly the same magnitude (when 

corrected for the weather conditions at the time of the reading). However, the base 

load consumption does change with the seasons and this can lead to problems, 

particularly for Saturdays and Sundays where, due to the need to use a number of past 

examples of such days to generate their base load profiles, data from several weeks in 

the past may need to be used. This data may not reflect the current consumption 

characteristics. In addition the choice of the correct weather weightings to apply at the 

time of the forecast is heavily dependent upon the accuracy of the prediction of 

particular weather factors such as temperature i.e. If the temperature forecast is wrong 

by even a small number of degrees then this may result in the wrong weather 

weightings for temperature being used and hence an inaccurate forecast being 

generated. 



2.2.1.2.3 Linear Regression. 

A distinction is made in this method between the base load and the weather 

sensitive load. The relationship between the weather sensitive load and the weather 

conditions can be expressed explicitly in the form of explanatory variables by a 

multiple linear regression method [44,62,97]. The explanatory variables are selected on 

the basis of correlation analysis of the time series in question. In the application 

poposed by Davies[38] the meteorological factors chosen as significant are 

temperature T, wind speed W, illumination L and the rate of precipitation P. A 

regression equation of the form shown below can be fitted to the data: 

(2.2.1.17) 

Where x is the demand at a particular time of day. T, W, L, P correspond to 

the significant meteorological factors temperature, wind speed, illumination index and 

precipitation rate. bl , b2 , b4 , bs are the regression coefficients of these meteorological 

factors determined using least squares estimation based on past load and weather data 

and a is a constant, d is the day of the week correction and F( t) is a polynomial 

function of the time of year for a particular week and accounts for variations in the 

base load with the time of year, thus a + F( t) is the base load at week t . 

2.2.1.2.4 Discussion on Linear Regression 

Although the linear regression methodology provides a computationally simple 

way of generating load forecasts, the major drawback with the method is the 

assumption of a steady linear relationship between the values of certain meteorological 



factors and the corresponding electrical load consumption. In reality the relationship is 

highly non- linear and changes from week to week and month to month and therefore 

imposing a linear relationship in order to calculate future load values will lead to the 

introduction of significant errors. 

2.2.1.3 Combined Time Series and Causal Methods 

Prediction methodologies have been proposed that aim to combine within a 

time series approach, causal elements relating to the influence upon load of weather 

conditions. Bolzern and Fronza [15] carried out a study in the Milan area of Italy to 

evaluate the advantages of including weather factor values within an ARMA based 

prediction algorithm, the resulting algorithm being termed ARMAX, the X 

representing the additional exogenous inputs. The form of the ARMAX model used is 

as follows: 

The standardised load variable is 

(2.2.1.18) 

Where f.1. is the mean and a is the load standard deviation in the ith interval of the 

day. 
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The ARMAX model is: 

P q 

zk(i + 1) = L¢JZk(i - j + 1)+ak(i + 1)+ LOjak(i -i + 1)+ 
j=1 j=1 (2.2.1.19) 

STgT[~\4(i + 1)] + SLgdLk(i + 1)] 

Where ak(i) is assumed to be a white noise sequence, I;M(i) is the average of 

the temperature in the M hours before the (i + 1) interval. Lk (i) is the average 

illumination in the (i)th interval. The model weighting parameters are ¢ j , OJ ' ST , SL 

and p, q are the model orders determined from the past data. 

The method is applied to weekday and weekend data separately in order to 

account for the weekly load cycle, furthermore, the temperature and illumination 

exogenous inputs are set to zero during the night. The weather data was provided by a 

number of local meteorological stations and data over a two year period was used in 

the assessment of the ARMAX predictor. The results gained from the testing of both 

the standard ARMA predictor and the ARMAX predictor showed that although a 

small improvement in prediction accuracy was achieved the authors considered that 

this improvement may not be large enough to justify the additional effort in collecting 

the necessary weather data. It should be noted that this weather data collection was 

done manually, more recently on line computer records of this type of data have 

become available. 
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2.2.2 Heuristic Approaches. 

Heuristic methods of load prediction have generally been developed in an 

attempt to overcome the problems the time series based approaches have in accounting 

for the effects of weather variations and abnormal day occurrences. The areas of study 

include pattern matching techniques, the use of expert systems to improve prediction 

performance, load dissagregation and the implementation of neural networks in the 

generation of predictions. This latter category will be discussed in a later chapter of 

this thesis. 

2.2.2.1 Pattern Matching 

Such techniques are very useful when the relationships between a process and 

the measurable causal variables are complex and not well enough understood to enable 

them to be successfully modelled mathematically. The behaviour of the pattern of 

electrical load in response to meteorological variation is just such a problem. The basic 

assumption being that if a load demand has exhibited a particular pattern in response to 

a certain set of weather conditions, then a similar type of demand pattern will result if 

the same type of weather conditions occur again. 

Mathewman and Nicholson[ 1 00] proposed a pattern recognition technique 

based on the division of similar daily demand profiles into 'clusters' so that each cluster 

contains profiles that display closely related characteristics and each cluster is 

sufficiently different from every other cluster as to be uniquely distinguishable. The 



number of clusters that are required is determined by the accuracy of prediction that is 

to be achieved, and to avoid overloading the computer memory, only representative 

examples of each category are stored, these are termed the locates of the categories. 

The decision to classify a particular input load into a particular category is based on a 

minimum distance classification between the locates of the various categories. Here the 

locus of the points representing the load data equidistance from the nearest member of 

the two adjoining classes forms the decision boundary . 

The categories were set up during an initial training phase using CEGB data, 

sampled at half hourly intervals, twenty clusters in all were established. However, 

problems were encountered in the correct classification of input load profiles with 

consequent introduction of unacceptable input errors. The research revealed that the 

cause of the errors lay in the fact that clusters were not behaving as clearly defined 

regions i.e. the level of variation in the daily profiles was too great for a consistent 

classification to be maintained. 

A different approach to pattern recognition forecasting based on the matching 

of present meteorological conditions with examples from past data. The ALF A 

(Automatic Load Forecasting Assistant) [78] employs a database of fifteen years past 

load data and meteorological data to develop a forecasting system. Firstly, a base load 

for each day of a whole year was calculated using an average of all the examples of the 

relevant days of the week drawn from the database of past load profiles. The weather 

dependent load for the prediction day is then determined by pattern matching the 

forecast values for temperature, humidity, wind speed and cloud cover with the eight 

closest examples of such weather conditions found in the past meteorological data. The 

corresponding weather dependent load profiles for each matched example are 

extracted and averaged, the resulting weather dependent load profile is added to the 
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appropriate base profile to produce a prediction. The search for days with similar 

weather conditions is restricted to the same season in which the prediction day falls. 

The results from this application in the Eastern USA were a significant 

improvement over a conventional ARIMA based prediction system, however the 

methodology relies on a very large sample of past load data and meteorological data 

being available, and this is not the case in many situations, this is particularly true with 

water consumption data. 

2.2.2.2 Expert System Applications 

An expert system is a system which can store and apply heuristic knowledge to 

a problem in a way that is similar to a human expert. Most commonly the knowledge is 

encoded in the form of conditional rules and the control over the firing of these rules in 

response to input data is controlled by an inference engine. More details on the various 

types of expert system that have been developed and the way they operate are given in 

Chapter 4 of this thesis. 

The application of expert systems in the field of electrical load prediction [43] 

can be divided into those systems which provide guidance on the correct type and form 

of mathematical prediction algorithm to be used, and those systems that use heuristic 

knowledge to modify the predictions produced by mathematical algorithms. 

An example of a system that has been developed to provide advice on 

algorithm choice is that described by Pratt [119]. This application uses a rule based 

expert system to determine which one out of a possible eight ARIMA based prediction 
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models is best suited to the time series under consideration. Initially the set of eight 

possible ARIMA models are selected by an operator who bases this choice on the 

characteristics displayed by the time series under consideration. The expert system 

determines which of the eight is the best fit to the particular time series that is 

presented, this being done by the application of a number of rule encoded criteria 

covering such areas as convergence, the distribution of the residuals, parameter values 

lying outside the range -1 to + 1 (thus indicating a poor fit of the model to the data). 

Similar work has been conducted by Singh et al [136] where the use of an expert 

system was proposed to determine the most appropriate form of time series prediction 

in terms of the model order, the amount of past data and the sampling rate. However 

no results were presented in this paper so evaluation of its importance is not possible. 

The use of expert systems in the modification of predictions produced by 

mathematical techniques has been a fairly recent development. Remoir and Ayuso[127] 

proposed a methodology that involved the use ofa Box Jenkins[13] based algorithm to 

produce both weekly and daily load predictions in the form of a total load figure for 

each day. This was then spread out into a 24 hour profile by the application of 

templates representing the typical types of load profile encountered for the day in 

question. The expert system was developed using DEC's OPS-5 language and was 

designed to apply rules that determined the profile template that was most appropriate 

for the prediction day. Rules could also be invoked to carry out modifications to this 

template to account for the occurrence of such events as public holidays, night 

irrigation etc. This being achieved by the application of correction factors to the 

prediction values for the duration of the effect in question. 

Rahman and Bhatnagar[ 124] proposed a temperature based method of 

calculating a base forecast which is then modified by rules relating to the season in 

which the prediction day falls, the prevailing weather conditions on the prediction day 
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and those of the preceding days i.e. two consecutive hot days will produce a greater 

impact upon the load curve than a single hot day. The base forecast is calculated by 

predicting the temperature for each hour of the prediction day and matching this 

temperature profile with a database of past temperature and load data. The load 

profiles of the three closest days, in temperature terms, to the prediction day are pulled 

out and averaged to give the predicted base load profile. In a more recent development 

on this work Rahman[ 122] proposes a priority vector based technique that uses a 

pattern matching algorithm to derive a set of similar days whose type ( day of week, 

season etc.) and temperature profile match that of the current day. 

In Taiwan, an expert system has been developed by Ho, Hsu et al [71] that uses 

rules encoded in PROLOG. Initially a five year database of hourly load data was 

subjected to a simple pattern matching algorithm in order to identify the number of 

different types of day present in the database. In all, eleven day types were identified, 

examples of which are weekdays, Saturdays, Sundays, Chinese New Year etc. Typical 

profiles are available for each of the day types, the task of the expert system is to aid 

the operators, via a question and answer session, in the determination of the correct 

day type for the prediction day. The results achieved are shown to be an improvement 

upon the results from a regression model used on the same data, this is particularly so 

on abnormal days. 

A related field is the use of knowledge based load dissagregation [73] to 

generate load forecasts that can account for abnormal day types. The basis of such .... 

methodologies is to break down the daily load profile into components that can be 

identified as being related to specific uses or causes. Dissagregation can range from 

fairly coarse subdivisions of the load into industriaL domestic and commercial 

components, to more detailed divisions into lighting load, cooking load, domestic 

heating etc. Li [95] describes a system where the load is dissagregated in a pyramidal 
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fashion where the initial coarse divisions into industrial, domestic and commercial load 

are each further split down into more detailed components such as heating, lighting and 

refrigeration. Each component has its own daily load profile, some of which will be 

weather dependent, others will be dependent on factors such as shift work etc. The 

profile shapes of the identified components are calculated from past data and are 

described using a collection of standard curve types, ramp, slope, constant etc. To 

generate a prediction for a particular day all the profiles of the components considered 

to be present on the day in question are summed to give a total load profile. This 

allows the simple inclusion of components that are designed to account for abnormal 

events or effects taking place on the prediction day. 

Two problems arise with dissagregation methodologies, firstly the identification 

of the possible components that are present within a daily load profile requires a 

detailed knowledge of the social, commercial and industrial profile of the geographical 

area under investigation. Secondly the attempted allocation of the correct magnitudes 

to each dissagregated component is a potential source of significant error unless very 

comprehensive measurement and metering studies are undertaken. Although these 

allocation errors may cancel out in the production of a final prediction, there is also the 

potential for such errors to be compounded i.e. a large number of components with 

values that have been over-estimated may occur on a particular prediction day. 

2.2.3 Summary of Electrical Load Forecasting 

The investigation and analysis of the various methodologies that have been 

applied to the field of short term electrical load prediction provides an insight into the 

problems faced when an attempt is made to model a process that is governed by the 

behavior patterns of individuals within an industrialised society. Many mathematical 



quantitative approaches provide acceptable prediction performance when applied to 

data exhibiting the stable cyclic daily and weekly patterns of normal electricity 

consumption. However, when this stable pattern is distorted by the influence of 

external factors that have a highly non-linear effect upon the level of electricity 

consumption, the prediction accuracy of such mathematical methodologies is 

compromised. 

Heuristic approaches attempt to use heuristic knowledge to either augment or 

replace the mathematical prediction techniques. In doing this they are aiming to mimic 

the reasoning processes commonly carried out by operators who have for a long time 

been using their knowledge concerning the nature of electrical consumption to 

formulate their own predictions of the likely variations in load. If this can be done 

successfully, then this has the advantage of a standardisation of performance, in that 

the same result will be produced in response to the same input criteria, which may not 

be the case with human operatives. Also, once input into the system, the knowledge is 

always available and is not lost when an operator leaves the company. Problems that 

arise from a heuristic approach to load forecasting are the initial acquisition and 

organisation of the knowledge to be exploited and the task of ensuring the knowledge 

contained within the system remains valid. 

Because of the similarities between the fields of electrical load prediction and 

water demand prediction, the above analysis of the load prediction methodologies 

provides a suitable background for the assessment of the techniques that have been 

applied to water demand prediction. 



2.3 Water Demand Prediction Methodologies. 

Although the field of water demand prediction in supply and distribution 

networks has previously experienced a lower level of research investment than has 

been the case with electrical load forecasting, recent improvements in data collection 

and water network control technology have led to a more widespread realisation of the 

importance of demand forecasting. The ability to observe and control the behaviour of 

the network via a telemetry system which supplies monitored flow and pressure data to 

a central computer, has opened up the possibilities of achieving optimal network 

operation. One of the key requirements of a system designed to make such optimal 

operation possible is the availability of sufficiently accurate short term demand 

predictions on which to base the calculations of possible least cost pumping schedules. 

The calculation of the volume of water to be pumped in a given period should 

be based on an estimate of the likely consumption to be met during that period plus a 

volume required to provide a calculated degree of supply security. Without the ability 

to monitor and record the time varying behaviour of the water network it is impossible 

to make an accurate assessment of the security of supply requirements. Hence, prior to 

the widespread installation of telemetry systems it was common practice within the 

water industry to maintain reservoir levels at near their maximum no matter what the 

supply situation. Telemetry has provided the means whereby reliable risk assessments 

can be made and the necessary security of supply requirements calculated. 

The availability of telemetry derived data has also led to the development of 

improved methods for the prediction of future consumption. Previously, the most 

common method of producing demand predictions for the forthcoming day was simply 

to use the profile either of the previous day or of the same day the previous week. The 
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major drawback with such a method is the lack of consideration of the underlying 

factors which determine the level of demand on a particular day. The set of 

meteorological and social circumstances that combined to produce the observed 

consumption on one day may not be applicable to the day for which the prediction is 

required. 

Of the more sophisticated methodologies that have been applied to water 

demand prediction, many are direct developments of work conducted initially into 

electrical load prediction. Like electrical load prediction, a subdivision of 

methodologies can be made into quantitative and heuristic approaches. 

2.3.1 Quantitative Approaches 

2.3.1.1 Time Series Based Methods 

There are several examples of time series based approaches to water demand 

forecasting, each utilising the records of past demand data to generate predictions. 

2.3.1.1.1 Exponential Smoothing. 

Coulbeck, Tennent and Orr [35] developed an exponential smoothing based 

demand predictor for use in conjunction with the GINAS [34] water network analysis 

package. The program included routines for screening and smoothing the raw 
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telemetry data prior to its submission to the forecaster. The screening of the data is 

designed to remove gross errors and is based on second order differencing while the 

smoothing operation is carried out in order to remove the small amplitude random 

errors present in the data and uses frequency thresholds based on Fourier analysis. 

Statistical tests are conducted upon the past data in order to establish 

categories of days according to the similarity of their demand patterns, the prediction is 

then based on the extrapolation from the most recent data of the same day type 

category as the prediction day. The work carried out by Moss [106] indicated that 

triple exponential smoothing could provide good results in extrapolating a future 

profile from the current profile. 

The vector of prediction errors of the current daily or weekly period is defined 

by: 

(2.3.1.1) 

Where X
t 

is the vector of data sample values at the current period, and 

x
t
_

1 
(1) is the 1 peliod ahead forecast. When the current demand profile becomes 

available the error vector can be used to correct trend estimates according to: , 

(2.3.1.2) 

(2.3.1.3) 
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(2.3.1.4) 

Where w is a smoothing parameter with a typical value set to O. 1 and a, b 

and c are estimates of position, velocity and acceleration trend components at periods 

t and t - 1. Initialisation procedures set the value of a
t
_

1 
equal to that of x

t
_

1 
and 

the values of Ii t-I and ct _ 1 to zero. The 1 period ahead prediction is then given by: 

(2.3.1.5) 

2.3.1.1.2 Discussion on Exponential Smoothing. 

A possible problem arises with the data smoothing and filtering operations 

described in this methodology, in that although truly erroneous data may be 

successfully removed from the past data, there is a corresponding risk that data is 

removed that reflects actual abnormal demand events. Great care has to be exercised in 

the choice of frequency thresholds, significant harmonics etc. in order to avoid the loss 

of true data. Although the exponential smoothing trend components will follow the 

relatively gradual changes in the external influence on demand of factors such as 

weather, more rapid changes in these external factors such as the sudden change in 

weather conditions brought on by the arrival of a frontal system after a period of stable 

anticyclonic weather will cause prediction accuracy to be reduced. 
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2.3.1.1.3 Spectral Expansion. 

Sterling and Antcliffe [146] in the early seventies proposed the use of a spectral 

expansion technique very similar to that used by Farmer [48] (described in the previous 

section on electrical load forecasting), to produce predictions of total daily water 

consumption based on several previous years daily totals. The results of this 

application were directly compared to the results from both a manual 'best guess' 

technique that was previously employed by the water utility which supplied the data, 

and a linear regression technique whereby the best straight line, in a least squares 

sense, was fitted to the past data. The spectral expansion results compared favourably 

with the results from the other two methods only after the data submitted to the 

spectral expansion algorithm was pre filtered by linear regression to remove the 

monthly trend from the data. 

Perry [116] in 1981 described the application of both a spectral expansIOn 

technique and a Kalman filter based technique to water demand forecasting. 

Comparisons were made between the two methodologies in terms of the accuracy of 

prediction over a number of prediction horizons. The spectral expansion technique 

provided significantly more accurate predictions over very short prediction horizons 

(up to 4 hours ahead) however in terms of overall performance over 24 hour 

predictions there was little difference between the two methodologies, average RMS 

errors being in the region of 3 to 5 percent. 

2.3.1. 1.4 Discussion on Spectral Expansion. 

The comparison carried out by Perry showed the advantages associated with 

the spectral expansion technique for water demand prediction. A good performance 
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can be achieved in terms of accuracy for very short term predictions, the only data 

requirements are for past consumption data and do not require meteorological 

measurements and the relatively low computing overheads are an advantage for on-line 

implementation. The main disadvantage with the technique is that it only models a 

static relationship between the consumption and the external influencing factors. This 

does not reflect the true situation where there exists a constantly varying relationship 

between factors such as weather and the corresponding level of demand. The 

methodologies described by Sterling et al and Perry take no account of the occurrence 

of abnormal demand days such as holidays. 

2.3.1.1.5 Auto Regressive Moving Average Models. 

In a continuation from the work carried out on the application of spectral 

expansion to demand forecasting, Sterling and Bargeila [144] proposed a water 

demand forecaster based on an ARMA model developed from the work of Box and 

Jenkins [13] in the field of electrical load prediction. In order to use the ARMA model 

the time series of past demand data must be transformed into a stationary series, this 

transformation being achieved by a differencing operation based on the periodicity of 

the data identified from the sample auto correlation function. The general form of the 

ARMA model is as given in equation 2.2. 1.12 . Statistical analysis of the correlations 

between elements of the time series of past data is carried out to determine which of 

the auto regressive and moving average components are significant in the time series 

under test. Values for these significant components are determined by a Newton 

Raphson minimisation of the sum of the squared errors of the noise series at . The 
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model is expanded forward in time to produce a prediction by assuming the error 

values in the noise series at over the prediction period are equal to zero. 

Jowitt and Xu [80] proposed a prediction methodology that utilised an ARIMA 

algorithm to predict daily totals of consumption and then distributed the predicted total 

into a 24 hour profile via the application of standard template profiles. Different 

templates are available for different prediction days i.e. Summer Saturday, Winter 

weekday etc. The advantage of this method is that it does not require hourly or half 

hourly consumption data records which may not be available to the water utility, 

whereas all water utilities are likely to have records of the total amount of water 

supplied each day. 

Recent work by Shamir, Shartser and Feldman [133] in Israel utilises a novel 

combination of pattern recognition techniques and an ARIMA algorithm. They 

propose that a typical 24 hour demand profile is composed of distinct segments or 

'states' that are termed rising, falling and oscillating. The points of transition between 

these states are identified by pattern recognition and appropriate Auto Regressive time 

series models are constructed for each resulting segment. The accuracy of the 

predictions achieved by this method were in the range 6% to 110/0, with testing being 

conducted over one month (July). Meteorological influences were assumed to be 

constant over the test period, although future work is aimed at incorporating weather 

effects into the system. 

Other developments in the use of Auto regressive Moving Average models for 

demand forecasting have been the work carried out by Quevedo et al [120] in Spain 

and by Steiner [142,143] in the USA. Both these groups investigated the effects on 

prediction accuracy of including exogenous weather variables in ARIMA and ARMA 
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models. Quevedo used intervention analysis to incorporate the influences of special 

holidays into an ARIMA model and then added a transfer function of temperature 

which was determined to be the most significant weather factor in influencing demand. 

The form of the general model is shown below: 

(2.3.1. 7) 

Where Zt is the demand, I j , I a and Ie are the weighted intervention variables 

relating to five annual public holidays, all days in the month of August and the Easter 

period respectively, their values being set to 1 when they are considered to be in 

operation. T; is the temperature at time t and Va is determined to be the significant 

coefficient of the transfer function ~~:? when expressed as a polynomial: 

V(B) = Va + ~B ... 

The determination of the significant coefficients of the V( B) polynomial being 

conducted by estimating a number of such coefficients in a model: 

Where Zt is the output time series, XI is the input time series and Nt is the part of Z 

not accounted for in terms of X. 
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2.3.1.1.6 Discussion on Auto Regressive Moving Average Models. 

The results from the study by Quevedo on an area of the Barcelona water 

supply system showed that the inclusion of the temperature transfer function actually 

had a negative effect upon the accuracy of results, this being due to errors in 

temperature prediction and the changing effect of temperature upon demand through 

the seasons. Predictions for the whole of 1986 were made with the daily demand 

prediction errors ranging up to 18% and the average around 5 to 6%. Also important 

in this study was that the data entered into the database for use in generating the 

predictions, was filtered to remove anomalous data that could have a detrimental effect 

on future predictions, the threshold levels of the filter being set by the operator. In the 

application described by Steiner the influence of the weather factors such as 

temperature and the number of antecedent dry days were taken into account in 

predicting daily demand totals by removing their estimated effect from the past data 

stream by fitting multivariate regressions to the data. 

The standard ARIMA and ARMA methodologies provide a method of 

accounting for the periodic variations and trends displayed by a stable water demand 

time series. The attempts to modify these techniques so that they are able to also 

account for the effects of external influences such as holidays and weather have had 

varying success. The inclusion of weighted intervention variables to account for special 

days through the year has the possible drawback of incorrectly assuming the effect of 

the holiday will be the same as the same day the previous year. The problems involved 

with the inclusion of the values of weather variables into the demand calculation is 

highlighted by the results of the Barcelona study, where the errors introduced through 

predicting the temperature and the changing nature of relationship between water use 

and temperature made the prediction accuracy worse. 
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2.3.2 Heuristic Methods. 

There have been relatively few studies conducted into the application of 

heuristic approaches to water demand forecasting. Studies that have been carried out 

are of the dissagregation type, which aim to identify and assign values to a number of 

different water use categories. Reasearch was conducted in Portugal [32] such that the 

profiles that link the social composition of an area with particular demand 

characteristics were established by means of extensive consumer surveys, the 

examination of existing statistics and the installation of district flow meters. The aim 

of the project was to develop a method that would allow the demand profile to be 

determined from the urban characteristics of an area. However, this paper was an 

outline of a proposed system and no results were supplied and hence evaluation of this 

technique was not possible. 

Boland and Dziegielewski [14] carried out a study on urban water use in the 

USA, producing a highly dissagregated model of water consumption, the IWR-MAIN 

model, that involves hundreds of different categories of usage. Divisions of a water 

supply area's urban composition are structured into high level divisions such as 

residential, commercial and industrial water use, and lower subdivisions into categories 

such as 'metered sewered single family residences'. Weighting factors are introduced 

to account for effects such as, the relative increase in residential water use with 

increasing house value, the effect of the price of water upon consumption (significant 

in the USA) and the effect of weather influences. The consumption value of each of the 

categories is estimated from the demographic make up of the area under investigation 

and they are all added together to produce a total demand figure. However, in a paper 

published in 1990 Wilson and Luke [160] levelled serious criticisms against the 

methodology and results of the IWR-MAIN model. The model is criticised as being 

flawed owing to a number of major faults, the most significant of these being that 
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knowledge of the actual levels of water use for different purposes is not detailed 

enough to justify the degree of dissagregation used in IWR-MAIN. Wilson and Luke 

maintain that the model's ultimate accuracy depends on whether, through chance or 

manipulation, the errors of individual consumption estimates are self cancelling. 

2.3.3 Summary of Water Demand Prediction 

Most of the work conducted in the field of water demand forecasting has been 

based on the application of mathematical algorithms to records of past consumption 

values and/or causal meteorological variables. The standard mathematical models 

achieve acceptable performance in terms of accuracy when the influence of external 

non-cyclic factors are negligible or absent. However, this absence of external and 

abnormal factors is very rarely the case in the vast majority of water networks, hence 

in order to be capable of providing accurate forecasts in a real network situation, an 

ability to account for many of the occurrences of abnormal demands is necessary. 

Chapters 4 and 5 describe the methodologies used in the research upon which this 

thesis is based that have achieved significant success in incorporating non cyclic 

influences into demand predictions. 
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CHAPTER 3 

THE ARIMA TIME SERIES PREDICTOR 

3.1 Introduction. 

The use of ARIMA based short term prediction algorithms has been well 

established in a number of fields including electrical load prediction[1l8,147,152] and 

water demand prediction[80, 144] applications with many utilities in each of the two fields 

currently using such algorithms as the means of generating forecasts. It was therefore 

deemed logical to use a proven ARIMA model as representative of the current state of 

mathematical demand forecasting technology and hence utilise the results produced by 

such a model to provide accuracy comparisons with the results produced by the innovative 

techniques introduced in this thesis. This chapter provides a detailed description of the 

ARIMA methodology and introduces the algorithm used throughout the work described in 

this thesis to provide comparative results for both electrical load data and water demand 

data. 

3.2 Auto Regressive Integrated Moving Average Models. 

Many mathematical time senes prediction methodologies, such as exponential 

smoothing, assume that at any point in the time series the observed value of the time series 

variable will consist of the deterministic mean of the process plus a random error 
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component. However, the assumption of independent observations is frequently 

unwarranted, since many time series display a high degree of dependency between 

successive observations. A typical water or electricity demand time series displays such 

dependency between observations due to the presence of strong daily and weekly cycles 

within the consumption patterns, the ARIMA prediction methodology is designed to 

exploit this dependency in its generation of a forecast. 

The variations observed in a typical time series of water or electricity consumption 

data can be considered to be the result of a number of causal processes acting upon that 

time series. If these processes can be correctly identified and modelled mathematically, 

then using these derived models we can generate predictions of the future values of the 

time series. However, in addition to the identifiable causal processes acting upon the time 

series, there will also be a non deterministic error component present. If all other causal 

processes have successfully been identified, then this non deterministic series will be 

random white noise. 

3.2.1 Data Differencing Operation 

A typical time series of water or electrical consumption data, Zt (t = 1,2, ... , N) 

will exhibit strong daily and weekly periodicity, illustrated by the plot of the 

autocorrelation between time lagged data points shown in figures 3.2.1. and 3.2.2 . 

However, an additional seasonal effect may be present that has a period greater than the 

span of the available data (such as the slow variation in the overall level of demand from 

season to season through the year), this will manifest itself in the mean of the time series 
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varying with time i.e. a non stationary series mean. It is therefore necessary to transform 

Zt into a stationary mean series U'r , this transformation being obtained by: 

~ = j(ZJ (3 .2 .1.1) 

Where j is the transformation required to achieve the stationary series U'r . 

The transformation j is a differencing operation that can be represented by: 

(3 .2.1.2) 

Where B = backward shift operator, 

(3 .2 .1.3) 

B S 
= seasonal backshift operator, 

(3 .2 .1.4) 

d , D = the daily and weekly difference orders and s is the seasonal periodicity of 

the time series Zt 

(3 .2.1. 5) 

(3 .2.1.6) 

v = backward difference operator, 

(3.2 .1.7) 
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The stationary time series W; is therefore given by: 

(3.2.1.8) 

Examination of the sample autocorrelation function of the time series data used in the 

demand forecasting application indicated strong correlation between data points 1, 48 and 

336 time steps appart. 

3.2.2 The Selection of the Model Structure 

The prediction problem is now reduced to the determination of a class of models 

that will adequately represent the stationary time series W; . For a time series composed of 

N data points with seasonal periodicity s ,this can be achieved using a model composed of 

auto regressive and moving average components given by 

(3.2.2.3) 

The Auto regressive components are: 

(3.2.2.4) 

(3.2.2.5) 

Where p is the order of the AR component and P is the seasonal difference order. 

The Moving Average components are: 

(3.2.2.6) 

(3.2.2.7) 
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In order to determine the coefficients associated with each backshift operator it is 

necessary to fit the model via a minimisation of the sum of squared errors for each sample 

point i.e. determine the values of the coefficients ¢, cD, e, e that minimise: 

N 

S = La;(¢,cD,e,e) (3.2.2.8) 
/=1 

In order to achieve the above minimisation equation 3.2.2.3 can be written for each time 

step t= 1, ... ,N in matrix form as: 

DFw = TRa (3.2.2.9) 

(3.2.2.10) 

Where D represents ¢( B) , F represents cD( BS
) , T represents e( B) and R represents 

e(BS) as set out below: 

1 0 0 

¢1 1 

¢2 ¢1 1 

D= 
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1 0 

o 
F = <1>1 0 1 

0 

<l>p <1>1 

1 0 

B] 1 

B2 B] 1 

T= 

1 0 

o 
R = 0] 0 1 

o Q 

0 

0 

o 

0 

1 

o 

o 
1 

The dimentions of the matrices are assumed to be suitable for the vectors that they are 

multiplying and the intervals between non zero elements is given by the period s. 

w T =[W],lV~, ... ,WN] 
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From equations (3.2.2.9) and (3.2.2.10) the function to be minimised can now be written 

as: 

(3.2.2.11) 

Any suitable optimisation algorithm can be used to achieve this minimisation, 

Sterling and Bargiela proposed the use of the Newton Raphson iterative procedure in their 

investigation of applying ARIMA prediction models to water demand time series data. 

Initial estimates are made of the values of the parameters f/>, <1>, fJ, 0 and corrections to 

these estimates are generated using an approximation to the inverse Hessian matrix 

according to the Fletcher-Powell method. The parameter estimate updating is carried out 

at each sucessive time step by re-evaluation of the gradient so as to incorporate the most 

recent data. The resulting model will be a best fit, in a least squares sense, to the time 

series data ~ up to time step N 

3.2.3 Identification of the Model 

Equation 3.2.2.3 shows the general form of the ARIMA algorithm that is 

applicable to this kind of problem, in order to derive the specific form it is necessary to 

determine the parameters within 3.2.2.3 that are significant to the data in the specific time 

series that is to be modelled. To achieve this it is necessary to determine the following 

information from the time series: the seasonal periods present Sj , the difference orders d j 

and the auto regressive and moving average orders pj and qj' Statistical examination of 

the time series is used to derive values for these parameters. 



Although there are several statistical methods that are applicable to the 

determination of the above parameters[70], the method used in this application is the 

examination of the sample autocorrelation function r
k 

, which is used to indicate the 

relative strengths of correlation between data points k time steps apart in a time series 

containing N data points. 

k=0,1,2, ..... ,N-1 (3.2.3.1) 

Where Ck (Z/) is the auto covariance function given by: 

k = 0, 1, 2, ...... , N - 1 (3.2.3.2) 

If the calculated values of rk (Z/) are near to zero for samples k time steps apart 

then there is a poor correlation between the samples in question, however values of 

rk (Z( ) approaching unity indicate strong correlation between the samples separated by the 

current value of k. 

3.2.4 Generating the Prediction. 

The model produced by the process described above may be used to generate 

predictions of future values of the series Zr . To do this the series Zt of length N/ is 

extended by the number of time slots corresponding to the length L of the prediction 
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period. The values of the residual noise series at over the length of the prediction period 

are assumed to be zero. The extended time series vectors z' and a' are: 

z'= [ZI ,Z2 , ... ,Z,v ,ZN+I "",ZN+Lf 

a'= [aJ ,a2 , .•. ,aN ,O, ... ,O]T 

Substituting the above vectors in equation 3.2.2.4 gives: 

FDz'= RTa' (3.2.4.1) 

Since w = Dz' we have: 

Fw = RTa' (3.2.4.2) 

if F-
1 

(the inverse of the <t> auto regressive regression operator matrix) exists. 

3.2.5 Numerical Constraints 

If the model has been correctly identified, the values of all the auto regressive and 

moving average parameters should lie within the range: 

-1 < rPij < 1 

-1 < ()kl < 1 

If the non-linear minimisation is unconstrained then parameter values outside this 

range may be tried during the search for the minimum, this can cause numerical overflow 
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problems, hence the parameter values are artificially constrained to within the (-1 , 1) 

boundaries. 

3.2.6 Data Considerations 

There is minimum amount of past data that is required by the ARIMA algorithm in 

- order for it to be able to correctly identify all the seasonal periods operating within the 

time series, the calculation of the minimum data requirement is given by Gann[55] as: 

JVs 

No = I(q;sJ 
;=1 

Ns 

N¢> = I(d; + p;}s; 
;=1 

;vs 

Nc = I(di + Pi +q;}si +2max(q;,si) 
i=1 

Where: s = seasonal period 

N = number of seasonal periods identified. 
s 

p, d ,q = orders of AR, difference and MA components 

respectively. 

N f/ = data requirement of the MA components. 

N ¢> = data requirement of the AR components. 
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N c = data requirement of the differencing components. 

Nt = total data requirement. 

3.2.7 Implementation 

The ARIMA algorithm used in the applications described in this thesis was initially 

developed for load prediction in a power systems environment by Gann [55] at Durham 

University. It is written in FORTRAN and runs under the VMS operating system on V AX 

station 3 100 series workstations. In the course of the current research, the algorithm was 

tested on power systems data supplied by the CEGB for 1984 and 1985 as part of the 

assessment of the prototype combined forecaster described in Chapter 4. The algorithm 

was then adapted for use with water consumption data and used to provide comparison 

with water demand prediction results. 

The water consumption data was supplied by Thames Water PLC and consisted of 

flow measurements and reservoir level measurements from the Slough and High Wycombe 

water supply networks for the year 1990. The flow and level measurements were 

converted into half hourly consumption totals for each area and statistical testing was 

conducted to determine the particular ARIMA model that was applicable to the 

characteristics of the data. The model identification was carried out with the aid of partial 

autocorrelation function plots such as those displayed in figures 3.2.1 and 3.2.2. Three 

seasonal components were identified as being present within the data a) half hourly b) 

daily and c) weekly, corresponding to the dependency of the current value on the value of 

the immediately preceding data point, the value of the data point 24 hours earlier and the 

value of the data point one week earlier. 
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F rom the above the AR order p , the differencing order d and the MA order q for 

the model chosen for both the power systems and water consumption data were as 

follows: 

[p = 1 d = 0 q = 1] F h fi I ' " or t e lrst seasona component l.e. half hourly. 

[p = 1 d = 0 q = 1] F h d I' , d 'I " or t e secon seasona component I.e, at y. 

[p = 0 d = 1 q = 1] F h h' d I . k " or t e t lr seasona component I.e. wee Iy. 

Calculations as outlined in section 3.2.7 were carried out to determine the 

minimum amount of data that would be required by the model, at half hourly data 

intervals this minimum corresponds to five weeks data. However, the most consistent 

prediction performance was found to be achieved when seven weeks data (2330 data 

points) were submitted, the weekly trend being more successfully incorporated into the 

model in the latter case. If too great an amount of data is used then there is the risk that 

consumption influencing factors that were affecting the data a number of weeks in the past 

but are no longer active will exert an undesired influence on the current prediction. 
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3.3 ARIMA Results. 

3.3.1 Power Systems Data 

At the start of the research described in this thesis, the initial aim was to prove the 

basic concept that knowledge based techniques could be used to improve the ability of one 

day ahead forecasting to account for abnormal non-cyclic influences. The following 

chapter describes the initial prototype system designed to achieve this aim, however, the 

only suitable data that was available during the development of this first prototype was 

half hourly electricity consumption totals from the years 1984 and 1985. Therefore, the 

initial testing of the accuracy of the ARIMA based predictions was carried out using this 

power systems data. 

Prediction accuracy ER.HS is determined from the rms of the prediction errors: 

ERMS = 

Where Zt and Zt I are the actual and predicted values for the forecast variable and 

N is the number of elements in the forecast. 

The ARJMA algorithm was found to produce 24 hour predictions (composed of 

48 data points) with acceptable accuracy as long as the daily and weekly load patterns 

remained stable. The daily profiles of actual and predicted load displayed in figures 3.3.1, 

3.3.2 and 3.3.3 are examples from days where there was little apparent influence by 

external distorting factors. As previously outlined such distortions to the normal load 

profile are however not uncommon, they can be caused by a wide array of factors and 

effects, examples in the case of electrical load are, the influence of weather 
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Figure J.3.1 ARIMA and ActuaJ Load Normal Weekday 
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Figure 303.2 ARIMA and ActuaJ Load Normal Weekead Day 
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Figure J.J.J ARIMA and ActuaJ Load Normai Weekday 2 
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Figure JoleS ARIMA and Actual Load Tuesday After Bank HoUday 
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Figure 3.3.6 ARIMA and Actual Load 1 Week After Bank Holiday 
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variables (such as temperature, cloud cover, humidity etc.), the occasion of a special social 

or sporting event or the occurrence of public holidays. As can be seen from the profiles 

shown in figure 3.3.4, the presence of a distorting factor (in this case the prediction is for a 

bank holiday Monday) prevents the ARIMA model from being able to correctly predict 

the load. Large errors between the predicted and actual load mean any operational 

decisions that were based on the predicted level of load could be invalid in the light of the 

actual situation. 

In addition to being unable to successfully predict the influences of the many non 

_ cyclic factors that influence the pattern of electrical consumption, the accuracy of the 

ARIMA predictions can be further compromised by the presence of distorted data in the 

time series used to generate the predictions. Examples of this effect can be seen in figures 

3.3.5 and 3.3.6 which show the actual and predicted profiles for the Tuesday after a bank 

holiday and also the Tuesday one week later. It is clear that the presence of the typical 

bank holiday profile within the data submitted to the ARIMA algorithm has had an 

unwanted influence on the predicted profiles. The prototype described in the following 

section provides a method for correcting some of the above faults. 

3.3.2 Water Network Data 

Submitting the water consumption data from Thames Water to the ARIMA 

algorithm produced a similar set of results to those seen with the electrical load data. 

Acceptable accuracy was achieved by the ARIMA algorithm during periods where 

external influences, such as those due to meteorological variations, were at a minimum. A 

logic filter was used to remove the obvious bad data 'spikes' and 'troughs', but no further 

smoothing or filtering was performed upon the data in order to minimise the risk of 
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erroneously removmg fluctuations in the demand level that are the result of the 

consumption altering factors that this research was aiming to identify. 

The results shown in figures 3.3.7 , 3.3.8 and 3.3.9 are for non holiday days with 

normal weather conditions for the time of year. It should be noted that compared to the 

examples of electrical load profiles, the water demand data displays a large nOIse 

component, this being due to the measuring apparatus used in the water industry. 

The influence of variations in the weather conditions was found to have the most 

significant effect on the accuracy of the predictions produced by the ARIMA algorithm, 

this was especially evident in the spring period where rapid and dramatic changes in the 

prevailing weather cause obvious distortions to the consumption patterns. The examples in 

figures 3.3. 10, 3.3. 11 and 3.3. 12 show the effect of increasing temperature and dryness 

upon the shape of the water demand profile, and the consequent decrease in the accuracy 

of the ARIMA forecasts. 
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Figure 3.3.7 Typical Weekday Water Demand ProfIle 
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Figure 3.3.8 Typical Weekday Water Demand Proitle 2 
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Figure 3.3.9 TypicaJ Sunday Water Demand ProfrJe 
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Figure 3.3.10 Effect of Increasing Temp/Dryness on Water Demand and Arima 
Prediction Accuracy 
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Figure 3.3.11 Effect of Increasing Temp/Dryness on Water Demand and Arima 
Prediction Accuracy 
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CHAPTER 4 

KNOWLEDGE BASED SYSTEMS CONCEPTS, EXAMPLES AND 
APPLICATIONS 

4.1 Introduction 

The investigation of Knowledge Based Systems falls within an area of computing research 

known generally as Artificial Intelligence. The term Artificial Intelligence or AI, covers a broad 

spectrum of topics which include machine learning [104,161], natural language and speech 

recognition systems [82,13] and visual recognition systems [12,33,126]. The common central 

theme of each of these subjects is that of creating machines that can appear to behave in an 

manner that is analogous to human intelligence in their response to given stimuli. The degree to 

which this seemingly intelligent behaviour can truly be thought of as intelligence depends on the 

application involved. Although an expert system can appear to posses the problem solving 

capacity of one or more human experts, this appearance is wholly the result of the logical 

application of programmed rules and the controlling structures that govern the use of those rules. 

In contrast, the learning process that takes place within a neural network as it adapts its responses 

to the signals applied to it, can much more readily be envisaged as approaching the criteria many 

people would accept as indicating intelligence. However, even within the neural network, where 

the actual training and operation of the net are commonly treated in a ' black box' manner, the 

break is never made from the programmed algorithms that prescribe the way in which the net 

learns to adapt its behaviour. Hence, it is true to say that as yet, the field of AI has been concerned 

with the development of machines that mimic human reasoning and behaviour, rather than be the 

source of spontaneous thought and actions. 

The reason for the investigation of the AI field in relation to the problems associated with 

the prediction of the patterns of water and electricity consumption, is that situations commonly 

occur in the operation of a water or electricity supply network that cause significant departures 
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from the regular cyclic consumption patterns that are a fundamental requirement of wholly 

mathematical prediction systems. In such situations it is often the case that a potentially serious 

supply crisis is avoided by the engineer or operator overriding the information supplied by the 

prediction system and instead utilise their skill and knowledge built up over many years to correct 

the error. As a consequence of the drawbacks of relying on operator skill and judgement, such 

as lack of consistency, lack of availability and the longevity of the operator, there have been a 

number of attempts to harness the potential offered by AI techniques to provide method of 

capturing the knowledge necessary to mimic the actions of a highly experienced operator. In 

Chapter 2, as part of the review of previous work, several examples were given of the application 

of such knowledge based techniques in the field of electrical load prediction. In this chapter, the 

particular elements of AI that were used in the development of the combined demand forecaster 

that forms the basis of this thesis, will be introduced in more depth. 

4.2 Knowledge Based Systems. 

Knowledge based systems provide a means by which heuristic knowledge can be 

organised, structured and accessed in a manner that enables such knowledge to be incorporated 

into programs so that they provide a problem solving capacity. Many problems are by their nature 

either impractical for solution by algorithmic means or an algorithmic approach can provide only 

part of the answer. Prior to the development of knowledge based systems such problems were 

only solvable by the deployment of an expert in the particular field concerned. He would use his 

experience and intuition to arrive at a solution, though typically this solution would carry with it 

a degree of certainty/uncertainty dependent on the exact nature of the problem, the strength and 

quality of the evidence indicating the answer and the level of expertise of the expert himself 

Knowledge based systems can provide the means by which some of the valuable knowledge 

possessed by one or more domain experts can be captured, formalised and structured so that it 

can be made available to non expert users. 
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4.2.1 What Is A Knowledge Based System. 

There are three key elements that make up a typical expert system, these are briefly 

outlined below and are described in detail in section 4.3. 

The working memory, this is where facts about the current situation are stored. In order 

to apply the correct rules in a given situation, the situation has to be defined i.e. what facts are 

known, what data is available and what goals are to be achieved. The working memory is highly 

volatile and acts as a scratch pad that is updated as the expert system progresses towards the 

desired goal. Initially the working memory will store the initial state of the available data and the 

goals to be satisfied, rules are then activated that act upon and where appropriate update the 
-

information stored in the working memory, sub-goals are created and where possible pursued to 

a solution. This proceeds until a solution to the original goal is found or the expert system is 

halted by lack of data thus preventing it from progressing any further towards a solution. 

The production memory is a database of production rules that act upon the data stored 

in the working memory. These production rules are by far the most common format in which the 

expert knowledge in a particular domain is encoded, they consist of a condition part and a result 

part, the condition part requires to be satisfied by the data available to the system in order that the 

result part can be executed. The application of the appropriate rules enables the expert system to 

progress from the initial state described in the working memory towards the desired solution. The 

production rule database is built up during the construction of the expert system from interaction 

with one or more experts in the domain concerned. The rules remain largely static during the 

solution of a particular problem., but can be updated in the light of the overall system performance 

in order to improve that performance or enable a new situation to be incorporated. 

The rule interpreter or inference engine provides the means by which the appropriate rules 

are selected for application to the data stored in the working memory. It also carries out the 

updating of data and goals in the working memory, in order to provide a means of progressing 

towards the desired solution. The rule interpreter also carries out conflict resolution to determine 

the order in which the rules which have been triggered by the data in the working memory are 
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fired. 

Knowledge based systems are commonly referred to by the term 'expert systems', 

however, this term is not popular with many of the researchers in the field who believe it is a 

misnomer. The reason for this is that for the majority of the knowledge based systems which have 

been developed, their performance is not comparable with that of the human experts in the domain 

to which they apply and it would therefore be wrong (and potentially dangerous) to treat the 

solutions derived from such systems with the same degree of reliance as solutions reached by the 

human expert. This thesis will therefore attempt to avoid the term expert system in discussion of 

this topic. 

4.2.2 The Development of Knowledge Based Systems. 

Applications to which knowledge based systems are most suited are those which concern 

a relatively specialised, narrow domain in which there are few highly trained and experienced 

personnel but for which there also exists is a wide demand for access to the information relating 

to the domain. By encoding the experts knowledge into a computer program, the knowledge can 

be disseminated to many more people than would otherwise be the case. The field of medical 

diagnosis is a very good example of the situation outlined above and indeed one of the most 

successful early knowledge based systems MYCIN [18] was developed to assist a physician in the 

prescription of disease specific drugs. MYCIN was designed to guide a user, via a series of 

questions concerning the results of a number of biological tests, to a set of possible candidate 

bacteria that could be the cause of a particular infection and based on this assessment the system 

suggested appropriate antibiotics. The system consisted of a rule base an inference engine and 

working memory as outlined in the previous section but also included an end user interface, an 

interface through which the expert could enter the knowledge to be utilised by the system and 

refinements such as an explanation system and uncertainty factors (these elements are described 

later in this chapter). The MYCIN design has been used as the basis of many similar knowledge 

based systems developed subsequently including PROSPECTOR [65] and DENDRAL [98]. 
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Another early and sucessful knowledge based system that helped to stimulate commercial 

interest in the field, was the XCON system developed by Digital Equipment Corporation. This 

system was designed to provide assistance in the configuration of the components of mainframe 

computers and used a rule base of over 10,000 rules holding information on several hundred types 

of component. A similar system for the configuration of computer systems called R 1 is described 

by McDermott in [102]. Such systems demonstrated a clear advantage over human experts in their 

ability to reliably and consistently manipulate such large volumes of detailed information. 

The field of short term electrical load forecasting, which as described in Chapter 2 has 

close links with the prediction of water consumption, has seen the development of prediction 

systems that utilise knowledge based system and AI techniques. The combination of analytical and 
-

heuristic methods to arrive at a load forecast has been used in the ELFOS system described by 

Remior and Ayuso [127]. This uses a mathematical algorithm to predict the total demand for the 

coming 24 hours, the forecast being based on records of past daily demands, template daily 

demand profiles are then selected to arrive at an hourly forecast. Rules, which are held in context 

defined groups within the rule base, are then invoked which alter the derived daily profile in the 

light of known special characteristics for the day in question. Rahman and Bhatnagar [124] have 

also published work on the possibilities of using an knowledge based system to replace the role 

of the electricity system operator who relies on his experience and judgement to augment the load 

forecasts generated by mathematical prediction systems. They attempted to identify the variables 

and rules used by the system operators in estimating the likely system load as well as identify the 

criteria used in the decisions to apply specific rules in specific situations. Following the in depth 

analysis of the system operators skills a rule base containing the derived rules relating to the tasks 

carried out by the operators was constructed. This rule base was then used to adjust a base 

forecast generated by selecting similar days to the prediction day from a four week window. 

In both of the above examples the work concentrates on the use of rule based knowledge 

based systems to account for the effects of weather conditions upon the daily load profile. 

However, there are a number of problems associated with using rules to hold knowledge about 

meteorological influences, the principle problem being that the relationship between prevailing 

weather conditions and resultant load variations is not stable. The weather related demand for 
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electricity on any given day (or time of day) is the result of a general perception among the 

consumers, and this perception is based on a complex interaction of numerous individual factors 

such as temperature, humidity, cloud cover, day of the week, time of the year, past weather 

conditions etc. Because it is not practical to monitor and record every possible factor that has an 

effect upon the level of demand, systems such as the ones described above select a small number 

of key meteorological factors determined as being most influential. Unfortunately as a result it is 

therefore highly probable that on two days exhibiting the same values for the selected 

meteorological factors but separated in time, the load profiles will show significant differences. 

Figures 4.2.1 and 4.2.2 illustrate this. 

This lack of consistency leads to problems of constantly trying to update rules in the light 

of their success in matching the actual observed load or can lead to a very unwieldy system 

caused by the attempt to generate a rule for every slightly different situation. Because this 

situation is mirrored in the link between weather conditions and the pattern of water consumption, 

the knowledge based system developed as part of the combined prediction system that forms the 

basis of this thesis does not concentrate on accounting for meteorological variations, instead this 

task is performed by a neural network. 

The AI technique of pattern matching has been used in load forecasting with some 

success, the ALF A system [78] being a good example. This system initially generates a base load 

profile for each day of the year based on a 15 year database of past load data. The differences 

between this base load profile and the actual load observed for any given day is attributed to a 

weather dependent load. The values for this weather dependent load and the corresponding 

meteorological values for each day are held in a database spanning 10 years. The predicted values 

for the meteorological variables for the coming day are used as a basis for selecting the eight 

nearest matching days in the database. This search is augmented by weighting of the relative 

importance of individual meteorological factors at different times of the year and by restricting 

the search to similar days of the week i.e. weekdays, weekends, holidays etc. This system has 

been proved to be very effecti~e in its application to the Upstate New York power distribution 

system, however, it is obviously dependent upon having available a large database of past data, 

this is very rarely the case with most utilities. If there is a shortage of past data on which to base 
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Figure 4.2.1 Profile for April 17th With Same Weather Conditions as May 25th 
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Figure 4.2.2 Profile for May 25th With Same Weather Conditions as April 17th 
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such a pattern matching system, the possibility arises of there being a single or very few examples 

of similar days to the conditions of the prediction day. This in tum would lead to encountering 

the problem raised previously of inconsistency between days apparently having identical 

meteorological conditions. 

Although the use of knowledge based systems with in the water industry is not widespread 

at the present, there have been a number of applications developed and applied to specific areas. 

In the mid 1980's the Water Industry Knowledge Based Systems Club was set up under the 

AL VEY program to investigate the potential of knowledge based systems by building two 

prototype applications SERPES, and W ADNES. SERPES was an knowledge based system 

designed to mimic the decision making process carried out by an sewer rehabilitation engineer and 

W ADNES was a system designed to provide expert guidance to control room staff concerning 

emergency situations that could occur within a water distribution network. These particular areas 

of research were chosen for knowledge based system development because they were demand to 

meet criteria established at the outset of the project. These criteria were as follows: 

The problems concerned should be ones where human expertise is at a premium and resolution 

involves significant judgement and experience. 

The problems should be such that they contain well documented and closely bounded planning 

procedures based on detailed formalised knowledge. 

That an improvement could be achieved in the levels of service attained and the standardisation 

of those levels of service as a result of the knowledge based system development/application. 

The potential benefits foreseen as following on from knowledge based systems research 

included, an improvement in the distribution of valuable knowledge within the industry, the 

achievement of common standards of service and the improved utilisation of experienced staff. 

The SERPES system was based on the four planning stages of sewer rehabilitation as defined in 

the Sewer Rehabilitation Manual. This includes the ability to build and calibrate a WAS SP [153] 

network model of the sewer layout from within the SERPES program as well as providing costed 
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solutions to identified problems within the sewer network. The program contains approximately 

800 rules which lead the user through the rehabilitation manual performing tasks such as the 

classification of sewers based on their importance to the functioning of the network. Much of the 

program is concerned with the provision of graphical tools designed to assist the sewer engineer 

at various stages of the rehabilitation process, including network displays, graph generation and 

sewer cross section generation. The W ADNES program was intended to demonstrate the 

relevance of knowledge based system technology in an on line control room situation, a field that 

by its nature provides the possibility of a multiplicity of knowledge based applications. The 

modern water network control room is the receiving point for a vast amount of data arriving via 

a number of signal carrying media from remote sensors distributed throughout the geographic area 

of the network. This data needs to be categorised, interpreted and acted upon in order to provide 

optimal network control. The expertise, experience and data assimilating capabilities required by 

the staff that make the control room decisions are increasing rapidly and a method of avoiding the 

situation where the available staff are unable to meet the data processing needs of the network 

is required. Knowledge based systems are seen as providing the means by which the required 

volume of knowledge can be made available around the clock to control room operators, 

managers and engineers. W ADNES itself was designed to provide advice to a network operator 

in the event of an abnormal or emergency situation occurring within the network. The program 

is relatively basic in that it will only handle four particular failure types, a major burst, a pumping 

station failure, a chlorine gas leak and a request for increased fire fighting capacity. However, the 

program was intended as a prototype that would demonstrate the capabilities of such a system 

rather than as a commercially viable product. It is, like SERPES, a rule based system that through 

a dialogue with the user, generates one or more courses of action to be followed to resolve the 

emergency situation. In addition, a template matching system of network parameters is used to 

locate the probable source of a problem within the network based on the effect the particular 

problem has upon the flows and pressures monitored by the control room telemetry system. 

There is significant potential that can be exploited in the use of knowledge based systems 

within the water industry . However, given the inertia commonly experienced in the industry in 

the light of innovative developments and the fact that the two knowledge based systems 

themselves were only of a prototype nature, there is still some considerable distance to go before 
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knowledge based systems become more widely accepted as being of real benefit. 

4.3 Types of Knowledge Based System. 

Within AI research there are a number of different types of knowledge based system which 

can be usefully categorised by the methods used to hold the domain knowledge. The most 

common types of system are rule based systems, this popularity is due largely to the fact that 

rules are a relatively intuitive form of knowledge representation thereby making the task of 

structuring the domain knowledge easier. In addition, the fact that a rule is usually a self contained 

item of knowledge makes the updating and modification of the rule base relatively 

straightforward. The components of such rule based systems are described in detail below. There 

are however other approaches to knowledge representation which have yielded significant results, 

a more object oriented approach is possible with frame based systems such as the IDEAS system 

described by Winstanley et al [10]. The object oriented view of problem solving is based on 

identifying the real world objects involved in a problem and the processes carried out by those 

objects. A simulation of objects and their processes and a means of linking such objects is 

provided by object oriented programming. An object in such a program can represent anything 

from an integer to a machine tool, all objects are treated uniformly, they can have a local memory 

associated with them, they can pass data between each other, they can execute subroutines or 

processes and they can inherit characteristics from ancestor objects. 

4.3.1 Frame Based Systems. 

Frames have been used to implement such object oriented programs [10,104], the frames 

themselves corresponding to objects and the attributes and relationships of these objects are 
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represented by slots within the frames. Frames can be ordered in a hierarchical structure of 

superclasses, classes and subclasses of objects, so that attributes (slots) and where appropriate 

values (held within slots) can be inherited. This allows a centralisation of the knowledge held 

within the frames and avoids the need to specify all the attributes of a new object or individual 

when it is to be added to the system i.e. The slots in a new instance frame are determined by the 

class and superclass to which that instance belongs and the values for these slots can be passed 

down the inheritance tree. Figure 4.3 1 illustrates the principle of inheritance . 
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Figure 4.3.1 Inheritance in a frame based system. 

Information can be retrieved from a frame based system by matching template frames with 

those stored in the knowledge base. It may be necessary to move down the hierarchy of frames 

to retrieve specific values via the use of pointers in frame slots, alternatively such frame slots can 

hold equations or instructions to trigger outside procedures to calculate the required information. 

The advantages of such hierarchical systems are that they are initially straightforward to construct 

once the relations between the objects involved have been established, they are also easier to 

update and modify in a consistent way when required and mistakes can be corrected again with 

consistency ensured by the hierarchical structure. 

There have been applications where combinations of knowledge representations have 
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been used in an attempt to exploit the relative strengths of each. Atkins [7] used a frame based 

system to hold the static information relating to a problerr., while the more dynamic information 

was held in production rules which could alter the values held within the frame slots. The G2 

system uses multiple knowledge representations, objects and their relationships are represented 

by a frame system, these frames can also contain production rules within their slots along with 

information on where and when to apply them, dynamic models can be stored and used to 

represent system behaviour over time and real time executable procedures can carry out tasks 

required by the system. 

An extension of the idea of using multiple knowledge formats tailored to suit the data 

being stored and manipulated, is the concept of the Blackboard System [64]. The general 

methodology used by such systems is that of opportunistic reasoning, each knowledge source 

contributes what it can, when it can to an evolving solution held in a processing area termed the 

blackboard. The information on the circumstances in which a particular knowledge source can 

contribute its knowledge is held with the knowledge source itself but contributions are controlled 

by an overall monitoring system that activates the appropriate source at the appropriate time. In 

many respects the use of the ARIMA, neural network and rule base elements of the demand 

forecasting application described in this thesis can be viewed as a form of blackboard system. 

Each component was developed to provide the most suitable approach to the individual elements 

of the problem of deriving an accurate demand forecast, the ARIMA algorithm exploits the cyclic 

periodicity characteristic of water consumption patterns, the neural network provides a method 

of accounting for the highly non-linear effects of weather influences and the rule base is designed 

to provide a method of capturing the heuristic knowledge commonly used by operators to modify 

forecasts. 

4.3.2 Rule Based Systems. 

As outlined in section 4.2.1 rule based systems[ 19,31] have three basic components, the 

rule base itself where the domain knowledge is held, the working memory which holds the data 
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which describes the current situation and inference engine or rule interpreter which controls the 

selection and firing of the appropriate rules. 

The structure of the rules held within the rule base is commonly of the form shown overleaf 

RULEN 

IF ANTECEDENT] 

AND ANTECE[)}'~T2 

AND ANTECEDENT3 

THEN CONCEQUENT] 

AND CONCEOUENT2 

AND CONCEO(JENT3 

Antecedents and concequents of rules can contain constants as identifiers, in which case 

a rule must be created for each instance likely to be encountered by the system, for example: 

IF John lives next to Frank THEN John is a neighbour of Frank 

The above rule is restricted in its application to the characters John and Frank and we would need 

additional rules to deduce if other persons that are likley to be encountered were neighbours. To 

avoid this problem rules can contain variables which allow then to have far more general 

application, as illustrated below: 

IF x lives next to y THEN x is a neighbour of y 

These variables initially have no value but acquire values as the antecedent patterns are matched 

to the information in the working memory, the binding of a variable with a particular value is 

termed instantiation. The patterns specified in the antecedents of a rule are matched by the rule 
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interpreter to the assertions held in the working memory ( an assertion in this context taking a 

form such as 'The current temperature is 23 Degrees Celsius' ) , if the match succeeds then the 

antecedent in question is said to be satisfied. If all the antecedents that make up the 'if part of a 

rule are satisfied by successfully matching assertions in the working memory, then the rule is 

triggered. The concequents in the 'then' part of a triggered rule can either have the effect of 

establishing a new assertion in the working memory and hence add to the information available 

to enable progress towards a solution, in which case the rule based system is described as a 

deduction system i.e. the rules deduce facts from an existing pool of information and add the 

deduced facts back into the pool thereby moving incrementally towards a solution. Alternatively, 

the concequents of a triggered rule can cany out some action such as the adjustment to the values 

ofa vector or the alteration of the concentrations in a chemical production process, such systems 

are termed rule based reaction systems. The actions taken by such systems can also include the 

activation/deactivation of specific rules or groups of rules as well as the addition or deletion of 

assertions. The demand forecasting application described in this chapter is a reaction system in 

that the rules carry out adjustments to the twenty four hour prediction. 

In both rule based reaction systems and deduction systems, forward chaining is the process 

that moves the system from the initial state to the solution state. A forward chaining system is 

a data driven system, with the antecedents of each rule being compared to the assertions that exist 

in the working memory. Successful matches between assertions and a rules antecedents cause the 

triggering of that rule and an updating of the information in the working memory. An examination 

of the working memory reveals that either progress has been made towards a solution in which 

case further rules can now be invoked, or that the solution itself has been reached. If no progress 

has been made, then this indicates that the information we have at our disposal, in the form of 

assertions in the working memory, is insufficient to allow a solution to be deduced. 

This contrasts with rule based systems which are goal driven, these systems are termed 

backward chaining systems. Such systems start with a initial hypothesis being made as to a 

possible solution and the rule base is examined to match any rules whose concequents would 

confirm the proposed hypothesis. If the search is successful, the rule in question is extracted and 

its antecedents matched against the assertions held in the working memory, if a positive match is 
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found for each element of the list of antecedents, then the rule's concequents are confirmed and 

the original hypothesis shown to be correct. If an incomplete match is made between the rule's 

antecedents and the available data in the working memory, then the antecedent elements that were 

not matched are extracted to form sub goals which initiate a further search of the rule base to 

locate rules whose concequents will confinn the missing information. This process continues until 

all the information required is assembled and hence the hypothesis confirmed, or it proves 

impossible to match the required facts with the available data and the hypothesis fails. 

The guiding factor in determining whether a data driven or goal driven approach is most 

appropriate to a specific problem is an examination of the way the rules relate facts to 

conclusions. When a typical set of available facts could lead to many plausible conclusions, of 

which only a small number will be of interest, then the rule system exhibits a high degree of 'fan 

out' i.e. there is potentially a large number of branches and sub branches which would have to be 

explored before arriving at a desired solution. Such a situation would indicate that the most 

suitable approach would be backward chaining from a solution known to be one of the small 

candidate set of solutions of interest. However, if the number of ways of reaching the particular 

conclusion in which you are interested is large, but the number of conclusions you are likley to 

reach given a typical set of facts is small, then the system is said to exhibit 'fan in' and forward 

chaining is indicated. Similarly, if the situation is such that you initially possess all the facts that 

are ever likley to get and you wish to know everything it is possible to conclude from these facts, 

then forward chaining is again indicated. This is the situation found in the demand forecasting 

application described in this chapter an hence a forward chaining rule based reaction system has 

been adopted. 

Such forward chaining reaction systems require a method of conflict resolution to enable 

them to determine the order in which to implement the concequents of the list of rules that have 

been triggered by the information present in the working memory. The determination of the order 

in which a set of triggered rules are fired can have a very significant effect upon the results of a 

reaction system. For example, the demand forecasting application may have two rules, one of 

which boosts the demand forecast to account for the occurrence of very hot weather on a Bank 

Holiday and the other alters the basic 24 hour prediction profile to reflect the characteristically 
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unique shape of a Bank Holiday profile. Ifboth these rules are triggered on a particular hot Bank 

Holiday, then the order in which they are applied to the basic prediction profile has a significant 

effect upon the final prediction, this is illustrated by figures 4.3.2 and 4.3.3. 

below. 

There are several methods for achieving conflict resolution some of which are listed 

Rule Ordering - this is the simplest form of conflict resolution, the order that the rules 

occur within the rule base determines the firing order. 

Context Limiting - here the rules are separated into groups of related rules and only some 

of the groups are active at anyone time. 

Specificity Ordering - when the conditions of one rule are a superset of the conditions of 

another, then use the superset rule as it is the more specific. 

Input Data Ordering - the available facts are ranked in a prioritised order and the rule that 

uses the highest priority assertions in its 'if part is fired first. 

Rule Priority Ordering - each rule is give a numeric value which indicates its firing priority. 

The demand forecasting rule interpreter uses an combination of context limiting and rule priority 

ordering in that the rules are divided into one of three categories, calendar related rules, network 

related rules and weather related rules and within those categories each rule is assigned a numeric 

priority. 
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4.4 Implementation of the Demand Forecasting Rule Base. 

There are several programming environments and languages that have been developed 

specifically to provide a suitable platform for the construction of artificial intelligence programs. 

The demand forecasting application described here was implemented in the POPLOG environment 

using the POP-II programming language [10]. The decision to implement the rule based elements 

of the demand forecaster in an AI environment/language was based on the wish to use the most 

appropriate tools for the nature of the tasks to be undertaken. Hence the mathematical calculation 

required by the ARIMA algorithm dictated that a numerical computation biased programming 

language such as FORTRAN be used for its execution, while the more heuristic nature of the task 

of implementing the rule base was best approached by making use of an environment specifically 

designed for such problems. There are several advantages that artificial intelligence environments 

and languages offer, for example, rapid prototyping is facilitated, programs can easily be created, 

modified, tested and extended, this is necessary because of the ill-defined nature of the problems 

commonly encountered in AI research. The environment provides a built in editor, on line help 

and a comprehensive set of debugging aids. Programs can be built up in a modular form, with 

each module able to be tested and run independently. There is also an extensive range of built in 

library functions available in POP-II that are designed to aid the tasks commonly required in AI 

programs, of these functions, the pattern matching facilities are very powerful and because of their 

importance in the demand forecasting application, they are described in more detail in section 

4.4.1. 

In order to allow the use of the POPLOG environment for the implementation of the rule 

base, a means of communication between the host FORTRAN program and the POP-II program 

needed to be developed. This was achieved by running the POP-II program from within the 

FORTRAN program as a spawned sub-process and using the 'mailbox' facility provided by the 

VMS operating system to allow data transfer between the two programs (a mailbox is a virtual 

device that can be used to send data between VMS processes). Initially the mailbox is created by 

the FORTRAN program, a mailbox being a file type that can be written to and read from by more 

than one program type i.e. the FORTRAN program can place data in the mailbox and POP-II can 
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access that data, modify it and write it back into the mailbox. A system dependent process 

command in FORTRAN causes the spawning of the POP-II program as a sub-process by 

triggering a DeL file that holds the commands that activate the spawned sub-process. FORTRAN 

uses the system input/output commands to write the data required by the POP-II program to the 

mailbox, the required data being, the date of the prediction day, the array holding the 48 data 

points of the 24 hour demand prediction and the meteorological data for the prediction day in the 

form of maximum temperature, number of hours of sunshine, total rainfall, the number of 

antecedent dry days and the number of antecedent days where the temperature exceeds a 

threshold value. POP-II uses its 'sysread' commands to extract the data from the mailbox and 

the rule interpreter initiates the search of the rule base to locate any rules that are applicable to 

the prediction day. The prediction is modified by the selected rules and then written back to the 

mailbox where it is available to the FORTRAN program for graphical display. Figure 4.4. I 

illustrates this process. 

FORTRAN 
HOST 

PROGRAM 
POP-II 

RULE BASE 

Figure 4.4 . 1 Communication between FORTRAN and POP-II. 
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Once the POP-II program receives the prediction data from the FORTRAN program, a 

menu driven process is initiated to determine what rules, if any, are to be invoked to modify the 

raw prediction profile. The menu driven process allows the operator to control the selection of 

rules for application to the current demand forecast both in terms of the rules triggered as a result 

of matching the meteorological and calendar data associated with the current forecast, and the 

rules to be selected manually for application based on the operators experience and judgement. 

As stated previously the pattern matching facilities offered by POP-II are highly important in both 

the above rule selection procedures, it is therefore worthwhile reviewing them in more detail in 

the following section. 

4.4.1 Pattern Matching in POP-II. 

POP-II provides a powerful data structure known as a list, which can be used to represent 

and manipulate information. It is this data structure upon which POP-II's pattern matching 

capabilities are based. Lists are denoted in POP-II by square brackets and can contain any of the 

POP-II data types - numbers, words, strings, variables, other lists etc. Some examples are given 

below. 

[ a list of five words] - A list containing five elements of data type word. 

[1 2 3 456 78 9] - A list of six numbers. 

[1 2 3 cat dog mouse 4 5 6] - A list containing a mixture of words and numbers. 

[[1 2 3][cat dog][34.23 23.44]] - A list oflists. 

[] - An empty list. 

[ 'a string within a list' {1 453 55}] - A list containing a string and a vector. 

For the demand forecasting application a list structure was used to store the rules that 

modify the imported prediction, the structure of the list used is shown below. 

[rule_no 'rule_name' rule_type manuaLtrigger priority 'date' [day_type 

temp sun rain no_dry_days no_hot_days season] {weight_vector} ] 

The elements that make up the rule template are as follows: 
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rule number - A unique identification number for each rule of the format 012C or 005W, where 

the letter following the three figure reference relates to the rule category C = 

Calendar, W = Weather and N = Network. 

rule name - A string of maximum length 30 characters that provides a name that indicates the 

purpose of the rule, for example 'bank holiday profile'. This string is utilised in 

providing the operator with a meaningful description of the rules action, both for 

rule base examination and in the provision of an explanatory list of the rules 

applied on a particular day. 

- A numeric figure 1 - 3 that is used to identify the rule as calendar, weather or 

network type and is used in conjunction with the priority figure to determine the 

order offiring of those rules that have been triggered. More details of this process 

are given later in this chapter. 

manual_trigger - A single number that can have the value 1 or 0 that is used to indicate those 

rules that have been selected by the operator for manual triggering on the current 

prediction day i.e. Although no match from the available information passed to the 

database would indicate triggering of the rule, the operator considers that from his 

experience the rule should be invoked. 

date - A string holding the date or dates upon which the rule is applicable. 

Meteorological data relating to the rule is held as a list within a list and is composed of the day 

type (1 to 4 as used by the neural network predictor - see Chapter 5), the maximum temperature, 

the number of sunshine hours, the total rainfall, the number of antecedent dry days, the number 

of antecedent hot days and a figure 1 to 4 to indicate the season. The season indictor is used to 

ensure rules operate during the particular season or seasons they were constructed for. 

The above data in effect compromises the conditional 'if part of each rule, while the vector 
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described below forms the resultant 'then' part. 

weight_vector - This is a vector of length 48 that contains the weight values used to alter each 

of the 48 half hourly data points of the raw prediction when the rule is fired. Each 

element of the weight vector is a numeric value that can be either posotive or 

negative and is applied by adding each vector element to the corresponding value 

of the 24 hour demand forecast. 

In order to select the rules that are applicable on any given prediction day, a number of 

built in POP-II matching procedures and functions are utilised. The built in POP-II pattern 

matcher provides a means of checking the correspondence of a list with a pattern, it has a general 

syntax of: 

< target list> matches < pattern> 

A number of symbols can be used to allow complex patterns to be specified. The = and = = 

symbols are the basic descriptors of pattern shape and can be used to allow 'wild card' matching 

to a single element or a number of elements in the target list. For example, in order to determine 

if the date in a rule with a structure as outlined on the previous page matches the current 

prediction date, the following pattern specification could be used. 

rule_1 matches [= = TUE_12_MAY _1990 = = ] 

The = = symbols either side of the date will match with any number oflist elements, so in effect 

the above statement will return an answer of true if any element of rule 1 matches 

TUE 12 MAY 1990. 

More complex patterns can be constructed that specify not only the linear shape of the of 

the target list but also its structural content. In the example given below the date 

TUE _12 _MAY _1990 must be followed by a list (the meteorological data list in this case) whose 

second and fourth elements are 20 and 0.1 respectively. 
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In order to allow variables to be used in pattern specification the /\ symbol is used to prefix 

the variable name to denote that the current value of that variable should be used in the pattern 

match instead of the literal values of the name itself This can be illustrated by the following: 

THU_14_MAY_1990 -> pred_date; 

The date is assigned to the variable pred _date. 

rule_1 matches [ = = pred_date = = ] 

This match fails. 

rule_1 matches [= = Apred_date = = ] 

This match succeeds. 

The /\/\ symbol acts in a similar manner to /\ , except that it is used to represent the elements of 

list variables. 

As well as checking that a list conforms to a particular pattern, it is often necessary to 

retrieve values from the target list. The? and ?? symbols are used to bind the variables whose 

names are preceded by ? or ?? to the values of elements of the target list. Hence, ?x means set the 

value of x to the value of the single element in the target list to which it matches and ??x means 

set the value of x to the list of elements in the target list to which it matches. 

THU_14_MAY _1990 -> pred_date; 

rule 1 matches [= = Apred_date [ = ?get_temp ?get_sun ?get_rain = = ] = =] 

In the above example the value of THU _14_ MA Y _1990 is assigned to the variable pred _date, 

if a successful match is made between this variable and the date in rule _1 then the variables 

get_temp, get_sun and get_rain would have their values set to the values of temp, sun and rain 

contained in rule 1. 

It is possible to carry out restricted matching with the use of the : symbol in conjunction 

with the? symbol. this means that the specified element( s) in the target must be a member of a 

restricted set of possible answers. 
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rule 1 matches [= = ?x: bank_holidays = = ] 

In the above example a match would be successful if the date element in rule _1 was one of the 

dates listed in the following previously defined procedure. 

define bank_holidays ( date) -> result; 

member ( date, [ MON _07 _MAY _1990 MON _28_ MA Y _1990 ]) -> result 

enddefine; 

4.4.2 The POP-It Database. 

As an extension to the pattern matching facilities outlined above, POP-II provides a built 

in database and numerous data manipulation procedures for this database. This database facility 

has been utilised in the construction of the demand forecasting application. The database provides 

a simple mechanism for storing the collection of rules (of the format previously specified) and 

retrieving the data in those rules on a pattern matching basis. The database takes the form of a 

list of lists and the various pattern matching procedures described in the previous section are 

utilised for adding extracting and examining data held within it, as well as a number of specialised 

database matching facilities. 

Initially on entering the POP-II program the database is empty and the existing rules of 

the format shown in section 4.4.1 are loaded into the database from a datafile. 

datafile( 'rulebase.dat') > database; 

The built in procedures add and alladd allow single items and multiple items respectively to be 

appended to the database, so that if a new rule is constructed and held in the variable 'rule _10', 

it could be added to the database by the command: 

add ( 1\ rule_10); 

The list that comprises rule _lOis consequently added to the list of lists that forms the database. 

Similarly the procedures remove and allremove allow the deletion of single and multiple items 

from the database, hence if a rule became obsolete it could be removed from the database. 
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remove ( [ 006W = = ] ); 
The above command would remove the rule with a rule number that matched 006W. 

Several procedures exist that allow the searching of the database to locate items that 

match specified patterns. The procedure present takes a pattern, matches it against every item 

in the database and returns either true or false as a result depending on the success or otherwise 

of the attempted matching. In addition, if a match is found the procedure places the matched item 

from the target list in the variable 'it'. A illustration of the use of the present procedure in the 

demand forecasting application is the extraction of a rule for alteration of the weight vector. In 

the program extract shown below a search is made of the database to locate a rule whose first 

element matches the value of the variable rule_no, if successful then the variable weight_vector 

is assigned the value of the rule weight vector and the matched rule is removed from the database. 

The procedure alter_weights is passed the extracted rule and the weight vector and returns the 

updated rule, this updated rule is then added to the database. 

if present ( [ "rule_no = = ?weight_vector ] ) then 

remove ( it ); 

endif; 

alter_weights ( it , weight_vector) > updated_rule; 

add ( "updated_rule ); 

Two other important procedures used extensively in the demand forecasting application 

for the extraction of data from the database are the foreach and forevery procedures. These 

procedures allow the retrieval from the database all items present that match a pattern or list of 

patterns. This is in contrast to the present procedure in that present will stop when the first 

occurrence of a match is found, whereas foreach and forevery continue to search the database 

until all occurrences of the required match have been extracted. The general syntax for these 

procedures is as follows: 

foreach < pattern > do < action > endforeach 

forevery < list of patterns> do < actions> endforevery 

An illustration of the use of the foreach procedure in the demand forecasting application is in the 
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searching of the database to locate any rules of type calendar whose values in the date element 

match the current prediction date. 

1 > rule_type; 

foreach [ ?rule_no ?rule_name "rule_type = ?priority "current_date [ = =] ?weights ] do 

[ "rule_no "rule_name "rule_type "priority "weights ]:: trigg_rules > trigg_rules; 

num rules + 1 > num_rules; 

endforeach; 

In the above program extract the rule type is set to 1 to indicate a search for calendar related 

rules, the foreach procedure then searches the database for all the rules that have a rule type of 

I and a date that matches the variable current_date. The ? symbols are used to prefix those 

variables we wish to extract values for, the extracted values are then appended to a list of 

triggered rules. Similar searches are made of the database using the appropriate patterns to locate 

rules of both network and weather type and so build up a comprehensive list of rules applicable 

to the current day. 

4.4.3 The Operation of the Demand Forecasting Rule Based System. 

The application can be divided into two key elements, the rule base which utilises the built 

in POP-II database described in the previous section and the inference engine that controls the 

operation of the system from importation of the initial data to generation of the final result. The 

tasks carried out by the inference engine are described below. 

The initial task is to import the data placed in the mailbox by the ARIMA and neural 

network prediction programs, this comprises the 24 hour prediction profiles generated by both 

predictors, the prediction day date the current meteorological data and a record of the past rainfall 

pattern and temperature variations. The built in POP-II database is then loaded with the latest 

version of the rule base from the appropriate data file. The menu driven interface with the 

operator is then activated, a schematic showing the operation of this menu driven system is 
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displayed in figure 4.4.2. The first menu prompts the operator to decide whether the rule base is 

to be used for the current prediction, if it is not then the POP-II program returns control to the 

FORTRAN program, if it is then menu 2 is displayed. Menu 2 allows the operator to proceed with 

the search of the rule base for rules triggered by the current data relating to the prediction day, 

or to manually select rules that the operator considers should be activated on the prediction day, 

or the operator can select the examine rule base option to get an overview of the current state of 

the rule base. The manual selection option is particularly important for the Network rule category, 

the reason for this is related to the nature of the rules themselves. For example a rule may well 

have been constructed for accounting for the effect of a hosepipe ban being imposed during a long 

dry spell. However the operator will not know in advance when such a ban would be enforced so 

no date can be pre entered in the rule to trigger it automatically, the operator must instead 

manually select the rule for application at the time the ban is introduced. 

Selecting either the manual select or examine rule base options of Menu 2 activates Menu 

3 which provides the choice of accessing the rules of type Calendar, Network or Weather. Menu 

4 provides options which allow rules to be viewed, altered, added to and deleted from the rule 

base, in each case the operator is prompted via rule templates to enter the data required. The 

manual select option in this menu is either enabled or disabled depending on whether the manual 

select or examine rule base option was chosen by the operator in Menu 2. Once the desired 

changes have been completed via the options of Menu 4, control is returned to Menu 2 where the 

'Run Rule Base Search' option can be selected. 

The searching of the database is carried out for each rule type and for each combination 

of available data using the search techniques outlined in the previous sections. The Calendar and 

Network rules are searched for using primarily the date of the prediction day as the pattern to be 

matched while the Weather related rules are selected by a number of searches based on the current 

season and the meteorological data. An example of such a search based on the current day type 

(as passed from the neural prediction program) and the number of antecedent dry and hot days 

is given below. 
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foreach [ ?rule_no ?rule_name "rule_type = ?priority = [ "current_day_type = = 

"current_dry _days "current_hot_days = ] ?weights ] do 

[ "rule_no "rule_name "rule_type "priority "weights ]: : trigg_rules > trigg_rules; 

num rules + 1 > num_rules; 

endforeach; 

Figure 4.4 .2 Schematic to show the operation of menu driven interface. 
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41 Exit 
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Once the searching of the database for the triggered rules has been completed Menu 5 

gives the operator the option to list the currently triggered rules by rule number and name and if 

desired he can elect to remove one or more rules from this list, alternatively he could return to 

manually select any rule he considers should have been present in the list. Once the operator is 

happy with the list of rules to be applied the 'Carry out profile modification' option issues the 

instruction to the inference engine to carry out the ordering of the triggered rule list and apply the 

weights to the raw prediction profile. 

The importance of the correct ordering of the triggered rules was illustrated by figures 

4.3.2 and 4.3.3 and this is carried out by the inference engine on the basis of the rule category and 

the rule priority figures associated with each rule. The nature of the categories of the rules dictate 

that the Calendar rules are fired first followed by the Network rules and lastly the Weather rules. 

The reasoning behind this is that the effects accounted for by the Calendar rules and to a lesser 

extent the Network rules, are ones that alter the type of profile displayed by the day in question. 

For example a Bank Holiday Monday has a profile that is peculiar to this type of day i.e. people 

get up later than on a normal Monday, commercial and industrial usage is reduced and activities 

such as washing are increased. We therefore need to arrive at the right basic profile for a Bank 

Holiday Monday before we start superimposing upon that profile a) the effects of Network related 

events such as hosepipe bans and b) the effects of the Bank Holiday weather. The rule priority 

figure allows for the ordering of rules within each of the three categories, for example the firing 

of a Network rule to account for the increase in consumption due to the adding to the system of 

a re-zoned area before the firing of another Network rule that accounts for a large burst in that 

area. 

Once the rules have been ordered for firing their corresponding weight values are applied 

to the raw prediction profiles for both the ARIMA and neural network generated predictions. The 

modified predictions are then passed back to the VMS mailbox so that they can be accessed by 

the FORTRAN program for graphical display. 
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4.5 Results 

The POP-II rule base was tested on water consumption data for the Slough and High 

Wycombe areas covering a period from 1st April 1990 to 16 June 1990. 

4.5.1 Calendar Related Effects 

The calendar related effects cover events such as the following, Bank Holiday Mondays 

(3 occurrences during year), Bank Holiday weekends, the Easter Holiday ( 4 days ), the 

Christmas and New Year holidays (10 days), the BST/GMT changeovers and in popular holiday 

areas there are significant effect during the peak school holiday periods. The available half hourly 

consumption data for the Slough and High Wycombe areas covered a period which contained a 

BST/GMT changeover, the Easter Holiday and the two Spring Bank Holidays, rules were 

therefore constructed to account for each of these events. Figures 4.5.1 and 4.5.2 show the 24 

hour profiles for the two Spring Bank Holiday Mondays, in each case the three profiles shown are 

1) the actual consumption on the Bank Holiday 2) an unaltered ARlMA based prediction for the 

day and 3) a neural network based prediction which has been modified by the rule base. The 

ARlMA profiles are in effect profiles for a normal Monday and show a considerable difference 

in shape to both the actual consumption profile which is much closer to the profile updated by the 

rule base (in this case the same rule was applied for each occurrence of the Bank Holiday). 

Figures 4.5.3 - 4.5.6 show the profiles for the four days covering the Easter Holiday i.e. Good 

Friday, Easter Saturday, Easter Sunday and Easter Monday. Again the actual consumptions are 

compared to unaltered ARIMA prediction profiles and neural network generated profiles that 

have been modified by the rule base. Figure 4.5.7 shows the effect of the BST/GMT changeover 

on March 25 1990, the actual consumption is shifted by one hour compared to the unaltered 

ARIMA profile. In this case the rule triggered by the occurrence of the changeover does not apply 

weights to the prediction profile but instead triggers a FORTRAN routine that shifts the data used 

to generate the prediction by one hour and then re-runs the prediction to arrive at a correct 

profile. 
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4.5.2 Network Related Effects. 

The only Network related effect that is present in the available consumption data is the 

opening of a major export to the Aylesbury area that occurs for three days in April of 1990 as a 

reservoir was being filled. This has the effect of shifting consumption upwards by an almost 

constant amount for the duration of the filling exercise. Figure 4.5.8 shows the actual, unaltered 

ARIMA and modified neural prediction profiles for one of the days during this period. 

4.5.3 Weather Related Effects. 

As will be shown in the following chapter, the neural network demand forecasting 

approach was developed to account for the majority of the effects of the meteorological 

conditions upon the consumption profile. However, there are a number of extreme or exceeding 

sudden effects caused by weather conditions that need the application of heuristic rules to fully 

account for their influence. Examples of such effects are the sudden halting of evening garden 

watering caused by heavy rain after a long period of dry weather, this effect is demonstrated in 

Figure 4.5.9, where the neural prediction profile based on data gathered during a long preceding 

period of almost totally dry weather does not totally account for the fall off in evening 

consumption. Another example of where heuristic rules are required to augment the neural 

network predictions is for the occurrence of the first hot weekend of the year. Consumptions are 

significantly increased on such weekends but because the neural prediction does not yet have any 

examples of water consumption on hot dry weekends its predictions are too low, consumption 

boosting rules are required in this instance. Figure 4.5.10 and 4.5.11 show this effect for the 

weekend of 24th and 25th April 1990 where the unaltered neural network profile is too low and 

requires modifying via the rule base. 
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CHAPTERS 

A NEURAL NETWORK DEMAND FORECASTING 

APPLICATION 

5.1 Introduction. 

Neural networks can be described as directed graphs, they are composed of 

individual processing units termed neurons which are arranged in a layered form and 

are connected to other neurons in the same and/or different layers by weighted 

connections. Signals are applied to the input layer of a network and are propagated to 

the subsequent layers via the connections between layers. As a signal passes through 

the network it is altered by the weights associated with each of the connections 

through which it passes and by the transfer functions of each of the individual neurons 

to which it provides an input. Once the propagated signal arrives at the final layer of 

the network it is processed by the neurons in that layer and forms the output signal of 

the network. 

The interest generated in neural networks is centred on their ability to learn by 

producing a mapping between a given input signal and a desired output signal. 

Through the development of advanced learning algorithms [53,54,113,117,130] and 

network architectures, highly complex relationships have successfully been modelled 

by neural networks where conventional mathematical approaches have failed to 

provide adequate solutions. This is particularly the case where there exists a complex 
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interplay between a number of influencing factors which interact to generate a 

particular end result, an example of such a relationship is the influence of weather 

conditions upon the level of water demand. Neural networks allow a 'black box' 

approach to be applied to such relationships so avoiding the need to explicitly define 

the exact interrelation between each of the influencing factors and their specific 

influence on the final result. 

5.2 The Basic Elements of a Neural Network 

There have been a number of attempts to link the study of neural networks 

directly with the thought processes in operation within the human brain [29,66]. 

However, these have been largely unsuccessful; in part this is due to the lack of a 

definite understanding of the exact learning processes of the brain and also to the fact 

that the networks that have been developed to date provide only a simplification of 

those thought processes that are known to occur. It is therefore not intended to cover 

this aspect of neural networks other than to highlight that the link exists between some 

of the theories that have been developed to explain the neurophysiological operation of 

the brain and many of the ideas that have been the basis for significant steps forward in 

neural network development. 

5.2.1 Neurons 

The fundamental building block for a neural network is the neuron or 

processing unit, a typical example of which is shown in figure 5.2.1. A processing unit 

receives signals from other processing units or from inputs to the network and 

generates an output signal which is passed to either other neurons or comprises an 

element of the output of the network as a whole. A processing unit can have any 

number of incoming connections and any number of outgoing connections. 
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- Figure 5.2. 1 A Neuron. 

Neurons are arranged within the network in layers with each layer consisting of 

one or more individual neurons. The connections between neurons can link neurons to 

each other within a layer, to other neurons in different layers or to external network inputs 

and outputs. The architecture of a typical two layer neural net is shown in figure 5.2.2. 
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Figure 5.2.2 Structure of a Simple Two Layer Network . 
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Input signals to a particular neuron can be of any mathematical data type, 

however, the signals arriving at neurons in the same layer at the same time are 

conventionally all of the same data type. The output signal generated by a neuron is the 

same for all its outgoing connections. 

Each neuron commonly possesses a transfer function and a local memory. The 

transfer function generates the neurons output signal from the values it receives as 

input signals and any values stored in the local memory (if present). This transfer 

function can be a simple summation of the input signal values, or it can be a more 

complex function such as a linear, sigmoidal, ramp or step function. Commonly it takes 

the form of a threshold value which must be exceeded by the incoming signals before 

the neuron will generate an output other than zero. 

5.2.2 Connections Between Neurons 

In most neural network structures the connections between processing units 

have weight values associated with them, these represent the strength of the particular 

connection between processing unit A and processing unit B. These weight values are 

commonly stored in a local memory array within the processing unit to which they 

provide input. It is these connection weight values, together with the processing unit 

transfer functions, that determine the nature of the output signal that is generated by a 

network in response to an applied input stimulus. As an input signal applied to the 

network propagates from one layer of the network to the next, the weight values 

determine the signal that is submitted to any particular processing unit and the transfer 

function of that unit determines the signal that is passed on to the next layer. 

In addition to the weight values and transfer functions of a network, the 

network connection topology is also important in determining its operation. Not all 
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networks have the completely connected architecture displayed by the example 

network in Figure 5.2.2. Complex linking of groups of neurons in separate layers and 

within the same layer can be implemented and a way of defining these architectures is 

via the use of fascicles and input classes [6 7J. Fascicles are used to describe the way in 

which particular groups of source neurons are linked to particular groups of target 

neurons by identifying for each target neuron all the source neurons that supply signals 

to it of a particular class. Input classes are required because target neurons can receive 

signals from more than one set of source neurons ( more than one fascicle ) and the 

transfer function may need to treat each set of incoming signals in a different manner, 

input classes allow the target neuron to identify to which fascicle an incoming signal 

belongs. Figure 5.2.3 shows the concept of fascicles and figure 5.2.4 shows signals of 

different input classes arriving at a single neuron. All connections belonging to the 

same input class must be of the same mathematical data type. 
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Figure 5.2.3 The Concept of Fascicles. 
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INPUT CLASS 1 INPUT CLASS 2 INPUT CLASS 3 

Figure 5.2.4 Signals of Different Input Classes Arriving at a Neuron. 

Whilst fascicles and input classes allow highly complex network architectures to be 

defined, there are a number of simple network topologies which are very common, such as 

the fully connected network where each neuron in one layer is connected to each neuron 

in the adjacent layers, and the randomly connected network where the presence or absence 

of a connection between any two given neurons within the network is determined at 

random. The fully connected architecture is used in the application described later in this 

chapter. 
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5.2.3 Learning Algorithms 

The process of training a network so that it performs a desired function 

involves the application of one of the many learning algorithms that have been 

developed for neural network applications. The general aim of the learning process is 

to observe the networks performance in response to particular input stimuli and use 

this information to modify and improve that performance. The predominant method for 

achieving this improvement in performance is by the adjustment of the weight values 

associated with the connections between individual processing units within the 

_ network. Other methods for altering the network operation include the addition and 

removal of connections and/or processing units [6]. 

In order to provide a basis for the discussion of the topic of network 

connection weight adjustment, the following section provides a mathematical 

description of the network weight matrix W . 

The network weight matrix W is formed by concatenating all of the weights of 

all of the individual processing units of the network being described. For a network 

with N units each possessing n weights, this can be written as: 

(5.2.3.1) 

Where the vectors WI' W 2' ... , W N are the weight vectors of the individual processing 

units of the network. these are defined as: 

W In 
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w" 

The set that contains all possible values of the network weight matrix W 

determines the set of all possible information processing configurations of a particular 

network. This implies that if the desired information processing capability is to be 

realised by a given network, then it will be found at some particular value of the matrix 

W. The aim of a learning algorithm is to efficiently guide each network weight vector 

to the location in the solution space such that it yields the desired network 

performance. 

Learning algorithms can usefully be divided into; performance learning laws 

that seek to minimise or maximise some particular global network cost or performance 

function (e.g. the mean squared error) and filter learning laws that do not attempt to 

optimise a specific cost function but instead have a goal that can be expressed in 

behavioural or mathematical terms. Many different learning algorithms have been 

developed for neural network applications and examples of learning algorithms that are 

of particular relevance to the work discussed in this thesis are described later in this 

Chapter and Chapter 6. 
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5.2.4 Training 

The application of a learning algorithm in order to adjust the values of the 

network weight matrix is achieved by the implementation of a training regime. Such 

training regimes can be divided into three categories; supervised training, 

reinforcement training and self organisation. 

Supervised training is applicable to situations where the neural network in 

question is to behave purely as an input/output system i.e. an input vector x is applied 

to the network and a resulting output vector y' is generated. The training process for 

such a network involves the submission to the network of multiple example 

input/output vector pairs (X 1'Yl),(X 2 'Y2)"",(XL'YL) where xk is an applied input 

vector, Y k is the desired output vector and L is the number of example vector pairs in 

the training set. The particular learning algorithm selected for the network carries out 

adjustments to the network weight values such that the differences between the ideal 

output vector examples Y k and the network generated output vectors y' k are 

minimised. 

Reinforcement training is similar to supervised training except that instead of 

each individual network output vector being compared to an ideal output vector, the 

network weights are adjusted according to a score that represents the performance of 

the network over a number of input/output passes. The 'score' is a cost function that 

represents the overall ability of the network to achieve a specific goal. Such a training 

methodology is applicable to problems where it is difficult or impossible to identify 

precicely what the value of an individual output vector should be as a result of a 

single input/output pass. An example of such an application is the broom balancing 

neural network developed by Barto, Sutton and Anderson [11] where it is not possible 

to state the precise ideal location of the broom at anyone time, only that the overall 

goal to be achieved is that it should remain upright. 
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Self organising network training does not utilise example ideal outputs or 

graded score values to update the network weights, instead random weight changes 

are made and an assessment carried out of the change in network performance. If the 

overall performance has been improved then the random weight change is kept, 

whereas if the performance has been decreased then a probability distribution is applied 

in order to determine if the change to the weights is kept or discarded. In this way 

local minima are avoided. This process is similar to simulated annealing [103]. 

5.3 Learning Algorithm Examples and Applications 

5.3.1 Hebbian Learning and the Linear Associator Network 

Hebbian learning is based in the work of Donald Hebb, who in 1949 proposed 

a theory [66] on the mechanism by which the learning process takes place in the brain 

at cellular level. The mechanism proposed was that when a neuron within the brain is 

repeatedly involved in contributing to the firing of another adjacent neuron, then a 

change takes place in the connecting synapse between the two neurons in question 

such that the efficiency of the firing mechanism is improved. Although the continuing 

research into the functioning of the brain has since shown this theory to be a gross 

simplification of the actual learning process, it is thought to be correct in general terms. 

In order to provide a basis for illustrating Hebbian learning, an example of a network 

architecture to which Hebbian learning can be applied is introduced below. 

The linear associator network which is shown in figure 5.3.1 is a two layer feed 

forward network i.e. it consists of an input layer that distributes the applied input 

vector to the processing units of the output layer and the propagation of signals 

through the network takes place in a forward only direction. The linear associator 
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network was introduced by Anderson [4] in 1972 using Hebbian learning and has since 

had many refinements and variations [89]. 

OUTPUT VECTOR Y 

y, 

X, X 2 

IDEAL OUTPUT VECTOR Z 

Y '" 

X ~ 

z '" 

OUTPUT LAYER 

INPUT OR FAN 
OUT LAYER 

INPUT VECTOR X 

Figure 5.3. 1. Linear Associator Network 

The above diagram shows that the input layer of the network is composed of n 

mput or 'fan out' units, these carry out no internal processing function and merely 

distribute the signals applied to them . The number of input units corresponds to the 

number of components of the network input vector x. The output layer consists of m 

processing units that correspond to the number of components of the network output 

vector y' . The network is fully connected. Associated with each connection to the 

processing units in the output layer is a weighting value WI I' WI~"'" W mn . A signal 

arriving as an input to a processing unit in the network output layer is multiplied by its 

corresponding weight value and summed wi th all the other weighted inputs to that 

processing unit to derive the unit's output signal. The output vector y' is composed of 

the output signals from each of the processing units in the network output layer. This 



output vector is derived from an input vector x by the application of the network 

weights: 

y'=WX 

Where W is the network weight matrix described in section 5.2 and is of size 

m x n. The goal of training the network is to adjust the weights in matrix W such that 

the network 'learns' L pairs of input/output mappings (x I' Y I ), (x 2' Y 2 ), ... , (x L' Y L ). 

Once trained the network should generate the desired output in response to a given 

input i.e. if input vector xk is applied to the network, the network generates output 

vector y' k , which is equal to the desired output vector Y k . 

Hebbian learning can be used to achieve this vector mapping ( providing certain 

restricting conditions outlined later in this section are met ). The Hebbian learning 

formula can be stated as: 

(5.3.1.1) 

Where W if is an individual weight value and Xj and Yj are the /h and i 'h 

components of the training vectors X k and Y k respectively. This is expressed in 

matrix/vector form as: 

(5.3.1.2) 

The initial values of the weights in matrix Ware set to zero at the start of the 

training process. Therefore, during a training process consisting of L example 

input/output vector pairs, the weight matrix changes from its initial zero state to its 

final trained state simply by summing all the incremental weight changes caused by the 

submission of the L training examples. The end state of the matrix W is given by: 

(5.3.1.3) 
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However as reference [67] has shown, Hebbian learning can only guarantee the 

correct vector mapping performance from a network if all input vectors x k are 

normalised to unit length and are mutually orthonormal. This has the effect that the 

network cannot successfully learn more than n vector mappings where n is the 

number of network input units. 

5.3.2 Widrow Learning and the Linear Associator Network 

In order to overcome the restriction Hebbian learning places upon the number 

of input/output pairs that can be learnt by the linear associator, a learning algorithm 

known as Widrow or Least Mean Square (LMS) learning can be applied [158]. 

The LMS algorithm adjusts the networks weight matrix W so as to minimise 

the least mean square error between the network generated output vector y' and the 

desired output y. The network training procedure associated with the LMS algorithm 

and implemented in a linear associator network with n input units and m output units 

is given below: 

1) Assign random initial values in the range [-1, + 1] to the units of the n x m network 

weight matrix W . 

2) For each example input/output vector pair (Xk' y k) to be submitted to the network 

carry out the following: 

i) Apply the input vector Xk components (xl' x~.'" xJ to the n network input 

units. 

ii) Propagate the applied input signal via the weighted connections to the 
output layer processing units and for each unit calculate output signall i for j = 1. .. m 
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n 

y' j = LWijx; 
;=1 

iii) C ompute the error between the network generated output values y' i and 

the desired network output values Yj for each output unit. 

for j= 1.. .. m 

iv) Calculate the adjustment for each connection weight using the equation 

for i = 1.. . nand j = 1... m 

Where .1wij is the change in the value of unit ij of weight matrix Wand 

a is a small positive constant termed the learning rate. 

3) Repeat step 2) until the error correction values ej for all output units j = 1. .. m and 

all training vector pairs k = 1 ... L fall below a specified threshold value. 

The weight updating procedure can be expressed in terms of the network 

weight matrix as: 

(5.3.2.1) 

The proof that the LMS learning algorithm will converge to a global minimum 

is given through analysis of the mean squared error, this is shown below. 

5.3.2.1 Proof of Convergence 

Given a network generated output vector y' and an example vector pair 

(Xk'Yk) with units x"x:!""xn and Y"}'2""}'m , the error e between the desired and 

actual output for the /h processing unit is found using the equation: 
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n 

eJ. =y. - "w .. x 
J L- lJ I 

i=1 

This is written in vector form as: 

(5.3.2.2) 

Where W j is the vector of weights associated with the connections to 

processing unit j. The squared error is therefore: 

(5.3.2.3) 

Assuming a stationary input environment, the input and output variables are 

replaced with their means, yielding the mean squared error equation: 

(5.3.2.4) 

Where E represents the expectation operator. The above equation is simplified 

by making the substitutions: 

(5.3.2.5) 

Where P is the input-correlation vector of the input values and the desired 

network response and: 

(5.3.2.6) 

Where R is the autocorrelation matrix of the input layer processing unit values. 

Substituting in equation (5.3.2.3) gives: 
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(5.3.2.7) 

Minimising the mean squared error is performed by calculating the change in 

the estimated mean squared error with respect to the change in the weight vector W j 

calculated using the equation: 

o ? 

-E{(y
j
.)-} = 0-2P+2Rw. ow. j 

J 

Setting the result equal to 0 and solving for W f results in: 

P=wR 
J 

w. = PR-1 

J 

(5.3.2.8) 

(5.3.2.9) 

(5.3.2.10) 

This is the matrix form of the Wiener-Hopf equation and proves that the LMS 

algorithm will find the optimal weight vector, in a least squares sense, providing the 

inverse of R exists. 
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5.4 An Application of the Linear Associator Network in Demand 

Forecasting 

5.4.1 Introduction 

As has been outlined in prevIous chapters, the problems encountered in 

generating accurate short term predictions of water demand are chiefly related to the 

effects of non cyclic events and influences. These were classified in Chapter 3 into 

three categories: calendar related effects that influence the level of demand on specific 

dates or at specific times of the year, network related events that are caused by some 

change that has occurred in the water network itself and weather related effects caused 

by meteorological changes. Chapter 4 described a methodology which, through the use 

of a rule based approach, could successfully account for many of the calendar and 

network related effects. 

The problem of accounting for the weather related influences upon water 

consumption patterns is a highly complex one and does not readily lend itself to 

solution by the application of traditional mathematical modelling techniques. This is 

due in part to the interaction of diverse meteorological variables with a combined 

influence that results in a particular level of water demand. The relative influence of 

each individual variable changes with both the time of the year and geographical 

location. Hence, no consistant mathematical relationship between these variables and 

observed water consumption has sucessfully been derived. In addition, the perception 

of the meteorological situation by consumers and their consequent water usage, is 

highly subjective and is therefore very difficult to account for directly. Finally, there is 

the problem of the availability of accurate forecasts of the meteorological variables 

themselves. Predicted values of temperature, rainfall totals etc. may be in error and 

consequently have an adverse effect upon the accuracy of a demand prediction based 

upon them. The neural network demand forecasting program described below has been 
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developed with the aim of providing a solution to the problems associated with 

accounting for weather influences. 

A neural network approach was selected as being appropriate for investigation 

into the possibilities of generating demand predictions that could account for weather 

related influences. The principal reason for this is the ability of neural networks to 

model complex interrelationships between numerous factors which can not be easily 

defined by traditional mathematical techniques. Initially, investigations were carried out 

to determine the meteorological variables that have the greatest influence in 

determining the levels of water consumption. These investigations took the form of 

statistical examination of the available Thames Water data and Heathrow 

meteorological data, to identify the correlation between consumption and individual 

weather variables. In addition, a review of previous related work was undertaken to 

extract any useful information on the relative importance of various weather variables 

[24,44,46,120,142]. Figures 5.4.1 and 5.4.2 show plots of weather variables and their 

correlation with demand. From these statistical relationships it was shown that the 

principle meteorological factors involved in influencing water demand for the particular 

data examined, are air temperature, the rainfall pattern (expressed in No. of antecedent 

dry days) and the number of hours of sunshine each day. The reasons for the above 

meteorological factors having an influence upon water consumption are linked to 

consumer activities such as garden watering, irrigation and washing. Given the nature 

of these activities, such influences will be most apparent during the spring and summer 

months and much less important during the winter, hence a successful prediction 

system must be able to track these changes in influence with time. 
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As has been stated, there is a potential source of error in using predictions of 

individual meteorological variables as a basis for generating demand forecasts. In order 

to minimise the possibility of weather forecast errors having a detrimental effect upon 

the demand prediction accuracy, a day type classification system was developed. This 

provided a means of incorporating meteorological data without requiring precise 

predictions of individual meteorological variables. 

The day type classifier established four basic day types ranging from type 1 

which represents normal meteorological conditions for the time of year of the 

_ prediction day, to type 4 which represents extremely hot and dry conditions, with day 

type 2 and day type 3 as graduations between these limits. This fairly coarse division of 

the range of possible meteorological conditions has the advantage of avoiding the need 

for precise predicted values of temperature, rainfall totals and sunshine hours. A 

general weather forecast for the prediction day (for the appropriate geographical area) 

is sufficient to determine which of the four day type categories is most applicable. 

Potential errors in the predicted values of temperature, sunshine hours etc. are likely to 

be absorbed within the broad banding of the 4 day types and hence not have a 

significant adverse effect upon the final demand prediction. The task for the operator 

of the system is also made more simple, instead of looking up and entering exact 

meteorological data, only the single decision as to the appropriate day type needs to be 

made and entered. 

5.4.2 Past Data Requirements 

As described in Chapter 4, the water consumption data used in the testing and 

assessment of the neural network predictor was from the Slough and High Wycombe 
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areas of Thames Water's ChiIterns Division. This consumption data covered the period 

from March to July 1990 and consisted of half hourly consumption totals. 

Meteorological data covering the same time period was obtained from readings at 

Heathrow Airport which is geographically close to the ChiIterns area. The weather 

data values extracted were Maximum Temperature in degrees Celsius, Total Daily 

Rainfall in nun and Total Sunshine Hours. This data was stored in the format shown in 

Table 5.4.3. 

Date Maximum 
Temperature 

WED 16 MAR 1990 12 

Total Daily 
Sunshine Hours 

4.5 

Consumption Values Every Half Hour in Us 

Total Daily 
Rainfall 

0.02 

890 990 876 765 753 802 874 832 844 917 970 1000 

1134 1261 1456 1563 1487 1588 1690 1720 1534 1522 1455 

1487 1377 1345 1534 1465 1569 1253 1354 1444 1389 1355 

1542 1327 1645 1534 1335 1218 1125 1088 1025 988 885 

THU 17 MAR 1990 14 4.0 0.01 

860 988 836 788 753 833 856 878 847 927 976 1023 

1123 1251 1456 1563 1487 1570 1688 1700 1584 1572 1435 

1458 1377 1345 1534 1465 1569 1253 1354 1444 1389 1433 

1544 1327 1645 1534 1335 1218 1125 1088 1005 913 876 

Table 5.4.3. Example of past data used to generate demand predictions, demand values 

are in litres per second. 

5.4.3 Classification into Day Types 

In order to create the required input/output example vector pairs with which to 

train the neural network, a program was implemented in FORTRAN that automatically 

160 



carried out the classification of the past data into the correct day type categories. For 

each day in the past data file the date, the 24 hours of consumption data and the 

corresponding weather variables are extracted. The date identifies the extracted day as 

a weekday, a Saturday or a Sunday, because of the significant differences in the daily 

demand profiles exhibited by weekdays, Saturdays and Sundays, it is necessary to 

create separate network training data sets for these three categories of day. Hence, an 

extracted 24 hour consumption profile is only passed on to be used as training data if it 

matches the category of the prediction day i.e. if the prediction day is a Saturday, only 

Saturday profiles are compiled into a training set, the weekdays and Sundays are read 

- from the data file but not used for training. 

For each day of past data extracted from the data file, a rolling record is kept of 

the number of consecutive dry days and hot days (days where the maximum 

temperature exceeds a defined threshold value). For each day that is to be used as 

network training data ,the dry day and hot day totals and the relevant meteorological 

variables are passed to the day type classification subroutine. This subroutine applies a 

number of rules to the meteorological data which determine the day type that will be 

assigned to the particular day being processed. Examples of the rules are shown below. 

IF (TEMP .GT. 20) AND (HOT_DAYS .GE. 4) AND (DRY_DAYS .GT. 3) THEN 

DAY TYPE=3 

END IF 

Once the classification has been made for a particular day then the consumption 

data is entered into one of four data holding arrays depending on the day type 

assigned to it. The program then returns to the past data file and reads in the next 24 

hours of data and the above process is repeated for each day until the prediction day is 

reached. 
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F our arrays are used to store the consumption data, one associated with each 

day type. The dimensions of the arrays used are 7 x 48 (i.e. they store 7 days data, 

each day consisting of 48 data points) and they are designed to operate as stacks. As 

each day of data is read and classified, the consumption data is placed on the top of the 

appropriate stack and the existing data within that stack is moved down. If the stack is 

full then the oldest 24 hours of data at the base of the stack is discarded. This ensures 

that only the most recent examples of a particular day type are used in the training 

process. 

A count is kept of the number of examples of each day type that have been 

read in from the past data. In the event of there being no examples of a particular day 

type in the available past data, then the consumption data from the day type adjacent to 

the missing day type is used. For example if no day type 4 examples exist in the past 

data set used, the day type 3 consumption values are copied to the day type 4 array. 

5.4.4 Training the Network 

Each of the four arrays of classified past consumption data are passed in turn to 

the network training subroutine. This subroutine contains a FORTRAN 

implementation of the linear associator network, this network is illustrated in Figure 

5.4.4. It consists of 4 input units which are fully connected to 48 output processing 

units. The training process is achieved by repeatedly submitting example input/output 

vector pairs (x k' Y k) to the network and adjusting the network weights associated with 

the connections between the input and output layers using equation (5.3.2.1). In this 

application the input vector X k is a Boolean vector of length 4, the 4 components of 

this vector corresponding to the 4 possible day types. The input vector component 

relating to the day type of the current training example is set to 1 and the remaining 

components are set to o. 
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The output vector consists of a 48 element vector which represents the 48 half 

hourly data points in a 24 hour demand forecast. 

EXTRACT DATA 

t. t, t. lz. lz. to 
CO~AAE Y AID Z 

Yl 

DAY TYPE 3 NtAAY 

DAY TYPE 2 3 

INPlTT vecTOR 0 o 1 o 
j 

Figure 5.4.4 Training of the Linear Associator. 

z .. .... 

The weights associated with the connections between the input and output layers 

of the network are stored in a -+ x 48 matrix. These weights are set initially to random 

values in the range 0 ~ I . 

Training for an individual paIr of input/output vectors ( Xk' Y k) consists of the 

following steps: 

I) Extract the trammg paIr from the arrav of example data passed to the training 

subroutine. 

2) Apply the input vector x; to the network input units . 
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3) Propagate the signal from the input units to the output processing units via the 

weighted connections. For each processing unit, apply the appropriate weights to the 

incoming signals and sum the results to derive the output signal of the unit. 

4) The output signal of each output unit is compared to the corresponding unit of the 

example output vector Y k . 

5) Update the network weights by applying equation (5.3.2.1) 

The number of times a particular pair of training vectors (x k' Y k) is sent round the 

above loop is dependent on how recent the data is that comprises the vector pair i.e. 

how near the top of the data holding stacks described earlier. The most recent data ( 

that near the top of the stack) is submitted for network training up to 7 more times 

than the data extracted from further down the stack. This ensures a bias in the final 

configuration of the network weights towards data that is chronologically closest to 

the prediction day. The presence of this bias was found to have a significant effect 

upon the accuracy of the resulting demand predictions and this is illustrated in figures 

5.4.5 and 5.4.6. 

A training run for a single day type is complete once all pairs of example data 

present in the relevant stack have been submitted to the network a sufficient number of 

times such that the differences between successive values of the network weights all , 

fall below a threshold value i.e. the network has stabilised at a set of weight values that 

yield the correct output results for each training vector pair. 

Training for the next day type then commences and the steps outlined above 

are repeated. Once training for all day types has been completed the network weight 

matrix contains the values it requires to carry out the mapping between a selected day 

type and the corresponding 24 hour demand prediction. The day type that has been 

entered by the operator as being the day type of the prediction day is applied to the 
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network containing the trained weight matrix, the resulting output from the network 

forms the prediction of the consumption for each half hourly interval for the next 24 

hours. 

- 5.5 Results 

In the following data plots, the actual consumption for the day is shown in 

comparison with the prediction profile generated by the linear associator neural 

network. Figures 5.5.1, 5.5.2 and 5.5.3 show profiles for weekdays with significantly 

different meteorological conditions. Figure 5.5.1 shows the actual and predicted profile 

for a dull, normal temperature day, figure 5.5.2 shows the profiles for a sunny fairly 

hot day and figure 5.5.3 shows the profiles for a hot sunny day during a dry spell. 

Figures 5.5.4 and 5.5.5 show actual and predicted profiles for Sundays with 

contrasting weather conditions. 

In the above example it can be seen that the neural predictor achieves an 

acceptable degree of prediction accuracy over a range of varying meteorological 

conditions. In contrast to this, Figures 5.5.6, 5.5.7 and 5.5.8 include the prediction 

profiles generated by the ARIMA predictor as well as the actual and neural network 

profiles. These plots demonstrate that in changing meteorological conditions the 

mathematical algorithm fails to react sufficiently rapidly to the changes in demand 

pattern. 
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Table 5.5.9 shows the relative prediction performance of the neural network and 

the ARIMA algorithm over 65 days from April to June 1990. 

Table 5.5.9 
Results For 65 Days Spring 1990 

Neural Network ARTh;1A 

Average Daily Error 7.0 10.5 

No. of Days Error >15~-o 0 8 
No. of Days Error >10~1> 

,., 17 ... 
No. of Days Error >8<?1> 12 30 

Table 5.5.9. Prediction performance over 65 days. 
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Figure 5.5.3 ActuaJ and NeuraJ Net Prediction for a Very Hot Dry Day 
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Figure 5.5.6 ActuaJ, NeuraJ and ARIMA Predictions for a Above Average Temperature 
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5.6 Discussion 

There are several advantages associated with the linear associator network 

described above. The nature of the problem of accounting for the weather related 

influences upon water consumption indicates that an attempt to be too specific about 

the exact effect of a single meteorological variable will potentially lead to a worsening 

of the predictive capacity of a forecasting system. This is due to the changing nature of 

the meteorological influences through the seasons and to the subjectiveness of the 

public perception of the prevailing weather conditions, both of which determine the 

- weather dependent consumption at any particular time. 

The day type classification approach provides a suitably 'coarse grained' 

method of accounting for weather dependent variations in demand. It is capable of 

absorbing both minor errors in the prediction of weather variables and variations in the 

relationships between such weather variables and their resultant levels of water 

consumption. It is a simple task to decide upon a likely day type for the prediction day 

based on a general weather forecast for the geographical area in question. If the day 

type chosen is identified at some point during the prediction day as being in error, then 

a re-run of the network prediction using the new day type is easily completed with no 

retraining required. The training time itself for the linear associator is of the order of 

15 seconds and this time does not vary significantly between different prediction days. 

There are potential problems that could anse with the neural network 

predictor, these are chiefly related to the non availability of sufficient examples of 

particular day types. For example, there may not be any recent examples of type 3 or 

type 4 Sundays available in the data set submitted to the program, as a concequence 

data from type 2 Sundays would have to be used and a potentially significant 

prediction error would result. There are several possible ways in which this type of 

problem could be overcome. One approach is to indicate to the rule base described in 



Chapter 4 that no examples of one or more day types had been found in the current 

data set and thereby trigger rules which adjust the predicted demand profile to reduce 

the adverse effect of the missing data. Alternatively, a more long term approach would 

be to establish a database of past consumption data spanning at least a year. This 

would contain examples of all day types for all days of the week. If no examples of a 

day type exist in the data immediately preceding the prediction day, then a search could 

be made of the data base to extract the most appropriate daily profiles (in terms of 

similar time of the year and similar weather conditions) for use in the network training. 

A scaling factor would be required to account for the long term variations in the 

- overall level of water consumption which may be due to population fluctuation or 

social change. 
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CHAPTER 6 

INVESTIGATION OF ALTERNATIVE NEURAL NETWORK 

ARCHITECTURES FOR DEMAND FORECASTING 

6.1 Introduction. 

As a result of the improvements in demand prediction accuracy that were 

shown to be achievable with the linear associator network, further investigation was 

conducted into the performance of neural network prediction systems based on 

different network architectures and learning algorithms. The network architectures 

investigated were more complex than that of the linear associator in that they 

possessed increased number of layers and neurons and the testing of such architectures 

would indicate whether they possessed a greater potential for successfully mapping 

the relationship between water consumption and meteorological variations than the 

linear associator network architecture. Additionally, the more complex architectures 

provided the opportunity to test the effects of dispensing with the heuristic day type 

classification routine upon the prediction capacity of a network. The inputs would not 

be restricted to one of four possible day types, instead, appropriate network 

architectures were devised that could provide a direct mapping between the values of 

selected meteorological variables and the resultant shape of the demand profile. The 

result of these investigations was the development of two separate multi-layer demand 

forecasting network architectures, each using different learning algorithms. These 
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networks and the results of their application to the same water consumption data as 

that used for the linear associator network are described in the following sections. 

Before introducing the detailed descriptions of the two proposed architectures, a brief 

summary is provided in the following section of research work that has recently been 

undertaken into the application of neural networks for generating forecasts. 

6.2 Recent Research into the Use of Neural Networks for Prediction. 

There has been a significant degree of interest within the last three or four years 

in the possible application of neural networks to the field of prediction. Most of this 

research relates to load forecasting for electricity supply networks 

[42,72,76,92,93,111,115] but there have been some papers published that are based on 

demand forecasting in water networks. One such paper by Cubero [36] introduces the 

idea of applying up to 15 time lagged example values of past consumption data to a 

multi-layer feed forward network in order to generate a single value for the predicted 

load as the network output. The selection of the time lagged values for application to 

the net is carried out by statistical investigation of a time series of past data in order to 

determine the correlation between past data points. The system is designed to account 

for the occurrence of public holidays by the addition of extra input neurons, the output 

values of these additional neurons being set to a value of 1 when the event which they 

represent occurs. The system uses an input and output layer separated by two hidden 

layers of neurons and a simple minimisation function as its training method, the results 

generated are quoted as being similar to those obtained by using an ARIMA based 

prediction system. 

Further work aimed at providing a companson between conventional 

mathematical prediction techniques and a neural network based approach is given in a 

paper by Atlas Connor and Dambourg [8]. The results from a neural network 
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composed of 6 input neurons, 10 hidden layer neurons and a single output neuron were 

compared to results produced by the mathematical prediction system used by an 

American power generation company. Using as input data the hour of the day, the two 

previous hourly load values, the two previous hourly temperature readings and the 

current temperature, the neural network generated predictions of the load for the 

coming hour that were of comparable accuracy to the existing system. Zaiyong Tang, 

de Almeida and Fishwick [164] found that their feed forward, back propagating 

networks could out perform Box-Jenkins based mathematical load predictors for time 

series with short memory. In contrast to this Foster, Collopy and Ungar [52] compare 

the predictive accuracy of a neural network used as a function approximator for an 

individual time series with a neural network used to optimally combine traditional 

mathematical forecasting methods such as linear regression and exponential smoothing. 

The specific aim of the research was to examine how each approach coped with highly 

noisy data. A back propagating neural network was trained to simulate the mapping 

between past values and future values of a time series of chemical process data. The 

accuracy of the results generated by this network were then compared to the accuracy 

achieved by the mathematical method selected by a second neural network. This 

second network uses inputs that are the predictions generated by the mathematical 

predictors combined with a series of features that characterise the time series under 

investigation. The output of the network is a score value between 1 and 0 that allows 

the selection of the best mathematical forecasting method for that time series. Both 

networks were tested on a large number of time series of varying characteristics and 

the 'predictor selecting' method was found to produce the most consistent results in 

terms of prediction accuracy. 

There have been a number of papers published that describe the use of neural 

networks for electrical load prediction that use a three layer perceptron based network 

structure and back propagation as a learning algorithm [42, III ,l63]. The perceptron 
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[128] being a neural network that consists of one or more processing elements that 

have a structure as shown in Figure 6.2. 1. 

x., 

THRESHOLD 

OUTPUT 2 1 OR 0 

Figure 6 .2.1 Diagram of a Perceptron. 

A perceptron element has an input consisting of an n+ 1 dimensional vector 

x = (xo ,XI ,x~, .... ,xn ) where .to is permanently set to 1 (this is termed a bias input) . 

The output of the perceptron is I if the weighted sum of the inputs is greater than or 

equal to zero and the output is 0 if the weighted sum of the inputs is less than zero. 

Rosenblatt [128] showed that given linearly separable classes, a perceptron network 

will, in a finite number of training passes. develop a weight matrix that will separate 

classes of input vectors. The network is therefore carrying out a pattern classification 

task and in the cases of the load prediction applications the networks learn to classify 

particular characteristics of applied load profiles and generate the appropriate future 

load value. Pattern classification is also the aim of a network described by Hsu and 

Yang [77] who use a two layer Kohonen network similar in structure to the Kohonen 

layer that comprises part of the network outlined in section 6.4 of this Chapter. The 

aim of the network training process is ensure that the application of a profile of a 

particular type of day (Sunday, Saturday or Holiday) will always fire the same output 
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neuron. The trained network is then used to identify the type of day for the prediction 

day and based on this classification ten profiles for days of the same type are used to 

generate an average load profile. 

Other neural network load forecasting applications also use meteorological 

information as inputs to the network. Bacha and Meyer [9] proposed a system that 

uses a number of interconnected three layer networks that take account of the current 

weather trends in generating predicted gas load values. The aim of the interconnecting 

networks is to extract during the training process, the relevant patterns from the input 

weather parameters and associate them with different output levels. Bacha and Meyer 

suggest that a complex network architecture is required in order to capture all the 

information on the relationships between weather variables and load. The architecture 

proposed is a linked series of 24 networks one for each hour of the day, each with 12 

inputs of weather data. The interconnected nature of each of the three layer sub­

networks allows the single output neuron of each sub-network to be influenced by the 

two sub-networks located either side of it. In this way the trends in the weather 

conditions from hour to hour over the 24 hour period are taken into account. The 

results from this work based on 22 days of data were encouraging and the authors 

intend to expand the scope of the research in the future. 

The applications described below explore some alternative architectures 

investigated as part of the work conducted for this thesis that aim to extract the 

maximum amount of information from the available weather input variables and use 

that information to generate forecasts that can successfully account for meteorological 

influences on water demand. 
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6.3 Backpropagation 

6.3.1 Introduction to the Backpropagation Network 

The backpropagation neural network is a mappmg network that has been 

applied to numerous problems in a range of different fields of research, for example, 

pattern recognition, noise cancellation, process control etc. [5,113,114,130]. The early 

development of the backpropagation algorithm was the result of research undertaken 

independently by several groups and individuals in the early 1970's. However, it was 

the work of Rumelhart [130] which first comprehensively described the 

backpropagation algorithm and provided a theoretically sound basis for the training of 

muli-Iayer neural networks. This in turn led to a more widespread awareness of the 

capabilities of neural networks and their possible range of application. 

Although there have been examples of very complex backpropagation network 

architectures, the basic network and its algorithm are relatively simple. As with the 

linear associator, the back propagation network consists of fully interconnected layers 

of individual processing elements or neurons. In its simplest form, the network 

consists of an input layer, an output layer and a single intervening 'hidden' layer. 

However, in more complex architectures the number of 'hidden' layers can be greater 

than one. The network learns to carry out a mapping function between bounded 

subsets by means of the application of training examples (Xl'Yl),(X2'Y2), ... ,(Xk'Yk)' ... 

of the desired mapping, where Y = f(x). The backpropagation algorithm provides the 

means by which the network can be trained to correctly reproduce the relationship 

between the input and output examples. 
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6.3.2 Structure of the Backpropagating Network 

Figure 6.3 .1 shows a diagrammatic representation of the structure of a simple 

three layer backpropagating network. An input vector is applied to the units of the 

input layer A and these signals are distributed via weighted connections to the 

processing units of the second layer B, this second layer is termed 'hidden' as it has no 

direct connections outside the network. The neurons of the second layer B apply a 

transfer function to the incoming signals, the result of which is then propagated, via 

weighted connections, to the processing units of the output layer C. The units oflayer 

C in tum apply their transfer function to the arriving signals from layer B to generate 

the output signal for each unit. Each of the output signals of the layer C units 

constitutes an element of the network output vector. In addition to the feed forward 

connections described above, each processing element of the hidden layer B receives 

an error feedback signal from the processing elements of the layer above it (layer C), 

these signals carry the information that is used to adjust the weights of the incoming 

connections to the hidden layer neurons. 

Input Layer A Hidden Layer B 

Xl~ 

X~ 
D 

INPUT 

SIGNAL 

Output Layer C Z 
Jll 

SlUtOll. 
SIGNAL 

y 
p 

oUTPUT 
SIGNAL 

Figure 6.3.1 Structure of a Three Layer Backpropagating Network . 
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As with the linear associator network described in the previous chapter, the 

network learns by the process of submitting example pairs of input/output vectors to 

the network and attempting to minimise the errors between the desired and actual 

output by the adjustment of the network weights . However, the linear associator had 

no mechanism whereby the errors observed at the output layer could be used to adjust 

any weights other than those that are associated directly with the processing units that 

compose the output layer itself. Hence, the network is restricted to possessing a single 

set of adjustable network weights . The success of the application of the 

backpropagation network in numerous different fields, is based on its ability to solve 

non-linear problems by propagation of the errors observed at the output layer back to 

the preceding hidden layer(s) of the network and hence allow the adjustment of the 

weights associated with the processing elements of these preceding layers. The details 

of this method are described in section 6.3.3 . 

The structure of one of the individual neurons that compose both the hidden 

and output layers of the backpropagating network is shown in Figure 6.3.2 . Note that 

the neurons of the input layer differ from the other neurons in Figure 6.3.2, in that they 

apply no transfer function and serve simply to distribute the incoming signals to the 

neurons in the first hidden layer. 

Figure 6 .3.2 A Neuron From the Hidden or Output Layer. 
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The signal vector XI' Xl'" ., xn arriving at a neuron m in either the hidden or 

the output layer are multiplied by the associated connection weights W ml , W m2' ••. , W mn 

where m indicates the identifier of the neuron within its particular network layer. The 

summation of these products gives the value of NET for the neuron i.e. 

n 

NETm = LWmiXi 
i=1 (6.3.2.1) 

The output signal of the neuron m is then generated by applying a squashing 

function to the value of NET. Many possible functions have been described which can 

be used to perform this squashing function, however, in this work the sigmoidal 

function shown below has been chosen. 

(6.3.2.2) 

The above sigmoid transfer function has little effect upon strongly positive or 

negative signals, but amplifies weaker signals that are close to zero. 

As mentioned previously the neurons in the hidden layer(s) also have 

connections VI' v2 ' ... ' v p that propagate error signals back from each of the neurons to 

which they provide an output signal. Hence, in figure 6.3.1 the p neurons in layer C 

each provide an error feedback signal to the neurons of layer B. During network 

training these connections are used to propagate the error information back through 

the network that allows weight updating to take place. 
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6.3.3 Training the Network 

The training of the network is achieved by the submission to the network of 

multiple example input/output vectors (X 1'Yl),(X2 'Y2)"",(XL'YL) where L is the 

number of examples in the training set. An input vector x
k 

is applied to the network 

and a corresponding output vector y' k is generated by the network, this is compared to 

the desired output Y k and the weights of the network are updated in such a way that 

the difference between the desired and actual output is minimised. The weight updating 

process for a network with n input layer neurons, m hidden layer neurons and p 

_ output layer neurons is as follows: 

F or each neuron i in the output layer the error between the actual (y';) and 

desired (y;) output is calculated and fed through a simplification of the transfer 

function shown in equation 6.3.2.2 to give 8; 

For i = 1,2, ... ,p (6.3.3.1) 

The change in value for a weight W ji associated with the connection between 

neuron j in hidden layer B and neuron i in the output layer C is given by: 

For j = 1,2, ... ,m and i = 1,2, ... ,p (6.3.3.2) 

Where a is the training rate (small positive constant) and OU~ is the output 

signal of neuron j in the hidden layer B. 

In order to adjust the weights associated with the signals arriving at hidden 

layer B, the 8 values as calculated above for each of the p neurons in the output layer 

are propagated back through the weights updated by equation 6.3.3.2 and used to 

calculate the 8 values for each of the m neurons in layer B. 
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p 

8j = 0 uT; (1- 0 uT; )(L 8j w Jl ) For j = 1,2, ... ,m (6.3.3.3) 
j=l 

p 

Where OUT; is the output signal of neuron j of hidden layer Band (L 8
j
w ft) 

j=l 

is the sum of the error signals propagated back to neuron j from the output layer. The 

value of 8j can then be used to update the weights associated with the inputs to 

. . 
neuron} usmg 

.1W}' = a8.0UT,} IJ J' I For h = 1,2, ... ,n and j = 1,2, ... ,m (6.3.3.4) 

Where .1whj is the change in the value of the weight associated with the 

connection between neuron h of the input layer A and neuron j of the hidden layer B 

and OU~ is the output signal of neuron h. 

Training is considered complete when the errors between the network 

generated output vectors y' k and desired output vectors y k are minimised for the 

whole training set k = 1,2, ... , L . 
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6.4 A Backpropagation Network Application in Demand Forecasting 

6.4.1 Structure of the Network 

A backpropagation network design was developed to generate 24 hour demand 

forecasts based on the same consumption data as that used for the linear associator 

network i.e. half hourly consumption totals from the Slough and High Wycombe areas 

of Thames Water's Chilterns Division. The architecture of the network is shown in 

figure 6.4 .1. As can be seen the network consists of 5 input units, a hidden layer 

- containing 20 processing units and an output layer containing 48 processing units. 

TEMP SUN RAIN DIY DAYS HOT DAYS 

Figure 6.4. 1. Structure of the demand forecasting backpropagation network. 

The primary purpose behind the investigation of a backpropagating network for 

the generation of demand forecasts that could account for meteorological influences, 

was that the network provides the possibility of mapping directly between the 
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individual values of appropriate meteorological variables (temperature, rainfall etc.) 

and the resultant level of demand. In the linear associator network the representation 

of the relationship between the meteorological variables and the resultant demand was 

made relatively coarse by the invoking of heuristics which grouped meteorologically 

similar days into one of four possible day types. This had the effect of making the 

mapping task between input and output vectors simpler, but in tum the day type 

classification process may have been masking important information on the relationship 

between particular weather variables and demand. The back propagation network 

provides a method of achieving the mapping between weather variables and demand 

without the simplification inherent in the classification process used by the linear 

associator. 

The input to the network is a vector whose elements are: maxImum 

temperature for the day in degrees Celsius, total number of hours of sunshine, total 

rainfall in mm, an antecedent dry day indicator and an antecedent hot day indicator. 

The antecedent dry day indicator is an integer that can be set to one of three values 

dependent upon the number of dry days that precede the day in question, it is set to 2 if 

the number of antecedent dry days is greater than 6, it is set to 1 if the number is 

greater than 4 and 0 if less than 4. A similar method is used for the hot day indicator, it 

being set to 1 if 4 or more immediately preceding days have maximum temperatures 

that exceed 19 degrees Celsius, otherwise the hot day indicator is set to o. These dry 

day and hot day indicators were included in the inputs to the network to represent the 

accumulative effects dry and hot weather conditions have upon the consumption of 

water in a domestic situation. They reflect primarily the increased usage due to garden 

watering but also include the increase in other domestic water consuming activities 

such as washing and cleaning. Figure 6.4.2 shows how the total daily water 

consumption varies with mean daily temperature in the Slough and High Wycombe 

areas and figure 6.4.3 shows the variation in consumption in relation to the number of 

preceding dry days. 
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The output layer of the backpropagating network consists of 48 neurons, these 

correspond with the 48 half hourly data points of a 24 hour demand prediction. For the 

hidden layer, there is no formula that will provide the ideal number of hidden layer 

neurons for a given application or network architecture. Prototype networks were 

therefore tried with varying numbers of hidden layer neurons ( 10, 20, 35, 50 ) and the 

most successful in terms of network stability and convergence was found to be a 20 

neuron hidden layer. 

6.4.2 Training the Network 

F or each day to be predicted, in order to create a training set for the demand 

forecasting backpropagation network, the available past consumption and 

meteorological data is processed by a FORTRAN subroutine. The subroutine stores 28 

days of the most recent consumption data and the corresponding 28 days of 

meteorological data, which includes calculating the correct antecedent dry day and hot 

day indicators. The resulting vector pairs of weather data and consumption data are 

then used to train the network, the weather data vector being applied to the network 

and the consumption data being compared to the network output vector. 

Training is continued until the error between the network output and the target 

consumption for each training vector pair within the training set falls below a threshold 

value. 
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6.4.3 Results 

As with the linear associator network the backpropagation network was tested 

on Thames Water consumption data from the Slough and High Wycombe areas that 

covered a period of 4 months in the spring/summer of 1990. 

Unlike the data for the linear associator network, the training consumption data 

for the backpropagation network was not subdivided into weekday and weekend day 

types. The reason for this was that the aim of this particular element of the research 

was to determine if there was a relationship between the demand level and the 

prevailing meteorological conditions that could be learnt by the network. It was 

assumed that this relationship would be applicable on both weekdays and weekends. 

It was found that the training times for each prediction day were predominantly 

of the order of20 seconds, however, there were examples of prediction days for which 

the training times were in excess of three minutes. No examples were encountered 

where the network failed to converge during training. Predictions were generated using 

the backpropagation network for each day over a total of 61 days from 16 April to 15 

June. 

Figures 6.4.4 to 6.4.7 show the prediction profile generated by the 

backpropagation network in comparison with the actual consumption profile. As can 

be seen, the predictions in figures 6.4.4 and 6.4.5 achieve a good match with the 

actual profile, however, the examples in figures 6.4.6 and 6.4.7 show that the accuracy 

of the backpropagation network is not consistent. Table 6.4.8 shows the accuracy 

achieved by the backpropagating network over 65 prediction days and compares this 

accuracy with that achieved by both the linear associator network and the ARIMA 

algorithm. 
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Table 6A.8 
Results For 65 Days Spring 1990 

.-\RL\IA Linear Backpropagation 
Associator ~etwork 

.-\ verage Daily Error 10.5 7.0 11.8 

No. of Davs Error> 15°1> S 
I 

0 10 . . 
No. of Days Error >10(% 17 

., 19 
\Io. of Davs Error >8~'o 30 I 12 27 . . I 

I 

Table 6.4.8 The relative accuracy of the backpropagation network. 
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6.5 Counterpropagation Network 

6.5.1 Introduction to the Counterpropagation Network 

The counterpropagation network was developed by Hecht-Nielsen[68,69] in 

1987 and comprises a combination of two previously separate network learning 

algorithms, the self organising map proposed by Kohonen [89] and the Grossberg 

outstar[ 61]. The mapping capabilities of the counterpropagation network are, like the 

backpropagating network, greater than those achievable by single layer networks. The 

network operates in such a way as to perform a classification upon the input vector, 

the result of the classification induces the firing of a particular neuron, which in tum 

generates a particular output signal. 

In terms of the task of incorporating weather information into the generation of 

water demand forecasts, the operation of the counterpropagation network is highly 

analogous to the combined operation of the heuristic day type classifier and the linear 

associator network. It was the prospect of allowing a counterpropagation network to 

combine the classification and prediction tasks in one network that stimulated the 

investigation of this particular network type. 

6.5.2 Counterpropagation Network Structure 

The counterpropagation network in its simplest form consists of three layers, 

these are termed the input layer, the Kohonen layer and the Grossberg layer. The 

names of the Kohonen and Grossberg layers are based on the type of learning 

algorithm associated with these layers. The structure of the network is shown in Figure 

6.5.1. The network is fully connected i.e. each neuron in the input layer is connected to 
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each neuron in the Kohonen layer and each neuron in the Kohonen layer is connected 

to each neuron in the Grossberg layer. 

INPUT 

SIGNAL 

Input Layer Kohonen Layer Grossberg Layer 
)I ZI 

Y1 

Y 
p 

OUTPUT 
SIGNAL 

Figure 6.5. 1. Structure of a Three Layer Counterpropagation Network. 

T.u.curr 
SIGNAL 

The above figure shows a counterpropagation network with n input layer 

neurons, m Kohonen layer neurons and p Grossberg layer neurons. In normal 

operation (the network has undergone training), a normalised input vector x of length 

11 is applied to the input layer, the signals are fanned out by the input layer via the W 

weighted connections to the Kohonen layer and a transfer function is applied to 

determine which of the Kohonen neurons is activated . The activated Kohonen neuron 

then propagates its signal via the V weighted connections to the Grossberg layer 

where it is processed by a transfer function to generate the network output yl. The 

details of the signal propagation and transfer functions of the Kohonen and Grossberg 

lavers are described in the section on network training below. . ~ 
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6.5.3 Training the Network 

As with the other neural networks described in this thesis the , 

counterpropagation network provides a mapping between an applied input vector x 

and a desired output vector y, where y = f(x). During training the network is 

exposed to examples of the mapping f in the form of training vector pairs (x k' Y k) and 

the network weights are adjusted so that, in its trained form, the network will generate 

the correct output vector y' k in response to the application of input vector X k . For a 

network with n input layer neurons, m Kohonen layer neurons and p Grossberg layer 

neurons the training process is described below. 

Prior to the commencement of training, all the input vectors xk in the training 

set k = 1. .. L are normalised to unit length: 

XN = ____ X......:i ___ _ 
I I 

For i = l...n (6.5.3.1) 

(Xj2 +x/+. .. +Xn

2)2 

The weights W associated with the connections between the input layer and 

the Kohonen layer are given randomised values in the range (0,1). For each neuron in 

the Kohonen layer the weights associated with the connections arriving at that neuron 

form a weight vector W j = (w Ii' W 2j' ... , W n) for j = 1... m, each of these weight 

vectors are normalised to unit length. 

F or each example vector pair (x k' Y k) in the training set the following steps are 

carried out: 

a) Find the Kohonen weight vector wi that is closest to the applied input 

vector xk 

IIXk -Well = m1nllX k -Will 
i=1 

(6.5.3.2) 
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Where c is the Kohonen layer neuron with the closest weight vector to the 

input vector xk ' and 

//X k - W j 1/ = f [Xi - W ij r 11/2 

i=1 (6.5.3.3) 

b) Set the output signal of the winning Kohonen neuron c to the value 1 and set 

the output signals of all other Kohonen neurons to o. 

c) Update the weight vector We associated with the winning Kohonen neuron 

-£ so that it moves closer to the example input vector x
k 

(6.5.3.4) 

Where a( t) is the training rate at time step t . This value typically starts out at 

a high value i.e.O.8 and gradually decreases to zero as training progresses. 

d) Re-normalise the updated weight vector We to unit length. 

e) The signals from the Kohonen layer neurons (one of which is 1 and the 

others 0) are propagated to the Grossberg layer via the weighted connections V. For 

each neuron in the Grossberg layer the incoming signals form a weight vector 

v g = (VI g' V 2g' ... , V mg) for g = 1 ... p. The output signal for each Grossberg layer neuron 

(which are the network outputs) is calculated by: 

m 

Y' = ~ V. oldZ . 
g L.... jg i 

j=1 

For g= l...p (6.5.3.5) 

Where Y g is the output of the lh Grossberg neuron, vig is the weight 

connecting the /h neuron in the Kohonen layer to the lh Grossberg neuron and Zj is 

the output signal of the /h neuron in the Kohonen layer. 
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t) The network generated output vector y' k is then compared to the desired 

output vector y k and the weights connecting the Grossberg and Kohonen layers are 

updated according to the Grossberg learning algorithm, which is implemented for each 

weight via the equation: 

V. new = V. old + a(_ . old + ) 
)g )g pi V)g Yg Zj For j = l...m and g= l...p (6.5.3.6) 

Where fJ is the learning rate for the Grossberg layer (a small positive constant) 

and Yg is the gth element of the current desired output vector. 

The above steps are repeatedly carried out for each vector pair in the training 

set of example input/output vectors. This continues until the errors between the 

network generated outputs and the desired outputs are minimised. The training process 

can be summarised as follows:- the input vectors to the network are drawn from a 

bounded subset of all possible input vectors, the input neurons distribute the applied 

input vector values to the Kohonen layer neurons and a competition is held between 

these neurons to determine which of them possesses a weight vector that most closely 

matches the input vector. The winning neuron of this competition has its output set to 

1 and its weight vector updated so as to move it closer to the applied input vector. All 

other Kohonen layer neurons have their output signals set to O. The winning Kohonen 

neuron output signal is propagated to the Grossberg layer, where the Grossberg 

transfer function serves to select the weights associated with the input to each 

Grossberg neuron from the winning Kohonen neuron. The values of these selected 

weights are then output by the Grossberg neurons to form the network output vector. 

The Grossberg learning law modifies only the weights associated with the connections 

to the winning Kohonen neuron. As training progresses, so the training rate coefficient 

for the Kohonen layer decreases towards zero and as a result the Kohonen layer 

weights stabilise. Hence, as the training set of example input/output vectors are 

repeatedly applied, the same Kohonen neurons are always triggered by the same input 
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vectors. Given the stabilisation of the Kohonen weights, the training of the Grossberg 

layer leads to its weights learning the average of the ideal output values associated 

with the input vector that always causes a particular Kohonen neuron to fire . 

Once trained, the counterpropagation network acts as an adaptive lookup table 

as represented in Figure 6.5.2. An input vector x is applied to the network and is 

compared with all of the Kohonen layer neuron weight vectors W I' W 2' ... , W m to find 

the vector W e that is the closest match to x. The table then emits the associated 

Grossberg weight vector v c . 

INPUT veCTOR OUTPUT YBCI'OJl. 

x 

'. '. '. : .: ' . . . 

Figure 6 .5.2. The Counterpropagation Network Acts as an Adaptive Lookup Table. 
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6.6 A Counterpropagation Application to Demand Forecasting 

6.6.1 Structure of the Network 

A counterpropagation network was designed for the generation of demand 

forecasts based on the input of meteorological variables. As stated in the introduction 

to the counterpropagation network, the principle design aim was to investigate the 

possibility of using the network to perform both the weather based day type 

classification and the consequent generation of the demand prediction. In order to 

achieve this, a three layer network was constructed, the network consisted of 5 input 

layer neurons, 4 Kohonen layer neurons and 48 Grossberg layer neurons. Initial tests 

had been conducted using varying numbers of Kohonen layer neurons (4, 6, 10) and 

the best results were achieved with the 4 neuron network. Significant errors occurred 

with the 6 and 10 neuron configurations and examination of the network weights 

indicated that these were caused by the non triggering of some of the Kohonen 

neurons during the training process. If a given Kohonen neuron is not triggered by any 

of the examples in the training set i.e. its weight vector is not selected as being closest 

to any of the example input vectors, then the Grossberg layer weights that connect to 

the Kohonen neuron in question are not altered from their initialised values. Hence, if 

during the normal operation of the trained network, an input vector is applied that does 

trigger the previously inactivated Kohonen neuron, then the resultant network output 

will simply be the initialised values of the Grossberg layer weights. This problem was 

least frequently encountered during the testing of the 4 Kohonen neuron network, it is 

this configuration which is described below. 

The input vector to the network was composed of five elements as for the 

inputs to the backpropagation network, the maximum daily temperature in degrees 

Celsius, the total daily sunshine hours, the total daily rainfall in mm, an antecedent dry 
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day indicator and an antecedent hot day indicator. The network output vector 

corresponds to the 48 half hourly data points of a 24 hour demand prediction. 

6.6.2 Training the Network 

As for the backpropagation network, the training data for the 

counterpropagation network is compiled from the raw consumption and 

meteorological data using a FORTRAN subroutine. Twenty eight days of the most 

recent consumption data and corresponding meteorological data are each compiled 

into a separate array. The rows of data in the meteorological storage array form the 

example input vectors for the network training and the rows of data in the 

consumption array form the desired output vectors. 

The pairs of example vectors are extracted from the storage arrays and applied 

to the network repeatedly until the errors between the network generated output 

vectors and the desired output vectors fall below a specified threshold. Training times 

were of the order of 2 minutes, however, the time taken to successfully train the 

network was highly dependent on the initial values chosen for the Kohonen layer 

weights. Normally, initialisation of network weights is achieved by assigning small 

random values to the weights. In the case of Kohonen layer weights, the initial weight 

values should be normalised, this is because input vectors are normalised and the 

trained Kohonen weight values need to match these input vectors. However, purely 

randomising the Kohonen layer weights, can result in serious problems in the training 

of the network. This is because the example input vectors submitted to the network are 

not evenly distributed throughout the hypersphere of all possible input vector values 

and instead they are 'clumped' in a relatively small portion of such a hypersphere, 

therefore most randomised weight vectors will be so far from the example vector 

values that they will never be the best match . Hence, the Kohonen neurons with which 
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these weight vectors are associated will never be triggered and therefore they do not 

contribute to the function of the network. Conversely, those few randomised Kohonen 

weight vectors that are in the same hypersphere region as the example vectors, may be 

too few in number to provide the desired separation of the input vector categories. In 

order to achieve the desired network performance, it can be seen that a high density of 

initial weight vectors is required in the vicinity of the applied input vectors. 

It is possible to partially overcome the problem outlined above by randomly 

adding noise to the input vectors such that they span a large selection of the possible 

input vector values. The outlying Kohonen weight vectors are then 'captured' by these 

noisy input vectors and as the amount of noise is decreased during training, so the 

weights are brought to the region containing of the majority of the true input vector 

values. Alternatively, training can start with randomised Kohonen weights but all of the 

weight vectors are altered following the application of an input vector, instead of just 

the weights of the triggered Kohonen neuron. This results in the weights moving to the 

region of highest input vector density. As training progresses, weight updating is 

limited to only those Kohonen units whose weight vectors are nearest to the winning 

neuron and this radius of weight adjustment is gradually reduced until eventually only 

the winning neuron weights are altered. 

The significant disadvantages of the above methods and others that have been 

proposed to solve this problem, are that they do not guarantee the desired separation 

of the input vectors and also that they result in greatly increased training times. For the 

purposes of minimising the training times and achieving successful separation of input 

vectors for the counterpropagation network described here, the Kohonen weights were 

initialised to normalised values known to be in the same region as the example input 

vectors. 
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6.6.3 Results 

The counterpropagation network was tested on the same consumption and 

meteorological data as the backpropagating and linear associator networks. However, 

as the results shown below indicate, the network was significantly less successful in the 

generation of accurate demand predictions than either of the two other networks. The 

results below are from a two week period between May 15 and May 28. Generally, the 

daily percentage errors are greater than the results from either of the two other 

networks and on Saturday 24 and Monday 23 the network generates nonsensical 

predictions. These highly erroneous predictions are the result of the input vector 

causing the triggering of a Kohonen neuron that was not triggered during training and 

hence the Grossberg connection weights leading from that neuron were not altered 

from their initialised values. The network output is therefore composed of the 

unadjusted Grossberg weight values and gives rise to the observed errors. 

Figures 6.6.1 to 6.6.4 show the prediction profiles generated by the 

counterpropagation network in comparison to the actual consumption profile. In 

figures 6.6.1 and 6.6.2 the degree of prediction accuracy achieved is acceptable 

(although poorer than that achieved by the linear associator for the same days), 

however, as figures 6.6.3 and 6.6.4 demonstrate, serious large scale errors between 

actual and predicted values can occur. Table 6.6.5 shows the average daily percentage 

errors for the counterpropagation network predictions over 14 days and compares 

them to the results for the same period for the linear associator and ARIMA 

applications. 
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Table 6.6.5 
Results For 14 Days Spring 1990 

.-\RDv1A Linear Counterpropagation 
Associator Network 

Average Daily Error 8.8 7.6 12.6 

No. of Days Error > 15~~ 1 0 6 
No. of Days Error >100/0 ') 1 8 -
No. of Days Error >8%) 5 ') 10 -

Table 6.6.5 Relative accuracy of the counterpropagation network. 
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6.7 Discussion 

The motivation behind the development of the backpropagation and 

counterpropagation networks, was to determine the relative advantages and 

disadvantages of using neural networks to directly map the relationship between 

particular meteorological variables and resultant levels of water demand. The results 

could then be assessed in the light of the degree of success achieved by the 

combination of the heuristic day type classification system and the linear associator 

network. 

The backpropagation network daily percentage error results were generally 

comparable to those generated by the ARIMA time series prediction algorithm but 

were inferior to those attained by the day type classifier/linear associator. The 

backpropagation network predictions were closest to the actual demand values when 

the meteorological conditions were average for the time of year. However, when more 

extreme weather conditions were encountered, then the prediction accuracy from the 

network decreased significantly, this is shown in figures 6.7.1 and 6.7.2. 

The network does not appear to be successfully interpolating between the 

specific training examples it was exposed to during the training process. Although 

examples of extreme weather conditions were present in the training set, unless the 

input vector generated from the prediction day meteorological variables is an exact 

match to one of the training example input vectors, the network does not generate the 

correct extreme weather demand profile. It may be that this problem is the result of the 

particular network architecture or of the composition of the network input vector and 

further refinement would be able to expand on the encouraging results generated for 

the meteorologically average prediction days. 

In the application of the counterpropagation network to the demand 

forecasting task, it is the failure of the classification function that the network is 
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designed to perform that is the cause of the significant errors. The self organisation 

inherent in the Kohonen layer weight updating algorithm does not appear to provide 

the necessary adaptability to match the performance of the heuristic classifier used in 

conjunction with the linear associator network. Because it is not feasible to determine 

exactly how the network is making the classifications, there is an uncertainty of 

outcome that is not present in the rule based approach to day type classification. It 

would appear from the results that it is desirable for the system designer/operator to 

have a cognitive control over the criteria used to classify meteorological day types, and 

this is best achieved in via an interactive rule based application. 
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CHAPTER 7 

CONCLUSIONS 

7.1 Introduction 

This chapter sets out the conclusions and insights that have been forthcoming as a result 

of the work detailed in this thesis. This includes an understanding of the importance of accurate 

demand forecasts, the problems that were encountered during the research, the reasoning behind 

the design and implementation of the combined demand forecaster, the advantages the system 

offers and its relevance to the current and likely future state of the water supply industry. 

7.2 Problems, Solutions and Conclusions 

The water industry in England and Wales has undergone and is still undergoing a period 

of significant change. This change has been driven by two main influences, one being the 

privatisation and subsequent increased emphasis on efficiency in all areas of water operation and 

the second being the impact of technological advances and investment in network monitoring 

hardware and software. These two factors combined with a steady increase in the overall demand 

for water, has meant that there is an increased need within the water companies to control their 

networks more efficiently. Furthermore, the technology is now available for that increased level 

of control to be achieved. The situation described above highlights the importance of accurate 

short term demand forecasting in that it can provide the means by which water supply companies 

can optimise their pumping operations in order to meet the required level of consumption. 

7.2.1 Analysis of the Problem 

An essential initial task when approaching the problem of generating accurate demand 
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forecasts is the analysis of the significant components that contribute to the total level of water 

consumption. In this work, based on a combination of experience within the water industry, 

examination of example demand profiles and a review of past literature, divisions were made into 

domestic consumption, industrial/commercial usage, agricultural irrigation and leakage. 

Proportions of each category vary from area to area and each component is affected in different 

ways by the determining factors that influence the shape of the demand profile. It was an 

important consideration in the design of the combined demand forecaster that the system should 

not be area specific i. e. that it should be flexible enough to allow it to be used in areas with 

varying demographic composition. 

Following the identification of the components that contribute to the total consumption, 

it was necessary to analyse the factors that caused the observed variations in the shape of the 

diurnal demand profile. The most significant single factor that determines the pattern of water 

usage over a given period of time is the cyclic nature of domestic and industrial demand. This 

results in the pronounced diurnal and weekly repetition of consumption patterns. The weekly 

cycle highlights the significant differences in the patterns of social behaviour of the majority of the 

population at weekends as compared to during the week. It was apparent from studies of 

consumption patterns from a number of different geographic areas, that the presence of stable and 

regular cycles was highly dependent on the size of the areas concerned. The lower the population 

within an area, the less pronounced the diurnal and weekly patterns. It is therefore apparent that 

in order to mask the effects of individual consumptions that do not conform to the 'norm', there 

is a minimum number of consumers required to be present in the area from which demand data 

is sampled. Unfortunately, even with a suitably large sample area, examination of a typical record 

of past demand data reveals there are numerous factors in operation that significantly distort the 

cyclic pattern of consumption. 

Valuable information and ideas that influenced the development of the combined demand 

forecaster were gained from the examination of previous work done in the fields of both short 

term electrical load forecasting and water demand forecasting. The basic realisation was that very 

few of the methods described had been shown to provide consistently accurate forecasts over a 

wide range of conditions, and that this was largely due to their concentration on a single or limited 
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number of aspects of the many faceted problem of demand forecasting. Those methods that 

concentrated on extracting the maximum amount of information relating to the cyclic processes 

present in a time series of demand data were compromised by the presence of non cyclic events 

or influences. Those methods that concentrated on the causal relationships between 

meteorological variables and the level of demand generally were not able to track the rapid 

variations in these relationships that are evident at particular times of year. It was the realisation 

that the relationship between weather conditions and their influence on water demand was subject 

to such significant change that led to the investigation into the use of the day type classifier and 

linear associator neural network. 

A classification of the non cyclic factors that cause distortions to the level of demand has 

been proposed in this thesis and is based on the examination of the available data, the experience 

gained working in a supply network control room and the consideration of the methods developed 

in this work to account for each type of effect. The classification comprises three categories, 

calendar related effects, network related effects and weather related effects. The calendar related 

effects being those related to a particular date or time of year, the network related effects are 

those that are linked to changes or events within the network itself and the weather effects are 

linked to the prevailing meteorological conditions. The aim of the combined demand forecaster 

was to provide a system that could model the regular cyclic variations and also have the ability 

to account for those effects that distorted the demand data. 

7.2.2 The Use of Rules 

The results generated by a prototype forecasting system that incorporated the ARIMA 

algorithm and a small rule base constructed in FORTRAN, showed that the effects of calendar 

related events could be successfully accounted for by a rule oriented approach. However, as the 

number of rules became larger, the FORTRAN rule base became less efficient and harder to 

structure correctly. By transferring the rule base to the POPLOG AI environment, which 

incorporates the PROLOG and POP 11 programming languages with their advanced inference 

engine and pattern matching capabilities, a much more effective means of rule base construction 

and manipulation was achieved. 
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In order that the system was easy for a non computing expert operator to use, a menu 

driven interface was developed which allowed rule entry, selection, editing and deletion. The 

quality of the user interface would be highly significant in determining the acceptability of a 

demand forecasting system in the control room environment, it was therefore very important that 

the menu driven system described in Chapter 4 and the GKS graphical interface described in 

Appendix A were developed in parallel with the forecast generating rule base and neural 

networks. 

The results generated by combining the POP 11 rule base and the ARIMA algorithm 

showed that it was possible to remove a significant proportion of the large prediction errors that 

occurred when using the ARIMA algorithm on its own. The use of rules appears to be well suited 
-

to those effects such as calendar and network effects which are relatively stable i.e. their 

occurrence can be foreseen with a degree of certainty and their influence upon the demand is more 

or less constant. The flexibility of the rule based system is highly important in that it allows events 

that become apparent only during the ongoing operation of the forecasting system to be 

incorporated as and when they appear. In a similar way, the rule base flexibility prevents the 

forecasting system from being restricted in application to the geographic area for which it was 

originally constructed i.e. area specific effects can be incorporated by the construction of area 

specific rules. 

As was shown in the results of Chapter 3, the ARIMA algorithm fails to provide accurate 

predictions when the weather conditions are varying significantly. Problems were also 

encountered in attempting to account for these weather related influences by the construction of 

rules. Rules do not provide a suitable solution in situations where the knowledge they are trying 

to represent is highly volatile. It was found that it was not possible to derive rules that would 

remain valid over any period of time without constant updating of the rule weights. 

7.2.3 Neural Networks 

The aim of the investigations into the use of neural networks was to develop a system that 

could track the variations in the relationship between the values of selected significant 
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meteorological variables and the resultant level of demand. The classification of days into one of 

a number of predefined types based on the prevailing meteorological conditions was found to have 

a number of advantages, it simplified the network structure, it made the prediction of the 

meteorological conditions of the forecast day easier and also allowed for a degree of variation that 

avoided the problem of the network trying to learn the inconsistent relationship between specific 

meteorological values and resultant demand levels. Over the period of the forecast the day type 

classification is capable of absorbing both minor errors in the prediction of weather variables and 

the variations in the relationship between such weather variables and the resultant demand levels. 

It was found that the use of the day type classifier in pre-ordering the training data used by the 

linear associator network was of equal importance to the structure of the network itself in 

achieving the level of accuracy observed. 

The results in Chapter 5 proved that the day type classifier and the linear associator 

network could provide accurate predictions over the majority of meteorological situations. This 

included situations where the level of demand varied dramatically from one day to the next such 

as the first wet day after a dry spell, the accuracy of the neural network forecast remained good 

as long as there were examples of wet days present in the training set. This contrasted with the 

results from the ARIMA algorithm, the same situation of a wet day following a dry spell 

consistently led to a large over estimate in the predicted demand for the wet day. Another factor 

that was found to have a significant impact upon the resulting accuracy of the neural network 

predictions was the routine that was developed to ensure that the data from the most recent 

example days was submitted more frequently to the network during the training phase than the 

data from further back in the data set. By adjusting this frequency of re-submission of the most 

recent data, it was possible to fine tune the bias so that the system was reactive to changes taking 

place in the four or five days prior to the prediction day, but not too sensitive as to be severely 

distorted by an unusual profile that may occur in this recent data. 

There were situations when the accuracy of the day type classifier and linear associator 

were compromised, these generally involved either extreme weather conditions or situations 

where there was a lack of available past data. In these cases, such as the first hot weekend of the 

year where no example data exists in the training set, the neural network could not be expected 
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to provide accurate predictions. As shown in Chapter 4 Section 4.5.3 the solution was found by 

adding appropriate rules to the POP 11 rule base to provide the required knowledge to adjust the 

prediction. 

The linear associator network is, as its name suggests, only capable of modelling linear 

relationships, the incorporation of the day type classification module into the forecasting system 

had the effect of simplifying the relationship between weather and demand thereby allowing the 

linear associator to successfully provide the required mapping. It was possible that this 

arrangement was masking information that could otherwise be extracted from the weather and 

demand data by networks capable of modelling non linear relationships. In order to test this 

hypothesis, the more advanced networks described in Chapter 6 were constructed. The three layer 

backpropagating network was tested using data covering the same period as the linear associator 

network but without being subdivided into weekday and weekend data. The results were of a 

comparable accuracy to the ARIMA results but less accurate than those produced by the day type 

classifier and linear associator net. The network was found to be behaving in a similar manner to 

the ARIMA algorithm in that it could track the variations in demand due to weather conditions 

provided these conditions were not changing rapidly. When rapid meteorological changes did 

occur, the variations in the relationship between weather conditions and demand levels were such 

that the network had problems stabilising. It was also noted that the prediction accuracy of the 

backpropagation network was decreased when predicting for a day with extreme weather 

conditions i. e. very hot and sunny. The cause of this problem is related to the lack of examples 

of such extreme conditions in the training set, some method would be required of ensuring the 

training set contained a complete range of example meteorological conditions and also of ensuring 

that such a range of examples remained valid over varying prediction dates. 

The counterpropagation network was developed in order to investigate the possibility that 

the network would be able to carry out the same day type classification task that is conducted in 

the linear associator application by a set of rules. The network is composed of three layers, an 

input layer, a Kohonen layer and a Grossberg layer with each layer undergoing training in 

separate phases. A number of different network configurations with varying numbers of Kohonen 

neurons were tested, this amounted to testing how successful the network was at classifying the 
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input vectors into mutually distinguishable sub-groups. The best results in terms of consistent 

triggering ofKohonen layer neurons, was found to be with 4 neurons in the Kohonen layer. It is 

interesting to compare this with the four day type categories as used with the linear associator 

network, this may be a function of the particular data set used but it implies that it may be 

unproductive to attempt to identify and classify days into a large number of types based on their 

weather conditions. 

The results generated by the counterpropagation network were acceptable for only 4 days 

out of the training set of 14 days, gross prediction errors occurred on the remaining days. 

Investigation as to the cause of these gross errors revealed that they originated from the triggering 

of neurons of the Kohonen layer that had not been triggered during the training process, which 

indicates that the input vectors are not sufficiently separable for a consistent classification to be 

carried out by a purely automatic process. The separation into the day type categories carried out 

for use with the linear associator network was achieved by a set of rules and it appears that the 

knowledge held in those rules, such as 'if it is sunny and hot then more water is likely to be 

consumed than if it is equally hot but cloudy', is required in order to achieve a consistent 

classification. The counterpropagation network has no access to such heuristic knowledge and 

purely on the basis of the values of the meteorological variables, cannot achieve the desired 

classification with the required consistency. 

7.2.4 The Combined Forecaster System 

This thesis showed that the combined forecasting system comprising the linear associator, 

the day type classifier, the POP 11 rule base and the GKS user interface was the most successful 

means of providing consistent forecasts over a range of conditions. The neural predictor combined 

with the day type classifier provide a means of accounting for the fluctuations in demand caused 

by the effect of meteorological conditions. The POP-II rule base provides a mechanism by which 

the heuristic knowledge about events that are known to influence the shape of the consumption 

profile can be captured. This knowledge can be added to and updated by the operator via the 

menu driven interface. The GKS graphical user interface (described in Appendix A) provides an 

accessible means of viewing the results generated by the system and of visually assessing the 
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system performance. 

Although the component approach leads to a certain degree of program complexity (a 

schematic of the demand forecaster structure is shown in Figure 7.2.1), the result is a system that 

is straightforward for an operator to use and which can provide forecasts of consistent accuracy. 

This in turn means that the likelihood is increased of such a system being incorporated into a 

control room environment and utilised to provide input to pump scheduling or network analysis 

packages. 
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Figure 7.2 .1 Schematic of the Operation of the Demand Forecaster. 
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7.3 Future Developments Relating to Demand Forecasting 

The forecasting system described in this thesis represents a significant step forward in the 

use of AI techniques such as neural networks and knowledge based systems for the provision of 

accurate demand predictions. It successfully allows the incorporation into a 24 hour prediction 

effects that are very difficult or impossible to model by traditional mathematical means. The 

system is also flexible enough to cope with the different demand influencing factors that may be 

encountered in different geographic areas. However, there is much more research to be done to 

explore the possibilities for extending the use of heuristic knowledge in order to improve 

forecasting not only in relation to water networks but also in the related fields of electrical load 

prediction and gas consumption. It should be noted that any such research is critically dependant 

on the availability of sufficient, good quality historic data. It is the lack of such data within the 

water industry in the UK that is currently is the main factor limiting the ability of forecasting 

systems to achieve improved accuracy. It is only by building up a database of coherent past data 

that the required number of examples can be made available of the sort of events that are suitable 

for representation by heuristic means. This avoids the undesirable situation of basing a prediction 

on a single past occurrence of a similar day. With the increase in the use of telemetry systems to 

monitor water supply networks and the increasing statutory requirements upon the water utilities 

to gather and process data on consumptions, leakage levels etc. it is hoped that the data required 

to extend the investigations into predicting demands, both long and short term, will become more 

easily and widely available. 
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APPENDIX A 

GRAPHICAL USER INTERFACE 

This appendix provides a description of the elements of the graphical user interface that 

has been implemented as part of the combined demand forecasting implementation outlined in this 

thesis. 

One of the highly important aims of the demand forecasting application as described in 

Chapters 4, 5 and 6 was to involve the operator as much as possible in the process of arriving at 

the final demand prediction profile upon which the water network control decisions for the 

coming 24 hours would be based. The reasons for wishing to achieve a high level of operator 

involvement are twofold, the first is that an experienced operator holds a significant amount of 

heuristic system knowledge both in terms of foreseeing events that are likely to occur that would 

influence consumption within the system and in the ability to diagnose abnormal effects that are 

observed in historical data. The second reason is that it is highly important that the operator has 

confidence in the performance of the forecasting system and this confidence can only be achieved 

by involving the operator in the prediction process and providing him/her with information on 

how a particular prediction result was arrived at. 

The rule base described in Chapter 4 provides a method for incorporating heuristic 

knowledge into the demand forecast, however, this is not a mechanism designed to remove the 

operator from the prediction process, its aim is instead to maximise the contribution the operator 

can make towards improving the forecast accuracy. There will always be situations where an 

event occurs that was not foreseen at the time of the rule base construction, or when system 

changes make adjustment of the rule base necessary, or when a rule needs to be manually 

triggered. In each of these cases the successful operation of the demand forecaster is dependent 

on the input of the operator. The menu driven system associated with the rule base is designed 

to allow updating and adjustment of the knowledge held within the rules by non computer expert 

personnel. This is necessary because it is envisaged that a demand forecasting system such as the 
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one described here would be operated for the majority of the time by system control staifi.e. not 

highly computer literate engineers. 

In addition to the manipulation of heuristic information held within the rule base it is , 

equally important to provide the operator with a user friendly means of reviewing the performance 

of the system and to aid in identifying trends in the current data or unexpected deviations from 

the expected consumption profile. A highly effective method of achieving this via a graphical user 

interface and such a systems has been designed and written for the demand forecaster using the 

GKS Graphical Kernel System. The GKS interface operates from within the FORTRAN 

controlling program and provides a mouse operated system that is simple and easy to use. The 

GKS procedures are passed the raw, modified and historical prediction data as well as actual 

cQnsumption data and meteorological data for the week leading up to the prediction day. The 

required data can then be selected for display via mouse activated click boxes. 

The main display screen is shown in Figure A.I and is composed of a consumption against 

time graph covering the 24 hour prediction period. The click boxes in the upper right portion 

of the screen allow the user to select the profiles he requires for display on the graph. The profiles 

available for display are, the unaltered ARIMA prediction, the modified neural network 

prediction, the profile of the actual consumption for the previous day and the profile of the actual 

consumption for the same day as the prediction day the previous week. These profiles can be 

superimposed upon each other or removed from the display as required by the user, thereby 

allowing the most effective comparison of the available data. The purpose of including the 

previous days and previous weeks profiles is to provide a reference for the operator against 

which to evaluate the current prediction i.e. if the current prediction is radically different to the 

previous weeks profile then there must be a reason for this, either there has been some change to 

the system or the weather conditions are significantly different, the operator could then inspect 

the neural predictor day type or the rule base to determine the likely reason for the difference. 

The click boxes in the bottom right of the main screen allow other display options to be 

selected that show the performance of both the ARIMA and neural network prediction systems 

in terms of prediction accuracy. The actual and predicted profiles for the previous day can be 
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displayed in a similar format to the main display screen (Figure A.2), the profiles being 

superimposed and an RMS percentage error figure being displayed to indicate the relative 

accuracy achieved by each prediction methodology. The operator can also select a screen that 

indicates the performance of the prediction systems over the past week. The actual consumption 

profile for the previous seven days can be shown superimposed with either or both of the seven 

days of ARIMA and neural prediction results. Below this on the same screen the operator can 

choose to display a graphical plot of the past seven days of weather variables (maximum 

temperature, sunshine hours and rainfall totals). This allows a visual assessment to be made of the 

current consumption trends and their relation to the prevailing meteorological conditions, which 

in turn is useful in selecting neural prediction days types and weather related rules for the next 

days prediction. Figure A.3 shows a representation of the weeks data screen. 

A statistics screen can also be selected that displays the current prediction profiles within 

an error band based on the average RMS prediction errors over the preceding seven days, Figure 

A.4 illustrates an example of this display. 
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Figure A. l The Main Display Screen. 
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Figure A.2 The Previous Day Prediction Results Screen. 
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Figure A.3 Screen Showing Prediction Performance and Meteorological Variables . 
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Figure A.4 The Statistical Error Band Screen. 
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