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Abstract

This research present a complete review of signal processing techniques used, today,

in vibration based industrial condition monitoring and diagnostics. It also introduces

two novel techniques to this field, namely: the Kolmogorov-Smimov test and Volterra

series, which have not yet been applied to vibration based condition monitoring.

The first technique, the Kolmogorov-Smimov test, relies on a statistical comparison

of the cumulative probability distribution functions (CDF) from two time series. It

must be emphasised that this is not a moment technique, and it uses the whole CDF,

in the comparison process.

The second tool suggested in this research is the Volterra series. This is a non-linear

signal processing technique, which can be used to model a time series. The

parameters of this model are used for condition monitoring applications.

Finally, this work also presents a comprehensive comparative study between these

new methods and the existing techniques. This study is based on results from

numerical and experimental applications of each technique here discussed.

The concluding remarks include suggestions on how the novel techniques proposed

here can be improved.
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Chapter 1

Introduction
All mechanical equipment in industrial environment requires routine maintenance to

prevent failures while they are in use. Various maintenance techniques have been

devised, most of which rely on the statistical analysis of the life span of a component

and/or on visual inspection. The former approach requires a vast amount of

information about the components previous life cycles, while the latter will usually

involve disassembly of components (intrusive maintenance). Unfortunately, these

methods do not always form a basis for safe and effective maintenance programmes.

Also, the intrusive approach to maintenance is extremely time consuming and

expensive. Even when a company performs routine predictive intrusive maintenance,

the fault is never localised prior to the maintenance procedure. Not allowing the

maintenance team to prepare according to the situation.

In the last twenty years, a third approach to maintenance has become very popular.

This is based on non-intrusive continuous condition monitoring of mechanical

devices. The condition monitoring (CM) approach aims at evaluating the condition

of the equipment without having to stop it. In effect it aims at not only eliminating

unexpected catastrophic failures, but also at maximising the system availability (the

ratio of the actual running time over the desired running time - ideally 100%).

In aiming to improve system availability, two crucial points must be considered:

• Fault must be detected, localised and diagnosed before failure occurs.

• For repetitive faults eventual system reconfiguration is needed.
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Chapter 1, Introduction
The achievement of these aims, will ensure that a device is able to perform its task

with reasonable safety (avoiding catastrophic failures) and not affecting the quality

of the output product. This fOTITISthe basis of industrial condition monitoring.

Table 1.1 shows the many techniques, and their possible applications, available to the

maintenance engineer for achieving the above aims.

Table 1.1- Condition Monitoring Method Selector [1]
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Chapter 1, Introduction
Today vibration and acoustic analysis are very popular methods for monitoring the

condition of rotating devices. It is particularly used for monitoring dynamic (Le.

rotating) devices such as gearboxes, bearing, rotating shafts and cutting lathes

amongst others [1]. This popularity is directly related to the flexibility of this method

(see the number of applications where it can be used in Table 1.1) and also to the

ease with which these signals can be collected. Acoustic analysis only needs a

microphone, while vibration signatures can be easily obtained with vibration

transducers coupled to data loggers. The actual type of transducer is dependent on

the frequency being monitored [2, chapter 7], low frequencies is best sensed by

displacement, medium frequency is best sensed by velocity, and high frequencies is

best sensed by acceleration.

For the above reasons this research will focus on signal processing techniques which

can be used for vibration analysis of machines.

Finally, the main thrust behind this research comes from the urgent need to improve

on the existing vibration based condition monitoring methods, and also to develop

new methods for CM. This will aim at meeting two basic industry requirements:

• Increase of equipment uptime. Effective CM does increase the operational

availability of various industrial systems. This will not only increase the

production (hence revenue), but also reduce costs due to unexpected breakdowns.

• Increase of industrial safety levels. Machinery safety is today a key issue in

industry. Effective CM helps to reduce unexpected failures, which can lead to

unsafe situations.

This report is formatted as follows:

Chapter 2, Literature survey. Is a review of the state of the art literature on the

different aspects and techniques for vibration condition monitoring and fault

diagnostic.
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Chapter I, Introduction
Chapter 3, Numerically simulated and experimental data. This chapter describes

how the simulated and experimental data were obtained. This data is used as the

input to the different techniques being studied in this research.

Chapter 4, Statistical methods for condition monitoring. This chapter gives an

introduction to the theory behind the several statistical tools used in industrial

vibration analysis. It also introduces the KS test as a novel technique for vibration

condition monitoring. These tools are used to process the experimental and

numerical data.

Chapter 5, Frequency and Time-frequency approach to condition monitoring. This

chapter describes two frequency methods (pure spectral analysis and cepstrum

analysis) and two time-frequency techniques (Spectrogram, Wigner distribution)

used for analysing time-series. These techniques are used to process the numerical

and theoretical data. Also, it reviews other time-frequency techniques, which were

commonly used in the past.

Chapter 6, Wavelet approach to condition monitoring. This chapter describes the

theory behind wavelets and their usage in condition monitoring. Also, it compares

the performance of different wavelet families (Harmonic wavelets and Daubechies

series). These wavelets are also used to process the numerical and experimental data.

Chapter 7, Non-linear methods for condition monitoring. In this chapter non-linear

signal processing techniques are discussed. The Volterra series is then studied in

detail, and used (for the first time) as a tool for vibration signal analysis.

Chapter 8, Discussion. In this chapter a summary and a review with a direct

comparison between all the techniques discussed in the previous chapters will be

included. This aims to serve as a guide for choosing appropriate techniques for

specific applications.

Chapter 9, Conclusions and further work. This chapter concludes this research and

also observes topics, which could, and should, be studied further.

1.1. Research Objectives

The main objective of this research is to establish a basis of comparison between the

different signal processing techniques used today for the condition monitoring of

industrial rotating devices.
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Chapter 1, Introduction

Furthermore, it aims at introducing the usage of two novel techniques to vibration

condition monitoring: the KS test and the Volterra kernel estimation in vibration

analysis. To achieve these objectives the following programme was devised:

• Perform a complete literature review oftoday's available techniques for the

condition monitoring of rotating devices. This review should include not only the

theoretical but also practical techniques. This step is essential to give an insight

of the field being researched.

• Collect experimental data related to a specific type of fault (fatigue cracks) in

rotating gears. These data sets will form the basis for a true comparison to be

made between the different techniques under study. Three fatigue cracks of

different sizes, to simulate fault advancement, were selected. The geometry of

these cracks is fully described in chapter 3.

• Introduce the KS test to vibration condition monitoring and compare its

effectiveness with existing techniques.

• Adapt the usage of Volterra series (so far primarily used in biomedical

applications), so that it can be applied to industrial condition monitoring. This

will allow an assessment of its prospects as a signal processing technique for

condition monitoring and diagnostic.

• Use the different techniques under study to process the numerical and

experimental data; observing the advantages and disadvantages of each method.

• Collect the main traits and perform a direct comparison between each technique

under study, and how these fit with the published literature on the subject.
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Chapter 2

Literature survey

Condition Monitoring and Diagnostics of industrial equipment are techniques, which

complement any industrial maintenance programme. In fact, its main purpose is to

determine the optimum amount of preventive maintenance required by different

components and machines. It is this optimisation which will lead to the lowest

machine running costs.

The objective of this chapter is to present a review of the previous work on this

subject. This review is grouped into subsections, namely:

• Maintenance and condition monitoring;

• Vibration condition monitoring;

• Gearbox Vibration;

• Statistical descriptors;

• Frequency and time-frequency methods for condition monitoring;

• Wavelet decomposition for Condition monitoring;

• Non-linear methods for condition monitoring;

• Summary of literature survey;

\

At the end of the chapter a summary is included.
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Chapter 2, Literature survey

2.1. Maintenance and Condition Monitoring

The notion of maintenance is, today, familiar to most people. Its main objective is to

avoid, or reduce to the lowest possible level the number of unexpected failures. The

ever-increasing complexity of new machine is also increasing the complexity of

maintenance systems. Therefore, the need to develop faster, cheaper and more

accurate diagnostic systems for industrial maintenance is always present.

Maintenance lies within the field ofTerotechnology [3, chapter 1] and it can be

subdivided according to Figure 2.1, below.

Maintenance

PLANNED
MAINTENANCE

UNPLANNED
MAlNrENANCE

EMERGENCY
MAINTENANCE

Figure 2.1 - Approaches to maintenance

As it can be seen there are several approaches to maintenance. All approaches are

valid, however each will be associated with a different cost. Unplanned maintenance

(i.e. do nothing until faiJure occurs) is the simplest method, however it also tends to

be the most expensive. On the other hand, planned maintenance requires a certain

degree of organisation, which is paid off by the system reliability.

Condition monitoring lies within the scope of planned maintenance and aims at

establishing the optimum level of preventive maintenance that should be directed at

each component within different machines. TIlls technique has several inherent

advantages. The machinery is inspected periodically to assess the actual state of its

components, this ensures that the equipment is only maintained when needed,

maximising uptime. Also this inspection is performed while the machine is on-line,

again, maximising its uptime. Finally, observation of fault development allows for

intrusive maintenance to be planned in advance.
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Chapter 2, Literature survey

Today a reasonable number of publications in the field of maintenance and condition

monitoring can be found [1,2,3,4,5,6]. In [1] a detailed description of the different

condition monitoring techniques and their respective applications can be found.

Including vibration, acoustic, debris, corrosion, thermal and pressure analysis

amongst others,

From all the techniques observed above, vibration analysis was chosen due to its

generality (Table 1.1 shows some of the applications where vibration analysis can be

used), and its ability to analyse machinery with highly dynamic characteristics.

Furthermore, it has already been shown that different faults lead to different vibration

characteristics. Table 2.1 summarises some common mechanical faults together with

its characteristic vibration frequency and amplitude. Further details in this area can

be seen in [7].

2.2. VibrationAnalysis

Vibration analysis, and its counterpart: acoustic analysis, are amongst the most

popular forms of condition monitoring. The vibration signature of a device contains

detailed information not only about the dynamic behaviour of its moving parts, but

also about its structural components (as these contribute to the overall vibration

transfer function of the device). From the vibration signature a full diagnosis of the

condition of the device is obtainable.

For most practical applications an effective condition monitoring program will

consist of four basic steps [8]. These are:

• Identification of check points. In this step one needs to ascertain which are the

relevant data collection points. These collection points must be chosen so that

they enhance the signal distortions, which might arise from a fault. Ideally,

sensors should be placed as close as possible to the specific component being

monitored.

• VibrationMeasurement. In this step one needs to determine how much data will

be collected, select appropriate vibration transducer, sampling rates and sampling

periods. This step is of utmost importance to an effective condition monitoring
page 8



Chapter 2. Literature survey

system as the sampling rate is very much related to the range of recorded

frequencies. The collected data is effectively a time-series, as successive

observations are not independent and that the time order of the observations must

be observed [9].

• Digital Signal Processing (DSP). Here, a signal processing technique, which will

enhance the patterns caused by existing faults, must be chosen. The specific DSP

technique to be used is very much dependent on the problem at stake. Today

there is a wide range of techniques available. This choice is crucial to the

performance of the monitoring system [10].

• Post-process analysis and interpretation. In this final step, the results obtained

after processing the collected data are analysed. This analysis can be either

visual, which requires human interaction, or it can be automated. In the latter

case, an automated pattern recognition system must be implemented.

Previous work on the usage of vibration analysis to condition monitoring of

mechanical devices has shown that each type of fault introduces different

components to the vibration signature of a device [7]. The table below summarises

how the vibration signal components can be related to different faults.

Table 2.1 - Faults and vibrations

Fault Frequency Vibration amplitude
Imbalance 1 x rpm Proportional to imbalance. (radial)

Misalignment or
1 x rpm (usual) Mainly axial, usually more than 50% of
2 x rpm (often)

Bent shaft 3, 4 x rpm (seldomly)
radial vibration

Damaged rolling High frequencies not multiple of Unsteady
element bearings rpm
Journal bearings Sub-harmonics of shaft rpm (Yl •
loose in housing, 1 x rpm)

Lubrication High frequencies not multiple of
rpm

Oil-film whirUwhip
0.42 to 0.48 x rpminjournal bearings

Damaged or worn Tooth meshing frequency +
harmonics (no. of teeth x shaft Low

gears rpm)
Mech. Looseness 2xrpm Second harmonic> 2x fundamental r
Defective belt-drives 1,2,3, and 4 x belt rpm Erratic or pulsating

Electrical defects I x rpm or Disappears when power is turned off
(magnetic fields). 1, 2 x synchronous frequency
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Chapter 2, Literature survey

The usage of vibration signatures as a basis for condition monitoring can be found in

a wide range of applications including: cutting tools, drilling and rotating devices

(gearboxes, bearings, shafts) [6,11,12,13,14,15]. The actual number of successful

applications is very large, and it is still growing very fast. Only a few examples are

given here.

This research aims at comparing different digital signal processing techniques, which

can be used to monitor the condition of a spur gear. More specifically to identify the

presence of tooth fatigue cracks in its very early stages.

2.3. Gearbox Vibration

Gearboxes playa vital role in rotating machinery. It is present in most modem

machinery ranging from automobiles to chemical plants. Its main purpose is to

modify the parameters of power being transmitted. Today there is a wide range of

types and configurations of gearboxes, however some basic wear symptoms can be

found in most of these configurations. This opens the way for the usage of digital

signal processing techniques, which aim to maximise the vibration features arising

from wear and faults on gearboxes.

Gearbox failure will usually occur on the load carrying elements (i.e. shafts, bearings

and gears). There are 3 root causes for gearbox failures.

• Gearbox operation beyond design limits.

• Lack of preventive maintenance (including lubrication and seals).

• Improper original assembly.

This research focuses on gear failures alone, not considering bearing and shaft

failure. The most common types of gear failure are related to tooth geometry

irregularities (tooth scoring and pitting, shaved tooth, cracked tooth and broken or

missing tooth amongst others), or gear misalignments. All these failures will

invariably introduce changes in the vibration signature of the gearbox, causing an

overall increase (or reduction) in the vibration level of the device.
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Chapter 2. Literature survey

There are several signal processing techniques available for the analysis of time

series (vibration signature). The methods covered by the scope of this research were

divided into four categories, namely: statistical descriptors, frequency and time-

frequency analysis, wavelet decomposition and non-linear methods. These are

discussed in the next sections.

2.4. Statistical descriptorsfor CM

The usage of statistical descriptors in condition monitoring has been very much

limited to the time domain analysis of a vibration signature. This analysis is based on

the comparison of some useful vibration parameters [1], namely: mean, variance,

standard deviation, absolute deviation, root mean square, skewness, kurtosis, peak to

peak value, crest factor, form factor, spike energy, etc. (see section 4.1)

It must be noted that two moments inparticular, namely: skew and kurtosis, are

widely and successfully used in condition monitoring applications. Their main

advantage is related to their mathematical simplicity. Unfortunately, these measures

alone cannot be used to fully diagnose a mechanical device.

The crest factor (CF) technique has also shown potential for industrial condition

monitoring applications [16,17). In [17] Badi et al have shown how it can be used in

assessing the condition of a drive line (including a simple gearbox). Finally, the spike

energy technique is now used commercially by IRD Mechanalysis for the condition

monitoring of bearings [11).

This research suggests the usage of a well known statistical comparison test, as

another technique, which could be added to the hall of statistical descriptors for

condition monitoring. This technique is known as the Kolgomorov-Smimov (KS)

test. Although it has been successfully used to compare distributions in other fields

such as astronomy [18], biology [19] and identification of periodicity in signals (20J, to

the best of the author's knowledge, the KS test has not yet been applied to the

analysis of vibration signatures from rotating devices. (see section 4.2)
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Chapter 2. Literature survey

This test works by comparing the whole cumulative probability density function of

two time series; these, usually are a reference signal (good signal), and a second

signal which indicates the current state of the rotating device. The outcome of this

comparison is a similarity percentage (indicating how similar the two signals are).

The results obtained in this research were very encouraging, and suggest that this

method can be efficiently used for fault detection/advancement analysis[21, 22].

2.5. Frequency and time-frequency methods for condition

monitoring

Frequency and time-frequency methods rely very much on the Fourier transform

[23,24]to convert the time domain vibration signature into frequency and/or time-

frequency domain. This conversion can be performed by means of well established

Fast Fourier Transform (FFT) algorithms [25,26].

Pure spectral analysis is the first frequency method under consideration, as it has

been widely used for monitoring the condition of rotating devices. This technique

describes a vibration signature in terms of all its frequency components (and their

respective phases), within the Nyquist theorem. Faults are detected by visual

comparison between 'good' (gearbox in good operating condition) and 'faulty'

(gearbox with a fault) spectrums. Unfortunately, this technique is not sufficiently

robust to reliably detect and diagnose gearbox faults. This can be related to the fact

that the vibration components from some types of faults are localised, hence when

transforming the whole time series the fault contribution is overshadowed by the rest

of the signal. (see section 5.1)

Note, however, that although this technique in itself is not sufficiently robust to

reliably detect faults, it served as a basis for describing how different faults affect the

vibration spectrum [7,27]. Also, this technique forms the basis of other condition

monitoring methods, such as cepstrum and time-frequency (spectrogram)

decompositions.
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The cepstrum (anagram of spectrum) is a direct extension of the pure spectral

analysis; however, it focuses on the detection of harmonic components in a time

series. The cepstrum is a non-linear signal analysis technique [28], which was first

used for echo detection [29] in 1963.

The cepstrum works by performing the inverse Fourier transform of the logarithm of

the Fourier transform of the input sequence. There are two variations of this

technique, namely: the complex cepstrum and the real cepstrum. (see section 5.2)

In the complex cepstrum, the complex logarithm is used after the input series is

Fourier transformed. This is useful when phase information of the input signal needs

to be retained.

In the real cepstrum, the logarithm of the magnitude of the input signal Fourier

transform is evaluated. This is much simpler, but it ignores and discards the phase

information in the time series. A discussion between these two variants of the

cepstrum method can be found in [30].

After the successful applications of cepstrum for speech analysis [31], and

geophysical data processing [32], Randall used it as a tool for condition monitoring

and diagnostics of rotating devices. Randall's successful results [27,33,34,35], led

many other researchers to use it in a wide range of applications [4,36,37,38] including

gear condition monitoring [34,39,40,41].

In this research the real cepstrum is used to analyse the vibration signatures. Also

cepstral subtraction is performed between good and faulty signals. This has proved to

be an efficient identification technique. Work has also been done on using the

cepstral reconstruction (inverse of cepstrum transform) to diagnose the type of fault.

The remaining techniques under the scope of this section can be grouped as time-

frequency methods. These methods aim to model a signal by describing which

frequencies were present at which instants in time. The output from this method is a

3 dimensional map, containing time information, frequency information and energy
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content. In this research the two time-frequency methods were studied, namely:

spectrogram and Wigner- Ville Distribution.

The spectrogram (also known as short-time Fourier transform or windowed Fourier

transform) was one of the first time-frequency distributions. It was first used in the

1940' s to analyse human speech [42]. Since then, subsequent developments [43,44,45]

turned this technique into a powerful tool for time-frequency analysis (see section

5.3). A review comparing the different approaches to the spectrogram calculation can

be found in [46].

The spectrogram works by viewing segments of the time domain data through

windows, and then transforming these segments to frequency domain, representing

the energy distribution of the signal over the frequency domain at every instant of

time [47].

The most commonly used window function is the Gaussian function, as it possesses

similar shapes in the time and frequency domain. Therefore it does not introduce

unwanted sidelobes into the spectrogram. Other window functions, such as

Hamming, Hanning, rectangular and triangular have also been used. A review of the

properties of different window functions can be seen in [48].

Some applications demonstrating the effectiveness of the spectrogram as a time-

frequency analysis tool can be seen in the works of:

• Wang and McFadden on gear condition monitoring [47,49];

• Fazio and Molinaro [50] in echo detection, and Kim et al [51) in geophysics;

• and the work of Kingsbury et a1 in speech analysis [52].

These are only a few examples of the successful applications of the spectrogram. The

work by Wang and McFadden on gear condition monitoring is directly related to this

research and must be particularly noted. In [47] it was found that:
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• the spectrogram has advantages over the Wigner- Ville distribution for the

analysis of vibration signals for the early detection of damage in gears.

This agrees with the results obtained in this research when analysing the performance

of the spectrogram.

Finally, it must also be noted that the spectrogram has one main handicap related to

the window function choice. Ifthe window is chosen so that it focuses on time

resolution (narrow window in time domain), then once the Fourier transform is

performed the window fimction will have low frequency resolution (wide window in

frequency domain). As stated by Cohen [53], there is an inherent trade-offbetween

time andfrequency resolutions in the spectrogram. Therefore, it cannot be used to

analyse signals with large and small patterns simultaneously.

The second time-frequency method studied in this research programme is the

Wigner distribution (WD). This technique was first used for signal analysis in 1948

[54]. Also, like the spectrogram, the WD is a member of the Cohen's class of time-

frequency distributions [53,55]. A comprehensive review of this technique was

published by Claasen and Mecldenbrauker [56,57,58] in 1980.

The WD works by adding up pieces made up of the product of the signal at a past

time multiplied by the signal at a future time, the time into the past being equal to the

time into thefuture [59]. Note that as this 'overlap' is done, the WD will weight far

away times equally to near times. This basic property can be modified, by using a

window fimction to emphasise the signal around a given time 't'. This modified WD

is also known as pseudo WD (PWD), smoothed WD (SWD) [59] or weighted WD

(WWD) [60]. (see section 5.4)

In this research the PWD will be used, as it is more localised than the pure WD. This

is of uttermost importance in reducing the cross-term interference, which is an

intrinsic disadvantage ofPWD.
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The PWD has also been successfully used in many applications [14,15,60,61,62]. These

cover a wide range of areas from echo detection to rotating machinery condition

monitoring.

The work of Staszewski [60] et al is directly related to this research, and two points

must be noted:

• The WD is capable of detecting local tooth faults in spur gears

• The PWD reduces cross-term interference in the time-domain. This simplifies the

results.

This justifies the inclusion of a theoretical description of the WD in this research and

also justifies the choice to only analyse data (experimental and simulated) with the

PWD (see section 5.4.2 to 5.4.5).

Finally, it must be noted that cross-term interference is not the only handicap of the

PWD, when compared to other TF representations. The introduction of the window

function, also affects the frequency resolution, which can cause a loss of sensitivity

regardingfault detection, as stated by Staszewski [60].

2.6. Wavelet decomposition for Condition Monitoring

In the recent years wavelets have been successfully applied to a wide variety of

condition monitoring applications. Part of the power behind wavelets lie in the fact

that it comes from a wide variety of research backgrounds. As a consequence

wavelets seems to have many different definitions. In [63], Sweldens attempts to

outline a common denominator for various developments, which have been called

wavelet.

The wavelet transform (WT) is an example of a time-scale decomposition of a given

signal. It originated in the 1980's with the works ofMorlet and Grossman [64,65].

This method is still evolving [63], and so far it has been applied with some success to

areas as diverse as: image and sound processing [66,67,68], biosignal analysis [69], and

vibration analysis [70,71,72,73,74] (including rotating machinery condition
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monitoring). The wavelet has also been used, with some success, as a pre-processing

method in automated condition monitoring systems [75].

The wavelet transform works by expanding the time series in terms of a family of

functions (wavelets) generated from the dilation and translation of a single function,

the 'mother wavelet' [76,77]. The translation of the 'mother wavelet' allows for the

analysis of the signal at different instants in time. While, the dilation of the 'mother

wavelet' has the effect of narrowing, or widening, the time window depending on

whether the frequency is high or low. This is one of the most important

characteristics of the WT, as it enables the analysis of very short lived transients

coupled to longer lived transients in time domain. (see section 6.2)

In this research the Daubechies series and harmonic wavelets will be used (and

compared). The choice for using these wavelets is based not only on their orthogonal

properties, but also on the results which leading researchers (Newland, Wang and

McFadden, and Staszewski and Tomlinson, amongst others) have already obtained.

In [78], one of the first applications of wavelets to vibration condition monitoring,

Wang and McFadden concluded: it is possible to detect a fault in one of the gears by

visual inspection of the time-scale distribution. In the following year McFadden [79]

added: the wavelet transform enables better separation in the time dimension of

signals of short duration at high frequencies than the Gabor spectrogram. Newland

[70] has shown the effectiveness of wavelets, analysing vibration due to road and rail

traffic on four-storey building. Also, he compares harmonic wavelets [80] to the

dilation wavelets (daubechies series), concluding, amongst other things: Harmonic

wavelets can be described by a simple analytical formula, while dilation wavelets

cannot be expressed infunctional form.

2.7. Non-linear methods for CM

The techniques previously discussed are all widely used for linear systems. Methods

for the analysis of non- linear systems have not received that as much attention in the

past years as the previous methods. Although it is possible to represent a non-linear
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system by dividing it into smaller linear sections and use the already well established

theory for linear systems; it has been recognised that non-linear processes can only

be analysed as a whole by non-linear methods [81,82],

For this reason, the scope of this research included a non-linear signal processing

technique, namely, the Volterra Series. This technique was first introduced by

Volterra in 1887, and subsequent developments to it, especially those by Frechet [83]

and Wiener [84,85] pushed this method into a field of mathematics whose main aim is

the study offunctionals and the representation of non-linear systems. Also, it must be

noted that although this technique has been available for more than one century, it

has not yet (to the best of the author's knowledge) been used for monitoring the

condition of rotating devices.

There are also other non-linear techniques, such as: artificial neural networks [86],

quadratic detectors [87], parameter estimation [88] and block-oriented systems [89],

amongst others. A review of these methods can be seen in [81]. These above

techniques, however, rely on many heuristic decisions, and are also very much

dependent on the system to be modelled.

Now, Volterra series do not suffer from the above handicaps, and lead to a more

general model, which can be used for a wide range of inputs and combination of

waveforms. The higher the dimensionality of the series the higher its generality.

Unfortunately these higher order series are computationally expensive, and [102] not

easy to assimilate and deal with.

Comprehensive reviews about Volterra series have been compiled by Hung and Stark

[9O}, and by Barret [91], but it must be noted that this method is still evolving as it is

starting to be used inpractical applications, such as:
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• The work ofKoh and Powers [92] shows that a Volterra filter can be used to

model and predict the non-linear dynamic behaviour of offshore structures

(excited by irregular sea waves), more accurately than other linear methods.

• The work of Korenberg and Morin [93] on myoelectric signal discrimination

shows that Volterra series can be used to distinguish biological signals arising

from different muscle contractions.

• The work of Korenberg and Paarman [94J, which contains an adapted orthogonal

algorithm to process time series. In this study it was found that this technique was

able to accurately estimate the relevant frequencies in a signal, even if this signal

is heavily corrupted by noise and has randomly data missing.

The Volterra series methods work by measuring the Volterra kernels [95] (a constant,

a one-dimensional and multidimensional weighting functions). These kernels are at

the core of the non-linear system representation. (see section 7.3)

There are different algorithms to accomplish the kernel estimation [90,96,97,98,99,100,

101]. In this research the Lee-Schetzen cross-correlation algorithm [102] will be used

due to its simplicity when compared to other methods. A review with the properties,

advantages and disadvantages of the many approaches to Volterra kernel estimation

can be found in [103].

In this research it was found that the second order kernel does indicate the presence

of a fault in the vibration signature of the rotating device.

Therefore, although the Volterra series is a very mathematically biased and

computationally expensive technique it can also be seen as an available tool for the

modelling and condition monitoring of industrial equipment.
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2.8. Summary of Literature survey

Sections 2,1 to 2,7 reviewed the existing literature available for the different

techniques studied under this research, As it can be seen when applying these

techniques in an industrial environment, the maintenance engineer primarily focuses

on magnifying the vibration patterns induced by the fault, so these can be visually

observed. This observation is usually done against a reference (or good) signal.

Hence condition monitoring becomes a comparison exercise between two different

images (or vectors).

Some work has been done aiming at automated condition monitoring systems.

Unfortunately these systems are extremely dependent on the feature extraction

method, which in tum is a heuristic process. Therefore, although it is possible to

achieve good results in specific applications, the generality of the system is very

restricted.

Statistical descriptors, pure spectral analysis, cepstrum, spectrogram, Wigner-Ville

distributions and wavelets all have their advantages and disadvantages, These were

already described in brief, and will be discussed in detail in the later chapters. All

these techniques have already been used successfully in a variety of applications.

Now this research suggests two other techniques for condition monitoring and

diagnostics of rotating devices, namely:

• The Kolmogorov-Smirnov test.

• The Volterra series.

Although these techniques are relatively well established in other fields, to the best

of the author's knowledge, they have not yet been yet tried in condition monitoring

applications.

The first technique is a tool for time domain condition monitoring. It works by

comparing the cumulative probability density function of two distributions. These
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distributions usually are a reference signal (good signal), and a second signal which

indicates the current state of the rotating device. The outcome of this comparison is a

similarity percentage (indicating how similar the two signals are).

The second technique also works in time domain. It uses the time series to model the

vibration signature of the device. During this modelling, kernels are estimated. These

serve as a basis for comparing different vibration signatures.

Both these techniques have proved very effective in monitoring the condition of

gearbox faults by vibration analysis.
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Experimentation
This chapter gives a full description of the experimental setup and of the data

(simulation and experimental) used throughout this research. As suggested in the

previous chapter, this research uses a gearbox as the main tool to test the hypotheses

formulated in the main objectives of this research. Hence, all data files are related to

gear vibration condition monitoring

This chapter is divided into three main sections. The first describes the gear faults

which will be studied in this research. The second describes the apparatus used in the

experimentation and the third describes how the collected vibration signatures were

grouped and labelled. The latter is of utmost importance as the results from the

different analysing techniques refer to the labels introduced in this section.

3.1 Gear faults

All major faults in gearboxes can be classified into shaft (misalignment, unbalance),

tooth (wear, scuffing and cracking) and bearing (rolling element defect, bearing-

housing fit) related problems [1]. The early gear defects on a single tooth can be

called local tooth defect. The faults studied in this research are wear effects and

cracks caused by bending fatigue.

3.1.1. Wear effects

The meshing contact between gear teeth will invariably cause wear on the gear tooth

face. This wear appears in the form of pitting and scuffing. A common cause for
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these defects is gear misalignment. This overloads one end of the tooth, causing

stress concentrations at specific areas of the tooth, This leads to a fast deterioration of

the active profile of the gear and a rapid loss of the tooth involute profile shape. This

gives rise to dynamic loads which causes excessive localised wear.

In this research the effects of these faults on the overall

vibration signature of a gear is analysed. For this a worn-out

gear was used. This gear was obtained by running a new gear

until it showed worn-out signs (i.e. pitting and scuffing),

Figure 3.1 shows these defects on the worn-out gear. Note

that the pitting on this gear is at its very early stages.

Figure 3.1-Worn-out gear

3.1.2. Fatigue cracks

Fatigue crack is the fracture of metal under repeated (cyclic) stressing below the

yield stress of the material. Fatigue cracks reduce the effective stiffness of a tooth.

This affects the vibration signature of the gear.

Fatigue cracks can lead to tooth breakage under three main forms: bending fatigue,

overload and random fracture [105]. Tooth breakage can cause catastrophic effects on

machinery on a wide range of industries, and must be prevented. Fracture usually

occurs at the root of the tooth, starting near the end of the tooth under tension (when

the load is unidirectional). The crack propagates along the base of the tooth. Also, in

some cases the fracture can be initiated by surface damage due to contact stress. The

figures below show typical fatigue cracks, and how these can lead to tooth fracture.

Figure 3.2 - Gears showing fatigue cracks
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3.2. Experimental Setup

3.2.1. Test Rig

Aiming to investigate the previously described types of faults a test rig modelling a

drive-line for the collection of vibration time data from rotating gears was used. This

rig has been designed for a previous PhD research project, The test rig contains

common components present in a real drive line using meshing gears (i.e. gears,

shafts, bearings and couplings). The layout for the rig is shown in the figure below.

Gear details are included in section 3.3 and [106] include further rig details.

8 9 10 11 12r

7

Brake Unit Driven Gear Unit Driving G ear Unit

1. Brake calliper
2. Brake shaft
3. Brake disc
4. Universal joint

5. Movable base plate
6. Output shaft
7. Wheel
8. Spacer block

9. Pinion
10. Input shaft
11. Kopp Variator'"
12. AC motor

Figure 3.3 - Layout of experiment test rig

The rig can be divided in three main sections: the driving unit, the driven unit and the

brake unit. The driven unit consists of an AC motorl2 (3-phase, 0.75 hp, 1440 rpm)

adapted to a Kopp Variator!'. The Variator provides an adjustable motor speed in the

range between 200 and 1200 rpm. The output of the Variator is connected through an

Oldham coupling to the input shaft'". The input shaft is supported by two roller

bearings. The bearing housings are split in two halves to obtain easy access to the

bearings. The pinion/ is mounted on the shaft opposite to the coupling.
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The layout of the driven unit (output shaft") is symmetrical to the input shaft. The

unit is mounted on a movable base plate '. The base plate slides on a guide, which

guarantees the alignment between the input and the output shaft. The movable base

plate makes the change of the test gears easier and allows the usage of gears with

different pitch diameter. The connection between the output shaft6 and the brake unit

consists of two universal couplings in a telescopic assembly". Note that a key was

placed on the output shaft6. This was used to give a reference signal, indicating the

position of the gear at a given time.

Finally, the brake unit consists of the brake calliper', the brake shaft' and the brake

disc '. A brake shaft has one end connected onto the brake disk, and the other end

connected to the universal joint on the opposite end to the brake disc. The bearings of

the brake shaft are mounted in the same manner as on the other two shafts. The brake

calliper is mounted on a bracket, and is operated by compressed air. The brake

pressure can be adjusted by means of a needle valve (and pressure gauge) between

the pneumatic circuit and the brake calliper.

3.2.2. Instrumentation

The instrumentation used to acquire the vibration data from the test rig described

above consisted of: an accelerometer, a stress-wave sensor (SWS), a proximity

sensor, charge amplifiers, a spectrum analyser, and a data-acquisition card software.

The diagram below illustrates how these devices were interfaced.

1. driving gear 2. driven gear
3. accelerometer and Stress wave sensor (SWS)
4. proximity sensor

spectrum analyser

charge
amplifier

data acquisition card
(AJD converter)

Figure 3.4 - Layout of instrumentation used in test rig

As it can be seen, the vibration signature (captured by the accelerometer, and the

stress wave sensor) and the revolution trigger signal (captured by the proximity
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sensor) were fed into a charge amplifier. The amplified signals were used as inputs to

a spectrum analyser. This allowed an on-line visual inspection of the meshing

frequency, to ensure that the rotational speed of the gears was constant.

The amplified signals were also fed into an analogue-to-digital converter. The digital

signal of the vibration signature and the trigger signal were stored in a personal

computer. The digitised signals were used by all the signal processing methods

studied in this research.

3.3. Test Gears and Simulated Faults

The test gears used in the experiments were manufactured by Davall Gears. A full

description for these gears can be found in appendix 1, hence only a brief description

will be included here.

In all seven mild steel unhardened spur gears were used. These were non-hardened

and non-undercut. The reason for this selection is related to the difficulties in

implementing faults (fatigue cracks) in hardened gears. For example for a hardened

gear to show worn effect would take a much longer time than non-hardened gears.

The gears were manufactured to the following standards: DIN 3962, DIN 3963 and

DIN 867. The table below gives the main technical characteristics of the gears used.

Table 3.1- Characteristics of Test Gears

Parameter Pinion Wheel
Type MA25-20S MA25-32S
Number of teeth 20 32
Module 2.5 2.5
Face width [mm] 25 25
Pressure angle [deg] 20° 20°
Helix angle [deg] 0° 0°
Pitch diameter [mm] 50 80
Material (mild steel) EN8 EN8

The seven gears were used as follows:

• 2 gears used as normal reference gears, obtained by recording the vibration data

after 5 minutes of gear usage (under a rotational frequency of 5Hz - or 300rpm-

and brake torque of20Nm)
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• 1 gear used as a reference for a brand new gear, obtained by recording the

vibration data soon after it was first used.

• 1 gear used as a worn out gear, obtained by using the gear (under a rotational

frequency of 5Hz - or 300 rpm - and brake torque of20Nm) until worn out

effects (Pitting and scuffing) could be seen.

• 3 gears with simulated fatigue cracks with different severity were used as the

faulty gears. A description of how these faults were implemented is included

below.

3.3.1. Fault Implementation

The faults were introduced into three of the test gears. The overall effect of a crack is

a reduction of stiffness and mass of a gear tooth. The crack was simulated by cutting

into the root of a tooth with a thin disc cutter. The disc cutter had a diameter of

55mm and a thickness ofO.3mm. The cut aimed at replicating a crack at the critical

tooth section which is growing along the critical stress line. Inpractice, due to access

restrictions caused by the adjacent teeth, the crack could be started at the critical

section, but its direction deviated from that of the critical stress line [107].

For simulating the growth of a crack and comparing fault severity, the cuts were

introduced into three different gears. The cuts started at one gear face and progressed

in three incremental steps across the face width of the gears. The final, being the

most severe cut. The cuts introduced, and their geometry, are shown below:

A

!

r=. D..JP._A·-\j 0j·C "',
i· ....·

tiF==i=-l~- i

depth

Gear1

Gear2

(

Gear3

Figure 3.5 - Schematic diagram of spur gear used in the experiments

page 27



Chapter 3, Experimentation

The schematic of the 32-tooth spur gear, onto which the faults were introduced, is

shown above. The disc cutter access restriction would only allow a minimum cut

angle of 42°, from the tooth centre line, compared to the critical stress line, which

lies at approximately 40°. The schematic on the right, shows an A-A plain view of

the faulty sections of the test gears. Gear 1has the smallest cut (Fault 1) and gear 3

has the largest cut (Fault 3), which extends across the whole gear face width. The

table and figures below summarises the cut geometry, and display the implemented

faults.

Table 3.2 - Gear cut geometry

Gear
Condition

Fl
F2

Figure 3.6 - Implemented fatigue cracks

3.4. Test procedure and Data labelling description.

The test rig described in the previous section was used to collect vibration signatures

for the gear under test. The signatures were grouped into 3 classes:

1. Reference signatures. These include the signatures for the brand new gear (RE 1)

and the two reference gears (RE2 and RE3).

2. Worn-outsignatures. These include the signatures for the worn-out gear (WO).

3. Faulty signatures. These include the signatures for the faulty gears (F1- the

smallest crack, F2 the medium crack, and F3 the largest crack)

In all, the vibration signature for 48 revolutions, for each of the above gears were

collected. These signatures were grouped into 12 blocks of 4 signatures. The

following names were given for these blocks:
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• Brand new gear: REIBI to REIBl2

• Reference gears: RE2Bl to RE2B12 and RE3Bl to RE3BI2

• Worn-out gear: WOIBI to WOIBl2

• Faulty gears: FIBI to FIB12 (for smallest fault), F2Bl to F2Bl2 (for medium

fault), and F3Bl to F3B12 (for largest fault)

These labels are used to identify to which gear specific vibration signatures relate.

Also in chapter 7 the stress wave sensor data is used. This is differentiated by the

identifier's' after the gear condition (e.g. REisBI to RElsBl2 for stress wave

sensor data for a brand new gear).

3.5. Simulation data

This data set was generated numerically to expand on the results obtained from the

analysis of the experimental data sets. Some of the files simulated here also served as

the control data input, as its contents are very well known. This allows for a

judgement related to the correctness and performance of each individual method.

The first data file, the control data, is defined below. This is a purely theoretical

signal. It serves as a basis for the assessment of the accuracy of each method studied.

In equation 3.1 't' is the time (in milliseconds, ranging from 0 to 1023, hence the

sampling rate is 1KHz) and Bis a constant (21t)that converts the sample number to

the corresponding angular position.

x(t) = 2Sin(40lt )+Sin(70lt lj.+Sin(?lt )]+ 2SinQ.OOBt+ Sin(3Bt ))+
Sin(130lt +SinQ'* )11+ 0.2Sin(3lt )]+ fault

Eq.3.1

where: t time inmilliseconds 00 t <1024
(} conversion factor () = 21t
fault can be one of the many simulated fault shapes shown in Table 3.3

This signal has 5 components, namely:

• A pure sin wave at 40 Hz

• An amplitude modulated sine wave at 70Hz (modulation freq. 3Hz)

• An frequency modulated sine wave at 100Hz (modulation freq. 3Hz)
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• A frequency and amplitude modulated sine wave at 130Hz (frequency and

amplitude modulation at 3Hz)

• Fault. This takes any of the shapes of the transient functions shown below.

In this research all these numerical faults were tested, but only the results for the

Gaussian window (fault no. 3) were included.

Table 3.3 - Numerical Faults

Fault Equation Time domain
N° Description representation

( U U fl(/) = G '1
1 Square window

for O.I+T.+- > I> O.I+T.--
2 2 .:Jfor all other 1 f,(/) = 0

Sine + Square { a a f 1(I) = G sin(2'!)'i) '1
2

for O.I+To+->I>O.I+To-- mu

window
2 2 .Ifor all other 1 f1(/) = 0

3 Gaussian fl(t) = Ge<-<a1.(t-o.l-To)1)/I0241) ;1 ----------window

4
Sine + Gaussian r, (t) = Ge<-<cr1'(I-O.I-To)1)/I0241) Sin (21l.ft) 11 .'t~"f{t
window

.J.h....,._...:_,lr,'J

Exponential ror t < 0.1 + T. - U f,(t) = 0 ~lr---5 decay for all other t f,(/) = Ge<-<,-··I-r '''l/o.>a>

Sine+ expo ror t < 0.1 + T. - U f,(t) = 0 ;l _.,
6 Decay for all other I f,(t) = Ge(-(l-o.l-r .a>/o.,alSin(2!ift) ,--'f'"

The width, amplitude (and frequency, for fault 2,4 and 6) of these faults were

controlled by the variables: G (gain), 0' (width) andJ(frequency).

From the above functions simulated time-series were generated. Those contained 210

samples (as this was the length of the experimentally recorded time-series). Those

signals were grouped into two classes. The first represented a vibration signature

from a good condition gear (i.e. with no transients), and the second represented a

faulty condition gear (Le with the Gaussian pulse transient simulating a possible

fault).
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3.6. Vibration signature samples

The figures below show samples of typical vibration signatures for a brand new, a

good condition and a faulty (F3 -largest fatigue crack) gear. As it can be seen from

these time domain plots it is difficult, if not impossible, to differentiate between a

good and a faulty condition gear
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2

80
"-2
-4

0 0.1 0.2 time (s) 0.3 0.4

RE2_2C1
4

2

80
"-2
-4'

0 0.1 0.2 time (s) 0.3 0.4

F3_2C1
4

2

80
"-2
-4

0 0.1 0.2 time (8) 0.3 0.4

Figure 3.7 _ Typical vibration signatures
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Chapter 4

Condition monitoring based on

statistical methods
In this chapter two main approaches to statistical condition monitoring are discussed.

The first is based on a pure moment analysis of vibration signatures. The second

approach is based on statistical comparisons of vibration signatures. Although the

methods discussed can only lead to simple estimates of the condition of the device

under observation, they are also very fast and have proved to be very effective,

especially for giving insight about the signal to be analysed.

The results obtained when processing the experimental data files described in the

previous chapter will be given at the end of each section. Note that the tests were

performed for blocks of four cycles (signatures) of the rotating gear.

4.1 Moment Analysis
In this section a moment analysis of the collected data is performed. This analysis is

crucial to establish the data's integrity and validity. It is assumed that moments of the

vibration signature from the gearbox should not change unless the mechanical

condition of the gearbox changes.

Moment analysis is centred around the measures of central tendency of a distribution.

Namely: mean, variance, standard deviation, absolute deviation, skew and kurtosis.
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A mathematical definition and a full description for each of these parameters follow.

4.1.1. Mean

This is a well know quantity, and for a discrete series it is defined as (N is the

nwnber of samples in the series):

1 N
x=-Lx;

N ;=1
Eq.4.1

The mean value of a distribution estimates the value, around which, central

clustering occurs. For the collected data this value to be very close to zero, after all

the mechanical equipment being analysed is fixed at a given position, and an average

acceleration would indicate overall movement of the equipment.

4.1.2. Variance

This is defined as:

Var(xl".xN) =-l-f(x; -xi
N-I ;=1

Eq.4.2

The variance value of a distribution estimates the 'width' of the distribution.

Indicating the average variability of the values around the mean value. It gives a

good indication of the spread of the data around its mean value.

4.1.3. Standard Deviation

This is defined as:

O-(XI ••• xlI) = JVar(x! ... xN) Eq.4.3

The standard deviation is another measure of the variability of the data series around

the central value. It estimates the mean squared deviation of x from its mean value.

This quantity also gives an indication of the spread of the data around its central

clustering value (mean).

4.1.4. Skew

This is defined as:

Eq.4.4
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The skew number (also called third moment) characterises the degree of asymmetry

of a distribution around its mean value. It is a non-dimensional quantity. A positive

value of skew signifies a distribution with an asymmetric tail extending out towards

more positive values of x. A negative skew signifies an asymmetric tail extending

out towards negative values of x.

This estimator must be used with caution, as most sets of N measured values are

likely to give a non-zero skew number. As a rule of thumb meaningfully relevant

skewness occurs when the skew value exceeds the threshold V(15IN).

4.1.5. Kurtosis

This is defined as:

Kurf(xl".XN) = {_i_ f[x; -XJ4}_3
N 1=1 a

Eq.4.5

The Kurtosis number (also called fourth moment) characterises the relative

peakedness or flatness of a distribution when compared to the normal distribution. A

positive Kurtosis number, signifies a distribution more peaked than the normal

distribution (leptokurtic). A negative Kurtosis, signifies a flatter distribution than the

normal distribution (platykurtic).

4.1.6. Crest Factor

This quantity also aims to establish a measure of the overall shape of the signal. Two

versions for this measure can be seen in existing literature. These are defined below:

or CF _ max(x;)-min(x;)
peaJc-lo- peale - X

rms
Eq. 4.6, Eq. 4.7

where:

Eq.4.8
X =mu N

For very long vibration signatures both versions are valid, and this measure aims at

establishing how high is the peak of the signal compared to the signal's rms value.
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4.1.7. Form Factor

This is defined as:

Eq.4.9

The form factor is another measure which aims to describe the waveform of the

signal. It compares the signal's rms value to its mean absolute values.

4.1.8. Results of moment analysis of data files

In this section the results for the moment analysis of the vibration signatures is

presented, both in graphical and tabular form. These results refer to the experimental

data collected at the Condition Monitoring Laboratory at Hertfordshire University.

The data collection procedure and file description has been included in chapter 3.

From Figure 4. I to Figure 4.8, if is seen that moment analysis alone is not robust

enough to accurately estimate the condition of the gear under observation. Also it is

very clear that the only statistical measure to provide some indication about the

presence of a fault is:

• Vibration signature variance. This tends to decrease if the fault (fatigue crack)

is present. However it must be noted that a simple visual inspection of the

variance value is not statistically valid. IDfact, in order to assess if two variances

significantly differ one must recur to the F-test, which is discussed in section

4.2.1.

• Vibration signature standard deviation. Again this measure decreases with the

presence of a fault.

• Vibration signature RMS value. Again this measure decreases with the presence

of faults.

• Vibration Kurtosis value. This measure clearly indicates the presence of a fault

in its very earJy stages. This is clearly shown in Figure 4.4, the kurtosis value for

Fl is very close to the kurtosis values of the reference signal, while the kurtosis

value for F2 is distinctively different. Note that, as the fault advances (F3) the

Kurtosis values decreases again, failing to indicate the presence of a fault.
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The changes on these statistical measures can be mainly attributed to a reduction in

the tooth stiffness due to the presence of the fatigue crack. However it must be noted

that these changes although visible were very small. The remaining statistical

measures did not show any visible trends.

The next pages contain the results first in graphical and later in tabular format for the

collected vibration signatures. The charts on the left show the results for 12 blocks of

4 cycles (i.e. 48 gear revolutions). The figures on the right show the average of all

these blocks.
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Now, tables with the numerical results displayed inFigure 4.1 to Figure 4.8, are

included below:

Table 4.1- Statistical measures for data file REI.

REI Data Sets
Statistical 1 2 3 4 5 6 7 8 9 10 II 12
measures
Mean -0.083 -0.031 -0.365 -0.034 0.001 -0.143 -0.055 -0.030 -0.341 -0.064 0.025 -0.142

Std. Dev. 0.969 0.976 1.002 0.959 0.951 0.971 0.965 0.978 0.987 0.950 0.933 0.962

Variance 0.939 0.953 1.005 0.920 0.904 0.944 0.932 0.957 0.974 0.903 0.871 0.925

Kurtosis 0.489 0.534 0.724 0.761 0.853 0.533 0.572 0.648 0.680 0.786 0.628 0.546

Skewness -0.008 -0.002 -0.039 -0.037 0.017 -0.033 -0.052 0.010 -0.088 -0.043 -0.053 0.025

RMS 0.972 0.977 1.066 0.960 0.950 0.982 0.967 0.979 1.044 0.952 0.934 0.972

CF. 7.845 7.348 9.148 9.709 10.346 8.375 8.463 8.790 8.477 9.712 8.525 8.682

CF2 3.957 4.069 5.155 5.282 5.219 4.377 4.343 4.869 5.015 5.077 4.383 4.723

FF 1.282 1.284 1.274 1.284 1.296 1.279 1.280 1.285 1.280 1.286 1.278 1.279

Table 4.2 - Statistical measures for data file RE2.

RE2 Data Sets
Statistical 1 2 3 4 5 6 7 8 9 10 11 12
measures
Mean -0.154 -0.200 -0.205 -0.149 -0.197 -0.028 -0.153 -0.202 -0.200 -0.150 -0.196 -0.028

Std. Dev. 0.800 0.832 0.820 0.835 0.801 0.822 0.806 0.822 0.817 0.834 0.802 0.838

Variance 0.641 0.693 0.673 0.698 0.641 0.676 0.650 0.676 0.668 0.695 0.642 0.702

Kurtosis 0.243 0.448 0.540 0.637 0.521 0.408 0.500 0.267 0.772 0.281 0.494 0.570

Skewness 0.036 0.041 0.059 -0.023 0.001 0.Q16 0.054 -0.003 0.149 0.016 0.071 0.159

RMS 0.815 0.856 0.845 0.848 0.824 0.822 0.820 0.847 0.841 0.847 0.825 0.838

CF. 8.077 9.150 8.501 8.540 8.529 8.194 8.476 8.155 9.311 7.862 9.221 8.158

CF2
4.350 4.746 4.354 4.477 4.312 4.216 4.452 4.302 5.689 4.311 4.735 4.650

FF 1.267 1.274 1.280 1.286 1.276 1.273 1.279 1.267 1.271 1.271 1.267 1.280

Table 4.3 - Statistical measures for data file RE3

RE3 Data Sets
Statistical 1 2 3 4 5 6 7 8 9 10 11 12
measures

Mean -0.214 -0.248 -0.234 -0.248 -0.249 -0.227 -0.325 -0.248 -0.231 -0.247 -0.242 -0.230

Std. Dev. 0.823 0.813 0.861 0.876 0.878 0.879 0.836 0.816 0.862 0.862 0.884 0.871

Variance 0.677 0.661 0.741 0.767 0.771 0.773 0.698 0.666 0.742 0.743 0.781 0.759

Kurtosis 0.399 0.606 0.613 0.895 0.597 0.680 0.637 0.438 0.532 0.412 0.772 0.434

Skewness 0.039 0.032 0.064 0.135 0.134 0.103 0.076 0.074 0.077 0.055 0.105 0.091

RMS 0.850 0.850 0.892 0.910 0.912 0.908 0.896 0.852 0.892 0.896 0.916 0.901

CF. 8.295 9.636 8.113 9.390 7.641 9.273 8.965 8.878 8.912 7.768 8.784 9.104

CF2 4.630 4.916 4.281 5.033 4.013 5.024 5.087 4.800 5.124 4.031 4.712 4.574

FF 1.270 1.273 1.273 1.281 1.271 1.274 1.271 1.264 1.273 1.265 1.278 1.266
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Table 4.4 - Statistical measures for data file WO

WO Data Sets
Statistical I 2 3 4 5 6 7 8 9 10 II 12
measures

Mean -0.053 -0.058 -0.025 0.051 -0.108 -0.023 -0.086 -0.046 -0.055 0.036 -0.164 -0.077

Std Dev. 0.893 0.921 0.904 0.898 0.879 0.878 0.873 0.936 0.904 0.899 0.880 0.874

Variance 0.797 0.848 0.818 0.806 0.772 0.771 0.761 0.876 0.818 0.809 0.774 0.765

Kurtosis 1.103 0.686 0.855 0.665 0.540 0.650 0.667 0.654 0.848 0.654 0.801 0.603

Skewness -0.006 ().015 0.078 0.025 0.079 0.012 -0.026 0.060 0.039 -0.062 -0.059 0.080

RMS 0.894 0.923 0.905 0.899 0.885 0.879 0.877 0.937 0.906 0.900 0.895 0.878

CFJ 8.848 8.985 8.928 8.948 8.140 8.448 8.254 8.433 9.562 8.213 8.184 7.444

CF2 4.806 4.858 4.588 4.811 4.379 4.302 4.734 4.264 4.797 4.383 4.637 3.805

FF 1.306 1.290 1.301 1.290 1.287 1.292 1.290 1.291 1.290 1.294 1.291 1.287

Table 4.5 - Statistical measures for data file Fl

Ft Data Sets
Statistical I 2 3 4 5 6 7 S 9 10 11 12
measures
Mean 0.016 0.041 0.014 0.035 0.212 -0.043 0.015 0.043 0.050 0.053 0.184 -0.050

Std. Dev. 0.714 0.732 0.751 0.767 0.752 0.751 0.717 0.732 0.760 0.767 0.757 0.753

Variance 0.510 0.537 0.564 0.588 0.566 0.565 0.514 0.535 0.578 0.588 0.573 0.567

Kurtosis 0.430 0.575 0.310 0.362 0.684 0.286 0.501 0.415 0.362 0.478 0.419 0.282

Skewness -0.036 -0.043 -0.122 -0.080 -0.076 -0.037 0.021 -0.062 -0.025 -0.090 -0.058 -0.089

RMS 0.714 0.734 0.751 0.767 0.781 0.753 0.717 0.733 0.762 0.768 0.779 0.755

CFJ
7.517 8.427 7.909 8.095 8.423 8.097 8.036 7.436 7.962 8.057 8.024 7.778

CF2 3.854 4.327 4.176 4.353 4.624 4.100 4.699 3.904 4.154 4.117 4.213 4.090

FF 1.2754 1.2786 1.2685 1.2741 1.2746 1.2620 1.2815 1.2790 1.2675 1.2727 1.2642 1.2704

Table 4.6 - Statistical measures for data file F2

F2 Data Sets
Statistical 1 2 3 4 5 6 7 8 9 10 11 12
measures

Mean -0.020 0.009 -0.104 -0.035 -0.020 0.041 -0.027 -0.010 -0.108 -0.024 -0.015 0.046

Std. Dev. 0.666 0.680 0.710 0.686 0.694 0.701 0.678 0.673 0.712 0.689 0.703 0.701

Variance 0.444 0.463 0.504 0.470 0.482 0.491 0.460 0.453 0.507 0.474 0.494 0.492

Kurtosis 1.141 1.433 1.155 1.071 1.121 1.370 1.067 1.190 1.179 1.091 1.409 1.545

Skewness 0.009 -0.001 -0.068 -0.005 0.090 -0.037 -0.126 0.055 0.032 0.032 -0.015 -0.069

RMS 0.666 0.680 0.717 0.686 0.694 0.702 0.679 0.673 0.720 0.689 0.702 0.703

CFJ 9.m 9.388 8.934 9.166 9.188 9.684 9.165 9.927 9.058 8.550 9.301 9.311

CF2 5.512 4.924 4.835 5.181 4.700 4.995 5.309 5.210 4.543 4.310 4.880 4.669

FF 1.300 1.323 1.312 1.307 1.311 1.313 1.303 1.308 1.307 1.314 1.320 1.317
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Table 4.7 - Statistical measures for data file F3

F3 Data Sets
Statistical 1 2 3 4 5 6 7 8 9 10 II 12
measures
Mean -0.095 0.021 0.023 -0.004 -0.023 -0.053 -0.057 0.006 0.014 -0.007 -0.011 ·0.053

Std. Dev. 0.682 0.690 0.708 0.697 0.722 0.719 0.679 0.689 0.704 0.700 0.715 0.723

Variance 0.466 0.475 0.501 0.486 0.522 0.517 0.461 0.475 0.496 0.490 0.511 0.522

Kurtosis 0.857 0.895 0.857 0.930 0.638 0.687 0.798 0.805 0.501 0.677 0.597 0.756

Skewness 0.021 0.077 0.003 0.075 -0.049 0.044 -0.018 0.027 0.085 0.157 0.006 0.064

RMS 0.689 0.690 0.708 0.697 0.722 0.721 0.681 0.689 0.704 0.700 0.715 0.724

CF1 9.099 9.344 8.741 9.597 8.542 9.090 9.560 8.845 8.374 8.636 8.782 9.059

CF2 4.975 5.040 4.426 4.890 4.420 4.836 4.959 4.649 4.575 4.897 4.644 5.123

FF 1.285 1.295 1.283 1.289 1.282 1.275 1.291 1.282 1.271 1.278 1.281 1.282

4.2. Statistical Comparison

In the previous section we have demonstrated how the visual inspection of simple

statistical measures can be used to evaluate the properties of a time series. Now we

will extend those concepts, and use more sophisticated statistical tools aiming to

compare the difference between two time series. Note that although tools like

regression analysis, and its counterparts, are very useful for modelling time series,

they are not particularly well suited to perform a direct comparison between two

series.

This section concentrates on methods, which are able to perform this direct

comparison. Three tests are presented here:

• F-Test to assess if two distributions have the same variance,

• Kolmogorov-Smirnov KS test to assess if two distributions are equal,

• autocorrelation.

Finally, the last section of this chapter presents a summary of the results obtained by

processing the experimental data with the methods described here.
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4.2.1. F-test : Assessing if two distributions have the same

vanance

In order to observe whether two sets of data have the same variance, one needs to

recur to the F-test. The F-Test returns a statistic value 1', which is then fed into the

F-distribution, so a similarity probability is returned. Again the closer this probability

is to 1, the more confidence one has that the variances are equal, This statistic

measure fis defined as:

for Eq.4.10

f = var(xs)
var(xA)

A full definition of the F-distribution can be found in [108] and hence will not be

for Eq.4.11

repeated here.

4.2.2. Kolmogorov-Sminov (KS) test: Assessing if two

distributions are equal

The F-test is extremely effective in analysing the similarity between the variance

from two vibration signatures. Now, the need for a more general comparison is

obvious. There are two standard statistical comparison methods.

The first is the Chi-Square test. This test is particularly useful when analysing binned

data (Le. data that have been grouped into specified ranges). However, since the

collected vibration signature is not binned, this standard distribution comparison

method is not applicable.

The second method is known as the Kolmogorov-Smimov (KS) test. This testing

procedure is classified as a frequency test of the degree of agreement between

distributions. This method is widely used to test generated random numbers against

specific distributions. In this research it is suggested that the KS test can also be used

to compare vibration signatures, and estimate the condition of a mechanical device.
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The KS test w rks on the null hypotheses that the CDF (cumulative density function)

of a target distribution, denoted by Fix), is statistically similar to the CDF of the

reference distribution, Rtx). Hence, it is possible to compare two vibration signatures,

and assess if both have the same CDF, Note that the usage of this test for condition

monitoring assumes that the fault is strong enough to cause a variation in the CDF of

the original vibration signature,

From the two CDFs, F(x) and R(x), a statistic distance D can be calculated, This

distance is defined as the maximum absolute difference between F(x) and Rtx).

Mathematically this is represented by:

D= maxiF(x)-R(x)i
-co<x<c:o

Eq.4.12

The diagram below illustrates how this distance D is found, It uses the experimental

data files RE2 (vibration signature for a reference gear) and F3 (vibration signature

for the gear with the largest fatigue crack). Firstly the CDF for the vibration

signatures are plotted (this is shown by lines RE2 and F3). From these plots, a

distance d can be calculated by obtaining the module of the subtraction between the

two cumulative probability functions, this is shown by line d. The maximum value of

d is then used as D, In the example below the maximum value for d is D=O.048

occurring at x=-O.S4.
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As it can be seen when comparing a signature from a reference gear with that from a

faulty gear, a reasonably large value for D is obtained. This value can be converted

into a similarity probability using the Kolmogorov-Smirnov probability distribution

function Qks. This is defined as:

prob(D) =Q" [[-iN.+0.12 +F.-]v]
,

Eq.4.13

Eq.4.14

Where Ne is the effective number of data points and is calculated according to Eq.

4.14. NJ is the number of points in the first data set andN2 is the number of points

on the second data set. The Kolmogorov-Smirnoff distribution function is defined as:

GO

QKS(A) = iL( -I)l-1 e-2ll1l

l=1

Eq.4.15

This is a monotonic function with limiting values of:

QKS(A)=l

QKS(l) = 0

As A-+-O
As A. -+- 00

Eq.4.16

Note that the choice of the statistic distance (maximum, rms, mean, etc) between the

CDFs greatly affects the sensitivity of this method.

4.2.3. Autocorrelation

The autocorrelation function of a time series is used as a guide to provide some

insight into the probability model that generated the time series. The autocorrelation

coefficients are a measure of the correlation between observations at different

distances apart. This series of coefficients can be displayed as a correlogram.

In the correlogram the distribution's autocorrelation coefficients rk are plotted against

the lag k. Visual inspection of the correlogram allows a quick insight into the type of

time series (i.e random, short-term correlation, alternating, non-stationary and/or

seasonal) being analysed.
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The autocorrelation coefficients for a time series can be approximated by Eq. 4.17. A

full derivation can be found in [9J. In this equation the autocorrelation coefficient

(with significant values above the (±2/.JN) threshold), rh at lag k, is given by:

Eq.4.17

1=1

4.2.4. Results of Statistical Comparison

In order to evaluate the performance of the methods described above, the

experimentally collected data files were processed. The results, together with a

discussion of each method's performance are presented in the following sub-sections.

For the F-test and the KS- test the results will be in form of a 'similarity probability'.

This is a statistical measure, which attempts to evaluate how similar two distributions

are (100% for equal distributions, and 0% for different distributions).

4.2.4.1. Result for F-test: egual variance assessment

This test aimed at establishing whether the difference in the variance value of two

distinct data sets could be suitably used as a simple condition monitoring technique.

The results are tabulated below. Note that the basis of comparison was the vibration

signature for a gear in good condition (data file RE2), hence high similarity values

indicate that the two signatures are both from a good gear, while low values indicate

that one of the signals is not from a good condition gear.

The results in each cell related to the comparison of the signatures included in the

cell's respective row and column label. An overall averaged result of the individual

comparisons is given in the eighth column.
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Table 4.8 - ResultsfortheF test.
Comparison AVERAGE J

VERSUS RE2CI RE2C2 RE2C3 RE2C4 RE2C5 RE2C6
REICI 0 0 0 0 0 0
RElC2 0 0 0 0 0 0
RElC3 0 0 0 0 0 0
RElC4 0 0 0 0 0 0
RElC5 0 0 0 0 0 0 RElxRE2 I
REIC6 0 0 0 0 0 0 0.0 J
RE2C7 65 4 26 2 63 21
RE2C8 9 43 88 31 8 98
RE2C9 19 24 81 16 18 71
RE2CIO I 92 30 90 I 36
RE2Cll 93 2 14 1 91 11 RE2xRE2 J
RE2C12 0 89 18 87 0 23 37.9 I
RE3CI 8 45 86 32 8 96
RE3C2 30 14 59 9 29 50
RE3C3 0 0 0 0 0 0
RE3C4 0 0 0 0 0 0
RE3C5 0 0 0 0 0 0 RE2xRE3 J
RE3C6 0 0 0 0 0 0 13.0 I
WOICI 0 0 0 0 0 0
WOIC2 0 0 0 0 0 0
WOIC3 0 0 0 0 0 0
WOIC4 0 0 0 0 0 0
WOIC5 0 0 0 0 0 0 RE2xWO I
WOIC6 0 0 0 0 0 0 0.0 J
FICI 0 0 0 0 0 0
FIC2 0 0 0 0 0 0
FIC3 0 0 0 0 0 0
FIC4 1 0 0 0 1 0
FlCS 0 0 0 0 0 0 RE2xFl IFIC6 0 0 0 0 0 0 0.0 J
F2CI 0 0 0 0 0 0
F2C2 0 0 0 0 0 0
F2C3 0 0 0 0 0 0
F2C4 0 0 0 0 0 0
F2CS 0 0 0 0 0 0 RE2xF2 IF2C6 0 0 0 0 0 0 0.0 I
F3Cl 0 0 0 0 0 0
F3C2 0 0 0 0 0 0
F3C3 0 0 0 0 0 0
F3C4 0 0 0 0 0 0
F3CS 0 0 0 0 0 0 RE2xF3 JF3C6 0 0 0 0 0 0 0.0 I
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As it can be seen there the difference in the variance value of the different data files

is statistically significant. This shows that the variance of a vibration signature can be

used as a tool to indicate the presence offaults. Now, it must be noted that this

method does not classify the reference files accordingly, as RE2 x RE3 gives a very

low similarity value (13%). This suggests that this measure is not suitable for

applications where transfer of knowledge amongst gear (devices) is required.

4.2.4.2. Results for the KS Test: equal distribution assessment

In this test, all data files were once again compared against the data file RE2. The

table below shows the files compared and the results obtained. These results are

displayed in the form of a similarity probability. This is the probability that two

vibration signatures, come from the same statistical distribution function (i.e. the

signatures are similar). So if the similarity probability is close to 100% then it

follows that the two signatures compared are similar, on the other hand if the

similarity probability is close to 0% then it follows that the two signatures are

different.

Although this method is very simple, it is also very effective. The results clearly

show that when two reference signals are compared the similarity probability is

greater than when comparing a good signal with a faulty signal. Table 4.9 shows

these results.
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Table 4.9 - Results for the KS test.

COMPARISON AVERAGE I

VERSUS RE2Ct RE2C2 RE2C3 RE2C4 RE2C5 RE2C6
REtCt 0 0 0 0 0 0
REtC2 0 0 0 0 0 0
REtC3 0 0 0 0 0 0
REtC4 0 1 0 1 0 0
RE1C5 0 4 1 2 0 2 RElxRE2 I
RE1C6 0 0 0 0 0 0 0.3 I
RE2C7 92 29 98 55 94 64
RE2C8 75 77 70 87 23 97
RE2C9 84 68 68 72 29 85
RE2C10 42 81 29 40 14 66
RE2CII 95 68 87 70 38 81 RE2xRE2 J
RE2CI2 77 31 45 59 17 61 63.0 I
RE3C1 64 77 53 85 30 66
RE3C2 97 52 75 64 66 79
RE3C3 30 48 14 22 2 62
RE3C4 28 81 20 37 5 28
RE3C5 14 26 10 15 4 6 RE2xRE3 J
RE3C6 t8 55 7 24 5 11 38.3 J
W01CI 48 20 31 53 28 55
WOIC2 2 15 3 6 1 6
WOIC3 14 43 20 31 10 40
WOIC4 12 18 5 15 2 18
WOIC5 33 12 22 26 24 55 RE2xWO I
WOIC6 28 87 45 32 23 43 25.7 I
FICI 1 0 1 0 1 0
FIC2 3 0 2 0 2 0
FIC3 19 1 14 10 18 4
F1C4 28 4 28 20 34 18
FtC5 17 2 7 2 17 5 RE2xFI IFIC6 31 2 18 14 37 7 10.2 J
F2CI 0 0 0 0 0 0
F2C2 0 0 0 0 0 0
F2C3 0 0 0 0 0 0
F2C4 0 0 0 0 0 0
F2CS 0 0 0 0 0 0 RE2xF2 IF2C6 0 0 0 0 0 0 0.0 J
F3Cl 0 0 0 0 0 0
F3C2 0 0 0 0 0 0
F3C3 0 0 0 0 0 0
F3C4 0 0 0 0 0 0
F3C5 1 0 1 0 0 0 RE2xF3 I
F3C6 1 0 1 0 1 0 0.1 J
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Note that as expected the similarity level drops as the fatigue crack advances. Also it

was observed that the similarity level between a brand new gear (REI) and a gear at

operating condition (RE2 and RE3) was very low. This can be attributed to the fact

that the brand new gear still has to adjust itself to the mesh of the system. In fact a

similar behaviour is seen in most failure rate charts which follow a "bath-tub" shape.

As it can be seen this method identifies the presence of a fault very effectively, even

for faults in its early stages (FI). A possible extension of this method would be in

applying it to identify the age of the fault (fault development).

4.2.4.3. Results for autocorrelation

The correlograms for the experimentally collected data files give a very brief insight

into the probability model that generated the vibration signature (time series). As it

can be seen in the correlograms below, the time series seems to have cyclic period of

0.2s (5Hz), this is the rotational frequency of the gear. Note, also, that the

correlograms for the data file REI (brand new gear) does not show this cyclic

behaviour at all, suggesting that consecutive vibration cycles for this gear possesses

different vibration properties. This phenomenon was also observed by the KS test,

and is related to the fact that brand new gears have to adjust itself to the mesh.

On all the graphs below the lag time (in seconds) is shown on the x-axis and the

autocorrelation coefficient is on the y-axis. Note that a coefficient of 1 means a

perfect match. This value was only achieved at lag 0 (this can be seen in the last plot

showing a detail of the correlogram for the worn out gear). Noise is the main reason

why the autocorrelation coefficients at lag 0.2 and 0.4 are less than 1. Other reasons

which also contribute (in a smaller scale) to this are: fluctuations in rotational speed

of gear, fluctuations in the sampling rate of the AID card and fluctuations of the

braking torque applied to the gear.

Another point that must be noted is that the cyclic behaviour seems to increase for

fatigue cracks at the very early stages. This is also expected as the periodical

vibration induced by the fault can only contribute to the cyclic behaviour of the

system. From the plots it can also be observed that for larger fatigue cracks the
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periodical behaviour seems to be reduced, suggesting that larger cracks do not tend

to induce repetitive deterministic vibrations,

The correlograms for the experimentally collected data for the shaved fault is shown

below.
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Figure 4,10 - Sample correlogram for data files

In the detailed plot for the worn-out gear (Figure 4.10), the threshold for significant

values is also shown as the two lines parallel to the x-axis. It can be seen that the

coefficients at lags around ±0.2 and ±O.4s are statistically significant.

This method is not effective for early fault detection. Still as it can be seen in the

correlograms that when the fault becomes more intense the cyclic behaviour is also

intensified. This behaviour is expected and it can be related to the fact that the fault

acts as another cyclic input to the system. Hence it is adding to the cyclic properties

of the vibration signature (time series).

Finally, a close look the detailed correlogram plot (Figure 4.10) also leads to the

observation of the predominant frequency in the time series, which is usually the
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meshing frequency or one of its harmonics. In the detailed plot for the worn-out gear

the dominant frequency seems to be approximately 500Hz (period of2ms). This is

close to the second meshing harmonic (480Hz).

4.3. Summary of results

In this chapter it was observed that the overall effect of a gear tooth fatigue crack on

the vibration signature of a rotating gear is a dampening on the vibration level. This

was observed by the clear trend shown on the rms level of the vibration signature

(see Figure 4.6) for gears in good condition and gears with fatigue cracks at various

advancement stages.

Also it was observed that the standard deviation and the variance of the vibration

signature is similarly affected by the presence of a fatigue crack. Both these

quantities tend to decrease as the crack advances. This is shown in Figure 4.2 and

Figure 4.3.

The usage of popular statistical measures such as skewness, crest factor and form

factor are not sensitive enough to detect the presence of fatigue cracks. The Kurtosis

value of the distribution is effective only for very early fault detection, this technique

only detected fault (F2), and did not detect fault (F3). This suggests that these

techniques must be used in conjunction with the other techniques here described for

robust condition monitoring based on statistical analysis alone.

This chapter also introduces a novel technique, the KS test, to the field of condition

monitoring based on time domain statistical analysis. The results obtained here

showed that this test is able to identify the presence of a fatigue crack on a gear tooth

in its very early stages. This test is very sensitive to the noise present in the signal (as

the comparison of similar signatures, lead to a similarity probability of 65% in

contrast to the expected 100%), but this does not pose a major problem. The

sensitivity of the method can be easily adjusted by modifying the calculation of the

distance D. In this research D was assumed to be the maximum absolute difference

between the two cumulative distribution functions being compared. However tests
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should be carried out using other definitions (such as mean absolute difference, or

root mean square absolute difference, etc) for the calculation of D.

Finally in the last section, the usage of correlograrns was analysed. Itwas shown that

this technique identified the presence of a fatigue cracks in its very early stages. This

was shown by the greater correlation coefficients at lag periods of 2ms (1 revolution

of gear under analysis). However this technique is not suitable for signatures with a

low noise to signal ratio.
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Frequency and time-frequency

approach to condition monitoring.

In this chapter a full theoretical description of the frequency and time-frequency

techniques included in this research (namely, spectral analysis, cepstral analysis,

spectrogram and Wigner - and its variants - distributions) is given. Results obtained

when processing the numerical and experimental data with these techniques are also

included.

Condition monitoring systems based on frequency and time frequency distributions

rely heavily on Fourier Integrals. This is a powerful method for extracting spectral

information from time domain signals. It leads the way to many different industrial

condition monitoring techniques. A full command of the Fourier transform properties

must be attained for a full understanding of these frequency and time-frequency

distributions.

The Fourier theorem states that any single periodic function, x(t) with period P, can

be represented by a series of orthogonal functions (Sines and Cosines) with different

harmonic frequencies. The Fourier Transform is defined as:
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I co .
X(f) = - fx(t)e-'ftt dt .

2tr -00

Eq.S.1

Hence from the above equation it is possible to convert a time series into the

frequency domain, allowing for the observation of the frequency components in a

time series. Note that if the Fourier series is to represent a function x(t) , then x(t)

must meet the following conditions (Dirichlet Conditions, [23]), so that its Fourier

series converge to X(j), the frequency components of x(t):

• The function x(t) must be defined and single-valued

• The function x(t) must be continuous or have a finite number of finite

discontinuities within a periodic interval

• The function x(t) and x '(t) must be piecewise continuous in the periodic interval

For vibration signatures, and most practical cases, these conditions are met, leading

to the accurate (and fairly quick) description of a time series in frequency domain.

Note that the frequency resolution achieved by this method is inversely proportional

to the period of the time-series, and the frequency ranges from 0 to the Nyquist

frequency FNyq=Fsamplingl2

5.1. Spectral Analysis

The spectral analysis was the first tool developed for the frequency analysis of a

given signal. It relies only on the Fourier Transform. Today there are many

algorithms available to perform the Discrete Fourier Transform (OFT) of a signal. In

this research the FFT algorithm was chosen. The following equation shows the

digitised version of the Fourier integral.

N 1 .2nin1 - -j-
X(k) =- L x(n) e N

N n=O
Eq.5.2
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The vibration signatures analysed in this research all have 4096 (4 cycles per block)

samples and a sampling frequency of 5.12 kHz. Hence the frequency resolution is

1.25 Hz, and the frequency ranges from OHz to 2.56 kHz.

5.1.1. Results of spectral analysis of experimental data

In this section the FFT was used for the spectral analysis of the experimental data

(described in chapter 3). The plots in Figure 5.1 show the frequency components of

these signals. The graph title refers to the origin of the data (i.e. gear condition). The

plots on the left relate to the raw data with no pre-processing, the ones on the right

relate to the time domain average of the vibration signature. This average is made

from 12 blocks (4 cycles on each block) of data. The time average plots were

included for comparison purposes, and as it can be seen their overall shape is similar

to the shape of the spectrums of the raw vibration signatures,

As it can be seen from the plots in Figure 5.1, the mesh frequency and its first three

harmonics can be clearly identified for all the gear conditions, both in the spectrum

of the raw data and the time averaged data. The plots show no distinguishable

frequency components over 800 Hz, except low level noise. Note that as it would be

expected the noise level for the time averaged signal is much lower than that for the

raw vibration data.

The dominant peaks occurred at the second harmonic (320 Hz) and the third

harmonic (480Hz). Also the region around 600 Hz shows high signal intensity, these

peaks do not relate to a meshing harmonic and could be attributed to structural

resonance. This phenomenon appears in all spectra making its interpretation harder.

Finally, a high side band activity in the spectrums can be recognised, with the

reference (RE2 and RE3) and fault 1 (Fl) data showing the lowest activity. To detect

possible trends, comparisons of the signal levels and side band activity for the

fundamental and the first two harmonics were carried out.
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Figure 5.1 - Spectral analysis of experimental data
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A comparison of the relative magnitudes and side-band activity for the fundamental

and the 2nd and 3rd harmonic is included in the table underneath. This comparison

was based on the spectrums of the raw vibration signature.

Table 5.1 - Comparison of spectral plots for experimental data

Side-band Activity
Gear Freq. (Hz)

Condition 160 320 480 640
REI Low NORMAL HIGH HIGH

RE2 Low Low HIGH HIGH

RE3 NORMAL Low NORMAL HIGH

WO NORMAL NORMAL HIGH HIGH

FI Low Low NORMAL HIGH

F2 HIGH HIGH NORMAL HIGH

F3 Low HIGH NORMAL HIGH

Relative Magnitude
Freq. (Hz)

160 320 480 640
NORMAL NORMAL NORMAL Low
NORMAL HlGH NORMAL NORMAL

NORMAL .ffiolI NORMAL NORMAL

Low Low HIGH NORMAL

NORMAL NORMAL HIGH NORMAL

LOW NORMAL NORMAL Low

NORMAL Low NORMAL Low

From this comparison the following observations were made:

• The side band activity around the 2nd harmonic (320 Hz) increases for faulty

gears (including the worn-out and the brand new gear). Note also that in Fl the

side-band activity did not increase, this can be related to the fact that for this gear

the fault is in its very early stages. Hence the presence of a fatigue crack tends to

increase the side-band activity around the second harmonic.

• The magnitude of the second harmonic (320Hz) decreases with the presence of a

fatigue crack.

Finally, it can also be seen that for low frequencies the noise is negligible, while for

high frequencies the noise level cannot be considered negligible, as it is as high as

the meshing frequency component.

As it can be seen, although this method is very useful for vibration condition

monitoring, it is by no means robust enough to be used as a main condition

monitoring technique for the observation of fatigue cracks.

5.2. Cepstral analysis

Cepstral analysis is a non-linear signal processing technique, which has already been

successfully used in fields such as echo detection [29], speech analysis [31] and
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others. It has also been used for time series analysis and condition monitoring

systems.

Cepstral analysis also relies heavily on Fourier Integrals. There are two main

variations on signal cepstral analysis. These are the 'complex cepstrum' and the 'real

cepstrum'. The complex cepstrum e(t) of a signal x(t} is defined as the inverse

Fourier transform of the logarithm of the Fourier transform of an input signal x(t}.

Generally this requires the evaluation of the phase as a continuous function of

frequency. Alternatively, the real cepstrum can be computed by using the logarithm

of the magnitude instead of the complex logarithm of the Fourier transformed signal.

In this research only the real cepstrum is included. Furthermore, it is suggested that

the real cepstrum reconstruction is effective for identifying the presence and strength

of the transients present in the time series. This trait leads to an effective

identification of faults in vibration signatures.

5.2.1. Real cepstrum

A formal definition of the real cepstrum and its inverse is given by [30, chapter 10]:

c(n) = IDF~ 10~DFI\x(n))I), Eq.5.3

x(n)= IDFT(expjDFT(e(n)~) . Eq.5.4

/\

Where ern) is the real cepstrum of the input signal x(n); and x(n) is the inverse real

cepstrum, or cepstral reconstruction, of ern). DFT is the discrete Fourier transform

and IDFT is the inverse discrete Fourier transform.

The output of the cepstral analysis is a signal in the cepstral domain. This is

commonly shown as a plot, similar to a spectral plot, but with quefrency in the x-axis

instead of the Frequency. The unit of quefrency is [Hzr1. The graphs below illustrate

the performance of the cepstral analysis method.
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time series

0.256 0.512 0.768 time (5) 1.02
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0 0

-0.1 • -0.1
-0.2 -0.2

0 quetrency (Hz") 0.256 0.51 0 0.05 quet. (Hz") 0.1

Figure 5.2 - Cepstral analysis of Sin(SOt)+Sin(1 OOt)+Sin(lSOt)

The time data is shown on the top figure. It consists of three sine waves (frequencies

of 50 Hz, 100Hz, 150Hz). The sampling rate was set to 1000Hz and there are 1024

samples in the series. The lower right figure shows the whole cepstral plot with

quefrencies ranging from 0.002Hz-} (500Hz) and 0.512Hz'} (approx. 2Hz). Note that

because of the symmetry of the Fourier transform of a real signal, only quefrencies

from 0 to 0.512 Hz'} are shown. Finally, the third figure is a zoom of the second

figure. The third figure shows quite well two fundamental characteristics of the

cepstral analysis.

The first point to be noted is that the amplitude of quefrencies smaller that 0.002s are

zero. This is a result of the sampling theorem, which states that the sampling rate

must be at least twice the highest frequency in the signal. Remember that the

sampling rate was set to 1000Hz, hence it follows that the largest observable

frequency should be 500Hz (i.e. quefrency ofO.002s).

The second point to be noted is that the dominant peak has a quefrency ofO.02s. This

corresponds to a frequency of 50Hz, which is the fundamental frequency on the input

signal. It is also important to note that no dominant peaks are present at O.Ols

(100Hz) and at 0.007s (150Hz), as the cepstral analysis "pushes" these frequencies to

their fundamental value (50Hz).
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As it can be seen cepstrum analysis is an extremely powerful tool to observe the

presence of harmonics in a signal. It is also very useful for observing transient

components, as these tend to influence the initial values along the quefrency axis.

This suggests that the cepstrum transform of a time signal (with transient

components) will show values, with a large magnitude (positive or negative), in the

first samples along the time axis. While the cepstrum transform of a signal (without

transient components) will show values with small magnitudes on the first samples

along the quefrency axis. The concentration of information in the first samples of the

quefrency axis is a result of the phase shift during the DFT and IDFT operations.

This property of the cepstrum is illustrated in the figure below, showing how five

different transients are reconstructed. The notation for these charts is included

overleaf.

Ceptsrum and Cepstral reconstruction for different transients
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Figur 5.3 - Cepstrum and Cepstral reconstruction for different signals
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The notation in the above diagram is as follow:

• TF denotes the time domain function;

• CTF denotes the cepstrum of TF

• R(CTF) denotes the cepstral reconstruction of CTF

As it can be seen the linear piecewise transients (the Gaussian pulse on first row, and

the sine enveloped Gaussian pulse on second row) are reconstructed back to their

original shape however these were shifted from t=0.128s to t=O. In contrast the two

square pulses (wide pulse on third row, and very narrow pulse on the last row) are

not reconstructed back to their original shape, still these are shifted to t=Os and

increase the initial reading on the quefrency axis.

The charts below show how the shift property behaves when transients are embedded

into non-transient signals. This simulates a fault in a real vibration signature.

DATA FOR GEAR BEFORE DAMAGE - SAMPLE 1 DATA FOR GEAR BEFORE DAMAGE - SAMPLE 2
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Figure 5.4 - Cepstral analysis of numerically simulated data
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5.2.2. Results of cepstral analysis of experimental data

In this section cepstral analysis coupled with cepstral reconstruction was used, as this

provided the best indication for the 'quefrencies' in the experimental vibration

signatures. The chart below illustrates this choice.

mag. cepslrum F1_4C2 mag. cepSlTum reconstruction F1_4C1

j~~j~E&~
o Que6qHz") 100 150 200 2 o Que61(Hz") 100 150 200 2

Figure 5.5 - Comparing the cepstral and the cepstral reconstruction plot

As it can be seen the sharpness of the peaks on the plots for the cepstral

reconstruction is greater than on the plots for the simple cepstrum.

The plots below show the quefrency components for the experimental vibration

signatures. Again as with the Fourier analysis the plots on the two leftmost columns

relate to the raw data with no pre-processing, the ones on the two rightmost columns

relate to the time domain average of the vibration signature. This average is made

from 12 blocks (4 cycles on each block) of data. The time average plots were

included for comparison purposes, and as it can be seen their overall shape is similar

to the shape of the cepstral reconstruction of the raw vibration signatures.

The plots on the first and third columns include the complete quefrency range; the

ones in the second and fourth column contain a zoomed section of the previous plots.

This zoomed plots contain quefrencies ranging from OAmHz-1 (2500Hz) to 50 mHz-I

(20Hz).
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Figure 5.6 - Cepstral reconstruction plots for experimental data

From these plots it can be clearly seen that the vibration signatures all seem to

present peaks at low quefrencies (high frequencies) and a peak at a higher quefrency,
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200 mHz-I, (5Hz)_ The high quefrency peaks matches the rotational frequency of the

gear under analysis and the output shaft.

Again, as with the FFT, the plots for the raw data and the time averaged data also

present the same overall shape. The time averaged data shows smaller amplitudes. It

must also be noted that the noise level on the time-averaged data is smaller, this

explains the sharper peaks in those plots.

From the zoomed plots (both raw and time averaged data) it is possible to observe in

all gear conditions the presence of3 peaks. These are at: 1.95 mHz-I (512 Hz), 3.9

mHz-I (256 Hz) and 6.25 mHz-I (160 Hz). The third peak relates to the gear meshing

frequency. The previous two peaks do not relate to the meshing frequencies of the

gear under analysis, and hence are attributed mainly to the side-bands and

mechanical resonance already observed in the FFT plots.

Finally, it can be seen that cepstral analysis is very effective for identifying

fundamental frequency components in a signal. This was shown by the dominant

peak, which occurred at the gear meshing frequency and the gear rotational speed.

However for identifying faults it did not seem to be a very effective tool.

One advantage of this method is its phase shift property. This forms the basis of the

suggested comparison using this property.

Also it was observed that the cepstral reconstruction allows for a condition

monitoring analysis based on the very first sample of the cepstral reconstruction plot.

The chart below shows how this value changes, depending on the condition of the

gear under analysis. Note that six blocks (4 revolutions on each block, hence 24

revolutions) for each gear condition are included.
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Figure 5.7 - Magnitude of first sample of cepstral reconstruction plots for experimental data

As it can be seen the magnitude of the very first sample of the cepstral reconstruction

plot is very affected by the gear condition. Note that this phenomenon is also

observable, to a lesser extent, on the cepstrum plots.

It is believed that the reason behind this behaviour is related to the phase shift, which

is intrinsic to the real cepstral analysis of time series. So, as the phases of the

transients are removed, when performing the cepstrum reconstruction, these

transients are shifted to the beginning of the quefrency axis, affecting mainly the

initial reading.

These results could be an explanation to the very high accuracy obtained by the

artificial neural networks in [109], which were used as a pattern recognition tool for

the condition monitoring of a similar gear train, with cepstral analysis as a pre-

processing tool.

5.3. Spectrogram

The spectrogram was one of the first time-frequency distributions. It was first used in

the 1940's to analyse human speech [42]. Since then subsequent developments turned

this technique into a powerful tool for time-frequency analysis of stationary and non-

stationary signals.
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5.3.1. Fundamentals of the spectrogram

The spectrogram (also called Short Time Fourier Transform or STFT) is an

approximate method for the digital spectral analysis of non-stationary signals. It

views segments of the time data through windows, and then transforms these

segments to the frequency domain. The idea is that local spectral coefficients can be

calculated for each time t,where the window is positioned. By sliding the window

along the time series and performing the Fourier transform on each of the segments,

a description of how the spectral contents of the signal varies with respect to time can

be obtained.

The most commonly used window function is the Gaussian function, as this is the

only function that possesses similar shapes in the time and frequency domain.

Therefore, once the Fourier transform (FT) is performed no unwanted side lobes (or

ripples) are introduced in the spectrogram. Other functions, which have also been

used for the windowing process, are the Hamming, Hanning, rectangular and

triangular windows [48].

5.3.2. Theoretical background

The concept behind the spectrogram is simple. Inorder to analyse how the spectral

contents of the signal vary with time, a window is positioned on each particular time

and the FT of the windowed signal is performed. This process is repeated for each

instant of time of the signal. So ifx(r) is the time data series to be analysed and h(r)

is the window function used in the STFT. The windowed signal Xw is:

x,,(t, r) = x( r).h( r - t), Eq.5.5

where: t is the time instant where the window is centred and r represents time.

Now performing the Fourier transform on the windowed signal xw, the following

definition is obtained:

X(t,!) = _1 jx,,(t, r)e-jlllt dt = _1 jx(r).h(r _t)e-iOX dt .
2tr -. 2tr -.

Eq.5.6
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The spectrogram is defined as the power spectral density (PSD) ofX(t,j) [53]. This is

given by:

Eq.5.7

Note that if h(t)=1then this method is equivalent to the ordinary Fourier Transform
of the signal, giving, as an output, the signal spectrum for all window positions.

The choice of the window function will greatly affect the performance of the

spectrogram. This research only focuses on the Gaussian window, as it is the only
window that does not add unwanted sidelobes to the spectrogram. The Gaussian

function and its FT are defmed as:

Eq.5.8

H(f) = cJ1i e-(JrlaY fl ,

a

where c and a are both positive constants.

Eq.5.9

The constant' c ' controls the gain of the window, affecting the local sensitivity of the

window function. The constant acontrols the width of the window function, setting

the time/frequency resolution. A variable called window width was introduced to

facilitate the process of choosing the window. This variable is used to determine the

number of samples that will be enhanced by the window function.

The diagram below illustrates the meaning of the variable window width. It shows a

Gaussian window centred at sample 256 and with window width=10. As it can be

seen, the window enhances only 10 samples (from 251 to 261). The remaining

samples (0 to 250 and 262 to 1024) are suppressed as the magnitude of the window is

smaller than unity.

241 246 251 256 261 266 27

The window peak and width should be

selected to enhance the local patterns in the
signal. Inorder to achieve this the window

peak and window width must be set so that itFigure 5.8 - Gaussian Window

page 66



Chapter 5, Frequency and time frequency approach to condition monitoring

covers the period during which the pattern occurs [47]. This is one of the difficulties
associated with this method, as one needs previous knowledge about the pattern
being searched so that the window width can be set appropriately.

Note that this approach has one major drawback. It can never attain good frequency
and time resolution simultaneously. lfthe width of the window is T, its frequency
bandwidth will be liT. Therefore, when zris set to be large (narrow window width
and high time resolution) it follows that the frequency resolution will be very poor
(as 1Iawill be large). On the other hand when 1Ia is set to be small (wide window

and high frequency resolution) then a will have to be large leading to poor time

resolution. Therefore the two ideal requirements - a short time window and a narrow

frequency bandwidth - are impossible to achieve.

The three plots in Figure 5.9 illustrate graphically this time-frequency resolution

trade-off. The input signal is shown on the top figure (a pure sine wave with
frequency of 100Hz starting at time 0.512 seconds). The middle figure is the
spectrogram map for the input signal obtained when using a wide window (width of
300 samples i.e. 300ms). The lower figure is the spectrogram map obtained when
using a narrow window (width of 65 samples i.e. 65ms).

As it can be seen one cannot achieve good frequency and time resolution

simultaneously. In the middle figure a good frequency resolution is obtained,

however time resolution is a problem. In the lower figure a good time resolution is
obtained however now it is frequency resolution that poses as a problem.

-1 tim. [msI256

STFT (wide)~:~I
.pl00 ~_.=.
~ 109

1191-- ~

o time [sJ 0.512 1.024

STFT (narrow)

~:~I ~.p 100

]; 109
1191-- ~- _

o

...)~~,";)"
~
Ii,. ~~~

time Cs] 0.512 1.024

Figure 5.9 - TF resolution trade off

Unfortunately, with the spectrogram, there is
no way around this time-frequency
resolution compromise. Hence before the

window width is set tests, must be performed
to evaluate the performance of windows with
different widths.

A discrete version ofEq. 5.6 can be

implemented in a program which will then

perform the STFT of a given time series .
The discrete version ofEq. 5.6, follows:
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X(t,J) = _1 _!_ ix(n) h(n- t) e-(2trKt)/N '.
2rc N n=O

Eq.S.10

5.3.3. Numerical Example

Before analysing the experimental data a preliminary analysis on the numerically
simulated data generated as described in chapter 3 was performed. A spectrogram
routine written in C++ was used to process the two sets of data (i.e. good gear and
the faulty gear). The results can be seen below. The x-axis represents the frequency,

and the y-axis represents gear position. Note that the time series represents one full

gear revolution. Therefore 3600 is equivalent to 1.024 seconds.

360 360

0.20 20-40 40-60 .6040 •• 0·100 .,00·,20 0·20 20·40 '40·60 .60·.0 •• 0·100 .,00"20
• 120-140 .,40·,60 .,60-,80 .180·200 .200-220 .120·1.0 .140·160 .,60·100 .1.0·200 .200·220

Figure 5.10 - Spectrograms for numerical data

The graph on the left shows the spectrogram for the 'good' condition gear signal,
while the graph on the right shows the spectrogram for the 'faulty' condition signal.
These two plots were obtained by setting the window function constants to c=2.0 and
the window width = lOOms.

A brief analysis of the above spectrogram shows its main properties:

• The dark spot at frequency 0 Hz and angular position 90° on the 'faulty' plot
corresponds to the Gaussian pulse (i.e. simulated fault). Note that this

components do not appear in the good gear condition plot (on the left hand side).

• The dark line at frequency 40 Hz corresponds to the pure sine wave. Note that

this dark line presents a constant width except at the end and the start of the time
axis. This is due to the end effects in the Fourier Transform.

• The three dark spots at 70Hz relate to the amplitude modulated sine, with carrier
frequency (fc) of 70Hz and an amplitude modulation frequency (fa) of3 Hz.
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• The dark's' shaped curve at 100 Hz corresponds to the frequency modulated sin
wave, with/c=IOOHz and a frequency modulation frequency (fj) of 3Hz.

• The three dark's' shaped spots appearing at 130 Hz correspond to the amplitude
and frequency modulated sine wave, with/c=130Hz,/a=3Hz andfr3Hz.

As it can be seen the spectrogram is an effective signal processing method for the
time-frequency analysis of dynamic systems. It has been shown that it can be used to
detect a wide range of signals. Also in the case of amplitude and frequency

modulated signals it is possible to obtain the carrier and the modulation frequency.

Unfortunately, this method relies heavily on the correct choice for the window width.

This can only be attained if previous knowledge about the signal is available. The
figures overleaf show how the spectrogram of the numerically simulated 'faulty' data
is affected by the window width choice. The gain constant c is set to c=2 for all
spectrograms, and only the window width is changed. The narrowest window has a

width of 15ms, and the widest a width of 540ms.

180

Spectrogram " ..
.,0

..
O~~~:~~~~~~~X~~~~~~~X~~~~~~~~~~~~~=~3~~~8~_'2~~~:~~~~~~~~~~o

k~OfcMf
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Figure 5.11 - Spectrogram of numerical data with different window width.
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As it can be seen the window width choice greatly affects the performance of this
method. For width=15ms one can hardly observe the presence of any of the signal
components; and for width=100ms very little frequency resolution. In contrast for
width=320, 430 and 540ms the three highest frequency components are shown with
sidebands as result of the window width choice.

For this reason in the analysis of the experimental data, tests for different window
widths were performed. From this it was observed that the ideal width for the

analysis of the collected vibration signatures was 10ms (51.2 samples). This is

illustrated by the Figure 5.12 and Figure 5.13.

window wldlh-51.2 window wldlh=64

froq·IHtI

160 320 ~ 640 800 960

fnq.(Ht)

160 320 <&0 640 800 960

fnq.(Ht)

Figure 5.12 - Spectrogram of experimental data with different window width.

5.3.4. Experimental Example

In this section the experimental data already described in chapter 3 was used. The
same spectrogram routine was used to process the vibration signatures for all 7 gear
conditions (i.e. 1 brand new, 2 reference, 1 worn out and 3 faulty gear condition).
The results can be seen below, note that the plots on the left relate to the raw
vibration signature, and the plots on the right relate to the time averaged (over six
blocks of 4 cycles) vibration data. Again the x-axis contains the frequency
information while the y-axis represents gear position. Note that these plots show two

full gear revolutions (i.e. 0.4 seconds).
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Figure 5.13 (a) - Spectrograms of experimental data
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As it can be seen in the above plots, the gear meshing frequency and its harmonics

are present throughout the time domain. This is most noticeable for the normal gear

condition (Le. plots RE2, RE3). The brand new gear show a wide range of

frequencies, and the faulty gears show the meshing frequency and its harmonics with

less intensity.
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Figure 5.13 (b) - Spectrograms of Experimental Data
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Also the fatigue crack has a definite damping effect on the overall vibration of the
gear. This is also expected as the fatigue cracks reduce the stiffness of the tooth. This
behaviour can be clearly observed in plots F2 and F3, and is seen as the low spectral
contents around time, lOOms and 300ms, which matches the position of the fault.
This is not as easy to observe in the plot FI, suggesting that the spectrogram is
unable to identify fatigue cracks in it very early stages.

A summary of the analysis of the above plots shows:

• The gear meshing frequency and its harmonics dominates the spectrograms.

These show up as vertical lines at constant frequency throughout the whole

revolution.

• Fatigue cracks are characterised by a damping effect on the vibration of the gear
at the crack position. This can be clearly seen in plots F2 and F3. This method
also produced useful information related to fault location.

Furthermore, the plots for the time averaged data present a lower noise level for
higher frequencies. This is expected, as one of the effects of time domain averaging
is the maximisation of the signal-to-noise ratio. However, on the time averaged plots,
the spectral power for early times (i.e. start of first revolution) is greater than for later
times (i.e. end of second revolution). It is believed that this is caused by variations on

angular velocity of the gear under analysis and on variations on the sampling rate. It

was observed during the experiment that these variations could be of up to ±0.2%.

Using this information the test below was devised. It shows how these variations can
interact with the actual signal components. The test shows the addition of two sine
waves (of unity amplitude). Their frequencies are 600Hz and 601.18Hz. This aims to
simulate the variation in angular speed and sample rate of the test rig, and justifies
the choice of only plotting the spectrogram maps for two gear revolutions and
frequencies up to 1000 Hz.

Effect of variation of gear angular speed on time averaging procedure.

2

III 1

"::J
~ 0
Q,

~ -1

-2
0 time (sec) 0.1 0.2 0.3 0.4

Figure 5.14 - Effect of variation of gear angular speed and/or sample rate on test rig.
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This is equivalent to a 0.2% change in the angular speed and/or sample rate. As it can
be seen after two cycles (Le. O.4s) these signal components are nearly 1800 out of
phase, causing destructive interference. This leads to the conclusion that the time
domain averaging must be used with extreme care, as it is directly affected by:
the signal length; the accuracy of the position measuring transducer (which tracks the
gear position), and; the accuracy (and constancy) of the angular speed of the gear in
question.

5.3.5. Summary of Spectrogram performance

It has been shown that the spectrogram is an effective method for industrial condition

monitoring diagnostics if previous knowledge about the signal to be analysed is
available. Although it can also be used to analyse signals with no previous

knowledge, it is not recommended as the visual analysis of the spectrogram might
lead to erroneous conclusions. A brief summary of the advantages and disadvantages
of this method is shown below.

Advantages
• The spectrogram of a signal can be seen as the distribution of the signal energy

not only in the frequency domain (like a spectrum) but also in the time domain.

• The method is very effective in analysing stationary signals.
• It is a very simple method, which can also be used to analyse non-stationary

signals.

Disadvantages
• This method does not allow for simultaneous high time and frequency resolution.
• Previous knowledge about what type of patterns one is investigating is essential

for setting the window width correctly. If the window width is not set correctly
then the pattern being searched might not be found.

5.4. Wigner distribution (and its variants)

The Wigner distribution was first developed in 1932 in connection with a quantum

mechanics wave function [110], but was only introduced to signal analysis in 1947 by

Ville [54].This distribution is yet another effective tool for the time-frequency

analysis of signals. There are several variations on the Wigner distribution (Wigner,

Wigner-Ville, Pseudo-Wigner, etc.).
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This research focuses only on the Wigner Distribution (WD), Wigner- Ville

Distribution (WVD), and the Pseudo Wigner Distribution (PWD). These three

distributions are very similar in form and very often mislabelled. A formal definition

for these distributions is included in the next sections.

5.4.1. Description of fundamental aspects of the Wigner

distribution (and its variants)

The Wigner distribution (WD) produces a plot (similar to spectrograms) showing

how the spectral content of a signal varies with time. Like spectrograms this

distribution also uses the Fourier Transform Algorithm. However it differs from the

spectrogram as it does not suffer from the same time-frequency resolution

compromise, leading to a better time resolution than the spectrogram [111]. This is

illustrated by calculating the Pseudo- Wigner Distribution (PWD) of a time signal. In

this calculation a Gaussian window (similar to the spectrogram window) was used.

The input signal is shown on the top figure (a pure sine wave with frequency of

100Hz). The middle figure show the PWD calculated with a wide window (window

width of300 ms), while the bottom figure shows the PWD for a narrow window

(window width of 6Sms). As it can be seen the window width only affects the

frequency resolution, it does not affect the time resolution.

0+----+---
-1 time cms]256

PWD (wide)~:~I~ 100
B109

119~ ~ - ~
o time Cs] 0.512 1.024

time Cs] 0.512 1.024

Figure 5.15 - PWD Time-Frequency resolution
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Unfortunately this method suffers from a different problem than the spectrogram:

cross-term interference from different signal components. The cross-term

interference can be minimised in many ways. These are: by means of performing the

Wigner distribution of the analytic signal (Wigner- Ville distribution) or by means of

a sliding window function (Pseudo- Wigner distribution).

In the Wigner- Ville distribution the analytic signal, which does not contain any

negative frequency, is used instead of the real signal. This eliminates the cross-term

interference between positive and negative frequencies. Note that this is not

sufficient to eliminate the cross-term interference arising from multiple components

in a signal.

In the Pseudo- Wigner distribution a window function is used to place different

weights on the time segments being analysed, this will reduce even further the cross

term interference from the signals multiple components that occur at different times.

The PWD can have different functions as its window function. The most common

are Gaussian, Hamming, Hanning, and Kaiser. It is important to note that even

though the PWD presents less cross-term interference than the WO and the WVD, it

no longer has some of the desirable properties of the WD and WVD. The time

frequency marginals (Le. energy in time domain = energy in frequency domain) are

no longer valid [59].

Finally, it must be stated that the windowing procedure only reduces the interference

between multiple components that do not occur simultaneously. As it will be shown

in the next section cross-term interference from simultaneous multiple components

cannot be eliminated.

5.4.2. Theoretical background

In this section the mathematical definition of the Wigner (WD), Wigner-Ville

(WVD) and Pseudo- Wigner distributions (PWVD) are presented. More detailed

explanation for these definitions can be found in references [53.112].
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The Wigner distribution of a real signal x(t) is defined as:

Eq.5.11

The Wigner- Ville distribution of a real signal x(t) is defined as:

Eq.5.12

Where I is the analytic signal ofx and is found by [61]:

Eq.5.13

Alternatively, the analytic signal can also be found in frequency domain using the

Fourier transform X(t) of the real signal x(t) then zeroing the negative frequencies

and doubling the positive frequencies as follows:

{

2X(t)

X(t) = :(t)
/>0
/=0
/<0

(i.e. 0 < t <N /2)
(i.e. t = 0, N /2)
(i.e. N/2 < t <N)

Eq.5.14

Note that the above defined distribution is also named Wigner distribution by many

authors, as it is already widely used in place of the original WD due to its better

performance. Finally the Pseudo- Wigner distribution is defined as:

""_ -
PWD(t,{J) = 2 fx{t + !')x* {t - !')h{!')h * (- !')e-4iQ)t dr , Eq.5.15

where the asterisk denotes complex conjugate and tilde denotes analytic signal.

Note that the window function h(t) can be any filtering function. The most

commonly used is the Gaussian function but other known window functions (such as

Hamming, Hanning, Kaiser, etc.) can also be used. A full listing of the most common

window functions and their respective properties can be found in [48J.

Figure 5.16 illustrate how the PWVD (or PWD) differs from the WVD. These plots

were obtained by processing two different time series. The time series that generated

these plots are also shown above the Wigner plots. The plots on the left are for a time

page 77



Chapter 5, Frequency and time frequency approach to condition monitoring

series consisting of one sine wave (constant frequency 40 Hz) from 0 to 342 ms, then

noise from 342 to 684 ms, and a second sine wave (constant frequency 80Hz) from

684 to 1024ms. The plots on the right were obtained by processing a time series

composed of the summation of two sine waves (of frequencies 40 and 80Hz).

I]~I ~1Ni/I\VNNIM.1 ;Nm~fN#IfN+I+~WlWth~WI+r
~~~R~O~SmB~~~~i--------------------~

L_ ~=L ~

Figure 5.16 - PWD and WVD for different signals

As it can be seen the pseudo Wigner distribution is very effective at cancelling the

cross-term interference from signal components that occur at different times,

however for simultaneously occurring components it is not so effective. Still the

PWVD seems to present a simpler output than the original Wigner- Ville distribution.

For this reason, only the PWVD will be used to analyse the numerical and

experimental data. This agrees with the current practice in practical applications [60].

Note that the window size also affects the output of the PWVD (especially the

frequency resolution). As the window size is increased the PWVD results tend to be

like those obtained from the WVD (i.e. high frequency resolution and high presence

of cross-terms). This is expected from theory. The plots below show how the window
page 78
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size affects the PWVD. The title of each plot indicates the window variance in

milliseconds.

window variance 350 window variance 200 window variance 50

"'.queney [Hz) "'._ncy(H.) Frequency [Hz]

Figure 5.17 - PWD for different window width

As it can be seen by using a narrow window the cross-term (middle peak in the left

plot) interference is eliminated, as shown in the right plot. However in doing so the

time resolution is reduced.

5.4.3. Numerically simulated data: an example

The numerical example uses the same time data as in the previous section

(spectrogram). Again, a routine was written in C++ to process the different vibration

signatures. Underneath are the results for the PWVD. The optimum window width

has been found experimentally to be 70 milliseconds.

InrefGood InrefBad

Figure 5.18 - PWD for numerical data

As it the can be seen the PWD still shows the frequencies present in time domain

series. This is shown by:

• the dark line at 40Hz (sine wave component);
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• the dark spots at 70Hz (the amplitude modulated sines wave);

• the curved spots 100Hz (the frequency modulated sine wave), and;

• the spots at 130Kz (the frequency and amplitude modulated sine wave).

The plot also shows the multiple frequency component interference, this is as strong

as the frequency components themselves, Note that these appear in-between

vibration signal frequency components (i.e. 55Hz, 85Hz and 115Hz). In fact it is

quite difficult to accurately distinguish between the main signal components and the

cross term interference. However, the fault can still be easily identified. It appears at

position 256ms and 24 Hz. It is important to note that in this method window size

also plays an important role. Finally, from this test it is possible to observe the effect

of the inevitable cross term interference from simultaneous cross term components.

5.4.4. Experimental Example

The data for this example was obtained as described in chapter 3, The window width

selected was: width=100 samples (19.5ms). The figures below show the PWD plots

for the faulty condition gear (Fl) with different window widths. The title on each

plot indicates the window width as a number of samples (Ws), this can be converted

to time by: Wr=WIFs - where F, is the sampling frequency (5120 Hz); hence for

Ws=50, W~ 10ms. This illustrates the choice of the window width, which was used

in processing all the experimental data.

window wldthz100 window wldth=150window width-50

o 160 320 4SO 6<40 800
rrlq.IHz)

o 160 320 480 &40 800 960

rrtq·11IzI

160 320 480 640 BOO

rrtq·IHz)

Figure 5.19 - PWD of experimental data with different windows

From the above plots it can be seen that only the frequency resolution is affected by

the different window widths. The dominant peaks on the first plot (width=50
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samples) are wider in the frequency domain than those in the third plot (width=150

samples). Also note that, for visualisation reasons these plots have different z-axis

scales.

The plots for the experimental data are shown overleaf. These follow the same

pattern as with the previous condition monitoring methods (Le. plots on the left refer

to raw vibration signature and plots on the right refer to time averaged signals).

It must be emphasised that, as with the spectrogram plots, the plots for the raw data

show two gear revolutions and all have the same z-axis scale. This allows for a true

comparison to be made between the raw vibration data plots for the different gear

conditions. This is also true for the time averaged vibration signature. Note, however,

that the z-axis scale for the time averaged vibration signature is different to the z-axis

scale for the raw data. This adjustment is needed to allow for the difference in the

power from these signals. To avoid repetition the z-axis scale was included only in

the top plot.
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Figure 5_20 (a) _ PWD for experimental data
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Figure 5.21 (b)- PWD for experimental data

As with the spectrogram, the fimdamental meshing frequency and its harmonics (i.e.

160Hz, 320Hz, etc.) can easily be seen on these plots. However, note that the cross-

term interference is also clearly visible. These occur in-between the meshing

frequency and its harmonics (i.e. 240Hz, 400Hz, etc.), forcing the observation and

analysis of these plots to be a difficult task.
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Furthermore, the overall effect of a fatigue crack on a gear tooth is also shown on

these plots. Note that both for the raw vibration data and the time averaged vibration

data, an overall decrease in the vibration level can be seen as the fault advances.

Finally it must be noted that the time-averaged PWD plots show the same trend (high

energy in early time values) as the spectrogram plots. This can be attributed to the

phase shift arising from variations in gear rotational speed, and sampling rate.

5.4.5. Summary ofPWD performance

It has been shown that the Wigner distribution does not suffer from the same time-

frequency resolution trade-off as the spectrogram. However, it suffers from a

different problem, cross-term interference [14].

The Pseudo- Wigner distribution can be used to reduce the interference arising from

multiple components that occur at different time intervals. However, this does not

eliminate the interference arising from multiple components that occur

simultaneously in time. The main advantages and disadvantages of the Pseudo-

Wigner distribution are outlined below.

Advantages

• Wigner distributions can be used for the analysis of both stationary and non-

stationary signals.

• It performs very well when analysing signals, which contain amplitude and

frequency modulation, enabling the user to clearly observe between the carrier

frequency, the modulating frequency and the modulation level.

• Wigner distributions can filter out the white noise or random interference in the

signal to be processed. This filtering can not only be done in the frequency

domain but also in the time domain.

Disadvantages

• The WD and PWD are not very effective at processing signals with multiple

components occurring simultaneously. The cross term interference that is

generated in these cases can be very intense. This leads to complex time-

frequency plots, which might lead to misinterpretation.

page 84



Chapter 6

Condition monitoring systems based on

wavelets.

In the last decade, wavelets have received attention from a number of researchers

from a wide range of fields. Wavelet analysis is a very versatile mathematical

technique, which breaks down a signal into its constituent parts. Therefore, it can be

used as a basis for representing functions with a finite number of components.

Furthermore by usage of the wavelet mean square maps it can also be used as a

technique for time-scale (frequency) analysis oftime series (including vibration

signatures ).

Wavelets can be seen as a family of functions composed by translations and dilations

of a single function (the wavelet, or mother wavelet). The set of products of all the

dilated and translated wavelets with an arbitrary function is called the wavelet

transform. Generally the wavelet transform is very effective at describing

simultaneously both the local and large-scale features of a signal.

This chapter introduces the basic concepts behind wavelets. It also describes the two

main classes of wavelets: Orthogonal and Harmonic wavelets.
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6.1. Basic Concepts

The concepts shown here are valid for any wavelet decomposition, it forms the basis

of the wavelet algorithm. The main idea behind the wavelet transform is to

decompose a signal x(t) into its wavelet components. These components are called

levels and are numbered from -1 upwards. The addition of these wavelet levels leads

back to the original signal.

For orthogonal wavelets the number of levels in the wavelet decomposition ofa

signal is directly related to the number of points on the signal being decomposed.

The actual shape of the decomposed components (levels) depends on the signal

under analysis and on the analysing wavelet. The latter can be a family of functions,

which are the translation and dilation of a unique-valued function \jI(t). This can be

defmed as:
ao

WT(t,s) = jX(T)v'sIJf(s(r-t»)dr. Eq.6.1

Where lJf(t) is the wavelet, t is the time and s is a scaling factor. From this it follows

that a wavelet family can be generated by:

(v'sV/(s(, - t»)) for (t,s) E 91. Eq.6.2

And the reconstruction of the signal x(t) can be obtained from:

x(t) = LLWT(/,S).JsIJf(s(, -(».
/ 3

Eq.6.3

6.2. Orthogonal wavelets

In this section the well-known orthogonal wavelets are introduced. These include:

the Haar, the Daubechies Series and the Harmonic wavelets as defmed in [70]. These

wavelets share one main characteristic, the number of levels (L) resulting from the

wavelet transform is related to the number of points in the data series to be

transformed, This relation is described by: L= n + 1. Where L is the number of

levels and 2D is the number of elements in the time series.
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The compact nature of the orthogonal (Haar, Daubechies and Harmonic wavelets)

leads to many advantages in signal representation and reconstruction. Compact

wavelets can decompose a signal into a minimum number of components (levels)

very efficiently and with no redundancy. It is widely used as a means of signal

representation and compression. Unfortunately, its compactness also leads to

problems in time-frequency representations. Although the wavelet transform can be

used to identify both the local and large-scale features of a signal, it can sometimes

miss out features that happen to lie between the scales' (level) frequencies. Another

handicap with orthogonal wavelets is the time translation variant [73]. Often, the

same transients at different time may show up as a different pattern on the wavelet

map.

6.3. Theoretical background

A comprehensive description of the theoretical background and properties of the

orthogonal wavelets (Daubechies and Harmonic) can be found in [70,76,77] and only a

short summary is repeated here.

Orthogonal wavelets arise from a very special case of the wavelet family. This

special case arises when the condition described below is met:

for (j,n) EZ. Eq.6.4

Hence the orthogonal wavelet can be defined as:

00

WI:, (/,s) = IX(t).J2i'l'(2i 1- kT)dt . Eq.6.5
-<Xl

From which a signal can be reconstructed by:

"" 21_1

x(t) = Wo + L L W21 +k'l'{2i t - kT).
i=O A;=O

Eq.6.6

where:
T T

Wo = Jx(t} dt and w21 +A: = Jx(t}'I'{Zi t - KT) dt •
o 0

Eq.6.7
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The results from this transform can be plotted as single vectors, (one vector for each
level) or it can be plotted in the form of mean squares map. The latter can be easily
obtained according to the algorithm presented in [70].

6.3.1. Illustrative Example

The concepts just described can be illustrated by the example below. It shows how

the wavelet decomposition works by using the D4 wavelet (Daubechies Series with 4

coefficients) to analyse a test signal, shown in Figure 6.1. The frequency of the

I T.st Signal
3.0,-------------

1.5t /\/\
_~:~V V
-3.0+- ----~

/\ /\ /'
V V

tim. ,... } O.06~ 0.126

Wavel.t ofT.st Signal

Figure 6.1- Test Signal and its wavelet

triangular wave is 50Hz, and it contains

27 (i.e. 128) points, sampled at 1000Hz.

The wavelet transform of this signal is

shown on the lower plot in Figure 6.1.

This allows for the test signal to be

decomposed into 8 levels, These are

indicated by the vertical lines on

wavelet plot of the test signal.

The wavelet transform of the test signal is also a series with 27 samples. This series

stores the signal information with respect to the different wavelet levels as shown in

Table 6.1. Also the wavelet levels can easily be converted into frequency using the

relation 2n/T - where n is the wavelet level, and T is the length of time series. For the

test signal described above T=0.128 seconds. InTable 6.1, in the last colunm the

numbers in brackets give the equivalent frequencies (in Hz) for the wavelet levels of

the test signal.

Table 6.1- Identification of wavelet transform levels.

Level Number of Elements position Frequency at
Wavelets on transform Given Level (Hz)

-1 0 1 OIT (0)
0 1 2 liT (8)
1 2 3 to 4 2/T (16)
2 4 5 to 8 4/T (31)
3 8 9 to 16 8/T (62)
4 16 17 t032 16/T (125)
5 32 33 to 64 32/T (250)
6 64 65 to 128 64/T (500)
n 2n 1+2n to 2n+1 2n/T
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After the wavelet analysis the following information related to the signal

reconstructed levels can be obtained. The left column contains the eight-wavelet

levels (from -1 to 6) of the test signal. The right column shows the progressive

reconstruction of the signal, from its wavelet levels. This is obtained by adding the

wavelet levels together. The titles on each chart in the left column refer to the

specific wavelet level. In the right column, successive levels are added, leading back

to the original signal in the lowest chart.
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Figure 6.2 - Wavelet Analysis and Reconstruction of test signal.
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A full mathematical description of the properties of the wavelet coefficients can be

found in [70].

6.4. WaveletMean Square Maps

The wavelet levels coefficients can also be displayed in the form of a time-scale map

(or time-frequency if the conversion described above is performed). This is used in

vibration condition monitoring as a means to assess whether each frequency

component in the vibration signal is present. Allowing for the analysis of both

stationary and non-stationary signals. Wavelet mean square maps can be formed

according to the diagram below.

Level Freq.

3 --~- -~- ~"I···GQi[}··..GQi[} ~ ~ ~ 23fT

2 -..--.--@ --.- {~J ~ -[~]..............22fT

1 - @ ~ 21/T

o ~ 20/T

-1 -.- ----.- --- -- - ~.........................................................................................0

Figure 6.3 - Wavelet Mean Square Map Grid. (after D. E. Newland.)

A full mathematical description for the wavelet mean square maps can also be found

in [70]. Figure 6.4, overleaf shows the mean square map for the test signal generated

using the Daubechies wavelet with 4 coefficients (D4).

These mean square maps have a strong resemblance to the spectrogram and Wigner

distribution maps. On the x-axis is the wavelet position (which can be converted into

time), on the y-axis is the wavelet level (which can be converted into frequency), and

finally the z-axis shows the intensity of a given frequency component at a given time.

From this map it is possible to observe that the signal is composed of a dominant

frequency around 62Hz. Also between t~50ms and t~O.80ms seconds the signal is
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zero (as no frequency component is present). This agrees well with the properties of

the test signal except that the frequency of the triangular isf=50Hz. The poor

frequency resolution on these maps is related to the small number of samples in the

input signal. This affects the number of levels onto which the signal is decomposed.

01 8r-~~--'_-+--+--+--r-~
·1 I 00!-....L.---!:32:--_j_---+.64--..L,_-96=-~---;!;'.

TIme (ms)

Figure 6.4 - Mean square map for test signal
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Figure 6.5 - Time-Frequency resolution of different wavelet families
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Now it must also be observed that the

time-frequency resolution of these maps

is dependent on the shape of the mother

wavelet used to decompose the signal.

This is a handicap of this technique as it

suggests that previous knowledge about

the signal to be analysed is needed for

the production of meaningful maps.
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6.5. Wavelet Analysis

To allow for a direct comparison between the wavelet decomposition technique and

the previous time-frequency analysis techniques, only wavelet mean square maps and

wavelet plots will be used throughout this chapter. Further analysis with wavelet

level reconstruction could be performed for condition monitoring applications,

however this will not be included in the scope of this research,

6,5,1. Numerical Example

Before analysing the experimental data a preliminary analysis on the numerically

simulated data generated as described in chapter 3 was performed. A wavelet

transformation routine written in MATLAB was used to process the two sets of data

(i.e. good gear and the faulty gear). The results can be seen below. On these wavelet

mean square maps the x-axis, which contains information about the wavelet position,

has been converted to time. Also, the y-axis shows the level (and its respective

frequency). Note that the time series represents one full gear revolution. Therefore

3600 is equivalent to 1.024 seconds.

91 9/500

81 8/250

71 7/125

61 61 62

'i ¥
;: 61 ;: ~I 32
~ ~
i" i- 41 16

u, u,

j 31
::: 31 8
~

~ 21 4 ~ 21 4

11 11 2

01 1 01 1

·11 ." 0
256 512 768 1024 0 256 512 168 1024

T\TIe(ms) TIme (ms)

Figure 6.6 - Harmonic wavelet MSP for numerical data

These plots clearly show the simulated fault (occurring at t=256ms). The graph on

the left shows the harmonic wavelet mean square map for the 'good' condition gear

signal, and the left figure shows the same for map the 'faulty' condition signal. A

brief analysis of the above maps shows its main properties:

• The blue and cyan contours ranging from 16Hz to 250Hz encompass the pure

sine wave at 40Hz, the amplitude modulated sine wave (at 70Hz), the frequency
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modulated sine wave (at 100Hz) and the amplitude and frequency modulated sine

wave (at 130Hz). Note how the frequency modulation affected the upper shape of

the contours, as compared to the straight contours found in the lower section of

the map (due to the pure sine wave).

• The contours at frequency 8 Hz and 256ms (i.e. angular position 90°) on the

'faulty' plot corresponds to the Gaussian pulse (i.e. simulated fault). These do not

appear in the good gear condition plot. These contours are at very low levels,

indicating that this simulated fault is on the verge of not being identified by the

wavelet map. This implies that the number of contour levels and their location

plays an important role in the generation of the mean square maps.

• Finally, the three red peaks at frequency 62Hz correspond to the amplitude-

modulated sine wave, with a carrier frequency (fe) of 70Hz and an amplitude

modulation frequency (fa) of 3 Hz.

As it can be seen wavelets mean square map is an effective signal processing method

for the time-frequency analysis of dynamic systems. It has been shown that it can be

used to detect and display the time-frequency information of a wide range of signals.

Unfortunately the frequency resolution of orthogonal wavelets are very dependent on

the length of the signal to be analysed.

This suggests that non-orthogonal wavelets might have a better performance in the

time-frequency analysis of vibration signals, than orthogonal wavelets. However

these were not included in the scope of this research.

Furthermore, the previous tests suggests that in the same manner that spectrograms

rely heavily on the correct choice of the window width, wavelet mean square maps

rely heavily on the correct choice of the wavelet family. This can only be attained

either experimentally, or if previous knowledge about the signal is available. The

figures overleaf show how the wavelet mean square of the numerically generated

'good' data is affected by the wavelet family choice. Note that the z-axis (colours)

have been adjusted for an optimal display for each plot.
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Figure 6.7 - Effect of mother wavelet choice on MSP of test signal

As it can be seen the harmonic wavelet maps contains more high level continuous

regions. Tills simplifies its appearance, facilitating its visual inspection. Tills agrees

with published results [72]. The other wavelet families also give good indication of

the frequency components of the signal, but their maps are not so uniform.

As can be seen, for mean square map representations harmonic wavelets show better

performance than the Daubechies series, as it produces more uniform maps. Still the

latter wavelet family series is extremely useful for applications such as: acoustic

analysis and signal compression. In fact for signal compression applications this

series outperforms the harmonic wavelet in simplicity, as its wavelet coefficients are

always real, while the harmonic wavelet coefficients are usually complex.

6.5.2. Experimental Example

Here the experimental data already (see chapter 3) was processed with the same

harmonic wavelet routine used previously. This choice was based on the

performance of the harmonic wavelet compared to the Daubechies wavelet.
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original in colour

The vibration signatures for all 7 gear conditions (i.e. 1 brand new, 2 reference, 1

worn out and 3 faulty gear condition) were analysed, The results can be seen below,

note that the plots on the left relate to the raw vibration signature, and the plots on

the right relate to the time averaged (over six blocks of 4 cycles) vibration data. All

the plots contain two full revolutions (O.4s) of the gear under analysis. Again the x-

axis contains the time information while the y-axis represents frequency.
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Figure 6.8 (a) - Wavelet mean square map for experimental vibration signatures

original in colour page 95



~7/320

8'6/160

s 51 80
1.5 ~

~ 41 40
] 31 20

21 10

11 5
o I 2.5

-11
400

10 12560

911280

8/640

~7/320

8'6/160

1.5
~51 80
~
- 41 40
] 31 20

21 10
11 5
o I 2.5

-II
400

1012560
9/1280

2.5 8/640

~ 7/320
2

8'6/160

~51 80
1.5 ,;:

- 41 40
] 31 20

Chapter 6 Wavelet approach to condition monitoring

~7 1320

8'6/160 ~=-=--+---~_;:_--+----I
~51 80 ~ ~ -4 -4 -4

~
~ 41 40~------I----------jI----------j-------1
]31 20~------~----~~----~------~

21 10~------1----------j1--------4-------1
11 5~------1--------41--------4------~
o I 2.5~------I_-------1I--------4-------1
-11 100 200

Time (ms)
300

I0I2560~~--~~--~~~~---'~~""'"
9/1280

8/640 ~~~~~~~~~~~~~~~~

~7/320

~6/1601-----~---j1___----_4------_4------~

851 80 ~___---+---+---+-------1
[
'::4 I 40~------I--------4-------4------~
] 3I 201---------I___----_4------_4------~

21 101-------~1___----_4------_,------~
I I 5 ~------I_----_4------_,------~
o I 2.51--- --'1___------1--------1-------1

-II
lOO 200

Time(ms)
300 400

1012560~--~~.---~~7-~---,~~~-.
911280

original in colour

1012560m>.~~~r._~~~~~~~._~~~
911280
8/640

lOO 200
Time (ms)

300 400

0.5
0.45
0.4
035
0.3

0.25
0.2

0.1

0400lOO 200
Time (rrs)

300

rave F2

0.5
0.05

0,5
0,45
0.4
0.35
OJ

0.25

0.2
0.15
0.1

21 IOr---~---_+---~--~
I I 5 r-----+---+---+---l
o I 2,5r------1r--------1r-------I--------l
-1 I 0 L.o-------'-------_l_------_[_------_j

100 200 300 400
Time (ms)

2.5

~7/320
~7/320

~61 160 8'6/160

8 51 80 !! 51 80
[ 1.5 [
~ 41 40 ~4/ 40

] 31 20 ]31 20

21 ro 21 to

1/ 5 0,5 11 5

01 2,5
o I 2,5

-II
-II

100 200 300 400 200 300 400
Time(ms) Time(ms)

Figure 6.8 (b) - Wavelet mean square map for experimental vibration signatures

original in colour page 96



Chapter 6, Wavelet approach to condition monitoring

As it can be seem in the above plots, noise has a very strong effect on the maps for
the raw vibration signatures. The strong peaks at the very high frequencies show this.
The lower frequency appearing in the plots is 160Hz. This is the gear meshing
frequency. These components are present throughout the time domain. This is most
noticeable for the normal gear condition (Le. plots RE2, RE3), and not so noticeable
for the faulty condition gears (Fl, F2 and F3). Also, the brand new gear shows the
strongest high frequency components. This behaviour was also observed by the
spectrogram analysis of these signals.

These plots also show the fatigue crack's damping effect on the overall vibration of
the gear. This was also seen on the spectrogram analysis and is best observed in plots

F2 and F3. Note, however that here this behaviour does not show so much intensity

as seen in the spectrogram. These observations are stronger in the plots for the time-

averaged data.

A summary of the analysis of the above plots shows:

• The gear meshing frequencies and its harmonics dominate the mean square maps.
• Fatigue cracks are characterised by a damping effect on the vibration of the gear

at the crack position. This can be clearly seen in plots F2 and F3. This method
produced useful information related to fault location.

Furthermore, as expected the plots for the time-averaged data present a lower noise

level for higher frequencies. However, as with the previous methods, on the time

averaged plots, the spectral power for early times (i.e. start of first revolution) is

greater than for later times (i.e. end of second revolution). This behaviour has been

discussed in chapter 5, and can be attributed to the inaccuracies on the rotational

speed and the sampling rate of the data acquisition hardware.

6.5.3. Summary of wavelet mean square map performance

It has been shown that wavelet mean square map is an effective method for time-

frequency decomposition, and can also be in industrial vibration condition

monitoring and diagnostics. Although it can also be used to analyse signals with no

previous knowledge, it is recommended that tests for different mother wavelets are to

be carried out, as the mean square maps are directly related to the analysing mother

wavelet. A brief summary of the advantages and disadvantages of this method

follows.
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Advantages

• The wavelet MSM of a signal can be seen as the distribution of the signal energy

not only in the frequency domain (like a spectrum) but also in the time domain.

• It is very effective in analysing stationary and non-stationary signals; and in

identifying both small and large scale features in signals,

• This method is much faster than spectrograms, and produces smaller maps

indicating the time-frequency contents of a signal. This is of utmost importance

in automated condition monitoring and diagnostics,

Disadvantages

• The frequency resolution of the MSM generated by orthogonal wavelets is

dependent on the number of samples on the vibration signature. So for high

frequency resolution a very long data series is needed.

• A heuristic test to evaluate the performance of the different mother wavelets is

needed before choosing the wavelet family.
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Condition monitoring systems based on

Non-linear methods.

The condition monitoring techniques, analysed so far (Le. statistical measures, FFT,

spectrogram, cepstrum, Wigner distribution and wavelet) are widely used for linear

or quasi-linear systems analysis. Although it is possible to represent a non-linear

system by dividing it into smaller linear (or quasi-linear) sections which are then

analysed with the already well established theory for linear systems; it has been

recognised that non-linear processes can only be analysed as a whole by non-linear

methods. Hence the need for development and testing of non-linear condition

monitoring techniques is real.

There are a number of non-linear system identification techniques that can be

extended to vibration condition monitoring applications [113]. Some examples are:

• artificial neural networks, which have been widely used as pattern recognition

tools to identify and differentiate vibration signatures from rotating devices with

different and or multiple faults. This method has been very effective as a post-

processing tool for vibration signatures, however it has not been useful for the

analysis of the raw vibration signature [75];
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• functional series methods (including Wiener and Volterra series), which allow

the user to select the non-linearity order to be included in the system model [114],

and;

• heuristic methods such as GMDH (Group Method Data Handling), parameter

estimation methods and quadratic detectors [87, 116].

Some of these techniques have been suggested and tried in other areas of research,

such as communication systems analysis and biological systems modelling. However

out of these techniques only artificial neural networks (as a post-processing tool)

have been applied to industrial condition monitoring applications. Leading to the

conclusion that its performance is very dependent on the pre-processing technique

used to extract the relevant information from the time series fed to the neural

network.

This chapter introduces and performs a critical analysis of one specific non-linear

technique, namely: the Volterra Series. The reason behind the choice of this method

lies in the fact that, Volterra series has already been used with some success in the

identification of non-linear biological signals, and this technique can be applied

directly to the raw vibration data without additional pre or post-processing. This will

be shown in the next section.

7.1. Volterra Series: Current Applications

In this section a short description of the fields, in which Volterra series have been

applied, including remarks about the specific applications, is given. Note that this

technique has not yet been introduced to vibration analysis.

7.1.1. Non-linear system modelling and identification

The identification and analysis of non-linear system plays a vital role in control

theory. Most systems encountered in practice are non-linear. By restricting the

operating range, these systems can be represented by a linear model. Unfortunately,

the fact still remains; a non-linear system can only be adequately represented by a

non-linear model.
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From the above premise Koh applied Volterra filters' to model and predict the

dynamic behaviour of moored vessels due to irregular sea waves. In [92] shows the

use of Volterra filters for studying the non-linear drift oscillations of moored vessels

when subjected to random sea waves has been shown.

Koh's results clearly show that the 2nd order Volterra filter is effective in modelling

the low frequency drift oscillation of barges, also predicting the barge response. The

latter result is very importance for the control and stabilisation of these systems.

7.1.2. Non-linear system analysis, and pattern detection and

recognition

The Volterra series approach has been extensively used in the analysis of non-linear

biological and physiological systems [103]. Ithas been found that its main advantage

lies in its ability to model a system with no previous knowledge of the its structure.

Also, Volterra kernel analysis lead to inferences of the model structure, as one is able

to ascertain how past inputs might affect the future behaviour of the system.

In [115] the problem of detecting buried pipes is presented. Initially, an artificial

neural network is used to discriminate between ground surface and actual pipe

reflection from the return of a radar signal. Later the structure of the trained neural

network (i.e. a network that correctly maps the site being surveyed) is compared to

that of a Volterra series. It is shown that both the neural network and the Volterra

series present the same structure. This suggests that these two systems have strong

similarities and can share the same transfer function.

Bissessur showed that, by obtaining a mathematical formulation of the weights learnt

by the artificial neural network and its nodal functions, it is possible to extract a set

of Volterra kernels, formulating the Volterra series representation of a system, in this

particular case, the pipe detection problem. These results are supported by those

given in [116], which discusses the similarities and differences between neural

networks and Volterra series.

I Volterra filters are non-linear filters with the Volterra series structure.
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7.1,3. Discussion

The Volterra series is a well-established non-linear signal modelling technique, and it

has been widely used in modelling non-linear biological and physiological systems,

However, for no apparent reason, it has not yet been applied to the vibration analysis

of non-linear mechanical systems,

The main advantage of the Volterra series approach is its ability to model the

mathematical relation between input and output of a system, and this modelling does

not require any previous knowledge of the system structure. Also, the analyses of the

Volterra kernels enable one to make inferences about the underlying non-linear

system. This knowledge can be used for fault identification in condition monitoring

applications.

7.2. Volterra Series: Theoretical Background and Example.

The Volterra series emerged from studies of non-linear functionals of the form

y(t)=F[x(t');t'<=t], and in [117]Volterra introduced the representation:

00 0000

y(t) = f~(TI)X(t-TI)dTI + f fh2(TpT2)X(t-TI)X(t-T2)dTldT2

00 co
+",+ f." fhn(TpT2,,,.,Tn)X(t-TI)x(t-T2),,.X(t-Tn)dTldT2,,.dTn Eq.7.1

for n=1,2,3, ...

Where: x(t) and y(t) are, respectively, the system's input and output at a given time t,
and hn(Tj, T2, ... , TnJ is the nthorder Volterra kernel.

The first application of the above functional to the study of non-linear systems was

performed by Wiener [84], in characterising a system as a mapping between its input

and output spaces. Wiener introduced another way of expressing the above equation:

y(t) =HI [x(t)] +H2[x(t)] + ... +Hn[x(t)] Eq.7.2
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where:
00 00

H" [x(t)] = J. .. Jh" Crl"'" r2 )x(t - rl)·· x(t - rn)drl ••• dt ; Eq.7.3
-00 -00

In this representation the H; is called the nthorder Volterra operator. Also, since most

mechanical systems to be analysed are causal systems, it is common to replace the

limits of integration shown above by 0 and 00.

The solution of the identification problems based on the Volterra series requires the

calculation of the Volterra kernel [118]. These can be calculated by different methods.

The method used in this research is known as the Lee-Schetzen (crosscorrelation

technique) approach. This method is extensively explained in [96,102, 118], and only a

brief explanation will be included here. The cross-correlation technique was

proposed in 1965 by Schetzen [118], and relies on the assumption that the nthVolterra

kernel is directly related to the nthorder impulse response of the system. Also

Schetzen observed that the kernel hI(r) is the system unit response, that h2(r], r-;J is

the two dimensional impulse response of a second order system and that the same

principle could be extended to higher order kernels.

In developing this technique Lee and Schetzen showed that the set of kernels hi could

be evaluated by using crosscorrelation techniques. Furthermore, they also showed

that for a system S, with a white-Gaussian noise input x(t) and a response y(t), the

kernels can then be calculated according to the schematic diagram in Figure 7.1 and

Figure 7.2.

white-noise stimulus /t \~ A ~ x(t) S TEM YI'I system r ponserfr~~Af,t!-~~· ·1 VS I • A fI A A 'E /JA A fl.
Figure 7.1- System to be modelled
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Figure 7.2 - Volterra kernel estimation process - after Marmarelis [102].

Note that in the above figure, the intermediate graphs shown are in fact what is

obtained from the Volterra analysis of the stated non-linear system (Figure 7.1).

TIlls approach to kernel estimation was selected due to its simplicity and also

because it has several advantages over the Wiener approach. Firstly it estimates the

kernels directly, giving an insight into the structure of the system under study.

Secondly, this method is simpler as it does not involve Laguerre and Hermite

transformations as required by the Wiener approach. Finally, this method requires
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fewer computations than the Wiener approach. reducing the computational expense

of this technique.

Another method for the kernel calculation uses the Wiener Kernel Approach. this

technique is well described by Korenberg and Hunter [119]. This method also uses a

truncated discrete time version, Eq. 7.4. of the Volterra series, and the cross-

correlation (Pxij) between the input and the output. Eq. 7.5.

I I I

yen) = ho+ L~ (rt)u(n -Tt)+ L Lh2(Tp T2)u(n -Tt)u(n -1'2)+
~~ ~~~~

I I

+ ... + L'" Lhj(Tt •.. ·,Tj)u(n-Tt).··u(n-Tj)
T1=0 T)=O

Eq.7.4

where: urn) and y(n) are the sampled input and output. I is the system memory, J is

the truncation order and hn(Tj, ... , Tn} are the discrete Volterra kernels.

I

rpxy(j)= L~(i)rpxx(j -i)
;=0 Eq.7.5

j = 0.1, ... ,1

where tPxx is the autocorrelation of the input signal.

As it can be seen, Eq. 7.5, is of the form rp=Ah,hence the values of h can be found by

inverting matrix A (i.e. h=A-1(i). Higher order kernels can be calculated with the

same process, however considering the nthorder cross-correlation between the input

and the output.

This technique also shows disadvantages. When it is used for higher orders it gives

the Wiener kernels instead of the Volterra kernels [115J.

Finally, more recently Korenberg introduced yet another kernel estimation method:

The Fast Orthogonal algorithm [99]. This could be an alternative method to the cross-

correlation technique used in this research.
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7.2.1. Meaning of the Volterra kernels (theoretical example)

From the theoretical description in Figure 7.2 it should be obvious that the zeroth

order kernel is only an indication of the DC level (i.e. average) of the signal being

analysed. The meaning of the first and higher order kernels is not so obvious to

visualise. In fact these kernels indicate the pattern in which the past values of the

stimulus affect the present value of the system response.

"The nthorder Volterra kernel is the pattern of interaction among n pieces of the

stimulus past with regard to the effect that this interaction has upon the system

response" [102].

Hence, it can be understood that the first order kernels indicate how a stimulus at a

given time in the past affect the present value. The figure below shows the first order

kernel superimposed on the input signal. Since these series have very different

amplitudes two y-axis were introduced. The y-axis on the left indicate the amplitude

of the first order kernel, the axis on right indicate the amplitude of the system

response.

0.06 4

First order kernel analysis -h1 -response

-0.
031

-0.06

0.03 2

240

-4

Figure 7.3 - Analysis of first order kernel

As it can be seen the first order kernel also has a cyclic (non-damped) behaviour with

the same frequency of the system response. Also note that, from the analysis of the

first order kernel it is obvious that the sample which has the greatest effect on the

current sample lies at a lag of240. While the samples at lag=120, have a strong

negative effect. These lags were expected as the cyclic non-linearity has a period of

240 samples.
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A similar interpretation can be used to analyse the second order kernel. However this

is usually more complex, as it assumes that the present system response is dependent

on two consecutive inputs occurring at respective lags. This means that a positive 2nd

order kernel at position tbtz indicates that, the present input tends to be positive if cl

stimulus applied at tJ samples in the past is followed by a stimulus applied at "['2

samples in the past. The 2nd order kernel will always be symmetrical about tJ and t2.

Hence for practical purposes only half of the kernel matrix is plotted.

Finally the process of system identification using the Volterra kernel approach lies in

the analysis of the shape of the first and second order kernels. This can usually be

very complex. Other parameters can be used to allow for a comparison between

different system responses. This includes the analysis of the first order kernel

frequency (for under-damped cyclic systems), and the relative strength of linear and

non-linear components in a given signal. Note that this relative strength, "%yt,
"% Yn" is calculated from the rms value of the estimated linear and non-linear signal

components respectively. This is mathematically defmed as:

and

T

LYn(t)
%y = ...:..:1=::::.0 __

n T
Eq.7.6

where: Yl and v, are defined in Figure 7.2.

In this research these "auxiliary" parameters will also be analysed, as it is believed

that the faults on rotating machinery tend to affect the non-linear component of a

vibration signal.

7.3. Volterra kernel analysis

In this section the Volterra kernels for the numerical and experimental data (as

described in chapter 3) are included. As already discussed previously, this analysis

will be based on the visual observation of the first and second order kernels. Also the

"auxiliary" measures will be used as a basic measure of comparing the kernels for

the different time series.
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7.3.l. Numerical Example
Chapter 7, on-linear approach to condition monitoring original in colour

Before analysing the experimental data a preliminary analysis of the numerical data

generated as described in chapter 3 was performed. A routine with the Lee-Schetzen

kernel estimation algorithm written in Visual Basic was used to process the two sets

of data (i.e. good gear and the faulty gear). The results can be seen below.

O'2~9OOd
0.1

o
-o.t

.Q.2 +-~-~-~-t---~-~-~-
o 512 h,!.) 1024

0'2~faultY
0.1

o

-o.t

'{).2 +-~-~-~-t---~-~-~--1
o 512 h,!.) 1024

Figure 7.4 - First order kernel of numerical data
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-6-6 t2 -6-6

"2
• -18-6 60 .-18-6 60
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Figure 7.5 - Second order kernel of numerical data
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.-10-6
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Figure 7.6 - Kernel subtraction

1024

A simple visual inspection of these kernels

does not allow for the faulty signal to be

differentiated from the good signal. This is

hardly surprising, since both signals are equal

(except for the samples affected by the

simulated fault - i.e. the Gaussian pulse).

Therefore this method does not identify the

simulated fault. Still it must be noted that these

kernels are not equal. The figures on the left,

show the subtraction of the first and second

order kernels for the numerical data. As it can
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be seen the two kernels are slightly different. Note how the scale of the subtracted

signals is much smaller then the scales of the original kernels. Unfortunately this

method of kernel comparison is not effective as most real vibration signatures will

have embedded noise, therefore generating different minor variations to the kernel

values.

Now the "auxiliary" kernel measures for the numerical data are presented below.

Table 7.1 - Volterra auxiliary parameters for numerical data

Auxiliary Time series
Parameters Good Faulty

h)rms 00.0309 00.0310
%YI 41.2 41.2
%Yn 58.8 58.8

The main frequency component on the first order kernel is very close to the strongest

frequency on the time series under analysis (i.e. 40Hz). Also the remaining

parameters (h, rms, %Yl and %Yn) of the two time series are also very similar.

Therefore as it can be seen in this specific application the Volterra kernel analysis

fails to identify the presence of the Gaussian pulse in the simulated time series.

7.3.2. Experimental example

Here the experimental data already described in chapter 3 was processed with the

same kernel estimation routine used in the section 7.3.1. The vibration signatures for

all 7 gear conditions (i.e. 1 brand new, 2 reference, I worn out and 3 faulty gear

condition) were analysed. The results are shown below. As in the previous sections

the charts on the left relate to the raw vibration data, and the charts on the right relate

to the time averaged data. Note that these results were obtained using two full gear

revolutions (2048 samples) as the system response. The Volterra model has a linear

memory of 1024 samples (however only the first 200 first order kernels are

displayed), and a second order memory of 100 samples.

These results are grouped in two blocks, the first block (Figure 7.7), show the first

order kernels of the experimental data for all the gear conditions. The second block

(Figure 7.8), shows the second order kernels for the same experimental data.
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Figure 7.7 - First order kernel for experimental data
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From a pure visual inspection of the above kernels (Figure 7.7), it is very difficult to

differentiate between the different gear conditions. Still it can be seen that for the

faulty condition gears the first order kernels (especially hdO) to hd40)) present a

definite triangular wave shape with a period of 10 lags.

This indicates that the cyclic behaviour of the system response (vibration signature)

has a period of 10 samples. This is equivalent to 512Hz (as the sampling frequency is

5.12 kHz). The Fourier analysis of these signatures shows that the strongest

frequency components are very close to this value (see chapter 4).

This phenomenon is not so visible in the estimated first order kernels for the

reference gears, similarly the Fourier analysis of the reference gear does not show

the strongest component near 500Hz. Leading to the suggestion that for cyclic

signals the first order kernel tends to have the same frequency as the signal itself as

long as the cyclic signal has one defmite dominant frequency.

Furthermore this behaviour is also stronger in the time-averaged data, suggesting that

the removal of noise (owing to the time-averaging process) improves the

performance of this technique when used for fault identification.

The figures overleaf show the estimated second order Volterra kernels for the

experimental data. As in the previous chapters, this analysis has been performed both

on the raw data and the time-averaged data. Also, once again the charts on the left:

relate to the raw vibration signature, while the ones on the right relate to the time

averaged data.
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Figure 7.8 (a) - Second order kernels for experimental data

page 112



Chapter on-linear approach to condition monitoring original in colour

o.14-16

.10-14

.6-10

2-6

-2-2

-6-2

• ·10--6

·14-10

·16-14

.'4-18

.10-14

.6-10

.·10-6

10-14

.6-10

• ·10--6

• ·18-14

2-6

·2-2

·5--2

·14-10

·18-14

14-18

2·6

·2-2

-6-2

-14-10

F1_2C1 o

10

40

o

10

20

1:2

30

40

-1-1

-3-1

.-5-3

.-7-5

.-9-7

7-9

1-3

-1-1

-3--1

7-9

1-3

-1-1

-3--1

Tave_F1_2C1(12B)

o 10 20 tl Xl
F2_2C1

40

.-5-3

.-7-5

.-9-7

10

20
"Cz

30

40

40 50

.-5-3

.-7-5

.-9--7

r=~~~~~~~~~~~50
50o 10 20 "Cl 30 40

Tave_F2_2C1(12B) o

10 20 "Cl 30

F3_2C1

10

20
"C2

30

40

o

20 1:1 30 40

Figure 7.8 (b) - Second order kernels for experimental data

o 10

o 10 20 "Cl30 40
Tave_F3_2C1(12B)

o

10

20

40

r-~~~~~~~~JL~50
50o 10 20 "Cl30 40

As discussed previousl a full analysis of the second order kernels is a complex task,

as the magnitude and both lags (r. and "[2) of the kernel must be considered. A visual

inspection of these kernels (especially for the time-averaged data) can lead to a

meaningful analysis and differentiation between the different gear conditions. It is

c1earl seen (in the time averaged plots) that as the fatigue crack develops the strong

influence of periodical pulses (period of 10 samples) and respective lags of 10
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samples (i.e. 1't1-'t21=lO)diminishes. This is also observed for pulses with very short

respective lags (i.e. adjacent to the matrix diagonal).

This behaviour is not seen in the plots for the raw data. In fact on the raw data plots it

is impossible to visualise any specific trends from a pure visual inspection of the

kernel maps. This is attributed to the interference caused by the inherent noise

present in the raw signal.

This hypothesis is testified in Section 7.3.3, when an additional test of the Volterra

kernel approach is performed. This test uses the stress-wave signatures' (which is

less susceptible to noise from other adjacent processes) and shows that the raw

stress-wave data produces plots which are very similar to the time-averaged stress

wave data. This test also shows the importance of the time domain averaging

procedure for the effective use of the Volterra kernel approach to vibration condition

monitoring.

Finally, the "auxiliary" kernel measures for the experimental raw data are included in

Table 7.2. The first two columns of the table label the different vibration signatures

(gear cycles) for all the gear conditions. For the raw data, the four auxiliary

parameters (columns 2 to 4) are calculated for six cycles (each with two revolutions,

2Cl to 2C6) of vibration signatures. For the time averaged data only two cycles were

calculated (2Cl(12B) and 2C2(12B». A measure (labelled Ratio) combining the

relative strength of the linear to non-linear component was used. This is defmed in

the equation below:

Ratio = rms(estimated linear response) = rms(y/(t»
rms( estimated non -linear response) rms(y n (t» Eq.7.7

where: YI and Yn are defined in Figure 7.2.

2 This data was collected simultaneously with the acceleration data used throughout this research.
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Table 7.2 - Volterra auxiliary parameters for experimental data

GEAR CONDITION
Auxn..IARY PARAMETERS

h1 rms % YL %YN Ratio RatioTave

2CII2Cl(12B) 0.0156 39.33 60.67 0.648 0.742
;

2C2I2C2( 12B) 0.0158 39.76" 60.24 0.660 0.680c~= 2C3 0.0148 37.33 62.67 0.596"w:Zcr: 2C4 0.0156 38.22 61.78 0.619~ ._,
1i 2C5 0.0157 38.40 61.60 0.623...
::l

2C6 0.0161 39.68 60.32 0.658

2ClI2Cl(l2B) 0.0123 37.04 62.96 0.588 0.761--.:i 2C212C2(12B) 0.0113 36.68 63.32 0.579 0.618
c
0'-' 2C3 0.0122 36.88 63.12 0.584uGj]~2C4 0.0130 37.16 62.84 0.591

0 2C5 0.0125 37.43 62.57 0.598z
2C6 0.0129 37.92 62.08 0.611

2ClI2Cl(12B) 0.0119 36.09 63.91 0.565 0.793
M 38.47-.:i 2C2I2C2(12B) 0.0132 61.53 0.625 0.810
c 39.560'-' 2C3 0.0128 60.44 0.655uG:]]~2C4 0.0128 38.07 61.93 0.615

0 2C5 0.0130 37.91 62.09 0.610
:z

2C6 0.0131 37.85 62.15 0.609

2ClI2Cl(12B) 0.0153 42.62 57.38 0.743 0.709

2C212C2(12B) 0.0165 45.04 54.96 0.820 0.533
5 0.0136 36.53 63.47 0.5760'-' 2C3·0e~

2C4 0.0142 37.66 62.34 0.604
~'-'

2C5 0.0153 43.71 56.29 0.777

2C6 0.0173 45.58 54.42 0.838

2Cl12Cl(12B) 0.0099 35.27 64.73 0.545 0.616- 2C212C2(12B ) 0.0095 32.39 67.61 0.479... 0.579

S= 2C3 0.0129 44.05 55.95 0.787
vJ.l. 0.0129 41.62 58.38 0.713::1'-' 2C4QO.j

2C5 0.0122 40.03 59.97 0.667
J.I.

2C6 0.0130 41.76 58.24 0.717

2ClI2Cl(12B) 0.0108 39.49 60.51 0.653 0.679
M

2C212C2(12B) 0.0105 38.15 61.85 0.617... 0.631

~~ 2C3 0.0100 36.93 63.07 0.586
!,g 2C4 0.0111 39.52 60.48 0.653
·i 2C5 0.0111 38.76 61.24 0.633
II..

2C6 0.0119 41.25 58.75 0.702

2ClI2Cl(12B) 0.0117 40.69 59.31 0.686 0.623
......

2C212C2(12B) 0.0112 42.08 57.92 0.7271M 0.677

2C3 0.0112 38.96 61.04 0.638

!,f!:. 2C4 0.0111 39.73 60.27 0.659
.j

2C5 0.0124 42.07 57.93 0.726
II..

2C6 0.0118 42.12 57.88 0.728
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A graphical representation of the results in Table 7.2 is included below. These results

suggest that a possible use of kernel estimation for condition monitoring is by

analysing how well the 1st order kernel models the vibration signal. This is based on

the idea that different faults generates different non-linearities. This hypothesis is

very plausible, however it still needs experimental investigation for full acceptance.

02C1

0.85 I
0.75

0.65

0.55

0.45
RE1

Linear/Non-ilnear Ratio for different gear conditions
(raw vibration signatures)

O~ .~ .~ .~ .~

wo F1RE3 F2RE2 F3

Figure 7.9 - Ratio ofkemel estimated linear to non-linear signal content

In the present study, the Y/Yn ratio for the reference gears is constantly around 0.6. In

contrast the ratio for the worn-out and faulty condition gears are not. However, these

plots indicate that fatigue crack tend to modify the Y/Yn ratio. This could be due to its

dampening effect, still to ascertain this fact for sure without further experimentation.

7.3.3. Volterra approach to CM using Stress wave signatures

Here, stress wave signatures (collected simultaneously with the vibration data) are

used with the Volterra kernel approach to condition monitoring. This test testifies

that, the noise inherent to the vibration signatures plays a major role on the 2nd order

kernel estimation. Hence, if vibration data is to be used with the Volterra kernel

approach to condition monitoring, then time averaging procedures (which reduces

the random noise) are essential. In contrast, time averaging procedures are not

needed for stress-wave signal, as these usually have a higher signal-to-noise ratio.

In this section only the second order kernels are calculated, as these are the kernels

which were greatly affected by noise. These are shown overleaf, once again the left

column gives the second order kernels for the raw stress-wave data, while the right

column gives the results for the time averaged stress-wave data.
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Figure 7.10 - Second order kernels for experimental data (stress wave signature)
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As it can be seen now the plots for the time-averaged data are very similar to those

for the raw data. Furthermore, the trends caused by the increasing fatigue crack are

similar for both raw and time-averaged data. These trends are also similar to those

observed in the second order kernels for the time-averaged vibration signatures.

This shows that the hypothesis formulated in the previous section is true and shows

the importance of the time averaging procedure on noisy data signatures.

7.3.4. Summary of the performance of the Volterra approach to

condition monitoring

It has been shown that Volterra kernel analysis can also be used for the identification

of fatigue cracks on rotating spur gears. This technique has effectively identified the

presence of the crack in two different sources of data: vibration signatures (after

time-averaging procedure) and stress wave signatures. Itmust be observed that the

performance of this technique is heavily dependent on the noise level in the collected

data. In fact, this method failed to produce meaningful results for the raw vibration

data, which presented the highest noise level, out of all the data sets analysed. Below

is a summary of the advantages and disadvantages of this method:

Advantages

• Volterra kernels are able to model non-linear signals, hence allowing the analysis

of truly non-linear systems.

• Previous knowledge of the signal properties is not required for the selection of

the input parameters. This is a major advantage of this technique as most

methods used in vibration condition monitoring require previous knowledge

about the signal in order to select appropriate parameters (window function in TF

methods, and the mother wavelet in time-scale decomposition) before the signal

analysis.

Disadvantages

• This technique is extremely computationally expensive. Depending on the signal

length and memory of the Volterra model, the processing can take several
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minutes (on a typical PIT300 MHz, 64Mb RAM), making it impossible to apply

this technique to online real-time condition monitoring. This problem will

eventually be overcome as microprocessors become more and more powerful.

• This technique is not suitable for long cyclic signals with a low signal-to-noise

ratio. So, for most real applications of these techniques to vibration signatures, a

time-averaging procedure is essential to reduce noise influence on the time series.

• For under-damped signals very long memories are needed to accurately model

the system.
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Chapter 8

Discussion.

This chapter reviews and compares all the different condition monitoring covered by

this research. Here four main sections are included, each relates to the different

approaches to condition monitoring, namely: statistical, frequency and time-

frequency, time-scale and non-linear approaches. These sections contain a summary

of the results obtained in this research.

8.1 Statistical approach to CM.

This approach relies on well established statistical measures techniques such as

moments, skewness and Kurtosis measures (section 4.1). These are the simplest

approaches to vibration condition monitoring, and the results presented here show

that these techniques are also suitable for the identification of tooth fatigue cracks on

spur gears.

This research introduces and shows the effectiveness of one particular statistical test,

namely: Kolmogorov-Smimov test (section 4.2.2). This test, which has never been

used in vibration condition monitoring applications, is based on the statistical

comparison of two signals. This comparison return 1 if the null hypotheses (i.e. the

two signals come from the same distribution, hence are statistically equal) is met, and

returns 0 if the signals are not equal. These values can be easily converted into an

easy to assimilate measure, which has been called "similarity probability".
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The results obtained in this research clearly show that when comparing similar

vibration signatures (i.e. reference with reference) the similarity is much greater than

when comparing different signatures (i.e. reference with faulty). Furthermore, it was

observed that as the fatigue crack increased, the expected decrease in the similarity

probability was observed.

These results are of great importance as it shows that this technique can and should

be used in vibration condition monitoring applications. Also it leads the way to the

usage of this technique as a pattern classification tool. This would be based on the

results here obtained and the theoretical contributions by Peacock [120] and Fasano

and Franceschini [121] comparing this technique to time-frequency maps, time-scale

maps and second order Volterra kernels.

It is believed that the performance of this technique is as effective as the performance

of neural networks. The only difference being that this technique does demand the

computational overhead linked to the training period of the Neural Network.

8.2. Frequency and Time-frequency approach to CM.

This approach is based on the assumption that different faults will generate different

frequency components at certain times in the vibration signature. This approach

decomposes the time domain signal onto a time-frequency map. This map forms the

basis for the analysis of the system condition. Time-frequency maps have already

been successfully used in a wide range of fields (including speech recognition, echo

detection, gear and bearing failure).

This analysis can be done either visually, or if a feature extraction method is used,

the maps can be fed to pattern recognition systems for automated condition

monitoring. Consequently, these techniques can be used as a vibration signature pre-

processing and post-processing tools.
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8.2.1. Spectral analysis

Today, spectral analysis is widely used as a tool for a preliminary analysis of time

series. This method applies the Fourier transform to a vibration signature, thereby

identifying the dominant frequencies appearing in the spectral plot.

This tool is very effective in providing fundamental knowledge of the signal under

analysis. However, it has been shown that this technique cannot be reliably used for

early fatigue crack detection. In fact, from the visual observation of the spectral plots

it is virtually impossible to ascertain for sure the condition of the gear (section 5.1).

Still, this technique is very powerful because of its simplicity. Furthermore, Fourier

analysis forms the basis of many other time-frequency condition monitoring

techniques.

8.2.2. Cepstral analysis

This method relies on the performance of the cepstrum technique on the time series.

This can be seen as the spectrum of a spectrum. Cepstral analysis is very effective for

the observation of major frequency components on a signal. It groups the harmonic

contents on a single fundamental frequency (section 5.2).

Also it was observed in this research that cepstral reconstruction (an extension to the

cepstral analysis) is a very effective method for identifying the relative strength of

transients present in a signal. It is shown in this research that the observation of the

first sample on the cepstral reconstruction plot is capable of clearly distinguishing

between the different gear conditions tested. This suggests that this method is very

suitable for pattern extraction from time-domain signals, as it not only indicates the

fimdarnental frequency components, but also gives some indication to transient

contents in the signal. The patterns extracted from this method can then be fed into

automated pattern recognition techniques such as neural networks.

Unfortunately this technique has one major drawback. It does not allow for fault

localisation, as all the signal components lose their phase information.
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8,2.3. Spectrogram (STFT)

This technique is based on the well known Fast Fourier Transform algorithm. It

selects portions of the time-domain signal and converts (these portions) to the

frequency domain, giving the spectral content for each section (i.e. each time

instant). The spectral information for the different time instants are plotted in the

form of a 2-D map or a 3D surface, showing how the signal spectral contents change

over time (section 5.3).

The main advantage of this technique lies in its simplicity and speed. Furthermore,

spectrogram maps are of easy assimilation due to its uniform and smooth surface.

Unfortunately, this technique shows two major disadvantages:

1) This method does not allow for a signal analysis with a simultaneous high time

and high frequency resolution (time-frequency resolution trade off). Therefore, it

is concluded that this technique is unsuitable for the accurate identification of

both large and small-scale patterns in the signal.

2) The performance of this method is very much dependent on the correct choice of

the window function (including shape and dimensions). The correct choice can

only be made if additional information on the signal to be processed is available.

8.2.4. Wigner distribution

This technique is also based on the well known Fast Fourier Transform algorithm.

Similar to spectrograms, this technique produces a 2D map (or 3D surface) showing

the signal spectral content for different time instants (section 5.4).

The main advantage of this technique lies in the fact that it does not suffer from the

time-frequency resolution trade-off. This is related to the method of selecting the

"portions" of the time series described in section 5.4. Unfortunately, this technique

shows one major disadvantage, which jeopardises the performance of this method:

The WO is a bilinear functional ofa given waveformJ(t}. WheneverJ(t} is a sum of

various independent components, such as a combination of multiple frequencies and

noise (this is the case for most vibration signals), then the WD introduces cross-
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terms. These cross-terms can be seen as an artefact arising from the interference

between the time series' multiple components. This interference can be reduced by

the usage of windows that maximise the local signal components, and minimise the

distant components. Unfortunately this only reduces the interference between non-

simultaneous signal components. For simultaneous components the interference is

inevitable.

A consequence of the cross terms interference is that the WD maps indicate the

presence of non existent frequency components (ghost components). This reduces the

clarity of the maps, making it very difficult to observe the real frequency components

of the signal.

Still, this method is of invaluable need when a high time and frequency resolution is

needed in the analysis of signals where multiple components do not occur

simultaneously. One example is telephone tone dial detection.

8.3. Time-scale approach (wavelet approach)

The wavelet analysis is a technique which extracts both frequency, phase and

position information from a signal. It can be thought of as a Fourier analysis that uses

other orthogonal functions (instead of sine and cosine) to decompose the signal.

These orthogonal functions are called mother wavelets. Similar to the Fourier

analysis this technique transforms the signal into one-dimensional vectors. These

show how the intensity of the different wavelet scales change over time. Also, these

vectors can be used to generate time-scale maps. These are very similar to time-

frequency maps, in the sense that they can also be presented as a 2D map or a 3D

surface, and more importantly, they contain the time-scale! information describing

the signal under analysis.

In this research it was found (section 6.5) that this method is extremely effective as a

pre-processing tool for automated pattern recognition system, since it is able to

3 Note that each wavelet scale can be easily converted into frequency; this is shown in chapter 6.
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concisely extract the most important features of a signal. However, the pure visual

inspection of time-scale maps does not show the presence of fatigue cracks as well as

some of the previous techniques here described. Still, it must be noted that the

experienced engineer is able to recognise the faults in these maps.

The main disadvantage of this technique is related to the that fact the frequency

resolution (i.e. number of scales) is governed by the number of samples of the signal

under analysis. Also the conversion between scale to frequency is not a linear

process. In fact the mean square maps tend to display the middle to high frequency

components on its higher levels. This can be a problem for signals with low signal-

to-noise ratio, as the middle to high frequency components can be overshadowed by

the high frequency noise present in the signal.

This, opens the way to further work being carried out in this area, investigating how

low-pass filters can be used to improve the performance of condition monitoring

systems by means of wavelet mean square maps.

Furthermore, this research shows that the choice of the mother wavelet greatly

affects the appearance of the time-scale map. This suggests that, as with time-

frequency techniques, previous knowledge about the signal must available for the

correct choice of mother wavelet.

8.4. Non-linear approach (Volterra Kernel)

This technique is based on the analysis of the estimated Volterra kernels of different

signals. These kernels are estimated numerically, and many different algorithms exist

for this purpose. This research introduced the use of Volterra series (for the first

time) and showed the effectiveness of this new approach to condition monitoring, by

calculating the zeroth, first and second order kernels for different vibration signatures

(section 7.3).

The estimated kernels are presented as a single value (zeroth order kernel), as a ID

vector (the first order kernel) and as a 2D matrix (second order kernel). Again as in

the previous approach only a visual inspection of these kernels was performed.
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The experimental results showed that especially the second order kernels gave clear

indication of the presence of fatigue cracks. This performance was cross-checked by

using data sets collected with different transducers (namely an accelerometer and a

stress wave sensor). This opens the way to further applications of this technique in

the vibration condition monitoring and analysis.

The main advantage of this technique lies in the fact that it does not require any

previous knowledge about the signal to be analysed. However, this technique also

shows some drawbacks.

The major drawback of this technique is related to its high sensitivity to noise.

Therefore it must be used with great caution for signals with low signal-to-noise

ratios. This drawback is clearly seen when comparing the results from the raw

vibration (accelerometer) signatures to those from the time-averaged vibration

(accelerometer) signatures, and stress wave sensor. The second order kernels for the

raw vibration data do not lead to the identification of the presence of a fatigue crack.

In fact, it does not give any insight on the signal being analysed (hence condition of

the gearbox). This is shown by the spurious peaks spread across the plots, which are

attributed to the influence of noise present in the signal.

This technique has another minor drawback. The kernel estimation process is an

extremely computationally expensive task. Therefore, anyon-line application of this

technique is of difficult implementation. Still, this does not pose as a major problem

as the microprocessor power is ever increasing.

These two problems should be addressed in further works based on the ideas given

here.
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Conclusions

This chapter concludes the ideas and fmdings of this research programme by

summarising the main points of the topics here studied. The final section, further

work, restates the questions opened by this research. These questions should be

tackled in further research in this area.

This research reviewed today's most common techniques in wide used for vibration

condition monitoring, namely:

• Statistical approach, including well known measures such as vibration

signatures moments and statistical measures such as kurtosis and skewness.

• Frequency and time-frequency approach, including well known techniques

such as FFT, Cepstrum, spectrogram and Wigner distribution.

• Time-scale approach, including the Daubechies wavelet series and the

Harmonic wavelet.

In addition this research also introduces two new techniques which can be used in

vibration condition monitoring applications, namely:

• The Kolmogorov-Smirnov test. This method belongs to the class of statistical

methods for vibration condition monitoring.

The Volterra kernel approach. This approach belongs to the class of non-linear

methods for vibration condition monitoring.
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These techniques have not yet (to the best of the author's knowledge) been applied to

the field of vibration condition monitoring, and experimental results have shown that

these techniques are of invaluable importance to the condition monitoring engineer.

The performance of the two new techniques was tested and evaluated over the

problem of early detection of tooth fatigue cracks on spur gears. The fatigue cracks

were simulated by adding cuts, with an attack angle similar to those of real fatigue

cracks, to the base of the tooth face. In all three cracks (cuts) of different depths were

analysed. The results are presented in chapters 4 and 8. These clearly show the

effectiveness of these methods, in fatigue crack identification. From the

investigations performed the following conclusions were obtained.

1) The time averaging procedure is effective to magnify the signal-to-noise ratio of

vibration signature. However, for high frequency component analysis, this

method must be used with great care. In fact, it has been shown that minor

variations in the rotational speed (or data acquisition sampling frequency) of the

device under analysis, is sufficient to place the high frequency components in

interference mode. This leads to an erroneous representation of the signal to be

analysed, jeopardising the whole condition monitoring system.

2) The Kolmogorov-Smirnov test is of great importance for the comparison of

signals. It has been shown that this test is able to accurately identify the presence

of the fatigue faults in a time series. Also it is able to identify the advancement of

the fatigue crack.

3) The well established frequency techniques for condition monitoring (spectral and

cepstral analysis) are essential to give the condition monitoring engineer some

preliminary knowledge about the signal under analysis. Furthermore, cepstral

analysis in particular is extremely effective in providing information related to

the transient content in the signal. This can be achieved by means of the cepstral

reconstruction. Also this technique proved to be very effective for signal pattern

extraction.
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4) From the time-frequency (and time-scale) distributions the spectrogram showed

the best performance for the detection of fatigue cracks. This is attributed to the

uniformity of the maps generated by this technique. The maps generated from the

WVD include too much cross-term interference (increasing the complexity of the

map appearance), and the time-scale maps (from wavelet decomposition) present

too little frequency resolution. In these maps most of the signal information is

contained in two levels only.

5) Wavelet decomposition seems to be an ideal tool for signal pattern extraction, as

it is able to fully represent a signal on a minimum number of patterns. This is of

utmost importance when using wavelets as pattern extraction tools, for feeding

automated pattern recognition systems (such as neural networks). Also the

investigations here presented show that the choice of the mother wavelet greatly

affect the appearance of the time-scale map. This suggests that for effective

condition monitoring by means of wavelet mean squares maps, previous

knowledge about the signal to be analysed is needed. This aids in the correct

choice of the mother wavelet.

6) The Volterra kernel approach is another effective condition monitoring

technique. It indicates the presence of fatigue cracks on spur gears. This method

is not suitable for the analysis of signals with low signal-to-noise ratios, as the

noise greatly influences the second order kernel (which gives the best indication

about the fault presence).

Aiming to collect and summarise the results obtained in this research Table 9.1 was

devised. The table compare the different methods studied in terms of their

performance for the specific problem of fatigue crack detection.
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Chapter 9. Conclusions and further work

The previous table summarises the main properties of the techniques studied. These

related to:

• Fault detection capability, shows how the techniques are able to:

I. identify presence of a crack,

2. identify the different evolution stages of the crack, and;

3. identify the symptoms from worn out gears.

• Time domain localisation of fault, relates to the capability of determing 'where'

in the vibration signal the fault is present (phase information).

• Computational expense/complexity, relates to the difficulties involved in the

algorithm coding and also the time required to process the vibration signals

• Theoretical, interpretation simplicity, relates to the simplicity of results

obtained from the different techniques. This is of utmost importance in an

industrial environment, as most of the condition monitoring programmes will be

carried out on the factory floor.

Finally, it must be emphasised that the results in Table 9.1 are accurate for the

specific problem of early fatigue crack identification. Therefore, it must be used only

as a guiding tool for other condition monitoring applications.

The contributions of this research could be summarised as follows:

1) Introduction of two new techniques to the analysis of non-linear vibration

signatures. Neither of these techniques requires any signal pre-processing,

allowing for the direct use of the time-domain data.

2) A comprehensive comparative review of the performance of existing condition

monitoring approaches to the problem of identifying early tooth fatigue cracks on

spur gears.
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3) A comprehensive comparison of the performance of the different condition

monitoring approaches when using raw vibration signatures and time-averaged

vibration signatures. This supports the previous claims that the time-averaging

technique magnifies the signal-to-noise ratio of the signal. Also it is noted in this

research that this technique must be used with great care for the analysis of high

frequency components, as minor variations on the rotational speed or the gear, or

on the sampling rate is sufficient to shift the time series. Consequently, high

frequency components can enter in destructive interference mode, leading to an

erroneous representation of the time series.

4) Importance of mother wavelet choice and how it affects the appearance of the

time scale mean square maps.

9.1. Further Work

The work presented here aims at providing the vibration condition monitoring

engineer with a wide range of tools that could be included in a vibration condition

monitoring toolkit. These tools should be robust enough to identify a wide range of

faults in mechanical systems. To enhance the toolbox presented, further work could

be directed at the following issues.

1) Usage of higher order Volterra kernels: Investigations into the influence of the

selected order for the Volterra series over the task of fault identification is

urgently needed. This research has only calculated up to the second order kernels.

2) Use of different statistical measures for the KS test: The statistical measure

used for the comparison of two signals with the KS test plays a major role in its

performance. This research only used the maximum distance between cumulative

distribution functions. However it is believed the by using different measures

(such as mean, mean square or root mean square distances) the user is able to

adjust the sensitivity of this method, tuning it to specific applications.

3) Fault types: The performance of the newly introduced techniques (KS test and

Volterra Kernels) should be tested on other types of mechanical faults such as
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blips, shaves, pitting and scoring, missing tooth, misalignment, unbalance,

bearing defects, etc. This investigation would verify the true effectiveness and

flexibility of these approaches.

4) Pattern recognition: Use of the 2 dimensional KS test for and automated

comparison of time-frequency, time-scale and second order Volterra kernels

obtained from different vibration signals. This, in effect should be able to

accurately state whether 2D maps (such as spectrogram and others) representing

vibration signatures are similar. Therefore, if a template with all the system

conditions is known, this technique could be used to match the most likely

condition of the system under analysis. This approach has one main advantage

over neural networks, it does not require the vast amount of data needed for the

network training.
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ppendi 1-Gear details

Parameter Pinion Wheel
Type MA25-20S MA25-32S
Number of teeth 20 32
Module 2.5 2.5
Face width [mm] 25 25
Pressure an~e-[deg] 200 200

Helix angle [deg] 00 00
Pitch cliameter[mm] 50 80
Material - mild steel unhardened EN8 EN8
Bore [mm] 90 90
Bore hole H8 H8
Bore key [mm x mm] 6x6 6x6

General tolerance [um] ±0.25 ±0.25
Quality "9gS "9gS

Th se gears were manufactured to the following standards:

B 970.3: 1991 pecification for wrought steels for mechanical and allied

engineering purposes

Tolerances for cylindrical gear teeth; Tolerances for deviations ofD 3962-1

D 396-2

individual parameters

Tolerances for cylindrical gear teeth; Tolerances for tooth trace

deviations.

Tolerances for cylindrical gear teeth; Tolerances for pitch-span

deviations.

Tolerances for cylindrical gear teeth; Tolerances for working

deviations.

D 3962-3

D 3 63


