
CONSTRUCTION OF A SUPPORT TOOL FOR

THE DESIGN

OF THE ACTIVITY STRUCTURES BASED

COMPUTER SYSTEM ARCHITECTURES

By

Sabah Mohamad Amin MOHAMAD,
B.Sc, M.Sc., Dip.Comp, AMBCS, MACM

Thesis submitted in fulfillment of the requirements of the degree of Doctor of Philosophy

in Computer Science.

Department of Computer Science,

BRUNEL The University of West London,

Uxibridge, Middlesex,

ENGLAND

1986

To the Lord lor his guidance,

To the memory 01 my lather, lor his efforts and sacrifices.

To my wile lor here patience, encouragement and love,

To my mother who taught me the love 01 knowledge,

To my brothers and sisters.

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to

Dr. Ladislav J. Kohout

for his time spend in guiding me in this research and for demonstrating that cooperative

research can be so enjoyable. Without his unfailing energy and enthusiasm, I would not be

able to complete this thesis.

I wish to thank

Dr. C. F. Reynolds

for his most helpful comments and encouragement.

I would like also to thank Professor w. Bandler of Florida State University Computer

Science Department for his interest in my thesis.

Special thanks to my friends Dr. M. Ohiorenoya of Benn University, Institute of Com

puter Science, Mr. H.T. George of BruneI University, Electrical Engineering Department,

and Professor J.C. Cavoras of Glasgow University for their helpful discussions and encour

agement.

Finally, I would like to express my sincere gratitude for the financial support of the Iraqi

Government for the period of this research.

The typesetting, formatting and art-work of this thesis have been prepared with UTEJX the document
preparation system running on an mM PC/XT and was produced on an IMAGEN Imagestation laser
printer.

IJ.TEJX is a trademark of Addison-Wesley Publishing Company, 'lEX is a trademark of the American
Mathematical Society, mM PC/XT is a trademark of International Business Machine Corporation, IMAGEN
is a tradmark of Imagen Corporation.

BruneI University, Department of Computer Science, S.M.A. Mohamad, "Construction

of A Support Tool for The Design of Activity Structures Based Computer System Archi

tectures" .

ABSTRACT

This thesis is a reapproachment of diverse design concepts, brought to bear upon the computer sys

tem engineering problem of identification and control of highly constrained multiprocessing (HeM)

computer machines. It contributes to the area of meta/general systems methodology, and brings

a new insight into the design formalisms, and results afforded by bringing together various design

concepts that can be used for the construction of highly constrained computer system architectures.

A unique point of view is taken by assuming the process of identification and control of HeM

computer systems to be the process generated by the Activity Structures Methodology (ASM).

The research in ASM has emerged from the Neuroscience research, aiming at providing the

techniques for combining the diverse knowledge sources that capture the 'deep knowledge' of this

application field in an effective formal and computer representable form. To apply the ASM design

guidelines in the rea.lm of the distributed computer system design, we provide new design definitions

for the identification and control of such machines in terms of rea.lisations. These realisation defi-D.i

tions characterise the various classes of the identification and control problem. The classes covered

consist of

1. the identification of the designer activities,

2. the identification and control of the machine's distributed structures of behaviour,

3. the identification and control of the conversational environment activities (i.e. the ran

domised/adaptive activities and interactions of both the user and the machine environments),

4. the identification and control of the substrata needed for the realisation of the machine, and

5. the identification of the admissible design data, both user-oriented and machine

oriented, that can force the conversational environment to act in a self-regulating

manner.

All extent results are considered in this context, allowing the development of both necessary

conditions for machine identification in terms of their distributed behaviours as well as the substrata

structures of the unknown machine and sufficient conditions in terms of experiments on the unknown

machine to achieve the self-regulation behaviour.

We provide a detailed description of the design and implementation of the support software tool

which can be used for aiding the process of constructing effective, HeM computer systems, based

on various classes of identification and control. The design data of a highly constrained system, the

NUKE, are used to verify the tool logic as well as the various identification and control procedures.

Possible extensions as well as future work implied by the results are considered.

TABLE OF CONTENTS

1 INTRODUCTION

1.1 Motivation
1.2 Terminology and Definitions .

1.3 The Thesis Synopsis
1.3.1 Presentation of the Thesis:

1.3.2 CHAPTER 2:

1.3.3 CHAPTER 3:

1.3.4 CHAPTER 4:

1.3.5 CHAPTER 5:

1.3.6 CHAPTER 6:

1.3.7 CHAPTER 7:

1.3.8 CHAPTER 8:

2 AN OVERVIEW OF THE EXISTING TECHNIQUES FOR CONSTRUCTING

HIGHLY CONSTRAINED COMPUTER SYSTEMS WITHIN THE SCIENCE

1

1

1

9

13

13

14

14

15

15

16

16

17

PARADIGM 18

2.1 General Discussion . 18

2.1.1 Abstract Features of Computer Systems Enforcing The Protection Constraint 24

2.1.2 An Overview of The Ticket-Oriented Protection Constraint . 27

2.2 The Software Engineering Approach 29

2.3 The Computer Architecture Approach 35

2.4 The Knowledge Engineering Approach 44

2.5 Hints For A Successful Computer System Design .

2.5.1 Dedicated Language Dedicated Architecture Approach:

2.5.2 Non-Dedicated Language Dedicated Architecture Approach:

2.5.3 Dedicated Language Non-Dedicated Architecture Approach:

2.5.4 Non-Dedicated Language Non-Dedicated Architecture Approach: .

2.6 Concluding Remarks .

46

48

49

51

52

52

S AN OVERVIEW OF THE EXISTING THEORETICAL APPROACHES FOR

CONSTRUCTING HIGHLY CONSTRAINED COMPUTER SYSTEMS WITHIN

THE SCIENCE PARADIGM 54

3.1 Milestones.......................

3.2 Critique of Analytical Modelling

3.2.1 The Analytical Models of The Queueing Theory

3.2.2 The Simulation Models of The Queueing Theory

3.2.3 The Empirical Modelling of The Queueing Theory ...

54

56

58

67

71

11

3.3 Conclusions 71

" INTRODUCING ACTIVITY STRUCTURES: A METHODOLOGICAL AP

PROACH FOR CONSTRUCTING HIGHLY CONSTRAINED EFFECTIVE COM-

4.1

4.2

PUTER SYSTEMS

Introduction

The Cornerstones

4.3 General And Meta Systems Paradigms Versus Activity Structures

4.4 From Neuroscience Research To Computer System Design

4.5 Activity Structures versus The Other Neuroscience Modelling Disciplines

4.6 The Concepts of The Design Methodology of Activity Structures

4.6.1 The Selection Step: ...

4.6.2 The Decomposition Step:

4.6.3 The Representation Step:

4.6.4 The Exploration Step: ..

4.7 Describing Computer Systems via Activity Structures

, .

5 AN ABSTRACT SHELL FOR THE ACTIVITY STRUCTURES-BASED COM-

'13

73

74

76

77

79

80

82

83

87

88

90

PUTER SYSTEM DESIGNS 99

5.1 Introduction

5.2 Representing The Shell Conversational Environment

5.2.1 Generating User Activities:

5.2.2 Generating the computer machine activities: .. .

5.2.3 Towards Simulating the User and Machine environments:

5.3 The Functional Structures of The Inner Shell

5.3.1 The knowledge representation structures:

5.3.2 The inferential structures: .

5.3.3 The control structures: ..

5.3.4 The protection structures :

5.3.5 The communication structures :

5.3.6 The interpretive structures: ..

5.4 Performance Probes of The Shell .

5.5 The Implementation Language of The Shell

6 THE IM:PLEMENTATION DETAILS OF THE SIM:ULATION OF AN ACTIV

iTy STRUCTURES BASED COMPUTER SYSTEMS POSSIBILISTIC GEN-

99

100

101

105

109

112

113

116

119

123

127

130

132

134

ERATOR 13'1

6.1 An Overview . 137

6.2 The Designer First Activity: Selecting Components Of A Possiblistic Generator. 138

6.3 The Designer Second Activity: Decomposing The Possibilistic Generator. 142

6.3.1 Producing Possibilistic Constellation by the Non-Parametric Changes 143

6.3.2 Producing Possibilistic Family by the Parametric Changes

6.4 The Designer Third Activity: Representing The Possibilistic Family

6.4.1 The Generation of the Conversational Environment:

6.5 The Implementation Details of The Functional Structures

6.5.1 The Implementation of Knowledge Representation Structures:

6.5.2 The Interpretive Structures: An Implementation Outline ...

6.5.3 The Communication Structures: The possibilistic generator kernel

6.5.4 The Inferential Structures:

6.5.5 The Control Structures: The I/O control

6.5.6 The Protection Structures

ill

145

147

148

156

156

162

165

171
185

195

'1 EXPLORING THE DYNAMIC BEHAVIOUR OF THE ACTIVITY STRUC

TURES BASED POSSmILISTIC GENERATOR OF COMPUTER SYSTEMS 199

7.1 An Overview .. 199

7.2 A Framework for The Behavioural Description of The Activity Structures Based Com-

puter Designs .. 203

7.3 Strategy for The BehaVioural Description And Perforrnoance Measurement 207

7.4 A Brief Overview of The Nuke System. .. 210

7.5 Collecting The Nuke-Oriented Design Data for The Study of Behaviour of The Possibilis-

tic Generator .. 211

7.6 Perforrnoact Modelling: Towards Analysing The Behaviour of The Possibilistic Simulator 217

7.6.1 Towards Experimentations: The Reduction Oriented Changes 218

7.6.2 The results of experiments of perforrnoact modelling: . 229

7.7 The Use of Admissible Models and The Validation Issue 233

8 SUMMARY, CONCLUSIONS AND FUTURE RESEARCH

8.1 Summary And Conclusions

8.2 Future Research

REFERENCES

APPENDIX

239

239

244

248

LIST OF FIGURES

1.1 The essential elements of successful computer design methodologies.

2.1 The black box: The Traditional Design Methods

2.2 The conventional approaches of software engineering that can be used for computer sys-

tems construction.

2.3 The Hierarchy of Uses: Software Engineering-based Design Method

2.4 The Matching Problem Between Structures

2.5 Flynn's Computer Performance Architectures

2.6 Major research efforts at the US supercomputers centres

2.7 Functionally Modified Flynn's Architectures

2.8 The PMS Description of the VAX-11/770 computer system.

2.9 An Example of a Vertical Migration Process.

2.10 Reiner Adaptive strategy.

2.11 The main phases of the design process ..

2.12 Design and Synthesis Tools Structure.

3.1 Queueing Theory Based Models .

3.2 The Operational Method

3.3 Single Server System

3.4 An Example of Queueing Networks Simulation Tools

4.1

4.2

4.3

4.4

4.5

4.6

4.7

5.1

5.2

The Design Scheme of Activity Structures

Partitioning the Development Cycle of Activity Structures.

Activity Structures Forms Before and After Realisation

The various exploration changes on a shell.

The Syntactic Decomposition of a functional structure.

The Semantical Statical Description of a functional structure

Example of Coroutines achieving Concurrency and Synchronisation.

Barber's Model: User Productivity versus the job Satisfaction (Barber 1979, p. 29) .

A General-Purpose Computer Machine Substrata.

IV

6

20

31

34

36

37

37

40

42

44

45

48

49

58

62

64

68

81

85

86

89

92

92

95

102

103

5.3 An Example of a jobs connection settings. 107

5.4· Performing The Adaptive-Technique Steps: an example. 108

5.5 Activity descriptors and process descriptors. 110

5.6 Activity list servicing example. 111

5.7 Featuring the mechanism for generating our descritor-oriented architecture 115

5.8 The memory based inferential mechanism. 111

5.9 The shape of the user loss function (the user intention service policy) 118

5.10 Kernelised communication distributed modules of a general-purpose computer system. 120

5.11 An abstract view of a communication modules network.

5.12 The internal structure of a communication module ..

5.13 The Basic Components of our Protection System . .

5.14 The Port-Oriented Protection System

5.15 Interprocess communication mechanism- Communication Parteners.

5.16 An abstract view of our communication data structures.

5.17 Hierarchical layers of a computer system.

6.1 Fitting the processes of the class of highly constrained systems to the different functional

v

122

123

126

127

128

129

131

structures of our generator. 140

6.2 Schematic view of the scheduling components of . . . 149

6.3 The essential descriptors of the possibilistic generator 157

6.4 Processes Flow in the Two Inferential Components. 172

6.5 The System Loss Function. 173

6.6 Our PLS stack structure . . 175

7.1 Factors affecting the response time measure. . 201

7.2 The performoact modelling framework.. . . . 205

7.3 The Nuke Functional Framework 211

7.4 PERFORMOACT Modelling: Reductions Effects using Average Resource Utilisation. 220

7.5 PERFORMOACT Modelling: Reductions Effects using Average System Throughput 221

7.6 PERFORMOACT Modelling: Reductions Effects using Average Response Time 222

7.7 Adding Dynamic Memory Protection to The Interactive Constellation . . 226

7.8 Reducing The General Purpose Simulator to An Interactive Constellation 227

7.9 Reducing GPPS to a GPC with Dynamic Memory Protection. 228

7.10 The transaction structure and its contribution to the response time index. 229

7.11 PERFORMOACT Modelling: The Effects of Adding Terminals. 232

7.12 Simulation vs Real System Results: A Validation Case Study . . 236

7.13 Validating The Simulator Results with some Theoretical Models 237

7.14 A Comparison of Protected Systems Disc Utilisation Performance 238

8.1 Design factors of our computer design methodology. 240

LIST OF TABLES

1.1 The six generations of computer systems ...

2.1 Various Capability Designs.

2.2 The CFA Selected Computer Organisations .

3.1 Some Less-Used Computer Systems Modelling Theories ..

6.1 User Environment Intention Parameters

6.2 Conventional Descriptor Mapping Techniques..

6.3 The Port Map, Where IS : Inferential Structure CS : Control Structures . .

6.4 Different Processor System Scheduling Policies.

7.1 NUKE System-oriented Verification Parameters.

7.2 The User-Oriented Parameters.

7.3 PERFORMACT MODELLING OF THE MAJOR REDUCTION ACTIVITIES USING

Vl

2

28

39

56

141

164

165

181

215

216

THE AVERAGE RESOURCES UTILISATION FOR EFFECTIVENESS 223

7.4 THE EFFECTS OF THE MAJOR REDUCTION TECHNIQUES UPON THE AVER-

AGE SYSTEM THROUGHPUT INDEX .. 224

7.5 THE EFFECTS OF THE MAJOR REDUCTION TECHNIQUES UPON THE AVER-

AGE RESPONSE TIME INDEX .. 225

7.6 Summary of the experimentation.. .. 230

7.7 The Effects of Changing The Average Number of Terminals on The Average Response

Time Index .. 231

Chapter 1

INTRODUCTION

1.1 Motivation

The human-computer interface is becoming the major component of the success or failure

of computer systems. Its improvement is an objective for the fifth-generation (Treleaven

and Lima 1982) and the sixth-generation (Gaines and Shaw 1986, 1986a) computing de

velopment programmes. Since the start of these programmes, there has been a growing

acceptance of opinion in the computer science community that the traditional sequential

control flow fourth-generation computers will be superseded in next decade by a new gen

eration of general-purpose computers (see Table 1.1).

There are many factors supporting the adoption of a radically new generation of general

purpose computers. Firstly, the computional requirement is changing from a sequential and

centralised type to a parallel and distributed type. Secondly, the processing tasks performed

by the computers are becoming more "intelligent", moving from scientific calculations and

data processing to artificial intelligence.

However, today's fourth generation computers are still based on the old von Neumann

architecture; all that has happened during this period is that the software systems have

been repeatedly extended to cope with the increasingly sophisticated applications.

To overcome the above limitation we had to consider the Human-Computer interaction

in the case of the computer design. We are posed with the question,

Can we achieve a relativistic synthesis in the field of computer systems design

1

CHAPTER 1. 2

G eneratioru &le Bare H. W. Ftm.ction41 Feature. Problenv
FIRST UNIVAC I Valves Bootstrap Software, No resource
194&. Machine Code sharing,
1956 Software User could

destroy the
bootstrap
Software,
Bad performance
(Speed: 10 kips;
Space: 1 kbyte)

SECOND IBM 7000 Trans- Monitor Software, Poor performance
1957- istors Logical I/O (200 Kips;
1963 devices, 82 kbyte),

library functions, Monoprog-
user at a time, amming,
overlayed memory, No protection
B.L. Languages assumed

THIRD IBM 360 IC Operating System, Low performance
1964- Multiprogramming, (5 Mips;
1981 Protection, 2 Bbyte),

Timesharing
FOURTH IBM 370 VLSI Concurrency, Low reliability
1982- Good performance
NOW unless

protection is
enforced
(50 Mips;
8 Mbyte)

FIFTH Not ULSI Functional Prog- Empirical
Proposed Implemented ramming, Models of
1979 Natural Languages, Human-Computer

Speech, Interaction(HCI)
Vision,

SIXTH Not ULSI Better design No apparent
Propossed Implemented using theoretical problems
1986 models of HCI from

diverse fields
neurology, psychology,
linguistics, cognitive
science, system
science

Table 1.1: The six generations of computer systems

via the paradigm of general or meta systems methodologies?

This was the point of departure for several researchers of the development of effective foun-

dations of research in this area (notably A ntonin Svoboda, Brian Gaines, Ladislav Kohout

an~ Wyllis Bandler) which led me to develop a new approach for designing general/meta

systems-oriented computer models. The fundamental element of these theories is the triplet

(SYSTEM MODEL, DESIGN PROBLEM, DESIGNER)

The essential ideas that have been used in the thesis for the construction of computer

CHAPTER 1. 3

system models, which can include both the computer user behaviours and the designer ac

tivities, were given by Ladislav Kohout in a series of research papers (starting in 1974

and still evolving, e.g. Kohout 1986) establishing a methodological approach for the study

of actions of natural and artificial systems (named in 1979 as the activity structures method

ology).

Historically, the research in Activity Structures methodology emerged from Neuroscience

research, aiming at providing techniques for capturing the diverse knowledge sources and

can be used to model/analyse the "deep knowledge" of this application field in an effective

formal and/or computer representable form.

The view in this thesis is that activity structures framework is an approach which can be

used to construct total1 information processing systems which support the self-regulating"J

architectures whose processing environments can be dynamic and operate under maximal

constraintss. Note that this definition is not identical to the original definition of Kohout:

"The design framework of the Activity Structures provides the means for identifying

the necessary processing environments. It also provides the structures. as well as

their linkage interfaces. that are seen to be essential for supporting a successful

1 A total system can be described as a finite set of rules which integrates the design and constraint
functional structures with the substratum structures. The functional structures represent co
herent goal-oriented segments of behaviour. Each functional structure identifies a specialised domain of
the total system activities. These can be classified into primary structures of activities (design mod
ules/structures) identifying the essential activities of the primitive design, and the secondary structures of
activities (constraint modules/structures) identifying the constraints imposed on the primary activities
c.f. Kohout 1986). The substratum structures represent fragments of the code and data used for the
realisation/simulation of the functional structures (c.f. Kohout 1986).

:I Self-regulating is the behaviour which reaches a stal;>le condition of satisfactoriness. The machine
environment may reach a stable condition of satisfactoriness, when initially the performance of the machine
environment oscilates (because of the interaction with the user environment) between the acceptable and
non-acceptable, with respect to some predefined thresholds, but it must finally become acceptable and
remain so. In this condition we may say that the machine environment has become "adapted- to the user
environment activities. The user environment may aslo behave in a self-regulating manner. In a similar way
we may define the user environment self-regulation.

sIn a maximally constrained system the interaction between the user environment and the machine
em-ironment is restricted to one degree of freedom only, i.e. only the cooperation behaviour is allowed
between these two environments. The reason for such a restriction is given by the fact that with cooperation,
the self-regulating behaviour can be ensured simultaneously within both environments. This is in contrast
to the effects of the competion behaviour in which only one environment may behave in a self-regulating
manner. However, a distiction should be made between a maximally constrained system in which cooperation
behaviour is enforced at all times, and a highly constrained system; the type of interactions at the initial
stage do not matter and only after the system leaves the initial stage the interaction must be forced to be
of the cooperation type. A slightly different definition of the criterion of maximal constraints is given by
Rosen (1986).

CHAPTER 1.

design" (Kohout 1984).

However,

"the growing area that concerns the design of total systems still needs a broader

and formal foundation. more automation. and a higher level of integration into the

overall design and realisation process." (Roman et al 1984)

4

The purpose of this thesis is to introduce an effective approach for the construction of total

computer systems based on the activity structures methodology. The reasons for focusing

our attention on achieving this purpose came from the examination of current experience

in the design of total computer systems operating under maximal constraints. A summary

of results is given below:

1. Constraint structures enforcement is by no means an inconsequential problem. Con

straint structures have become an important and challenging goal in the design of

computer systems. Constaint structures comprise engineering and managment activ

ities imposed on the functionalities of the basic design of a computer system. For

example the enforcement of a protection constraint structure is ligitimately of major

concern.

"At present the effecient implementation of protection system presents diffi

culties and further research is called for." (Wilkes 1984)

2. There is no successful highly constrained computer system.

"To date. most systems designed to include constraints such as protection in

computer systems have exhibited either slow response times or awkward user

interface or both." (Landwehr 1981)

"Although variety of improvements have been introduced to the structure of

certain advanced computer systems (e.g. by using parallel architectures). the

resulting systems have suffered from complexity in both the use and under

standing." (Bic 1982)

CHAPTER 1. 5

3. A total system design framework is needed to overcome the system inadequacies that

might be the fault of the designers who did not look at the whole picture including

the constraint structures at each design stage.

"To be successful. a design must merge hardware and software functionalities

into a single. unified perspective." (Roman et al 1984).

4. Not every design framework can be effective.

"The form of the design framework representation may affect the various design

tasks." (Gaines 1974)

5. Design must start right from the first steps.

"Many computer systems (e.g. 86700. ROLM 1664) failed to meet the user

requirements owing to the inadequacy of the original system representation."

(Dietz and Szewerenko 1979)

6. Design must not concentrate only on the actual products but it should consider the

human factors.

"An adequate design methodology for designing computer systems should cap

ture the basic design trajectory. involving the three design relationship between

computer. problem. and designer." (Gaines 1973)

Figure 1.1 illustrates Gaines design triangle.

CHAPTER 1.

MACHINE
Matched to Problem Class

Analogy Relationship
PROBLEM

Comprehensible
to Designer

System
Development

Software

DESIGNER

System
Analysis

Full
Problem

Definition

Figure 1.1: The essential elements of successful computer design methodologies.

7. To delegate the design activities in 6,

"numerous schemes must be formalised first; to a considerable extent we must

formalise those human activities that contribute to the design:' (Mills 1985)

Such efforts, however, have been largely fragmented within the science paradigm4

"there has been little discourse between mainstream computer scientists, AI

4The sclence paradigm can be described as a 'learning system' characterised by reductionism, repeata
bility and refuta.tion (Checkland 1976).

6

CHAPTER 1.

theorists. system developers. communication engineers. and so on. A general

theory of design. and its relationship to human knowledge and activity. would

help us to relate these theoretical fragments and to judge their worth. but no

such coherent methodology or theory has emerged." (Tully 1985)

Capper (1986) expressed similar opinion.

7

8. In contrast to 7, the success of applying the activity structures approach which is

based on principles similar to the more present general/meta systems paradigms5 6),

motivates me to use and develop the activity structures approach in the realm of

effective computer systems design.

Hence, in this research project, we have developed a software tool to simulate many

activity structures based computer systems. This is a detailed simulation which replicates

the essential capabilities of modern computer systems and provides those activity struc

tures mechanisms that are required for self-regulation. This tool supports a methodological

approach for designing maximally constrained, high-performance computer systems that

provide elegant solutions to several problems which previous attempts have handled only

in an ad hoc fashion.

Indeed, in implementing the support tool for activity structures based computer sys-

terns, the aim is not only to show the applicability of the method presented. We also

have to demonstrate the feasibility of writing a support tool for such systems in a high

level language, to develop a comprehensive and effective methodological approach to the

construction of computer system architectures, and devise some techniques for aiding the

process of exploring and evaluating these architectures.

The software tool described in this thesis consists of the following major components:

5.The general systems paradigm takes into account the indivisibility of systems domains where or
ganised complexity prevails. It originates from concerns that the science paradigm, which was designed
to deal with the physical world, breaks down when faced with living systems (Gigch 1979). However, the
metasystem paradigm originates in the premise that one cannot arbitrate deficiencies among systems in
other than a meta language that is in the language of a metasystem which lies above that of the systems
whose is sought (Gigch 1979).

6Examples of such sucesses in the construction of sophisticated information proceasing systems include
expert systems (Kohout and Bandler 1982, Kohout et al 1984, Mohamad et al 1983), a decision support
system (Kohout et al1985, Ohiorenoya and Mohamad 1983).

CHAPTER 1. 8

1. preprocessor for eliciting the design information from the designers wishing to con

struct activity structures based computer architectures,

2. subsystem simulating the user intentions and his/her learning capabilities for the

purpose of generating the user interaction environment.

3. a subsystem simulating the machine activities (i.e. traps and interrupts) and learning,

for the purpose of generating the machine environment.

4. a highly parameterised shell which provides the designer with the essential design and

functionality constraint modules (called the functional structures). These modules

are linked in a distributed fashion (i.e. message-passing) and consIst of:

(a) Design Modules: These represent the essential functional structures needed for

producing the primary activities of the computer system. These are:

1. Knowledge representation structures,

11. Inferential structures,

lll. Control Structures,

(b) Constraint Modules: These represent the secondary activities imposed on the

primary activities. These consist of the following functional structures:

1. Protection structures,

11. Communication structures,

lll. Interpretive structures.

The structures (4(a)i, 4(a)ii, 4(a)iii and 4(b)i) were introduced and used by Kohout (c.f.

Kohout 1986, Kohout and Bandler 1986) in the designs based on his activity structures

framework; communication structures he used only in the context of protection, and I

extend their use in this thesis to other domains. Interpretive structures constitute my

original contribution to the Activity structures framework.

The flexibility of the proposed tool allows the designer to explore the variations of any

given design by direct experimentation, in order to force it to behave in an interesting way

(i.e. to have high-performance).

CHAPTER 1. 9

1.2 Terminology and Definitions

This section contains the essential definitions used later in the text. The reader is also

directed to the index.

• ACTIVITY STRUCTURES METHODOLOGY: The activities of the designer

that are essential for the construction of activity structures based computer systems.

• THE DESIGNER ACTIVITIES: The process of dealing with the problem of the

design and construction of computer systems. This process involves four design steps:

selection, decomposition, realisation, and exploration (see section 4.6).

• ACTIVITY STRUCTURES BASED MODEL OF A COl\fPUTER SYS

TEM: A total model of a computer system which incorperates the user and the

machine environments (c.f. footnote number 1 of page 3 of this chapter). In this

model the interaction between the user environment and. the machine environment is

maximally constrained. The implementation of this model is called the complete shell.

• M.AXIM:ALLY CONSTRAINED BEHAVIOUR: The cooperation behaviour be

tween the user environment and the machine environment which is restricted to one

degree of the freedom of interaction.

• COOPERATION BEHAVIOUR The interaction which reaches a stable condition

of satisfactoriness.

• USER ENVIRO~NT A user oriented possibilistic automaton that. updates its

demand probabilities on the basis of the resulting machine environment performance,

so that it chooses asymptotically the optimal demand. The implementation of this

environment is called the outer shell. The updating criterion is referred to as the user

environment self-regulation (c.f. foot note number 2 of page 3 of this chapter) .

• MACHINE ENVIRONMENT: A machine oriented possibilistic automaton that

controls its performance on the basis of the required user environment demand, so

that it asymptotically reaches the optimal performance. Its implementation is called

CHAPTER 1. 10

the inner shell. The control criterion and in this context is referred to as the machine

environment self-regulation (c.f. footnote number 2 of page 3 of this chapter.

• USER POSSmILISTIC AUTOMATON: A highly-parameterised user model

stochastic automaton which generates the user demands and is connected in a feedback

loop with the machine environment.

• MACIllNE POSSmILISTIC AUTOMATON: A highly-parameterised and ex-

tensible computer system model stochastic automaton which is connected in a feedback

loop with the user environment.

• USER MODEL: This is a statistical model which represents a quadruple (r,o,p, T)

where:
r total number of user demands.

o = {OI,···, Or} set of demands of

the user environment,

demand probability vector of

the user environment,

T an updating operator

If o(t) represents the demands chosen by the user environment at time t (t = 0,1,·· .),

then7

p,(t) = Pr [o(t) = Oil

~i=l p,(t) = 1 for all t

P(t + 1) = T[P(t),a(t),b(t)]

fj(t) is the binary set of performance reactions from the machine environment the

same as input to the user environment such that

fj(t) E {O, I}

. The input to the user environment fj(t) = 1 is called the penalty performance input

and fj(t) = 0 the reward performance input. The penalty probability vector

C = [CI,···' cr] has the following property

c, = Pr [fj(t) = 1 I o(t) = Oi]

'TNote: These probabilities are produced in our implementation by two types of distributions and the
user model is simulated by two routines PARTICIPANT-ONE and PARTICIPANT-TWO

CHAPTER 1. 11

The average penalty M(t) that the user environment receives from the machine envi

ronment is given by

M(t) E [,8(t) I p(t)]
r

LPi(t)Ci
i=1

The operator T represented by an algorithm called the updating (or user adaptive)

algorithm. The user adaptive algorithm can be expressed by the formula

1 r

M(O) = - LCi
r . 1

1=

such that

lim E [M(t)] < M(O)
t-+.

where s is the observation time limit.

• CO:MPUTER SYSTEM MODEL: This is a simulation model which is partly

driven by itself and partly driven by the outer shell. This model represent a quadruple

(FS, ST, UD, PCR), where

FS: FUNCTIONAL STRUCTURES

ST: SUBSTRATUM STRUCTURES

UD: USER DEMAND

PCR: PERFORMANCE AND CHANGES REQUIREMENTS .

• THE CO:MPUTER SYSTEM FUNCTIONAL STRUCTURES: These are

coherent goal-oriented segments of behaviour. Each functional structure represents a

specialised domain of computer system activities. This leads to communication and

exchange of knowledge between the domains. Each functional structure represents an

algorithm that updates some activities. In addition to the module that traps the user

demand and generates the intention steps (i.e.the external interrupts) and is called

the PROCESS GENERATOR, there are other two main types of functional structures

used here, the design structures and the constraint structures.

CHAPTER 1. 12

• DESIGN FUNCTIONAL STRUCTURES: These represent the essential func

tional structures needed to produce the primary activities of a computer system.

These are

1. the Information Structures (c.f. section 5.3.1),

2. the Inferential Structures (c.f. section 5.3.2), and

3. the Control Structures (c.f. section 5.3.3).

• CONSTRAINT FUNCTIONAL STRUCTURES: Represent the secondary ac

tivities imposed on the primary activities. These consist of the following structures:

1. the Protection Structures (c.f. section 5.3.4),

2. the Communication Structures (c.f. section 5.3.5), and

3. the Interpretive Structures (c.f. section 5.3.6).

• THE SUBSTRATA STRUCTURES: These are the fragments of code and data

simulating the implementation dependent responses (in absence of the real hardware).

These responses in our implementation(i.e. internal interrupts) are generated by the

job scheduler routine.

• USER DEMAND: This is the average user demand, expressed by the number of

concurrent tasks or processes placed by the user environment. This measure im

plicitly identifies the user environment average panalty (demand / number of active

terminals).

• PERFORMANCE AND CHANGE REQUIREl\1ENTS: These are the mea

sures used to monitor the performance of the modelled computer system model ac

tivities via the software probes. There are two types of measures that can be used

to assess the average panalty of the machine environmen. These are: the average

response time for an interactive system, and the average system throughput for the

general system. The change requirements include the designer changes on the com

puter system model introduced in order to achieve a target computer system. The

CHAPTER 1. 13

change that involve the algorithmic non-parametric changes on the original computer

system model produce a constelation. The changes that involve the non-algorithmic

changes (i.e.parametric changes) on the original model or on a constelation produce

a general system family. The repeated changes on the general system family produce

the admissible data that are used to tune the general system to reach the stability

state. This tuning procedure is called the performoact modelling.

1.3 The Thesis Synopsis

1.3.1 Presentation of the Thesis:

This thesis is concerened with the following topics:

1. outlining the problems encountered in some contemporary computing systems that

need solution,

2. presenting a new design method that can deal with the outlined problems,

3. designing and implementing a design support tool based on this new method, and

4. validation of this proposed method.

We concentrate on the design of highly constrained multiprocessing computer systems.

The aim is to produce well- protected systems of high-performance, that can achieve stable

dynamics of user-computer interaction. A more precise statement of the problem and further

discussion of the origin of the problem, its significance and its motivations are discussed in

chapter 1.

Chapter 2 critically surveys the current design techniques that are available within the

three major computer science design fields. Namely, software engineering, knowledge engi

neering, and computer architecture. Chapter 3 critically reviews the current theoretical

approaches, dealing with computer design, and pinpoints their inadequacies.

Chapter 4 presents the conceptual framework which forms the foundation of the pro

posed design method. This framework is arrived at by analysing the activities of the designer

by the means of Activity Structures approach. Chapter 5 outlines new essential structures

CHAPTER 1. 14

which we need in the design of the complete shell of the tool, the design of which is also

derived here. and Chapter 6 describes the details of the implementation of the design tool.

Chapter 1presents the so called performoact modell£ng, a new framework for evaluating a

computer performance and for selecting those sets of the design data thatforce acceptable

performance. Within this framework, the evaluation of the design tool is carried out.

1.3.2 CHAPTER 2:

INVESTIGATING THE EXISTING TECHNIQUES FOR CONSTRUCTING COMPUTER SyS

TEMS

In an effort to deal with the problem of designing effective maximally constrainted computer

systems, we surveyed the Ircomputer architecture", Irsoftware engineering", and Ir/mowledge

engineering" fields as they were considered to be relevant to the overall problem (see sec

tion 2.1). These fields provide the design techniques relevant to the construction of effective

complex computer system designs, since they capture the results and accomplishment of

research in various parts of the computer science (see sections 2.2, 2.3, and 2.4). In this

chapter we investigate the role of each field in constructing effective computer systems and

conclude that the techniques provided by these fields are largely fragmented and there is

very little discourse between the workers of these three fields. Hence, there is no widely ac-

. cepted or even practiced methodology that outlines the construction discipline which would

link effectively together the methods of these three fields (see sections 2.5 and 2.6).

1.3.3 CHAPTER 3:

AN OVERVIEW OF THE EXISTING THEORETICAL ApPROACHES FOR DESIGNING COM

PUTER SYSTEMS

In .this chapter we investigate the role of the existing theoretical approaches in the area of

designing effective computer systems. We conclude that there is no effective design theory.

Indeed, the current conventional building blocks of scientific theory, the theoretical and

methodological constructs as well as the mathematical formalisms, have made it difficult

to conceive of the possibility of a general account of the nature of computer systems design

CHAPTER 1.
15

and its organisation. We have had to rely on the essential notions of physics (time, length,

etc.) or else on descriptive analogies taken from ordinary experience in order to describe

intelligibly natural phenomena (see section 3.1). The advance of Ifstatistical1J sciences (op

erational research, queueing theory, statistical mechanics and operational analysis, mean

value analysis, etc.) have led to the new ways of simplifying complex phenomena within an

empirically meaningful framework (see section 3.2). Successes in these areas suggest that

behind the formidable complexity of nature there is actually a surprisingly small number

of simple relations governing interactions; the difficulty has been to refine several theories

to the point where such relations could emerge clearly. Hence, the road to understanding

the behaviour and predicting the performance of computer systems has been, and still is,

arduous. Sections 3.2.1, 3.2.2, and 3.2.3 review the main theoretical models based on the

Queueing theory for designing computer systems.

1.3.4 CHAPTER 4:

ACTIVITY STRUCTURES AS A METHODLOGICAL ApPROACH FOR CONSTRUCTING EF

FECTIVE COMPUTER SYSTEMS

In this chapter we introduce a methodology approach for designing effective computer sys

tems. This approach is based upon the use of the activity structures design concepts.

This methodological approach provides total computer system designs which support self

regulating architectures whose processing environments are dynamic (i.e. changing) and

operate under maximal constraints (see sections 4.1- 4.5). Section 4.6 presents the main

design steps of the activity structures. Finally section 4.7 presents the main meta-definitions

that are used in the process of the design and evaluation of activity structures based com

puter systems.

1.3.5 CHAPTER 5:

AN ABSTRACT COMPLETE SHELL FOR THE ACTIVITY STRUCTURES BASED COM

PUTER SYSTEM DESIGNS

The design issues are discussed here which lead to the subsequent abstract description of

CHAPTER 1. 16

an activity structures based complete shell of the support tool. The shell design represents

a conceptual model, from which a variety of computer systems can be built. In section 5.2

the cooperation activities of both, the outer shell concerning the user shell, and the inner

shell concerning the computer machine environment are described. In section 5.3 we present

the abstract design features of the inner shell using the notion of the functional structures.

Section 5.4 presents the main performance probes. finally, section 5.5 discusses the problem

of selecting a suitable programming language for the implementation of the complete shell.

1.3.6 CHAPTER 6:

THE IMPLEMENTATION DETAILS OF THE SIMULATION OF AN ACTIVITY STRUCTURES

BASED POSSIBILISTIC GENERATOR

In this chapter, we present the implementation details of the internal structure of the

activity based complete shell that was outlined in chapter 5. The complete shell can be

used for generating extensible (i.e. possibilistic) computer systems. Sections 6.1-6.3 and

part of section 6.4 present the first three design steps of the designer. In section 6.4.1 the

generation of the cooperation environment activities are presented. Section 6.5 describes

the implementation details of the various functional structures used in the design.

1.3.7 CHAPTER 7:

EXPLORING THE DYNAMIC BEHAVIOUR OF THE ACTIVITY STRUCTURES BASED

POSSIBILISTIC GENERATOR OF COMPUTER SYSTEMS

In this chapter, we develop a special theoretical framework, the performoact, which captures

the trends of behaviour of interest to the designer and selects those admissible trends that

can be used to tune the activity structures based designs. This framework helps to preserve

tw9 important criteria, the self- regulation and concurrency (see sections 7.2 and 7.3). The

parameters (of a similar, in substrata) of a highly constrained system, the Nuke, are assigned

to the possibilistic generator in order to verify the activities of the generator (see section

7.4). The verification process is used to carry out several case studies in order to analyse

the effects of various changes within the user interaction environment, the changes within

CHAPTER 1. 17

the machine environment, different addressing policies, and many other parameters having

influence upon the performance indices (see section 7.6). The purpose of establishing these

case studies is to understand the contribution of those design parameters and functionality

changes that are responsible for producing effective computer systems. Finally, the chapter

discusses the validation process of the possibilistic generator (section 7.7).

1.3.8 CHAPTER 8:

CONCLUSIONS AND FUTURE RESEARCH

In this chapter we summarise the main research contributions of this thesis and discuss the

new research problems suggested by this work (see section 8.1). Suggestions for expansion

of this work were presented (see section 8.2).

Chapter 2

AN OVERVIEW OF THE EXISTING TECHNIQUES
FOR CONSTRUCTING HIGHLY CONSTRAINED
COMPUTER SYSTEMS WITHIN THE SCIENCE

PARADIGM

2.1 General Discussion

This chapter presents an exposition of current problems and issues associated with design,

development and evaluation of highly constrained computer systems. This strives at:

1. Outlining the particular difficulties associated with the application of the existing

techniques of the science paradigm to the problems in which their solutions are sought

in the subsequent chapters.

2. Outlining the major areas of concern of which one should be aware of in the construc-

tion of highly constrained computer systems.

3. Establishing a certain outlook, or an overview, towards the phenomenon of protection;

one of the major constraints required for constructing the highly constrained computer

systems.

Since the early days of the computer industry, there has been considerable interest in the

construction, and performance evaluation, of computer systems. The most common goal

has been obtaining better insight into their behaviour and improving their performance.

18

CHAPTER 2.

"During the last decade. we have seen the development of a large number of

computer systems. In most cases. these systems have failed to meet 1 the perfor

mance objectives predicted during the initial design. During the same period. the

complexity of these systems has increased tremendously with the introduction of

multiprogramming. protection. multiprocessing. virtual memories. etc. It has thus

become more difficult to understand the behaviour of these systems in a qualitative

sense. let alone quantitatively predict their performance" (Graham 1984).

19

There are many difficulties in constructing a general-purpose computer system. Problem

decomposition, component connections, and interprocessor communication are some issues

which can pose significa.nt obsta.cles to the successful application of such systems.

Therefore, the roa.d to understanding the behaviour and predicting the performance of

protected computer systems has been, and still is, arduous. Many people ha.ve rea.lised this

(Downs 1984, Fa.bry 1974, La.mpson and Sturgis 1976, Wilkes and Needham 1979) and have

attempted to investigate the problem of constructing effective highly constra.ined computer

systems, and to proceed towards the development of superior tools. Here we should note

that we are concentra.ting on both construction and eva.luation tools, since

"it has been proven that construction without evaluation is usually inadequate"

(Cantrell and Ellison 1968).

The tool that should be developed must not only provide the design primitives but a.lso

it should enable the designer to monitor performance and determine (dynamically) where

restrictions or bottlenecks occur.

There a.re certa.in typica.l questions tha.t the designer can easily answer with a. design

tool tha.t provide performa.nce informa.tion, for example, the time spent by the processor

ru,nning or wa.iting for a. task, or the time spent in communication.

In efforts to dea.l with the problem of designing effective highly constra.ined computer

systems, the expressions "computer architecture·, "software engineering·, and "knowledge

INotable examples on such failures are: the CAP computer system designed by Willes and Needham
(Needham 1977), its performance degredation reported by Watson (1978), NYU tntra.computer by Gottlieb
e.t aJ. (1983), and its performance degredation reported by Maples (1985); and the NEPTON system by
Evans (1981) its performance degredation reported by Newman and Woodward (1981).

CHAPTER 2.
20

engineering" designate the relevant solution fields. These fields capture the results and

accomplishment of research in various parts of computer science (Gaines and Shaw 1986,

Tully 1985, Capper 1986), that contribute to the problem of constructing suitable highly

constrained computer systems.

According to the results of investigation presented later in this chapter, there is no

widely accepted or practiced methodology for the construction of highly constrained com

puter system, that outlines clearly the construction discipline, based on the three design

feiIds. The conclusion reached was that the existing attempts of constructing effective highly

constrained computer systems can be described as ·black-box· designs (c.f. Figure 2.1).

SOFTWARE
ENG I NEER I NG

KNOWLEDGE
ENGINEERING

COMPUTER
ARCHITECTURE

Figure 2.1: The black box: The Traditional Design Methods

The general consensus is that many problems in systems construction and development

are caused by the following:

1. The lack of a consistent construction methodology that can offer a the framework

. which captures the different processing environments and provides effective structures

(in hardware, firmware, and software) as well as the integration constraints for holding

them together. This is quite an important issue, since we noticed the repeated failures

of many of the existing highly constrained computer systems (c.f. Bic 1982) and

a large amount of cosmetic techniques used. For e~ample, while designing highly

CHAPTER 2. 21

constrained computer systems using mainly software engineering techniques (e.g.

Madsen 1981) one could face several performance difficulties and might require the

system to be redesigned with the use of, e.g. performance engineering (Smith 1980),

or the transparency design technique (Parnas and Siewiorek 1975). All these steps are

certainly expensive and do not ensure the optimal results (Mamrak and Randal 1977).

Similarly if computer architecture is used to design highly constrained computer

systems (e.g. Dennis 1980) there are variety of other problems, such as the ·von

Neumann bottleneck" and the «semantic gap" problems.

The von Neumann bottleneck refers to the type of interaction between the CPU and

the computer memory: the huge content of the store must pass, one word at a time,

to the CPU and back again. In other words, the von Neumann bottleneck stems from

the fact that at the machine language level, any access of a data object requires first

the fetch and execution of an appropriate instruction. This is aggravated by the fact

that only the elementary (scalar) data objects exist (c.f. Backus 1985). The semantic

gap is defined by Myer (1978):

"The semantic gap is a measure of the difference between the concepts In

high-level languages and the concepts in the computer architecture."

Further descussion on the semantic gap is provided by Jones (1977) and Flynn (1980).

Here we summarise our findings about the semantic gap issue. It is known that the

data objects of typed high- level languages may be defined as a triple:

DATA OBJECT ::= (IDENTIFIER, VALUE, TYPE)

In a computer, the data object is represented by the content of some memory loca

tion (or a number of consecutively addressed memory locations). IT the computer is

of the von Neumann variety, then only the component VALUE is represented in the

memory. Consequently, TYPE is not an attribute of the data object any more but

becomes the attribute of an operation (see Wulf 1981). This discrepancy produces a

CHAPTER 2. 22

large semantic gap. The semantic gap of the von Neumann architecture (e.g. VAX ar

chitecture) motivates me to search the better operational principles that are matched

to the requirements of the support software tool and that provide better performance.

Current solutions of the semantic gap minimisation are obtained by introducing the

capability addressing of the objects that are encapsulated into memory segment. This

allows for typing and access right control at the granulation of the memory segments,

at the cost of aggravating the von Neumann bottleneck. This is so become since every

single memory location is accessed through at least two levels of indirections.

Mohamad (1982) suggested the introduction of the descriptor-oriented architecture

which deals with the semantic gap minimisation. In this scheme, each data object

(elemantery or complex) is presented to the hardware by a descriptor that containes

all the information needed to enable the communication structure to carryall data

transports between the main memory and the CPU of the system. Briefly, it states:

"the larger the semantic gap the higher the performance degradation is" .

A variety of solutions have been reported which include methods such as the use

of direct execution architectures (Chu 1977), using more powerful architectures (e.g.

MPP (Potter 1985), CLIP (Duff 1985), Helix (Fridrich and Older 1985), Transputer

oriented architecture (Inmos 1985), Mach-l (Baron 1985), Manchester Data Flow

Machine (Bohm, Curd and Sargeant 1985), Caltech Hypercube Computer (Fox 1985)

and the Connection Machine (Hillis 1986», or using the vertical migration technique

(Stockenberg 1978). These represent an array of partial solutions of rather arbitrary

character. A complete satisfactory solution still remains a substantial research issue.

Finally, using the knowledge engineering approach alone (e.g. adaptive technique

(c.f. Vick et. al 1980» does not provide a direct answer to the question whether

both the performance will be enhanced and the system integrity will be ensured (c.f.

Reiner 1980). Indeed, it is an established fact that there is a need for a specialised

CHAPTER 2. 23

powerful architectures which can be used to enhence the parrallelism (i.e. perfor

mance) of the knowledge-based systems {e.g. the Columbia University Parallel Pro

duction Machine (Reeves 1985) and the Fifth Generation Computer (Moto-oka and

Stone 1984)), but there is no quantitative assessment on what type of parallelism is

the most effective for the knowledge-based systems. Since there are many potential

levels of parallelism in any knowledge-based system, for example, the system level, the

language level, the search level, the rule level, the subrule level (c.f. Douglass 1985).

This issue remains largely a research issue.

2. The second major concern is: How can the user requirements be realised and parti

tioned into functions to be converted into software, firmware, and hardware compo

nents in such a way that sufficient flexibility is retained, in order to coordinate the

resulting components at different levels of implementation. This has been treated

formally in Kohout. (1983,1986). An abstract mathematical formulation of this for

parallel computetional structures in terms of abstract logics and generalised topolo

gies was present first in Kohout (1978). In this paper the functional and substatum

structures are treated as a pair of adjiont mappings connected by means of so called

galor'8 connections. For application in computer science see Roberts (1986), Sharp

(1984), Kohout and Bandler (1986).

It should be noticed that the term functional is used in a rather restricted maner

{e.g. the function-level programming (Backus 1985), the LISP-oriented programming

(c.f. Backus 1981), the ~lackbord (Craig 1986)). The latter approaches link the

functionality to either substratum or behaviour but do provide the explicit link of

these two conceptually distinct structures. For the criticism of the confusion that

prevail in computing with respect to functionalities see Kohout (1983,1986).

However, in sections 2.1.1 and 2.1.2 we critically review the existing design attempts

for constructing one type of highly constrained computer systems which essentially include

some protection structures and protection mechanisms (from both the abstract and imple

mentation point of views). These syst~ms are reviewed because they represent a current

CHAPTER 2. 24

research issue (c.f. Wilkes 1984) and they provide some examples and design issues that

can be compared to our protection functional structures discussed in chapters 5 and 6.

and in sections 2.2, 2.3, and 2.4 we report on the problems associated with the most n~

table attempts. These are discussed according to their relevant design theme (i.e. software

engineering, computer architecture, and knowledge engineering). Finaly in section 2.5 we

present some design hints that can be used to construct effective highly constrained com

puter systems.

2.1.1 Abstract Features of Computer Systems Enforcing The Protec

tion Constraint

The development of computer systems that utilise protection functionalities has progressed

slowly during the last 15 years. Designers have had great difficulty in determining the

best way of supporting a protection policy. Even when they can formulate an architectural

approach, they must then face the rather complex problem of making it work correctly and

efficiently (Downs 1984).

To a large extent, our ability to create and modify easily any given protected system

is determined by its basic underlining abstract architecture. The predominant structure

taught today is the simple reference monitor organisation (Lampson 1969). The reference

monitor acts as an agent checking the legality of every reference of a subject to an object.

Three important concepts unite in the idea of a reference monitor: mediation, isolation,

and verifiablity.

The reference monitor must mediate every access to all protected objects, no matter

what the situation is. It must be isolated and protected from the rest of the system and

from the users. IT any user can change the reference monitor, the monitor's ability to

m~diate all references can be nullified. Furthermore, the reference monitor must be verified

to work correctly as a monitor to implement the protection policy.

Based on Lampson's reference monitor scheme, several modifications have been car

ried out recently. Here I shall survey these modifications, presenting them in an abstract

context. This way will enable us to capture the important features that help in creating

CHAPTER 2. 25

sophisticated protected computer system designs. However, with the recent introduction of

the IBM/38 and the Intel 432, two of the most sophisticated protected computer systems,

much attention has focused on the systems that support tickets (capabilities) concept.

Most of the early experimentation with tickets was done in universities, but become more

active in the development of such systems. In this section, the important designs leading

up to and including the ticket-oriented, are reviewed. In fact, the methodological approach

of this thesis utilises a modified version of tickets, that is referred to as the interpretive

descriptor-oriented architecture (refer section 6.5.2).

2.1.1.1 Access restriction control:

This type of organisation restricts the operation, each user is allowed to perform upon an

object. I assume that the rules of access are specified in some suitable form, so that it is

possible to tell whether a user has, or has not, the permission to invoke an operation on an

object. There are two methods of enforcing access restriction. These are called list-oriented

and ticket-oriented schemes.

Using a list-oriented scheme, the system maintains a list of triples consisting of

(USER NAME, OBJECT NAME, OPERATION NAME)

The chief characteristics of this scheme are the maintenance of the list of allowed operations,

and validation of each operation by searching through the list. Any of the existing systems

having an access control list is list-oriented, although variations can exist in the form of

organising the list.

A ticket-oriented scheme uses a protected ticket (usually called a capability or a descrip-

tor). A ticket contains the pair

(OBJECT NAME, OPERATION NAME)

A special mechanism, such as tagging words is provided, to ensure that the tickets cannot

be changed by anyone, other than the protection system. They can however be moved

around as data, and passed from one process to another. The ticket-oriented scheme may

CHAPTER 2. 26

be further subdivided to direct ticket approach (Fabry 1974), and indirect ticket approach

(Dennis and van Horn 1966).

2.1.1.2 Domains restriction control:

This scheme claims more flexibility for protecting sensitive information. It is desirable to

partition a user's computation into several compartments. Programs in a compartment are

prevented from directly manipulating data structures residing in other compartments. This

is a useful technique to prevent malfunctioning parts of a computation from damaging other

parts. Bugs are thereby localised. Several mechanisms for such partitioning have appeared

in the literature (Needham 1972, Schroeder and Saltzer 1972, Spier et. al' 1973). Protection

rings, domains of protection, regimes of protection are the terms used, which correspond

to the compartments. This type of scheme may be further subdivided into domains in

ticket-oriented system or domains in list-oriented system. . .

2.1.1.3 Type extension control:

The concept of creating abstract data items which are manipulated by associated operations

has been found very useful in program development. Type extension scheme involves the

following functions (Short 1980) provided in order:

1. To validate the invocation of an abstract operation,

2. To ensure that the components are accessible only In procedures that implement

abstract operations,

3. To maintain the correspondence between an abstract object and its components, and

4. To maintain the correspondence between an abstract operation name and its imple

menting procedure so that control can be transferred to it when the operation is

invoked.

Notice that 1 and 2 are aspects of protection in the sense that they are validations of

accesses to objects under different circumstances. Once these validations are done, 3 and 4

CHAPTER 2. 27

which are book-keeping operations, can be done by a separate type extension module. This

type of protection scheme has always been implemented within the language level of the

system.

2.1.2 An Overview of The Ticket-Oriented Protection Constraint

The history of tickets or capabilities can be traced back to the original Rice University

computer, designed in 1956. This machine introduced Ircodewords" to designate regions

of main storage accessible to a process. The objective was to support more naturally

the abstract idea of an array. This concept was first mentioned in the literature by lliffe

in 1961 (lliffe 1961). Some time later, Robert Barton, a computer designer for the Burroughs

Corporation, adopted this abstraction, renamed it the tcdescriptor" and used it in the design

of the Burroughs B5000 computer (Burroughs 1961).

Jack Dennis and Earl van Horn at MIT first described capabilities in their 1966 paper

(Dennis and van Horn 1966). In their design, each process has a single capability list,

containing capabilities for all accessible resources. Dennis and van Horn's paper has had

substantial influence on the design of many systems. Most notably, capabilities were incor

porated into the design for a computer at the university of Chicago Institute for Computer

Research. This computer, later called the Chicago Magic Number Machine, was the first

attempt to build a hardware capability mechanism (Fabry 1967). This project was never

completed, but much was learned about the general properties of capabilities and their

addressing mechanism (Fabry 1974).

At the computer centre of University of California at Berkeley, concepts from Dennis

and van Horn and from the Chicago project were incorporated into the design for CAL

TSS, a time-sharing system for the CDC 6400 (Lampson and Sturgis 1976). The CAL-TSS

sy~tem provided an additional level of indirect addressing. That is, capabilities specified

the location of an entry in the Master Object Table, a single data structure maintained by

the kernel, that held addresses for all accessible objects.

However, the first two capability based hardware systems to be completed here in U.K.

were built by Plessey Corporation, and by the University of Cambridge. These systems

CHAPTER 2. 28

were strongly influenced by the Chicago and the MIT work. Maurice Wilkes of Cambridge

University, had visited Chicago during the Magic Number project, and had included a

description of capability hardware in the 1968 version of his book on time-sharing (Wilkes

1968). At that time, Jack Cotton at Plessey decided to include the idea of capabilities

in the System 250. The Plessey system 250 was a commercially available multi-processor

system, designed for the use in telephone switching systems (England 1974).

Shortly after the Plessey system 250 was designed, Maurice Wilkes and Roger Needham

at Cambridge University began a hardware and software research project. Since the early

seventies it was possible to include a reasonable amount of micro-control store in a computer,

Needham and Wilkes decided to build a system with implicit capability registers. They

call this system the CAP. CAP is running today and is connected to the Cambridge Ring

distributed system (Wilkes and Needham 1979). It was not until 1980 that a major computer

manufacturer would announce a product that used a capability addressing mechanism.

Examples of such systems announced for a commercial market are the IBM System/38

and the Intel 432. Table 2.1 reviews the most common capability machines created until

recently.

For more detailed description of many of the machines described here, the reader is

referred to (Dennis 1980, Gehringer 1979).

Capability System Capability Implementation

Chicago Magic Number Hardware
CAL-TSS Software
Project SUE Software
Plessey System 250 Hardware
CAP Firmware
Hydra Software
cm* Firmware
EPN Hardware
Horton Firmware
PSOS Hardware

ORSLA Hardware

SWARD Hardware

Table 2.1: Various Capability Designs.

CHAPTER 2. 29

However, the literature reveals an additional ticket- oriented architecture called the

descriptor-oriented architecture, which is used for more than one purpose. Descriptors are

a popular feature in the design of new computer architectures but little has been written

about them. Experience with writing and investigating compilers for the two structured

architectures, the Burroughs B6700 and the ICL 2900, has shown that the terms used

in relation to descriptors often have contradictory meanings (Bishop and Barron 1981).

Descriptors as implemented on these machines, are often not the blessing they were made

out to be.

A common problem with ticket-oriented systems is the problem of unsatisfactory per

formance, and most of the systems described, have been substantially slower than the

contemporary traditional architectures (Gehringer 1979). Tickets provide fine-grained pro

tection, allowing for the system to be constructed out of a large number of isolated com

ponents. Such protection mechanisms have the potential of increasing system reliability
.

at the cost of performance, since frequent changing of these protection domains requires

additional processing. Here, we should mention that Brian Gaines reported the design of

a high-performance descriptor-oriented mini computer system (MINIC S) that provide an

environment for information protection (Gaines et. al. 1974, 1975) However, the discrip

tors of the MINIC S were implemented in hardware, which still suffer certain performance

degradation at the higher system levels of abstraction (i.e. semantic gap). The author's

main concern is to investigate the possibility of finding a protection architecture for en

hancing the overall performance of the system at the various design l~vels. The author

reported the possibility of finding a solution to the above problem by using the interpretive

descriptor-oriented architecture (Mohamad 1982, Mohamad and Cavouras 1984) (refer to

section 6.5.2).

2.2 The Software Engineering Approach

Software engineering is a collection of techniques for constructing and developing large

software systems. This simply means that software engineering can be used to develop

CHAPTER 2. 30

software tools for the design and construction of protected computer systems. In this

section, the present author investigates whether the software engineering approach is capable'

of producing effective protected computer systems.

Software engineering is considered to be one of the three main techniques that make up

system construction and development; these techniques are outlined below, together with

some brief comments:

• A design methodology that encompasses the techniques used to design the system.

The goal of such methodologies is to integrate the design techniques into a rigorous

software engineering process that reduces the user specification to a computer-based

information system possibly through a number of design levels.

• The development cycle which defines the reporting stages through which a project

proceeds. In this cycle, the task at each stage together with their inputs and out

puts are defined and the documentation is subsequently used in reviews that precede

approval of the management to commence the subsequent stages .

• A project management system to monitor the progress of a project under development

and to take corrective actions whenever some problems arise. The project management

system is closely integrated with the system development cycle as it uses the reports

produced at each stage of system development.

The main approaches used for the detailed realisation of any of the above techniques

are: the hierarchical approach and the operational approach (Zave 1984). The hier

archical approach is based on the principle of top-down decomposition of black boxes, and

all its features can be derived from that philosophy (see Figure 2.2a). On the other hand,

the operational approach is based on separation of problem-oriented from implementation

oriented concerns, and all its features can be derived from that philosophy (see Figure 2.2b).

Based on these two main approaches many system construction techniques have been

developed (referred to as software engineering construction tools). Here we list some of

them:

CHAPTER 2.

Problem
Under.tandlng

Solution
SyAMI

\

e>p.,..1Ionel
Specification

Solution
System

(a) The Hierarchical Approach (b) The Operational Approach

31

Figure 2.2: The conventional approaches of software engineering that can be used for com
puter systems construction.

• The participative technique (Mumford et. al 1978),

• The life cycle technique (Shooman 1983),

• The structured design technique (Gane and Sarsons 1979),

• The data analysis technique (Shuey 1986), and

• Others such as BSP, SADT, ISAC, MOS, SASO, NIAM, BC, Wrnier-Orr,

Jackson, PSL/PSA (see Blank and Krijger 1983).

The main problem with both of these approaches is that system description process

is completely separated from the system evaluation process. System performance can not

be determined accurately in advan~e. The main reason for the difficulty of performance

estimation of software system arise from the fact that it is difficult to assess the performance

CHAPTER 2. 32

of their interface with human users. Recently many researchers expressed the opinion that

software engineering techniques must be utilise within artificial intelligent schemes (c.f.

Simon 1986, Lindquist 1985). Indeed, there are many issues beside the human interface

problem which are not treated properly by the software engineering techniques and may

play an important role in producing effective software system (c.f. Goguen 1986). Examples

of such issues include the following:

1. Which modules should be kept uncompiled and which should be compiled?

2. What techniques for module composition should be used?

3. How do we best identify the software components most relevant to a particular user

need?

4. How do we construct families of related programs?

5. How do we integrate such facilities with other software environment parts (module

test, linkage, and interpretation facilities)?

6. How do we best present information to users?

7. What experiments would test the viability of various approaches to these problems?

On one hand, some researchers simply believe that a solution to this problem can be

obtained by adopting the idea of software performance engineering or SPE (Smith and

Browne 1982) which attempt to incorporate set of procedures and metrics along with the

software system development process. The SPE is of quite recent origin, awaiting major

research developments.

On the other hand, other researchers believe that in order to enhance performance it is

necessary to abandon the pure outside- in approach (the two mentioned above) and adopt

some additional procedures which are actually of an inside-out or bottom up nature (Par

nas and Siewiorek 1975). The typical stages used in the bottom up synthesis starts with

a well defined lower level or the base machine. The set of abstractions performed on the

lower level will result in higher levels called the virtual machine. The design process is

CHAPTER 2. 33

called transparent and a.ssumes the ba.se machine activities (i.e. sequence of states) are

obtainable. This approach, however appealing it might seems, proves to be quite complex

(c.f. Habermann et. al. 1976). Specially in the design and construction of a sophisticated

systems such a.s the operating system, in which the coordination of many concurrent ac

tivities is required, and the detailed ba.se machine reaction and capabilities are extremely

difficult to obtain.

Furthermore, some other researchers believe that the idea of reconstructibility should

be incorporated from the beginning of the system design process (Cavallo and Klir 1981).

Although this approach initially started a.s a formal development, we are noticing some suc

cess reported in certain simulation experiments (Klir and Way 1985). But indeed, still this

solution awaits further research and experimentation a.s well a.s metrication of its effectivity

to be adopted for (successful) computer system design and construction.

However, in reality there are few computer system design methodologies that have been

developed mainly upon the software engineering approach. The family of system models

by Parna.s (1976) seems to be the most notable method. It is ba.sed on the concept of

hierarchy of uses, and it is an extension to the work of Price and Parna.s (1973). It wa.s

extended in a somewhat different direction by Habermann and Cooprider (1976). Haber

mann's approach is ba.sed on the concept of incremental machine design and is similar

to Dijkstra's approach in the IIT.H.E.l1 system (Dijkstra 1968) (see Figure 2.3). There are,

however, several related attempts that can be sighted in the literature: the software factory

(Bratman and Court 1975), the Boaing Software Design Tool (Carpenter and Tripp 1975),

the Dejong System Building System '(Dejong 1973), the Habermann System Design (Haber

mann 1977), and the Sofware Engineering Database (Irvine and Brackett 1977).

Another notable software engineering-ba.sed method is the object oriented design.

This method is ba.sically used for data protection. Abstract data type languages such a.s

CLU (Liskov 1977) , ALP HARD (Wulf 1976), and ADA (Wiener and Sincovec 1984) can be

explained well by this scheme. Also, Cm* /StarOs (Jones 1979) and iAPX432 (Khan 1981)

can be considered a.s computing systems that are ba.sed on this method. The architecture

designed using this scheme employs the concepts of capability-ba.sed addressing mechanism

CHAPTER 2. 34

A TIME SHARING SYSTEM A BATCH SYSTEM

USER INTERFACE JOB CONTROL LANGUAGE

FILE SYSTEM

SWAPPING

DISK I/O

A CCESS CONTROL SYSTEM PROCESS CREATION

CONTROL DEVICE ADDRESS SPACE CREATION

SYNCHRONISATION

PROCESS MANAGEMENT

ADDRESS SPACES

HARDWARE

Figure 2.3: The Hierarchy of Uses: Software Engineering-based Design Method

(Fabry 1974). The capability-based addressing mechanism provides a method for identifying

an object with an authorised operation. More suitable designs can be developed using the

concept of descriptors (Bishop and Barron 1981) (Mohamad and Cavouras 1984) (refer to

section 4.6.3, 5.3.1).

Both methods show certain advantages, but it is very difficult to choose among them.

Object oriented design concentrates on the real world aspects of the problem via abstraction

and information hiding. Hierarchy of uses however, supports factoring which allow us to

share system modules, and more importantly, it makes such modules easier to comprehend.

Objec.t-oriented design identifies the objects and their operations and groups them together

CHAPTER 2. 35

in order to yield cohesive modules. However no provisions have been made to further divide

these mod ules.

There exist no approach for the successful design of highly constrained computer systems

based solely upon a software engineering approach. Hierarchy of uses employ transaction

and transformation analysis as its strategy for implementation. However this still leaves the

design largely an art. Object oriented design, on the other hand, appears to be providing

such an approach only until we get to attempt to establish the interfaces. Hence again

at this stage, the designer requires a great inspiration for achieving effective construction

results.

To conclude, we cannot adopt the software engineering approach as the sole solution

to the problem of constructing and developing protected computer systems not only be

cause the aforementioned weaknesses but also because it concentrates on producing only

the functional structures of the design. According to Ross and Schoman (1977) there are

always problems in the construction of functional designs based on a software' engineering

approach, since the physical structure is seldom identical to the functional structure (see

Figure 2.4). To arrive at an effective construction and development methodology we need to

capture the construction requirements elements mentioned earlier (sec. 2.2). The software

engineering approach manages to represent the functionality element via many successful

design methodologies; such as Gane and Sarson method (1979), the MASCOT (Simpson

and Jackson 1979), the process oriented method (Floyd 1981), Resource Monitors (Pashtan

and Unger 1984), and the object-oriented design (Jamsa 1984). All fail to match the op

erational requirements of the bare hardware or physical structures through the successive

treatments (e.g. decomposition) of the functional structures.

2.3 The Computer Architecture Approach

In the pre-LSI era, computer design had to be carried out under the postulate of hardware

cost minimisation; a postulate that was satisfied best by the von Neumann architecture.

However, the systems that is based on this type of architecture suffers from performance

CHAPTER 2.
36

FUNCTIONAL STRUCTURE

I

J

PHYSICAL STRUCTURE

Figure 2.4: The Matching Problem Between Structures

degradation or as Myer put it, the 4rVon Neumann bottleneck" (Myer 1978).

Consequently, many attempts have been made to overcome the performance limitations

of the classical von Neumann architecture. Flynn (1972) proposed different types of archi

tectures that can be used for performance enhancement. Figure 2.5 illustrates these types

of architectures.

Several computer designers believe that Flynn's architectures can be used directly with

little software support. Basically the software support utilises certain concurrency control

me~hanisms that are based on one of the many suggested mechanisms for concurrency en

forcement: the concept of software monitors (Hoare 1974, Brinch Hansen 1972), the concept

of message-passing (Lauer and Needham 1979), condition queues (Holt et aI 1978), corou

tines (Marlin 1980), semaphores (Dijkstra 1968), or the rendezvous (Gammage and Casey

1985). Although many software support techniques have been suggested, there are very few

CHAPTER 2. 37

Figure 2.5: Flynn's Computer Performance Architectures

successful implementations available in reality (e.g. OCCAM programming language for the

Transputer-oriented computers (c.f. Jones 1985), Parallel Pascal for the MPP computers

(c.f. Reeves 1985». Figure 2.6 illustrates the current status of research in seven of the

,leading {JS research centres on supercomputers (i.e. highly parallel computers) as surveyed

by IEEE Software journal (1985). The main conclusion of this survey pointed out that

there is a great need for innovative software development techniques that can ensure the

effectivity of highly parallel computer architectures.

Center

CenLer for Supercomputing
. Research and Development

Supercomputing Research

Application Libraries and Compiler Operating Programming Memory
Development Algorithms Techniques Systems Environments Hierarchy Debuggers Hardware

Center ""

John von Neumann Center ""

San Diego Supercomputer
Center

Narional Center for Super
computing Applications

CorneJl

Supercomputer Computa
tions Research Institute

Figure 2.6: Major research efforts at the US supercomputers centres

However, the research experience prove that this sort of software support certainly fails

CHAPTER 2. 38

to deal with the addition of extra functionalities that may be added on top of the 'less par

rallel Flynn architecture' (e.g. distributed systems of the von Neumann computers), such

as protection. The fact is that the proposed solutions of software techniques of concurrency

support software does not effectively address protection which any effective synchronisa

tion technique must enforce (c.f. Lundstrom and Lawrie 1986, Rennels 1980). In order

to overcome this problem, two different approaches have been proposed as a means to

achieve protection when it is associated with the support of concurrency: recovery block

(Randell 1975) and design diversity (Avizienis and Kelly 1984).

In the recovery block approach, software routines are organised in a manner similar

to the hardware technique of dynamic redundancy. This approach is dependent on the

effectiveness of the acceptance test, which judges whether or not the routine has been

executed successfully. Such effectiveness is often quite difficult to measure.

In the design diversity approach, a number of independently designed and programmed

software routines for a given function are executed concurrently. The results of these rou

tines are compared, and the preferred result is identified by majority voting. This approach,

which is called N-version programming, has been experimented upon, and the results have

been discussed (Chen and Avizienis 1978). The success of this approach is governed by the

degree of independence among redundant software routines.

However, Flynn's architectures refer only to the hardware features of the system. Conse

quently, they lack the discriminating power to be able to represent the other major features

that is important for the construction of effective protected computer systems. The missing

features are primarily functional, such as:

• The representation of control structures,

• Information representation in the machine,

• Access mechanisms,

• Communication structures representation, etc.

Here we should make a clear distinction between computer architecture and computer

CHAPTER 2. 39

organisation. Computer architecture refer to the functional structures of the system (see

section 4.6.2) whereas computer organisation refers only to the firmware and the hardware

features of the system (i.e the substrata (see section 4.6.3)), employed to realise the functions

generated by the system abstractions.

Missing this distinction, some designers of highly constrained computer systems believe

that an effective highly constrained computer system can be constructed only by choosing an

effective computer organisation (Dietz and Szewerenko 1979). Using this effective computer

organisation, constraints can be built on top of it in order to produce a successful highly

constrained computer system (McLaren and et. al 1981)! According to the same belief,

the US Army/Navy Computer Architecture (CFA) committee tried to construct or select

a well protected computer system to be their military computer (Fuller et. al. 1977). The

committee started a series of experiments to select the suitable computer organisation for

military purposes. The initial list of candidate systems is given in Figure 2.7 (Burr and et.

al 1977).

The results established from Table 2.2 lead to the selection of three 'final candidate'

systems: the IBM S/370, the Interdata 8/32, and the DEC PDP-II.

System Quantitative Score Pass-Fail Criteria
Interdata 8/32 1.68 (BEST) MINOR UNCERTAINTY WITH

STATE AFTER TRAPS
PDP-II 1.43 PASSED ALL
IBM S/370 1.36 PASSED ALL
AN/GYK-12 0.94 FAILED FLOATING POINT
ROLM 1664 0.92 FAILED VIRTUAL ¥EMORY
B6700 0.92 FAILED PROTECTION
SEL-32 0.86 FAILED VIRTUAL MEMORY
AN/UYK-7 0.46 FAILED VIRTUAL MEMORY
AN/UYK-20 0.46 (WORST) FAILED PROTECTION

Table 2.2: The CFA Selected Computer Organisations

This scheme has been proven by many researchers to be unreliable. Bic (1982), for

example, proved that protected computer systems constructed using the data flow computer

organisation suffers mainly from complexity and performance degradation, failing to meet all

CHAPTER 2. 40

the expectations. Newman and Woodward (1981) proved that protected computer systems

suffer from performance degradation even when multiprocessor computer organisation is

selected. McLaren and MacEwen (1981) explained the reasons why building a protection

subsystem on top of a successful computer organisation will not produce an effective highly

constrained computer system both in the degree of maximal constrained achieved and from

the performance point of view.

The problems associated with Flynn's architectures have been slightly enhanced by

adding certain functional features to the computer organisation and design. Figure 2.7 lists

the most notable attempts of the modified approach that are specially made for highly

constrained computer systems construction (Mohamad and Cavouras 1984).

.

Functionally Modified
Computer Organisations

/
Virtual Machines

e.g. MULTICS
Honeywell L66

Capability Machines
e.g.CAP, Hydra,

System 250

Taged Machines
e.g. Rice R1,

B6700

I
General Typed Machines

e.g. SWARD, BLM

Figure 2.7: Functionally Modified Flynn's Architectures

Although these modifications may appear to be good, they add serious problems to the

research aim of constructing effective highly constrained computer systems. These problems

are:

• Existing methods of performance evaluation are not suitable for these new architec-

tures.

CHAPTER 2. 41

• The resulting systems should be dedicated to the computer organisation that is asso

ciated with.

The problem of finding a suitable performance evaluation method has been studied

recently by using yet a different technique, the software science methods. Several

researchers demonstrated that by using the software science we can extract certain ar

chitecture quality measures (Kavi and Krishnamohan 1984), the simple Halstead measures

(Pashtan 1985), or certain empirical approaches (Lunde 1977). However, even using the con

ventional evaluation techniques certain modified computer organisations are found to suffer

from performance degradation. The system developed by the Cambridge University group

(Wilkes and Needham 1979) has been developed to CAP2 after conducting a performance

study on the original CAP and finding that it suffers from major performance limitations

(Cook 1978). But we still need a performance analysis method that can evaluate computer

designs with respect to the constraints parameters as well as hardware configuration and

workload.

The second problem has been partly solved by proposing that the design of highly con

strained computer systems should be based upon certain high-level computer architectures

in which the constructed system features are directly executed within the high level

language itself (Flynn 1980) (Chu 1981) or by using a design language that allow us to

enhancethe performance via techniques such as the vertical migration method.

Using the direct execution approach, there exist two options: the use of the notational

design languages or the use of the hardware description languages. The notational

design languages treat the design of computer organisations from formal point of view,

such as AHPL (Hill 1975), ISP (Baebacci 1977), CDL (Chu 1965), DDL (Duley

et. al 1969), RTS (Piloty 1975), and PMS (Gordon et al 1971). These tools are

convenient for studying the overall configuration of a computer system (see Figure 2.8).

Indeed the notational representation of a system's structure is a powerful documentation

tool. But, it is difficult for a machine to interpret it. In addition, it lacks information

about the behaviour of the system components, thus limiting its applicability (Djordjevic

CHAPTER 2.

r ___ S (~!''''~'onus 6ac';'a ne
;.terccr,nect S5;)

----4'.-----foI P

(U~iWS e" Unib..s Contro11er ;
-1

-T

) lo .. speeod
) IIC dev ices
) SyC~ AS te~f:~S

Contre ner)
(Masstlus ~Mas!bYS

~Sll)) h'g> speed
III de. ices

. ~) sue' as dis"s
slZ)

Figure 2.8: The PMS Description of the VAX-l1/770 computer system.

42

et 801 1985). However, we should point out that the ISP notation is used to describe the

computer system components behaviour. This encouraged some researchers to develop it

into a very useful formal language, which has been called ISPS (Barbacci 1977). But,

a complete separation between the specification of the structure and the behaviour of a

computer system is not an easily realisable or even a desirable goal. Structure and behaviour

go hand in hand and it is a measure of the power of a language that is able to enhance one

aspect over the other.

Computer Hardware Description Languages (CHDL's), on the other hand, have

been used in computer design since early 1960's, as can be seen in (Schlaeppi 1964) (Schorr

1964). According to Barbacci (1975) a description language can be procedural or nonpro

cedural. Procedural languages impose an explicit ordering of execution of the statements

describing target machine activities. A statement is executed after the completion of the

pr~ceding one. The nonprocedural languages attach no meaning to the lexicographical

ordering of the statements describing the target machine. Examples of these hardware de

scription languages may include: the CDL language by CHU (1965) nonprocedural type,

the DDL by Duley and Dietmeyer (1969) nonprocedural type, and AHPL by Hill (1975)

,procedural type .

CHAPTER 2. 43

Over the years, many CHLD's have been defined and some of them implemented with

so many additions and developments (see Fernandes 1982) (Barbacci and Uehara 1985).

However, the primary aim of these languages is to describe the computer hardware that

enables us to realise the target machine. Indeed this is not our primary interest in the design

of highly constrained computer systems. What we need is a description and synthesis tool

that allow us to define the computer architecture (hardware, firmware, and software), that

is machine independent which captures the essential structural and behavioural elements of

the system as well as it can be used for predicting the system performance.

Vertical migration method, however, is a systematic, partially automated method for

the performance improvement of a dedicated application or a class of applications in a

multilevel firmware- software hierarchical system which aim at reducing the CPU overhead

(Stockenberg and van Dam 1978). Each level has an associated execution time overhead.

The execution time overhead of a level is lowest for the hardware and increases for each

level as you proceed up the hierarchy from hardware to the application program level. This

is because the higher levels typically make use of the lower levels, incurring the overhead of

the lower levels in addition to their own overhead.

The method for reducing overhead involves reimplementing either entire functions, or

paths through them, which are CPU intensive on lower levels, for example, reimplementing

an OS-level 1 function as an OS-level 0 function, or reimplementing an OS-level 2 in the

firmware. Exactly what the overhead consists of is described as part of the model below.

Figure 2.9 illustrates a typical example of using the vertical migration to enhance the

performance of a hypothetical multilevel model.

The vertical migration as described deals exclusively with performance issues. There

is no concern for the complexity of the mapping or execution actions, or the types and

nu~bers of interconnections between modules (except that modules be interconnected in

a hierarchical fashion). Indeed the complexity issue is of great concern for the design of

highly constrained computer systems and cannot be ignored if we want to achieve the aim

of producing effective designs.

CHAPTER 2.

k, t
APf'UCA TlCII LE vEL I -

LEVEL I
"~'or I F">OLOG uE

l E'VEl. I

P" J P'z 1 Ih I~
EXECUTlON

~
ACTIOroS

"'oz •
~-

I

EPlLkl.E:
EPILOGuE

LEVEL 0 "eJjCfor } PROLOGuE

I

pOll' 'bz I. EXECUTlON
ACTIONS

I 1 I 1 • •
I

(a) before migration

•

ExECUT'oo. •
ACTIC)"jS

EPILOGUE

U'1LOGUE

(b) after migration

Figure 2.9: An Example of a Vertical Migration Process.

2.4 The Knowledge Engineering Approach

44

OECUTIQIII
ACTIONS

o •

EXEC\)T\ON
ACTlOIIIS .0.

The current interest in knowledge engineering has been stimulated by the announcement

(in 1981) of the Japanese programme of research and development into the tl fifth generation

computing ". This generation of computers is characterised by the view that tlknowledge" .
rather than tldata" is the essential raw material to be processed. Knowledge engineering

has been intensively used in the area of artificial intelligence (AI) and Expert Systems.

Certainly, it is commonly missing from operating systems and computer design. However,

recently some researchers started to develop tlsmart kernels" of operating systems using

CHAPTER 2. 45

certain adaptive strategies that represent a tool box for knowledge engineering. Reiner

(1980) used his adaptive strategy to improve system performance through dynamic modifi

cation of system control parameters (c.f. Figure 2.10). Lantz et. al. (1982) has implemented

the RIG an ((intelligent" distributed operating system based on similar ideas of Reiner.

Performance

1

?

4

2

3

1,2,3,4 Variations of
a Control Parameter

Load

Figure 2.10: Reiner Adaptive strategy.

The problems with Reiner's approach (or indeed any similar attempts such as the scheme

of adaptable architectures by Vick et al (1980)) are quite serious. While a parameter may be

easy enough to modify, the effects of a change may be unclear or difficult to observe. This is

particularly true for large systems, where workload and resulting performance variations are

sufficiently large to observe changes in the performance caused by resulting control param

eters. The wrong choice of corrections may cause the system to become unstable, oscillate,

or even crash. Furthermore, frequent changes to control parameters may include transient

effects which de~rade overall system performance. Clearly, guesswork and unstructured

CHAPTER 2. 46

attempts to introduce adaptive control have little chance of success with complex systems.

The author believes that more effective approach should be achieved by employing the

following knowledge engineering steps:

• The use of iterative design (Mohamad 1981),

• The use of extensible structures (Mohamad and Cavouras 1984),

• The use of (smart' scheduling policies and inferential techniques (Mohamad 1982).

These design steps will be incorporated within our proposed methodology in chapter 4.

2.5 Hints For A Successful Computer System Design

"Designing a computer system is very different from designing an algorithm: the

external interface-that is, the requirement-is less precisely defined, more complex,

and more subject to change; the system has much more internal structure-hence,

many internal interfaces; and the measure of success is much less clear. The de

signer usually finds himself floundering in the sea of possibilities, unclear about

how one choice will limit his freedom to make other choices or affect the size and

performance of the entire system. There probably isn't a best way to build the sys

tem or even a major part of it. Much more important is to avoid choosing a terrible

way and to have a clear division responsibilities among the parts" (Lampson 1984).

The most important hints, and the vaguest, have to do with ob,taining the right func

tions from a system. Most of them depend on the notion of an interface separating an

implementation of some abstraction from the clients who use the abstraction (Britton et

al ,1981).

Defining interfaces is the most important part of system design. Usually, it is also the

most difficult, since the interface design must satisfy conflicting requirements:

• An interface should be simple,

• It should be complete, and

CHAPTER 2. 47

• It should admit a sufficiently small and fast implementation.

Indeed, defining interfaces is a part of the whole process of system design and synthesis

that corresponds closely to analytic modelling in .many other fields. Construction of a

model usually starts with observations, followed closely by formation of hypotheses about

principles or axioms that explain the observation. These axioms are used to derive or

construct a model of the observed system. The parameters or variables of the model may

be derived from the axioms or they may be estimated from observation. The model is then

used to make new predictions. The final step is to perform experiments in controlled or

well- understood environments to determine the accuracy and robustness of the model and

of the axioms. This cycle of hypothesising and validating models is then continued with

additional observations.

However, designing computer systems involves a series of design activities of a designer

and design tools. The design activities consists of manipulating design objects according

to some rules derivable from the design objectives. The activities range from the first

specification of the functionality expected from the final design, through various types of

analysis, synthesis of implementation, to synthesis of the final implementation, realisation

and testing. We can coarsely describe the design process as composed by some major design

steps as illustrated in figure 2.11

Design tools and techniques are often associated with the specification of systems in

tended for implementation as a mixture of hardware, software, and firmware. These tools

generally consisted of two main parts; a language independent part and a language definition

and handling mechanism part (see Figure 2.12).

Traditional approaches are based on technological premises that are no longer valid.

"The new Itground rules· make possible new relationships between architecture

and language" rm (Flynn 1980).

Indeed modern design tools contribute to what Flynn pointed out, and they provide a

non-restricted design paradigm.

CHAPTER 2.

tKhnclogy ~fjcj ... 1:)' ~
-"y"--'

/
I

I
I

Figure 2.11: The main phases of the design process.

48

Hence, the interaction between the computer language design and the system model

structures (architecture) have serious implications for the overall computational cost and

efficiency. In this section we investigates those interactions, and classify them into four

distinct categories that lead to four distinct approaches. For the purpose of developing a

general purpose design and construction tool, the most non-restrictive approach should be

adopted. The details and advantages and disadvantages of each approach is given below:

2.5.1 Dedicated Language Dedicated Architecture Approach:

This approach is called traditionally the Direct-Execution Architecture approach (i.e. IS a

language-directed computer architecture). It can accept a high-level-language program and

executes it directly without compilation, assembly, linkage editing or loading. It offers a

means to eliminate compilers, loaders etc. and attacks the problem of mounting software

cost (Chu 1977). The history of this type of architecture returns back to the year 1963
•

when Mullery et. al. (1963) designed a problem-oriented symbol processor called ADAM

and concluded that a high-level language could be implemented with a reasonable amount

of hardware.

CHAPTER 2.

Design Tool

Language-Independent
Part

Language Definition
and Handling Part

Figure 2.12: Design and Synthesis Tools Structure.

49

There has been considerable research directed toward the use of direct-execution archi

tectures (especially in the area of hardware description languages (CHDL)) in the automated

design of digital hardware, but attempts to produce efficient hard,ware design in this way

have had little success (Boulton and Goguen 1979). This is primarily because previous

high-level CHDLs could not represent the design of large scale digital system in a way that

could be related directly to a low level machine hardware realisation.

Some solutions to the above problem have been provided, for example, Shimizu and

Sakamura (1983) decided to use the a knowledge-base (MIXER) which has the relevant

information on a family of target architectures which can be used later by the CHDL to

produce effective matching descriptions directly on a particular hardware. This approach

however, is still very restrictive to be adopted for computer system design purpose.

2.5.2 Non-Dedicated Language Dedicated Architecture Approach:

It is the fundamental premise to this approach that the purpose of the resulted computer
,

systems is to provide a cost-effective solution to a particular set of problems. That solution is

best attained through the use of dedicated system architecture (Bose and Davidson 1984).

The supporters of this approach argue that machines should be designed from historical

base. Consequently only rarely does a new architecture appear in a real world of com

puter design. Most computer architectures are variations on the same theme: a simple von

CHAPTER 2. 50

Neumann machine. Therefore, dedicated computer architectures appear to be very advan

tageous, since the computer's instruction set and its gross information flow have been chosen

to make the hardware simpler, more trefficient1J, or to invoke some obvious optimisation.

An excellent example for this approach is the systolic array archit"ecture approach (Sorasen

et. aI1983). Indeed we may found some dedicated architectures that can be ported within

similar environments, those architectures may include the SCAPE (Lea 1983) and the EP

SILON (Hayes 1983). The porting criteria of this sort of architectures is not defined and

well reported in the literature and is indeed still greatly being researched.

Further, some researchers have realised that certain computer architectures (e.g. the

von Neumann architecture) do not provide adequatetranslations for the constructs that

occur in common programming languages. This type of shortcoming is attributable to a

phenomenon known as the «semantic gap1J. 2

"Most current systems have undesirably large semantic gap in that the objects and

operations reflected in their architectu res are rarely closely related to the objects

and operations provided in the programming languages. This large semantic gap

contributes to software unreliability. performance problems. excessive program size.

compiler complexity. and distortions of the programming languages: all of these

contribute negatively to the efficiency and cost of the resulting computer system"

(Myer 1978).

However, in the case of pararllel architectures (i.e. non von Neumann) it is rather a

problem to use them effectively with non-dedicated languages, since humans tend to think

sequentially rather than concurrently. The human programmers, hence, tend to develop

their programs in a sequential language such as Fortran. While the resulting programs are

usually very effecient on a von Neumann machine, they often incapable of directly mak

ing effective use of the parallel machines. Since it seems clear that the next generation of

computers will be based on the parallel paradigm, this poses a potential roadblock in the

full use of these parallel computers. A typical solution to this problem, which represent the

1See section 2.1 for further information on the nature of the semantic gap.

CHAPTER 2. 51

current practice, is provide a set of very simple machine calls which can be incorperated in

any language in order to support the concurrency criterion (c.f. Allen and Kennedy 1985).

As a result, the programmer is responsible for explicitly handling all synchronisation. The

problem with this approach is that concurrent programming is unnatural for many program

mers. Not only is writing such a program tedious, but it is also presents many opportunities

for creating bugs that are almost impossible to find; such as deadlocks and programs that

produce different results on the same data. Hence, it is necessary for the programmer using

non dedicated language with a dedicated architecture to understand the of the details of

the given dedicated architecture in order to use it optimal parallel capacity. For this reason,

this approach seems quite limited.

2.5.3 Dedicated Language Non-Dedicated Architecture Approach:

Present problem specification languages contain very few constructs about dynamics such as

synchronisation between processes, dynamic allocation of resources, or timing of events that

are useful for modelling dynamics. In particular, the constructs of dynamics are generally

not adequate, or complete enough to permit the construction of highly constrained computer

systems. The objective of this approach is to define concepts and a language to describe

certain constructs that can as the primitives for computer system construction. SODAS is

an example of such an attempt (Parnas and Darringer 1979).

Recently researchers like Hac (1982) expressed opinion that any computer language can

be transformed and be used for computer system design and construction tool (for example

Pascal). Ambler and Hoch (1977), however, believes that constraints such as protection can

be enforced from the language level. Although this approach appear to be very attractive

for highly constrained computer systems construction, it suffer from a major problem that

it concentrate on the representation of the system features using the high level language

constructs without giving proper consideration to the interpretation of these constructs and

to the performance of the resulting design. Berg (1977), along with Cavouras and Davis

(1981) pointed out this problem and reported the need for an ideal solution that consider

the representation of hardware, firmware and software features of the system in an effective

CHAPTER 2. 52

and integrated way.

2.5.4 Non-Dedicated Language Non-Dedicated Architecture Approach:

This is the most non-restrictive approach that can be used effectively to design highly con

strained computer systems. However, to date there are very few successful attempts that

can achieve computer system design in such non-restrictive way. Here we distinguish the

scheme of activity structures applied within the general meta systems framework (Kohout

and Gaines 1976). This scheme is used for capturing the diverse features (functional and

substratum (hardware)) in natural or artificial systems. Because of generalised formulation

(generalisation) of the activity structures constructs, the activity structures based machine

can be transported across disciplines and environments. This presents the opportunity to

provide a knowledge domain independent, but purpose oriented empty shell. These features

let the activity structures scheme to be an excellent approach for integrated and systems

design and construction. Activity structures scheme was used to construct effective medical

(Kohout et. al. 1984) and technological (Kohout and Bandler 1981) as well as certain social

systems (Kohout et. al. 1984a). This approach not only uses flexible functional structures

but it also utilises extesible substrata, such as coroutines (can be programmed in any pro

gramming language) which can operate in a parallel or sequential fashion depending on the

host bare architecture. However, this approach may be divided into two sub-approaches;

namely, the bottom-up sub-approach, and the top-down sub- approach. The main reason

for introducing this type of classification is to ensure the design flexibility of this approach.

2.6 Concluding Remarks

It is hoped that the preceding discussion has indicated some of the practical problems of

highly constrained computer systems design. It was not intentend to present any method

ological solution in this chapter, rather, I have attempted to present and discuss the ideas

from the current trscience paradigm JI literature which may be considered as possible ap

proaches to solutions of some of these problems. In this respect, my primary concern was

to show how these approaches fail within the relevant design fields to capture the main

CHAPTER 2. 53

construction requirements of highly constrained computer systems. I have demonstrated

that the existing techniques from the relevant design fields (software engineering, computer

architecture, and knowledge engineering) are largely fragmented to be used for constructing

highly constrained computer systems. There is a need for a methodlogical approach which

integrates the design advantages of the relevant design fields.

Chapter 3

AN OVERVIEW OF THE EXISTING THEORETICAL
APPROACHES FOR CONSTRUCTING HIGHLY

CONSTRAINED COMPUTER SYSTEMS WITHIN THE
SCIENCE PARADIGM

3.1 Milestones

Since the early days of computer industry, there has been considerable interest in the theo-

retical design and performance analysis of computer systems. There are three practical goals

related to theoretical design and performance analysis: selection of the best among several

existing systems; design of not-yet existing system; the analysis of an existing accessible

system.

The mathematical analysis of congestion in telephone systems pioneered by the Danish

engineer A.K. Erlang (Brockmeyer 1948) was a major contributor to performance assesment

and the design of "computer systems". The problem tackled by Erlang is the relationship

between the number of connected telephone subscribers, the probability of making a call,

the probability of the call requiring various lengths of time, and the number of tftrunk"

lines that should be installed by the telephone company. However, not until 1957 a realistic

th~oretical design approach had started. That year Jackson published his (queueing theory

or queueing network) analysis of a multiple device system wherein each device contained one

or more parallel servers and jobs could enter or exit the system anywhere. In 1963 Jackson

extended his analysis to open and closed systems with local load-dependent service rates at

all devices. In 1967, Gordon an Newell simplified the notational structure of these results

54

CHAPTER 3. 55

for the special case of closed systems. Baskett et al. (1975) extended the results to include

different queueing disciplines, multiple classes of jobs, nonexponential service distributions.

The first successful application of the queueing network analysis to a computer system

. came in 1965 when Scherr used the classical machine repairman model to analyse the MIT

time sharing system and the CTSS system (Scherr 1967). However, the Jackson-Gordon

Newell theory remained dormant until 1971 when Buzen introduced the central server

model and fast computational algorithms for these models (Buzen 1971, 1973). Working

independently, Moore (1971) showed that queueing network analysis could predict the re

sponse times on the Michigan Terminal System (MTS) within 10Extensive validations since

1971 have verified that these design models reproduce observed performance quantities with

certain accuracy percentage (not yet remarkable!) (Hughes and Moe 1973, Denning and

Buzen 1978).

However, most of the current computer systems design theories (including the queueing

theory) provide only certain specialised design models (c.f. Klienrock 1985, Lundstrom and

Lawrie 1985). This fact can be depicted from the tremendous effort spent by the researchers

working on the widely used computer design theory; the queueing theory. These efforts are

critically reviewed in sections 3.2.1, 3.2.2, and 3.2.3. Table 3.1 illustrates some of the less

widely used theories for constructing and analysing certain specialised computer system

models.

Until now the building blocks of scientific theory; the theoretical and methodological

constructs as well as the mathematical formalisms- have made it difficult to conceive of

the possibility of giving a general account of nature of computer systems design and their

organisation. We have had to rely on the essential notions of physics (time, length, etc.)

or else on descriptive analogies taken from ordinary experience in order to make intelligible

natural phenomena. The advance of 6 statistical" sciences (operational research, kinetic

theory, queueing theory, statistical mechanics and thermodynamics, quantum mechanics,

etc.) have led to new ways to simplify complex phenomena within an empirically meaningful

framework. Successes in these areas suggest that behind the formidable complexity of nature

there are actually a surprisingly small number of simple relations governing interactions;

CHAPTER 3. 56

Modelling Theory Computer Model &ference
1 CONTROL THEORY Distributed Systems (Kramer et al 1984)
2 OPTIMISATION Interactive Systems (von Mayrhauser 1979)

THEORY
3 RELATIONAL Protected Systems (Kohout et al 1981)

PRODUCTS THEORY
4 MATHEMATICAL Symbolic Systems (Pichler 1983)

SYSTEMS THEORY
5 INFORMATION Communication (Usher 1984)

THEORY System
6 AUTOMATA THEORY Distributed Systems (Strak 1984)
7 POSSIBILITY THEORY Protected Systems (Rine 19781
8 FORMAL MODELLING Simulation Models (Zeigler 1972)

THEORY
9 CATEGORY THEORY Formal Models (Bandler 1978)

10 CYBERNETIC MODELLING Interactive Systems (Iyenger et al 1980)
THEORY

11 PERFO RMABILITY Reliable Systems (Meyer 1980)
ANALYSIS

12 SYSTEM CONNECTION Performance Models (Yuval 1980)
ANALYSIS

Table 3.1: Some Less-Used Computer Systems Modelling Theories.

the difficulty has been to refine several theories to the point where such relations could

emerge clearly.

Without a general design theory, the road to understanding the behaviour and predicting

the performance of protected computer systems has been, and still is, arduous. Many people

have realised this and have attempted to investigate the problem of designing and analysing

the performance of highly constrained computer systems, and to proceed to develop superior

theoretical models and tools ("yet only fragments!"' (Tully 1985)).

3.2 Critique of Analytical Modelling

An'y system design, any measurement project or any resources allocation strategy is based

on some conception of environment in which it operates. That conception is a model. It

is beneficial to have such models explicitly stated so that they can be explored, tested,

criticised and revised. Even better, though not often achieved to the extent desired, is a

formal analysis of the model.

CHAPTER 3. 57

Theoretical models and methods of computer systems design and analysis vary greatly

(Table 3.1). While most will argue that the goals of such models are inherently worthwhile

and must be pursued, there is widespread dissatisfaction with the current state of theoretical

paradigm. Basically, there are three areas of dissatisfaction. First, the models are generally

oversimplified in order to make them mathematically tractable. This obviously makes the

results questionable and brings us the second major failt which is that analytical results

are often not validated by measurement or simulation. Moreover, in cases where system

evaluation studies are carried out, the existing models do not seem powerful enough to

provide a uniform basis for measurements. The third major criticism is that most of the

literature on analytic modelling is a collection of analyses of specialised models. This

points out the lack of very general powerful models which would allow analysis to become

an engineering tool. As it is now, each new situation almost always requires a separate

analysis.

Although qu~ueing theory (c.f. Kleinrock 1975, 1976) is not the general design theory

agreed upon by all the researchers (including Klienrock 1985), designers, and manufac

turers, it was the only theory employed widely for the design and evaluation of computer

systems within various classes of the design models. Indeed the queueing theory fails to

accurately describe distributed computer systems (one of our main design requirements).

However, the analytical or the application models based upon the queueing theory treat

various types of the pre-assumed computer settings or networks (closed or open), treat var

ious job classes, and employ certain approximations which relax some of the restrictions

necessary for the application of the queueing theory.

Mohamad and Cavouras (1982) classify the models that utilise the queueing theory into

three categories (see Figure 3.1.

1. analytical models,

2. simulation models, and

3. empirical models.

CHAPTER 3.

4ueueing Theory

Analytical
Models

Operat ional
Analysis

Stochastic
Modelling

Mean _Value
Analysis

Helpful

Statistical
MQthods

Tools

Sim:lat~1 Empirical
Models Models

Synthesized

Discrete

Heuristic

Inferential

I
Reg-ression
Models

Rule-of-Thumb
Laws

Figure 3.1: Queueing Theory Based Models

58

l Measurements J

In the following section, we investigate the use of these models for computer system

design as well as their associated problems.

3.2.1 The Analytical Models of The Queueing Theory

Analytical models represent system design and evaluation parameters strictly in mathemat

ical terms. Indeed, certain researchers prefer this approach (c.f. Kobayashi 1978), for the

following reasons:

• It is an economical method compared to simulation,

• It can be used to optimise the design variables, and

• It is quicker to produce results than simulation models.

This modelling approach, however, may have the following disadvantages (Farrari 1978):

• limited in scope,

• difficult to develop and build, and

CHAPTER 3. 59

• not easy to test the simplification assumptions.

The notable theoretical models derived from the principles of the queueing theory are:

1. stochastic modelling (c.f. Chandy and Sauer 1978),

2. operational analysis (c.f. Buzen and Denning 1980), and

3. mean-value analysis (c.f. Riser 1979).

Brief critical review of these attempts are given in the following sections.

3.2.1.1 Stochastic Modelling

This modelling technique considers the system as consisting of service centres among which

jobs circulate. This analysis may also be called stochastic modelling or probabilistic mod

elling, since the servicing time of a job at a servicing centre is taken to be a sample from

a specified distribution and the frequency by which the job will move to another servic

ing centre is controlled by a specified probability distribution. The stochastic modelling

technique concideres the following definitions and hypotheses (Ferrari 1978):

Definition 1 A stochastic process x(t) is a function of time t whose values are random

variables. The value of x(t) at time t* represent the state of the stochastic process at t*.

If each random variable take only a finite or a countable number of values, we have a

discrete-state process or chain. Otherwise, we have a continuous-state stochastic process.

Hypothesis 1 The behaviour of the real system model during a given period of time is

characterised by the probability distributions of the stochastic process if and only if the

following assumptions hold (refer to Sevcik and Klawe 1979):

1. the system is modelled by a stationary stochastic process,

2. jobs are stochastically independent,

9. successive transitions among service centres are independent,

4. The system reaches equilibrium,

CHAPTER 3. 60

5. the system is ergodic (i.e. long-term time averages converge to the values computed

for stochastic equilibrium), and

6. the network model must be operationally connected (i. e. each deV1·ce must be visited

at least once by some job during the observation period).

If 1 and 2 were assumed and if the service time distribution at each centre is exponential

then the system state (i.e. the number of jobs at each service centre) is a continuous

Markov process (Kobayashi 1978). If hypotheses 4 and 5 were assumed then the system

is at a steady-state equilibrium, and long term performance measures can be computed.

Based on these hypotheses, a stochastic model can be defined and used for designing a

computer system. Observable aspects of the real system model- e.g. states, parameters,

and probability distributions- can be identified with quantities in the stochastic model and

equations relating these quantities can be derived. Although formally applicable only to

the stochastic process these equations can also be applied to the observable behaviour of

the system itself (i.e. limited time), under suitable limiting conditions (Buzen 1978). The

parameters of the stochastic process, representing the operation of the system, must be

estimated from observations during a finite time interval. The specific formulae depend on

what measurement data is available and on the amount of detail in the queueing network

model.

In order to validate the model, the estimated parameter values are substituted into

,the performance measure formulae, and the results are compared to the corresponding

observed values for a specific observation period. The most common purpose for which

models are created is to obtain an indication of how a system will behave in the future,

either after its configuration has been altered or its workload has been changed. In order

to. accomplish this, it is possible to employ the same computational formulae as in the

validation of the model, by using modified parameter values in order to reflect the altered

circumstances anticipated in the future. Once the future values of the model parameters

have been estimated, the obtained formulae are used to calculate the performance measures.

These are then interpreted as equilibrium Performance measures of a stochastic process.

CHAPTER 3. 61

Stochastic analysis has, however, certain disadvantages (Denning and Buzen 78):

1. It is impossible to validate the stochastic hypothesis and conditions, hence an analyst

can never be certain that an equation derived from a stochastic model can be correctly

applied to the observable behaviour of a real system.

2. Stochastic analysis is an inductive mathematical tool: (it estimates unknown values

from the projection period from values observed in the baseline period). Thus, one

faces the problem of uncertainties in estimation of variables. (Note: this problem is not

present in operational analysis, since operational analysis is a deductive mathematical

tooQ.

3. Stochastic analysis can be applied to study a fairly simple and special class of computer

systems design because the type of assumptions used by this analysis cannot be easily

found in real systems (e.g. the assumptions of equilibrium or stochastic independence

of successive service times).

4. Stochastic modelling may not be so easy to understand.

5. Stochastic modelling cannot be relevant to a real system. For example, in real systems

transactions between devices do not follow Markov chains or processes, and service

time distributions are not generally exponential (Von Mayrhauser 1979).

On the other hand, Stochastic models bestow certain benefits. Independent and depen

dent variables can be defined precisely, hypothesis can be stated succinctly and a consider

able body of theory can be called on during analysis (Denning and Buzen 1978).

3.2.1.2 Operational Analysis

"Operational Analysis is a framwork for studying the design performance of systems

during given periods of time. The system may be real or hypothetical. and the time

may be past. present or future" (Buzen and Denning 1980).

This kind of analysis was recently invented, about 1976 (Buzen 1976), to construct a

precise mathematical tool to meet the following objectives:

CHAPTER 3. 62

1. Relate existing measurement data to other quantities that were not measured but

which could, in principle, be empirically determined.

2. Verify the internal consistency of existing sets of measurement data.

3. Predict the effect that certain modifications to the system or the workload would have

on measured quantities.

4. Be simple and easy to understand.

5. The tool should be based on testable assumptions.

The general idea of operational analysis (or operational method) can be shown in the

following diagram (see Figure 3.2:

~---------------------

step 1:
INITIALIZATION.

step 2: ~ DEFINING
OPERATIONAL
VARIABLES.

I

I

RELATIONSHIPS.

step 3: d
DERIVING

: =-r-
------~

L1~~~I~~_. ~
Figure 3.2: The Operational Method .

• step 1: INITIALIZATION In this step an observation interval is obtained: an In

terval of time during which system behaviour is monitored and measurement data is

collected. The measured or computed quantities within the observation interval are

called operational variables.

CHAPTER 3. 63

• step!: DEFINING OPERATIONAL VARIABLES Defining the operational variables

that directly affect the performance indices of interest.

• step 9: DERIVING RELATIONSHIPS The behaviour of the system is specified in

this step by deriving the relationship between the operational variables. These rela

tionships are represented by mathematical equations.

• step 4: TESTING At this step, the mathematical relationships are tested against the

original objectives.

This method is considered by many researchers as equivalent or as an alternative to the

traditional method of stochastic analysis (or Stochastic modelling) (Buzen 1976, Buzen

1978, Buzen 19700, Denning and Buzen 1978). Other researchers find that this approach

has several advantages to the traditional approach. These advantages can be summarised

as follows (Sevcik and Klawe 1979):

• Relevance to actual system: The fact that operational analysis is based on observable

quantities and testable assumptions makes it easier to relate to system measurements.

• Understandability: Operational analysis can be understood easily, even for large sys

tems.

• Breadth of applicability: Since operational analysis depends on testable assumptions,

it has a wide applicability as a modelling technique. Its major application areas are

(Denning and Buzen 1978).

1. Performance Calculation: Operational results can be used to compute quantities

which have not measured.

2. Consistency checking: A failure of data to verify a theorem or identity reveals

an error in the data, a fault in the measurement procedure or a violation of a

critical hypothesis.

CHAPTER 3. 64

3. Performance Prediction: Operational results can be used to estimate perfor

mance quantities in a future time (or indeed a past time) for which no directly

measured data are available.

• Testability of A ssumptions: Most of the assumptions of Stochastic analysis can neither

be verified nor disproven in any finite period. While the assumptions of operational

analysis can, in principle, be tested in finite time intervals.

To give an example on how the operational analysis treats computer system design and

evaluation, we provided the following equations of a single server queueing system (c.f.

Denning and Buzen 1978) (see Figure 3.3):

queue

x .
server ---------------->

C

~,T

Figure 3.3: Single Server System

• Primary Des£gn and Evaluation Indices

T The length of the observed period

a The number of arrivals occurring during the observed period

f3 The total amount of the time that the system is busy during the observed period

l/ The number of completions occurring in the observed period

• Derived Indices

~ = afT the arrival rate Gobs/second)

X = l/ /T the output rate Gobs/second)

CHAPTER 3.

P = fJIT the utilisation (fraction of time system is busy)

S = fJ Iv the mean service time per completed job

• Operational Equations

Utilisation Law

Little's Law

Forced Flow Law

Output Flow Law

General Response Time Law

Interactive Response Time Law

Pi = Xi X Si

n = Xi X R;

Xi = Vi x XO

E:=1 XO = Xi X qio

R = E:=1 Vi x R;
R=M -z

X

65

However, some researchers do not find this approach suitable for parameter estimation

and anticipated design and modification (Muntz 1979, Sevcik and Klawe 1979, Buzen 1979)

they express the opinion that,

"the estimation problem is not really an integral part of either operational analysis

or stochastic modelling. It is crucially important but an entirely separate issue"

At the same time, Buzen believes that the performance analysis offers major advantages

over stochastic modelling in performance prediction.

Operational analysis uses queueing theory, in which case it is called Operational queue-

ing network theory (Denning and Buzen 1977). The important reason why queueing theory

should be used, is the speed with which performance quantities are computed using queue-

ing network formulae. The operational queueing network theory may use some assumptions

- e.g. flow balance, one-step behaviour' and homogeneity, but these assumptions (as men-

tioned previously) can be tested for validity in any observation period.

3.2..1.3 The Mean Value Analysis

This is a new mathematical tool, used to calculate some important performance indices,

such as mean response time, throughputs and queue length in closed queueing networks.

A primary advantage of mean-value analysis over the traditional approach (i.e. Stochastic

Analysis), is its improved numerical stability (Buzen and Denning 1980). This analysis uses

CHAPTER 3. 66

the Sevcik and Mitrani (1978) arrival theorem to calculate the mean-value for successively

larger loads N.

Riser (1979) found queueing networks with product-form solution l remarkably robust"

with respect to routing and service time distributions. This robustness leads to the new

mathematical explanation called Mean-Value analysis. Mean-Value analysis uses some basic

equations which can be applied iteratively for any value of N.

Let
I

definition

device number

number of devices

number of jobs

overall mean queue length at device i

mean queue length seen by arriving customer at device i

mean response time of device i

i = 1,···,K given N jobs

mean response time of the system given N jobs

mean system throughput given N jobs

mean number of visits per job to the device i

mean time between completions

Qa;(N) = Qi(N - 1) Sevcik-Mitrani theorem.

Then the basic mean-value equations are

1:

Xo(N) = N/ L~ x ~(N)
i=l

Using the forced flow law, we get

Xi(N) = ~Xo(N)forced flow law

Where

Xi(N) = throughput at device i given N

(1)

(2)

--}-'--t-h-'-'-t --u-e--s-iz-e-u-p-t-o-a-n-o-rm-allsation constant. This constant has a simple analytic expression
gIves e JOIn que .

. th of open queueing networks but 18 a sum of product terms of closed system
In e .case I .

:lstatisticians call a system robust if only the mean enters into the so utlOn

CHAPTER 3. 67

we get

Qi(N) = ~(N) x V. x Xo(N) (3)

Where i=I,···,K.

Equations (1), (2) and (3) can be u~ed iteratively, once the values V. and Si are given.

The iteration begins with N=1 and the boundary condition Qi(O) = O.

It is clear that this type of analysis uses no normalisation constant to calculate the

important performance indices, and hence the formulae have a simple mathematical struc

ture. This criteria is not available in the two previous analytical methods (i.e. Operational

analysis and Stochastic analysis).

Some ideas of extending Me an-Value analysis were given by Buzen and Denning (1980)

and by Riser and Lavenberg (1980), to which the reader is referred to for further information.

3.2.2 The Simulation Models of The Queueing Theory

Queueing theory models involve generally a large amount of computations and the support

of simulation software tools are unavoidable, so every new queueing model is followed by

its simulation counterpart. Indeed with simulation, we avoid tremendous difficulty in which

many theoretical equations results are obtained within a very reasonable time (e.g. nor-

malisation constant calculation in product-form models). For this reason, in our opinion,

more efforts were recently directed towards more effective computational (i.e. simulation)

algorithms for already existing theoretical models than towards creating conceptually new

theoretical models (see Figure 3.4).

Although, the simulation models can be classified according to their theoretical counter

part, they do differ in way they represent workload. Mohamad and Cavouras (1984, 1982)

introduced such type of classification, which consist of the following elements: .
1. Discrete Activity (event) -Oriented: model parameters, including the workload, are

derived from probability distributions (Overstreet and Nance 1985),

2. Heuristics-Oriented: model parameters based on the heuristic approaches are deter-

mined based upon certain prediction formulae or using certain basic rules such as

CHAPTER 3. 68

ao~.l teseriptlon -
1r. a S'\i.lt.~l. eill'clat1oJ:: 1&.n.«"J&C""

Figure 3.4: An Example of Queueing Networks Simulation Tools

system comparison to determine the more desirable alternative (Kimbleton 1975),

3. Synthesised-Oriented: model parameters (the workload in particular) are determined

according to the features found in a real-life sample (Haring et al 1978, Curnow and

Wichmann 1975).

4. Inferential- Oriented: model parameters are determined according to a the basic infor-

mation in a knowledge base and the inferences made by the inferential unit. This is

quite new approach proposed but not yet implemented by Harvard University (Levine

1984).

We do not want to discuss the advantages of each type of simulation separately, since

they are basically similar in being based upon the same theoretical ground (the network

models of the queueing theory). But, it is important to survey the notable attempts that

have been made to simulate the different kinds of the queueing networks.

GPSS uses a queuing network representation, as do the activity- cycle-based languages

(Hutchinson 1975). Interestingly, Nygaard and Dahl (1978), in discussing the development

of Simula, state that early in its design Simula was to be a queueing network- oriented

CHAPTER 3. 69

simulation language. This approach was dropped, however, when the developers become

convinced of its lack of generality.

Several authors have suggested the process concept (Blunden and Krasnow 1967) or

Simscript's entity attribute set approach as basis for modelling the queueing networks

(Markowitz 1979). While neither provides a theory supporting the simulation process,

both provide powerful representational and conceptual tools for model specification.

Zeigler's work is the most significant effort to provide a sound theoretical basis for

simulation (including the queueing networks). Based on general system theory, which in

turn is based on finite state machines, this approach provides powerful conceptual tools

for dealing with the dynamics of simulation process, including the concept tlmodel state

traiectories". Also, Zeigler's tlezperimental frames" provide both theoretical basis and

some practical guidance for dealing with model validation (Oren and Zeigler 1979, Zeigler

1984).

Kindler's set-theoretic approach provides a basis for a categorisation of models, systems,

and simulation models, although the impact on the practical issues of model development,

validation, and verification has yet to be developed (Kindler 1979).

Program generators have been used for more than a decade to assist in model im

plementation. A program generator typically consists of a component to build a model

specification which is then used by another component to generate code in a particular

simulation language. Mathewson's DRAFT systems (1977) uses a family of generators (one

for each target simulation language) to produce programs based on activity-cycle diagrams.

Davis' approach is to build a

"simulation-independent description of a situation" (Davies 1976) .

. Support systems for model development range from the simple expedient of programmer

checklists (McLeod 1973) to GASP (Pritsker 1974) and Visontay's DOCUM program for

Simula (Visontay 1979). Zeigler et al have an interactive system to assist a modeller in

the construction of model object descriptions (Zeigler 1980). Oren's GEST language (Oren

CHAPTER 3. 70

1984) provides a clear separation of model specification from the monitoring of the simula

tion study. The latest version of the language (Oren 1984) refers to Zeigler's experimental

frames (Oren 1979). The most ambitious attempt in this area is the Delta project, which

seeks to allow a modeller to develop a complete executable simulation program (Holbaek

Hanssen 1977).

Several authors discuss a formal simulation model specification and documentation lan

guage (SMSDL), first defined in (Nance 1971). Kleine describes an SMSDL which, by

progressive refinement, is intended to lead to executable Simscript programs (Kleine 1977).

Frankowski and Franta propose a process (and Simula) oriented SMSDL (Frankowski 1980).

A1; with Kleine, a specification evolves into an implementation; the same simulation lan

guage is used for both.

Little evidence of analytic techniques to assist in construction of efficient simulation

model implementation is found. DeCarvalho and Crookes describe analyses to improve the

efficiency of an activity-scanning time flow mechanism and to identify components whose

output can be saved and reused in subsequent executions (DeCarvalho 1976). Schruben

analyses «event graphs 1lJ in order to simplify a model specification and to identify other

properties of the model (Schruben 1983).

As the domain of model specification encompasses that of software specification, they

are closely related. Advances in either area are likely to benefit both. The similarity is'

particularly strong in approaches such as that of the JADE software development project.

JADE uses a development methodology based on the modelling and simulation of a proposed

system; the model is refined until it becomes the software system (Unger 1983). Balzer,

Cheatham, and Green argue for a new paradigm for software development which is based

on the use of a high-level formal software specification which is then transformed, at least

p~tially automatically, into an implementation (Balzer 1983). In Lehman's categorisation

of programs, all model implementations fall into the more difficult 'A' classification (Lehman

1980).

To conclude, several packages appeared in the literature based on these methods and

techniques that simulate variety of queueing networks (a list is given without references

CHAPTER 3. 71

because they are simply quite allot): RQA, MARCA, QSOLVE, ASQ, BCMP, QNET4,

SNAP, PNET, CHW, CADS, IQNA, QSill, APLOMB, RESQ, BEST/I, QNAP. Diethelm

(1977), Ross (1976), and Bhandiwad and Williams (1974) validated the accuracy of predic

tions for most of the above simulation models and prove that 6 to 28may involve in their

use.

3.2.3 The Empirical Modelling of The Queueing Theory

This method represents an alternative to the modelling techniques described above in the

last two sections. These methods are appropriate when performance or measurement data

of (an) actual system (s) are available. Statistical methods use these data to forecast future

performance. A perfect example of this approach is given by Gomaa (1976) in which he

defined several queueing network laws using the regression analysis.

Empirical data can be obtained through measurements, may be from an actual system or

from a queueing model of a system. The collection of these measurements can be performed

with hardware monitors, software monitors (or probes) and accounting packages. The reader

interested in measurement techniques is referred to Brad (1971), Williams (1972), Lunde

(1977), Robinson and Torsun (1977). This approach have limited success according to the

area where the measurement (probes or monitors) are concentrated.

3.3 Conclusions

To conclude, there is no general-purpose theoretical approach that can be used for modelling

highly constrained computer systems within the science paradigm. In particuler, there are

many design difficulties associated with the queueing theory; the widely used design theory.

Indeed, there a are vast number of science-paradigm theories, but these are either unknown

0; can not be used for modellling general-purpose computer systems. The problem in

the auther opinion can be solved by the development of a methodological approach which

uses some theoretical and practical computer system design notion. The reason for this

conclusion can be depicted from the quota~ion of Butler Lampson (1984)3

a A senior consultant designer of several Sucessful computer systelIlB

CHAPTER 3.

"Designing a computer system is very different from modelling an algorithm: the

external interface- that is, the requirement- is less precisely defined. more complex.

and more subject to change: the system has much more internal structure- hence,

many internal interfaces: and the measure of success is much less clear. The·

designer usually finds himself floundering in a sea of possibilities, unclear about

how one choice will limit his freedom to make other choices or affect the size and

performance of the entire system. There probably isn't a best way to build the

system or even a major part of it. Much more important is to avoid choosing a

terrible way and have a clear division of responsibilities among the parts."

72

Chapter 4

INTRODUCING ACTIVITY STRUCTURES: A
METHODOLOGICAL APPROACH FOR

CONSTRUCTING HIGHLY CONSTRAINED
EFFECTIVE COMPUTER SYSTEMS

4.1 Introduction

As seen in the last two chapters, current computer systems design methodologies have

evolved dynamically from the experiences of the past forty to fifty years and represent a

motley collection of nearly isolated theoretical methods and techniques, linked together

through an experience-based, but otherwise arbitrary, sequence of much discussed process

phases within the science paradigm. Hence, there is a sameness to the design of all com-

puters based on these isolated methods and techniques so that

"only rarely does a new design methodology appear in the real world of computer

design" (c.f. Allison 1977).

Obvious answer is to get rid of the von Neumann architecture and build a more homoge-

nous computing machine in which memory and processing are combined. It is not difficult

today to build a machine which hundreds of thousands or even millions of tiny processing

cells which have a raw computational power that is many orders of magnitude greater than

the faster conventional machines. The problem is in how to couple the raw power with the

application of interest, how to program the hardware for the job. How do we decompose

our application into hundreds of thousands of parts that can execute concurrently? How do

73

CHAPTER 4. 74

we coordinate the activities of a million of processing elements to accomplish a single task?

This chapter provides an answer to these questions.

In this chapter the important consideration in the construction of computer systems is

the entire construction environment. In its most general sense, the construction environment

includes the human design activities, the technical methods, the management procedures,

the computing equipment, the problem elicitation, the requirement realisation, and the

automated tools to support the construction environment.

At the hart of the environment is a construction methodology, which deals with the

construction of a system through its specification, design, development, operation and evo

lution, including human design activities. The construction point-of-view that has been

used in this chapter to deal with the identification of effective construction methodology for

computer systems is based on the Activity Structures scheme (c.f. Kohout 1986).

Activity structures scheme provide several useful design concepts/constructs that are de

rived not only from the science paradigm but also from the general/meta systems paradigm.

The main contribution of this scheme is that it provides a total design framework for con

structing effective design environments. Our methodological approach, however, represents

an extension to the original scheme of activity structures, which is found to be effective

for designing highly constrained computer systems. After a few sections intended mainly

to introduce certain basic definitions and analogies, we shall give a brief account of the

basic assumptions within which the design of highly constrained computer systems can be

realised.

4.2 The Cornerstones

"Computer design may involve selection from among competing designs (especially

in the case of an experienced designer) and requires identification which involves

consideration of the system's structure and function (activity)" (Davis et aI1983).

In general, solutions to identification problems can be either selected from a set of pre

enumerated alternatives (for known conditions) or constructed (for novel problem or the

CHAPTER 4. 75

ones that combine multiple, interacting disorder in an unforeseen way). While computer

design is often thought of as a constructive problem-solving process, identification is typ

ically thought of as a selection or a classification problem. But the solution methodology

is not inherent in the task itself. Instead, it depends on the problem solver' design knowl

edge, requirements for customisation, and the like (i.e. human behaviour computer design

model).

The complexity arising in the construction of human behaviour design models is due

mainly to the lack of our knowledge about its constructive mechanisms (Kohout 1976).

The study of the design process underlying human activity initiated mainly by researchers

operating within the general and meta-systems design paradigms (Svoboda 1964, Kohout

and Gaines 1976, Gaines 1977, Bandler and Kohout 1979). It was a research issue originated

from many diverse, otherwise unrelated fields, such as the studies of human movement

control, linguistics, psychology, neurophysiology, scientific and engineering system theoretic

studies, etc. The most fruitful ideas for the construction of design models that can include

human behaviour were given by Ladislav Kohout in a series of research papers (started from

1974 and still evolving, e.g. Kohout 1986, 1986a) on the establishment and the identification

of a methodological approach for studying human actions (named in 1979 as the act1'vity

structures methodology). Originally, Kohout's ideas were presented as a formal framework

for the representation of actions both at an intentional and detailed perceptual-motor co

ordination level (refer to Kohout 1976). Later this methodology has been extended and

applied to conceptual and structural design of several sophisticated information processing

systems, e.g. expert systems (Kohout 1982, Kohout et al 1984, Mohamad et al 1983), a

decision support system (Kohout et al 1985, Ohiorenoya and Mohamad 1983), a library

transaction system (Kohout et al 1984). All these designs highlight the generality and

importance of the activity structures design methodology. Hence, it is our intention in

this thesis to extend and use the activity structures methodology for designing computer

systems that fulfil our motivation (c.f. Chapter 1). Indeed, for the author who worked

previously over three years in designing effective computer systems (c.f. Mohamad 1981),

activity structures represent solutions for for several problems associated with the current

CHAPTER 4. 76

techniques and theories of modern computer systems design.

4.3 General And Meta Systems Paradigms Versus Activity

Structures

General systems theory (von Bertanlanffy 1968) and the M etasystem design frameworks

(Beer 1972, Klir 1976, Kickert 1980, van Gigch 1984) have had much influence, but have

not really been concerned with practical systems design.

·The general/meta systems approaches have been developed long before they

achieved their importance in computer science" (Zemanek 1980).

Historically, these approaches have been originated from the research e.g. in telecom

munications technology and biology. For telecommunications technology the general/meta

systems theory was intoduced by Karl Kufmuller (1949), whereas for biology, it was intr~

duced by Ludwing Bertalanffy in 1945 (see Bertalanfy 1968). These approaches represent

an attempt to corne to terms with, and to understand, the nature of systems. They are

really methods for theoretical model building used for the explanation of the behaviour of

complex and diverse systems.

Since their onset many researchers have tried to apply their techniques for solving practi

cal problems. Some researchers believe that it can provide many fruitful design and synthe

sis paradigms (van Gigch 1979). Other researchers reported moderate success (Checkland

1975)' but the majority of practical applications have been notably unsuccessful (Lilien

reId 1978). The reason for this lack of success is that the very generality of these design

paradigms makes it difficult to use them, and to develop a concrete methodological solution;

and where occasionally a good solution is arrived at, it is often one that requires a techno

logical revolution to implement. It is not a process which would permit small incremental

changes but one which more usually results in the complete reassessment of structures, roles

and behaviour (Wood-Harper et al 1982). Thus a system designer considers the application

of the general systems theory and the metasystem framework too impractical and wide

ranging for this purpose.

CHAPTER 4. 77

However, activity structures have sought to come to terms with this problem and to

make the general systems theory and the metasystem framework more practical for problem

solving. They have striven to convert these paradigms into a practical methodology by

firstly, breaking down the process into a number of defined steps to be followed and secondly,

seeking to limit the range of the alternative solutions by introducing notions such as the

identification of certain general constructs within which the problems must be set (Kohout

and Gaines 1976, Kohout 1976, Kohout 1981).

4.4 From Neuroscience Research To Computer System De-
• sIgn

Historically the research in Activity Structures methodology has emerged from the Neu-

roscience research, aiming at providing the techniques for combining diverse knowledge

sources that capture the tcdeep Icnowledge 71 of the application field in an effective formal

and computer representable form (Kohout 1976, 1977).

The question that may be asked here is what are the reasons behind selecting the activity

structures schemes knowing that it has been originated from neuroscience research an how

such kind of research field can help in designing effective computer systems? Part of the

problem that concerns the design of computer systems is that we do not yet fully understand

the algorithms of thinking! (c.f. Palm 1982)). But part of the problem is the use and control

of the speed. One might suspect that the reason the conventional computer system is slow

is that its electronic components are much slower than the biological components of the

neurological system or the brain, but this is not the case. A transistor can switch in few

nanoseconds, about million times faster than the milliseconds switching time of a neuron.

A more plausible argument is that the neurological system has more neurons than the

conventional computer has transistors, but even this fails to explain the disparity in speed.

As near as we can tell,

"Design belongs to those human activities which cannot be totally described because their roots are
in the unconscious processes in our brain" (Zemanek 1980).

CHAPTER 4.

"the neurological system has about 1010 neurons. each capable of switching no more

than a thousand times a second. So the neurological system should be capable of

about 1013 switching events per second. A modern digital computer. by contrast.

may have as many as 109 transistors. each capable of switching as often as 109

times per second. So the total switching speed should be as high as 1018 event

per second. or 10.000 times greater than the brain. Thus the sheer computational

power of the computer should much greater than that of the human brain. Yet we

know the reality to be just the reverse" (Hillis 1985).

78

Similar opions to Hillis's have been expressed by several other researchers (Lamport

1985, Rosen 1986, Grossberg 1982, Kleinrock 1984).

In this thesis we assume that computer system design can benefit from the experience

of methodologies and formal approaches, modelling the neurological information processing

system, such as the original formulation of the activity structures scheme. Design by analogy

has been quite common practice both, in the old days and at present. Turing (1936), for

example, who was motivated by the knowledge in biology and psychology, delimited the

behaviour of any computer, in the sense of a human making calculation according to some

well-specified rules. It was a good analogy and a good start, but not so effective for designing

effective computer systems for the present days. However, the activity structures represent

not onlly anologies but also formal isomorphisms of some of the Neurological and computer

models. Recently some researchers have expressed believe that possibly, by returning to the

classical approach we will gain construction effectivity. For example, Alfred Spector and

David Gifford (1986) advise us to look at the civil engineering and its success in designing

bridges and take this analogy as a cornerstone for developing effective design principles for

new computer systems. But this classical analogy proves to be wrong in physics and other

fields, and we expect that it will fail in the area of designing effective computer systems- it

does not provide, for example, the self-regulating criteria.

However, there are two successful new computer design schemes that are based upon

neurological science unde~standing. The first utilises a biological tissues to design what

CHAPTER 4. 79

is called molecular computers (Conard 1985, Friedland and Kedes 1985), and the second

starts a new area in computer design which incorporates the brain research as one of its

fundamental design concepts, it has been called the sixth generation of computer systems

(Gaines 1978, Gaines and Shaw (1986, 1986a)). Indeed, activity structures design approach

can be considered as a class within the second scheme, since it is based originally upon the

concepts of the brain research. The next section introduces the basic concepts of activity

structures as it was compiled by the present author to suite computer systems design.

4.5 Activity Structures versus The Other Neuroscience Mod

elling Disciplines

Indeed, the discipline of designing effective systems based on the knowhow of the neuro

logical science is still very young and in common with most other emerging disciplines it

occasionally enters periods of radical self examination and re-thinking. The reason for the

current turmoil in this discipline is the emergence over past few years of a number of new

approaches and methodologies. The author feels that we are in the midst of such a phase at

present; new ideas abound, arguments rage, and the development of technology is a powerful

impetus to the re- examination of ideas. However, we believe that the existing approaches

inherited the drawbacks of their originating paradigms (i.e. either the metasystem or the

general systems) and represent a confusing array of modelling methods. This judgment

can simply be formed by looking at a short list of the neurological science based modelling

approaches:

• The Field Theory of Self-Organising (Amari 1983),

• The Extended Automata Theory (Arbib 1975),

• The Cybernetic Modelling (Nurmi 1978, Carlsson 1979),

• The Stability Analysis (Perlis and Ignizio 1980),

• The Structural Modelling (Lendaris 1980),

CHAPTER 4. 80

• The Structural Decomposition of Dynamical Systems (Jacak et al 1985)

• The Functional Modelling (Baylin 1984),

• The Dynamical Inferences (Jugeli 1980),

• Brain Modelling For Robotics (Andreae and Cleary 1976),

• Simulation of Human Thoughts (Szymanski 1980),

• Statistical Simplification of Neural Nets (Zeigler 1975)'

• Casual Structures in Brains and Machines (Rosen 1986), ... , etc.

It is the author's view that these approaches are not simple alternatives, but that each

approach seeks to do different things than the other ones. However, we believe that the

methodology of activity structures represent quite superior to all these approaches. Activity

structures is a methodology designed to provide an integral system to support the technol

ogy architectures whose processing environments are changing. The design framework of

the activity structures provides the essential design and construction steps, the essential

structures, the main interfaces, as well as many other features that are essential for the

success of any and all applications.

4.6 The Concepts of The Design Methodology of Activity

Structures

An activity structures-based design provide an total information processing system which

support self-regulating architectu.res whose processing environments are dynamic and oper

ating u.nder maximal constraints. The design framework of the Activity Structures identifies

the necessary processing environments and provides the structures, as well as their linkage

interfaces, that are seen to be essential for the success of any and all applications.

Figure 4.1 schematises the role of activity structures in the construction of (a knowledge

representation) for some target system within a given domain of application.

CHAPTER 4.

Designer Environment
(considering several design and evaluation issues

~

'"

STRUCTURES
SHELL)

generalization
~ (2)decomposition ,

81

(1) selection ,
knowledge
elicitation construction (4)exploration

Iser
·equirments
' intent ions ,
goals , .
concepts ,

PROBLEM ENVIRONMENT
(Le . the user
construction

oint of view)
design principles ,
performance
measures , etc)

~
I
\

USER
INTERACTION
ENVIRON!>1ENT

\
<l

learning ,
measurements ,
inheretance

~

CONVSRSA'!'J ONAL
COOPERATIVE ENV .

conversation

"'"

MODEL
DESCRIPTION

(REALI ZATION
INTERPRITIVE

SHELL)

(3) representation ,
realization

TARGET
SYSTEM

MACHINE
ENVIRONMENT

Figure 4.1: The Design Scheme of Activity Structures

CHAPTER 4. 82

Imagine being given a new system to design, in which the system structure is unknown

(only the given requirements are known). The process of dealing with it can be broken

down into four phases which, although different conceptually, usually overlap in practice.

The breakdown seems to correspond to what we do intuitively when presented with a

strange problem to solve. This process involves four design steps: selection, decomposition,

realisation, and exploration.

4.6.1 The Selection Step:

This step involves three types of the designer activities. Firstly to elicit the design require

ments from the problem environment. Secondly, to select those user requirements that are

judged to be relevant, and discard the irrelevant ones. Thirdly to select the relevant design

functionalities (sometime called strategies, metaphors, constraints or missions (Baylin 1986,

Carroll and Thomas 1982)) that can achieve the user requirements and simultaneously en-
.

force the designer constraints (these are referred to as the functional structures, behavioural

models or the structures of behaviour (Kohout 1976)).

Formally, a functional structure can be represented by a single or a series of relations

and the transformation can be performed on these relations using the relational products

(Bandler and Kohout 1980). Indeed the concept of functional structure and their trans

formations has been highlighted as a very important idea in neuroscience based modelling

by several researchers (c.f. Kohout 1976, Bernstejn 1967) and it is associated with the

cortex structures and the behaviour the cortex generates. In this case a knowledge base

located in neurons store information by using a sequence of deoxyribonuclic acid (D;-~A)

molecules. Indeed, since the human Brain activities are goal-directed, these neurons coop

erate to achieve that goal. The cooperation is a mechanism of communication that utilises

coded messages (using the messenger ribonucleic acid (mRNA)) which is delivered and re

ceived via the neuron synapses (sort of ports) (c.f. Mori et al 1985). Actiyity structures,

distinguish the following essential functional structures that were obtained from the anal

ogy with the neurological system (Kohout 1976, Kohout and Bandler 1982, Kohout and

Mohamad 1986)):

CHAPTER 4.

1. Design Structures:

(a) the knowledge representation structure,

(b) the inferential structure, and

(c) the control structure,

2. Constraint Structures:

(a) the protection structure,

(b) the communication structure, and

(c) the interpretation structure.

83

The role of these particular functional structures in designing computer systems as well

as other details are given in the next chapter and will not be discussed anywhere in this

chapter.

4.6.2 The Decomposition Step:

The designer second activity is to define an ordering of partitioning events that are nec

essary for the activity structures-based computer system development. While the activity

structures methodology does not give any insight on how one Irthinkslll of a system be

ing developed and partitioned (i.e. it does not define the intellectual building blocks used

to construct a particular system conceptualisation), it does provide a description of the

segmentation of various functional activities (i.e. the functional structures) and refinment

transformations that occur during the developm~nt process and the way these functional

activities interact.

The key point about the activity structures partitioning is that this partitioning seg

ments the development of the actitJ1·ty structures based system into an optional number

of sequential phases, depending on the level of design abstraction required. The activity

structures methodology is distinct from any other particular design methodology in that its

activity structures provide ordering on the optional phases (i.e. they describe what needs to

be done in each abstraction level in order to define a system, and when it should be done).

CHAPTER 4. 84

The criteria that were used for defining the development rules as well as the optional

phases consist of two requirements: the inter-phase t"ndependence and the intra-phase depen

dence. Inter- phase independence requires that the functional structures (or the functional

substructures) defined for each optional phase of an activity structures-based system, are

independent of the functional substructures defined for any other optional phase of the

activity structures based system design, except they are linked by an experience factor. If

the optional phases are ordered by the experience factor then the top level will handle the

goals and the following levels will handle other intrinsic duties such as the identifications

of tasks, semantic, syntax, lexical, alphabetical and the physical structures (c.f. Nielsen

1986). Intra-phase dependence requires that all the functional substructures within a par

ticular optional phase are related to each other. There are two reasons why we have chosen

these two partitioning requirements. First, we want the designer to be able to segregate

those design activities that can be performed in isolation from the other design activities.

Secondly, by isolating only dependent design activities, we can define models, tools, and

methodologies that can be optimised with respect to address restricted tasks.

The reader should note that, unlike some other logical structuring schemes (such as

Constantine's Structured Design, c.f. Myer 1978), we do not suggest that each phase per

forms a single task. Instead, by grouping related tasks together, interaction is enhenced

among common functional substructures. In fact, if one must err in devising system parti

tionings, we feel better to group unrelated tasks together in a single phase than to define

phase boundaries too strictly. This is because, as a practical matter, it is better to fos

ter inter-phase communication than to promote isolation between groups that should work

together.

An interesting aspect of the segmentation of the optional development phases based on

sequential ordering and phase dependence/independence is that feedback of system develop

ment should not occur between phases, but rather within a correctly- defined development

optional phase.

In modelling an activity structures-based system, then~ two activities of the designer

needed to be considered for partitioning. An individual phase model of development

user's ?erCe?~lOn
of

PH.1\SE 1
Goal Phase

FU:JC'=' I C):JAL
ST~UCTU~S A

I DESCRIPTORSI

I SUBST:::U\TA

•
•

FUlJCTIO~~AL

STRUCTURE N

(~'l]\r~AGE RS

n
L •

feedback

-~--
,;'

2
Tas~: Phase

- 85

'J
?~AS= ~j

['I 1 ~ !1 abe tic a 1
P~lase

(DESCRIPTORS ••• o?tional

SUBSTRATA ~J I

Figure 4.2: Partitioning the Development Cycle of Activity Structures.

will define how with a given user's perception of an application system progresses towards

a particular implementation could be reached. At the same time a macro-development

model exists (see Figure 4.2), which defines how systems functionalities are refined during

the development process if further detail level of abstractions are needed for example by

using more phases in the series. The choice of a phase within a model of system development

corresponds closely to the definition and selection of scopes used in the development of

aprogramming environments" (Osterwiel 1981) or the use of partitions in the development

of ablackboard systems" (Craig 1986).

However, the task of partitioning system within a given phase, starts by decomposing the

fu'nctional structures both semantically and syntactically into smaller functional components

called the functional substructures. This decomposition process is recursive and it stops

until no further decomposition is required or can be reached (terminal functional sub-

structures). Indeed the non-terminal functional substructures are undefined entities open to

refinment or decomposition. So an activity structures-based model before the decomposition

CHAPTER 4.

START DEC)~';POSSr;G
T:·J'::' .1---.. PL~SE FU;JC':'IO:JAL
ST:!!jC~UR8S SELECT2D

SynT l\ T I C"\L SE:j!\?J~ICI\L

DSCO:IPOSSI TI O:J DECOr·;?OSITIO:'JS
(for both the algorithms and the

the data constructs)
r

!Jon Terminal (.
functional sue-structures
~ ~

, "1 --r-
Terminal (..

functional structures
((STATIC IA!J1) I DYI';AiiICI)

(including the interpretive
algorithms and constructs)

86

< A3ST?L"\CT
S2SLL

.

•••••••

ABSTRAC~ SIE:LL
OF LEVEL 1

ABSTRAC':' SHELL
OF LEVEL N

O~

RElILI ZATIOl~
I~JTERPRBTIVE

SI-1ELL

SUBSTRA.T}\
STRUCTURES

(possibilistic substrata)

< TARGET
SYSTE::

Figure 4.3: Activity Structures Forms Before and After Realisation

step represent a partially defined skeleton with elements to be filled in (c.f. Kohout 1983).

When the decomposition step is performed the detailed algorithmic specifications of the

system will be known as well as their interpretive constructs. These algorithms and their

associated interpretive constructs will be interpreted in the next step to the machine environ-

ment and replaced at the end of the realisation (or the representation) step by the (possibly

matching), machine dependent structures called the possibilistic substrata structures.

All the terminal functional sub-structures form a realisation interpretive activity struc-

tures shell, whereas, in contrast, the top level non-terminal functional sub- structures form

the activity structures abstract shell. We should note also that the terminal functional

sub-structures can be further classified into static functional sub-structures and dy-

namic functional sub-structures depending on whether the realisation interpretive shell

is operational (see Figure 4.3).

CHAPTER 4. 87

Kohout (1976, 1978) recommends Klir's epistemological hierarchy (Klir 1969) as a typ

ical procedure for the decomposition step for each given development phase. For this pur

pose, the system is composed of several conceptually distinct levels:

Level 0 A free system: At this lowest level, a system is defined by a set of potential states

(values) associated with each variable (source system) and by the description of the

meaning of variables in terms of some attributes (object system). At this level, we

define the basic "alphabet" of description and its semantics without any restriction

imposed upon this alphabet.

Levell A data system: Here the free system of the zero level is supplemented by data

(which restrict the range of possible states of variables).

Level 2 A generative system: At this level, a system is described by its intention, the

genera:tive component (i.e. a functional structure) is defined in terms of variables

of the free system and component constraints upon their values. These generative

structures are decomposed into several parts (functional sub-structures).

Level 3 A structure system: At this level, a system is described by a set of functional

sub-structures of level 2 together with their interfaces. In each structure system a

certain design 'level of abstraction' is reflected.

Level 4 meta-system: Here a system is defined as an inter-related collection of structure

systems. Further higher levels are defined by recursion. At this level the functional

sub-structures decompositions are completed.

Here we should note, that in contrast to the decomposition step, it is the reduction step

which may be needed by the designer to polarise or concentrate upon identifying, with high

resolution, some specific activities or constructs.

4.6.3 The Representation Step:

This is the third activity of the designer In which the description details of both, the

algorithms and their constructs produced by step 2, need to be interpreted and realised

CHAPTER 4. 88

in a suitable implementation dependent structure (i.e. using the substrata structures, for

example via using some particular C programming language constructs, and certain data

types). The most important condition of the choice of suitable substrata structures is that

they must be

1. extensible (i.e. possibilistic substrata) to allow various kinds of interpretations to

be performed (via the exploration step) and

2. provide a suitable distribution environment for the functional structures in order to

let their behaviours to be performed concurrently.

These two substrata requirements represent certain performance factors. The flexibil

ity criterion allows the designer to avoid the asemantical gaps1J (c.f. Meyer 1981) that

could be generated when the interpretive algorithms and their constructs are translated

to the substrata structures. The distribution criterion speeds up the rate of executing the

various behaviours resulting from the different functional structures, and hence improving

the overall performance of the activity structures based system. Finally, the representation

process must incorporate both the static and the dynamic descriptions of the interpreted

algorithms and constructs. Also, for the purpose of the exploration, the substrata structures

must contain certain monitoring probes within their description.

4.6.4 The Exploration Step:

In this step the designer tries to vary all the extensible or possibilistic substrata structures

according to a well-synthesised generated input sequence of events, in order to force the

target system to exhibit the interesting and required behaviours (i.e. reaching the desirable

states). For this purpose, the designer should simulate the main activities of the conversa

tio~al environments (i.e. the user interaction environment and the machine environment).

The conversational environments activities should replicate the real word activities in that

they must be random as well as having the capability of survival (using certain learning

mechanisms).

The exploration step may force the designer to try different decomposition strategies in

CHAPTER 4.

AC~IVITY STRUC~CR~S SHSLL
or

PJ SSI J I LI ST I C GE:jE~;\ '-'OR

perform
non-para:-:lertic
changes

perforIll
r.lajor
parametric
changes

perform
ITllnO r

para:Jetric
changes

POSSIBILI STIC CCJ::STFL~,'?I J~J

POSSI~ILISTIC FA:lILY

TARGET SYSTEr.l

Figure 4.4: The various exploration changes on a shell

89

order to derive the resulting construction to behave in an interesting way (i.e. reperforming

step 2). For the purpose of illustrating the various decomposition changes, we distin-

guish between the algorithmic changes which require the designer to perform certain major

changes in the way the different functional substructures communicate (referred to as the

non-parallletric changes) and the changes of the resources descriptions which require the

designer to perform certain changes concerning certain constraints changes and/or certain

parameters alterations (these changes referred to as the parallletric changes). Figure 4.4

illustrates an example of the different changes that are likely to be performed on a given

activity structures shell.

The exploration step utilises the information gathered via measurement, inheritance,

and learning that are monitored from both the user and the machine environments as well

as including the additional experience gained by the designer. The exploration step is said

to be extensive if all the possible behaviours of the target system have been analysed (c.f.

Gaines 1972). The exploration step is said to be intensive if a particular behaviour of the

target system has been studied (c.f. Gaines 1972).

CHAPTER 4. 90

Here we should note that for the designer wishing to formally define the activities of

exploration, in particular the following notable research work have found to be of great

help:

1. the implication operators and the relational products theory by Bandler and Kohout

(1980),

2. the pioneering work of Svoboda (1964) especially his masking and activity matrix

techniques,

3. Gaines' behaviour and structure identification scheme, in particular his complexity

measures on the admissible models (Gaines 1976),

4. Mason's productivity theory that helps in defining general purpose performance mea

sures (Mason 1979), and

5. Klir's reconstructibility theory which helps in defining certain complexity measures

of the system relational structure (see Klir and Way 1985). Here we should note also

that the formal approach to design activity structures-based systems is out of the

scope of this thesis.

4.7 Describing Computer Systems via Activity Structures

In this section, I shall briefly outline the way that was used to produce an activity structures

based computer system description. By description we mean the design details of the ac

tivity structures based shell at any level of abstraction. This section outlines the main

ingredients that are necessary for the construction of an activity structures shell along with

stating the necessary substrata structures needed for realisation. Indeed, many researchers

share our concern in constructing computer system models from the analogy with the Brain

structure. These researchers use some very general models of concurrency, such as Petri

nets or electrical circuits (Aleksander 1982), or in models that are insensitive to the evolu

tionary process of design (Baer 1973). Common to ~ll approaches, however, is the lack of

CHAPTER 4. 91

distinction between the functional and substratum structures. Activity structures method

ology, on the other hand distinguishes, between the goal oriented structures of behaviour,

i.e. the functional structures, and their embodiments in a substratum structure, i.e. either

applied hardware, or abstract (e.g. virtual machines). The coupling of these two types of

structures was formalised by Kohout (1977). However, our concern here is different, that

is the conceptual interpretation for the purpose of designing computer systems. The basic

meta-principles of our design approach are given in the form of sixteen basic assumptions 2

Here we should note that these ssumptions have been formulated after completing the

implementation of our support tool and hence we believe they provide a practical advice for

the success of any activity structures based computer system design and implementation.

Other useful design definitions however are provided in section 1.2.

Assumption 1 (Essential Functionality) Activity structures shell achieves its required

goals by the cooperation of both the user and the machine environments as well as the

cooperation of the functional structures within the machine environment.

Assumption 2 (Functionality Uniqueness) Each functional structure is characterised

by a specific type of behaviour which is different from the others.

Assumption 3 (Syntactical Decomposition) Activity structures shell realisation syn

tactically decomposes into functional substructures.

Figure 4.5 illustrates a typical functional structure decomposition.

Assumption 4 (Representing Functional Structures: The Static View) Each func

tional structure is statically represented by a state determined system. This system is mod

elled by a manager. The manager's responsibilities and duties can be changed via changing

the information deposited in the resource descriptor of the managed object.

Figure 4.6 illustrates the statical components of a functional structure.

1 Alternative concepts to basic assumption may be used, e.g. pMtuiate in context of the general category
of modality (c.f. Runes 1942) or directive for definition (c.f. Luschei 1962).

, , ,
"

CHAPTER 4.

FS-l

FUN

SUBSTRATA STRUC7URES - - - - - - - - ---

select~ :

Realiz3tion
\

\

interrpretive shell

I

I

/
/

FS-22

92

Level ;1+1

Leve I n
,
•
•

Level 2

STR-221

Levell

Level 0
ABSTRz\CT
SfIELL)

Figure 4.5: The Syntactic Decomposition of a functional structure.

messages

~ --state
~1ANAGER RESOURCE

ESCRIPTO command iA-------------- --"""1

FUNCTIONAL STRUCTURE other
functional
structures

Figure 4.6: The Semantical Statical Description of a functional structure

CHAPTER 4. 93

Assumption 5 (Representing Functional Structures: The Dynamical View) The

change of each functional structure can be represented dynamically by a process u'hich act

as an active entity that is mainly issuing requests to the other processes and resources to

accomplish its goal.

The process is the result of executing the manager component. Managers perform several

activities which may be executed independently of one another. Hence managers provide the

user with a set of resource access operations (e.g. read, write, etc.)' and encapsulate within it

any scheduling policies for these operations. Managers are also responsible for synchronising

the requesting processes of the shared resource descriptors by traping the processes requests

and issuing the issuing the primitives that control the descriptors accesses. The functional

sub-structures identify the required system managers, both local and the global activities.

Resource descriptors help to perform operations requested by the managers.

Assumption 6 (Distribution Criterion) The activity structures architecture is called

distributed, if the functional structures, or their components communicate via a message

passing technique.

The main components utilised of this communication mechanism are messages and ports.

Both components are resource descriptors, in which messages are used for inter- processes

communication. Ports are recognised as resource descriptors that are independent of the

processes which use them. Messages are placed in ports by a process with send access to

the port. Messages are removed from ports by a process with receive access to the port.

Assumption 7 (Essential Substrata) Two extensible primitive substrata structures are

required to realise the activity structures shell. These are the coroutines and the interpretive

descriptors, corresponding to the managers and the resource descriptors, respectively.

According to Conway (1963),

"a coroutine is an autonomous program which communicates with adjacent mod ules

as if they were input and output proced ures. The coroutine represent successive

CHAPTER 4.

passes, each of which transforms a stream of data, so that their execution can be

interleaved in time according to the demand strategy."

94

Descriptors (Gaines 1974) form a structure which is defined by some common properties

such as:

1. it specifies the operations that can be performed on their referenced resources,

2. it specifies the processes that are allowed to access their referenced resources, and

3. it specifies the level of protection, re-entrancy or sharing, etc.

An interpretive descriptor is an extensible data segment that refers to a resource. This

segment can be interpreted at any level of implementation abstraction by changing its

data contents (via parametric changes) or to a data type or register for example. Each

interpretive descrptor is essentially composed of two fields (Mohamad and Cavouras 1984):

1. the unique name of the referenced resource (i.e. a pointer),

2. a control field that specifies which operations are permitted on the referenced re

source through this descriptor. "Descriptors, also, are more general than the concept

of capability" (Bishop and Barron 1981).

Other fields may be added and are specific to a particular implementation.

Assumption 8 (Concurrency Control) Concurrency in any activity structures based

shell is represented via the cooperation and synchronisation of coroutines.

The way coroutines achieve concurrency and synchronisation can be illustrated via the

fol~owing protocol describing the interaction of two coroutines in execution (this demon

strates how synchronisation and concurrency can be achieved): When corou tines P I and

P2 are connected (via ports) so that PI sends items to P2, then P2 runs for a while until

it encounters a read demand which means that it needs something from PI. The control

is then transferred to PI until it wants to write, whereupon the control is returned to P2

CHAPTER 4.
95

pI (caller) P2

CREATE ~ ~ ! ~~=======---- ,
SEND_f1ESSAGE -------~. *

1
DATA FLOL(>

+ COl~TRJL FLml--+ =4 RECEIVE_nESSAGE

1 '-= -== !
SEND_:1ESSAGE • *

! 1 i ~RECrIVE_IIESSAGE
SEND rlESSAGE ~ *

! - 1 REACTIVATION POIKTS(*,+)

Figure 4.7: Example of Coroutines achieving Concurrency and Synchronisation.

at the point where it was left off (i.e the activation point). The Figure 4.7 illustrates the

coroutines communication scheme.

In reality, coroutines cooperation is limited mainly by two resource constraints:

1. the number of messages produced by the sender cannot exceed the capacity of the

message queue, and

2. the receiver cannot consume messages faster than they are produced by the sender.

These resource constraints are enforced by the implementation of a synchronisation

rule. This rule states that if a sender attempts to place a message in a full message queue,

it will be delayed until the receiver has taken another message from the message queue.

Furthermore, if a receiver attempts to remove a message from an empty message queue,

it will be delayed until the sender places another message in the message queue. The

implementation of this rule has been achieved in our realisation by employing two types of

semaphore; WAITING-FaR-ACTIVATION and ACTIVATED (see section 6.5.3).

Assumption 9 (Behaviour/Structure match) The shell has maximal match m sub

strata if and only If the semantic gap between the funct£onal structures and the£r corre-

sponding substrata is minimal.

CHAPTER 4. 96

Assumption 10 (Conununication Styles) The communication style of the shell in ex

ecution depends upon whether the time factor has been used.

The communication is synchronous if the interconnection between the different processes

is made through clocking devices otherwise it is asynchronous.

Assumption 11 (Computer Model) A computer system model description represents

an interconnection of cooperat£ng processes, in which some of its processes can receit:e in-

formation from the user or the designer environments, and some processes can produce and

pass information for the same environments. This communication model of a computer

system model is intended to be used on uniprocessor hosts.

In this model, processes running on the same processor can share the same address

space. With a 'proper' programming language, a process can be affected by other processes

only by communication, or by affecting descriptors which have been explicitly transmitted . .
This ensures privacy and data protection even in a shared address space. Processes running

in the same address space can exchange arbitrarily complex descriptors or objects just by

passing pointers. Processes running on different processors, however, communicate through

restricted "flat" channels, e.g. character channels. In this case, complex objects have to be

encoded to fit into flat channels, and decoded on the other side. The semantic is difference

between exchange of objects in the same address space, where o'bjects are shared, or in

different address space spaces, where objects are copied. The basic communication is based

on coroutines: both sender and receiver may have to wait until the other side is ready to

exchange a message. The scheduling of most of the processes is non-preemptive: a running

process will run until it explicitly gives up control by attempting to communicate; at that

point other processes will get a chance to run. We assume a cooperative environment, where

no' process will try to take an advantage of the other processes, unless it has some reason

to do so (e.g. a higher priority process may interrupt a lower priority process).

Our model differs from other communicating parallel processes models, such as Hoare's

communicating sequential processes (CSP) model (Hoare 1978). In CSP a process issues ei

ther an X or XX command which can be verbalised as 'have-you-a' or 'here-is-a' respectively.

CHAPTER 4. 97

There is no input-output command of the form 'give-me-a' or 'take-a' which create a forced

entry into another process; in contrast this criteria is provided in our model. Further, in

the esp model if there are several external requests on a process, the process itself decides

which operation to is allowed to proceed. Thus the system activity is not capable of forcing

a stop entry into the timer process. Even if we consider the incorperation of the monitor's

concept (Hoare 1974)' then once one process has gained access to the monitor no other

process can; thus yet again, it is not possible for a higher priority process to gain access,

once another lower priority process has gained the access. Therefore while using the models

based on the monitors concept, we can not build a priority communicating processes. This

explains why both esp /K (Holt et al 1978) and Pascal-Plus (Welsh and Bustard (1979)

have incorperated priority scheduling into their implementation of the monitor concept.

Assumption 12 (Measurement Probes) Statistics can be collected via the insertion of

certain performance probes cit various' places of the shell simulation.

Assumption 13 (Simulation of a total shell) The simulat£on of the actit'£ty structures

based shell should include both the behavioural modelling of the machine and the user inter-

action environments.

Assumption 14 (Stable Shell) The actim'ty structures based shell behaviour is stable if

there exists a set of admissible design data (section 7.6) concerning both the user environ

ment and the mach£ne environment with£n wMch the conversational environment (section

4- 6) can behave in a self-regulating manner.

Assumption 15 (An Activity Structures based Computer System-ASeS) An ASCS

model can be produced by the total shell, and its interaction between the user enu'ronment

and the machine environment is maximally constrained.

Assumption 16 (Shell Soundness) Any actit:ity structures shell is said to possess a

sound design if a compromise can be reached, between the intended conceptual model of

the problem environment and the actual shell model of the designer ent'ironment. In an

CHAPTER 4. 98

effective design the shell soundness can be reached by tuning the shell (i.e. finding an

admissible design data, see section 7.6).

Chapter 5

AN ABSTRACT SHELL FOR THE ACTIVITY
STRUCTURES-BASED COMPUTER SYSTEM

DESIGNS

5.1 Introduction

The assumptions 1-16 presented in section 4.7 represent a meta definition of the complete

shell of the support tool. The complete shell consist, in fact of two separate simulation

shells mutually coupled. Into the inner shell we embed the machine simulation environment,

whereas into the outer shell we embed the user interaction environment.

The activity structures-based shell programs are then written to handle both the possible

behaviours generated by the user stimuli, and then functional strategies and constraints of

simulated general purpose computer systems.

More specifically we start with the identification of a well-defined, well-classified and

general-purpose computer-oriented behavioural models (i.e. the functional structures). The

grid (i.e. a specific resolution level of these behavioural models is of a rigorous but flexible

nature, not only through their constructs but also by recognising the learning ability of both

the user and the inner shell. In the complete shell itself, these behavioural models can be

represented by the designer as a set of computer algorithms and resource descriptors whilst

their requirements can be elicited from the constructor and processed in a participative or

conversational way (which includes both the system user and the designer).

Our goal in this chapter is to introduce such beha~ioural models and demonstrate that

these models, developed originally for a neurological knowledge-based system (c.f. Kohout

99

CHAPTER 5. 100

1976, 1978, 1981), are general and applicable to other computer systems design applications.

The discussion of these behavioural models will be preceded by a section that illustrates the

way we simulate the conversational environments. After describing the essential behavioural

models (i.e. the essential functional structures)' we introduce the probes that are needed

for the monitoring and performance evaluation of the shell. Finally we discuss the choice

of the shell implementation language.

5.2 Representing The Shell Conversational Environment

Oberquelle et. al. (1983) pointed out that the traditional computer system design method-

ologies do not include the communication behaviour between the user and the computer

system in their design rules. In our design methodology, based on the activity structures,

we include such behaviour, called the communication behaviour, as one of its essential de-

sign contributing factors. We characterise the communication behaviour as the. behaviour

resulting from the cooperation between the user interaction and the computer machine en-

vironments. We shall see later that it is essential to include probabilistic and adaptive char-

acteristics in the description of these environment. The empirical support for the inclusion

of cooperation comes from Kupka (1974) and Barber (1979) whereas conceptual supportl

is provided by Kohout (1976, 1978a). In section 5.4 we list the essential design features

needed for simulating the activities of both the user interaction and machine environments.

In order to characterise statistically the interaction between humans and computer ma-

chines, we need to identify a 'prototype' model of human-computer dialogues. In other

words, we need to identify the nature of the alternating sequences of user actions and the

machine reactions. An effective statistical prototype model that can be used for this pur

pose has been defined by Kupka (1974) as a dialogue consisting of the user's 'local' model

for isolated or randomised inputs, a corresponding 'local' model for isolated or randomised

outputs of the computer machine, and a 'global' model combining both. This is unlike

the traditional computer designs in which the dialog is subdivided, leading to the mode of

lEmpirical support and conceptual support are used as technical notion!' corresponding to 'observational'
and 'theoretical' evidence respectively. It is used in the same way as in 'GUHA's research (c.f. Hajek :1nd

Havranek 1978).

CHAPTER 5. 101

working where human and computer only co-act in parallel.

Barber, independently from Kupka, collected statistics on the users actions and the

reactions of an interactive computer system (Barber 1979). He observed that although

the user actions and the computer reactions seem to be of a rather random type (similar

to Kupka's local models), there exists a definite statistical governing pattern of behaviour

relating the user actions and the machine reactions. This has a resemblance to Kupka's

global model. Barber measured the user actions and the computer reactions quantitatively,

using two types of measures: the user productivity and the job satisfaction. These measures

are somehow related to each other, as the statistics he collected show. In our opinion

this is due to the adaptivity factor. Whenever the user productivity increases (e.g. due to

higher user transactions), the machine tends to adapt to the user behaviour and increases its

utilisation power. The penalty for this is the increased response time, resulting in a decrease

of the job satisfaction. This is due to the machine adaptivity factor. Similarly, whenever

the job satisfaction decreases, the poor computer response causes (statistical) reduction of

the user productivity. It should be noted that job satisfaction and user productivity are

the statistical notions that can not be reduced to non-statistical ones. User in this context

means the average user that is a statistical measure expressing the mean value, or more

generally, a statistical moment of the nth order (for n = 1,2,"" n). This reflects the user

adaptivity factor. Figure 5.1 presents an example of this relationship.

5.2.1 Generating User Activities:

In order to generate user activities for a computer system,' one might try to replicate the

'shopping steps' of a user job as McDougall (1970) has done in his BASYS simulation model.

But surely, shopping steps2 represent randomised activities only, and cannot truly model

the user events which form a part of the dynamics of the simulated computer system. The

reasons for justification of this conclusion are quite obvious. !\ amely, the shopping steps do

not capture that part of the dynamics that represents user adaptivity.

2These represent the system workload requirements that must be performed by the system. Steps in this
context represent the different execution tasks required by each job during its execution time.

CHAPTER 5.

~

<
Va
c • ..

,,, '. .

.... "'. .

• "'1 •

I"" ••

, , , , , ,
,. . ,
I ''I , , ~, ,.,

".~,,, ,
•• I •• ,
I~I, ~ , .. ~." · " ,

~ '" • ,., 11 ~. "'., ... ", ,. ~

,., 'I~' .• , '"
I~·.·\' .. , "I

", "'~,', " ,
~1"''''''''II' II~"
"".""",",, "I"
,.,~~~.""""'" ' .. ·.l~ .. "', ",, ,
•••• ,." •• , , •• , I

,.,., ",,. .. ,, .tlII' ,

I , •• r." •• ,.".. ,
" ,,1'\11 .~", , I"' .. r., •• ,.,.~ •• " ,

I' , t ",., II~"

.", .. ,~ ••• ".", "I""
• ' ·"'II'~.· "'" •

,
, I

II ,

, ,
"

•

•

,
" " •

I , ,. 11 ,
I • ,

" I , ,
•• , , I " , .. " • , • , , ..

I "
" , ,. .

'. "''' .. • • ••..••••.•.••••....•..•.•....•...••..•.•....•....•....••.•.•....•....•....•.•..•..• .. ~.. '.... ,"... ".~ ".~ ,.... ".' " " '."" ".- '".''' ' .. " .'.-
•

102

Figure 5.1: Barber's Model: User Productivity versus the job Satisfaction (Barber 1979, p.

29'

To generate rather more representative user activities, we need to generate them using a

probabilistic distribution that fits a user particular adaptive mechanism. We call this type

of user activities the intention steps3. The probabilistic generation of intention steps in our

case depends on the type of the substrata the computer machine is supporting. Figure 5.2

shows a typical general-purpose computer substratum.

For such a type of substrata, the intention steps are generated in a random fashion and

according to the following typical steps:

Intention step 1: A user job (batch or interactive) arrIves randomly or according to a

specified distribution. Upon arrival, the following job characteristics are determined

either randomly or according to pre-determined distribution:

1. the total CPU time,

2. the average amount of central memory (CM) requested, and

sIntention steps in Kohout's Activity Structures scheme, are represented by Intention Structures, which
are a particular kind of the us~r environment functional structures representing ihe participant, intentions

to act in certain way (Kohout 1976).

CHAPTER 5.

S T' ~ em in! em"pI or
t,"- Ilidng

eM CPU
qua.e ~

TTY job

UHr think time

Releow
eM

OIICJ/~ulTtl .

Chonnel

Balch job completion

Figure 5.2: A General-Purpose Computer Machine Substrata

3. the number of I/O requests.

103

Intention step 2: The job makes a request for CM allocation. If the CM space requested

is not available, the job enters the CM queue.

Intention step 3: After the job enters the CM, it immediately requests the CPU. If the

CPU is free, it is assigned to the job and executes until some blocking conditions

occur (i.e. a system interrupt, the time slice used up, the job is completed, or an I/O

request is encountered). In the former two cases, the job releases the CPU, but IS

placed back into the CPU queue.

Intention step 4: When a job issues an I/O request, the CPU is released, and a specific

disk is requested. Since the total CPU time and the number of disk requests for a job

are predetermined, it is assumed for a fair utilisation of the non-sherable I/O devices,

that jobs utilising these devices may be interrupted, and then they can continue at a

latter time until their specified elapsed time finishes.

Intention step 5: In order for a job to access a designated disk, both the disk and the

CHAPTER 5. 104

associated channel must be free. Otherwise, the job enters a disk queue. If the disk

and the channel are both free, a adisk seek" time is generated. During the disk seek

time, the disk is busy, whereas the channel is not.

Intention step 6: After completing the disk seek, a rotational delay time is generated.

When this time expires, the channel is requested again, and if available, the data is

transferred over the channel. The disk and the channel are both busy during the

atransfer time" .

Intention step 7: When the data transfer is completed, the disk and the channel are both

freed, and the job proceeds to request the CPU again.

Intention step 8: Upon completing all the CPU and I/O tasks for a given job, the CM

allocated for that job is released. If the job is a batch job, it leaves the system;

otherwise, the job is an interactive job, and has just completed a asystem response

cycle", so a auser think time" is generated.

In our case, the generation of the randomised part of the various intention steps follows

certain scheduling techniques. Our scheduling mechanism generates user intention steps

according to certain parametrised distributions (mainly poisson type). In our case the

average parameters (i.e. the distribution seeds) are supplied by the designer.

However, the adaptivity part is represented by a adaptive mechanism for each user inten

tion step, which tries to optimise the 'best' region (between MAXSEED and MINSEED)

within which the random activities can be normalised. The adaptivity mechanism uses

three iterations, the 'Fix-MINSEED', 'Fix-MAXSEED' and 'Mid-~fAXMI~SEED' itera

tions. The first two iterations start by fixing one end point of the normalisation interval

to the seed maximum or to the seed minimim respectively, iteratively adding/subtracting

a sl£t (equal to the tenth of the difference between I\fAXSEED and MI:\SEED) until the

other end is reached. For the third iteration, the normalisation interval starts by fixing

the normalisation interval to a slit around the average seed, then the iteration starts by

adding two slits, one for each direction, until the seed maximum and the seed minimum are

CHAPTER 5. 105

reached. The adaptivity mechanism uses these iterations sequentially. In each iteration,

it associates the change in the normalisation interval (i.e. state of size and location) with

the system responses (i.e. the monitored resulted performance). The learning mechanism

decides at the end of the three iterations the best normalisation interval according to the

best resulting system response.

Such associations between the state of the normalisation interval of intentions can be

represented by entries in a table of connections in which the complex optimisation task

can start. Indeed, a table of connections requires a great deal of computer storage. For

example, for R seeds and N values per seed, a parsimonious representation of the state

requires the order of N R storage cells. On the other hand, one needs only N x R cells

to represent the status of each seed independently of the other seeds, and only R cells

to represent the situation as a value of a linear polynomial. In reality, the psychological

evidence indicates that humans seldom attend to more than a few environmental features at . .

a time (Yntema and Mueser 1962), so a connection table of low dimensionality might be a

reasonable representation. This is the representation we adopted. The routine responsible

for generating the user intention in our implementation is called the job scheduler (see

section 6.4.1.1).

5.2.2 Generating the computer machine activities:

The way we generate the computer machine (i.e. inner shell) actions or reactions is partly

driven by the user actions and partly by itself. This means that the computer activities are

driven by external interrupts (i.e. intentions of users) caused by events aexternal" to it,

and by internal interrupts (primitives of the different management unites in the system)

issued by its processes. In the actual implementation, these interrupts cause automatic entry

to the interrupt service routines. The interrupt service routines, in turn, can cause further

events and then areturn from interrupt" to the interrupted process. For example, when

a timer expires and its interrupt is serviced, the corresponding interrupt routine usually

activate a ascheduling routine" (required for management and learning) and reprograms

the timer to expire at the following interval.

CHAPTER 5. 106

This type of technique for generating machine activities not only aims at embedding a

computer system model in a simulation of its environment, but it allows the overall system

performance to be measured by direct experimentation. Our main routines responsible for

scheduling the computer machine activities are:

1. Processor demand scheduler,

2. Resources demand scheduler, and

3. Processes selection scheduler.

The details of these schedulers are given in the next chapter. The principles of generating

the computer activities follow the randomness of the user actions intention steps, but the

computer machine possesses different adaptivity mechanism. I would like to concentrate

on the adaptivity mechanism that would introduce adaptivity in the machine environment.

The advantage of using learning not only to cope with the changes imposed by the user

actions but also by adaptivity of the inner shell, generally enhances the overall performance

of computer systems. In our particular case, the conversational environment reaches its

equilibrium or self-regulation.

Our adapt£vity problem enhances performance in one specific task, the workload schedul

ing task with respect to the different system functionalities and constraints. A simplified

example for this task is shown in Figures 5.3 and 5.4, in which scheduling enhances per

formance under one constraint, the protection, without breaking such constraint. The

objective of this example is to complete all the jobs in as short time as possible by execut

ing them in parallel, without violating the protection rules (i.e. achieving high-performance

and protectibility goals). It is a difficult task faced by the management scientists, but it

can be shown to be very similar to other optimisation tasks requiring a sequential set of

decisions, e.g., the Traveling Salesman Problem. This task is very similar to the scheduling

procedure used by Hsaio et al (1966) in a study, which suggested the performance gain

adaptivity mechanism that we used. One can view performance optimisation tasks that

require a sequence of decisions, as problems in finding jobs that are independent in their

CHAPTER 5. 107

protection requirements and execute them in parallel. To aid our understanding, we draw

our connection table as a directed graph in Figure 5.2.2. The nodes in the directed graph

represent the jobs to be executed and the arrows are the context dependent protection

requirements, between the jobs.

INPUT NODES
j 1 j2 j3 j4 j5 j6 j7 j 8 j9 jl0

0 j 1 0 1 0 0 0 0 0 0 0 0
U j2 0 0 0 0 1 1 0 0 0 0

T j3 1 1 0 1 1 0 0 0 0 0

j4 0 0 0 0 1 0 0 0 0 0

N j5 0 0 0 0 0 0 1 0 0 0

0 j6 0 0 0 0 0 0 1 0 0 0

D j7 0 0 0 0 0 0 0 0 0 0

E j8 0 0 0 0 0 0 1 0 0 0

S j9 0 0 0 0 1 0 0 0 0 0

jl0 0 0 0 0 0 0 1 1 1 0

(a) an example of a connection table

(b) the same example represented by a connection graph

Figure 5.3: An Example of a jobs connection settings.

For a given connection table setting, such as in Figure 5.3a, the adaptivity technique

that will be used, is composed of the following steps:

1. search for the job nodes with all arrows pointing out (OlJT-~ODES),

2. search for the isolated job nodes (ISO-~ODES),

3. remove OUT-I'.'ODES and ISO-::\ODES and their immediately directed arrows from

the connection table, and

CHAPTER 5. 108

4. repeat steps 2 and 3 on the new graph until empty graph situation is reached.

The results of performing this technique on the example given in Figure 5.2.2 is illus

trated in Figure 5.2.2 below.

ZERO CYCLE (execute concurrently j3. jl0)

FIRST CYCLE (i.e execute concurrently jl. j4. j8. and j9)

SECOND CYCLE (execute j2)

THIRD CYCLE (execute concurrently j5. j6)

®
FOURTH CYCLE (execute j7)

Figure 5.4: Performing The Adaptive-Technique Steps: an example.

This technique works well with simple connection tables that are of the directed graph

type. With a generalisable connection table, such as the one used by us descriptor-oriented

architecture (section 6.5.1) connecting the different jobs with their functional strategies, we

need a more sophisticated adaptivity technique. The type of a generalisable technique that

we adopted is a l1hill climbing" procedure. The context in which this machine adaptivity

technique is used, is discussed in section 5.3.2 (the inferential structures).

CHAPTER 5. 109

5.2.3 Towards Simulating the User and Machine environments:

For replicating the user and computer activities, simulation techniques are the most suitable

methods of representation (c.f. Lindstrom 1981). We shall do the replication using an

activity-oriented simulator. With simulation, however, we are bound to deal with several

new design features. Indeed, simulation is the only method that can be used to generate user

and computer activities and estimate the performance of new designs and new configurations

before actually implementing them (which is the case of our inner shell). The new design

tasks4 that are required for the simulation are (c.f. Unger 1977):

l. Describing the system descriptors and data structures and their attributes..Descriptors

and data structures are the element of the system model connected with, and influ

enced by, other elements of the system (e.g. processes). Here we may distiguish two

types of descriptors and data structures: those needed for constructing the actual

system model and those that are needed for the simulation process.

2. Dealing with queues, sets or lists Dealing with lists is essential because activities

cannot be served at the moment they arrive. activities wait for service in queues: the

service process of a queue gets out the first element of the queue and organises the

tasks of this entity.

3. Maintaining the simulation time A 'discrete event' simulator maintains a simulation

clock (i.e counter) or possibly several clocks, advanced after each change caused by

the systems activities and interrupts. The change in the simulation clock is advanced

by a variable amount corresponding to the real time that must elapse before the next

change takes place.

4. Describing and scheduling events or actit'ities~According to a specific scheduling policy

the next event is chosen to be served. Scheduling policies varies according to the tasks

required, for example the jobs arrivals are scheduled according to a Poisson random

·See Kohout (1978a, 1978) for the definition of a task as a protected activity directed towards a specific
aim.

CHAPTER 5. 110

policy, whereas the scheduling of the eligible processes that are need to be executed

concurrently is decided by the inferential structures.

5. Collecting the statistics generated by the simulator! The simulator maintains several

monitors that record the various activities and timings produced by several system

elements.

In an activity-oriented simulator the occurrence of each computer interrupt is made by a

user activity. The sequence of activities can be established by generating a list of future

user activities (randomly and according to a learning mechanism). This can be stored in

the activity list or the dynamic list of user intentions. Our tool can now be driven

by a simulation control program which uses the entry at the head of the activity list. Each

activity list entry specifies activity time, an activity identifier, the associated process (or

whether the interrupt is external) and other information associated with this event (see

Figure 5.5).

ti~e queue-+

activity
descrit=>tor

actirre

activity
discriptor

;:rocess \
ciscri::tor

activity
discri}?tor

acti;-:-e

t;:- oces s
ciscri::;tor

•

Figure 5.5: Actiyity descriptors and process descriptors.

CHAPTER 5. 111

The current simulation time is advanced to the activity time specified (which represents

the absolute time the interrupt occurres); the other fields are saved and the entry at the

head of the activity list can now be deleted. For example, assume that we have two processes

A and B with A currently executing (see figure 5.6). A is then at the head of the activity list

(or time queue) and B follows. In the past, process B has executed and its last action was

to activate A at time 100 and put itself into sleep until time 200. Its execution has stopped

after the block (200). A is now executing and has come to the block (300). Current time

is 100 (always the time of the head element in the time queue). The routine block is now

called, and it takes the return address of the calling routine (A in this case) and saves it

in the process descriptor for A. It removes the top activity descriptor and puts a new one

at time 400 linked to A. Then the execution resumes at the return address in the process

descriptor of the head element of the time queue (now B) which is the point after the block

(200) in B's code. . .

t i;"ne

activity
discriptor

100

process
discriptor

activity
discriptor

200

process
discriptor

return
address

code
seg[)j~

pr 0 gr a::J
counter

jlock(~OO)

activate
(A, 1 00)

jloc~

(200)

Figure 5.6: Activity list servicing example.

More detailed description of these features will appear in the next chapter.

code
for

A

co:::e
[or

c

CHAPTER 5. 112

5.3 The Functional Structures of The Inner Shell

This section provides fairly rigorous, although still heuristic, ways of identifying the func

tional structures or the behavioural models of activity structures based inner shell in such a

way as to facilitate making relationships between these structures and the computer shell.

There can be no doubt that the function idea provides a conceptual viewpoint of com

puter system inner shell operations. But this idea raises another question that needs to

be answered. Namely, at what phase this conceptual view needs to be modelled? As

pointed out in chapter 4, the different phases of conceptualisation of the model are linked

only through the designer activities (i.e. the designer experience) and otherwise they are

independent. These design activities are reflected in the designer experience hence, from

a proper modelling point of view we needs to start from the top of the conceptualisation

hierarchy, the Goal Phase.

We can also say that a function identifies a component part of the total set of the

system operations. This leads to the question of functional decomposition which are col

lected together to form the functional structures (c.f. section 4.6.1, 4.6.2) and breaking

system functionalities into subfunctions. We believe that the fine details of the functional

decomposition are highly related to the details of system realisation. This functional struc

tures decomposition (Kohout 1982) has been used successfully to construct several medical

diagnosis systems including expert systems, a DSS system, information retrieval systems

(Kohout et a11984, 1985,1986). In this section we are demonstrating that these functional

structures can be ported for the use of constructing general purpose computer systems

shells. This chapter, however, concentates on the design abstraction of the complete shell

and implementation details will be left to the next chapter.

It should be stressed that the shell model is the 'actual shell conceptual model' of com

puter systems and not the 'intended shell conceptual model' of the problem environment.

The actual shell conceptual model is the collection of the design facts and tasks that capture

the essential functionality (c.f. assumption 1, section 4.7) of the computer system and the

CHAPTER 5. 113

intended shell conceptual model is the model of the computer system that should be acti

vated according to specified design requirements. The implementation of the actual shell

conceptual model is presented in chapter 6, whereas the dialog between the intended shell

conceptual model and the actual model is left to chapter 7.

The essential functional structures into which the decomposed subfunctions are collected

are listed below:

1. The Design Modules:

(a) the knowledge representation structures,

(b) the inferential structures,

(c) the control structures,

2. The Constra1·nt Modules:

(a) the protection structures,

(b) the communication structures, and

(c) the interpretive structures.

In the sections that follow we describe each of these in an abstract conceptual way. The

details of their realisation are left to chapter 6.

5.3.1 The knowledge representation structures:

The knowledge structures represent a knowledge base which stores specific knowledge of

the general purpose computer design, which can be facts, hypothetical assumptions, or

heuristics. Originally Kohout et al (1986a, 1976) represented the knowledge structures, (for

example within the CLINAID system) by using the semantics descriptors. Similarly, in

my representation, all knowledge is partitioned into discrete structures (descriptors) having

individual links (ports). This structure I shall call Interpretive descriptors. Interpretive de

scriptors can be used to represent broad concepts, classes of objects, or individual instances

or components of objects (e.g. information on devices, information on the protection re

quired to be achieved on the access of these devices, etc.). Interpretive descriptors are

CHAPTER 5. 114

realised using the concept of data-type (c.f. Mohamad 1982) as described in chapter 6.

They are joined together by an appropriate descriptor meta-structure (c.r. Kohout et al

1986) that provides for the transmission of common properties among the descriptors. In

our case, the descriptor meta-structure is represented by the communication functional

structures discussed in section 5.3.5.

Here we define the descriptor-oriented architecture as an object-oriented, port-based

architecture which manages ports, processes, a descriptor directory, and the delivery of

descriptors via the ports. Descriptors are the instances of abstract data types, and ports

(which are channels for communication between processes) are themselves descriptors. Pro

cesses may request the creation of the ports and then execute operations which send and

recieve descriptors of the ports. Processes may also use the ports to execute operations

on remote objects by sending requests themselves as descriptors. Sending and receiving

descriptors of ports leads to the creation, blocking, and starting of processes, and is the

only mechanism controlling processes after the system is initialised. In other words the

descriptor-oriented architecture is a system which manages the manipulation of the knowl

edge base of the complete shell (Mohamad 1982). This architecture essentially contains the

directory of all the shell descriptors as well as their connections (i.e. their meta-structure).

The other main characteristic of the descriptor-oriented architecture of chapter 6 is that

it incorporates both, the addressing and the tagging features. These are a manipulated

set of mechanisms for management of the stored information. For a fuller understanding

of further sections it may be useful to give a brief overview of this mechanism here, in

anticipation of details in chapter 6.

The basic management mechanisms of our descriptor-oriented architecture consists es

sentially of a central processing unit (Figure 5.7) generating addresses in a segmented vir

tual memory space. The virtual space is composed of 2e segments: a virtual address, as

generated by the CPU, is composed of an triple (IDs, AR, OF), where IDs specifies two

unique names one for the data segment and another for the associated port; AR represents

the access rights; OF identifies addresses of two specific storage units associated with this

CHAPTER 5. 115

particular descriptor, one for relevant portE and the another for a data segment.

CPU SEGMENTED MEMORY ,
J

SEGMENT ~ 'I IDs
i- read rmodify

write- destroy
execute

AR r-

~ ----- ----- O~ - - ~

I ~ descr iptor ID
-_. I

AR ...
1 {tag} { internal { length}

representation}
OF

I
I .. \

I l port 1D tl I I·

Figure 5.7: Featuring the mechanism for generating our descritor-oriented architecture

Each generated descriptor describes a single object of a specific type. More precisely, an

object is represented by a single descriptor segment, if it belongs to a machine or represents

one predefined types of the knowledge structure. On the other hand, a user-type object

consists of a collection of descriptor segments (which, in their turn, contain other objects

of a machine and/or predefined types). Each descriptor segment is partitioned into three

portions, called the tag, the internal representation and the length (see Figure 5.7).

This representation of descriptors, again given at a greater detail in chapter 6, is quite

general. It was presented here mainly to illustrate the essential idea of descriptors. How-

ever, our descriptor-oriented architecture contains several types of descriptors, such as the

memory descriptors, the segment table descriptors, the process descriptors, the device de-

scriptors. Their details will also be left to the next chapter.

~Relevance of a port is a technical phrase referring to the ownership notion of the port (c.f. Stemple et
al 1982).

CHAPTER 5. 116

5.3.2 The inferential structures:

A computer system can be imagined as an information system which receives and manipu

lates user transactions, and retrieves information for these transactions in the response to

the user query. The inferential structures represent a set of certain search strategies. Our

inferential strategies are defined as strategies consisting of two mutually dependent search

mechanisms; a memory based search mechanism and a processor based search mechanism.

For the earlier examples of such type of inferential structures in other application contexts

see Anderson, Kohout, et al (1985) and Kohout (1983).

User demand is defined in our simulation as the measure provide of the system work

load. This measure is represented by a function producing one output index: the number of

concurrent user jobs. The input parameters to this function are the user intention param

eters (section 6.2) which include the average number tasks per user, the user productivity

(average system replies/total tasks - faulty intentions)' average user think time, etc.

The memory search mechanism represents an iterative process whereby a set of

user-judged relevant working set descriptors (pages or segments) at any point in the search

is used to refine and improve on the remainder of the user's search. This inferential strategy

improves the overall system performance in two directions; it minimises the search time and

it prevents the propagation of errors (faulty accesses). Figure 5.8 illustrates the general idea

behind this inferential mechanism.

Machine effectiveness is said to reach its maximum when certain generalised system

performance indices (e.g. average response time, average system throughput) equal or

exceeded their specified thresholds (see section 7.5).

On the other hand, the processor based search mechanism represents the process

of adjusting periodically the number of eligible processes allowed to enter the main memory

(i.e. eligible for execution), so that on average the target number of working set calculated

in advance is kept under control (this is a demand and anticiptory policy, see section 6.5.4)

and hence the processor utilisation is kept effective (i.e. avoiding thrashing). The way the

processor based inferential mechanism adjusts the number of eligible processes allowed to

CHAPTER 5. 117

-------------------~> '=' ran sac t ion
Jemand -!

(intentions Direct_~escriptor
Search

.1 r List of Possible
I Relevent SegDents

Relevance_:'1eighting_ScheDe_------' (Horking Sets)
,~using_Set_Of_Relevent_Segments i

Check
~achine-Effectiveness

Add_To Forbidd€ri
List

I
:10 r king Set s_
~;odification?

-'---__ J

Res~onse <= UST
t

Continue Search
J

Check Protection - 1
Add_Relevent_
Segments List

Threashold(UST

i
t

Response > UST
I

stop Search

~:o_Re2. event_Segments
!

--------------- In f 0 rl-:t the Use r

Figure 5.8: The memory based inferential mechanism.

enter the main memory is based on a balancing mechanism between the amount of user

loss and the system loss. The user loss function represents the intended user job strategy

of assigning priorities (see Figure 5.9). This strategy takes into account the user required

time limits as well as the urgency of finishing the job within each time limit (using different

function slopes) and assigns loss quantities to each case. The type of user loss function we

use is given below:

Intended

Job Priority

R x mh 0 < R :s; th

R x minf + th(mh - min!) th < R :s; tinf

tinf x minf + tinf(mh - minf) R > tinf

The parameters R, th, tinf are all expressed in time units and mh along with minf

represent the user job urgency (line slopes). The intended job priority, hence, represents

CHAPTER 5. 118

linearly-ordered set of functions (the change of slope occurs after each user job time deadline)

of user loss occurred to the user process. The shape of this function is given in Figure 5.9.

This type of function was originally used by Denning (1979) for processor scheduling

(resource balancing strategy), and employed by the author of this thesis for identifying the

average user intended loss that occurred through the user jobs execution time. ~ote that

wi th the increasing delay the resulting user loss becomes higher.

Real time

lower job priority

higher job priority

let: minf > I71h > 0

minf

t 1

t2 R
• _________ ---..:.. __________ ---..:.. _______ -->". :J s e r s pe c i fie a t i 0;;

ti:r.es
th tini

Figure 5.9: The shape of the user loss function (the user intention service policy)

The system loss function measures the amount of the processor work pw (amount of

service the process received + the processor utilisation). Then, the balancing mechanism

attempts to select the eligible processes for execution according for their highest user loss and

the lowest system loss, provided that the processor utilisation is lower than an acceptable

threshold (i.e. the amount that does not cause thrasht'ng c.f. Denning 1969). There is no

selection performed for eligible processes, if the processor utilisation exceededs its acceptable

threshold. \Vhen an eligible process is selected by the balance mechanism, its priority is

CHAPTER 5.

assigned by using the following function:

Intended

Process Priority

R x mh + pw 0 < R ~ th

R x min! + th(mh - min!) + pw th < R ~ tin!

tin! x min! + tin!(mh - min!) + pw R > tin!

5.3.3 The control structures:

119

Our definition of the computer system control structures goes beyond the traditional defini-

tion of control as manifested in the conventional operating systems literature. Our extension

includes the flexibility criterion required for distributed control, according to nature of the

distribution of the different functional structures. The basic scheme we adopted for this

purpose, is a development of the communicating automata scheme of Kohout (1976, Gaines

and Kohout 1975). Our scheme provides a central control unit for the management of the

distributed communicating modules. We call our control scheme the kernelised communi-

eating distributed modules. The main advantages of this scheme are

1. it enables modules (i.e. a component of the functional structures) to be loosely con

nected, in this case the only change needed is to specify the communication paths

required by the user or the designer,

2. t enables us to execute these modules concurrently, and

3. odules have simple connections which allows us to perform system development (e.g.

by adopting the vertical modules migration strategy (Stockenberg and van Dam

1978)).

However, the communicating modules are represented by our implementation as a set

of managers (coroutines). Figure 5.10 illustrates our abstract view of controlling a general

purpose computer system via the use of kernelised communicating distributed modules

scheme.

Indeed, we find that the idea of classifying the communicating modules into different

subclasses is quite important for identifying the level of control under which the shell oper

ates. These subclasses are ordered into the following hierarchy:

CHAPTER 5. 120

1 J I 11
ectl..,lt. ec '.I..,d~ ect 1..,1 \, eel'" :~ JJ\er

5~ell

Scceou1er

I I I

I [omrr'urdce\ lor· Structure

I I ~
I I

. •
J

I~~er

I S~eil

De"ce rile Proce"or Scned~ler
Meneqer Svstem Svstem

~ ~ ~
I I I

I r L 1
ClOCk

Memor~ -.l
Sv,tem

Control

~ ~
Strut!u",

t--

~

Figure 5.10: Kernelised communication distributed modules of a general-purpose computer
system.

1. The Application Control Module. Modules in this class control the information gen-

erated by user processes. The users generate activities without the regard for the

potential interference of the other concurrently executing user jobs and hence the

application control modules are needed for controlling these activities. In our shell

simulation, this class represents a reentrant coroutine program which independently

models the execution control of all user processes. This is an activity-oriented simula-

tor with its own simulation control program, activity lists and activities. The design

of this coroutine program is influenced by the design of the user process run time

support system (run time monitor) and hence the actual system itself.

2. The Services Control Module. Modules in this class deal with control services that de-

pend on neither specific hardware nor specific user application programs. In our shell

simulation, this class represents a set of coroutines one for each machine environment

process in the complete shell. Among such modules are the inferential structures, the

CHAPTER 5. 121

communication structures and the control structures (see sections 6.5.4, 6.5.3, 6.5.5).

3. The Hardware Services Control Module. Modules in this class present the control

for the physical hardware being used, including its communication interfaces. From

applications and control services, they screen, to the extent possible, the errors (in

cluding faulty accesses), limitations, and idiosyncrasies of less-than-perfect hardware.

Operating systems usually include most of the services in this category. In our shell

simulation, these modules represent uninterruptable kernel interface which is driven

by activities that have one-to-one correspondence with the real system activities (i.e.

the external and internal interrupts of the system needed to be simulated). This

interface includes the (activity-oriented) simulation control module, the activity rou

tines each of which provides an effective replication of the corresponding real system

interrupt routine and a dispatcher. In brief, this interface models the nucleus of the

real system supervisor and the actual physical hardware and, therefore, its design is

influenced by the absence of the latter from the shell simulation (i.e. hardware details

can be changed by changing certain parameters in our simulation).

The design of an application module is essentially unaffected by whether its requests

are intended for sequential or concurrent execution. It can be interpreted as one or more

hierarchies of modules executing from a single virtual memory. A call from an application

sub-module to another application sub-module can be interpreted conventionally, as if the

calls have resulted in an immediate transfer of values and control.

In contrast, the control services modules view such calls as requests for the transmission

of messages within a llnetwork of 1·nput/output communicating modules" .

Modules communication consists of requests from higher modules (nodes) to lower mod

ules (e.g., from M12 to M22). As shown above in Figure 5.11, the communication modules

consist mainly of two kinds of nodes (i.e. excluding the kernel module). External nodes

correspond to the external sources such as user processes, terminals, etc; non-external com

munication modules are design objects, each consisting of a set of procedures and data

objects (e.g. the memory coroutine).

CHAPTER 5.

Kernel
(Hardware
service
control
modules)

USER ~ODULES(P~OCESSES)

Applicatio~ Control ~odules

(TOP MODULES)
INPUT/OlJTPUT
COMMUNICATION MODULES

NETWORK

122

Control Service
~~odules

Figure 5.11: An abstract view of a communication modules network.

However, the module data flow, shown above in Figure 5.12 can be characterised as

follows:

1. represents the delivery of a request message to a module,

2. the module uses as its arguments the contents of the request, as well as the resource

object contained in the module,

3. during the execution of that module, change is made to the resource state and local

variables, and

4. at module execution completion, a reply message is returned to the requester. The

(operational) data object in a communication module, called a resource, survives the

execution of successive processes. Its current value is called resource state of the

communication module.

Aside from local variables, which it declares, a communication module can directly

access only its own module's resource. All other resources, even those in the modules it

calls, are hidden and should be accesses indirectly via the kernel. In other words, a calling

CHAPTER 5. 123

___ (~l~) __ ~ ____ ~rcOMMUNICATION
MODULE

(4)

(2) (3)

~ RESOURCE
-_._---------------

Figure 5.12: The internal structure of a communication module.

module may know that a subordinate module contain certain values of interest, but it can

neither access the values directly, nor would it know that the values are kept, say, in an

array.

Messages, which correspond to passed parameters, are of two kinds: requests and replies.

Requests originating at user nodes or communication modules are directed to named sub-

ordinate modules. The replies, consisting of the results of the call are returned to the

anonymous requester. The computation that results from the arrival of a request at a

module is called an operational task. Thus, in Figure 5.11, when the module of Mll is ini-

tiated, a task is defined. If that module calls the module of :M21, a second task is defined.

Each task completes the computation required by the specification of its associated module.

Therefore, the first task includes the execution of only the module of M21. A process is a

special kind of task that consists of the computation that results when a requ'est sent by an

external user node arrives at a top (or a father) module. Finally, a set of processes resulting

from related requests from an external user node is called transaction.

5.3.4 The protection structures:

A great deal of work has been done in recent years on inter-process communication between

concurrent processes (Chandy and Misra 1979, Hoare 1974, Lamport 1978, Lelann 1977).

Some synchronisation and protection algorithms have been implemented in which the logic

CHAPTER 5. 124

is distributed among the processes. This distribution of logic raises a problem similar to that

encountered in uniprocessing systems using semaphores: when a cooperation mechanism is

distributed among its users, misuse of the mechanism by an individual process can affect the

operation of the other processes (c.f. Rushby and Randell 1983) .. Distributed algorithms

exist, that carry out synchronisation correctly (Peacock et aI1979), but only in the case that

they are used correctly. Their correct use crucially depends on the correct understanding

of the algorithm, and on a voluntary cooperation between the participating processes at

the run-time. For a synchronisation algorithm to be a robust one, it must also be a

protect1'on algorithm in the following sense: it must continue to enforce the user-defined

cooperation (synchronisation) on its constituent processes, even if it is misused by some of

these processes.

This problem was solved in the uniprocessing systems by the introduction of monitors

(Hoare 1978), and path expression (Andler 1979). Synchronisation between users of a

resource is enforced by code in the resource itself. Since the synchronisation code is inside

a single process (the resource)' it can be guaranteed that the misuse by one process cannot

affect other user processes. On the other hand in the case of distributed resources we

cannot embed synchronisation code in any single process. If we do this the process becomes

a non-distributed controller for the whole subsystem. Synchronisation code for distributed

resources has to be distributed, yet designers usually want to verify their systems, and

they want to verify them as absolute/complete systems (c.f. \Villiams 1983, Feiertag and

Neumann 1979, McCauley and Drongowski 1979), not piecemeal as individual processes.

This implies that, even if they are impiemented in a distributed fashion, algorithms should

be specified centrally (c.f. Heinrich and Kaufman 1976).

From the above discussion, it would follow that the kernelised approach to distribution

protection of Kohout (i.e. his CLINAID whiteboard as in Kohout et al (1985)) is well

justified to be used for the design of protected distributed computer systems.

Our protection structures are used not only for distributed protection (static protection),

but can be also used for two other purposes:

CHAPTER 5. 125

1. to enforce protection policy for the control of multiple accesses of system resources

that are shareable. The reason behind selecting such a policy carnes from our in

tention to improve the overall performance of the modelled computer systems. This

decision has been taken by the au thor, since it has been proven that the single access

protection policy manifests an exponential complexity when used to implement mul

tiple access protection (needed in a concurrent system such as ours), whereas multiple

access protection policies cope with the accesses of the concurrent environment in the

polynomial time (c.f. Antonelli and Iazeolla 1983)

2. to enforce a protection policy for the control of protection dynamics. Since each

resource has a designated owner process, each resource owner may allow some partners

(processes) to share the access to that resource (e.g.using the pass primitive). The

owner may also specify a keyword (in the owner case permit) and any process that can

produce this keyword is termed the keyholder and may access the shared resource.

The mechanism for enforcing this protection dynamics has been described by Kohout

(1976) and is used by the author to enforce the protection dynamics of the processes

sharing memory segments (see section 6.5.6). Here we should note that pass and

permit protection dynamics has been implemented by the auther for the first time

since it has been developed by Kohout in 1976. Indeed there are several models

that enforces the protection dynamics criterion, such as the take-grant model (Snyder

1981), the authorisation model (Fagin 1978, Griffiths and Wade 1976) and the dynamic

authorisation model (Kambayashi 1981). All these models operate by assuming the

criteria of the process independency rather than cooperation (see section 4.7. for the

notes on the CSP model which enforced the process independency criterion). \Ve

beleive by using the pass and permit model the protection can be enforced on the

cooperating processes sharing a common knowledge base (see section 6.5.6).

Basically, the protection structures utilise certain protection descriptors that generally

belong to the knowledge representation structures. These descriptors act as tickets to access

their associated objects. Each descriptor may have t:he following representation:

CHAPTER 5. 126

OBJECT ID PORT ID Access rights Base/limit I

This representation is an idealised description, and does not correspond exactly to the

implementation of descriptors on any existing systems. However, we distinguish two types

of protection descriptors: the user intention descriptor (i.e. user activities or transactions)

and the system objects permission descriptor (which stores the permission access rights

allowed by the system to each object or resource). By means of these two types of protection

descriptors, the protection mechanism enforces protection by allowing intentions that match

the permissions (with dynamic protection mechanism the transform of accesses is done first)

; if this is not the case, the faulty intention interrupts arise (see Figure 5.13).

PORTS

~ P1 P2 of P3
Kernel

I @
.~ ... r IL-@ P

E N
@ @ T R

E .@
M

N @ I

T S

I S
0 ~ I

N 0

S N
S

Figure 5.13: The Basic Components of our Protection System

Ports are used in our protection structures to provide the means for protection distri-

bution. Conventionally, ports have been utilised as communication channels between com-

municating processes (Stemple et al 1983). \Ve extended the use of the ports for achieving

protection distribution. For this purpose, a port is viewed as an abstract data type and

protection is achieved by restricting the operations that are available to processes that ma-

nipulate ports. Further, we equate ownership of a port with possession of a descriptor to

CHAPTER 5. 127

request operation on an object. This type of protection is referred to as port-oriented

protection (see Figure 5.14).

/

<.. 6, .;:::n::::e::::riPtor
/ ----, I. ..•. I

r-~ permlsslon descriptor

~ I .-~.

the port owner process

Figure 5.14: The Port-Oriented Protection System.

A port constitutes a communication path between sets of communicating, cooperating

processes. In processes that communicate, a port can mask the identity of the processes

involved in this communication. Messages are placed in ports by a process with the asend"

access to the port. Messages are removed from the ports by a process with receive access

to the port.

5.3.5 The communication structures:

The communication structures are viewed by the author as centralised media for commu-

nication and control among the various shell processes. The construction of the commu-

nication structures is based on the concept of communication partners (participants) for

processes (outlined by Kohout 1976): Those participants which have the same father are

considered as communication partners. Subprocesses, subsubprocesses etc (i.e. parts of pro-

cesses) may communicate only with the communication partners of the processes to which

they belong. On the other hand the internal structure of a process has to be invisible to

CHAPTER 5. 128

its communicating partners in order to keep changes in the internal structure of the com-

munication partners independent of communication. Figure 5.15 shows an example. The

communication of process 1 are process 2 and process 3, whereas those of subsubprocess

2.1.2 are are subsubprocess 2.1.1, subprocess 2.2, process 1 and process 3.

1

2 2.1 2.1.1
6~BP~OCESS OF 2.1

2.1. 2
6:;BF~OCESS OF 2.1

,tRJ;EL (EJU;EL JERN£L

2.2
6DBP~OCESS OF 2

3

Fig~re 5.15: Interprocess communication mechanism- Communication Parteners.

Basically, our processes communication mechanism represents a message passing sys-

tern in which each order is acknowledged by a response. Cooperating processes in our

system communicates by sending messages to each other. ~1essages are transmitted from

one process to another by means of message buffers, selected from a common pool within

the kernel. The communication structures (kernel) administer a message queue for each

process (see Figure 5.16). The rules of our communication mechanism are:

1. any order may only be sent by specifying the receiver port identifier,

2. a response may only be sent in return to an order which has been received,

3. a response may only be received, which refers to an order which has previously been

sent, and

4. an order may be received without restrictions.

In general, we VIew the computer system as a pool of processes. These processes are

confined to indiyidual environments so that they are unable to communicate directly or

CHAPTER 5.
129

PROCESS i ... (PROCESS j

P P
0 0

r r
t t

ii jj

·if ~Ir

SEND MSG

I
,

. , - I I . " .
RECIEVE MSG

~

'",

message transport descriptor t able TOT message que ue TOT

of the process i of the process

kernel

~essage structure

owner port id command distination port id body

Figure 5.16: An abstract view of our communication data structures.

indirectly with any other processes, except via the kernel process. Processes comm'unication

is mediated by the kernel process which manipulates the messages that are picked-up and

directed by the ports. Each message consists of a body (text of the message), and of the

access transportation primitives (i.e. send or receive commands), a sender process message

transport descriptor port, and receiver message transport descriptor port. The objective

of the communication mechanism is to transport the sender message transport descriptor

to the receiver message transport descriptor. For each process, all the messages (possibly

none) to be mailed during some time period are placed inside a message transport descriptor

table (or a bundle) which is addressed to the kernel process. The kernel process receives

bundles, sorts messages, checks the protection status then requeues them into a single

bundle (possibly empty) for each process.

j

CHAPTER 5. 130

The details of the information outlined in this section are presented in chapter 6, section

6.5.3. It should be noted that synchronisation of the executing processes is a byproduct of

the communication structures activities (see assumption 8 of chapter 4).

5.3.6 The interpretive structures:

Interpretive structures are concerned with the effective representations/interpretations of

the simulated computer structures. The most important structure to be simulated is the

process structure which consists of the data descriptor and the algorithms that carry out

the instructions (c.f. assumption 5, section 4.7). This process structure, carries out the

tasks required by the different functional structures and therefore it has to be efficiently

represented. This requires to pay the attention to the following three design issues:

1. The realisation level of the algorithm. As illustrated in Figure 5.17, the implemen

tation of algorithms on a level closer to the bottom layers yields higher performance

at the price of lesser flexibility or transparency (in terms of possible changes of the

module code). In general, implementation on a lower level is chosen when high per

formance is required. Vertical migration method may be used to transfer higher level

modules to lower level modules in order to gain performance, but this method proves

to be ad hoc and produces ill-structured system design (Stockenberg and van Dam

1978).

However, many performance decisions at one level can only be made if the knowledge

about the performance of the lower level system components is available. For the

level we implemented, the complete shell algorithm is near the centre of the hierarchy

(i.e. using a high level language) in order to gain a moderate functional flexibility and

reasonable performance (in a way similar to the design of the Burroughs B6700 or

the SWARD systems, c.f. Wegner 1971). The details of implementing in a high-level

language, the shell algorithms of our tool are presented in the next chapter.

2. The representat1'on of the information structures. Perfonnance, at any design level,

depends upon the structure of the computation process (i.e. size, etc) being performed,

CHAPTER 5.

End Users

Appl:'cations

Languages

Operating SysteJ.'.

;1icro program

Y!ardvlare

(a) cetailed view
of a cor.lputer
hierarchy

Functional ,-_0
Develo~~entt us~~ Level

l\RCH I'=' 2CTUPJ"'\L
Level

RSALI Z,;TIO!~
Level

(b) Abstract view
of a cor:puter
hierarchy

Figure 5.17: Hierarchical layers of a computer system.

131

J Perfor:ca:1ce

the characteristics of the information involved in the computation, and the way the

,different mechanisms treat the 'addressing,6 of the structures in the computation.

Changes in the way a computation is performed, or in the properties of the information

being processed, have the impact on the performance of the system at a higher design

level. Indeed, flexible interpretive structures should be used to tune the performance.

We find that flexible data types such as adescriptors" are quite important to be

used as our interpretive structure, since they can describe properties of any complex

object altered during tuning these structures (Mohamad and Cavouras 1984). The

next chapter presents our descriptors implementation.

3. The representation of possibilist,·c changes. In order to achieve a flexible representation

of both, the algorithmic and the data structures, the change of representation must

6 . ' e.g. a memory addressmg scheme, c.f. Fabry 1974.

CHAPTER 5. 132

be achieved in an effective and easy way. These changes are necessary to study the

effect of the different design factors upon the performance, as well as to arrive at the

admissible design factors that can let a particular system design to be optimal. In

our shell design we adopted a parameterisation technique (c.f. Hughes 1981) which

aims at binding the key changes to corresponding parameters. These changes can be

elicited from the designer in a friendly way. We identified three groups of parameters:

(a) the user intention parameters for the outer shell,

(b) the complete shell initialisation parameters, and

(c) the computer inner shell design parameters.

The details of these parameters depend upon the way the implementation is carried

out and hence it will be left to the next chapter.

5.4 Performance Probes of The Shell

Performance monitoring is an important process that provides the essential information

about the shell status under the different workload and shell settings or representations.

From the monitored information, the designer can tune or optimise the given computer

design. The monitoring process uses special statements called the software probes. Software

probes (i.e. monitoring code statements) can be used to collect the essential statistics. Here

we list and define the essential performance probes that we used. These are:

1. The user-oriented performance parameters probes include the following:

(a) User productivity: This measure provides the picture about the load of the sys

tem. There is a vast number of parameters contributing to the productivity of

the computer system user within the outer shell. These parameters are called the

user intention parameters (see section 6.2) and consist of parameters such as the

average user think time, the job arrival speed, the average number of user tasks

per a job, etc. The representative performance probe that we used to measure

the average user productivity within the outer shell is a probe that measure the

CHAPTER 5. 133

demand of the users (i.e. the number of competing concurrent user jobs) within

the outer shell.

2. The machine oriented performance probes include the following 7 :

(a) Average Response Time: This is the time required to respond to a user command

issued by a terminal. The response time includes the overhead time, the request

productive time, the time spent accessing the disc files and so forth. It is a

complex function, which depends upon the number of active users in the system

as well as on the actual design of the system itself. It thus follows that the

response is rather meaningless measure unless it specified under which conditions

it was measured. Consequently, average response time is more meaningful since

it is based upon statistics gathered for a specified period of time.

(b) Turnaround time: This measure reports the average time a batch job requires to

pass through the system. It can be calculated from the average time spent on

all the system resources.

(c) System throughput: This is the average number of processes or jobs processed by

the system per unit of the total elapsed time. The throughput of a system can

determine the amount of the work that can be done per unit time.

(d) Effective degree of Multiprogramming or A1ultiprocessing: This measure repre

sents the average number of user processes that can communicate while being

resident in the central memory.

(e) Devices utilisation: This measure represents the time for which the devices are

busy or idle. It is expressed as the ratio of the use or idle time to the total

elapsed time.

(f) Devices queueing indices: This set of measures indicates the efficiency of the

services at each particular device. These measures are:

• device queue size,

7 Any of these measures may be used as the machine e:l ironment effectiveness measure.

CHAPTER 5. 134

• device queue mean length (i.e. the mean number of items waiting for the

service for a period of time),

• maximum waiting time of the items in the queue,

• mean waiting time for the device.

(g) Central processor overhead time: This is the time spent by the central processor

in performing the system functions. Overhead time can be a useful measure for

the designer when he attempts to assess the cost of his solutions of a particular

design problem.

(h) Devices productive time: This IS the time for which the devices were used m

processmg user processes.

5.5 The Implementation Language of The Shell

The programming language is the media for selecting the substrata required for implement

ing the functional structures as well as the other simulation structures of the shell. In

order to search for a programming language that is capable of describing the strategies,

techniques and structures required by the activity structures shell design, and can achieve

the maximum possible flexibility we should look for a language that does not restrict the

programmer to only one' paradigm. We have to search for multiparadigm languages (c.f.

Hailpern 1986). A programming paradigm is a way of approaching a programming problem

(i.e. a way of restricting the solution set). By analogy, structured programming restrains

the programmer from using all the unstructured constructs available in a conventional lan

guage. That is, any acceptable paradigm allows the programmer to use only restricted set of

concepts. Because our shell is a possibilistic design tool, we need a multiparadigm language

in 'order to represent whole families of concepts and structures.

Conventional computer systems software (e.g. operating systems) is not adequate mul

tiparadigm system because of the strict separation of the different paradigms and the static

nature of their linkage. Ideally, a multiparadigm software system should allow language con

structs from different paradigms to coexist within ·one program or module. Each paradigm

CHAPTER 5. 135

of such a software system should be able to refer to, and depend upon, services provided

by the other paradigms.

\Ve conducted a study to determine what would be the most suitable multiparadigm

programming language to implement or simulate an activity structures based designs (:\fo

hamad 1982). The results of this study let us to select the programming language C for the

following reasons:

1. It supports several programming paradigms that is

• imperative programming paradigm (it supports sequential, block-structured com

mands with static scoping of variables)

• object-oriented programming paradigm (it can group data into objects or data

types where each object can possess a set of operations programmed to manipu

late it).

• parallel programming paradigm (using the scheme of coroutines, the specifica

tion of multiple processes can be done in the context of a single processor or

distributed collection of processors).

• real-time programming paradigm (incorporating a simulated clock or using the

host computer clock, our simulation in C can specify all the constraints required

to control the physical devices of a computer system).

2. The C programming language possess the following characteristics (Kernighan and

Ritchie 1978, Bailes 1985, Deridder 1986):

(a) it is a block structured language,

(b) it supports information hiding,

(c) it possesses powerful constructs (e.g. array of functions and procedures)'

(d) it supports dynamic memory management and allocation,

(e) its source is portable,

(f) supports coroutines,

CHAPTER 5. 136

(g) it has powerful preprocessor and macro substitution, and

(h) it is closer to the machine architecture than other "higher" level languages (such

as Pascal, ADA, Modula)

3. Finally, another factor that leads us to select the C language is that the language is

available on our host computer system.

However, the only disadvantage encountered with the C programming langauge is that

it is not a strongly typed language. This is not a limitation of the language since it allows

type definitions and type checking. Types in C are built up out of the basic types with the

type operators as in Algol-68 or Pascal. The exception is that procedure declarations need

to give only the result type, and not that of the arguments. To several researchers C types

syntax and semantics is irreguler and messy (c.f. Anderson 1980).

Chapter 6

THE IMPLEMENTATION DETAILS OF THE
SIMULATION OF AN ACTIVITY STRUCTURES
BASED COMPUTER SYSTEMS POSSIBILISTIC

GENERATOR

6.1 An Overview

The primary goal of this chapter is to describe the construction and the use of a possiblis-

tic generator for generating activity structures based computer system architectures. We

believe that the construction of such a possiblistic generator will lend credence to the claim

that the methodology of activity structures is useful in constructing effective computer

systems.

In chapter 5, the abstract way that initiate the construction of a required possiblistic

generator was described. In this chapter, we concentrate upon the designer activities. These

are:

1. selecting the main design features required by the problem environment

(This consists of identifying the macro elements of -the possibilistic generator),

2. refining these features to produce the intrinsic design details (Le. identifying

the micro elements of the possibilistic generator), and

3. representing and describing the refined details in a suitable and flexible

form of implementation (This representation should take into account both, para

metric and non parametric changes that are likely to be performed by the designer

137

CHAPTER 6. 138

during his/her explora.tion step).

There is the fourth step, the goa.l directed a.ctivity of the designer to perform changes

to force the genera.ted system to a.ct in a. wa.y interesting to the designer. This is ca.lled the

exploration step. This however will not be discussed here but it will be left to the next

chapter.

6.2 The Designer First Activity: Selecting Components Of

A Possiblistic Generator

The first design step is to elicit the design requirements from the user construction envi

ronment. For this purpose, we implemented a. friendly program that is ca.lled the PRE

PROCESSOR and which is used to collect these requirements. The questionnaires in this

program have been designed to include the intrinsic features of severa.l genera.l purpose

computer systems.

The systems selected to be the candidates for testing my generator represent the most

important computer systems which appeared in the current state of the art. These systems

are claimed to possess the following interesting functiona.l features:

1. protection enforcement,

2. communication mechanisms (e.g. message-passing),

3. sophistica.ted control structures,

4. inferentia.l capabilities, and

5. effective representation and knowledge base structures.

After the survey of the literature I selected the following systems (Mohamad 1982, 1982a,

Mohamad et. a.l. 1984):

• NUKE system (Crowley 1981),

• THOTH system (Cheriton 1979),

CHAPTER 6. 139

• GUTENBERG system (Stemple, Vinter and Ramamritham 1982),

• HYDRA system (Wulf et. al. 1974),

• KSOS system (McCauley and Drongowski 1979), and

• CAP system (Wilkes and Needham 1979).

These systems form a family that I shall call a class of highly constrained existing com

puter systems. What all these above listed systems have in common, is their basic construc

tion unit-process.

The process can be described as an active functional entity (i.e. a management unit

within the functional substructure) using the activity structures terminology (see postulate

number 5).

An important factor that contributed to the selection of the above systems, is the fact

that they have, in ~neral, the same process organisation as the activity structures' process:

the message-passing and the hierarchy architecture. Message-passing activity between

system processes is achieved by means of output-to-input connections which utilise messages

and ports. The hierarchical architecture of the system processes provides a mechanism for

stepwise refinment that is required for the implementation of the functional substructures.

The processes that are found to be shared by the above mentioned class of highly

constrained systems are the following:

1. the memory process,

2. the processor(s) process,

3. the kernel process mainly utlised for communication,

. 4. the devices control process,

5. the protection process,

6. the job scheduling process, and

7. the file system process.

CHAPTER 6. 140

Generete
User Collect

AcUIIIUes DI1 User DeKn prors StetlstlCS

I I DZj Soptem Descriptors
I :

I I i 1 j
Generete

K,.,yledge I nterpretlYe Inferenh,l Inferenh,l

Mechine
Structure Structure. Structure 1 Structure Z

Actlllilies
DeKr - [ffieienc~ - Memor~ I-- Procn30r
DefM ~ure. Soptem S",tem

~ Protection
Structure

Control
Stehe end

Structure
D~nemlC

Com,",
Devitt!

Protechon
Structure

Control
- -

nl1NEl -

I
'1 D 31 Me"*je'

ID41 Port,

Figure 6.1: Fitting the processes of the class of highly constrained systems to the different
functional structures of our generator.

The processes 1 to 7 above capture the activities of our selected class of highly con

strained systems. In order to test the generator and study the behaviour of this class

of systems using the activity structures based architecture, we have to put these into a

one-to-one correspondence with the essential functional structures of the generator. The

correspondence is depicted in Figure 6.1. The correspondence process may be controversial,

but it is of vital importance for the initial ver1flcation/testing of the possibilistic generator

behaviour (specially if the performance statistics is available for one of the existing class

members). Also it is important for demonstrating that cur possibilistic generator is capable

o{ capturing the essential design features of any current highly constrained computer system

design.

Figure 6.1 shows the interconnection of the functional structures of the generator with

their overlay by the activities of the above defined class of highly constrained architectures.

The actual realisation details of these processes are presented in sections 6.4, 6.5 of this

CHAPTER 6. 141

Type of Question Explanation
1. Job type? interactive or general
2. Job Arrival Speed? mean-interarrival time (sec)
3. A verage Processor Time ? measured in microseconds
4. A verage Memory Space ? measured in bytes
5. Average No. of Job Tasks? (I 2 ... 20) " ,
6. Mean Size of Backing measured in bytes

Store space ?
7. Average No. of the Job's Backing (I 2 ... 10) " ,

Store files ?
8. Mean No. of Backing Store (1 2 ... 1(00) " ,

Input Records ?
9. Mean No. of Backing Store (I 2 ... 1(00) " ,

Output Records?
10. Average User Think Time? measured in seconds

(only for interactive type)
11. Average Indicies of Job

Intention Service Policy
(mh, minf, th , tinf) ? see section 5.3.2

12. Average Faulty Intended (0,1)
Accesses

13. Mean No. of User Productivity measured in transactions
14. Average Satisfactory Response measured in microseconds

Time
15. Average Satisfactory measured in microseconds

Turnaround Time

Table 6.1: User Environment Intention Parameters.

chapter.

The elicitation questionnaire must contain a list of queries that capture the average user

environment intentions. The generator uses these intentions as seeds to generate random or

variable workload within normalised intervals (the user learning mechanism (section) tries to

obtain the optimal intervals) in which it can replicate a realistic computer system workload.

Table 6.1 illustrates the type of queries adopted by our PREPROCESSOR program.

In our implementation, these parameters initiate the generation of the user intention

steps. The process of generating these intention steps starts from the user environment (via

two routines the PARTICIPANT-ONE and PARTICIPANT-TWO (see section 1.2)) which

CHAPTER 6. 142

provide the average user demand expressed in the average number of concurrent jobs re

quired by the user environment. The detail descriptions of each job requirement are assigned

by the JOB-SCHEDULER routine which takes the intention parameters (i.e. as input seeds

for random generators) and assigns to each job descriptor its random intention steps. The

distribution used is the Poisson distribution. The reason behind selecting this type of distri

bution is that it replicates the computer system workload main characteristics e.g. the jobs

arrivals (c.f. Steel and Torrie 1980). Here we should note that the PARTICIPANT-ONE

and PARTICIPANT-TWO routines do not only generate the average user demand but also

have the capability to inspect the performance status of th'e system and take corrective

actions for adjusting the average number of concurrent jobs. The aim of these corrective

actions is to force the system to show interesting behaviours. There is a secondary correc-

tive mechanism which is controlled by the JOB-SCHEDULER. This mechanism corrects

the amount of load assigned to each intention step. It operats by adjusting the normal-

isation interval size used around each distribution seed. This mechanism stores only the

previous interval size used for each distribution function, since the best previous estimate

and the new estimates will be compared to it. IT the new estimate is better, the comparison

is positive; if it is worse, the comparison is negative. These two corrective mechanisms help

the user environment to adopt to the machine environment reaction activities.

6.3 The Designer Second Activity: Decomposing The Pos

sibilistic Generator

In this section we are concerned with partitioning the functional activities of the upper

abstraction phase (i.e. the Goal Phase), since we believe each optional pass from one

phase to the other must be based on some perceived concepts of the previous phases . .
Only after the designer becomes increasingly familiar with a target system produced from

one phase, she/he can use the optional path to the second phase and produce a more

sophisticated target system better the one derived exclusively by the upper phase. However,

the partitioning of the functional activities within the upper abstraction phase involves the

CHAPTER 6. 143

six essential functional structures of Figure 6.1.

Moreover, the design partitioning step should prepare also for the next design step of

exploring the target system. For this purpose, arrangement should be made at this stage, for

any expected changes. In our generator we allow for possible changes within the algorithms

of the functional structures and within the resource descriptors of the functional structures

(i.e. changes within the computer machine environment). The algorithmic changes are

performed by by means of what is called non- parametric alterations (see section 7.6.1).

Each non-parametric change performed by the designer on the possibilistic generator, will

produce a different version called a possibilistic constellation (see section 6.3.2). The

changes on the resource descriptors are performed using parametric changes (see section

6.3.1). The parametric changes that are made on a possibilistic constellation will produce

possibilistic general computer system family (see section 6.3.2).

These changes are elicited from the designer using the PREPROCESSOR program.

The data collected by the PREPROCESSOR for this purpose is stored in a specific data

file (SETTING-REDUCTION-DATA) that will be used by possibilistic generator for per-

forming any possible alteration. The changes we performed upon the possibilistic generator

of a general purpose computer system are described in the sections 6.3.1 and 6.3.2.

6.3.1 Producing Possibilistic Constellation by the Non-Parametric Changes

This type of change adds or removes certain functional substructures (i.e. major changes

with1"n the computer machine environment) that exist in the main possiblistic generator.

In principle, many changes of this kind can be done within the design framework of the

activity structures. However, we implemented only a limited, but, important subset of these

functional changes. We can do the following in our simulation of the possibilistic generator:

6.3.1.1 adding/removing dynamic protection activities:

This change is made by answering the relevant questions asked by the PREPROCESSOR 1 .

IThe choice of dynamic protection, forces the protection descriptOr! to be of variable sise, and COIl&e

quently the memory must manage segmentation. In choice of static protection the memory may manage
paging. Thill is signalled by the PREPROCESSOR automatically when the designer selects the type of

CHAPTER 6. 144

The protection activities that we selected form a part of the protection functional struc

tures which enforce the protection of memory descriptors or segments/pages against unau

thorised accessing processes (Mohamad 1982). The dynamic protection is provided in two

W&'3y. Firstly, by passing as well as accepting access rights between the user processes.

Secondly, by mediating between the access intentions and permissions of the processes. IT

an intention matches a permission, access is granted, otherwise the access is denied. This

mechanism has been developed from a mechanism proposed earlier by Kohout (1978).

When the dynamic protection is required, the PREPROCESSOR program mqurres

about the following:

Ql do you require to let the older (in time) processes to have lesser protection priority ?

Since the older processes may gain permission to access a vast number of resources

(sharing them with others), this will cause the performance to degrade. IT we limit

the effect of the older processes, then we expect performance to be enhanced.

Q2 if the answer is yes to the above question, then the protection policy enforced by the

mechanism is called limited sharing protection policy (i.e. pass access rights

are granted only from lower (older) (or the same level) to upper (new)(or the same

level). The permit access rights are granted by that level only from the upper (or the

same) priority level). Otherwise, if the answer is negative, then a maximum sharing

protection policy is assumed.

These answers collected by the PREPROCESSOR are stored in a special data file called

SETTING-REDUCTION-DATA which in turn will be read by a special routine within the

possibilistic generator called the POSSIBILISTIC-SIMULATOR-LOADING routine. This

routine also performs the following tasks of system intialisation:

• initialise the main lists pointers(e.g. process descriptor table),

• allocate all the available memory to a free list, and

• intialise the processes status (to executing).

memory protection he/she requires.

CHAPTER 6. 145

6.3.1.2 adding/removing users background blackboard:

Background users blackboard represent a mechanism by means of which the users can de

posit their noninteractive tasks. The tasks are then performed in parallel or, at a later time,

while the users are involved in another interactive task (on a foreground blackboard). This

type of activities used in the Unix operating system where the user can operate his/her jobs

on foreground/background queues (Dunsmuir and Davies 1985). These activities are man

aged by foreground/background blackboards (Dietterich and Buchanan 1983). By adding

a background blackboard, an interactive system can be transformed to become a system

of a general type (as in adding spoolers to a multiaccess computer system). This change

is elicited from the designer by the PREPROCESSOR program and read by a special

routine within the possibilistic simulator (POSSIBLISTIC-SIMULATOR-LOADING). IT a

background blackboard is required then the designer should specify the capacity of each

background blackboard (measured by their capacity to hold jobs).

6.3.2 Producing Possibilistic Family by the Parametric Changes

In this section, the designer initiates the possibilistic constellation resource descriptors pa

rameters to the required design setting (i.e. performing minor changes with1·n the computer

machine environment). The changes mainly specify the substrata capabilities (software

and hardware) required to realise the activity structures based computer system. By set

ting these changes the possibilistic constellation is restricted to a possibilistic family of

computer system. These changes are elicited by the PREPROCESSOR program and the

data collected are deposited in a specific file called the

POSSIBILISTIC-GENERATOR-SWHW-SETTING

The designer provides the relevant setting data based upon his/her experience or on the

installation data collected from the manufacturer or some design manuals and texts (c.f.

Shaw 1974, London 1973, Yourdon 1972). The relevant quetionnaires of the PREPROCES

SOR are designed to reflect the software and hardware capabilities of the class of highly

constrained systems.

CHAPTER 6. 146

The following are the questionnaires that are needed to produce the software and hard-

ware characteristics supporting the class of highly constrained systems. For other) different

hardware or classes of systems the questionnaires have to be approprrately redefined.

Ql: PROVIDE THE SOFT'iARE SUBSTRATA CHARACTERISTICS OF THE
REQUIRED TARGET COMPUTER MACHINE ENVIRONMENT 1

Switching Time from One Process to Another in msecs
Process Invocation Time in msecs
Average Primitive Call Time in msecs

Tiae to Service The lernel Routine Which Deal With
Timer Interrupt
Job Arr1val
Completion Interrupt
Access Faults
Abort
Halt
Send Message
Receive Message
Time Required to Generate An Activity (i.e Receive Event)
Delete Port
Create Port
Changing The Memory Working Set
Sta----ting ProceBB
Stoping Process
Ini tiating I/O
Creating Protection Descriptor
Destroying Protection Descriptor
Modifying Access Rights (using Pass/Permit)

Q~: PROVIDE THE HARDWARE SUBSTRATA CHARACTERISTICS 1

STATE THE PROCESSOR CHARACTERISTICS ?

=

--
..
..

..

-
.. ..

Processor Speed (time to aove on byte into the main aemory)
STATE THE CENTRAL MEMORY CHARACTERISTICS 1
Average memory size for non resident processes (in bytes) -
Segment/page size (in bytes) ..

STATE THE BACKING STORE DEVICES CHARACTERISTICS 1
The Disc characteristics !

Disc transfer time (in asecs/byte) -
Disc positioning time (in asecs) ..
Disc latency time (in asecs) =

Disc record 8ize (in bytes) -
The Drum characteristics !

Drua transfer tiae (in asecs/byte) -
Drum positioning tiae (in aseca) -
Drua latency tiae (in msecs) -
Drua record size (in bytes) -

STATE THE DEVICES REQUIRED TO SUPPORT THE FOREGROU1lD BLAClBOARD?

CHAPTER 6. 147

The media that is required to let the users to specify their required computational tasks

on the foreground blakboard2 is the 'terminal' device. For this purpose we assumed a general

purpose DEC system terminal characteristics (300 band (i.e. 300 bit per second) serially

transmitted) (Watson 1970). However, the designer must specify how many foreground user

blackboards he/she requires ?

STATE TARGET SYSTEM PERIPHERALS NEEDED TO SUPPORT THE BACKGROUND
BLACKBOARD .,

Hbackground blackboards are also required as initiated by the SETTING-REDUCTION-

DATA then the relevant general computer system devices capabilities must be provided.

The relevant devices are mainly those that support a batch computer system which include

the line printer and possibly the card reader. Hence the parameters needed to be specified

are:

STATE LINE PRINTER CHARACTERISTICS ?

Line printer transfer time (in mescs/byte) •
Line printer positioning time (in msecs) -
Line printer latency time (in asecs) •
Line printer record size (in bytes) •

STATE CARD READER CHARACTERISTICS .,

Card reader transfer tiae (in asecs/byte)
Card reader positioning time (in msecs) -
Card reader latency time (in asecs) =
Card reader record 8ize (in bytes) •

6.4 The Designer Third Activity: Representing The Possi

bilistic Family

This is an important designer activity which realises the desired general computer system

family. For this purpose the designer identifies the possibilistic (i.e. extensible) substrata .
structures which are used here to implement the manager algorithms and their resource

descriptors of the possibilistic family. For a realistic implementation the designer should

represent the design structures of the conversational environment.

2The concept of Blackboard is used here to refer to the media where the, user job can be submitted.
Bla.cboa.rds are used differently in AI (c.!. Craig 1986).

CHAPTER 6. 148

6.4.1 The Generation of the Conversational Environment:

In order to replicate the conversational environments, we divided the simulation process of

the possibilistic family into two-level simulation programs. Theouter level program gener

ates the user interaction environment (generating and scheduling the user activities) and

provides the media for the declaration of the required information structures and their

primitive operations. We refer to the outer level program as the JOB-SCHEDULER (note

that the functions of our job scheduler is quite different from those used in the conventional

operating systems. We selected this name (and possibly some other terminologies in this

thesis), however, in order to be consistent with the current state of art computer system

design terminology.).

Theinner program, on the other hand, replicates the essential machine environment

functional structures and is driven by activities that areexternal andinternal to the pos

sibilistic family. The External activities (interrupts) are caused by the hardware devices,

whereas the internal activities (traps) are issued by the processes concurrently executing

inside the system. All inner simulation processes are modelled using reentrant coroutines

which possess their own activity lists, control mechanism and activity routines.

In order to obtain the activities forming the two, inner and outer environments, we

need to create the essential scheduling mechanisms which act as their generators. These

scheduling mechanisms take into account the criterion of randomness as well as the learn

ing capability of the environment. The mechanism for generating the user interaction

environment (the outer simulation) hence consists of a job scheduler. The mechanisms for

generating the machine environment (the inner simulation) consists of the following:

1. the processor(s) demand scheduler,

.2. resources demand scheduler, and

3. processes selection scheduler.

the two environments. In the following subsections, we briefly describe these scheduling

components.

CHAPTER 6. 149

Arriving jobs Completed jobs
..L I

,

-

1 - "'
,

Process States
IIBLOCKEDIRUNNINGjREADY]

'(I

JOB PROCESSOR RESOURCES PROCESS JOB
I- SCHEDULER ~ I- DEMAND ~ DEMAND ~ SELECTION 1-1- SCHEDULER

SCHEDULER SCHEDULER SCHEDULER

KERNEL

INNER SIMULATION

OUTER SIMULATION

Figure 6.2: Schematic view of the scheduling components of

6.4.1.1 Generating the user environment activities: The Job Scheduler

The job scheduler can be viewed as a macroscheduler whose basic functions are:

1. to create user jobs descriptors (called JOBMIX);

2. to assign to each job descriptor the intention steps according to predefined distribu-

tions;

3. to order the JOBMIX according to their intended priorities as defined by the intention

service policy function (section 5.3.2);

4. to administrate the learning of the user environment .

. The job scheduler can be viewed as an overall supervisor which assigns resources to jobs

according to the intention steps. Thus, it is entered when the user environment or machine

environment changes. The sequence of actions that cause such changes are as follows:

1. a job arrives (from the background user blackboard) at the system or new user at

tempts to log-in (within the foreground user blackboard),

CHAPTER 6. 150

2. a job leaves the system or a user logs-out,

3. the output spooler completes the printing of a background user job,

4. periodically at a fixed time interval (the time slice (see section 5.2.2)) to assess the

user learning trend (see section 7.2).

The algorithm defining the JOB-SCHEDULER tasks in our implementation is given

belows:

JOB-SCHEDULER 0
{
CHECK-POINT :

READ-USER-INTENTION-SEEDS
CREATE-FOREGROUHD-JOB-MIX
CREATE-BACKGROUHD-JOB-MIX
INITIALISE
CALL PRODUCE-STAT
FOR (EACH SEED) DO {

RADMSEED = POISSON (SEED)
GAUGE = RESPONSE-TIME + TURNAROUND-TIME
IF GAUGE <= THRESHOLD THEN {

FIXMINSEED = TRUE
FIXMAXSEED - FALSE
MIDMINMAXSEED = FALSE

/* FIX-MINSEED LEARNING */
TEMP = MINSEED
IF (TEMP < MAXSEED) THEN {

NORMSEED - NORMALIZE (RANDSEED) /* BETWEEN TEMP AND MAXSEED */
IF INITIAL THEN

JOB-DESCRIPTOR-SEED-FIELD = NORMSEED
IF NOT INITIAL THEN

IF GAUGE >- PREVGAUGE THEN/* NO IMPROVEMENT */
JOB-DESCRIPTOR-FIELD = PREVNORMSEED
ELsFj* IMPROVED PERFOR.MA}lCE */

JOB-DESCRIPTOR-FIELD = NORMSEED
INCREMENT (TEMP)
PREVNORMSEED - NORMSEED
PREVGAUGE

}

ELSE

- GAGE

STORE-BEST-SEED-FOR-BEST-GAUGE
FIXMINSEED - FALSE
FIXMAXSEED II: TRUE
PERFORM FIXMAXSEED LEARNING/* COMPARE TO BEST GAUGE */
BEST-GAUGE = NE\f-BEST-GAUGFj* IF ANY */
F IXMAXSErn • FALSE
MIDI{! lOCUSEED -= TRUE
PERFORM MIDl{!mtAXSEED LEARNING/* COMPARE TO BEST GAUGE */
READ-INTERACTIVE-JOBMIX;/* AS IF GENERATED FROM THE USER

liThe algoriUunI! in this thesh, are written is a pseudo-C language which was used originally by Professor
Stephen Ka.isler, the leading computer design consultant of George Washington University (Ka.isler 1983).

CHAPTER 6.

TERMINALS OR THE FOREGROUND BLACKBOARD */
READ-BATCH-JOBM:IX;/* FR(J,\ THE INPUT-SPOOLER OF THE USER

BACKGROUND BLACKBOARD */
IF NUMBER-OF-JOBS (= (NUMBER-OF-TERMINALS

OR INPUT-SPOOLER-CAPACITY) THEN
CALL SCHEDULING-POINT/*FOR ACCEPTING MORE INTERACTIVE JOBS*/

ELSE
CALL NEXT-BATCH-JOB/* TO INVOKE THE NEXT BATCH JOB */

SCHEDULING-POINT :

ISSUE-CALL-MESSAGE-TO-ALL-PRoCESSES (PoRTS);/*INCLUDING
UNDEFINED PORT FOR ANY USER PROCESS */

IF MESSAGE-IS-RECEIVED-FROM-TERNINAL-NANAGER THEN
CALL ENTER-INTERACTIVE-JOB

CALL CREATE-RoOT-PROCESS
CALL LO~RoOT-PROCESS
IF MESSAGE-IS-RECEIVED-FROM-A-USER-PRDCESS THEN

CALL DELETE-RoOT-PROCESS
IF MESSAGE-IS-RECEIVED-FROM-OUTPUT-SPOoLER THEN

CALL DELETE-JOB
IF KESSAGE-IS-RECEIVED-FROM-INPUT-SPOOLER THEN

CALL DELETE-NEXT-BATCH-JoB-FOR-ACTIVATIoN
CALL CREATE-ROoT-PROCESS
CALL LO~RoOT-PRoCESS
IF MESSAGE-IS-RECElVED-FRoM-THE-STATISTICS-MONITDR THEN

CALL CoMPARE-WITH-PREVIOUS-PERFORMANCE
IF THE COMPARISON IS NEGATIVE THEN

}

CALL ADJUST-SEED-NoRMALISATION-INTERVAL/* THIS IS
A PROCEDURE REPRESENTING THE USER LEARNING
CAPABILITIES WHICH EFFECT THE SPEED OF
ARRIVAL OF THE INTERACTIVE JOBS */

6.4.1.2 Generating the computer machine environment activities:

151

There are in our simulator three schedulers that generate the computer machine environ

ment activities. The schedulers describe the randomised machine activities and do not

address the machine learning activities. These are done in a different part of the machine

environment, the inferential structures. The three schedulers are described below:

6.4.1.3 DESCRIPTION OF THE PROCESSOR DEMAND SCHEDULER

This scheduler is the first part of the inner simulation responsible for generating the activities

of the machine environment. It performs the following functions:

1. Orders by learning (according to the priotrities supplied by the inferential structures)

the processes in the processor dispatching queue (Le. move to the front the less

CHAPTER 6. 152

restricted processes).

2. Calculates the resource allowance of the processes.

3. Reports to the job scheduler.

4. Processes the events collected by the resources demand scheduler.

The processor demand scheduler is entered whenever a scheduling activity occurrs. The

primary scheduling activities are:

1. creating or deleting a process.

2. reordering the dispatching queue at fixed intervals.

The creation and deletion of processes are requested by several parts of the possibilistic

generator (including calls from the job scheduler, calls from the communication structure,

etc.). Since the process creation and deletion contributes largely to the activities of the

machine environment, we briefly illustrate our implementation of the way the processes are

created or deleted within the possibilistic family.

The procedure responsible for creating and deleting processes 18 called PROCESS-

GENERATOR.

The PROCESS-GENERATOR assumes the tree structure for the processes organisation,

since it gives the most natural way of representation (Watson 1970). It is invoked whenever

a parent process in the tree structure decides to create or delete a son. When asked to

create a process, the PROCESS-GENERATOR has to read the process's program file from

backing store. The program file contains information about the modules which make up

the process such as memory descriptor length and locations, virtual devices numbers, etc.

In a batch system, information can be also extracted from the Job Control Cards. The

PROCESS-GENERATOR uses the jobs intention steps to set up the entries for the system
.

processes table. From this table the PROCESS-GENERATOR creates the sons for the

processes.

In a virtual memory system employing the working set concept to impose load control

(see section 6.5.4) the PROCESS-GENERATOR has the additional responsibility of esti-

mating the process's initial working set size, since an initial estimate of zero size can lead to

CHAPTER 6. 153

a very large eligible set and the memory system(manager) queue can overflow (thrashing).

The following algorithm defines the PROCESS-GENERATOR duties:

PROCESS-GENERATOR 0
{
ESTIMATE:

ESTIMATE-INITIAL-WORXlNG-SET-OF-THE-PROCESS/* USING A FRACTION
OF THE PROCESS SIZE AND A FRACTION OF MEMORY SIZE */

CALL GENERATE
GENERATE :

}

CALL CAll-MESSAGE-TO-Ali-PROCESSES (PORTS)/* INCLUDING
UNDIFINED PORT FOR ANY USER PROCESS */

SWITCH COMMAND-OF-THE-MESSAGE-RETl1PJlED OF {

}

1 CAll CREATE/* A PROCESS REQUIRE A SON TO BE CREATED */
2 CAll FAD./* UNSOCCESSFUL LOADING THEN R.ETUP.N TO KAIH-ENTRY*/
3 CAll DELETE/* A PROCESS REQUIRE A SON TO BE DELETED THEN

R.ETUPJi TO GENERATE * /

We now provide the abstract algorithm used for the implementation of our processor

demand scheduler:

PRDCESSOR-DEMAND-SCHEDULER 0
{

INITIAL-ENTRY { this entry set up severd iaporta.nt vuiables,
8uch as free list pOinter, processor
dispatcher list, etc. }

MAIN-ENTRY{ In this entry the following i8 performed:

(1) provide each new job with the importa.nt
processes port identifiers (e.g. job
scheduler, aemory manager) by issuing
RECEIVE-ACTIVITY primitive

(~) if ACTIVATION is received then
call PRDCESSES-SCHEDULING-MANAGER/* ORDER

THE DISPATCHING LIST */
else

switch message-comma.nd of
CREATE-PROCESS-DESCRIPTOR when new process

is created
LOAD-CREATED-PROCESS and if failed issue

LOAD-FAlLEJ primitive
REPORT-ON-PROCESS-QUEUE in order to admit new

processes
DELETE-PROCESS-DESCRIPTOR

CHAPTER 6. 154

6.4.1.4 The Description Of The Resources Demand Scheduler

This scheduler forms the second part of the inner simulation which contributes to the activ-

ities of the machine environment. Within our implementation this scheduler is considered

also as a part of the communication structures. The functions of this scheduler are:

1. to allocate resources to processes as soon as they become available. Scheduling deci-

sions taken at this scheduler determine the rate at which the system is able to respond

to real time activity.

2. to simulate a virtual machine for each process and implement a set of primitives

which enable concurrent processes to achieve mutual execution, synchronisation and

communication with one another.

Since this scheduler is invoked whenever an interrupt (internal or external) occuns,

it function should be confined to the examination/modification of the states of processes

and the collection of measurements by the processor demand scheduler as well as the job

scheduler.

6.4.1.5 The Description Of The Process Selection Scheduler

This scheduler forms the third part of the inner simulation and contributes to the activities

of the machine environment. This scheduler is also a part of the communication structures

of the generator. Within the area of operating systems this scheduler is called often the

dispatcher. It is- invoked after the handling of an interrupt has been completed, in order to

allocate the central processor various processes that demand it. Its function is limited to

choosing the next process to be executed from the processor queue (the queue of eligible

processes). In the following we present an abstract view of this scheduler:

•
PROCESS SELECTION SCHEOOLER 0
{

PROCESS = PROCESSOR-QUEUE-HEAD
IF PROCESS is not eapty THEN

{ /* here the processor is not idle */
IF PROCESS 18 not the current-procelS THEN

{ /* perl on context ni tch1ng */
RESTORE the context of the PROCESS
current-process - PROCESS

CHAPTER 6.

}

}

ENTER-AN OTHER-PROCESS
}

CALCULATES-THE-IDLE-TIME-OF-THE-PROCESSoR
IDLE-LOoP-WHICH-TERMINATE-BY-THE-ARRIVAL-OF-NEW-PROCESS

155

CHAPTER 6. 156

6.5 The Implementation Details of The Functional Struc

tures

In this section we are introducing the implementation details of the essential functional

structures, whereas in chapter 5 we introduced the abstract details of their functionalities

only.

6.5.1 The Implementation of Knowledge Representation Structures:

The implementation of these structures represents a programming segment of code (added

to the possibilistic family using #include macro), which includes the major information or

knowledge structures declarations along with their manipulation routines (primitive issuing

routines). The knowledge structures (INFORMATION-STRUCTURE) is a programming

segment that includes the following three parts:

1. INFORMATION-STR-GENERAL DECLARATION part,

2. INFORMATION-STR-PRIMJTIVE-ROUTINES part, and

3. INFORMATION-STR-SIMULATION-ROUTINES part.

In the first part, the essential data types are defined, such as queue-structure, message

structure, activity-list, interrupt-list, port-descriptor, job-descriptor ,job-descriptor

list, process-descriptor, process-descriptor-list, and segment-p ennission-descriptor.

Figure 6.3 illustrates the essential descriptors used in our implementation to construct

the possibilistic generator of computer systems.

These data structures generated by the data types are represented by certain linked lists

and records. We detail here the structure of two of the most essential records. Those which

c~pture the intentional notion of the user interaction environment via the job descriptor as

well as the permitted capabilities of the machine environment via the process descriptor.

THE JOB DESCRIPTOR This is a record consisting of the following fields:

1. job identifier: system generated, a random number of 32-bit fix point number,

2. think time, this is expressed in miliseconds and is only used for interactive users,

CHAPTER 6.

I

E~~ 'is' e"I')' .

[r;<"-:rh~' Ji'iJ r~'" "mil R- ,;C;'f'."" -; ;-";. -'''.;;; '-;;.? I - - -- - -- -- - - - ---=..-'!- - ~ -
1':f"IJP! lis! e-t.ry

[0~~~~p~y.:::i~fTI. R~;~r=-J -r;g :
....t ~
F'C':e-ss
I Ct~' ~ier

1 L
~~c' JS
.....
111:"t€ run .. ~ .- l •.. I-

~E':-.: ""r; .. r-~
~(~th'E' c..;:£.": 8 I c",er

r···-ot. I: Son
..:.fu~ ----r Se:.J.'~:I' level

J::-:tp
R - rnk . "

L-link
P:i-ni:ive R-link -------
qu~ue

f~2':s~:~~ .,
~c. ;.~.

· r -----
R- link J------~

~O·oct~ic:!...J
.i ~- -..J 'cc. rt:-R ..

· i.Fll.Cld..Q.'TI....l!.I!...rT~U

· "'ecnory
Ic~es Shodow process

R-link descriptor

Cor.!: -:. ru ct.. I F.rJ:.i5-E~Cn!

of \~. S!":!tea ~~=-=-= I
"nc .. ~.dv_,!..,.t -----

De.iCE df5c r iplor

i
I

..

J

!
I
I
I

I

I
I

Do!e c,~:·:· {:led

with e.ent

!

Jr::,~~:.~
Use'r,orne
("c.~!. ~r:~f:t:Ctl~ ...

B-r'lll
ifC rf-IJes!S

ISf=."i!~ le!1:i I
I '" ,
LBo:,jo~, noJ<T'W,

Job descriptor

i~~IT~~I~G2e] ~-I~Q

S~!tf'. If=-".l :
L·v5~o:""...c.rc\ :

tleer Freef S8 ••

f t..--:- ,
• =;; I' ...

Do 10[:'"j

05
wi

~xio'tc.:
th in~
ent ev

Figure 6.3: The essential descriptors of the possibilistic generator

3. forward job table pointer,

157

4. processor time, this represents the user estimated time of a batch (background)

job, or the maxImum allowed execution time for the interactive (foreground)

job,

5. arrival time, specifies the time the job had arrived,

6. Job intention priority, a fixed point num~r extracted from the intention service

function (mh, th,minf, tinf),

7. number of job tasks, it is assumed that one process will be created to carry out

each task,

8. job type, 1 is batch and 2 for interactive,

9. job productivity mean number, number of input records or the number of mul-

tiaccess interactions,

10. number of backing stores records required,

CHAPTER 6. 158

11. number of output records,

12. number of user specified disc files,

13. the maximum central memory space required by the job, this is a 32-bit fixed

number,

14. faulty access rate,

15. a boolean field determining whether the user allow to pass his access rights or

not,

16. a boolean field determining whether the user permits other users copy their access

rights,

17. pointer to job interpreter process,

18. accounting field, a Boating point variable,

19. job status, this field take the following values,

1 being read into input well for the background jobs,

2 newly arrived and waiting to be activated,

3 activated,

4 failing to be loaded in the system (no space only if other job(s) leaves the

system)

20. the mean satisfactory response of time, a number measured in microseconds (only

for interactive jobs), and

21. the mean satisfactory turnaround time, a number measured in microseconds.

THE PROCESS DESCRIPTOR This is a records consisting of the following fields:

1. A process identifier,

2. The segment/page descriptor table entry number for the process's segment/page

zero,

3. A pointer to the corresponding entry of the shadow process table which contains

the characteristic of the process,

CHAPTER 6. 159

4. A save area which holds the current values of registers when the process is inter

rupted during its execution. In our implementation this consists of the process'

entry point,

5. A one bit marker specifying whether the process has been interrupted at least

once during execution or not

6. The entry of the segment/page the process is accessing

7. The set of the process's port descriptors

8. A message awaiting mask which indicates the ports through which messages will

be accepted

9. Message queue head buffer pointer i.e. a pointer to the first message waiting to

be received by this process. IT there are no messages readable by this process,

the value of the pointer is NULL.

10. Message queue tail pointer similar to the above

11. A state variable which specifies whether the process is ready to run or the reason

for which it is blocked as follows:

o ready to run

1 blocked for control access violation

2 waiting to be killed (removed)

3 waiting for message

4 waiting for activity

5 waiting for creation

6 waiting for terminal interaction

7 waiting for son to die

A blocked (dead) process is not considered runnable by the dispatcher,

12. A state variable specifying whether the process can be started or the reason for

which it is stopped as follows:

o not aborted (can be started)

CHAPTER 6.

1 aborted because its working set does not fit in the store provided

2 aborted while one of its segments/pages is removed from the store

160

A process is not considered runnable (executing) by the dispatcher if it is aborted.

13. Accumulated run (execution) time

14. Accumulated ready time

15. Accumulated blocked (dead) time

16. Accumulated unblocked (undead) time

17. CPU time used by the process until the start of its most recent interaction

18. A bit indicating whether any of the process's segments/pages are in store or not

19. A bit specifying whether the process has been activated or not

20. Process's working set size i.e. the number of bytes that its working set occupies

21. Process's critical time

22. Time the process has changed state

23. The eldest (alive) son identifier

24. The process's elder (alive) brother identifier

25. Backward pointer to the previous (in priority) process lD the dispatcher list

(processor queue)

26. Forward pointer to the next process descriptor in priority order, i.e. the forward

dispatcher link

27. Identifier of the parent process

28. Accumulated resources used by the process

29. The start time of the "last" (most recent) interaction

30. Time the process had run until the previous processor demand scheduling time

31. Process's type

32. The accumulated number of messages received from each system process

CHAPTER 6. 161

In the second part of the INFORMATION-STRUCTURE, we define the following prim

itive issuing routines that operate upon the data structures defined earlier at the beginning

of section 6.5.1. Among those routines, are the following:

• PASS-MSGO,

• CALL-MSGO,

• PORT-CREATEO,

• FIND-INTENDED-E-PROCESSESO,

• CALL-ACTIVITYO,

• PORT-DELETEO,

• PROCESS-STARTING 0,

• PROCESS-STOPPINGO, and

• SET-CHANNELO·

In the third part of the INFORMATION-STRUCTURE, we defined those routines that

perform the primitive operations upon the data structures that belong specifically to the

simulation. Among these routines are the following:

• INFORM-ERRORO which reports any error signal in the simulation process,

• PRINT-STATISTICSO,

• ADD-ACTIVITY-IN-LIST 0,

• STORE-STATISTICSO,

• ADD-IN-LISTO,

• PRODUCE-STATISTICSO which possess the following routines

- GENERATE-TIMEO,

- GENERATE-RANDOM-NUMBERO, and

- GENERATE-DISTRIBUTIONO·

CHAPTER 6. 162

6.5.2 The Interpretive Structures: An Implementation Outline

This section is concerned with the effective representation of the following structures:

1. algorithms produced by the functional structures and

2. descriptors which record the design information requested by

the designer as well as any changes occurrring within the machine environment. The issue

of structure representation is splited into static and dynamic representation. In section 5.4

we described some standard metrics by which we

measure the effectivity of the overall design. With the the use of interpretive structures,

we are concerend with some additional measures that provide the design with flexibility,

efficiency, and transparency. For this purpose we implemented the following facilities:

1. THE STRUCTURES FLEXIBILITY FACILITY: Using our highly parametrised pes-

sibilistic generator, we can change (using parameters) some characteristics of any

descriptor declared within the INFORMATION-STRUCTURE or used for the sim-

ulator tables. This can be changed by using the required parameters within the

POSSIBLISTIC-STh.fULATOR-LOADING routine. By changing the descriptor size,

for example, we can achieve the minimisation of the semantic gap between the gen

erator and the host computer and optimise the best average segment descriptor size

that can be used for our generator memory system.

2. EASE OF CHANGING THE SOFTWARE AND HARDWARE CAPABILITIES: Us-

ing our highly parameterised generator, we are able to change (using parameters) the

software and hardware capabilities. The software structures in our tool represent the

generator functional structures 4. The parameters, specially the hardware para.mert

ers, were extracted from the common characteristics used by the class of highly con-

strained systems (see section 7.5). However, in order to change these parameters, the

'software changes include interrupt timings of some functional structures (e.g. the commun.lcation struc
ture), whereas the hardware structures are simulated by replicating their interrupt style and timing as weD
at! their characteristics (e.g. device characteristics are stored in device descriptol'8)

CHAPTER 6. 163

designer needs only to execute the PREPROCESSOR program and to answer the rele

vant questionnaires. The required changes are then collected from the PREPROCES

SOR pool of data by a special routine called POSSIBLISTIC-SIMULATOR-SWHW

SETTING. This routine assigns the questionnaire replies into a HW /SW setting file

for defining the type and the characteristics of the software and hardware required.

Afterwards, the support tool can be executed, in which this HW /SW setting file is

used to initiate its required computer system model. Using this type of change, we can

study the effects of different hardware and software settings as well as to find which

of these settings are able to enforce the self-regulation criterion (see section 7.2).

3. SELECTING EFFECTIVE MECHANISMS FOR THE GENERATOR DYNAMICS:

In our implementation, we achieved an effective representation of the generator dy

namics by using two mechanisms. The first manages concurrency and synchronisation

via using the notion of coroutines (see section 5.3.5). The second mechanism uses effec

tive descriptors addressing. Here we would like to illustrate the function of the second

mechanism, since it has been mentioned for the first time in this chapter. First of all

let us list some traditional addressing policies ways and outline their implementation

problems (see Table 6.2):

Observing the problems associated with mapping tables should lead us to inquire

whether it might be possible to avoid the need for a mapping table altogether. Our

answer is that it can be done. In fact, the function of a mapping table is to establish

a correspondence between the descriptors identifiers with locations. It can be avoided

if the location of a descriptor is in fact its unique identifier. This suggests that there

are at least two ways in which an identifier can be unique:

(a) in time: as when the identifier is assigned from the current value of a clock or a

coun ter, and

(b) in space: as when the identifier refers to the current location of an object in a

virtual memory with a linear address space.

CHAPTER 6. 164

1.

2.

Maping Strategy

add Base/limit field
to the descriptor
(e.g. Chicago MNC)
add descriptor mapping
table- to overcome overhead
a. hashed mapping table
(e.g HYDRA,System 250)

b. hierarchical mapping
tables (e.g. CAP)

Practical Problems Associated

large overhead in updating
descriptors (Fabry 1974)

this sort of tables is feasible
where the size of descriptors =
memory segment size (ENGLAND 1974)
and not for smaller or
larger as in our case
unsatisfactory for sharing
descriptors; when a descriptor
belongs to a process in a
subtree it cannot be shared
with a process in another
subtree (Herbert 1978)

Table 6.2: Conventional Descriptor Mapping Techniques.

The second strategy has been used, because as the processes exhibit locality of refer

ence, most descriptors should be located close to the objects they reference. We believe

that this mapping strategy enhances the performance of the produced computer sys-

tern design (Mohamad and Cavouras 1984). This strategy will be administered by the

INFERENCE-STRUCTURE of our possibilistic family.

4. FLEXIBLE PROCESSES CONNECTIVITY: By this we mean that the allowable co-

operation paths between processes during the execution of the poosibilistic generator

can be initiated or changed by using the port map. The port map can be changed by al

tering the parameters within the POSSIBILISTIC-SIMULATOR-LOADING routine.

Table 6.4 illustrates the port map adopted for our implementation for the notable

processes that are generated by our possibilistic generator.

CHAPTER 6. 165

Process Name ID Port Connections
Any other process -1
IS-Memory(Main Core) 0 12 8 4 1 5 -1 -1 -1
IS-Processor Process 1 12 0 8 -1 -1 -1 -1 -1
CS-Operator Console 2 12 2 -1 -1 -1 -1 -1 -1
CS-Terminal manager 3 12 3 -1 -1 -1 -1 -1 -1
IS-Memory (Drum) 4 12 4 -1 -1 -1 -1 -1 -1
IS-Memory (Disc) 5 12 5 -1 -1 -1 -1 -1 -1
CS-Line printer 6 12 6 -1 -1 -1 -1 -1 -1
CS-card reader 7 12 7 -1 -1 -1 -1 -1 -1
Process generator 8 12 1 0 5 -1 -1 -1 -1
(Machine activities)
CS-File system 9 12 5 -1 -1 -1 -1 -1 -1
CS-Output Background
Blackboard 10 12 9 6 -1 -1 -1 -1 -1
CS-Input Background
Blackboard 11 12 9 -1 -1 -1 -1 -1 -1
Job scheduler
(user activities) 12 12 8 1 3 10 11 -1 -1

Table 6.3: The Port Map, Where IS : Inferential Structure CS : Control Structures

6.5.3 The Communication Structures: The possibilistic generator ker

nel

The kernel of the possibilistic generator consists of communication structures together with

scheduling mechanisms for generating the activities of the machine environment. The pur-

pose of the kernel is to provide an environment in which the processes can exist; this implies

handling interrupts, switching processor(s) between processes and implementing mecha-

nisms for interprocess communication and synchronisation. The kernel is automatically

entered in any of the following circumstances:

- an interrupt occurrs,

.- a process issues a primitive to execute some function or requesting a kernel instruction

(i.e. privileged for protection purposes).

Hence, the kernel consists of the three parts:

1. the intialisation process,

CHAPTER 6. 166

2. the interrupt handler (initial handling of all interrupt),

3. routines which implement the inter-process communication and other primitives (these

routines are invoked via primitive calls in the process concerned), and

4. a scheduler which switches proces8or(s) between processes (some times it IS called

selecting process scheduler or the dispatcher).

The initialisation process performs the following tasks:

PICK AN ACTIVITY FROM THE ACTIVITY LIST
IF ACTIVITY-TIME >= OBSERVATION PERIOD THEN

CALL PRINT-STATISTICS
IF ACTIVITY-TIME >= SIMULATION-TIME THEN

TERMINATE SIMULATION
ELSE

ASSIGN THE ACTIVITY CHARACTERISTICS TO GLOBAL VARIABLES
ADVANCE THE SIMULATION TIME TO THE SPECIFIED ACTIVITY TIME
DELETE THE ACTIVITY THAT IS READ FROM THE ACTIVITY LIST
IF CENTRAL PROCESSOR IS NOT BUSY THEN

UPDATE THE CENTRAL PROCESSOR IDEAL TIME
IF THE CENTRAL PROCESSOR IS BUSY

AND THE ACTIVITY TYPE IS AN EXTERNAL INTERRUPT THEN
SUSPEND THE EXECUTING PROCESS
IF THE SUSPENDED PROCESS IS A SYSTEM PROCESS THEN

INSERT THE ACTIVITY IN THE INTERRUPT LIST
ELSE

INSERT THE PROCESS IN THE (USER) ACTIVITY LIST
CALL U-EXECUTE-T
TRANSFER CONTROL TO THE REQUIRED KERNAL ROUTINE

SPECIFIED BY THE PICKED ACTIVITY

The interrupt handler consists of interrupt service routines which are responsible for

responding to signals both from the outside world (external interrupts) and the unusual

conditions from the processes in the system itself. The functions of these routines are

to determine the sources of the interrupt, save the required information, and service the

interrupt. These functions are clearly dependent on the hardware structures and the type

~f interrupt involved.

The occurrence of an interrupt (external or internal) will often alter the status of some

process (e.g. from dead to ready). One of the consequences of the status change is that

the process executing before the interrupt has occurrred, may not be the most suitable to

run afterwards. The question of, when to switch the processor between the processes, and

CHAPTER 6. 167

which process to pick up, is the task of the dispatcher. Hence, the control flow is always

transferred after serving any interrupt routine to the dispatcher.

However, the interrupt routines are the primitive routines designed to respond to the

external and internal interrupts. The external interrupts routines include:

1. INTERRUPT-TIM:MER(it schedules the next timer activity and invokes the PROCESSOR

SYSTEM),

2. JOB-ARRIVING-INTERRUPT (this is invoked by the TERMINAL-ROUTINE when

new user had loged in or by the JOB-SCHEDULER when a batch job is activated),

and

3. RETURN-FROM-INTERRUPT (to report completing the interrupt (0 for successful,

1 for unsuccessful completion).

The task of the internal interrupt routines is to service the traps. When a process at any

time during its execution causes fault, aborts (because of protection rules violation, overflow,

etc.) or if causes issuing a privilege instruction such as PROTECTION-VIOLATION

RULE it calls the interrupt routine. All internal interrupt routines involve blocking of

the process that caused the interrupt. Thus all the internal routines return control to the

dispatcher except MISSING-MEMORY-SEGMENT (see below). The internal interrupt

rou tines consist of:

1. CHECK-SEGMENT (to check any segment/page existence in the main memory if it

is control is transferred to the calling process, otherwise to call MISSING-MEMORY

SEGMENT),

2. MISSING-MEMORY-SEGMENT (is invoked when a missing segment has occurred,

to send a message to the :MEMORY-SYSTE~1 and to block the calling process),

. 3. PROTECTION-VIOLATION-RULE (it is invoked by the

PROTECTION-SYSTEM to terminate a process, hence issuing DEATH-SENTENCE

to that process and to all the processes that are the process' descendants),

4. UPDATE-DEAD-TIM:E (updates the accumulated time the process

spends in the dead state),

CHAPTER 6. 168

5. U-EXECUTE-T and U-READY-T (updates the times the process in the executing

and the ready states), and

6. U-RESUME-T (updates the times the process spent in ready state).

In the second part of the kernel are the communication routines. These include the

following routines:

PASS-MSG This communication routine is invoked by any process to send a message to

any other process. This routine performs the following operations:

PICK THE MESSAGE THAT IS REQUIRED TO BE SENT
USE THE INVOKING PROCESS ID IN THE MSG
CHECK IF THE INVOKING PROCESS STILL EXIST
IF IT DOES NOT EXIST THEN

A REENTRY IS MADE TO THE INVOKING PROCESS
ADVANCE SIMULATION TIME BY THE REENTRY TIME

IF IT EXIST THEN
CALL U-EXECUTE-T /* UPDATE EXECUTION TIME OF THE INVOKING PROCESS */
ADVANCE SIMULATION TIME BY THE SEND TIME
CALL MOVE-MESSAGE /* TO SEND THE MESSAGE */

MOVE-MESSAGE This procedure is used to carry a message to the sender. It has one

parameter, the receiver port number. It performs the following operations:

A MESSAGE DESCRIPTOR IS ALLOCATED
ASSIGN WITH THE SENDER'S IDENTITY + MESSAGE CONT~TS
UPDATE THE CURRENT AND MAXIMUM MESSAGE BUFFERS
IF RECEIVER IS NOT A USER PROCESS THEN

CALL UPDATE-STATISTICS/* UPDATE THE RECEIVER PROCESS
MESSAGE Q~~ STATISTICS */

ELSE/* THE RECEIVER IS THE TERMINAL MANAGER PROCESS ~/

IF THE SENDER IS NOT THE K~ijEL PROCESS THEN
END OF INTERACTION
CALL UPDATE-STATISTICS

IF THE SENDER IS THE TERMINAL MANAGER THEN
A NEW TRANSACTION TAKES PLACE
ASSIGN THE CURRENT SIMULATION TIME TO THE PROCESS

START INTERACTION TIME
ASSIGN THE PROCESS STATUS TO READY

RETURN FR~ MCVE-MESSAGE

CALL-ACTIVITY This routine is used to call an activity. The calling process issues

a message (the message postmark is changed to activation) by calling CALL-MSG

routine. If it receives the reply back, the activation postmark is cleared and the

simulation time is advanced by the t"ime difference defined as the time needed to

CHAPTER 6. 169

receIve an activity minus the time needed to receive a message. This difference is

called activation time).

CALL-MS G This procedure is issued by the processes requiring a reply from other pro-

cesses. It can, however, accept or reject any of these messages. The routine performs

the following:

PICK A MESSAGE FROM THE PROCESS MESSAGES QUEUE
EXAMINE THE MESSAGE BUFFER
IF MESSAGE IS ACCEPTED THEN

DECREASE THE MESSAGE QUEUE ENTRIES IS DECREASED BY ONE
IF THE CALLING PROCESS IS A NON USER ONE THEN

CALL PRODUCE-STATISTICS
IF A MESSAGE IS NOT ACCEPTED THEN

CALL U-REAOY-T
ASSIGN TO MESSAGE POSTMARK THE WAITING STATE

PROCESS-STARTING This routine clears the aborted state of the process in the spec-

ified port. The U-EXECUTE-T routine is to update the executing process' executing

and ready times. Then the control flow is transferred to the dispatcher.

PROCESS-STOPPING This routine sets the status of the executing process to the

ABORT state. The caller process is reentered.

PORT-DELETE The specified port receives the status "undefined" (-1) and the caller

process is reentered.

PORT-CREATE specified port is assigned the process identifier contained in the message

and the caller is reentered.

FIND-INTENDED-E-PROCESSES Assigns the intended number of processes that

execute at the same time, and then reentered the caller process.

SPLY-TTh1E This retunes the system (simulation) time.

SET-CHANNEL This routine initiates a given channel program. It is invoked by the

CONTROL-STRUCTURE to start input or output operations. The messages used

to set the channel include the device number, the data block contents, and size in

bytes. Then the current simulation time is advanced by the time required to execute

the SET-CHANNEL routine. If the channel is set to a device that is not a terminal

device, then:

CHAPTER 6.

THE DEVICE STATIJS IS CHANGED TO BUSY
UPDATE THE DEVICE IDF.AL TIME
SCHEDULE WHEN THE USE OF DEVICE WIll BE FINISHED/* IT IS

SIMPLY = CURRENT SIMULATION TIME + DEVICE OPERATION
TIME (DEVICE POSITIONING TIME+ LATANCY TIME +
TRANSFER TIME * /

170

If the device is a terminal, an exponential sample is derived from the user think time

and it is added to the current simulation time to schedule the next terminal interrupt.

At the end, the CONTROL-STRUCTURE (or the DEVICE-SYSTEM) is reinvoked.

WAKE-PROCESS This routine receives the port number of the process that is needed

to be activated. A message with an activation marker is sent to the process needed

to be a wakened. If that process is not activated, its status is changed to ready state.

If it was activated before, a message informing that it has already been activated is

returned.

The fourth part of the COMMUNICATION-STRUCTURE is the dispatcher. It is con-

cerned with picking up the ready and aborted processes for execution. The operations

performed by this part are described in the following:

THE DISPATCHER() {
PICK THE FIRST PROCESS AT THE DISPATCHER QUEUE /* 1.8. HEAD-PROC */
INITIALISE PROCESS-COUNTER (PROC-COUNT) TO ZERO
WHILE HEAD-PROC IS NOT EMPTY

AND PROC-COUNT <= MAXIMUM PROCESSES ALLOWED FOR PARAllEL
EXECUTION DO

IF THE PICKED PROCESS IS READY THEN {
IF THE HEAD-PROC <> THE JUST EXECUTING PROCESS THEN {

ADVANCE SIMULATION TIME BY CONTEXT SWITCHING TIME
ADVANCE KERNEL OVERHEAD TIME BY CONTEXT SWITCHING TIME
JUST EXECUTING PROCESS := HEAD-PROC

}

CALL U-RESUME-T
ADVANCE SIMULATION TIME BY THE INVOKING PROCESS TIME
IF HEAD-PROC IS A USER PROCESS AND ALREADY BEEN INVOKED THEN {

MARK IT ACCESSING SEGMENT

}

INCLUDE THIS SECTION IN THE WORKING SET
IF THIS SEGMENT IS NOT IN MAIN MEMORY THEN

CALL MISSING-MEMORY-SEGMENT

/* THE SEGMENT IN MAIN MEMORY OR IS UNDEFINED */
IF THE PROCESS HAS NOT BEEN ABORTED THEN

INVOKE ITS COROUTINE
ELSE

RESTORE IT

CHAPTER 6.

}

}

}

IF THE HEAD-PROC IS NOT A USER PROCESS THEN {
PUT HEAD-PROC STATUS TO READY

}

SAVE DESCRIPTOR OF HEAD-PROC FROM THE INTERRUPT LIST
UPDATE THE INTERRUPT LIST STATISTICS
DELETE THE ENTRY (DESCRIPTOR) FROM INTERRUPT LIST

ELSE IF IT IS A USER PROCESS {

}

SAVE THE DESCRIPTOR OF THE USER ACTIVITY LIST
IF THE DESCRIPTOR REFER TO SEGMENT FAULT THEN

ASSIGN THE ACTIVITY DESCRIPTOR TO THE INTERRUPT LIST
IF THE PROCESS IS ABORTED THEN

CHANGE ITS STATUS TO READY
UPDATE THE USER ACTIVITY LIST
DELETE THE ACTIVITY DESCRIPTOR FROM THE ACTIVITY LIST

INSERT A NEW ACTIVITY DESCRIPTOR PROCESS

PROC-COUNT := PROC-COUNT + 1
HEAD-PROC := THE NEW PROCESS IN THE DISPATCHER LIST

ASSIGN THE PROCESSOR STATUS TO NOT BUSY
RETURN TO THE KERNEL INITIALISATION PROCESS

6.5.4 The Inferential Structures:

171

This section is concerned with the automatic adjustment of the number of eligible processes

allowed to execute at the same time and with the maximisation of the total amount of users

productivity (or total load). The inferential structures are responsible for preparing the

eligible set which consists of the processes residing in the main memory. The inferential

structures select processes from the inactive set in the activity list with the ready status,

(i.e. from the set of jobs residing in the system queues or possibly in the secondary storage,

ready to be executed (see Figure 6.4).

The contents of the eligible set influences the performance of the computer system.

Both user-oriented and system-oriented performance measures are affected by the inferential

structures. Indeed, user-oriented and system-oriented objectives may be in conflict. A major .
problem in the design of the inferential structures is the resolution of this conflict to force

the system to survive.

Associated with each user job is an intention policy service function (i.e. a user-oriented

measure) which is a function of the total system time (s~e Figure 5.9 of section 5.3.2).

CHAPTER 6.

generated
pro sses

172

\ -- - - - - - - - - -- - - -- - - - - - --j

I I
eligible : executing segments/ I
pro c e s s;..-e~s ______ ~1 ...J::..:r::....o~c"e sse s pa 9 e s

I

I/,,,,

processor ~ __
~~ "'

I

I " 1'4I!IE!iiiiiI!;l

completed/preempted
processes

---C: I r I r.'....,:---
- - - [! I I ~~-_.&..---..

- -I (1 +(---+-

- -o::::J

I

I
j

- ,;:.:..::..:=--=---=--:==~ _ -J

back ing l' ~~--'
s tor e ,..~<-' __ ~

D
'--------"

Figure 6.4: Processes Flow in the Two Inferential Components.

The intention policy function represents the user losses for having to wait for the systems

response. This user loss function varies with the system time and according to certain

specified deadlines.

On the other hand, the system losses, like the user serVIce policy function, can be

expressed by adifferent function that consists of two parts. The first part, as shown in

Figure 6.5, is a rather sharp loss function, whereas the second reflects a somewhat smaller

loss rate. This system loss function represents a measure of the generator's processor

utilisation. A system loss function that assesses the processor utilisation loss only is chosen

because the processor system represents one of the significant devices the management

of which is largely affects the overall system performance5 . The reason for the choice of

the function of such a shap is that when the processor is partially allocated to the system

competing processes, deadlocks conditions may develop (cf. Coffman et al1971) or processor

5The processor device refers to the virtual CPU of mutliprocessing computer system consisting of a
uni-processor device.

CHAPTER 6. 173

overhead time may rise sharply. The latter occurs when the adrnitance of the competing

processes aquiring the processor is not under control causing the thrashing condition to be

reached (c.f. Peterson and Silberschatz 1983).

system
Loss
Function
(Processor
utilisation)

%

100
Thrashing

maximum allowed processes In main memory)

Figure 6.5: The System Loss Function.

The inferential structures, in our implementation represent a group of algorithms that

balance the user loss (or user demand as in section 7.6) with the system loss (or machine

environment effectiveness as in section 7.6). The inferential structures comprise two algo-

rithms: a memory system and a processor system algorithms.

The first algorithm (i.e. the one concerning the memory system) makes a periodic as

sessment about the number of segments/pages to be held in the main memory before it is

requested by the processes utilising the central processor. If this algorithm is not present,

the executing processes will be continually interrupted by the segment/page faults which

contribute towards thrashing. Keeping the number of the segments/pages to the necessary

rriinimum is kno'WIl to us as theworking set (Note that is slightly different from the orig

inal definition of Denning 1968). In order to avoid thrashing, the pages/segments number

demanded by the eligible processes that are striving to be in the main memory must be

no greater than the maximum number of working set size that can be held in the main

CHAPTER 6. 174

memory. Adjusting the demand according to the memory size available, requires the ad

justment/ordering of eligible processes, which is the responsibility of the second algorithm.

The second algorithm (i.e. the one concerning the processor system) adjusts periodically

the number of eligible processes so that the number of the processes actually entering the

main memory is, on average, equal to the target number calculated in advance (i.e. to

match the processes demand of pages/segments according to the availability of memory

size). The design of these two algorithms is discussed in the following two sections.

6.5.4.1 The First Inferential Structure: The Memory System

In order to construct realistic simulation of a computer system memory management, we

implement the following basic functions6 :

1. Recording function

2. Fetch function

3. Placement function, and

4. Replacement function.

We describe these functions in the sequel.

Recording Function keeps track of the location of the pages, of each process in the memory

system. Note that the way we record this information is quite important from the

performance point of view, as indicated by the INTERPRETIVE STRUCTURES

(section 6.5.2).

In our simulation, we record location information in two structures:

1. the page location stack which stores the main protection descriptors (sometime

called capabilities (c.f. Wilkes and Needham 1979)) and

2. the main memory tables (free and occuppied) for storing the actual page contains.

6Segmentation is used when the dynamic protection is incorporated within the memory system; otherwise
paging is used.

CHAPTER 6. 175

Page Location Stack (PLS) is the central recording medium that indicates the

actual location of pages and stores the information on them. We choose a stack

structure for the following reasons:

1. Since each process exhibits locality of reference then the stack structure

provides the right structure for keeping close to the top of the stack, the

pages that are referd to by the requesting process;

2. Since each entry of the stack has a unique location, hence this location can

be used as the unique identifier of the address of the page thus minimising

the page size (it is known that minimising page size is an important factor

affecting performance (Lindsay 1973)) (see Figure 6.6).

F
(LEVEL 3)

~ I
I'

E
(LEVEL 2)

3 2 .. !~ "7'" I

D
(LEVEL 1)

1 ~ I ~
p i

PROCESSOR
{ Executing Pro~esses set D, E, and F)

Figure 6.6: Our PLS stack structure

Each entry to the PLS contains information about the pages contents and the

requirement of its protection. This information is represented by the following

fields:

CHAPTER 6. 176

• the page length;

• the identifier of the process to which the page belongs to;

• a bit specifying whether the page is a member of working set, or not;

• a bit specifying whether the page is present in the main memory or not;

• a bit specifying whether the page is on drum or disc (these are the backing

store types considered in our simulation),

• the page (permission) access rights. This is a twcrbit field (00 for execute,

01 for write, 10 for read, and 11 read and write),

• a bit specifying whether the page has been referenced or not,

• static link of the next page in the stack, and

• dynamic link to the next process's page (-1 if undefined) .

. Main Memory Tables Used for keeping the actual contents of the pages. In our simu

lation, we used two tables: one for the allocated areas for pages (occupied table) and

the other for the unallocated (free table). Each of these tables is variable in length.

The entries of these tables contain the following fields:

Free Table area address, area size, and forward pointer.

Occupied Table location of the corresponding PLS entry, the owning process iden

tifier or (-1) if it is shared, and forward pointer.

Fetch Function determining when and what kind of information is to be moved from the

backing store into the main memory. There are in principle two policies for fetching

nonresident pages to be moved into the main memory (c.f. Lister 1975): the antici

patory policy and thedemand policy. The first policy relies on the predictions of

the future behaviour trajectory of the process. The second policy generates a fetch

request when a page fault has occurred. In our simulation, we implemented a hybrid

policy which combine together the anticipatory and demand policies. \Vhen the first

page fault occurrs, a fetch request is issued (accord~ng to the demand policy) not only

CHAPTER 6. 177

to that particular page but also to all the relevant pages that were previously accessed

by the same process (in this case according to the anticipatory policy).

Placement Policy determining the specific locations into which the information is to be

placed in the main memory, and updating the allocation information. The placement

policy tries to find an area in the main memory big enough to accommodate the

incoming page. There are numerous placement policies. Among these policies are

the best fit, worst fit, first fit, cyclic first fit, and buddy .placement (Lister 1915,

Madnick and Donovan 1974, Peterson and Silberschatz 1983). In our simulation, we

have implemented a cyclic first fit. The reason behind selecting this policy is that

the demand for pages from the executing processes was calculated in advance by the

processor system to fit the available memory size at the time when these processes

had been eligible for execution. The free table is implemented as a circular list with

a start pointer. Each search begins with a designated hole and advances the, pointer

cyclically by one element until the placement has succeeded Thus this approach tends

to reduce the overhead, since it deposits the fragments over the entire table. Only

when the free table becomes too fragmented, the placement policy calls a shuffling

routine which compacts all the small holes into a one big free hole.

Replacement Function determining which information is to be removed from the main

memory to the backing store, in order to make the room for the information being

moved in. Information can also be replaced when its utilising process is deleted. The

allocation information must also be updated. There is a vast number of replacement

policies cited in the current literature, such as the least recently used, oldest resi

dent, the least frequently used, the reference bit policy, and the second chance policy

(Kaisler 1983, Watson 1970, Lorin and Detail 1981, Joseph et al 1984). All of these

policies have certain justification their use in the case when only a memory system

is concerned. However, in our simulation the memory system replacement policy is

linked with the inferential strategies of the processor system, and for this reason the

above named policies can not be used. In our case, the replacement of a page from

CHAPTER 6. 178

the occupied table, takes place according to a list of rules. These rules are as follows:

1. select either pages that belong to an inactive process (e.g. waiting to be killed),

or

2. pages that belong to a process which is aborted waiting for terminal, or

3. pages that belong to a process with lower priority than the one which faulted, or

4. a page that does not belong to the faulting process's most recent working set.

CHAPTER 6. 179

To conclude, we describe the essentials of the memory system discussed in the present

section.

MEMORY-SYSTEM WITH-STATIC-PROTECTION() {
INITIALISE:

INITIALISE THE FREE TABLE
INITIALISE THE OCCUPIED TABLE

PERFORM-MEMORY-FUNCTIONS:
CALL CALL-MSG
IF MESSAGE IS RECEIVED THEN

SAVE THE REQUESTING PROCESS IDENTIFIER
CHECK THE MESSAGE COMMAND

SWITCH MESSAGE COMMAND OF
ALLOCATE-PAGES:

CREATE NEW PAGE /* REQUEST BY THE PROCESS-GENERATOR */
IF NO SPACE IN PLS THEN

CALL PASS-MSG /* OF FAILURE TO THE PROCESS-GENERATOR */
ELSE

THE NEW PAGE ADDRESS := EMPTY STACK POSITION
THE NEW PAGE LENGTH := EMPTY STACK HOLE LENGTH
ASSIGN THE OWNER PROCESS IDENTIFIER TO THE NEW PAGE
UPDATE FORWARD TABLE
UPDATE FREE TABLE
~ALL PASS~MSG/* OF SUCCESS TO THE PROCESS-GENERATOR */

DELETE-PAGE:
DELETE A PROCESS'S PAGES/* REQUEST FROM PROCESSOR-SYSTEM */
LOOP
CHECK THE PLS TABLE/* FROM THE PROCESS ID WE FIND

PAGES IDENTIFIER */
IF THE PAGE IS FOUND IN PLS THEN

CALL DROP-PAGE
ASSIGN THIS PAGE STATUS TO EMPTY IN PLS

END-LOOP
,CALL PASS-MSG/* TO THE PROCESSOR-SYSTEM */

BRING-PAGE:
/* WHEN A PROCESS PERFORMS A PAGE FAULT */
LOOP (ON-OFF)

IF PAGE LENGTH (= AVAILABLE MEMORY THEN
{

CALL PLACE-PAGE '
IF PLACEMENT IS SUCCESSFUL THEN
{

}

PAGE ADDRESS:= STACK POSITION
IF SELECTED FREE AREA LENGTH = PAGE LENGTH THEN

SEG/PAG ADDRESS+ STACK POSITION + PAGE LENGTH
UPDATE FREE TABLE

APPEND NEW ENTRY TO OCCUPIED TABLE
CALL PASS-MSG TO BACKING STORES TO BRING THIS PAGE
MEMORY:= AVAILABLE MEMORY - PAGE LENGTH
PRESENT-IN-MEMORY-SWITCH := TRUE
MAKE THE STATUS OF ABORTED PROCESS:= READY
ADD TO THE MISSING COUNT OF PAGE OWNED BY THAT PROCESS
GOTO PERFORM-MEMORY-FVNCTIONS

CHAPTER 6.

}

}

}

ELSE
{

CALL REPLACE-SEGMENT/PAGE
IF NO PAGE CAN BE REPLACED THEN

CHANGE THE OWING PROCESS STATUS TO ABORTED
UPDATE THE OWING PROCESS EXECUTION TIMING
GoTO PERFORM-MEMoRY-FUNCTIoNS

IF THE PROCESS IS NOT WAITING TO BE KILLED THEN
IF THE PAGE IS NOT THE DRUM THEN

CHANGE THE STATUS OF THE PROCESS TO BE ABORTED
CALL PASS-MSG TO DRUM-MANAGER
WAIT FOR REPLY FROM THE DRUM-MANAGER
UPDATE TABLES
GOTo PERFoRM-MEMDRY-FUNCTIoNS

STATIC-PROTECTION:
IF PAGE-PERMISSIoN-RIGHTS MATCHES THE-INTENTIONS-OF

-THE-ACCESS lNG-PROCESS THEN
CALL PRoTECTION-VIoLATION-RULE

GoTo PERFORM-MEMORY-FUNCTIONS

6.5.4.2 The Second Inferential Structure: The processor system:

180

In the previous section we described the first inferential structure, the memory system. The

present section deals with the second inferential structure - the processor system. It is not

a conventional processor system, because it is not only concerned with a straightforward

allocation ofprocessor(s) among the set of ready (eligible) processes but performs also other

functions.

Our processor system extends the traditional functions as:

• to ensure an acceptable level of resources utilisation,

• to provide fast response time to multiaccess jobs,

• to provide high throughput for batch processing jobs,

• to in cure low overheads, and

• to reorganise any priority setting which may be passed by the job scheduler.

• to cooperate with the memory system in matching the processes demand to the avail-

able resources.

CHAPTER 6. 181

Our processor system tries to compromise between the above mentioned objectives, by

ensuring an acceptable degree of multiprocessing. The main tasks of our processor system

are:

1. the creation and deletion of processes,

2. the preparation of the dispatcher list from the list of ready processes, and

3. determining the subset of the processes which are eligible for dispatching by calculating

the pages/segments demand of the processes and chosing those which fit the available

size of memory.

The main activities that force the processor system to be invoked are:

1. a process is created,

2. a process is deleted, and

3. a scheduling timer interrupts. The third activity is generated by the processor system,

in order to have time to re-organise the dispatcher list and/or by the other processes

suffering from a deadlock situation (i.e. avoiding deadlocks).

The scheduling policy selected for the processor system is important for determining the

way the next process is to be picked up from the dispatcher list, as well as for determining

the set of the eligible processes. We organise the dispatcher list by ordering its items

according to their user loss function value and by the amount of service they receive.

There exist a vast number of scheduling policies that can be used to schedule the way

the processor system select the eligible set number. Table 6.4 lists the notable policies used

for processor scheduling that are described in the current literature.

Policy Name Realised On Reference
1 I/O-CPU BALANCE TITAN Wilson 1971
2 Round Robin HIS 6000 Watson 1970
3 Deadline Scheduling UNIVAC EXEC VIII Lorin 1972
4 POLICY-DRIVEN NOT IMPLEME~TED Bernstein et al 1971

Table 6.4: Different Processor System Scheduling Policies.

CHAPTER 6. 182

These policies, with the examination of their advantages and drawbacks have been the

subject of much research (Coffman and Kleinrock 1968, Denning 1969, Mullery and Driscoll

1970, Kleinrock 1970, Keller 1975). I have developed a slightly different policy that will be

described in the sequel. That is again for the same reason as in the case of the memory

system, mainly because we have to deal again with the two inferential systems. Our policy

can be classified as being of the policy-driven type. It simply starts by allocating the

processes priorities according to their user loss functions and the amount of service received

by these processes within the dispatcher list. It uses the deadlines specified by the user loss

function (see section 5.3.2).

In our simulation, the processor system is entered every t time, during that time our

policy driven function to calculate the working set sizes of the processes within the dis-

patcher list. When the generator just starts operation, it starts with initial working set size

preset to a particular val!le. The ~urrent working size is then calculated according to the

following formula:

.

ws size = C * virtual store used in the last t units
+ (1 - C) * previous working size

where C is a damped historic count defined as the run time used
in the last interval/total run time used

Our processor system is also entered every k time in order to

1. calculate the priority figures of those processes (in the dispatcher list which have

recieved some service,

2. record the service time corresponding to the processes's job

3. order the dispatcher list according to the calculated priorities

4. to establish the number of processes that become eligible for execution.

This is done by scanning the dispatcher list to determine how many processes's working

sets can fit in the store that is available.

This number determines how many pages of the eligible processes characterised by their

working sets that can be placed in the physical store are available. Deadlock can occurr

if the highest priority process in the dispatcher list has a working set size which is greater

than the available size, but our algorithm prevents this to happen.

CHAPTER 6. 183

In order to reduce the overheads, we choose the time interval t to be equal to the time

interval k and call this time slice. It is determined at the system loading time. The process

priority function is further affected by the process type, as shown by the formula bellow:

Process Priority Function := PPF + processtype x time slice

The process type is determined as follows:

TYPE PROCESS

o for lowest priority batch process

n for the highest priority batch process

n+1 for interactive process

n+2 for system process

By reordering the dispatcher list according to their paging demand, the availability of

the store and the process type, we can obtain the list of eligible processes.

CHAPTER 6. 184

Now we turn our attention to the implementation details that are used in our simulation

for constructing the (virtual) processor. The following is a brief description of the processor

system algorithm:

PRoCESSoR-SYSTEM()
{

START-UP:
CALL INITIALISE POLICY-FUNCTIONS/* TO ALLOCATE PROCESS TYPE

NUMBERS ACCORDING TO THE PROCESS LEVEL */
INITIALISE THE PROCESSOR PRIORITY FOR EACH PROCESS TO ZERO

/* BY SCANNING THE DISPATCHER LIST */
INITIALISE SEVERAL VALUES FROM THE SYSTEM LOADING STRUCTURE
INITIALISE THE ELIGIBLE SET NUMBER TO NO. OF SYSTEM PROCESSES
GoTo PROCESSING-UNIT
PROCESSING-UNIT:
CALL CALL-ACTIVITY
IF NO ACTIVATION AND A MESSAGE IS RECEIVED THEN

SWITCH MESSAGE COMMAND OF
{

CREATE:
/* THIS COMMAND BELONG TO A MESSAGE RECEIVED FROM THE

PROCESS GENERATOR REQUESTING A DESCRIPTOR TO BE RESERVED
FOR A PROCESS TO BE CREATED*/

IF THE FREE LIST IS EMPTY THEN/* NO DESCRIPTORS AVAlLABLE*/
CALL PASS-MSG TO THE PROCESS-GENERATOR

ELSE
MARX THE FREE LIST AND THE PLS
UPDATE THE FREE LIST AND PLS ENTRIES
CALL PASS-MSG TO THE PROCESS-GENERATOR

DELETE:
/* THIS COMMAND BELONG TO THE PROCESS-GENERATOR REQUESTING

A DELETION OF A PARTICULAR PROCESS */
CALL DELETE-PROCESS
CALL PASS-MSG TO MEMORY SYSTEM TO DELETE ITS SEGS/PAGS
WAITING FOR REPLY
UPDATE THE FATHERS AND BROTHERS POINTERS OF THIS PROCESS
CALL PASS-MSG TO THE PROCESS-GENERATOR
LOADED:
/* THIS COMMAND BELONG TO THE PROCESS-GENERATOR AFTER A

PROCESS BEING CREATED */
ASSIGN THE PROCESS VALUES TO ITS RESERVED PLS ENTRY
INITIALISE CERTAIN VALUES
GoTO PROCESSING-UNIT
LOAD-FAILED:

./* THIS COMMAND BELONG TO A MESSAGE RECEIVED FROM THE
PROCESS-GENERATOR */

UPDATE THE FREE LIST AND THE PLS ENTRIES
GoTO PROCESSING-UNIT
}

ELSE!* IF ACTIVATION IS RECEIVED */
MANAGER:
SA \'E CURRENT TIME
LOOP
SCAN THE DISPATCHER LIST

CHAPTER 6.

IF PROCESS IS ABORTED BECAUSE IT IS WAITING FOR WS THEN
CHANGE ITS STATUS TO READY

IF PROCESS IS ABORTED BECAUSE IT VIOLATE PROTECTION RULE THEN
CHANGE ITS STATUS TO BLOCKED

IF PROCESS RECEIVED SOME SERVICE THEN
CALL RESOURCE-SINCE-TlME
FIND ITS NEW ~ORKING SET
CALL PROCESSOR PRIORITY/*To ASSIGN THE PRIORITY TO THAT
PROCESS ACCORDING TO THEIR WORKING SET AND THE STORE SIZE
AVAILABILITY* /

END-LOOP
SORT THE DISPATCHER LIST ACCORDING TO THE PRIORITY NUMBERS
SCHEDULE THE NEXT SCANNING INTERVAL
UPDATE THE NUMBER OF ELIGIBLE PROCESSES
/* BY CALLING FIND-INTENDED-E-PROCESSES */
CALL REPORT-To-JoB-SCHEDULER/* TO CONTROL THE NUMBER OF

USERS ADMITTED TO THE SYSTD! */
}

6.5.5 The Control Structures: The I/O control

185

The main purpose of our control structures is to derive and coordinate the operations of

the various management units of the essential functIonal structures. The control structures

are needed here to coordinate the I/O activities among the different system devices (man

agement units of control). Controlling the I/O devices in our simulator can not be achieved

simply using a communication mechanism as it was done in the CO~MUi\ICATION-

STRUCTURE. The initial design specification of our activity-structures based computer

system requires a partially controlled variation in the I/O devices managements because

the devices should be changeable. The design of our possiblistic generator must allow some

features of I/O control to vary. The variations may occurr in the I/O device characteristics,

or in the way batch jobs that are controlled by the user background blackboard. Also the

control of interactive I/O operations which are controlled by the user foreground blackboard

might vary. The I/O batch control devices can be removed when required.

. Further responsibilities of our I/O control structures consists of ensuring

• I/O devices independence,

• a uniform treatment of I/O devices, and

• high I/O devices utilisation (instituted by adopting the policies that match the nonuni

form requests of processes with the uniform speed of those I/O devices for which it is

CHAPTER 6. 186

required).

The I/O control structures must cope with a wide variety of I/O devices and are therefore

quite complicated at the detailed levels of their design. There are basically three main types

of I/O devices: dedicated, shared, and virtual. Dedicated devices are those which are more

effectively assigned to one process for a given time period, even though the process may not

be able to utilise them continuously. In this category are the line printers, card readers,

tapes, etc. Dedicated devices require advanced reservation for their use by specifically

reserving them for a given duration. Shared devices can be allocated among different

processes at a much faster rate when the sharing is indivisible at the process level. While

allowing the access to only one process at a time, the devices can rapidly complete their

service for individual processes and be quickly switched to the service requests of other

processes. In this category are such on-line auxiliary storage units as drums and discs.

Here, no special reservation or allocation is required.

Since dedicated devices are responsible for the deadlocks, we avoid this problem in

our simulation by simulating the dedicated devices by the shared ones. In particular,

this decision is made for those I/O devices that need to be added or removed from the

system. The resultant devices are called virtual. The control unit that is responsible for

the management of the dedicated and the shared devices is called permanent I/O control,

whereas the management unit that is responsible for the virtual devices is called removable

I/O control.

The main design point that needs to be highlighted here is about the way these two

control units should be constructed. This can be achieved by associating the device charac

teristics with the devices themselves rather than with the processes which handle them. This

will let the resulting control unit to be a general- purpose one. The way in which this design

objective is achieved is to place the device-dependent characteristics in tables which have

been designated to be used by a general-purpose routines, which are device-independent.

In our simulation, these tables are represented by a list of descriptors. Each device has

an associated device descriptor which contains the relevant information about this device.

The descriptor information includes the physical device number, the device name, the device

CHAPTER 6. 187

status (busy or free), and the channel/control unit number to which the device is attached.

The necessary isolation of device characteristics can be achieved by including additional

information in the device descriptor and by using the descriptor as a source of information

for the associated device control unit. The additional information that can be added to the

device descriptor includes the following:

• instructions which operate the devices

• pointers to character translation tables

• an indication whether the device is in a character or word mode

• an indication whether the device requires a buffer

• the buffer size, if required

• whether the device is random or sequentially accessed,

• the address of the driving control unit.

In our simulation, all the device descriptors are kept in one table called the I/O Device

Control Table (IODCT). The physical device number is expressed by the descriptor position

in the IODCT table.

6.5.5.1 Permanent I/O control

There are three main sub-units that contribute to the permanent I/O control:

1. the device handlers,

2. the terminal system management unit, and

3. the file system.

The permanency of an I/O control unit means that the communication ports of this

~nit always exist (i.e. must be defined for all other system processes). The reason behind

subdividing the permanent I/O control is that in our design each I/O device has a separate

device handler process associated with it. If several of these processes operate in a similar

way, they can make use of sharable programs and any differences in behaviour can be derived

from the information in the corresponding descriptor. Thus, we have concentrated our

CHAPTER 6. 188

separation on the terminal system unit and thefile system unit because they are sufficiently

different from the other I/O permanent devices to merit a special consideration.

1. The I/O device handlers functions: A device handler is a process which is responsible

for servicing the requests on its associated device and for notifying the orginating

process when the service has been completed. Each device handler operates in a

continuous cycle during which it:

(a) receives a message which includes the following:

• operation type (read, write, advance, rewind)

• main memory address

• backing store address

• length of transfer (in blocks)

(b) translates the message to appropriate commands for a cha.nnel (these can be

extracted from the device characteristics held in the device descriptor) and con-

structs the channel program,

(c) sets up the port to the device if necessary,

(d) initiates the I/O operation

(e) waits for the operation to be completed,

(f) handles error conditions,

(g) notifies the originating process, and

(h) connects the port to the device, if necessary.

Here we briefly describe the implementation algorithm we used:

I/O-DEVICE-HANDLERSO {
PERFORM-I/O:

CALL CALL-ACTIVITY/* PROVIDING THE PORT TO THE KERNEL
OR ANY REQUESTING PROCESS */

IF WAKE-PROCESS IS RECEIVED AS RESPONSE THEN
CLEAR OR REST THE APPROPRIATE DEVI~

IF THE MESSAGE RECEIVED SPECIFIES BLOCK/RECORD TRANSFER THEN
CHECK MESSAGE-VALlDITY
IF IT IS VALID THEN
ASSIGN PHYSICAL DEVICE NUMBER
CALL SET-CHANNEL/* TO START DEVICE OPERATION */

CHAPTER 6.

}

CALL CALL-MSG/* REQUESTING REPLY FROM THE DEVICE
WHEN FINISHED */

IF A MESSAGE ANSWER IS RECEIVED THEN
CHECK MESSAGE/* WHETHER OPERATION WAS SUCCESSFUL

OR NOT */
CALL PASS-MSG/* SEND REPLY TO THE REQUESTING PROCESSx/
IF THE DEVICE WAS A SHEARABLE ONE THEN

CALL PORT-DELETE
GOTO PERFORM-I/O

189

2. Terminal system management functions The terminal system manages the user ter

minals (i.e. typewriter like excluding the operator's console) which are attached to a

special channel called the multiplexor. The terminal system must be prepared to be

engaged in more than one conversation at a time. It is unlike the other device han-

dIers, in which the terminal system cannot be restricted to accepting one message at

a time. The consequence of having a single message at a time causes the other process

requests (including those from the terminal users) to wait for a long time. Hence, as

soon as the terminal system has started a lengthy action by sending a message to some

other process it must be able to receive further messages or to start other actions.

There are two types of message ports attached to the terminal system. The control

port is primarily used to inform the job scheduler when a terminal dials up. The

communication port is used to transfer lines of data to or from a terminal. Following

any log-in, the terminal system asks the job scheduler to create a command inter-

preter process to communicate with the terminal. Once the user has successfully been

connected, the processes created for that user are communicating with his terminal

directly.

There are two main approaches to the terminal communication: transmitting a single

character at a time and transmitting a block of characters at a time. The former

approach would seem to give the user greater flexibility than the later, but it requires

more system time for character handling. For the system which has a small number

of terminals attached, the overhead involved in handling the terminal I/0 is not

excessive. For systems using a large number of terminals however, this approach is

too inefficient. Thus, in our simulation, it was assumed that a block of characters

CHAPTER 6. 190

is transmitted at a time. At the input, this is usually one line at a time. It is also

assumed that the blocks of characters are transferred directly to/from main memory

through the multiplexor channel (which has it own buffer).

Associated with each terminal is a terminal number. The terminal number, like the

device number, is the number used by the system for indexing files associated with

terminal I/O and for accessing the correct buffer. This number is assigned when

the terminal makes the first contact with the system. Similarly, each terminal has a

descriptor associated with it which contains various types of status information used

for control purposes. These include the following:

• indications of whether the terminal is linked to another one,

• whether another terminal is linked to this one and the number of the linked

terminal,

• the break character set,

• the type of character code conversion required, etc.

Here we briefly describe our implementation algorithm:

TERMINAL-SYSTEM()
{

START-UP:
NUMBER-OF-USER-REJECTED : = 0
SET THE DEVICE NUMBER GIVEN TO EACH TERMINAL!. BY USING

ITS CORRESPONDING DESCRIPTOR ./
GoTO MANAGEMENT-UNIT

MANAGEMENT-UNIT:

CALL·CALL-MSG/. INCLUDING THE PORTS TO JOB SCHEDULER,
KERNEL, AND ANY REQUESTING PROCESS ./

IF MESSAGE IS RECEIVED AND IT SOURCE IS THE KERNEL
FOLLOWING THE USE OF SPECIAL CONTACT CHARACTERS THEN

CALL PASS-MSG/* TO JOB-SCHEDULER CHECK WHETHER THE
USER WHO MADE CONTACT CAN LOG-IN OR NOT ./

GOTO MANAGEMENT-UNIT
IF MESSAGE IS RECEIVED AND THE SOURCE WAS THE KERNEL

FOLLOWING AN I/O INTERRUPT THEN
CALL PORT-CREATE!. TO THE PROCESS ASSOCIATED WITH THAT

TERMINAL */
CALL PASS-MSG/. TO THAT PROCESS */
GOTO MANAGEMENT-UNIT

IF MESSAGE SOURCE WAS THE JOB SCHEDULER IN RESPONSE
TO USER BEING REFUSED ENTRY TO THE SYSTEN THEN

CHAPTER 6.

}

ADD ONE TO THE NUMBER-OF-USERS-REJECTED
GOTO MANAGEMENT-UNIT

IF MESSAGE SOURCE WAS A REQUESTING PROCESS/* END OF
INTERACTION */

SET UP A MESSAGE TO START THE SPECIFIED TRANSFER
CALL SET-CHANNEL
CALL PORT-DELETE
GOTO MANAGEMENT UNIT

191

3. The file system functions: Conventionally, a file system deals with the physical fea

tures of files, namely with:

• physical organisation and access methods,

• basic file system,

• access control verification,

• backing store management, and

• symbolic file system.

These functions have been described in several places in the literature and the reader

is referd to one of such references (e.g. Watson 1970). In our simulation, our filing system

is modelled in a quite simple fashion. Its function is to accept the messages from other

processes and to send these messages to the disc manager to satisfy the processes' requests.

Thus, the reason for introducing our file system was to ensure the right amount of the

message I/O traffic within our possibilistic generator (i.e. in comparison to the class of

highly constrained system). Note that the requests from the user processes could include

the opening and closing of files.

Here we briefly describe the implementation algorithm used in our simulation of a file

system:

FI LE- SYSTD>! ()
{

START-UP:
CALCULATE THE NUMBER OF DISC TRANSFERS REQUIRED TO MOVE

A PHYS ICAL BLOCK
GOTO FILE-I/O-UNIT

FILE- I/O-UNITE:
CALL CALL-MSG/* PROVIDING THE PORT N~ FOR THE DISC

MANAGER AND ANY REQUESTING PROCESS INCLUDING UNDEFINED ~/

CHAPTER 6.

IF A REPLY MESSAGE IS RECEIVED FROM A REQUESTING PROCESS THEN
LOOP (NUMBER OF TRANSFERS REQUIRED TO MOVE A PHYSICAL BLOCK)

CALL PASS-MSG/* TO THE DISC MANAGER */
CALL CALL-MSG/* WAITING FOR REPLY */

END-LOOP
CALL PASS-MSG/* TO THE REQUESTING PROCESS INFORMING THE REQUEST

IS SATISFIED */
CALL PORT-DELETE
GOTO FILE-I/o-UNIT

}

6.5.5.2 Removable I/O control

192

The operation of the removable devices consists of alternations of messages sent and received

to/from the devices they deal with. In our simulation model, the only removable I/O control

devices are the background blackboards (or the spoolers). By removing these devices our

possibilistic generator is left with the foreground user blackboard. The removal of these

devices is signaled during the initial loading time. The way in which the requests for removal
.

are collected by the generator via the PREPROCESSOR is determined according to the

designer requirements.

When the spoolers are attached to the simulation model, their port numbers are made

known to the job scheduler. Here we assume that each spooler possess a pool area which

is capable of holding an input deck or a printout of a suitably large size and that over a

period of time the speed of the devices is adequate to handle all the generated requests.

When a job opens a stream it is allocated a file (spool area) on the disc and all the input

or output in the stream is directed to this file. When the stream is closed, the spool area is

available for the use by another job.

If the I/O performed by the spoolers is (unblocked) undead and unbuffered then, al

though we can produce multiple virtual devices and multiple copies of the same output

without rerunning a job, spooling can cause drop in their speed, compared to the speed of

the actual physical devices it simulates. The efficiency of the management of the speed of

access and space of buffers of our spoolers if effected by the following factors:

1. by using virtual instead of dedicated devices (effect on speed)

2. minimising the gaps between blocks in the buffers (effect on space)

CHAPTER 6. 193

3. the use of multi-buffering (effect both the space and the speed).

However, it is necessary to keep track of the input/output spool areas which are occupied

or available. Generally, this can be done using the spoolers descriptors, the job scheduler

descriptors, and the file system descriptors. In our simulation however this is done by the

file system descriptors.

CHAPTER 6. 194

Here we briefly describe the implementation algorithms of two removable spoolers: the

input spooler and the output spooler.

INPUT-SPooLER() {
START-UP:

CALCUUTE THE NUMBER OF LOGICAL RECORDS CAN BE HELD IN THE
PHYSICAL BLOCK

GO TO PERFORM-INPUT-SPOOLING
PERFORM-INPUT-SPOoLING:

}

CALL CALL-MSG/* SPECIFYING ITS PORTS TO THE JOB SCHEDULER,
FILE SYSTEM AND THE CARD READER */

IF A MESSAGE IS RECEIVED FROM THE JOB SCHEDULER TO
READ A JOB THEN

LOOP (ACCORDING TO THE NUMBER OF INPlTI' RECORDS)
CALL PASS-MSG/* TO THE CARD READER TO FILL THE FIRST

BUFFER */
CALL CALL-MSG/* WAITING FOR REPLY */

END-LOOP
IF THE BUFFER HAS BEEN FILLED THEN

CALL PASS-MSG/* TO FILE MANAGER TO WRITE THE BLOCK ON
DISC */

LOOP (UNTIL NO MORE CARDS TO BE READ)
CALL PASS-MSG TO THE CARD READER

. CALL CALl-MSG TO WAIT FOR REPLY
END-LOOP
IF THE OTHER BUFFERS HAS BEEN FILLED THEN

CALL PASS-MSG TO THE FILE SYSTrn TO EMPTY IT
CALL CALL-MSG TO AWAIT MESSAGE FROM THE FILE SYSTEM

CALL PASS-MSG TO THE JOB SCHEDULER INFORMING THAT
THE JOB ALREADY IN THE SPOOL AREA

GOTo PERFORM-INPUT-SPoOLING

OUTPUT-SPooLER() {
START-UP:

CALCULATE THE NUMBER OF LOGICAL OUTPUT RECORDS
GOTO PERFORM-OUTPUT-SPOOLING

PERFORM-OUTPUT-SPOOLING:
CALL CALL-MSG/* SPECIFYING ITS PORTS TO THE JOB SCHEDULER,

FILE SYSTrn, AND THE LINE PRINTER */
IF A MEAAGE IS RECEIVED FROM THE JOB SCHEDULER THEN

CALL PASS-MSG TO THE FILE SYSTEM TO READ THE FIRST BLOCK
OF RECORDS

LOOP (UNTIL NO MORE RECORDS LEFT)
CALL CAlL-MSG PROVIDING THE PORT TO THE FILE SYSTEM
IF A REPLY MESSAGE IS RECEIVED THEN

IF THERE ARE ANY MORE DISC RECORDS TO BE TRANSFER.R.rn
THEN

CALL PASS-MSG TO THE FILE SYSTEM TO READ
THE NEXT BLOCK AND FILL THE OTHER BUFFER

IF THE FILE SYSTEM IS BUSY READING THEN
CALL PASS-MSG TO THE LINE PRINTER/* TO

PRINT TH~ FIRST BUFFER */
CALL CALL-MSG TO WAIT FOR REPLY

CHAPTER 6. 195

}

END-LOOP

CALL PASSMSG TO THE JOB SCHEl>ULER TO INFORM THAT THE JOB
HAS BEEN PRINTED

GOTO PERFORM-OUTPUT-SPOOLING

6.5.6 The Protection Structures

The protection structure manages the control of access to the resources. More specifically,

it is concerned with two kinds of entities:

1. the resources available in the system determine the permissions, specifying the allow

able operations on objects (i.e. fields, segments, processes, etc.)

2. the participant requ£rements, the intentions of subjects, (user jobs, processes) deter

mining the operations to be requested to be performed on objects.

Describing the protection structure of a computer system means describing the protec-
.

tion mechanism of that system which acts as an agent (or mediator) checking the legality of

every reference by a participant to a resource. This legality (i.e. the rights to be performed

actions) is codified in the protection descriptions.

The protection mechanism suitable for protection enforcement in activity structures-

based designs, must support the remote accesses of resources at the different distributed,

structures. Such a protection mechanism has been developed by the author, and it is based

on the notion of port. Ports provide the means for manipulating resources, while the pro-

tection descriptors (i.e. capabilities) independently provide protection description. In our

approach, the ability to manipulate a resource using any of a given set of operations is

equated with the ability to send a request through a port connected to that resource man

ager. Thus, possession of a port implies the right to perform a particular set of operations on

the resource associat.ed with that port. The communication structure facilities are thereby

extended to provide the protection mechanism for all the resources in the system.

Processes are permitted to create, and thereby own, ports in order to perform a specific

set of operations on a set of specified resources. This permission is given by the underlying

resource manager. In order to perform a specific operation on a resource, a process sends

CHAPTER 6. 196

a message to that manager of that resource through the port created for this purpose. On

the completion of the requested operation, the result of the operation is sent back to the

requesting process. A process (including a user process) is permitted to request a certain

operation on a resource only via a particular specified port. Any request is granted if and

only if it has the intentions that match the permission rights allowed for that particular

resource.

In our simulation, we should note that the permission operations are implicitly asso

ciated with the ports manipulation for each system management unit and considered to

be of a static type. However, the protection system can be extended to include the means

for enforcing the dynamic protection. By dynamic protection we mean the structures in

which either the intentions or permissions may change after their initial assignment. Such a

dynamic protection mechanism was originally proposed by Kohout (1976); it can be incor

porated within our protection structure to add to it the criteria for handling of decentralised

dynamics (according to the distribution nature of the functional structures).

The criteria for decentralised dynamics of protection, are enforced on the memory system

only, in our implementation. It, of course, can be extended to the file system and other

systems. Using our possiblistic generator, the designer can decide at the system loading

time whether some dynamic protection is required and/or whether he want limited sharing

or maximum sharing protection policy. For these purposes new facilities must be added

to the memory system of static protection in order to enforce those operations that are

required for the dynamic protection. These are:

• adding/deleting permission rights,

• passing permission rights,

.• permitting new permission rights, and

• enforcing either maximum sharing policy or limited sharing policy.

Since permission rights were included in the memory page descriptor, then adding,

deleting and transferring these rights lets the size of the page to be variable. This means

that with dynamic protection mechanism, the memory system should manage segmentation

CHAPTER 6. 197

as well.

Here we briefly describe the new memory inferential system with the enforcement of the

decentralised dynamics protection criteria:

MEMORY-SYSTEM-INCLUDING-DYNAMIC-PROTECTION ()
{

INITIALISE:
INITIALISE THE FREE TABLE
INITIALISE THE OCCUPIED TABLE
INITIALISE PROCESS-AGE-THREASHOLD

PERFORM-MEMORY-FUNCTIONS:
CALL CALL-MSG
IF MESSAGE IS RECEIVED THEN

SAVE THE REQUESTING PROCESS IDENTIFIER
CHECK THE MESSAGE COMMAND

SWITCH MESSAGE COMMAND OF
ALLOCATE-SEGMENTS:

CREATE NEW SEGMENT /* REQUEST BY THE PROCESS-GENERATOR */
IF NO SPACE IN PLS THEN

CALL PASS-MSG/* OF FAILURE TO THE PROCESS-GENERATOR */
ELSE

THE NEW SEGMENT ADDRESS := EMPTY STACK POSITION
. THE NEW SEGMENT LENGTH : = EMPTY STACK HOLE LENGTH
ASSIGN THE OWNER PROCESS IDENTIFIER TO THE NEW SEGMENT
UPDATE FORWARD TABLE
UPDATE FREE TABLE
CALL PASS-MSG/* OF SUCCESS TO THE PROCESS-GENERATOR */

DELETE- SEGMENT:
DELETE A PROCESS'S SEGMENTS/PAGES/* REQUEST FROM PROCESSOR

SYSTEM */
LOOP
CHECK THE PLS TABLE/* FROM THE PROCESS ID WE FIND

SEGMENTS IDENTIFIER */
IF THE SEGMENT IS FOUND IN PLS THEN

CALL DROP-SEGMENT
ASSIGN THIS SEGMENT STATUS TO EMPTY IN PLS

END-LOOP
CALL PASS-MSG/* TO THE PROCESSOR-SYSTEM */

BRING-SEGMENT:
/* WHEN A PROCESS PERFORMS A SEGMENT FAULT */
LOOP (ON-OFF)

IF SEGMENT LENGTH (= AVAILABLE MEMORY THEN
{

CALL PLACE-SEGMENT
IF PLACEMENT IS SUCCESSFUL THEN
{

SEGMENT ADDRESS:= STACK POSITION
IF SELECTED FREE AREA LENGTH = SEGMENT LENGTH THEN

SEGMENT ADDRESS+ STACK POSITION + SEGMENT LENGTH
UPDATE FREE TABLE

APPEND NEW ENTRY TO OCCUPIED TABLE
CALL PASS-MSG TO BA~ING STORES TO BRING THIS SEGMENT
MEMORY:= AVAILABLE MEMORY - SEGMENT LENGTH

CHAPTER 6.

}

}

PRESENT-IN-MEMORY-SWlTCH ;= TRUE
MAKE THE STATUS OF ABORTED PROCESS: = READY
ADD TO THE MISSING COUNT OF SEGMENT OWNED BY THAT PROCESS
GOTO PERFORM-MEMORY-FUNCTIONS

IF SHUFFLING NOT PERFORMED THEN
CALL SHFFLE

}

ELSE
{

SHUFFLING := TRUE

CALL REPLACE-SEGMENT
IF NO SEGMENT CAN BE REPLACED THEN

CHANGE THE OWING PROCESS STATUS TO ABORTED
UPDATE THE OWING PROCESS EXECUTION TIMING
GOTO PERFORM-MEMORY-FUNCTIONS

IF THE PROCESS IS NOT WAITING TO BE KILLED THEN
IF THE SEGMENT IS NOT THE DRUM THEN

CHANGE THE STATUS OF THE PROCESS TO BE ABORTED
CALL PASS-MSG TO DRUM-MANAGER
WAIT FOR REPLY FROM THE DRUM-MANAGER
UPDATE TABLES

}

STATIC-PROTECTION:
IF SEGMENT'S ACCESSING PROCESS INTENTION RIGHTS DOES NOT

MATCH THE SEGMENT PERMISSION RIGHTS THEN
{

CALL PROTECTION-VIOLATION-RULE
GOTO DYNAMlC-PROTECTION
}

ELSE
GOTO PERFORM-MEMDRY-FUNCTIONS

DYNAMIC-PROTECTION:
IF THE REQUESTING PROCESS POSSESS PERMIT INTENTION AND
ACCESSING A FORBIDDEN SEGMENT THAT BELONG TO ANOTHER PROCESS THEN
IF LIMITED-SHARING-NEEDED THEN

CALL DEATH-SENTENCE /* TO ABORT THE REQUESTING PRoCESS*/
LOOP

SCAN PLS FOR THE SEGMENTS THAT POSSESS A PASS RIGHT AND
BELONG TO OWNER OF THE FORBIDDEN SEGMENT

IF FOUND THEN
TRANSFER RIGHT FROM THAT SEGMENT TO THE REQUESTING PROCESS

IF NEW INTENTIONS MATCHING THE RIGHTS OF THE FORBIDDEN SEGMENT
THEN
CALL PROTECTION-SYSTEM-ALLOW-ACCESS

END-LOOP
GOTO STATIC-PROTECTION

198

Chapter 7

EXPLORING THE DYNAMIC BEHAVIOUR OF THE
ACTIVITY STRUCTURES BASED POSSIBILISTIC

GENERATOR OF COMPUTER SYSTEMS

7.1 An Overview

In this chapter, we are concerned with exploring the behaviour of the possibilistic generator.

This is a goal-directed activity of the designer, required to force the possibilistic generator to

act in an 'interesting' way, by performing certain changes both user-oriented and machine

oriented.

Exploring new computer architectures, such as the architectures that can be gener-

ated by the possibilistic generator (i.e. an activity structures based architectures) is not

a straightforward task. In our opinion, only with the intensive or concentrated extensive

analysis (c.f. section 4.6.4) of the execution behaviour the effectiveness of new architectures

can be significantly improved. Without an understanding of micro- and macro-execution

behaviour, potential benefits from enhancements of computer architectures will be lost.

"Models of execution behaviour are needed to connect measurement to theory" .

(Browne 1984)

The shells capable of capturing the dynamics of changes of behaviour seem to be of much

greater practical importance for the design and implementation of cooperating environments

than the majority of other types of software products that concentrate on actual product

199

CHAPTER 7. 200

static behaviour quality (Riddle 1979). This is because the following typical difficulties arise

in the design and implementation of system with cooperating environments:

1. Without an execution behaviour model, it is very difficult to foresee all the possible

modes of operations that can occur due to varying synchronisation between the com

municating environments or their subsystems, possible malfunctions of the communi

cation medium, and/or error recovery actions initiated by one or both environments

(c.f. Bochmann 1978).

2. With cooperating environments incorporating both a local learning mechanisms and

a global learning mechanism, it is very difficult to detect whether the local learning

mechanisms are not in conflict, and cooperate towards the global learning goal (i.e.

the self-regulating behaviour). Only very recently, Gaines and Shaw (1986) pointed

out the great importance of such a problem. They provided, however, only the models

for verifying the logic of such cooperative environments, without going into the details

of their implementation and of performance measurement.

3. Without execution behaviour models, it is impossible to tune the generator behaviour

to the required behaviour of the problem environment (c.f. Sakamura et al 1979).

4. Cooperating environments impose the distribution of processes, and with it faults and

deadlocks, which can give rise to time dependent errors that are very difficult to detect

and locate by simple run time tests. Hence, the execution behaviour models may be

of great help. Unfortunately these models must be empirical, at least for the time

being, since there is no existing theory for modelling distributed computer systems.

Klienrock (1985) summarises succinctly the present situation:

"We do know some thing about the way distributed activities and distributed

systems behave precious few though may be. The most interesting thing about

them is that they come to us from different fields of study. Unfortunately. the

collection of results is just that - a collection. with no fundamental models or

theory behind it".

CHAPTER 7. 201

Unfortunately the execution behaviour description models/measures are not simple or

straightforward. These models/measures are often derived from multiple, conflicting, and

usually nonlinear/ multi-variant situations which should reflect the system's design spec

ifications. The difficulty of extracting such models/measures can be depicted from the

Figure 7.1 showing the variety of factors contributing to one of the most important mea-

sures used for constructing models for execution behaviour, that is the response time. We

approached the problem, however, from a different angle. We are not going to model the

distributed system dynamics, since its execution structure may possibly vary according to

the conflicting strategies of the conversational environment. This is an almost impossible

case as Sinha recently reported (1985).

PR!)TECT1 JI~
P A ? ... Y 1 E '1' 2 ~ S

RSSPONSE TIilE

JOB TI~lS

I
PROCESS Tr:E ,

Tr:E

I I
Opt. t.

JOBS

IDLE

r r~ITIAL1 .c:;-::
n~TE~?~ETI~JG

& .;~;)~ESSIi;G

? l\ RrY: S T E!\ S
LOl\'J
'1'1:12

r
COrT?'JL CO;iI:U!JIC;~~I0I:

::;SVIC::;
'l'IilE 'TLjE

I
lJS2?_ORIS~~7=~

F l\C r:'t) R S

r
C?U

:;' .i\ C ':'0 ~ S
I

S~STKi

TIiiE

TIllE

I I
TB I i-I:

I
PRODUCTIVITY Sl .. TI S:;'!~C7IO:J

F:"\C~O~S

r" r . .,.
.1', • I ~:::'O~· i.; T 10:;

T1::S ?ACTO~S

Figure 7.1: Factors affecting the response time measure.

In our work we take the execution structure to be unknown. Then we learn how to

control this unknown system through a framework that utilises only the input-output ex

periments. The input represents ~ synthesised sequence of design data, selected possibly

from the experience with another system, taken to systematically force the possibilistic

CHAPTER 7. 202

generator to act in an interesting way. Then, by monitoring the input-output execution

behaviour (via probes inserted within the required components needed to be analysed),

the execution behaviour can be modelled using the 'performoact modelling' framework

(see sections, 7.2 and 7.6). This is the framework that we develop. The significant thing

about this framework is, that it represents the nature of the environments in cooperation

using representative measures. This representation can help in identifying the admissi

ble/nonadmissible situations that contribute to the behaviour exhibiting self-regulation of

cooperating environments. Hence using the performoact modelling framework the designer

learns how to control the executing system and what design data (or sequence of events)

produce the admissible models. By using the design data for these admissible models the

designer can tune the system. This process of monitoring-modelling-tuning can be repeated

several times until the required system fine tuning is reached. The system must be stable

(i.e. self-regulating) and possibly to match the required behaviour.

The framework was developed employing two practical design modelling principles: the

theory of system identification (Gaines 1977) and the productivity theory (Mason 1979).

In section 7.6 we describe the strategy that we used for modelling the execution behaviour.

In our case, we must select the synthesised input data to be the design data that can be

effectively used to verify the logic of our possibilistic generator. For this purpose, we selected

the data for priming the design from a similar highly constrained existing computer system.

In this chapter in particular, we selected the priming data from within the class of highly

constrained systems which contributed to the design of our possibilistic generator namely

the NUKE (Crowley 1981). Using this data for priming, and by systematic variation of

this data, we generated various simulation runs, that were systematically monitored. This

identification process! yielded what is called the Nuke operational descriptionil see section

7.6 and the appendix. The performoact modelling utilises the operational descriptions to

produce behavioural description models3 . We used our performoact modelling for identifying

lIn the sense of admissible models of Zadeh (1962)
2It provides the details of how the system performs by monitoring the activities of its basic component8

using certain software probes (c.f. Robinson and Torsun 1977).
sIt captures descriptively those essential of the system's behaviour so that it can be used it can be used

to make some future predictions about the behaviour of the system or its parts (c.f. Gomma 1977).

CHAPTER 7. 203

the admissible design data that derive the Nuke family of systems within a particular class

of user environments (see section 7.7).

7.2 A Framework for The Behavioural Description of The

Activity Structures Based Computer Designs

In this section we are concentrating on the issue of modelling the input-output execution

behaviour of our possibilistic generator.

Our work here is based on the conceptual scheme and the general- purpose measures of

the productivity theory (Mason 1979). The works of Brian Gaines on system identification

(1977) has considerably enhanced our method and understanding of its principal results.

Mason's productivity theory is mainly concerned with design of economical systems organ

isation; we transfer his main concepts into the domain of computer systems design. In this

thesis we refer to our developed framework as the performoact modelling.

Gaines system identification scheme (1977) originally developed from the system theory

of Zadeh (1962). It attempts at extracting certain behavioural description models from

observing the class of possible structures of behaviour and to identify a membe: from this

class that is most likely to enforce the behaviour of interest. The Gaines scheme is a method

of approximation which leads to the identification of certain admissible models called the

space of admissible models. By using the space of admissible models a description of the

system execution behaviour can be represented, and hence this description can be used to

make future predictions. The design data that are used to generate the admissible models

then can be used to tune the original system behaviour. It should be noted that also the

priming of adaptive behaviour has been introduced by Gains (1972).

On the other hand, the productivity theory of Mason's provide us with certain general

purpose measures that can be used to measure the effectivity of cooperating environments,

such as our conversational environment (Mason 1979). In our framework Mason's measures

identify a specific evaluation space (i.e. a framework of admissible models) which consists

of the system effectiveness (i.e. the machine environment productivity) in the relation to

CHAPTER 7. 204

the demand (the user environment workload) consumed during the production period. As

noted previously, the productivity theory has originated and is used only in the economic

and managerial literature (Craig and Harris 1973, Gold and Soesan 1976).

The two above mentioned theories the system identification, and the productivity theory,

have been used by the author to develop the scheme of the performoact modelling which

can be conceptualised easily. Figure 7.2 illustrates this scheme. In a finite distributed

computing system, any increase in the demand (i.e. concurrent transactions or processes)

will lead to an increase in the system effectiveness (e.g. system throughput). IT the increase

in demand is homogeneous that is, always of the same proportion or consisting of the same

mixture- then demand and effectiveness will be related by a straight line (OA). From the

experience with performoact models this not an interesting behaviour, since the system

(i.e. the waiting time) will be a linear-oriented function. Real computing systems are, of

course, finite. At some point heavily used system component will limit the effectiveness

(c.f. Barber (1979), Kupka (1974)). This limit is represented in the figure by the line Be.

The limitation point, may be the point of system thrashing. Further, any real computing

system will include shared resources (descriptors, processor, segments, etc) which at any

demand other than zero will generate queues. This smoothes out the sharp knee in the

figure, and real systems would behave according to a curve such as 00. The sharpness

of the knee in the curve, is dependent however, on the utilisation of the shared resources,

and therefore the speed with which the queues develop as the demand increases. In a real

systems, the increase in the demand generates an additional component of work as these

become loaded- the overhead as the result of managing a great deal of concurrent activities.

Within the certain limits this overhead may increase more quickly than effectiveness (i.e.

the speed of servicing the queues); in which case there is a net loss of throughput. This

effect is illustrated by the curve OE in the figure. System equilibrium then, can be defined

as the balance between queueing and overhead. The initial slope of the curve will be very

close to the straight line of the equivalent (infinite' computer. The asymptote of the curve

is the line corresponding to the saturation of the most heavily used and constrained

system component (s). The actual curve is referring to the steady state which under

CHAPTER 7. 205

special conditions can be considered as an admissible model. Among the non-linear curves,

the most interesting one is the curve that expresses the balance between the queueing time

and the overhead time. The case of balance defines the admissible model of behaviour for

a running system, such as ours. It identifies the case where the system can balance the

user environment activities with the computer machine activities and can survive. Survive

in the sense that the system will achieve maximal utilisation and never reach thrashing

situations. We believe that by monitoring the execution behaviour for the possibilistic

generator for a sufficient period of time (it should not be less than 5 minutes according to

Clapson (1979)), we can identify the type of behaviour and determine its admissibility. For

this purpose, we fixed the execution period of the possibilistic generator to be 25 minutes

(statistics monitored each 5 minutes and can be altered to any required interval) and we

used the regression analysis to identify the type of the trend any execution behaviour may

exhibit.
e

f

e

c

t

i

v

e

n

e

s

s

o

A

d e III and

Figure 7.2: The performoact modelling framework.

'-

We used the four (or eight if their negative is accounted) typical regression models that

E

CHAPTER 7. 206

can capture effectively the trend of any data behaviour (c.f. Daniel and Wood 1971):

1. The linear regression: According to Figure 7.2, this regression possibly identifies a

non-admissible behaviour if it proves having a large slope, the one that possesses the

highest 'determination factor' or best fit. The negative case represents an impossible

case in computer system (performance cannot be enhanced significantly with the

increase of demand). The general equation of such trend is:

y= A+Bxj

2. The logarithmic regress~on: According to Figure 7.2, this regression identifies the

admissible ty....,e of trend that represents the balance between queueing and overhead

times. The negative case of this trend identifies a non-admissible behaviour. The

general equation of this trend is:

y = A+Blnx

3. The Exponential regression: According to Figure 7.2, this regression possibly identifies

an admissible trend of behaviour depending on whether the shape of the trend is

increasing sharply or not, as well as if there is a certain intended low level threshold

of demand. The negative may identify an admissible type of behaviour trend. The

general equation for such type of trend is:

4. The power regression: According to Figure 7.2, this regression and its negative are

unlikely to identify an admissible trend only if this trend grows slowly. The general

equation of this trend is:

The indices x (demand of user environment) and y (effectiveness of the computer ma

chine environment) are the parameters representing the admissible graph dimensions. These

indices must be representative of user interaction and machine environments. We can select

CHAPTER 7. 207

a vast number of indices representing both environments, but since we want to present

selected examples in this thesis, we have chosen the most general-purpose and sensitive

indices. These are the number of concurrent processes representing the demand of the user

environment and the response time (if it is with only foreground blackboard) and the system

throughput otherwise, representing the effectiveness of the computer machine environment.

Vast number of the design changes can be studied within this framework.

7.3 Strategy for The Behavioural Description And Perfor

moance Measurement

The use of measurement probes to record the operational behaviour of software systems is

not new. Several researchers have used this technique to monitor the operational behaviour

(or dynamic behaviour) of several computer languages programs (e.g. Knuth 1971, Page and

Benson 1974, and Torsun and Al-Jarrah 1981). However, the technique that we adopted is

rather different from those that have been used for languages. The later operate by using a

preprocessor for inserting measurement probes and their routines within the given program;

then using the language compiler and running its generated code, the measurements are

collected and the report is produced using a postprocessor.

In our case, the monitoring technique is rather simpler because the distinction has been

made between the outer simulation representing the user interaction environment and the

inner simulation representing the machine environment. This situation, indeed, allows the

overall system performance to be measured by direct experimentation on both environments.

Based upon this distinction, and in order to let this monitoring technique be coherent, it

must:

1. include in all the exploration experiments a specific central nucleus of design param

eters, to act as a control data set.

2. include appropriate measurement probes within both, the outer simulation (user

oriented) and within the inner simulation (system-oriented).

CHAPTER 7. 208

There are various goals behind using our performoact modelling. Basically there are

four main goals: performance projection, performance monitoring and behaviour descrip

tion, and the evaluation the structural changes. The last two which take into account

the performance as a criterion for behaviour description even when structural changes are

performed, are the most frequent goals and also forms the background of this chapter.

As mentioned earlier in this section, the performance of a computer system depends on

its special application. It is therefore important to have a critical knowledge of the workload

and the other characteristics of the system need to be evaluated. We shall consider the case

when a system and already in use is to be upgraded or replaced by a new one. That means

a real job profile and the system characteristics are known and can therefore be explored,

analysed and extrapolated.

There exists information on many computer systems designs and their formal descrip

tions is available in the literature. This can be used as our control data set as well as to act

as our special verification data.

Using the design data for an existing target computer system of known performance

results, not only verification can be achieved but also the viability of the activity structure

based possibilistic generator can be estimated and compared to the known performance of

the target system. Once verified, the possibilistic simulator can generate diagnostic data to

be used in the evaluation of any design claiming the family membership.

The most suitable computer systems design data, with functionalities matching our

simulator functional structures, that can be used as control data set which we found in the

current literature are the following systems from the class of the highly constrained systems:

• Nuke system (Crowley 1981),

• Thoth system (Cheriton 1979), and

• Gutenberg system (Stemple et al1982).

Although the Nuke system design data is the only one used in this chapter for verifi

cation, the method is general, and can be applied to other (not necessarily existing)

CHAPTER 7.
209

computer systems designs. The main reasons for selecting the Nuke system in verification

are as follows:

1. Both the Nuke system and the possibilistic generator run under the same bare archi

tecture: the Virtual Address extension of PDP-ll (i.e. VAX-ll architecture).

2. Both the the Nuke system and the possibilistic simulator are written in C program

ming language.

3. NUKE architecture was chosen by the US Army and Navy CFA (Computer Architec

ture Family project) committee as their standard tactical military computer (Fuller

et al 1977). It was given the preference and selected from a long list of architectures

(see section 2.3) after very careful experimentation with specific evaluation of the

functionality of the architectures concerned.

4. The Nuke system possess the richest functional structures e.g.

(a) a message passing communication structure,

(b) static protection structure,

(c) I/O control structure

(d) effective interpretive structure (portable with effective addressing mechanisms),

and

(e) sophisticated information structures.

Assuming that existing computer system data has verified the behaviour of the possi

bilistic generator. The generator then can also be used for verifying many similar existing

computer systems designs, which has been done previously only by using certain formal

description langm~.ges (such as ISP (c.f. Bell and Newel 1971). There were used to sim

ulate the design from the computer description provided by the manufacturers manuals.

These manuals are supposed to contain the true specification and design information of

the computer system. Unfortunately, the quality of the informal specification of the manu

facturers manuals varies hence using the formal design languages does not provide reliable

CHAPTER 7. 210

verification. Our possibilistic generator, however, utilises only the design data and does

not require the full design description details. The design description of our possibilistic

generator is quite general (refer to chapters 5 and 6). It is believed to contain the most

sophisticated design description of most of the current computer systems. We consider the

design description to be trivially embedded in the simulator structure.

7.4 A Brief Overview of The Nuke System

NUKE is a kernel-based, message-passing emulation of the UNIX kernel. NUKE consists of

1. a kernel that provides environments, first-level interrupt handling, process dispatch

ing, and process communication via messages

2. several system processes that implement the UNIX system calls. The system processes

are implemented exactly in the same way as regular UNIX processes. Figure 7.3 shows

the structure of the NUKE. The following processes are included in NUKE:

(a) The process manager handling process traps and the process related system calls.

(b) The memory manager allocating and free memory, reallocating and moves stacks,

and providing address translation services.

(c) The memory scheduler process handling swapping.

(d) The clock process handling clock interrupts and all timing services for the system

both internally and through system calls.

(e) The file system process handling the file and I/O system calls.

(f) The device deriver processes (e.g., disk drivers, tape driver, tty driver) handling

devices and interfaces to device controllers.

User processes make normal UNIX system calls which trap to the kernel all the defaults.

The Kernel in turn converts them to messages and directs them to the system process that

handle that system call. In course of handling the system calls, system processes will

make the kernel calls, requesting services from the kernel and sending messages to other

CHAPTER 7.
'Jlt~. 'rOC.II.t
(.,t." f!. 1" ••

trap. Ololl)

,.,."_1
(lnt.,.·
rupt.s in
• t':l~I." Olllt)

H.rCh.~,.t

[nv l",ol"l",.nt
«anttrr1Jp:" out.

UNIX S,Ol •• C.II InU.r

CL: CI.ok
DO?: o. .. ie. Orl •• ,
'S: FII. S,.~ ••
MI4: r' ".", ••• r
"$: "".orr $ch,d ... l.r
'": 'roc ••• PU" ••• ,.

10
I"t,,

rup" •

Figure 7.3: The Nuke Functional Framework

211

system processes which request services from them. The Nuke system, however, is an

interactive computer system with no dynamic memory protection. It has only an overall

static protection mechanism.

7.5 Collecting The Nuke-Oriented Design Data for The Study

of Behaviour of The Possibilistic Generator

For the purpose of verifying our possibilistic generator, the simulator parameters (in PRE-

PROCESSOR, POSSIBILISTIC SIMULATOR SWHW SETTING, POSSIBILISTIC SIM-

ULATOR LOADING) were set to model VAX-II computer system operating under NUKE

(Crowley 1981, DEC 1977, DEC 1979).

Setting the design data is divided into two parts. The first part is to set the system

oriented parameters of the hardware and operating system assuming a general-purpose

model with only static protection. The second part is to provide the proper seeds that can

generate randomly realistic user-oriented (i.e. workload) parameters. Preparing the first

part of the design data is quite straightforward, following the design manuals (Croweley

1981, DEC 1977, DEC 1979) and using certain general purpose design information when

CHAPTER 7. 212

other required information is missing from the manuals (see Shaw 1974, London 1973, Your

don 1972, Lewellyn 1976, Siewiork et a11982, Hellerman and Conroy 1975). Table 7.1 lists

the NUKE system-oriented parameters, selected for our possibilistic simulator verification.

These values represent either the typical manual design settings or the average design values

of certain typical general-purpose computer systems.

The user-oriented data, which form the second part of the design data, determines the

system workload along with its characteristics. The workload is defined as collection of

all individual jobs that are processed by the computer system during the specified period

of time. The workload characterises the demand imposed by the jobs on various system

resources. Realistic verification of our possibilistic generator requires that the submitted

jobs possess the characteristics of a typical or representative sample of the jobs that the

actual system would have to run.

In order to achieve this, the various properties of jobs must be simulated (or generated).

Jobs may have several characteristics, but the most meaningful, easy to assess, and rele

vant to this work are listed in Table 5. The empirical distributions of most of these jobs

characteristics were given by Robert Brundage (1974). It was measured from a programs

sample that was run under the Burroughs B5500 computer system. The sample included

36 distinct Algol programs, concerned primarly with scientific and engineering applications.

Among these were: a compiler, a linear programming package, and a variety of statistical

programs. The programs and their associated data were chosen to keep the sample small

enough, so that the trace data could be processed, yet varied enough to illustrate a number

of significant features.

The Brundage data is well suited to our simulation for several reasons:

1. B5500 process structure closely approximates the process structure that one would

expect in any descriptor-oriented computer system like our possibilistic simulator.

2. The B5500 uses a pure segmented virtual memory. Every array and code for each

procedure is placed in a separate segment. This is exactly what we would expect in a

system that enforces dynamic protection mechanism.

CHAPTER 7. 213

3. If one wishes to use empirical data to simulate segment reference (for memory pro

tection), the Brundage data study contains the only available data.

Using the Brundage data we can extract the average value of each job characteristic

distribution. These average values represent the random-number seeds in our simulation.

The random number generator routine uses these seeds as well as their corresponding ranges

to generate random values within the prescribed ranges.

However, not all the jobs characteristics (in Table 5) were we able to extract from

Brundage data. The characteristics that we couldn't measure from Brandage data were:

• Average user think time,

• Average user faulty accesses,

• Mean number of User productivity,

• Mean number of user satisfaction, and

• User loss function average parameters.

The average values of these remaining parameters have been extracted two sets of

other empirical data: Raymond Barber empirical data collected from University of New

York (1979) and Chouinard Lewellyn empirical data collected from University of lllinos at

Urbana-Champain (1976). Except for the user loss function parameters that we set the

parameters intuitively. All the user-oriented parameters are listed in Table 7.2.

The remaining parameters of our possibilistic simulator are set at the system loading

time, as shown below:

• Is spooling is required ? If yes then

P53 Input spooler capacity 40 jobs

P54 Output spooler capacity 50 jobs

• Is dynamic protection of the memory required ?

• Process table size? P55 PTS 151 records

CHAPTER 7. 214

• Page/Segment table size? P56 PSTS 301 records

Using all these parameters, the process of verifying the possibilistic generator can start.

CHAPTER 7. 215

Hardware Components Oharacteristics
Id Purpose Setting Value
P1 CPU Time to move one byte into core 0.1 msec
P2 CPU Context switching time 0.004 msec
P3 CPU Process dispatching time 0.1 IDsec
P4 CPU Primitive calling time 0.1 msec
P5 CPU Time to service kernel (timer interrupt) 0.05 msec
P6 CPU Time service kernel (job arrival) 0.1 msec
P7 CPU Time to service kernel (interrupt 0.1 msec

completion)
P8 CPU Time to service kernel (faulty access) 0.1 msec
P9 CPU Time to service kernel (abort routine) 0.1 msec
P10 CPU Time to service kernel (halt routine) 0.1 msec
PH CPU Time to service kernel (send msg) 0.6 msec
P12 CPU Time to service kernel (receive msg) 0.7 msec
P13 CPU Time to service kernel (call-activity) 0.8 msec

P14 CPU Time to service kernel (delete port) 0.1 msec

P15 CPU Time to service kernel (create port) 0.1 msec

P16 CPU Time to service kernel (changing 0.1 msec

eligible processes set)
P17 CPU Time to service kernel (starting 0.12 msec

a process)
P18 CPU Time to service kernel (stopping 0.1 msec

a process)
P19 CPU Time to service kernel (modify 0.1 msec

access rights)
P20 Memory size for non resident processes 131972 bytes

P21 Page and the average segment size 4096 bytes

P22 Disc transfer time (in msec/byte) 0.0033

P23 Disc seek time (in msec) 0.75

P24 Disc latency time (in msec) 0.12

P25 Disc record size (in bytes) 32767

P26 Drum transfer time (in msec /byte) 0.0083

P27 Drum seek time (in msec) 0.00

P28 Drum latency time (in msec) 8.00

P29 Drum record size (in byte) 32767

P30 Card reader transfer time (msec/byte) 0.75

P31 Card reader positioning time (msec) 0.0

P32 Card reader latency time (in msec) 0.0

P33 Card reader record size (in char/line) 80

P34 Line printer transfer time (msec/byte) 0.45

P35 Line printer positioning time (in msec) 0.0

P36 Line printer latency time (in msec) 0.0

P37 Line printer record size (char/line) 132

P38 Number of active terminals 32

Table 7.1: NUKE System-oriented Verification Parameters.

CHAP'I'ER 7. 216

User-Oriented Parameters
P39 Mean interarrival time between jobs 15 sec
P40 Mean CPU time required by a job 15 sec
P41 Mean Core space required by a job 16384 bytes
P42 Mean number of tasks required for a job 3
P43 Mean number of backing store files 3

required by a job
P44 Mean Number of backing store input 150

records required by a job
P45 Mean number of backing store output 150

records required by a job
P46 A verage think time 3 X 104

P47 User loss function parameters
th 600
tinf 3.6 x 10-6

mh 0.01
minf 0.2

P48 faulty accesses percentage 0.75

P49 Mean number of user productivity 30

P50 Max. Satisfactory Response time 1 x 104

P51 Max. Satisfactory Turnaround time 7 X 105

P52 Number of jobs 9999

Table 7.2: The User-Oriented Parameters.

CHAPTER 7. 217

7.6 Performoact Modelling: Towards Analysing The Be

haviour of The Possibilistic Simulator

In performoact modelling we run the possibilistic generator under a variety of condi

tions/changes, in order to ~xtract certain useful inferences and models for performance

prediction. These changes are grouped into three main purpose-oriented analysis activities:

1. reduction-oriented (i.e. adding/removing software/hardware components) type,

2. user-oriented (i.e. changes in the demand or the workload) type, and

3. system-oriented (changes in the hardware/software capabilities).

Before we attempt to analyse the effect of each type of change, we introduce the basic

principles of the performoact modelling. Performoact modelling identifies from the simu

lation runs, the main statistical trend of every single change, and according to a standard

modelling framework. The performoact modelling consists of a number of steps:

1. Definition of a non-specific evaluation graph: The performoact is a relationship be

tween DEMAND X EFFECTIVENESS. The former is a non-specific index charac

terising the user interaction environment, whereas the latter is a non-specific index

characterising the machine environment.

2. Particularizing the non-specific graph to a pair of specific indices: By assIgnmg a

specific index to each demand x effectiveness we obtain a specific performoact graph.

To the DEMAND we assign one of the parameters and indices probes (c.f. section

5.4.1). To the EFFECTIVENESS we assign, on the other hand, the parameters and

indices measured by the machine oriented performance probes (c.f. section 5.4.2).

3. Running the generator: This is done by setting the total system time and the statistic

gathering period. Setting also the machine and the user oriented parameters as well

as the initialisation parameters using Table 7.1 and 7.2. Then several runs may start

by changing systematically any particular parameter.

CHAPTER 7. 218

4. Regression analysis: Fit essential regression models to the results obtained by the

step 3 above. The essential regression models are linear, exponential, logarithmic

and power. For each run results, the extracted best regression model referred to r..s

best) then can be used for future performance predictions. The criteria for deciding

which of the formulae is the best, depends upon the statistical index called factor of

determination (c.f. Steel and Torrie 1980). This factor represents the degree to which

the extracted formula matches observed simulation results. The best fit model does

not represent automatically the admissibility of the model. The best model from the

regression models that are marked BEST of all the runs, must have the highest factor

of determination among the others (is referred to as B-BEST).

5. Definition of admissibility: For each run results, the regression model is admissible

(referred to as "admis") if it is the curve enforcing the balance state between the

demand and the effectiveness. In our performoact modelling framework, this curve

will in most cases be logarithmic. Other admissible models are briefly discussed in

section 7.2. The most acceptable model from the regression models that are marked

ADMIS of all the runs, must have the highest determination factor among the others

(is referred to as B-ADMIS).

6. Definition of the generator tuning: The generator behaviour may be tuned to its aver

age behaviour using all the parameters that are associated with B-Best models. This

tuning is called 'AVERAGE TUNING'. The generator can also be tuned according to

the criteria of self- regulation by chosing all the parameters that are associated with

B-ADMIS. This tuning is called 'BALANCE-TUNING'.

7.6.1 Towards Experimentations: The Reduction Oriented Changes

For the purpose of analysing the effects of certain intrinsic changes within the structure of

our possibilistic simulator, we initially run four different versions of the simulator. Using

these versions we are trying to assess and model the effect of modifying the possibilistic

simulator to include a dynamic protection mechanism within the memory system, as well

CHAPTER 7. 219

as the effects of removing the management unit of background blackords or spoolers (i.e.

transforming the simulator from a general-purpose one to an interactive type).

These versions are:

VI A general purpose possibilistic simulator with only static protection (GPPSSP),

V2 A general purpose possibilistic simulator with static and dynamic memory protection

(GPCDMP),

V3 An interactive constellation with only an overall static protection (ICSP), and

V 4 An interactive constellation with static and dynamic memory protection (ICSDMP).

Each version is chosen by specifying the changes4 (i.e. reduction data from VI to V3

or addition data from V 4 to V3) on the NUKE control data. This is done by the PRE

PROCESSOR which later selects the required system components via the use of #include

module macro.

Studying such types of changes is important. For example, it may be necessary to cut

costs by reducing equipments. In that case, before arbitrarily removing or adding some

piece of equipment or a new capability, the designer should determine how the on-line and

batch systems will be affected, and how protection might effect both systems. If problem

areas can be identified prior to the removal of the equipment action can be taken to reduce

any negative impact. The next decision may then involve the selection of equipment or

capability to remove or add, respectively. This decision can not be made if comparative

data on the performance of various configurations are not obtainable. We should note that

our batch system is not a sequential batch system as those found in the third generation

computer systems (c.f. Beaumont and Macaskill 1975). Our batch system is managed by

the control structure of our activity structures based simulation using a common blackboard

area similar to the background queue of the Unix system.

To analyse the effects of these changes, we performed our performoact modelling scheme

after running the four simulator versions. Figures 7.4 to 7.6 show the linear regression

·Changes in the context of this section does not mean systematic or incremental changes. Hence, we can
not option the B-Best and the B-Admis models of the performoact framework.

CHAPTER 7.
220

performoact models of the four various changes and compare the changes effects using three

different effectiveness indices.

,..
~
t-

~
.J
!5

I
• > <

I
> ...

I

•
. -~----.

--*---------------

+

---+--~pssp

-----er-----SPCOPM
---f----ICSP

]I ICSOMP

+

SIMULATOR RESULTS

SIMULATOR RESULTS

SIMULATOR RESULTS

SIMULATOR RESULTS

DEMAND (No. oF CONCURRENT JOBS)

Figure 7.4: PERFORMOACT Modelling: Reductions Effects using Average Resource Util
isation

Tables 7.3 to 7.5 shows the other regression analysis models that can be used for finding

the best description and possibly the admissible formulae.

The effects of these changes upon the average resources utilisation index reveals that

by adding a dynamic protection mechanism it largely effects the utilisation of the general

purpose possibilistic simulator version (i.e. with spooling) and slightly effects the interactive

version (i.e. without spooling). The equations marked 'best' describe these changes of

behaviour and future predictions, as demand decreases or increases.

Table 7.4 shows that the average system throughput for the interactive versions (with

CHAPTER 7.

,.. ,..
c ..
E

•
~

8.

---+--~PSSP

-----~-----6PCDPM

--+------iCSp

+

SIMULATOR RESULTS

S II1lLA TOR RESULTS

SIMULATOR RESULTS

JE ICSDMP SIMULATOR RESULTS

0B1ANJ (No. oF ~ JtBS)

221

•

Figure 7.5: PERFORMOACT Modelling: Reductions Effects USing Average System
Throughput

or without dynamic memory protection) is higher than the average system throughput for

the general purpose versions. We noticed that the dynamic protection mechanism has less

impact upon the interactive version than the general-purpose version. We also noticed that

the degradation impact, upon the average system throughput, of adding a spooling unit is

greater than that of adding the dynamic memory protection unit.

Table 7.5 illustrates that the average response degrade by 5 seconds on average when a

spooling unit is added. It degrade more when the dynamic memory protection is added to

the general purpose simulator, and less when the same dynamic memory protection unit is

added to the interactive version.

CHAPTER 7.

,.. ,..

•
~

I
> ...

i
• -+----ICSP

SIMULATOR RESULTS

SIMULATOR RESULTS

SIMULATOR RESULTS

II ICSOMP SIMULATOR RESULTS

OSWI) (No. of> CONCURRENT JCeS)

222

Figure 7.6: PERFORMOACT Modelling: Reductions Effects using Average Response Time

It is important to note that the performoact modelling equations describe the perfor

mance behaviour subject to certain changes and are independent of the time changing factor.

On the other hand, the traditional simulation techniques always associate the variation of

any performance index with the time factor (e.g. simulation time, cpu utilisation time,

etc.). They prove very sensitive and confusing as many researchers note (see Mohamad

1981 for the survey). Figures 7.7 to 7.9 illustrate the way, the simulation based modelling

describes the effects of the major reduction of activities upon the average response time

index (note for example the difficulty of deciding which curve in figure 7.7 represent better

response time).

It is important to note that in order to tune the behaviour of the possibilistic generator

CHAPTER 7.

MIN 6 10 16 20 26

(V1) OBSERVED DEMAND 4 10 2g 41 67
(GPPSSP) OBSERVED EFFECT. 726.2 748.8 76g.64 773.3 786.g
LIN PERFORMOACT MODEL A= 736.7 B=.746 DF=.814
ElP PERFORMOACT MODEL A= 736.6 B=.0009 DF=.813
LOG PERFORMOACT MODEL A= 706.3 B=17.37 DF=.962 *iDMS*
PWR PERFORMOACT MODEL A= 706.3 B=.023 DF=.963 *BEST*
--
(V2) OBSERVED DEMAND 2 9
(GPPSDMP) OBSERVED EFFECT. 667.6 666.6
LIN PERFORMOACT MODEL A= 661.1 B=1.196
EXP PERFORMOACT MODEL A= 661.4 B=.0020
LOG PERFORMOACT MODEL A= 660.8 B=12.93
PWR PERFORMOACT MODEL A= 661.6 B=.0221

(V3) OBSERVED DEMAND 4 16
(ICSP) OBSERVED EFFECT. 449.2 663.24
LIN PERFORMOACT MODEL A= 636.4 B=2.12
ElP PERFORMOACT MODEL A= 623.2 B=.004
LOG PERFORMOACT MODEL A= 408.6 B=61.92
PWR PERFORMOACT MODEL A= 414.1 B=.116

(V4) OBSERVED DEMAND 4 14
(ICSDMP) OBSERVED EFFECT. 460.g 82g.9
LIN PERFORMOACT MODEL A= 633.6 B=1.646
ElP PERFORMOACT MODEL A= 624.1 B=.003
LOG PERFORMOACT MODEL A= 427.g B=49.68
PWR PERFORMOACT MODEL A= 428.8 B=.0969

16 30 37
680.3 697.8 606.8

36

DF=.982
DF=.983 *BEST*
DF=.866 *ADMIS*
DF=.867

46 62
678.2 660.8 671.8

DF=.448
DF=.484
DF=.686 *iDMIS*
DF=.717 *BEST*

31 43 64
648.8 692.6 671.8

DF=.407
DF=.444
DF=.876 *iDMIS*
DF=.706 *BEST*

Where : THE NUMBER OF CONCURRENT JOBS REPRESENTING THE DEMAND
THE AV. RESOURCES UTILISATION REPRESENTING EFFECTIVENESS;
LINEAR PERFORMACT MODEL = EFF = A + B * DEMAND
EXPONENTIAL PERFORMOACT MODEL= EFF = A ElP(B* DEMAND)
LOGARITHMIC PERFORMOACT MODEL= EFF = A +B* LIN(DEMAND)
POWER PERFORMOACT MODEL = EFF = A*DEMAND**B

223

Table 7.3: PERFORMACT MODELLING OF THE MAJOR REDUCTION ACTIVITIES
USING THE AVERAGE RESOURCES UTILISATION FOR EFFECTIVENESS

it is important to select those design data marked ADMIS (i.e. admissible). IT the trend is

marked ADMIS and BEST this means the system is already showing the required behaviour.

CHAPTER 7.

MIN 6 10 16 20 26

(Vl) OBSERVED DEMAND 4 10 2g 41 67
(GPPSSP) OBSERVED EFFECT. 0.8 1.0 1.g3 2.06 2.28
LIN PERFORMOACT MODEL A= .78 B=2.g2 DF=.g6
EXP PERFORMOACT MODEL A= .83 B=.02 DF=.g3
LOG PERFORMOACT MODEL A= -.14 B=.6g DF=.g7 *ADMIS*
PWR PERFORMOACT MODEL A= .42 B=.42 DF=.g8 *BEST*

(V2) OBSERVED DEMAND 2 g 16 30 37
(GPPSDMP) OBSERVED EFFECT. 0.4 o.g 1.06 1.6 1.4
LIN PERFORMOACT MODEL .4.= .62 B=.02 DF=.g3
EXP PERFORMOACT MODEL A= .62 B=.03 DF=.87
LOG PERFORMOACT MODEL A= .11 B=.36 DF=.g8 *ADMIS*
PWR PERFORMOACT MODEL A= .30 B=.44 DF=.gg *BEST*

(V3) OBSERVED DEMAND 4 16 36 46 62
(ICSP) OBSERVED EFFECT. O.S 1.6 2.4 2.3 2.0S
LIN PERFORMOACT MODEL A= .g6 B=.02 DF=.S7
EXP PERFORMOACT MODEL A= .g4 B=.Ol DF=.S6
LOG PERFORMOACT MODEL A:II .006 B=.6S DF=.g6 *ADMIS*
PWR PERFORMOACT MODEL A= .47 B=.41 DF=.g6 *BEST*

(V4) OBSERVED DEMAND 4 14 31 43 64
(ICSDMP) OBSERVED EFFECT. 0.8 1.4 2.06 2.16 2.16
LIN PERFORMOACT MODEL A= .g2 B=.02 DF=.g2
EXP PERFORMOACT MODEL A= .g2 B=.Ol DF=.Sg
LOG PERFORMOACT MODEL A= .006 B=.66 DF=.gg *BEST*ADMIS*
PWR PERFORMOACT MODEL A= .47 B=.40 DF=.gS

Where : THE NUMBER OF CONCURRENT JOBS REPRESENTING THE DEMAND

THE AV. RESOURCES UTILISATION REPRESENTING EFFECTIVENESS;
LINEAR PERFORMACT MODEL = EFF = A + B * DEMAND
EXPONENTIAL PERFORMOACT MODEL= EFF = A EXP (B* DEMAND)
LOGARITHMIC PERFORMOACT MODEL= EFF = A +B* LIN(DEMAND)
POWER PERFORMOACT MODEL = EFF = A*DEMAND**B

224

Table 7.4: THE EFFECTS OF THE MAJOR REDUCTION TECHNIQUES UPON THE
AVERAGE SYSTEM THROUGHPUT INDEX

CHAPTER 7.

MIN 6 10

(vi) OBSERVED DEMAND 4 10
(GPPSSP) OBSERVED EFFECT. 6.49 13.:26
LIN PERFORMOACT MODEL A= 9.:26 B=.19
EXP PERFORMOACT MODEL A= 8.77 B=.Ol
LOG PERFORMOACT MODEL A= 1.33 B=4.66
PWR PERFORMOACT MODEL A= 4.46 B=.38

(V:2) OBSERVED DEMAND:2 9
(GPPSDMP) OBSERVED EFFECT. 7.66 17.14
LIN PERFORMOACT MODEL A= 9.78 B=.70
EXP PERFORMOACT MODEL A= 10.10 B=.03
LOG PERFORMOACT MODEL A= .18 B=8.9
PWR PERFORMOACT MODEL A= 6.61 B=.61

(V3) OBSERVED DEMAND 4 16
(ICSP) OBSERVED EFFECT. :2.67 9.73
LIN PERFORMOACT MODEL A= 4.:27 B=.16
EXP PERFORMOACT MODEL A= 3.73 B=.O:2
LOG PERFORMOACT MODEL A= -1.13 B=3.:2:2
PWR PERFORMOACT MODEL A= 1.46 B=.64

(V4) OBSERVED DEMAND 4 14
(ICSDMP) OBSERVED EFFECT. :2.66 7.99
LIN PERFORMOACT MODEL A= 4.:24 B=.16
EXP PERFORMOACT MODEL A= 3.81 B=.O:2
LOG PERFORMOACT MODEL A= -1.90 8=3.61
PWR PERFORMOACT MODEL A= 1.38 B=.67

16 :20 :26

:29 41 67
16.96 19.93 17.'/:2

DF=.8:2
DF=.78
DF=.96
DF=.93

16
:26.34
DF=.96
DF=.89
DF=.98

*BEST*ADMIS*

30 37
31.:27 33.39

DF=.99 *BEST * ADM IS*

36 48 6:2
10.:26 11.11 1:2.:28

DF=.86
DF=.80
DF=.96 *BEST*ADMIS*
DF=.94

31 43 64
1:2.:28 11.43 1:2.09

DF=.86
DF=.81
DF=.98 *BEST*ADMIS*
DF=.96

Where : THE NUMBER OF CONCURRENT JOBS REPRESENTING THE DEMAND
THE AV. RESPONSE TIME REPRESENTING EFFECTIVENESS;
LINEAR PERFORMACT MODEL = EFF = A + B * DEMAND
EXPONENTIAL PERFORMOACT MODEL= EFF = A EXP(B* DEMAND)
LOGARITHMIC PERFORMOACT MODEL= EFF = A +B* LIN(DEMAND)
POWER PERFORMOACT MODEL = EFF = A*DEMAND**B

225

Table 7.5: THE EFFECTS OF THE MAJOR REDUCTION TECHNIQUES UPON THE
AVERAGE RESPONSE TIME INDEX

CHAPTER 7.

--+--iNTERACTIYE CONSTAl.ATi~ WITH STATIC PROTECTION

-----&-----INTERACTlVE CONSTA1lATI~ WITH STATIC AND DYWJ1IC PROTECTION

I
~
> <

,

1

i
CPU EFFECT lYE TItE (SEC)

Figure 7.7: Adding Dynamic Memory Protection to The Interactive Constellation

226

CHAPTER 7.

I
I

227

CPU e=FECT lYE TIrE (SEC)

Figure 7.8: Reducing The General Purpose Simulator to An Interactive Constellation

CHAPTER 7.

~
J-----1af~~--~~~----~~~~ .. ~-----nfN8~-----

CPO a=FECT IYE TIrE (SEC)

Figure 7.9: Reducing GPPS to a GPC with Dynamic Memory Protection

228

CHAPTER 7. 229

7.6.2 The results of experiments of performoact modelling:

In order to prepare for the performoact modelling, we need to gather data from running the

simulator. For this purpose we set our system operation time to 25 minutes (i.e. 1.5 x 106

msecs) and the statistics gathering period is set at 5 minute (= 3 x 105 msecs) intervals.

The other parameters were set according to the NUKE control data of Tables 7.1 and 7.2.

The changes include systematic variations of both, hardware and software parameters.

We decided to use one version of the possibilistic simulator, namely, the interactive constel-

lation with dynamic memory protection. Also for a more narrow assessment of performance

we decided to use the average system response time index as the most representative in-

dex of the factors involving the matching environment, and the number of concurrent jobs

representing the user environment see Figure 7.10). Response time has also a great impact

upon the user productivity.

Operator Response Time

include factors

System Response Time

effected by workload,
software, and hardware
factors

like, think time(involving
typing time).

l-t;:1<:..-------------~>·I--<~----------~ptl
Begin Press Disply

ENTER

Figure 7.10: The transaction structure and its contribution to the response time index.

Here the reader should note the the original NUKE-based control data will be marked

as "CON" at the left side of each performoact table to provide the clear indication of any

variation from the original set of data.

There are indeed a large number of experiments that can be studied and analysed using

the performoact framework. We are presenting in this section only one experiment and a

table 7.6 which summarises the data associated with the B-Admis models as well as the

CHAPTER 7. 230

data associated with B-Best models. The experiment introduced in this section is used

to demonstrate the idea of performoact and the table list the two tuning data sets that

will be used in the next section for validation. The details of the experiments (2-20) that

contributes to the results listed in Table 7.6 can be obtained from the Appendix. For

Experiment 1 see the sequel.

Exp No B_BEST B_ADMIS B-BEST Valuee B_ADMIS Values

MODEL MODEL

1 LOG LOG 24 Terminal 24 Terminal
2 LOG LOG 76 Transaction 76 Trans acti on
3 LOG LOG 8.0 Sec 8.0 Sec
4 LOG LOG .26 Rate .26 Rate
6 PWR LOG 10 Sec 20 Sec
6 LOG LOG 2 Tasks 2 Tasks
7 LOG LOG 3 Sec 3 Sec
8 PWR LOG 16 Sec 16 Sec
9 LOG LOG 16384 Byte 16384 Byt ..

10 LOG LOG 400 Record. 400 aecord.
11 LOG LOG 3072 Byt .. 3072 Byte.
12 LOG LOG 161662 Bytes 161662 Bytes
13 LOG LOG 0.4 Maec 0.4 Mnc
14 LOG LOG 0.0066 Nnc 0.0066 Mnc
16 LOG LOG 16 Maec 16 Mllc
16 LOG LOG 1 Pass 1 Pass
17 LOG LOG SRR SRR
18 LOG LOG 0.6 Msec 0.6 Nnc
19 LOG LOG 1.6 Maec 1.6 Mnc
20 LOG LOG 0.3 MIlC 0.3 Mnc

Note that experiment. 2-20 are in the appendix.
B_BEST refer. to the average tuning value.
B_ADMIS refer. to the balance tuning value.

Table 7.6: Summary of the experimentation.

These tuning values will be used in the next section for validation.

Experiment 1: Number of terminals vs Av. response time. Using the performoact

modelling scheme after running the interactive constellation with different number of active

terminals attached to it, table 7.7 is produced.

The average response decreases as the number of terminals decreases (in average 2 sec

onds for each eight terminals). Figure 7.11 illustrates the linear performoact models of

different active terminals setting, attached to the interactive constellation. In this experi

ment, the logarithmic curve of 24 terminal prove to be the best for both, the average and

CHAPTER 7.

MIN 6 10 16 20 26

(16) OBSERVED DEMAND 4 13 27 40 46
Trmnll.) OBSERVED EFFECT. 2.38 3.89 6.13 6.28 6.7
LIN PERFORMOACT NODEL A= 2.66 B=0.08 DF=.89
EXP PERFORMOACT NODEL A= 2.64 B=0.02 DF=.88
LOG PERFORMOACT NODEL A= 0.02 B=1.64 DF=.94 *ADNIS*
PWR PERFORMOACT MODEL A= 1.39 B=0.40 DF=.96 *BEST*

(24) OBSERVED DENAND 4 14 30 42 60
Trmnll.) OBSERVED EFFECT. 2.3 6.94 8.62 8.66 9.18
LIN PERFORMOACT NODEL A= 3.06 B=.13 DF=.91
EIP PERFORMOACT MODEL A= 2.97 B=.02 DF=.86
LOG PERFORMOACT MODEL A=-1.38 B=2.76 DF=.99 *BEST*ADNIS*
PWR PERFORMOACT NODEL A= 1.18 B=.64 DF=.97

(32) OBSERVED DEMAND 4 14 31 43 64
CON) OBSERVED EFFECT. 2.66 7.99 12.28 10.43 12.00
LIN PERFORMOACT NODEL A= 4.24 B=.16 DF=.86
EIP PERFORMOACT NODEL A= 3.81 B=.02 DF=.81
LOG PERFORMOACT NODEL A= -1. 90 B=3. 61 DF=.96 *BEST*ADMIS*
PWR PERFORMOACT NODEL A= 1.38 B=.67 DF=.96

(40) OBSERVED DEMAND 4 14 32 46 66
Trmnll.) OBSERVED EFFECT. 3.39 8.19 12.66 12.76 13.13
LIN PERFORMOACT MODEL A= 4.61 B=.17 DF=.90
EXP PERFORMOACT MODEL A= 4.46 B=.02 DF=.86
LOG PERFORMOACT MODEL A= -1.87 B=3.88 DF=.98 *BEST*ADMIS*
PWR PERFORMOACT NODEL A= 1.79 B=.62 DF=.97

Where : THE NUMBER OF CONCURRENT JOBS REPRESENTING THE DENAND
THE AV. RESPONSE TIME REPRESENTING EFFECTIVENESS;
LINEAR PERFORMACT MODEL z EFF = A + B * DEMAND
EXPONENTIAL PERFORMOACT NODEL= EFF = A EXP(B* DEMAND)
LOGARITHMIC PERFORMOACT MODEL= EFF = A +B* LIN(DENAND)
POWER PERFORMOACT MODEL = EFF = A*DEMAND**B

B-BEST
: B-ADNIS

231

Table 7.7: The Effects of Changing The Average Number of Terminals on The Average
Response Time Index

balance tunings. linear performoa.ct models of different active terminals settings attached

to the interactive constellation.

CHAPTER 7. 232

--+--iCSDtP SIrt.U~ WITH tb. (F ACTIVE 1CRtilHALS • 18

-----f)------ICSttP SIr'l.U~ WITH tb. (F ACTIVE 1ERr1INAL.8 • 2i

--+-----lCSOl'P SIP'U..A ~ WITH tb. (F ACTIVE 1ERr1IHALS • 32

• ICSEJP SnU,..A~ WITH tb. (F ACTIVE TERr1IHALS • 18

z ~
~

+ ~
~ + ~

1 /'
~

~
~

~ ,... ~ ~~ ,... /' +
" "

~
1 ~

,,~' ~~ ,
~

, e
/,,,

,~ ...,
~

I! (!)
f

.... , ~ ... , , , , ...

I '/
,

~" ...
" ,

/"'~
, , , , , , ...

/e , ... • • ~~
~

,
"

, • ,
........... ~~

I
.... ,

... '
...... , ' ~~

... -i ~.>'

I".....,.,

•
[SiAN) (No. oP ~ Jt8S)

Figure 7.11: PERFORMOACT Modelling: The Effects of Adding Terminals

CHAPTER 7. 233

7.7 The Use of Admissible Models and The Validation Is

sue

It was of a great interest to see the effects of chosing the design data of the balance tuning (B

ADMIS) and those associated with the average tuning (B-BEST) for tuning the possibilistic

generator. This can be done by re-runing the possibilistic generator according to these

design data. It was of interest also to validate our tuned results (using Tables 7.6, 7.1,

and 7.2) against the actual results obtained from a similar system (i.e. DEC-Nuke-oriented

system) as reported by Penny and Sheedy (1980). For this purpose, we run our possibilistic

generator for the same period monitored by Penny and Sheedy, 90 minutes, the response

time was monitored each 5 minutes. The running results and the comparison is shown in

Figure 7.12.

It is clear from Figure 7.12 that our system with the balance tuning data in most of the

cases provide better response time than the actual system and less effectively of that with the

average tuning data and showing both greater stability than the actual system results. This

due mainly to the identification of the admissible behaviour of the cooperating environment

and tuning the system accordingly. The correlation coefficient between the actual system

response times and our possibilistic simulator balance-tuning response times is 0.5933 and

with our average-tuning response times 0.5317 which are relatively high considering that our

possibilistic simulator possess the self- regulating behaviour due to the learning mechanisms

adopted in the complete shell of the possibilistic generator that the actual system does not

implicitly have.

It is an established fact, however, that the validation of a complex software system

such as the possibilistic generator, is a complicated process (c.f. Hughes 1981, Theory

1975). That is beside the fact that the activity structures simulation is not meant to

simulate existing systems so that we need to provide rigorous validation proofs. Activity

structures simulation has been performed to show the applicability of the activity structures

methodology as well as to show the effectivity of its design principles in producing high

performance architectures for highly constrained systems. The validation of our possibilistic

CHAPTER 7. 234

simulator mainly depends upon the verification of the logic of the simulator C programs.

However, we may perform certain degree of validation using theoretical models. Unfor

tunately, there are no theories to design and analyse distributed computer systems such as

our possibilistic generator (c.f., Klienrock 1985). However, we can direct the comparison to

a different type of theoretical models; those extracted from empirical situations. For this

purpose, we selected two notable empirical models, one based the constant model of Boyse

and Warn (1975) and the second based on a model extracted the operational laws of Buzen

(1979).

For this case study we run the generator by using the data mentioned in tables 7.1

and 7.2, in which the only variable for further runs is the number of active terminals in the

system and the only performance index is the average response time. The relevant data in

Tables 7.1 and 7.2 are used by the two empirical models. The empirical models define the

response time as follows:

BOYSE AND WARN EMPIRICAL MODEL:

C the average CPU time required by a job

c the average CPU time period between I/O operations

, the average service time of an I/O request

M the effective degree of multiprogramming

N the number of active terminals

Z the average user think time

K number of devices

U CPU utilisation
_ _ (M-K)! (i..) k
-1 M! C

R Response time

- NC_Z
- U

THE OPERATIONAL LAWS OF BUZEN:

CHAPTER 7.

N is the number of active terminals

Z the user average think time

K number of devices

h

X

R

is a normalisation factor (Williams and Brandiwad 1976)
_ hN-l,K N
- h N,K Z

Response time
_N_Z -x

Figure 7.13 illustrates the first case study results.

235

The comparison results show close agreements between the results (correlation coefficient

between the possiblistic generator response times and the Boyse and Warn response times is

0.9090 and between the possibilistic generator response times and the operational analysis

response times is 0.9357), indicating that our possibilistic simulator can be trusted for

conventional computer systems design.

The other dimension of performing some validation on our possibilistic generator can

be performed in the direction of comparing the performance of specific components or

structures of the possibilistic generator with an existing, similar type computer system

components.

We picked performance data from the activity of the memory system utilising a disc

available and from two well-protected computer systems, the CAP computer (Wilkes and

Needham 1979) and the HYDRA computer (Cohen et al 1974) in which also they are

exceptionally successful. Figure 7.4 illustrate the comparison.

Figure 7.14 shows a relatively close agreement (the correlation coefficient between the

possibilistic simulator disc utilisations and the Hydra system disc utilisation is 0.5215

whereas the correlation between the possibilistic simulator disc utilisations and the CAP

system disc utilisation is 0.5404). This indicates that our possibilistic simulator disc is

slightly over utilised compared to the two notable computer systems. This is again may

provide further confidence in our possibilistic simulator results.

CHAPTER 7. 236

~ PO~3IEILISTIC RESULTS WIT~ 3AlA~CE DATA OF NU~=
• POSSIBILISrrIC RESULTS WITH AV2-~AGE DAl'A O? NUKE
• NUKE ACTUAL SYSTEM RESULTS

A
1

1

" & W 1
(!)

•
v

A • •
!

(!)

... A • • • • A
l- • (!)

i
, A A

! • & i (!) • (!)

A (!) • •
* (!) • (!)

i .6. A
<

A A

381 ... !S81 SCI
~TIH6 TI~ (MIN)

Figure 7.12: Simulation vs Real System Results: A Validation Case Study

CHAPTER 7. 237

1
~ OF ACTIVE TERr1INAL.S

Figure 7.13: Validating The Simulator Results with some Theoretical Models

CHAPTER 7.

"
.~

'J

Z
0-
<
N
...J
I-
:)

U
en
~

0

--+---THE SIMULATED ICSDMP NUKE SYSTEM

-----~-----THE HYDRA SYSTEM

---1---iHE CAP SYSTEM

70

\
\
\
\
\
\
\

~-- ~)---

\ .(9- - - - - - - -e>- - - - - - - -{!)

20

10

o 100

\ /

~/

CPU EFFECTIVE TIME (SEC)

Figure 7.14: A Comparison of Protected Systems Disc Utilisation Performance

238

Chapter 8

SUMMARY, CONCLUSIONS AND FUTURE
RESEARCH

8.1 Summary And Conclusions

In this thesis I have proposed an activity structures based methodology which can be used

to design and construct highly constrained computer systems. The motivation for such

design and construction methodology emerges from an entirely different paradigm than the

conventional paradigm of designing computer system. Based on the general/meta systems

design paradigm, we have been studying the problem of designing computer systems em

ploying the analogy with the brain system. The brain is a maximally constrained system.

Although such maximally constrained systems appear to be limited in their possible be

haviour, they can function in a way that introduces a limitless plasticity in their behaviour

without breaking their constraints. In a very recently published article Gains and Shaw

(1986) expressed a view similar to that which motivated my work. Formalised conventional

computer systems design techniques are thus often seen as threatening and unneeded.

In our opinion, the conventional design techniques do not captures adequately the dy

namics of the human-factors involved in the computer interaction with its user environ

ment. Computer systems must always be designed as coupling devices that coordinate

planning and improve control and performance of both the user interaction and machine

environments. By-in-Iarge, our design and construction methodology attempts to capture

the dynamics of the essential interrelated and mutually adjusting design factors: problem,

239

CHAPTER 8. 240

technology, people, and function structures. The complex nature of interaction of these

factors in computer system design is pictured in Figure 8.1

':i:'~C;TV)LOGY

Sujstr2.ta

T2\S~ZS

structures) t------....... ---4

Pr::OPLE
Z\Cr::'rVITIES

(includins the
user and the
designer activities)

?U'~CTIOll;\L /
STRUC':'U~ES

Figure 8.1: Design factors of our computer design methodology.

When one of the interaction of the design factors is changed, the other factors should

adjust to diminish the impact of that change. This simply means that the basic concepts

of design such as relativity, uncertainty, ability to change, conversation and learning of

both the user and machine environment, should be naturally encompassed by the design

methodology. As argued in chapters 2 and 3, this were not present in the conventional com

puter systems design theories and techniques. The major implication of the conventional

methodologies is that the complexity of a computer system is best controlled by designing

it in a structural way so that the smallest possible design components can be represented.

From the conventional design methodologies point of view, the design can be performed best

by segregating the design task into design three directions; namely, software enginnering,

computer architecture, and knowledge engineering. Each segregation is responsible for pro

ducing certain design product that can be matched in some way to the others. Accordingly,

the software engine~ring techniques are used to prod uce the computer software, such as the

operating system; the computer architecture techniques produce the computer organisa

tion and hardware; and finally the knowledge engineering provide «intelligent'" application

programs that can operate on that computer system and communicate with its users.

The segregation we use is entirely different. For us segregation is the task of identifying

CHAPTER 8. 241

the sets of functions which are mutually independent and complimentary. To this effect our

design methodology segregates the following functions (see chapter 4):

1. the user requirements versus the designer construction steps,

2. the user environment activities versus the machine environment activities ,

3. design functional duties (i.e. the functional structures) versus the the implementation

media (i.e. the substrata),

Although these segregated functions often seem to be conflicting in the traditional de

sign, our methodology use them to design and construct computer systems. For us segrega

tion is the result of understanding and cooperation that identifies the essential parts of the

design and the simple relations between its parts. In other words, the design can best be

regarded as a web which express the essential parts which are delicately pieced together by

simple links. Indeed, if we express a design as web of ideas, we can emphasise its properties

in a natural and satisfying way (see the properties of our design as it were echoed by the

postulates in chapter 4).

It is the fundamental premise of this thesis that the purpose of computers is to provide

effective computational media within any given user environment. That solution can be best

attained through the understanding and realisation of the following issues we are proposing

in (see chapters 4 and 5):

1. Performing the Essential Design Activities: These activities aim at producing an

activity structures based computer system. Starting by eliciting the design require

ments from the user. Then by identifying the relevant design features, the designer

decide upon the way he/she selects the relevant and essential functional structures

(representing the design essential elements and the required constraints). This step

is followed, then, by selecting the matching substrata for realising the essential func

tional structures (i.e. forming the computer machine). In our case we selected two

extensible substrata structures: the coroutines and the descriptor-oriented architecture

(i.e. in order to construct a possibilistic generator of computer designs). The selecting

CHAPTER 8.
242

of such extensible substrata for implementation, produce a possiblistic system that

can be optimised easily. Beside selecting the matching substrata, we distinguished

between activities generated by the user environment (essentially randomised with

certain user learning capabilities) and activities generated by the computer environ

ment (essentially randomised with certain machine learning capabilities).

2. Exploring the Resulting Possibilistic Design: In this stage the designer explore the

computer system activities according to the given design requirements. The designer

in the exploration stage perform the following operations (see chapter 4 and 7):

(a) observe the behaviour of the possibilistic design according to the given require-

ments,

(b) identify from the observed behaviour the admi8sible design data that produce

interesting behaviour,

(c) tune the possibilistic design using the admissible data obtained,

(d) perform 2a, 2b, and 2c until the system reaches the state of self-regulation or

survival.

3. Adopting Cooperating Learning Mechanisms: These mechanisms are not essential only

for the actual representation of computer systems design, but also for enforcing the

criteria of self-regulation or the dynamics during system-user interaction that was

theoretically pointed out by Kupka (1974) and experimentally validated by Barber

(1979) on computer systems. In our case, the user learning mechanism changes the

average user intentions in certain directions that causes maximisation/minimisation

of the user activities according to the machine responses. Similarly, machine learn

ing mechanisms (i.e. our inferential structures) try to enhance performance with the

increasing user productivity power until certain threshold is reached, by then their

performance degrades, signaling to the user environment to that it should decrease

its activities. When the user environment learns this, the computer machine envi

ronment enhances its performance again, and so the cycle repeats itself, causing the

CHAPTER 8.
243

enforcement of the self- regulating criteria which provide the fine tuning.

In chapter 5, we presented the abstract features of activity structures based designs

(forming a design shell). The design of the shell represents a contribution within the area

of distributed systems design. The distribution of the shell structures was mainly upon

the control, communication, inferential and protection structures. Chapter 5 describes cer

tain essential new design concepts, such as the communication distributed modules (using

message-passing, loosely coupled modules)' the communication participants, the inferen

tial/learning memory and processor mechanisms. It also contains further less essential

contributions. Particularly in the design of sharable information structures (based on the

descriptor-oriented architecture) and the enforcement of both the static protection (using

the port-oriented mechanism) and the enforcement of the protection dynamics. Chapter

5 concludes with the issue of selecting the C programming language as a multiparadigm

high-level language for implementation.

In chapter 6, we performed the main steps of the designer activities leading to the

realisation of the shell. This chapter contains the main algorithms that we used for the

purpose of our implementation. Chapter 6 clearly demonstrates that the design structure,

presented in chapters 4 and 5 can be successfully embeded in a workable implementation.

Chapter 7 illustrates the case of using the shell to simulate an existing highly con

strained computer system, the NUKE. Exploring the activity structures Nuke based design,

we used the performance modelling technique that we developed to identify certain admis

sible/nonadmissible design features that enhances/degrade the overall system performance.

Briefly, this chapter study the validation issue of the activity structures Nucke based design.

Therefore the main contributions of this thesis can be summarised as follows: ,

1. I presented a total system design framework which overcomes the conventional com

puter systems design inadequacies which are caused by the lack of the design and

constraint picture of the whole design. The need for total design framework has been

expressed recently by Roman et al (1984).

2. Using this framework, we developed an activity structures based method for producing

CHAPTER 8. 244

accurate, effective, highly constrained, realistic and practical computer systems (chap

ter 5). The method produces computer architectures that are machine-independent,

display stability of performance within acceptable regions (self-regulating)' virtual

memory, multiprocessing, blackboard, decentralised functional structures, descriptor

oriented, message-passing. The other outcome that we do not end with the final

product but also with a reusable design shell (basically new designs can be obtained

by changing the design data from the knowledge structures). This shall captures the

design experience during the use of other product.

3. The full scale implementation of a computer design tool codified using the C program

ming language. This implementation is runnable under the VAX 11/750 computer

and can be easily ported to other suitable computer systems.

4. The development of a new framework called performoact modelling, which can be used

for evaluating the effects of the design parameters on the criteria of self-regulation.

8.2 Future Research

Future research could continue in the following directions:

1. The Empirical Analysis of-Performance:

The simulation study of the activity structures based shell presented in chapter 6

and 7 could easily be extended to investigate the effect of different machine learning

or inferential mechanisms, different memory architectures (i.e. different hierarchy),

different device characteristics, different communication styles (i.e. asynchronous com

munication), different addressing mechanisms, additional protection mechanisms (e.g.

static and dynamic access control protection upon files), different message structures,

different memory and processor scheduling policies, different activity generators ran

dom distributions, additional constraints (e.g. reliability factors), and different user

environment activities, etc.

CHAPTER 8. 245

2. The Empirical Complexity Analysis of the Shell :

It will be interesting to make an extensive empirical study of the complexity of the C

program of the activity structures based shell (e.g. program size, static and dynamic

statement percentages, program style, etc). in comparison with a similar purpose

software (e.g. the UNIX operating system version 5). The reason for studying the

complexity is it has been shown that the implications of different programming tech

niques upon the resulting computer architecture efficiency is quite considerable (c.f.

Tanenbaum 1978). In order to achieve this we need only to modify an existing C

compiler or write our own software (for aiding dynamic and static analysis) and write

a preprocessor and postprocessor (for aiding the dynamic analysis). To start such re

search the reader is referred to Robinson and Torsun (1976, 1977); Berry and Meekings

(1984). However, empirical complexity analysis may also be done at a different ab

straction level using the Halstead theory of software science (1977). For this purpose,

we refer the reader to the following essential references which used of such approach

within the area of operating systems and computer architecture quality evaluation

(Pashtan 1985, Kavipurapu and Frailey 1979).

3. Structural Synthesis of the Shell :

In our design the shell synthesis was manual and performed by the designer. However,

structural synthesis represent the automatic decomposition of the given shell into a

set of systems-components, which after connection behave similarly to a decomposed

system (c.f. Pichler and Ottendorfer 1978). The approach may require to develop

certain complexity measures that can be associated with the process of synthesis,

such as the complexity measures developed by the reconstructibility analysis (Cavallo

and Klir 1981), or the heuristics synthesis techniques (Abd-Alla and Karlgaard 1974).

The process vf synthesis should also be accompanied by an approach to performing

the automatic synthesis of user intentions. For this purpose, we refer the reader to

Haring et al (1978).

CHAPTER 8. 246

4. Developing a Theoretical Approach:

This is an interesting future development that we aim to achieve within our future

research work: The development of theoretical modelling techniques for the design

and evaluation of activity structures based computer systems. This should produce

quite original research, since there is no existing theoretical technique for the design

and evaluation of distributed computer systems (such as activity structures based

systems) (c.f. Klienrock 1985). For this purpose, we believe that the theory of dynamic

systems (Jacak and Sierocki 1985), the formal theory of modelling (Zeigler 1972), and

the theory of system behaviour description (Gaines 1977, Gaines 1976, Witten 1977,

Riddle 1979) can be used along with the system connection analysis (Yuval 1980) to

produce an effective design and analysis activity structures based computer models.

However, simpler modelling technique can produced by using the concurrent system

design (Hartmann 1983, Clements 1977) along with the theory of relational products

(Bandler and Kohout 1980).

5. Stability Analysis of the Shell Self-Regulation:

In this respect, we propose to extend our performoact modelling framework to a more

formal analysis by expressing the criteria of self-regulation using the stability analysis

(Perlis and Ignizio 1980) or the adaptivity theory of Gaines (1972, 1974) or the learning

metaphors of Carrol and Mack (1985). We believe this is quite possible way, since

it was previously used to express the criteria of self-tuning of certain conventional

computer systems (c.f. Von Mayrhauser 1979).

6. Distributed Descriptor- Oriented Architectures:

In spite of the amount of work recently devoted to distributed systems, distributed

applications are relatively rare (c.f. Ellis 1985). One hypothesis that explains this

scarcity is lack of experience with algorithm design techniques that are tailored to a

design environment in which out-of-date information is the rule. Since the design of

data structures is an important aspect of traditional algorithm design, we feel that it

is an important to consider the problem of distributed data-structures (or data types).

CHAPTER 8.
247

Specially, the effects of different organisations of the distributed descriptor-oriented

architecture. As a starting point I believe it would be to extend the techniques of

Mohamad and Cavouras (1984), Booth and Wiecek (1980), Giloi and Berg (1977).

7. Further Design Features Taken from the Brain Analogy:

For this extension, I propose to study the possibility of adding/changing parts of the

shell structures in order to provide new Brain-like features. Examples of such new

features that could enhance the criteria of shell 'reliable' operations are the represen

tation of the Brain casual structures (Rosen 1986) or the Brain by-pass mechanism

(Jugeli 1980).

8. The Systematic A nalysis of Dialog Shell Design:

Since the interaction level of the shell with its human users is of interest for the design

of sixth generation computer systems (Gaines and Shaw 1986), then the replacement of

our user environment by a shell that systematically captures the foundation for dialog

engineering, will be of considerable advantage. For the purpose of this replacement we

recommand the adoption of the theoretical models oh human-machine communication

of Oberquelle et al (1983).

To conclude, we believe that our presented design tool supports a methodological ap

proach for designing maximally constrained, high-performance computer systems that pro

vide elegant solutions to several problems which previous fragmented attempts have handled

only in an ad hoc fashion.

248

REFERENCES

ABD-ALLA, A. M. and KARIGANRD, D. C. 1974, Heuristicsynthesisofmicroprogrammed

computer architecture, IEEE Trans. on Computers, Vol. C-23, No.8, pp. 802-807

ALEKSANDER, I. 1982, Mind, brain, structure and function, kybernetes, Vol. 11., pp. 249-

253

ALLEN, J .R. and KENNEDY, K. 1985 A parellel programming environment, IEEE Soft

ware, Vol. 2, No.4, pp.175-189

ALLISON, D. R. 1977, A design philosophy for microcomputer architectures, IEEE Computer,

Vol. 10, No.2, pp. 35-41

AMARI, S. 1983, Field theory of self-organization neural nets, IEEE Trans. on Systems, Man,

and Cybernetics, Vol. SMC-13, No.5, pp. 741-478

AMBLER, A. L. and HOCH, C. G., 1979 A study of protection in programming language,

Sigplan Notices, Vol. 12, No.3, pp. 25-40.

ANDERSON, H. A. and SARGENT, R.G. 1974, Investigation into scheduling for an iner

active computing system, IBM J. of Reasearch and development, March issue

ANDERSON, J. , KOHOUT, L.J. et al 1985, A knowledge-based clinical decision support

system using new techniques: CLINAID, Proc. AAMSI Congress

ANDERSON, B. 1980 Type syntax in language "C". Sigplan Notices, Vol. 15, No.3, pp.

21-27

ANDREAE, J. H. and CLEARY, J. G. 1976, A new mechanism for a brain, Int. J. Man

Machine Studies, Vol. 8, pp. 89-119

ARBm, M. A. 1975, From automatic theory to brain theory, Int. J. Man-Machine Studies,

Vol. 7, pp. 279-295.

ANTONELLI, S. and IAZEOLLA, G. 1983, Multiple access control policies in capability

based protection systems, J. of Information Processing, Vol. 6, No.1, pp. 16-22

BACKUS, J. 1981 Functional level programs as mathematical objects, Proc. of the conf. on

functional programming languages and computer architecture, October, USA.

BACKUS, J. 1985 Function-level computing, In Next-Generation Computer (ed. Torrero),

IEEE press, Spectrum Series.

BAER, J. 1974, Models for the design, simulation and performance of distributed-function ar

chitecture, IEEE Computer, Vol. 7, No.3, pp. 25-30

BAILES, P. A. 1985, A low-cost implementation of coroutines for C, Software-Practice and

Experience, Vol. 15, pp. 379-395

249

BALZER, R., 1983, Software technology in the 1990's: Using a new paradigm, IEEE Computer,

Vol. 16, No. 11, pp. 39-45.

BANDLER, W. 1978 Some Espmathematical Uses of Category Theory, In Klir's Applied Gen

eral Systems Research, Plenum Press.

BANDLER, W. and KOHOUT, L. J. 1979, Activity structures and their protection in: im

proving the human condition: quality and stability in social systems, Proc. Int. Meeting of

SGSR, Louisville, pp. 240-246.

BANDLER, W. and KOHOUT, L. J. 1980, Fuzzy relational products as a tool for analysis

and synyhesis of the behaviour of complex natural and artificial systems, Ed. Wang, P.P. and

Chang, S.K., Plenum Press, New York and London

BARBACCI, M. R. 1975, A comparison of register transfer language for describing computers

and digital systems, IEEE Trans. on Computers, Vol. C-24, No.2.

BARBACCI, M. R. 1977, An architecture facility, ISP descriptions, simulations, data collec

tion, Proc. of AFIPS, Vol. 46, pp. 161-173.

BARBACCI, M. R. and UEHARA, T. 1985, Computer hardware description languages: The

bridge between software and hardware, IEEE Computer, Vol. 18, No.2, pp. 6-8.

BARBER, R. E. 1979, Response time, operator productivity and job satisfaction, New York

University, Graduate School of Business Administration, Ph.D. Thesis.

BARON, R. et al 1985 Mach-1: An operating environment for large scale multiprocessor ap

plication, IEEE Software, Vol 2, No 4, 1985

BARTER, C. J. 1983, Communications policy for composite processes, The Australian Com

puter J., Vol. 15, No.1, pp. 9-16

BASKETT, F. and et. aI., 1975, Open, closed, and mixed networks with different classes of

customers, ACM J., Vol. 22, No.2, pp. 248-260.

BAYLIN, E. 1984, Functional modeling of the business organization, Cybernetics and systems

: An Int. J., Vol. 15, pp. 259-291

BAYLIN, E. N. 1986, Identifying system functions, Int. J. General Systems, Vol 12, pp. 7-38

BEAUMONT, W- P. and MACASKILL, J. L. C. 1975 Studies in the simulation of com

puters, The Australian computer J., Vol. 7, No.1, pp. 7-11

BELL, C. G. and NEWELL, A. 1971, Computer structures: Readings and Examples, McGraw

Hill Book Company, New York

BEER, S. 1972, Brain of the firm, ltarmondsworth: Penguin

250

BERG, H., A computer architecture based on ordered sets as a primitive data entities, Ph.D.
Thesis, Minnesota University.

BERRY, R. E. and MEEKINGS, B. A. E. 1984, A book on C, Macmillan pub. Co.

BERNSTEJN, N. A. 1967, The Co-ordination and regulation of movements, Oxford:Pergamon
Press

BERNSTEIN, A. J. and SHARP, J .C. 1971, A policy-driven scheduler for a time-sharing

system, CACM, Vol. 14, No.2, pp. 74-78

BHANDIWAD, R. A. and WILLIAMS, A. C. 1974, Queueing network models of computer

systems, Proc. of the third Texas Conf. on Computing Systems.

BIC, L. 1982, A protection model and its implementation in a dataflow system, CACM, Vol.

25, No.9, pp. 650-658.

BISHOP, J. M. and BARRON, D. W. 1981, Principles of descriptors, The Computer J.,

Vol. 24, No.3, pp. 210-221.

BLANK, J. and KRIJGER, M. J. 1983, Software engineering methods and techniques, John

Wiley & Sons Pub. Co.

BLUNDEN, G. P., and KRASNOW, H. S., 1967, The process concept as a basis for sim

ulation modelling, Simulation, Vol. 9, No.2, , pp. 89-93.

BOCHMANN, G. V. 1978, Combining assertions and states for the validation of process com

munication, Constructing Quality Software, P.G. Hibbard/S.A Schuman (Eds.) IFIP, North

Holland Pub. Co.

BOHM, A. et a1. 1985 Hardware and software enhancement of the Manchester Data Flow ma

chine, Digest, Copacon Spring Feb 85.

BOOTH, T. L. and WIECEK, C. A. 1980, Performance abstract data types as atool in soft

ware performance analysis and design, IEEE Trans. on Software Engineering, Vol. SE-6, No.

2, pp. 138-151

ROSE, P. and DAVIDSON, E. S., 1984, Design of instruction set architechtures for support

of high-level languages, ACM SIGARCH Newsletter, Vol. 12, Issue 3, pp. 198-206.

BOULTON, P. I. P. and GOGUEN, J. R., 1979, A machine description language, The Com

puter J., Vol.22, No.2, pp. 132-135.

BOYSE, J. W. and WARN, R. D. 1975, Astraightforwardmodelforcomputerperformance

prediction, ACM computer Surv., Vol. 7, No.2, pp. 73-93

BRAD, Y., 1971, Performance criteria and measurements for a time sharing system, IBM Sys.

J., Vol. 10, pp. 193-219.

251

BRITTON, K. H. et. al., 1982 A procedure for designing abstract interfaces for device inter

face modules, Proc. Fifth Int., Conf. on Software Engineering, IEEE Computer Society Order,

No. 332, pp. 195-204.

BROCKMEYER, E. el aI. 1948 The life and work of A.K. Earlang, Trans. of Danash Aca

demic Tech. Sci. (In English), Vol. 2.

BROWNE, J. C. 1984, Understanding execution behaviour of software systems, IEEE Com

puter, Vol. 17, No.7, pp. 83-87

BRUNDAGE, R. E. 1974, A study of process bahaviour in virtual computer systems, Ph.D.

Thesis, university of Virginia

BURR, W. E. et. al. 1977, Overview of the military computer family architecture selection,

AFIPS, Vol. 3, pp. 131-137.

BURROUGHS, C. 1961, The descriptor-a definition of the B5000 infonnation processing sys

tem. Detroit: The Burroughs Corporation, Bull. no. 5000-20002-p

BUZEN, J. P., 1971, Queueing network models of multiprogramming, Ph.D. Thesis, Div. Eng.

and Applied Physics, Harvard University, Cambridge.

BUZEN, J. P., 1973, Computational algorithms for closed queueing networks with exponential

servers, CACM, Vol. 16, No.9, pp. 527-531.

BUZEN, J. P., 1976, Fundamental operational laws of computer system perfonnance, Acta

informatica, Vol. 7, pp. 167-182.

BUZEN, J. P., 1976a, Operational analysis: the key to the new generation of perfonnance

prediction tools, Proc. IEEE COMPCON, pp. 166-171.

BUZEN, J. P., 1978, Operational analysis: an alternative to stochastic modelling, Proc. Int.

Conf. Performance of Computer Installations pp. 175-194.

BUZEN, J. P., 1979, The predictable problem, Computing Surveys, Vol. 11, No.1, pp. 70-72.

BUZEN, J. P. and DENNING, P. J., 1980, Operational treatment of queue distributions

and mean-value analysis, Computer Performance, Vol. 1, No.1, pp. 6-15, IPC.

CANTRELL, H. N. and ELLISON, A. 1968, Multiprogramming system perfonnance and

analysis, AFIPS, pp. 213-221.

CAPPER, L. 1986, A philosophy for teaching of computer science information technology, The

Computer J., Vol. 29, No.1, pp. 83-89.

CARLSSON, C. 1979, Cybernetic modelling through hierarchical multilevel systems and adap

tive control, Kybernetes, Vol. 8, pp. 91-103

252

CARROL, J. M. and THOMAS, J. C. 1982, Metaphor and cognitive representation of com

puting systems, IEEE Trans. on Systems, Man, and Cybernetics, Vol. 12, pp. 107-116

CARROLL, J. M. and ROBERT, L. M. 1985, Metaphor, computing systems, and active

learning, Int. J. Man-Machine Studies, Vol. 22, pp. 39-57

CAVALLO, R. E. and GEORGE, J. K. 1981, Reconstruc t ability analysis: Overview and Bib

liography, Int. J. General Systems, Vol. 7, pp. 1-6.

CAVOURAS, J. C. and DAVIS, R. H., 1981, Simulation tools in computer system design

methodologies, Comput. J., Vol. 24, No.1, pp. 25-28.

CHANDY, K. M. and SAUER, C. H., 1978, Approximate methods for analysis queueing

network models of computer systems, ACM Computing Surveys, Vol. 10, No.3, pp. 281-317.

CHANDY, K. M. and MISRA, J. 1979, Distributed simulation: A case study in the design

verification of distributed programs, IEEE Trans. on Software Engineering, SE-5, No.5

CHECKLAND, P. B. 1975, The development of systems thinking by systems practice-A method

ology from action research programme, Progress Cybernetics and Systems Research, Vol. 11,

Ed. by R. Trapple and F. de P. Hawika, Hemisphere, Washington DC, pp. 278-283

CHERITON, D. R. 1982, The Thoth system: multi-process structuring and portability, Else

vier Pub. Co.

CHU, Y. 1965, An Algol-like computer design language, CACM, pp. 607-615.

CHU, Y. 1977, Direct-execution architecture, Information Processing 77, IFIP N orth-Holland

Pub. Co.

CHU, Y. 1981, High-level computer architecture, Computer, Vol. 14, No.7, pp. 7-8.

CLAPSON, P. J. 1977, Toward performance science: a comparative analysis of computing sys

tems, The Computer J., Vol. 12, No.4, pp. 308-315

CLEMENTS, D. P. 1977, Fuzzy ratings for computer security evaluations, Ph.D. Diss., Uni

versity of California, Berkeley

COHEN, E. and DAVID, J. 1975, Protection in the hydra operating system, Proc. of the

Fifth Symp. on Operating Systems Principles, University of Texas at Austin, Nov. 19-21,

(ACM & Operating Systems Review, 9:5), pp. 141-60

CONRAD, M. 1985, On design principles for a molecular computer, CACM, Vol. 28, No.5,

pp. 464-480

CONWAY, M. E. 1963, Design of a separable transition-diagram-compiler, CACM, Vol. 6,

No.7, pp. 396-408

253

COOK, D. J. 1978, The evaluation of a protection system, Ph.D. Thesis, University of Cam
bridge.

Goguen, J .a. 1986 Reusing and interconnecting software components, IEEE Computer, vo. 21,

No.1, pp. 16-28

GRAIG, C. E. and HARRIS, R. C. 1973, Total productivity measurement at the firm level,

Sloan Management Review, Vol. 14, No.3

CRAIG, F. D. 1986, The ariadne-1 blackboard system, The Computer J., Vol. 29, No.3, pp.

235-240

CROWLEY, C. 1981, The design and implementation of a new Unix kernel, Proc. AFIPS

Conf., Vol. 50, pp. 265-171

CURNOW, H. J. and WICHMANN, B. A. 1976, A synthetic benchmark, The Computer

J., Vol. 19, pp. 43-49

DAVIES, N. R., 1976, A modular interactive system for discrete event simulation modelling,

in Proc. 9th Hawaii Int. Conf. in System Sciences, Western Periodical, pp. 296-299.

DAVIS, R. and SHROBE, H. 1983, Representing structure and behaviour of digital hard

ware, IEEE Computer, Vol. 16, No. 10, pp. 75-82

DEC, 1977, VAX-ll Software handbook, Digital Equipment Corporation Press

DEC, 1979, VAX-ll Architecture handbook, Digital Equipment Corporation Press

DECARVALHO. R. S. and CROOKES, J. G., 1976, Cellular simulation, Oper. Res., Vol.

27, No.1, pp. 31-40.

DENNING, P. J. 1968, The working set model for program behaviour, CACM, Vol. 11, pp.

323-333

DENNING, P. J. and BUZEN, J. P., 1977, An operational overview of queueing networks,

in Infotech State of Art Repore on Performance Modelling and Prediction, U.kk, pp. 75-108.

DENNING, P. J. and BUZEN, J. P., 1978, The operational analysis of queueing network

models, Computing Surveys, Nol. 10, No.3, pp. 225-261.

DENNIS, J. B. and VANHORN, E. C. 1966, Programming semantics for multiprogrammed

computations, CACM, Vol. 9, No.3, pp. 143-155.

DENNIS, T. 1980, A capability architecture, Ph.D. Thesis Purdue University.

DIETHELM, M. A. 1977, An empirical evaluation of analytical models for computer system
. . P rf K M Chandy and M Reiser (Eds.) North performance predIctIon, Computer e ormance, . . . ,

Holland Pub. Co.

254

DIETTERICH, T. G. and BUCHANAN, B. G. 1983, The role of experimentation in the

ory formation, Proc. Int. Machine Learning Workshop, University of illinois, Department of

Computer Science, Urbana, ILL

DIETZ, W. and SZEWERENKO, L. 1979, Architectural efficiency measures: An overview

of three studies, IEEE Computer, Vol. 12, No.4, pp. 26-33.

DIJKSTRA, E. W. 1968, The structure of the "T.H.E." -multiprogramming system, CACM,

Vol. 11, No. 5

DJORDVEVIC, J. 1985, A PMS level notation for the description and simulation of digital

systems, The Computer J., Vol. 28, No.4, pp. 357-365.

DORAN, R. W. 1979, Computer architecture: A structured approach, Academic Press Inc.

DOUGLASS, R.J 1985 A qualitative assessment of parallelism in expert systems, IEEE Soft

ware, Vol. 12, No.3, pp. 70-80

DOWNS, D. D. 1984, Operating systems key security with basic software mechanisms, Elec

tronics, Vol. 57, No.5, pp. 122-130.

DUFF, M.J .B. 1985 The CLIP parallel processor, Computer Bulletin, Vol. 1, Part 4, pp. 26-27

DULEY, J. R. et. aI. 1969, A digital system design language (DDL), IEEE Trans. on Com

puters, C-17, pp. 850-861.

DUNSMUffi, M. R. M. and DAVIES, G. J. 1985, Programming the UNIX system, Mac

millan Pub. Co.

ELLIS, C. S. 1985, Distributed data structures: A case study, IEEE Trans. on Computers,

Vol. C-34, No. 12, pp. 1178-1190

ENGLAND, D. M. 1974, Capability concept mechanisms and structure in system 250, In

ternational Workshop on Protection in Operating Systems IRIA/LABORIA Rocquencourt,

France, Aug. 13-14, pp. 63-82.

EVANS, D.J. et al 1981 A guide to using the Neptune parallel processing system, Lough

bourough University of Technology, Computer Studies Department, Technical Report.

FABRY, R. S. 1967, A user's view of capability, ICR Quarterly Report No. 15, Institute for

Computer Research, Universuty of Chicago.

FABRY, R. S. 1974, Capability-based addressing, CACM, Vol. 17, NO.7, pp. 403-412

FAGIN, R. 1978 On an authorisation mechanism, ACM Trans. on Database Systems, Vol. 3,

No.3, pp. 310-319

F' "RRARI D 1978 Computer systems performance evaluation, Prentice-Hall, Pub. Co.
~ ,., ,

255

FRARRI, D. 1986 Considerations on the Insularity of Pedormance Evaluation, IEEE Trans.

on Software Engineering, Vol. S&12, No.6, pp.678-683

FEIERTAG, R. J. and NEUMANN, P. G. 1979, The foundations of a provably secure op

erating system (PSOS), AFIPS Conf. Proc. 1979 National Computer Conf., Vol. 48, pp.

329-334

FERNANDES, S. T. 1982, Computer architecture: description and interpretation, Imperial

college, London University, Ph. D. Thesis.

FEUSTED, E. A. 1973, On the advantages of tagged architecture, IEEE Trans. on Computers,

Vol. C-22, No.7, pp. 644-656

FITZPATRICK, D. et. al. 1981, A RISCy approach to VLSI, VLSI design, Vol. 2, No.4,

pp. 14-20.

FLOYD, C. 1981, A process-orinted approach to software development, ICS, The Int. Comput

ing Symp. Proc. of the 6th ACM European regional conference, pp. 285-294.

FLYNN, M. J. 1972, Some computer organizations and their effectiveness, IEEE Trans. on

Computers, Vol. 21, No.9, pp. 948-960.

FLYNN, M. 1980, Directions and issues in architecture and language, IEEE Computer J., Vol.

13, No. 10, pp. 5-22.

FOX, G.C. 1985 Using the Caltech hypercube, California Institute of Technology, Booth Com

puting Center,158-79 pasadena, CA 91125.

FRANKOWSKI, E. N. and FRANTA, W. R., 1980, A process oriented simulation model

specification and documentation language, Software-practice and Experience, Vol. 10, No.9,

pp. 721-742.

FRIDRICH, M. and OLDER, W. 1985 Helix: The architecture of the XMS distributed file

system, IEEE Software, Vol. 2, No.3, pp. 21-29

FRIEDLAND, P. and KEDES, L. H. 1985, Discovering the secrets of DNA, CACM, Vol.

28, No. 11, pp. 1164-1186

FULLER, S. F. et. al. 1977, Evaluation of computer architectures via test programs, AFIPS,

Vol. 3.

GAMMAGE, N. and CASEY, L. 1985 XMS: A rendezvous-based distributed system soft

ware architecture, IEEE Software, Vol. 2, No.3, pp. 9-19

GAINES, B. R. and ANDREAE, J. H. 1966, A learning machine in the context of the gen

eral control problem, Proceedings of the 3rd Congress of the Int. Federation for Automatic

Control.

256

GAINES, B. R. 1972, The human adaptive controller, Ph.D. Thesis, Cambridge University,

Cambridge

GAINES, B. R. 1972a, Axioms for adaptive behaviour, London: Butterworths, Int. J. of Man

Machine Studies, Vol. 4, No.2, pp. 169-199

GAINES, B. R., 1973, Computer technology and its utilization today and tomorrow, National

Engineering Laboratory Conference, Glasgow 27-29 March.

GAINES, B. R., et. aI. 1974, Design objectives for a descriptor-organised minicomputer, The

European Computing Congress, BruneI University, 13-17 May.

GAINES, B. R. 1974, Training, stability and control, Instructional Science, Vol. 3, No.2, pp.

151-176

GAINES, B. R. and KOHOUT, L. J. 1975, The logic of automata, Int. J. of General Sys

tems, Vol. 2, No.4, pp. 191-208

GAINES, B. R. and FACEY, P. V. 1975, Minicomputers in security dealing, IEEE Com

puter, Vol. 9, No.9, pp. 6-15.

GAINES, B. R. 1976, System identification, approximation and complexity, Int. J. Gen. Sys

tem, Vol. 3.

GAINES, B. R. 1977, System identification, approximation and complexity, Int. J. General

Systems, Vol. 3, pp. 145-174

GAINES, B. R. 1978, Man-computer communication- what next ?, Int. J. Man-machine Stud

ies, Vol. 10, pp. 225-232

GAINES, B. R. and SHAW, M. L. G. 1984, The art of computer conversation, Prentic Hall

International

GAINES, B. R. and SHAW, M. L. G. 1986, From timesharing to the sixth generation: the

development of human-computer interaction. Part I, Int. J. Man-Machine Studies, Vol. 24,

pp. 1-27

GAINES, B. R. and SHAW, M. L. G. 1986a, Foundations of dialog engineering: the devel

opment of human-computer interaction. Part II, Int. J. Man-Machine Studies, Vol. 24, pp.

101-123

GANE, C. and SARSONS, T. 1979, Structured systems analysis: tools &£ techniques, Mc

donnell douglas Pub. Co.

GEHRINGER, E. F. 1979, Functionality anf performance in capability-based operating sys

tems, Ph. D. Diss., Purdue University.

257

GILOI, W. K. and BERG, H. 1977, Introducing the concept of data structure architectures,

Proc. Int. Conf. on Parallel Processing, USA, pp. 44-51 (IEEE CATALOG No. 776H-1253-

4C)

GILOI, W.K. and GUETH, R. 1982 Concepts and realisation of a high-perfonnance data

type architectures, Int. J. of Computer and Infonnation Sciences, Vol. 11, No. 1,pp. 25-54

GOLD, S. E. B. and SOESAN, J. 1976, Applied poductivity analysis for industry, Perga

mon Int. Library, Oxford

GOMMA, H., 1976, A Modelling approach to the evaluation of computer system perfonnance,

Ph.D. Thesis, Imperial College of Science and Technology.

GORDON, C. et. al. 1971, Computer structures: Reading and examples, New York, McGraw

Hill Pub. Co.

GORDON, W. J. and NEWALL, G. F., 1967, Closed queueing systems with exponential

servers, Oper. Res., Vol. 15, pp. 254-265.

GOTTLIEB, J .R. et al 1985 The NYU Ultra computer designing an MIMD shared memory

parallel computer, IEEE Trans. Computer, Vol. C-32, No.2, pp.175-189

GRAHAM, B. W. 1969, Dynamic protection structures, AFIPS, 35, Fall Joint Computer Conf.,

pp. 27-38

GRAHAM, B. 1984, Hints for computer system design, IEEE Software,Voi. 1, No.1, pp.

11-28.

GRENANDER, V. and TSAO, R., 1972, Quantative methods for evaluating computer sys

tem performance: A review and proposals, Statistical Computer Perfonnance Evaluation, W.

Freiberger (Ed.), Academic Press, pp. 3-24.

GRIFFITHS, P.P. and WADE, B.W. 1976 Anauthorisationmechanismforrelationaldatabase

system, ACM Trans. on Database Systems, Vol. 1, No.3, pp.242-255

GROSSBERG, S. 1982, Studies of the mind and brain; neural principles of learning, percep

tion, development cognition and motor control, Reidel, Hingham, Mass

HABERMANN, A. N., FLON, L. and COOPRIDER, L. W. 1976, Modularization and

hierarchy in a family of operating systems, CACM, Vol. 19, No.5, pp. 266-272

HAC, A. 1982, Computer system simulation in Pascal, Software-Practice and Experience, Vol.

12, pp. 777-784.

HAILPERN, B. 1986, Multiparadigm languages, IEEE Software, Vol. 3, No.1, pp. 6-8

HAJEK, P. and HAVRANEK, T. 1978 The GUHA Method: Its aims and techniques, Int.

J. of Man-Machine Studies, Vol. 10, No.1, pp. 3-22

258

HALSTEAD, M. H. 1911, Elements of software science, Elsevier North-Holland Pub. Co.

HANSEN, B. 1913, Operating system principles, Prentice-Hall Pub. Co.

HARING, G. et. al. 1918, The use of a synthetic job stream in performance evaluation, The
Computer J., Vol. 22, No.3, pp. 209-219.

HARTMANN, C. L. 1983, Concurrent systems design with access graphs, IEEE Second An

nual Phoenix Conference, March 14-16, Phoenix, Arizona

HAUSEN, H. L. and MULLERBURG, M. 1981, Architecture of software systems in the

context of software enginering environments, The Int. Computing Symp. Systems Architec

ture, Proc. of the Sixth ACM European Reginonal Conference

HAYES, I. J. 1983, Computer architecture: The hardware-software interface, Ph.D. Thesis,

University of New South Wales, Sydney, N.S.W., Australia.

HEINRICH, F. R. and KAUFMAN, D. J. 1976, A centralized approach to computer net

work scurity, AFIPS National Computer Conf.

HELLERMAN, H. and CONROY, T. F. 1975, Computer system performance, McGraw

Hill Pub. Co.

HELLMAN, M. E. 1918, Security in communication networks, National Computers Conf. AFIPS,

pp. 1131-1134

HERBERT, A. J. 1918, A new potection architecture for the cambridge capability computer,

ACM Operating System Review, Vol. 12, No.1, pp. 24-28

HILL, F. J. 1915, Updating AHPL, Proc. of the Int. Symp. on Hardware Description Lan

guages and Their Application, New York, pp. 22-29.

HILLIS, W.D. 1985 The connection machine, The MIT Press.

HOARE, C. A. R. Oct. 1914, Monitors: Operating system structuring concept, CACM Vol.

17, No. 10, pp.95-125

HOARE, C.A.R. 1978 Communicating Sequential Processes, CACM Vol. 21, No. 8,pp.666-677

HOEVEL, L. W. and FLYNN, M. J. 1979, A theory of interpretive architectures: Some

notes on design and a Fortran case study, Computer Systems Laboratory, Tech. Report No.

171, Stanford University, Stanford, CA 91305

HOLBAEK-HANSSEN, E., et. al.,1911, System description and the delta language, Rep.

4, Norwegian Computing Center, Oslo.

HSAIO, D. K. 1968, A file system for a problem solving facility, Ph.D. Thesis, University of

Pennsylvania, Philadelphia

259

HUGHES, P. H. and MOE, G., 1973, A structural approach to computer perfonnance anal

ysis, in PROC. AFIPS National Computer Conf., Vol. 42, AFIPS Press, Montvale, ~.J., pp.
109-119.

HUGHES, H. D. 1981, A highly parameterized tool for studying perfonnance of computer

systems, ACM Perf. Eva, Rev., Vol. 10, No.2, pp. 48-65

HUTCHINSON, G. K., 1975, Introduction to the use of activity cycles as a basis for system's

decomposition and simulation, Simuletter, Vol. 7, No.1, pp. 15-20.

IEEE SOFTWARE 1985 National Supper Computer Research Centers, IEEE Software, Vol 2,
No.6, pp. 55 .. 68

ILIFFE, J. K. 1961, The use of the genie system in numerical computation, Annual Review in

Automatic Programming, Vol. 2, New York: Pergamon Press, pp. 1-28.

INMOS 1984 Occam programming manual, Printice-hall Pub. Co.

JACAK, W. and SIEROCKI, I. 1985, Level of structural decomposition of dynamical sys

tems, Int. J. General Systems, Vol. 10, pp. 177-186

JACKSON, J. R., 1963, Jobshop like queueing systems, Manage. Sci., Vol. 10, pp. 131-142.

J AMSA, K. A. 1984, Object oriented design vs structured design - A student's perspective,

ACM SIGSOFT Software Engineering Notes, Vol. 9, No.1, pp. 43-49.

JONES, A. 1977, The narrowing gap between languages systems and operating systems infor

mation processing 77, IFIP North-Holland Pub. Co.

JONES, A. K. et. al. 1979, StarOS, a multiprocessor operating system for the support of task

forces, in Proc. 7th Symp. Operating Systems Principles (ACM).

JONES, A. K. and SCHWARZ, P. 1980, Experience using multiprocessor systems- A sta

tus report, Computing Surveys, Vol. 12, No.2, pp. 121-165

JONES, B. 1983 General Systems Theory and Algorithm Theory, Int. J. General Systems, Vol.

9, pp. 157-160

JONES, G. 1985 Programming in "occam", Oxford University Computing Laboratory, Techni

cal Monograph No. 41.

JUGELI, E. P. 1980, The process of dynamic interference in memory organization, kybernetes,

Vol. 9, pp. 33-36

KAMBAYASHI, Y. 1981 Centeralised Dynamic Authorisation Mechanisms, Preceedings of

the IBM computer science symposium, Amagi, Japan.

KAISLER, S. H. 1983, The design of operating systems for small computer systems, John

Wiley & Sons Pub. Co.

260

KAVI, K. M. and KRISHNAMOHAN, K. 1984, Architecture quality, Operating systems

review, Vol. 18, No.1, pp. 11-13.

KAVIPURAPU, K. M. 1979, Quantification of architectures using software SCIence, ACM

Sig. on Computer Architecture News, Vol. 7, pp. 2-6

KEED, J. L. 1979, On structuring operating systems with monitors, Vol. 13, No.1, pp. 5-9

KERNIGHAN, B. W. and RITCHIE, D. M. 1978, TheCprogramminglanguage, Prentice

Hall Pub. Co.

KERRIDGE, J. and SIMPSON, D. 1986, Communicating parallel processes, Software-Practice

and Experience, Vol. 16, No.1, pp. 63-86

KICKERT, W.J .M. 1980, Organization of decision making, Amsterdam: North-Holland

KIMBLETON, S. R., 1975, A heuristic approach to computer systems performance improve

ment: A-I fast performance prediction tool, AFIPS, pp. 839-846.

KINDLER, E.,1979, Dynamic systems and theory of simulation, Kybernetika, Vol. 15, No.2,

pp. 77-87.

KLEINE, H., 1977, SDDL: Software design and documentation language, Publication 77-24,

Jet Propulsion Lab., Pasadena, Calif.

KLEINROCK, L., 1975, Queueing systems: Theory, Vol. 1, J. Wiley Pub. Co.

KLEINROCK, L., 1976, Queueing systems: Computer applications, Vol. 2, J. Wiley.

KLEINROCK, L., 1985, Distributed systems, CACM, Vol. 28, No. 11, pp. 1200-1213.

KLIR, G. J. 1969, An approach to general systems theory, Van Nostrand Reinhold, New York

KLIR, G. J. 1975, On the representation of activity arrays, Int. J. General Systems, Vol. 2,

pp. 149-168.

KLm, G. J. 1976, Identification of generative structures in empirical data, Int. J. of General

Systems, Vol. 3, pp. 89-104

KLm, G. J. and WAY, E. C. 1985, Reconstruct ability analysis: Aims, Results, Open prob

lems, Int. J. of General Systems, Vol. 2, No.2, pp. 141-163.

KNUTH, E. 1969, The art of computer programming, Addison-Wesley Pub. Co.

KNUTH, D. E.,1971, An empirical study of Fortran programs, Software-Practice and Expere

ince, Vol. 1, pp.105-133

KOBAYASHI, H., 1978, Modelling and analysis: An introduction to system performance eval

uation methodology, Addison-Wesley.

261

KOHOUT, L. J., 1974, Algebraic models in computer-aided medical diagnosis, Medinfo, pp.

575-579.

KOHOUT, L. J. 1976, Methodological foundation of the study of action, Tech. Rep. MMS

EES-ACT 76, Man-Machine System Laboratory, Department of Electrical Engineering Science,

University of Essex, Colchester, U.K. pp. 270

KOHOUT, L. J. and GAINES, 1976, Protection as a general systems problem, Int. J. of

General Systems, Vol. 3, pp. 1-21.

KOHOUT, L. J. 1977, Functional hierarchies in the brain: a methodology for their identifica

tion, Int. Conf. on Applied General Systems Research, State University of N.Y. at Birming

ham, 15-19 Aug.

KOHOUT, L. J. 1978, Analysis of computing protection systems by means of Multi-Valued

Logic, in IEEE Proc. 8th Int. Symp. on MVL, New York

KOHOUT, L. J. 1978a, Methodological foundation of the study of action, Ph.D. Thesis, Man

Machine System Laboratory, Department of Electrical Engineering Science, University of Essex

KOHOUT, L. J., 1981, Control of movement and protection structures, Int. J. Man-Machine

Studies, Vol. 14, pp. 397-422.

KOHOUT, L. J. and BANDLER W., 1981, Analysis of capability-based computer protec

tion models by means of fuzzy logic, Proc. 11th Int. Symp. on Multiple-Valued Logics, IEEE

Comput. Soc., Los Angeles, pp. 95-105.

KOHOUT, L. J. 1982, Lecture notes on activity structures, Workshop of Man-Computer Stud

ies Group, BruneI University

KOHOUT, L. J. and BANDLER, W. 1982, Fuzzy expert systems, BCS Expert System 82

Conf., BruneI University, 14-16 Sept.

KOHOUT, L. J. 1983, A perspective of intelligent systems, Man-Computer Studies Group,

BruneI University, pre prit

KOHOUT, L. J. KERA VNOU, E. and BANDLER, W., 1984, Automatic documentary in

formation retrieval by means of fuzzy relational products, TIMS/Studies in the Management

Sciences 20, pp. 383-404.

KOHOUT, L. J. and et. al. 1984, Construction of an expert therapy adviser as a special case

of a general system protection design, Cybernetics and Systems Research 2, R. Trappl (Ed.),

Elsevier Science Pub. B.V. (North-Holland).

KOHOUT, L. J. 1984, Activity structures: A tool for the design of information systems: Mod

ule 5 for M.Sc. in Computing System for Advance Information Technology, Department of

Computer Science, BruneI University

262

KOHOUT, L. J., et al 1985, CLINAID: a knowledge-based DSS for use in medicine In Mitra , ,
G. (Ed.), Computer models for Decision Making, North-Holland

KOHOUT, L. J. 1986, Perspective on intelligent systems a framework for analysis and design,

Abacus Press.

KOHOUT, L. J., 1986a, Activity structures: A general systems construct for design of tech

nological artifacts, 8th European Meeting in Sybernetics and Systems Research, Vienna.

KOHOUT, L. J. and MOHAMAD, S. M. A. 1986, Activity structures: A general system

framework for the design of information processing machines, To appear.

KRAMER, J., MAGEE,J., and SOLMON, M. 1984 A software architecture for distributed

computer control systems, Automatica, Vol. 20, No.1, pp. 93-102.

KUPKA, I. 1974, The syntax of dialog, Lecture Notes in Computer Science, Springer Pub. Co.,

Vol. 7, pp. 45-54

LAMPORT, L. 1978. Time, clocks and ordering of events in a distributed system, CACM, Vol.

21, No.7

LAMPORT, L. 1985, Solved problems, unsolved problems and non-problems in concurrency,

SIGOP Review, Vol. 19, No.4, pp. 34-44.

LAMPSON, B. W. 1969, Dynamic protection structures, AFIPS, Vol. 35, pp. 27-38.

LAMPSON, B. W. and STURGIS, H. E. 1976, Reflections on an operating systems de

sign, CACM, Vol. 19, No.5, pp. 251-265.

LAMPSON, B. W., 1984, Hints for computer system design, IEEE Software, Vol. 1, No.1,

pp. 11-28.

LANDWEHR, C. E. 1981, Formal models for computer security, Computing Surveys, Vol. 13,

No.3, pp. 247-278.

LANTZ, K. A. et. at, 1982, Rochester's intelligent gateway, IEEE Computer, Vol. 15, No.

10, pp. 54-67.

LAUER, H. C. and NEEDHAM, R. M. 1979, On the duality of operating system struc

tures, Vol. 13, No.2, pp. 3-19

LEA, R. M., 1983, Scape: a single chip array processing element for image analysis, Lea, VLSI

83, Elsevier Science Pub. B.V. (North-Holland), F. Anceau and E.J. Aas (Eds.).

LEWELLYN, C. P. 1976, The statistical estimation of throughput and tornaround functions
, . Ph D Th ' U' 'ty of Dlinois at Urbana Champaign for a unIversity computers syetem, . . eslS, mversl

LEHMAN, M. M., 1980, Programs, programming and the software life cycle, Rep, 80/6, Dept.

of Computing and Control, Imperial College of Science and Technology, London.

263

LELANN, G. E. 1977, Distributed Processing Towards a formal apprach, Proc. IFIP

LENDARIS, G. G. 1980, Structural modeling - A tutorial guide, IEEE Trans. on Systems,

Man, and Cybernetics, Vol. SMC-10, No. 12, pp. 807-839

LEVINE, A. P., 1984, Design overview of an expert system for computer performance mod

eling, The 12th European Computre Measurement Association (ECOMA-13), Munich, pp.

23-26.

LILIENFEID, D. 1978, The rise of system theory, Wiley Pub. Co., New York

LINDSAY, B. 1973, Suggestions for an extensible capability-based machine architecture, Greno

ble, France, pp. 1-20

LINDSTROM, H. and SHANSHOLM, J. 1981, How to make your own simulation system,

Software-Practice and Experience, Vol. 11, pp. 629-637

LINDQUIST, T.E. 1985 Assessing the usability of human-computer interfaces, IEEE Software,

Vol 2, No.1, pp. 74-82

LISKOV, B. et. al. 1977, Abstraction mechanisms in CLU, CACM, Vol. 20, No.8, pp. 564-

576.

LISTER, A. M. 1975, Fundamentals of operating systems, Macmillan Pub. Co.

LOCKETT, J. A. 1974, Computer performance analysis in mixed on-line batch workloads, Na

tional Computer Conf., AFIPS, pp. 671-676

LONDON, K. R. 1973, Techniques for direct access: hardware systems programming, Auer

bach Pub. Co.

LUSCHEL, E.C 1962 The logical systems of Leniewski, North-Holland Pub. Co.

LUNDE, A. 1977, Empirical evaluation of some features of instruction set processor architec

tures, CACM, Vol. 20, No.3, pp. 143-153.

MacDOUGALL, M. H. 1970, Computer system simulation: An introduction, Computing Sur

veys, Vol. 2, No.3, pp. 191-209

MADNICK, S. E. and DONOUAN, J. J. 1974, Operating system, McGraw-Hill Pub. Co.

MADSEN, J. 1981, A computer system supporting data abstraction, SIGOP, Vol. 15, No.1,

pp. 45-72.

MAMRAK, S. and RANDAL, J. 1977, An analysis of a software engineering failure, The

Computer J. , Vol. 20, No.4, pp. 316-320.

MAPLES, C. 1985 Analysing software performance in a multiprocessor environment, IEEE

Software, Vol. 2, No.4, pp.21-29

264

MARKOWITZ, H. M., 1979, Simscript: Past, present, and some thoughts about the future,

in Current Issues in Computer Simulation. N.R. Adam and A DogramacI· (Eds) Ad. . ,., ca emIC,
New York, pp. 27-60.

MASON, R.O. 1979, A general system theory of productivity, Int. J. of General Systems, Vol.
5, pp. 17-30

MATHEWSON, S. C. and ALLEN, J. H., 1977, DRAFT/GASP- A program generator for

GASP, in Proc. 10th Annual Simulation Symp., (Tampa, Fla.), pp. 211-225.

McCAULEY, E. J. and DRONGOWSKI, P. J. 1979, KSOS - The design of a secure op

erating system, AFIPS National Computer Conf.

McKEON, B. 1983, A small-C Operating system, Dr. Dobb's J., Vol. 8, No. 77, PT3, pp.
36-61

MCLAREN, F. W. and MACEWAN, G. H. 1981, Computersecurityenhancementj an ex

ternal kernel approachj Int. J. Mini-& Microcomputer, Vol. 3, No.2, pp. 30-34.

McLEOD, J., 1973, Simulation: From art to science for society, Simulation, Vol. 21, No.6, pp.

77-80.

MILLER, R. E. 1973, A comparison of some theoritical models of para.llel computation, IEEE

Trans. on Computers, Vol. C-22, No.8, pp. 710-717

MILS, J. A. 1985, A pragmatic view of the system architect, CACM, Vol. 28, No.7, pp.

708-717.

MOHAMAD, S. M. A. ,1981, A comparison of some performance evaluation techniques, M.Sc.

Thesis, Glasgow University.

MOHAMAD, S. M. A. and CAVOURAS, J. C., 1982, Performance models of computer

systems, MCSG/TR18, Computer Science Dept., BruneI University.

MOHAMAD, S. M. A. 1982, A guideline to the problem of designing well-protected computer

systems, MCSG/TR19, Computer Science Dept., BruneI University.

MOHAMAD, S. M. A. 1983, Descriptor-oriented system: A protection architecture for per

formance, MCSG/TR28, Computer Science Dept., BruneI University.

MOHAMAD, S. M. A. and OHIORENOYA, 1983, Design criteria for expert systems, NAFIP

II Conference, New York, June 29, 30 and June 1

MOHAMAD, S. M. A. and CAVOURAS, J. C. 1984, Performance study of descriptor roiented

architectures, Computer Performance J., Vol. 5, No.1, pp. 14-22.

MOORE, C. G., 1971, III Network models for large-scale time sharing systems, Tech. Rep.

71-1, Dept. Industrial Eng., University, Michigan, Ann Arbor, Ph.D. Thesis.

265

MORI, K. and et. al 1985, Autonomous decentralized computer system and software struc
ture, Vol. 1, No.1, pp. 17-22

MOTO-OKA, T. and STONE, H. 1984 Fifth Generation computer systems, IEEE Computer,
Vol. 17, No.3, pp.6-13

MULLERY, A. P. et. al., 1963, ADAMA problem-oriented symbol processor, AFIPS SJCC,

pp. 367-380.

MUMFORD, E. et. al. 1978, Participative systems design, Computer weekly, Nov/Dec Partl

PartS.

MUNTZ, R. R., 1979, A predictable problem, ACM Computing Surveys, Vol. 11, No.1, pp.

70-72.

MYERS, G. J. 1978, Advanves in computer architecture, Wiley Pub. Co., New York.

NANCE, R. E., 1971, On time How mechanisms for discrete event simulation, Manage. Sci

ence, Vol. 18, No.1, pp. 59-93.

NEEDHAM, R. M. 1972, Protection systems and protection implementations, AFIPS, Vol.

41, pp. 571-578.

NEEDHAM, R.M. 1977 The CAP project: an interim evaluation, proc. 6th Symposium on

operating systems principles, Purdue University, 16-18 Nov., pp.17-22

NEWMAN, I. A. and Woodward, M. C. 1981, Performance degredation due to common

memory access in multiprocessor systems, TR 41, Computer Science Dept., Loughborough

University.

NIELSEN, J. 1986, A virtual protocol model for computer-human inferaction, Int. J. Man

Machine Studies, Vol. 24, pp. 301-312

NILSSON, N. J. 1965, Learning machines, McGraw-Hill Pub. Co., New York

NURMI, H. 1978, On strategies of cybernetic model-building, Kybernetes, Vol. 7, pp. 13-18

NUTT, J. G. 1978, A case study of simulation as a computer system design tool, IEEE Com

puter, Vol. 11, No. 10, pp. 31-36

NYGAARD, K., and DAHL, 0., 1978, The development of the SIMULA languages, Sigplan

Notices, Vol. 13, No.4, pp. 245-272.

OBERQUELLE, H. et. al 1983, A view of human-machine communication and co-operation,

Int. J. of Man-Machine Studies, Vol. 19, pp. 309-333

OHIORENOYA, M. A. and MOHAMAD, S. M. A. 1983, Software tools for decision sup

port systems: Review and proposals, IUCC Conference, Glasgow University, 13-16 September

266

OLSON, R. 1985, Parallel Processing in a Message-Based Operating System, IEEE Software,
Vol. 2, No.4, pp.39-49

OREN, T. I., 1984, GEST-A modelling and simulation language based on system theoretic con

cepts, in Simulation and Model-Based Methodology: An Integrative View, T.!. Oren et. al..

(Eds.) , Springer-Verlag, New York.

OREN, T. I. and ZEIGLER, B. P., 1979, Concepts for advanced simulation methodologies,

Simulation, Vol. 32, No.3, pp. 69-82.

OVERSTREET, C M. and NANCE, R. E., 1985, A specification language to assist in anal

ysis of discrete event simulation models, CACM, Vol. 28, No.2, pp. 190-201.

PAIGE, M. R. and BENSON, J. P. 1974, The use of software probes in testing Fortran pro

grams, IEEE Computer, Vol. 7, No.7

PLAM, G. 1982 Neural Assemblies: An alternative Approach to Artificial Intelligence, Springer

Verlag.

PARNAS, D. L. and DARRINGER, J. A., 1967, SODAS and a methodology for system

design, Proc. AFPIS FJCC, Vol. 13, AFPIS Press Montvale, N. J. pp. 449-474.

PARNAS, D. and SIEWIOREK, D. 1975, Use of the concept of transparency in the design

of hierarchically structured systems, CACM, Vol. 18, No.7, pp. 401-408.

PARNAS, D. et. al. 1976, Design and specification of the minimal subset of an operating

system family, IEEE Trans. on Software Engineering, Vol. SE-2, No.4, pp. 301-307.

PASHTAN, A. 1985, Operating system models in a concurrent Pascal environment: Complex

ity and performance considerations, IEEE Trans. on Software Engineering, Vol. SE-11, No.

1, pp. 136-141.

PASHTAN, A. and UNGER, E. A. 1985, Resource monitors: A design methodology for op

erating systems, Software-Practice and Experience, Vol. 14, No.8, pp. 791-806.

PATTERSON, D. and PIEPHO, R. 1982, RISC assessment: A high-level language experi

ment, Proc. 9th Int. Symp. Computer architecture, Apr. 26-29.

PEACOCK, J. K. et aI 1979, Distributed simulation using a network of processors, Computer

Networks, Vol. 3, No.1

PENNY, J. P. and SHEEDY, C. R. 1980, Measurement of response time performance ill

small time-sharing systems, The australian Computer J., Vol. 12, No.1, pp. 15-22

PERLIS, J. H. and IGNIZIO, J. P. 1980, Stability analysis: An approach to the evaluation

of system design, Cybernetics and Systems: An Int. J., Vol. 11, pp. 87-103.

PETER, W. 1971, Data structure models for programming languages, Sigplan Notices, Vol. 6,

No.2, pp. 1-39

267

PETERSON, J. and SILBERSCHATZ, A. 1983, Operating system concepts, Addison-Wesley
Pub. Co.

PETRI, C. A. 1966, Communication with automata, Tech. Rep. RADC-TR-65-337, Vol. 1,

Grifliss Air Force Base, New York, N. Y.

PICHLER, F. and OTTENDORFER, W. 1978, Decomposition of general dynamical sys

tems, Int. Conf. Systems Science IV, Wroclaw

PICHLER, F. 1983 Systematic Manipulation of Systems Models, In Oren et al: Simulation and

Models Based Methodologies, Springer Verlag.

PILOTY, R. 1975, Segmentation constructs for RTS111, Proc. of the Int. Symp. on Hardware

Description Languages and Their Application, New York, pp. 115-124.

PRATT, T.W. 1985 Pisces: An environment for parallel scientific computation, IEEE Software,

Vol. 2, No.4, pp. 7-20

PRICE, W. R. and PARNAS, D. L. 1973, The design of the virtual memory aspects of a

virtual machine, Proc. ACM SIGARCH-SIGOPS Workshop on Virtual Computer Systems.

PRITSKER, A. A. B. 1981, The GASP IV Simulation language, Wiley, New York.

POTTER, J.L. (ed) 1985 The Massively Parallel Processor, The MIT Press.

REEVES, A.P. 1985 Parallel Pascal and the Massively Parallel Processor, In the Massively

Parallel Processor (ed. Potter)' MIT Press.

REINER, D. 1980, A method for adaptive performance improvement of operating systems,

Ph.D. Thesis, University of Wisconsin-Madison.

RIDDER, T. 1986, Coroutines for C reconsidered, Software-Practice and Experience, Vol. 16,

No.3, pp. 301-302

RIDDLE, W. E. 1979, An approach to software system behaviour description, Computer Lan

guages, Vol. 4, pp. 29-47

RISER, M., 1979, Mean-value analysis of queueing networks: A new look at old problem, Proc.

4th Int. Symp. on Modelling and Performance Evaluation of Computer System, Vienna, pp.

63-77.

RISER, M. and LAVENBERG, S. S., 1980, Mean-value analysis of closed multichain queue

ing networks, CACM, Vol. 27, No.2, pp. 313-322.

ROBERTS, Z.A. 1986 The functional structure of control in expert systems, M.Sc. Diss.,

Florida State University.

ROBINSON, S. K. and TORSUN, I. S. 1976, An empirical analysis of Fortran programs.

The Computer J., Vol. 19, No.1, pp. 56-62

268

ROBINSON, S. K. and TORSUN, I. S. 1977, Dynamic analysis of program performance

(DAP) in a FORTRAN batch environment, Software-Practice and Experience, Vol. 7, pp.
307-315.

ROMAN, G. et. al. 1984, A total system design framwork, IEEE Computer, Vol. 17, No.4,
pp. 15-26.

ROSE, C. S., 1976, Validation of queueing model with classes of customers, Proc. ACM Com

puter Performance Symp. pp. 318-326.

ROSEN, R. 1986, Causal structures in brains and machines, Int. J. General Systems, Vol. 12,

pp. 107-126

ROSS, D. T. and SCHOMAN, 1977, Structured analysis for requirements definition, IEEE

Trans. on Software Engineering, Vol. SE-3, No. I, pp. 6-15.

RUNES, D. D. 1942 Dictionary of Philosophy, The Philosophical Library.

RUSHBY, J. M. and RANDELL, B. Feb. 1983, A distributed secure system, Tec. Report

182, Computing Laboratory, University of NewCastle Upon Tyne, England,

SAKAMURA, K. et al 1979, Automatic tuning of computers architectures, National Com

puter Conf., AFIPS, pp. 499- 512

SCHERR, A. L., 1967, An analysis of the shared computer systems, MIT Press, Cambridge,

Mass.

SCHLAEPPI, H. P. 1964, A formal language for describing machine logic, timing and sequenc

ing (LOTIS), IEEE Trans. on Electronic Computers, Vol. EC-13.

SCHORR, H. 1964, Computer-aided digital system design and analysis using aregister transfer

language, IEEE Trans. on Electronic Computer, Vol. EC-13.

SCHROEDER, M. D. and SALTZER, J. H. 1972, A hardware architecture for implement

ing protection rings, CACM, Vol. 15, No.3, pp. 157-170.

SCHRUBEN, L., 1983, Simulation modelling with event graphs, CACM, Vol. 26, No. 11, pp.

957-963.

SEVCIK, K. and MITRONI, I., 1978, The distribution of queueing network states at input

and output instants, Research Report no. 307, IRIA Recquencourt, France.

SHARP, D.A. 1984 The Role of functional programming in the design of structures for man

computer interactions, fourth year project, computer science department, BruneI University.

SHAW, A. C. 1974, The logical design of operating sytems, Prentice-Hall, Inc.

269

SEVCIK, K. C. and KLAWE, M. M., 1979, Operational analysis versus stochastic modelling

of computer system, 12 Annual Symp. on the Interface of Computer Science and Statistic,
University of Waterloo.

SHAW, M. L. G. 1979, Conversational heuristics for eliciting shared understanding, Int. J.

Man-Machine Studies, Vol. 11, pp. 621-634

SHIMIZU, T. and SAKAMURA, K., 1983, Microprogram development based on knowledge

engineering MIXER, Trans. Inst. Electron & Commun. Eng. Jpn. Part D, Vol. J66D, No.7,
pp. 864-871.

SHOOMAN, M. L. 1983, Software Engineering, McGRAW-HILL Pub. co.

SHORT, K. W. 1980, Data type interfaces in ad hoc decision support systems, Ph.D. Thesis,

University of East Anglia.

SHUEY, R. 1986, Data engineering and information systems, IEEE Computer, Vol. 19, No.1,

pp. 18-30.

SIEWIORELC, D. P. et al 1982, Computer structures: Principles and examples, McGraw

Hill Pub. Co.

SIMPSON, H. R. and JACKSON, K. 1979, Process synchronisation in MASCOT, The Com

puter J., Vol. 22, No.4, pp. 332-345.

SNYDER, L. 1981 Formal Models of Capability-Based Protection Systems, IEEE Trans. on

Computers, Vol C-30, No.3, pp.172-181

SIMON, H.A. 1986 Whether software enginnerring needs to be artificially intelligent, IEEE

Trans. on software engineering, vol. SE-12, No.7, pp.726-732

SINHA, M. K. 1985, Atomic actions and resource coordination problems having nonunique

solutions, IEEE Trans. on Software Engineering, Vol. SE-ll, No.5, pp. 461-471

SMITH, C. 1980, The prediction and evaluation of the performance of software from extended

design specifications, Ph.D. Diss., University of Texas at Austin.

SMITH, C. V. and BROWNE, J. C. 1982, Performance engineering of software systems: a

case study, AFIPS, Vol. 51, pp. 217-224.

SORASEN. O. and SOLBERG, B., 1983, VLSI-implemented systolic array for vector pro

cessing, VLSI 83, Elsevier Science Pub. B.V. (North-Holland), F. Anceau and E.J. Aas (Eds.).

SPECTOR, A. and GIFFORD, D. 1986, A computer science prespective of bridge design,

CACM, Vol. 29, No.4, pp. 268-283

SPIER, M. J. 1973, An experimental implementation of the kernel/domain architecture, Proc.

of the Fourth Symp. on Operating Systems Principles, Yorktown Heights, New York, October

15-17, pp. 8-21.

270

STEEL, R. G. D. and TORRIE, J. H. 1980, Principles and procedures of statistics abio

metrical approach, McGraw-Hill Pub. Co.

STEMPLE, D. et al 1983, Operating system support for abstract database types, 2nd Int.

Conf. on Database Cambridge, UK, Aug 30-sep 3

STEMPLE, D. et al 1982, Preliminary design of a port oriented operating system, Report No.

82-24, University of Mass. Computer and Information Science Department.

STEUSLOFF, H. U. 1984, Advanced real-time languages for distributed industrial process

control, IEEE Computer, Vol. 17, No.2, pp. 37-46

STOCKENBERG, J. and VAN DAM A. 1918, Vertical migration for performance enhance

ment in layered hardware/firmware/software systems, IEEE Computer, Vol. 11, pp. 35-50.

SVOBODA, A. 1964, Behaviour classification in digital systems, information processing ma

chines, No. 10, pp. 25-42.

SZYMANSKI, A. 1980, Computer simulation of human thought- its perspectives and con

straints, Kybernetes, Vol. 9, pp. 9-13

THEAKER, C. J. and BROOKES, 1983, Apractical course on operating systems, Mcmillan

Press LTD

THEOREY, T. J. 1915, Validation criteria for computer system simulation, Symp, Simulation

of Computer Systems III

TORSUN, I.S. and AL-JARRAH, M. M. 1918, Dynamic analysis of COBOL programs,

Software-Practice and Experience, Vol. 11, pp. 949-961

TRELEAVEN, P. and LIMA, I. 1982, Fifth generation computer systems, IEEE Computer,

Vol. 15, No.8.

TULLY, C. J. 1985, Information, human activity and the nature of relevant theories, The Com

puter J., Vol. 28, No.3, pp. 206-210.

TURING, A. M. 1936, On computable numbers with an application to the entscheidungs prob

lem, Proc. Lond. Soc., Ser. 2, Vol. 4, pp. 230

UNGER, B., et. al., 1983, JADE: A simulation and software prototyping environment, Res.

Rep. 83/133/22, Dept. of Computer Science, University of Clagary, Alberta.

USTER, M.J. 1984 Information theory for information technologists, MacMillan Pub. Co.

VAN GIGCH, J. P. 1919, A methodological comparison of the science systems and metasys

tern paradigms, Int. J. Man-Machine Studies, Vol. 11, pp. 651-663

VAN GIGCH, J. P., 1984, Epistemological questions raised by the metasystem paradigm, Int.

J. Man-Machine Studies, Vol. 20, pp. 501-509

271

VICK, C. et. al. 1980, Adaptable architectures for supersystems, IEEE Computer, Vol. 13,

No. 11, pp. 17-34.

VISONTAY, G. and CSAKI, P., 1979, DOCUM-For automatic documentation of SIMULA

programs, SIMULA Newsletter, Vol. 7, No.2.

VON BERTALANFFY, L. 1968, General system theory, George Bruiller, New York

VON MAYRHAUSER, A.E.K., 1979, Performance-oriented design of interactive computer

systems, Ph.D. Diss., Duke University.

WATSON, R. W. 1970, Time sharing system design concepts, McGraw-Hill Pub. Co.

WATSON, D.J. 1978 An approach to protection through capabilities, Ph.D. Thesis, Cambridge

University.

WELSH, J. and BUSTARD, D.W. 1979 Pascal-Plus: another language for moduler multi

programming, Software-Practice and Experience, Vol. 9, pp.947-957

WELCH, T. A. 1976, An investigation of descriptor oriented architecture, ACM Sig. Computer

architecture News, Vol. 4, PT 4, pp. 141-146

WHITE, S. M. et al 1985, Embedded computer system requirements workshop, IEEE Com

puter, Vol. 18, No.4, pp. 67-70

WIENER, R. and SINCOVEC, R. 1984, Software engineering with modula-2 and ADA, John

Wiley & Sons Pub. Co.

WILKES, M. V. 1968, Time sharing computer systems, American Elsevier Pub. Co., New

York.

WILKES, M. V. and NEEDHAM, R. M. 1979, The Cambridge CAP computer and its op

erating system, Elsevier/North Holland, Netherlands.

WILKES, M. V. 1984, Security management and protection, The Computer J., Vol. 27, No.

1, pp. 3-7.

WILLIAMS, M. H. 1983, The problem of absolute privacy, Information Processing Letters,

Vol. 17, No. 3,pp.169-171

WILLIAMS, T., 1972, Computer systems measurements and evaluation, BSC The Computer

Bulletin, No. 16, pp. 100-104.

WILLIAMS, A. C. and BHANDIWAD, R. A. 1976, A generalfunction approach to queue

ing network analysis of multiprogrammed computers, Networks, Vol. 6, No.1, pp. 1-22

WITTEN, I. H. 1977, Exploring, modelling and controlling discrete sequential environments,

Int. J. of Man-Machine Studies, Vol. 9, pp. 715-735

272

WOOD-HARPER A. T. and et. al 1982, A Taxonomy of Current approaches to systems

analysis, The Computer J., Vol. 25, No.1, pp. 12-16

WULF, W. et aI, 1974, Hydra: The kernel of a multiprocessor operating system, CACM, Vol.

17, No.6, pp. 337-345

WULF, W. A. et. a1. 1976, An introduction to the construction and verification of ALPHARAD

programs, IEEE Thans. on Software Engineering, Vol. SE-2, No.4, pp.253-265.

WULF, W.A. 1981 Fundemental structures of computer science, Addison-Wesley Pub. Co.

YOURDON, E. 1972, Design of on-line computer systems, Prentice-Hall Pub. Co., Englewood

Cliffs, New Jersey

YUVAL, A. 1980, System contention analysis- An alternate approach to system tuning, IBM

Syst J., Vol. 19, No.2, pp. 208-228

ZAVE, P. 1984, The operational versus the conventional approach to software development,

CACM, Vol. 27, No.2, pp. 104-118.

ZEIGIER, B. P. 1972, Towards a formal theory of modeling and simulation: structure pre

serving morphisms, Journal of the Association for Computing Machinery, Vol. 19, No.4, pp.

742-764

ZEIGLER, B. P. 1975, Statistical simplification of neural nets, Int. J. Man-Machine Studies,

Vol. 7, pp. 371-393

ZEIGLER, B. P., et. al., 1980, ESP: An interactive tool for system structuring, in Proc. Eu

ropean Meeting Cybernetics and Systems Research, Vienna, Hemisphere, New York.

ZEIGLER B P 1984 Multifacetted Modelling and Discrete event simulation, Academic, New , .., ,
York.

ZEMANEK, H. 1979, Abstract Architecture: General Concepts for Systems Design, The Copen

hagen Winter School Proceedings on Abstract Software Specifications.

Appendix

Analysing the effects of changes within the user environment: We analyse the user

effectiveness and its relation to the system effectiveness measure of the average response

time. Programmer effectiveness can apparently be measured in terms of work units (Jones

and Schwarz 1980). It can be increased with scheduling dexterity (Doherty and Kelisky

1979), and it can be constrained by the interactive environment (Barber 1979). For this

purpose we performed a series of experiments to test the user effectiveness upon our in

teractive constellation simulator using the user effectiveness parameters mentioned in table

10.'.

A.l Experiment-2: USER PRODCTIVITY VERSUS AV

ERAGE RESPONSE TIME

We run the interactive constellation with average user productivity from 25 to 100 trans

actions per login period in increments of 10. Using the scheme of performoact we modelled

the effects of these changes upon the average response time index. Refer to Table 1 and

Figure 1. Indeed, increasing the user productivity sharply increases the average response

time index which has an increasing slop depending on the concurrent jobs allowed to be

entered to the system. The 'best' equations in Table 1 provide an approximate description

of the behaviour of the system, and according to different user productivity rates.

1

TOR WIllf AYBtAaE U8Bt PllltU:TIVlTY • I., T~~
-- aDP 8Il'U.ATOR WITH AYBtAaE U8Bt PllltU:TIVlTY • 7r TI'WWIC\~

--+-----iaDP 8Il'U.ATOR WIllf AVBtA8E U8Bt PIUl.C'TIVlTY • 5. T~~

• 1C8DrP 8II'U.ATOR WIllf AYBtAaE U8Bt PIUl.C'TIVlTY • 15 T~

,.. ,..,

2

•

e __ ----nr----,.~--~r---~mr----~----~
DEIWC) (No. oP CXJNtUtRENT Jla)

FIGURE 1 , PERFORMOACT MOOELLINS;' DEMAND vs EFFECTIVENESS

MIN 5 10 15 20 25
--r~-
(100 OBSERVED DEMAND Y II:, '31 '-II, ' bU

h~s.ta;o,,)OBSERVED EFFECT. 5·t~ lO.!7 16·2t 21·57 '22.57
LIN PERFORMOACT MODEL : A=5·b5 B=· '31 DF=.q~
EXP PERFORMOACT MODEL : A= b·b! B= '02. DF=. 'fLf
LOG PERFORMOACT MODEL : A= -L4.30 B= 6'35 DF=. qb .. ADM,S ..
PWR PERFORMOACT MODEL : A= 2..\0 B= '51 DF=. &jq ~ RfST~
----------------------------------T----------------~----------
<75 t-YMS· OBSERVED DEMAND Y 1o 30 'i 5'4
COAl) OBSERVED EFFECT. '1.63 10·01 "~'5i ILf.q 15·~tf

LIN PERFORMOACT MODEL : A=S.'iS B= ·2/ DF=.qL/
EXP PERFORMOACT MODEL : A=5'5! B=' 02 DF=. ~
LOG PERFORMOACT MODEL : A= -J.l:.~ B= 4·35 DF=. ~,p~. ~ RE:Si~/J1WIO
P\,R PERFORMOACT MODEL : A= 2.fK/ B= 'Lf~ DF=.¥-\!

(50----~;;;;~;~--~;~~~-----f~----,q--------~------1q3-----s-y
trlVls.) OBSERVED EFFECT. 2.65 7·'1'1 12.1S 10'41 12.cI1
LIN PERFORMOACT MODEL : A= '1.2.1.{ B= ·Ib DF=. ~5
EXP PERFORMOACT MODEL : A= J·<ll B= '01 DF=.I\
LOG PERFORMOACT MODEL : A=-I'~O B= "3·61 DF=·'lb
PWR PERFO.RMOACT MODEL : A= ,·3i B= ·57 DF=·qS
---~---------------
(is'OBSERVED DE~1AND 4 1"1 2, "12 53
lw'"..,,-) OBSERVED EFFECT. 2·y5 4·SI ~,]'l ~·61 7·45

LIN PERFORMOACT MODEL: A=2·73 B= 00' DF=.qb
EXP PERFORMOACT MODEL : A= 2. ~S B= .01 DF=. q I
LOG PERFORMOACT MODEL : A= - ·I'i B= 1·~2. DF=. 98 .,f /Jb""'S't-
PvlR PERFORMOACT MonEL : A= j.l{L(B=· 'i 1 DF=.!J ~ ~EST ... /
--- ------------
Where : THE NUMBER OF CONCURRENT JOBS REPRESENTING THE DEMAND

THE AV. RESPONSE TIME REPRESENTING EFFECTIVENESS
LINEAR PERFORMOACT MODEL = EFF = A + B * DEMAND
EXPONENTIAL PERFORMOACT MODEL= EFF = A EXP(B* DEMAND)
LOGARITHMIC PERFORMOACT MODEL= EFF = A +B* LIN(,DEMAND)

POWER PERFORNOACT MODEL = EFF = A*DEMAND
B

Table 1: THE EFFECTS OF {her ProJUL~I":& Var.e.rJ:ol'l
THE AVERAGE RESPONSE TIME INDE~

f.:> 'b-~ey
,- ~-AJrr,,>

UPON

APPENDIX A. 2

A.2 Experiment-3: USER AV. SATISFACTORY RESPONSE

TIME vs. AVERAGE RESPONSE TIME

It is generally known that users are more productive which shorter average response time

index. In our activity structures based design the inferential structure mechanisms make

more frequent inspections whenever the key performance indices degrade (i.e. the average

response time index for the interactive version and average system throughput index for the

general purpose). This experiment examines address the problem of the effects of varying

the average satisfactory response time parameter of the user environment. Refer to Table

2 and Figure 2. The result of increasing the average satisfactory response time parameter

reduces the average system response time index slightly (1 sec approximately for each two

seconds of the increase in the average user satisfactory response time parameter).

A.3 Experiment-4: Faulty Intention Rate vs. Av. Re

sponse Time

In our interactive constellation design, faulty access intentions can be generated at different

rates. Of interest here is the question whether or not an increase in the number of the

user faulty access intentions affects the system performance. In this case, the rate of the

value of the user faulty intentions access was varied from 15% to 30% in increments of

5%. Using the performoact scheme the results of running the interactive constellation are

described in Table 3 and Figure 3. The average response time is slightly decreased with

the increase of the faulty access rates due to the overahead time spent by the dynamic

protection mechanism to search whether any other user job is allowed to pass the right

access rights to that particular user job. That explains why the increase in the faulty access

intention rate didn't produce an equivalent reduction in the average response time (only.5

sec for increase in the rate of 5%).

USER WORK UNITS VB. AV. RESPONSE TIME User work units can be

expressed using several parameters in our interactive simulation model. The parameters

are:

-~-~ tIPt..l..ATtIt WIn! ltv. UER IAT~ IISl"'i>a 7"n£ •• ...:

----... --ltSI'P tDU.JlTtlt WIn! ltv. l.&it ~TIIFftC'TtIn' ~ Tn£ •• ...:

--+- IC&tIt" .nt.J...ATOR WIn! ltv. ~ IIIT~ ~ Tn£ • 1 • ...:

! -...
I .
~

I
i

• lC&tlt" ,nu.;. TOR WIn! ltv. ~ 8A~ IISIP:H&E mE • 12 --=

+
Z

FIGURE 1 r PERFORMOACT MODELLING r DB1ANO vs EFFECTIve.ESS

MIN 5 10 15 20 2S
(-l ~D-~-;;~~;~~;-;~~~;---q -------,y ------~----- -"'f3-:- --- - 541--

CON)OBSERVED EFFECT. l'b5 'i~ \1.l! 10.'(3 11·0'l
LIN PERFORMOACT MODEL A= -12.1.{ B= ·/6 DF=. g5
EXP PERFORMOACT MODEL: A= 3'i!1 B= '02. DF=. 'b1
LOG PERFORMOACT MODEL: A=-\~O B=~·6' DF=.~60 ... ~4J1DHlS",
PWR PERFORMOACT MODEL : A= 1'3i B= '51 DF=. qS
(-~~O-~~--;;~~;~;;-;~~~;--~------15--------35------~5------55

) OBSERVED EFFECT. 1.60 7·73 /(.35 1\·'13 11·0
LIN PERFORMOACT MODEL : A= ~·63 B='/1 DF=.92
EXP PERFORMOACT MODEL : A= 3·1./q B= '01. DF"'. '66 ._
LOG PERFORMOACT MODEL : A= -1·lt~ B= 3 ·1-5 DF=. qlU. • 8E.ST~A0""o*
PWR PERFORMOACT MODEL: A= 1·26, B='5q DF=. ~1-
----------------------------------~------------------- -r------
(10.0 Sec. OBSERVED DEMAND 5 'CI 31 I..{o 57-

) OBSERVED EFFECT. .2 . .53 ,·51 ".0 \\·51 \I·~3
LIN PERFORl-lOACT MODEL: A= !.·3'l B=·\7 DF=.q]
EXP PERFOR"10ACT MODEL : A= 3,30 B= '02. Dr.:. ~b
LOG PERFORMOACT MODEL : A= -3/:,1 B= 3·~' Dr=. qq, ... l&ST A.D,..;o ..
PWR PERF~RMOACT MODEL: A= 1'01 B= 'b~ DF=. ~1
(1"- o-~-~;;;~;~~; -;~~~;;--5---- ---,:;.----------ji- ---- --·Pf--- -5'1

) OBSERVED EFFECT.".51 I'" 10·7/ /\·12 \\·55
LIN PERFOAAOACT MODEL A= 3·1\ B= ·I~ DF=.~~
EXP PERFORMOACT MODEL: A= 1,.\1 B= ·02 DF='iS
.LOG PERFORMOACT MODEL : A= -'l·SS B= 3 .~o DF=. ~q r -44 E rS' IIr AV(YrSr

~~~_~:~~~~~~~~:_~~~:~_~_~:_~~~~ __ ~:_!~ ______ ~~:~9~ __________ _ 
Where 

Tat le- ~I 
j... 

THE NUMBER OF CONCURRENT JOBS REPRESENTING THE DE~.A"'1) 
THE AV. RESPONSE TIME REPRESENTING EFFECTIVE~ESS 
LINEAR PERFORMOACT MODEL = EFF = A + B * DEMAND 
EXPONE~TIAL PERFORMOACT MODEL= EFF = A EXP( B* DEr.Ah~) 
LOGARI THI'HC PERFORII,OACT "'.ODEL= Err = A +B* LIN ( DE .... At-,'D) 

POh'ER PERFORl-lOACT MODEL = ErF = AiDEMANDB 

THE EFFECTS OF AJU~e U;er Sc" 1.:J(-.t./4~ Pe;~T..~:';PON 
THE AVERAGE RESPONSE TIME INDEX 

5_ [],€ST 

G' - Ad",\\s 



--+---{C8(Jt> SIPU.J\TOR VIlW FAl.l.TY Act:e88 RATE - .15 

-----&-----IC8(Jt> SIPU.J\TOR Vm! FAl.l.TY Act:e88 ItflTE - .28 

--+-----!C6(Jf> SIPU.J\TOR Vm! FAl.l..TY ACt&8 RATE • .zt 

• tC8(Jt> SIPU.J\TOR Vm! FAl.l.TY Act:e88 RATE ... 

, , 
e· 

+ 

, , , , , , 

/:?~ 
, '~ 

II! ... ... 

I 
".-:: 

. " +e" Z// 
,/;~ 

, , , , 
" /.. ,"//" • Z 

/;0. , , 0' · 

#'"" " , , , 

OBWI) ( No. " aJNC:lRIENT JOB8 ) 

• 

FISURE3 I PERFORMOACT MOOELLINS' DEMAND vs EFFECTIVENESS 

--------------------------------------------------------------
MIN 5 10 15 20 25 
-----------------------------------fj---------------------------
(·15 rCJ\-~ OBSERVED DEMAND Y Ii ~I '13- sl( 
CON ) OBSERVED EFFECT. !·bS 1.qd 11.1~ 10''13 - 11.0~ 

LIN PERFORMOACT MODEL : A= ~.~¥ B= ·Ib DF=. 'i!S 
EXP PERFORMOACT MODEL: A= 3' i1 B= '02 DF=.'6'i 
LOG PERFOJU.lOACT MODEL : A= -\·qo B=~· bl DF=.~, ~ tEST * Aj)~S'" 
PWR PERFORMOACT MODEL : A= I':;~ B=· 51 DF='15 

(~a-~:~---~;;~;~;~-~~~~~-3------I~-------i~------40-------5-0 
) OBSERVED EFFECT. i.51 '.11 11.01 1\·01 \1,1 

LIN PERFORMOACT MODEL : A= 3·58 B= ·'10 DF-.~I 
EXP PERFORMOACT MODEL : A= 3-'t1t B= '03 DF='I6b 
LOG PERFORMOACT MODEL : A= -I. bl B= 6·&5 DF=.~t ~/lDN,.s-t; 
PtiR PERFORMOACT MODEL : A= \. ~1 B= ·58 DF=.~Ys ~ ~c~"'" 
(~5----~;;;;~;~--~;~~~--3-------I~--------i7-------jf-----41 
('cJ~~ ) OBSERVED EFFECT.l.LI! 6'Q 11·3 10'51. 1\.,1 

LIN PERFOR1-10ACT MODEL : A= 3-5'1 B= ·Iq DF=.qO 
EXP PERFORMOACT MODEL : A= ~'31 B= '03 DF=.~S 
LOG PERFORMOACT MODEL : A= -\'3.1 B= '3 ·.11-3 DF=. C\%~. *' tE514 f1DH~ 
PWRPERFO.RMOACTMODEL: A= \.1t\ B=·57f DF=·qr 

(~O-----~~;;;;~~~-~~~~~-i-------'T---------ib------~l------~5 
Y<'-fe ) OBSERVED EFFECT. j..I.\1 6· 7 10·1 '1'1 10·35 

LIN PERFORMOACT MODEL : A= 3.i3 B= ·/1 DF=.~7 
EXP PERFORMOACT MODEL : A=3'~S B=·02 DF=.S~ 
LOG PERFORMOACT MODEY. : A= ·61 B= ,..,{, DF=.'p ot,Ailt'YlJk-. 
PvlR PERFORMOACT MODEL : A= l'~~ B=· 'is DF=.qi -It- ~cSlw--
--------------------------------------------------------------
Where : THE NUMBER OF CONCURRENT JOBS REPRESENTING THE DE~A~~ 

THE AV. RESPONSE TIME REPRESENTING EFFECTIVENESS 

Table) 

LINEAR PERFORMOACT MODEL = EFF = A + B • DEMAND 
EXPONENTIAL PERFORMOACT MODEL= EFF = A EXP( B* DEMAND) 
LOGARITHMIC PERFORMOACT MODEL= EFF = A +B* LIN( DEMAND) 

POl'lER PERFOR1-lOACT MODEL = EFF = A*DEMAND
B 

THE EFFECTS OF Fo.l..\~~ AcLQSSe.S ~~E. VO(.oJ~" 
THE AVERAGE RESPONSE TIME INDEX 

A: ~_ e,es-t-
f'P3: €> - Ad{1\1 S' 

UPON 



APPENDIX A. 
3 

1. User average think time, 

2. Number of tasks (e.g. edit, compile, execute, etc), 

3. Job arrival speed (i.e. mean interarrival time), 

4. Job speed (i.e. average processor time required by a user job), 

5. Average memory size required by a user job, and 

6. Average number of backing store records required for a user job. 

A.4 Experiment-5: Average Think Time vs. Av. response 

time 

With the increase in the user average think time (a setp of 10 sec) we noticed very oscil

lating behaviour. First of all an increase in the think time increases the average response 

time and possibly we got later a reduction because of the frequent inspections of our in

ferential structure (which have the effects of improving performance). Then with a later 

increase in the average user think time the average response time increases (see Figure 4 

and Table 4). 

A.5 Experiment-6: No. of Tasks vs Av. Response Time 

With the increase of the average number of tasks the user might produce, we notice a 

sharp increase in the average response time (around 1.5 second for each task increased) (see 

Figure 5 and Table 5). 

A.6 Experiment-7: Job Arrival Speed vs Av. Response 

Time 

With the increase in the job arrival speed of user jobs (i.e. lower mean of jobs interarrival 

time), the average response time gets slightly worse. It increases about.5 seconds for each 

1.5 msec increase in the arrival speed) (Figure 6 and Table 6). 



-ICSDrP SllU.ATOR WITH AVERAaE USER THII« TIft: _ 18 ROC 

--~-----IC&DnP SIIU.ATOR 

--+------iC6DrP SIIU.A 
WITH AVERAaE USER THll« TIft: • 21 .-c 

TOR WITH A V9Aa: USER TH II« TIf£ _ ..... 
1_---; .... -----IC6DrP - .-c 

SII1lLATOR WITH AVSWiIE IJSER THII« TIf£ • 48 we 

,., ,. 

I! ... ... 

I 
I 
i 

C!) • 

DeWfJ ( No. C1P CONtUaen' Jt88 ) 

FIGURE 4 I PERFORMOACT MODELLING. DEMAND vs EFFECTIVENESS 

- ._-"---------------------------------------------------------------
MIN 5 10 15 20 25 

(10------~;;;;~~~-~~~~~---~-------~-------~------qi~-----b~--
$eC4...ds )OBSERVED EFFECT. 3'41 1·7f, 11·£2, 11·02 IVn 

LIN PERFORMOACT MODEL : A=/..f ·b1 B= .1+ DF=.ql 
EXP PERFORMOACT MODEL : A= 4-51./ B= ·01. DF=.~6 
LOG PERFORMOACT MODEL: A= -1.1~ B=3.Qg DF=.~ '" /JiJr-(/Sf 
PWR PERFORMOACT MODEL : A= 1·7'i B=' 52. DF=. 'l't" ~IEST. 
(;O-------~;;~;~~~-~~~~~--~----rt--------~3-------~3-------61 
~. ) OBSERVED EFFECT. l·gS ?~2. 12,·;S 12.·1Y 13·61 

LIN PERFORMOACT MODEL : A=3''fo B= ·Ig DF=.ql 
EXP PERFORMOACT MODEL : A=J'~J B= ·01. DF=.~6 
LOG PERFORMOACT MODEL.: A=-J'2.\ B= '-f·ro DF=.~~f ... 1IDNIS-¥ 
PWR PERFORMOACT MODEL: A= \'5\ B= '60 DF=.qq ~~* 

(;;-~-~;;~;~;~--~~~~---~-------14------3\-------43-------5~ 

CON) OBSERVED EFFECT. 2~5 1·~ 12·1.8 /o·!.fl Il.-o<l 
LIN PERFOJU.lOACT MODEL : A=~.l'i B= ./6 DF=. as 
EXP PERFORMOACT MODEL : A= 1.~1 B='01 DF=. iI 
LOG PERFORMOAC~ MODEL: A= -1·qO B= 1·61 DF='C{b *g~'T" AC)l-l/·l~ 
PWR PERFO_RMOACT MODEL : A= U~ B= '51 DF=·q5 

(~O-----~~;;~;~~~-~~~~~--~------T~-------i8--------4i------;0 
<;€c.. ) OBSERVED EFFECT .. ~.ILj 1,110 12,.03 11·'19 12..2.0 

LIN PERFORMOACT MODEL A=s·l.(/ B= .11 DF=.g, 
EXP PERFORMOACT MODEL: A=1·12. B= '01 DF='~l A ~ 
LOG PERFORMOACT MODEL: A=-l65 B= 4·1.q DF=.'t$O -Ir gf.ST~ DMI~ 
PviR PERFORMOACT MODEL: A= ·q1 B= ·11 DF='1~ 
--------------------------------------------------------------
Where : THE NUMBER OF CONCURRENT JOBS REPRESENTING THE DE~AND 

THE AV. RESPONSE TIME REPRESENTING EFFECTIVENESS 

Table4 

LINEAR PERFORMOACT MODEL = EFF = A + B ... DEMAND 
EXPONENTIAL PERFORMOACT MODEL= EFF = A EXP( B* DEMAND) 
LOGARITHMIC PERFORMOACT MODEL= EFF = A +B* LIN( DEMAND) 

pmoJER PERFOJU.lOACT MODEL = EFF = A*DEMAND
B 

THE EFFECTS OF flv#~lZde 1i:.i1 k "me ~a/I"~'O'" 
THE AVERAGE RESPONSE TIME INDEX 

A 15 - g@:-+-
o B-Ad(y~s 

UPON 



CDI' 8I1U..ATtIt lIITM AVERAaI; MD. ~ TA8CS pel" JOI _ t 
----.---IC8a'P ItIU..Ag Wlnt AYBtAeE Mo. OF TAIICI pel" JOI _ ! 

--+----lC8Cf'p 8I1U..A'T'QR VInt AV9tAE MD. ~ TA8CS pel" JtII • a 
• lceotP ItIU..ATtJt VInt AVBtA8E MD. OF TAIICI pel" JtII _ of 

A ,.. 

" 
I! 
w ... 

J: 
+ 

----I --.,. .. -,- e fIO, _ 
_ ':I' ~_ ---- .--~ . --- !---

. 
~ 

-, .. - .-------- .--,- ~ 
C!) _ .. -- .--~ -- ~ ... -.. .--~ .. , .. - ..----. .--'-

~ 

DEIWC ( Mo. oP COtC..RR:eIT Jta ) 

FIGURES' PERFORMOACT MODELLINGI DEMAND vs EFFECTIVENESS 

--------------------------------------------------------------
MIN S 10 lS 20 2S 

(1-~;;;--~;;~;~~~-~~~~;;---5-------t~------17------~£r------61[-
) OBSERVED EFFECT. "8& 1-3 t 5'7/;, 5·~O 5'7b 

LIN PERFORMOACT MODEL : A= 'l'(x) B= 'Ob DF=.q6 
EXP PERFORMOACT MODEL: A=i,.lb B=· 01 DF=.q2.. 
LOG PERFORMOACT ~IODEL : A= -.71..J B= 1·5 ~ DF:.", * ADMIS~ 
PWR PERFORMOACT MODEL : A= ·qs B= '44 DF"". * ~S"T '" 
-------------------------------------------------~j-----------
(£ t~k OBSERVED DEMAND 5 11 !"i 'is S'f 

) OBSERVED EFFECT. ~.Lj'l 4·'4 5066 b·lI 6·1.17 
LIN PERFORMOACT MODEL : A=3'01 B=·,,6 DF".qO 
EXP PERFORMOACT MODEL: A='!,'OI Be'IS DF:Z.i5 
LOG PERFORMOACT MODEL : A= -Y.'1.3 B= ,.bS DF=.qq.· .. iESlIlAJ)I'ItS.,f 
P\'iR PERFORMOACT MODEL : A= "1.13 B= '3q DF=-. '11 
(3~~k-~;;;;~~--~;~~~----~-------~--------il------~~-----5; 
CON ) OBSERVED ~FFECT. .1·65 ,.qq I~ .ii' 'o''f3 11·0'1 

LIN PERFORMOACT MODEL A= tj·ll.f B=oI(, DF=.%S 
EXP PERFORMOACT MODEL : A= 3.~,. B= '02. DF=.~\ 
LOG PERFORMOACT MODEL : A=-\·~O B=s·b\ DF=.~6 -,{ &EST .... A.i)N~ 
PWR PERF~RMOACT MODEL: A= 1.3~ B= ·S7 DF=.qS 
--------~-----------------~-------I\-------lt--------~1------53 
(y ~C1osK 'OBSERVED DE~lAND (iq 0.02 I~' s6 '~.10 ,<1 DO 

) OBSERVED EFFECT. ~'JL ~ D ~'D 
LIN PERFORMOACT MODEL A= 5.\1 B= .I~ DF=.~2. 
EXP PERFORMOACT MODEL : A= L.j.LfJ B=' 01. DF=.,(, 
LOG PERFORMOACT MODEL: A=-I-37 B= 3·76 DF=.'15 «r !EST.(At>~'tft· 
PvlR PERFORMOACT MODEL : A= r.b{; B= . s.s DF=. q2 
--------------------------------------------------------------
Where : THE NU~lBER OF CONCURRENT JOBS REPRESENTING THE DEMA}"'O 

THE AV. RESPONSE TIME REPRESENTING EFFECTIVENESS 

Table ~ 
",. 

LINEAR PERFORMOACT MODEL = EFF = A + B * DEMAND 
EXPONENTIAL PERFORMOACT MODEL= EFF = A EXP( B* DEMAND) 
LOGARITHMIC PERFORMOACT MODEL= EFF = A +B* LIN( DEMAND) 

POlvER PERFORfolOACT MODEL = P.FF = A*DEMAND
B 

THE EFFECTS OF f4"q~Ci.' e No. D/ Tal f.:.s r4/ J. 6 
THE AVERAGE RESPONSE TIME INDEX 

!> 1,-ge~l 
:. -;" :,,",. ~ 

''1L . 
~., 

UPON 



M 
v 

I! ... 
~ 

I . 
~ 

I ... 

I +. 
ze 

, 

z+ (!) 

• 

0ErW'I) ( No. oP CONClJ!R9(T J088 ) 

/~ 

/ 

z 

FIGUREbl PERFORMOACT MODELLING. DEMANO vs EFFECTIVENESS 

--------------------------------------------------------------
MIN 5 10 15 20 25 

(1.~-~~~-~;~;;~~~-~~~~~---~-------I~------~T------~~-----S~--
CON ) OBSERVED EFFECT. ~.t.S 7,Q9 12..'l.~ 10''13 . ,l·o'} 

LI N PERFORMOACT MODEL : A= 'p.~ B=. Ib DF=. cas 
EXP PERFORMOACT MODEL : A= 3-~1 B= '02 DF=." 
LOG PERFORMOACT MODEL : A= -I.CjO B= j'bl DF=. '16 ~ &E-ST~A DI'IIJ,f 
PWR PERFORMOACT MODEL : A= I-Jb B= '5'1 DF=. 5 
(3~O-A;~~-~;~~;~~~-~~~~~-y-------~--------ij----~4~-------s!-

) OBSERVED EFFECT. 1- 25 /',3 ". i~ IO'S~ 10- 85 
LIN PERFORMOACT MODEL : A= 3-~ B=·15 OF"."? 
EXP PERFORMOACT MODEL: A= 3-l.fb B=-01 DF=.~O • 
LOG PERFOR.."IOACT MODEr, : A= -1-01 B=3-'1<) DF=.ctt- if 1f5i1t' 1JDH!4 
PWR PERFORMOACT MODEL: A= \-10 B=_sq DF=,'Li 

(~_~-g:~~:~~g--~~~~~~--~~~;---Z~~-------~\~-----~~~:3-----fo~~ 
LIN PERFORMOACT MODEL : A= L1,~ B= "3 DF=.g3 
EXP PERFORMOACT MODEL : A= ~.20 B= ·01 DF=./i 
LOG PERFORMOACT MODEL : A= '31 B= 1·6\ DF=.~b <It i~T1( ,RDH~ 
PWR PERFO.RMOACT MODEL : A= I_q~ B= -'t5 DF=.95 

(-iO----~~;~~;~~~-~~~~~--3------\\--------io-------jq------~~ 
~. ) OBSERVED EFFECT. 1.\1 6-2.1 '1.65 q·qO 'l·ll 

LIN PERFORMOACT MODEL : A=~''f6 B= '/'i DF=.~O 
EXP PERFORMOACT MODEL : A= 3'QI B= '02 DF=·7b 
LOG PERFORMOACT MODEL : A= -. 55 B= 1.- is DF=. q; + & fST~ A6tYtJi' 
P\'lR PERFORMOACT MODEL: A= \-37 B= '55 DF=·Q4 
--------------------------------------------------------------
Where : THE NUMBER OF CONCURRENT JOBS REPRESENTING THE DEMAND 

THE AV. RESPONSE TIME REPRESENTING EFFECTIVENESS 
LINEAR PERFORMOACT MODEL = EFF = A + B * DEMAND 
EXPONENTIAL PERFORMOACT MODEL= EFF = A EXP( B* DEMAND) 
LOGARITHMIC PERFORMOACT MODEL= ErF = A +B* LIN( DEMAND) 

pmvER PERFORMOACT MODEL = EFF = A*DEMAND
B 

Table/-: THE EFFECTS OF 1l.~ ;vf~", l,.J~'Dlf.-./"i J.'n,~ UPON 
THE AVERAGE RESPONSE TIME INDEX 



APPENDIX A. 
4 

A.7 Experiment-8: Job Speed vs Av. Response Time 

With the increase of the job speed (i.e. the average processor time required for the user job 

to finish), we notice a sharp increase in the average response and with a potential increase 

and also the increase in the concurrency level (Figure 7 and Table 7). 

A.8 Experiment-9: Memory Required per Job vs Av. Re

sponse Time 

With the increase of the user demand for memory usage (average memory required for 

user job), there is a slight increase in the average response time, but highly affected by 

the increase in the concurrency level (see Figure 8 and Table 8). 

A.9 Experiment-IO: Backing Store Records Required vs 

Av. Res. T. 

With the increase in the backing store records aquired by the user, we noticed a 

sharp increase in the average response time with respect to a slop caused by the level of 

concurrency in the constellation (see Figure 9 and Table 9). 

Analysing the effect of changes within the machine environment: Now let us consider 

some changes to the hardware/software capabilities to the initial configuration of our in

teractive constellation. These changes are made by changing the parameters mentioned 

in Table 7.1. There are many possible alternatives that may produce different successful 

versions to the original NUKE-oriented data (called as general families of NUKE in this 

case). Here we performed two major experiments to analyse both hardware and software 

changes upon the average response time. 

Hardware changes vs. Av. response time: The hardware-dependent parameters consid

ered for this experiment include the following: 

1. Average memory segment size, 

2. Total memory size, 



--+--{CStIP 8Dt.L.rut WIlH IIVSWIE IIBIJlRED CPU TIlE RJt II JC8 -Uwc 
-----&-----ICStIP 8IIU.IITOR WITH 1I'I9.AE IIBIJlRED CPU T1I£ RJt II JC8 _ 15 

--+---;~ SIIU.IITOR WIlH AVSWIE RSlJlRED CPU T1I£ RJt II JC8 - to 
• l~ SIIU.IITOR VIlH 1IYBUa: RSlJlRED CPU T1I£ RJt II JC8 • 5 

• 

• 
DeWI) ( No. of> CONCl.RRENT JtB8 ) 

FIGUREl I PERFORMOACT MODELLINGI DEMAND vs EFFECTIVENESS 

MIN 5 10 15 20 25 

(20------~;;~;;;~-~~~~~---3-------'3------35------~O~-----~5--

<;;eco..d ) OBSERVED EFFECT •. ".tll 10 ·70 1~.'1'1 10'SO 1<=\.'6\ 
LIN PERFORMOACT MODEL : A=5'~i B='3~ DF=. \6 
EXP PERFORMOACT MODEL : A= 5.n B= '03 DF=.CO% 
LOG PERFORMOACT MODEL : A= -v~o B=b·yg DF=.cti I( ADt'-ld.-.. 
PWR PERFORMOACT MODEL : A= ~'73 B= ·56 DF=.ct6 'flo i~ST'" 

«(5-~~~---~;;~;;~~-~~~~~---4----/~-------3\-------~t-----5~ 
Co# ) OBSERVED EFFECT. ~'13 g'bD 15·'n l~"'1 1~'3\ 

LIN PERFORMOACT MODEL : A=3'7/ B= '32 DF=.qb 
EXP PERFORr-1OACT MODEL : A= ,-\-3& B= '03 DF=.92 
LOG PERFORMOACT MODEL: A=-5'65 B=6'1\ DF=.qi .,t~Dr.f'w-
PtiR PERFORMOACT MODEL : A= \.5\ B= '65 DF=. "9. ~ iE-ST* 
---------------------------------7q-----------------~---------
(/0 OBSERVED DEMAND '1 3' I.f~ 5"1 
sec.- ) OBSERVED EFFECT. 1·6.5 7."9 11-1i' ID,,,/3 11."" 

LIN PERFORMOACT MODEL A=L1·2.~ B= .Ib DF=.i5 
EXP PERFORMOACT MODEL : A= 3.'i1 B= '02 DF=.gl 
LOG PERFORMOACT MODEL: A=-\·"O B= 3.bl DF=·q6 
PWR PERF~RMOACT MODEL : A= \'38 B= '57 DF=. '15 
(~-~~--~~;;;;;;~-~;~~~--q------\1-------33-------fi-------;f 

) OBSERVED EFFECT. 1.111 &.oS 6·i'1 (;'·67 6·53 
LIN PERFORMOACT MODEL : A=l·s6 B=·01 DF=.77 
EXP PERFORMOACT MODEL : A=1·13 B= '01 DF=·7S 
LOG PERFORMOACT MODEL: A= • SCi B= \·6{, DF=.'13 ~ BEST. /JD/1··ltJi 
PvJR PERFORMOACT MODEL: A= 1·5' B= '3q DF=·il 
--------------------------------------------------------------
Where : THE NUMBER OF CONCURRENT JOBS REPRESENTING THE DEMAND 

THE AV. RESPONSE TIME REPRESENTING EFFECTIVENESS 
LIt\EAR PERFORr-10ACT MODEL = EFF = A + B * DEMAND 
EXPONENTIAL PERFORMOACT MODEL= EFF = A EXP( B* DEMAND) 
,LOGARITHMIC PERFORMOACT MODEL= EFF = A +B* LIN( DEMAND) 

POI"ER PERFORr-10ACT MODEL = EFF = A*DEMAND
B 

Table 1: THE EFFECTS OF Ii. Av. Re1w'r~cl CPU 7./rto(! UPON 
THE AVERAGE RESPONSE TIME INDEX 

IS_Be~;l 

;S - Ad('l\;) 



• ..-....- "~I ~ WI r" /IV. IB'at1' IIEIlJtRBl FOR II JtIt • 1:s:J8+ 8'T'TES 
-----~-----l~ II"ULATOR WrTH Av • leOn' IIEIlJlRBl FOR II JOB • l3IIH I'T'TI!8 
--~----{CSIJt:> St"ULATtR VrTH Av. leOn' RBlJIRBl FOR II JOB • 183M 8'1'TE!I 

• ICSO'P SI"ULATOR WITH Av. leOn' REQIIIS) FOR A JtIt • I~ I"fTl$ 

,.. ,... 

II! .. ..... 

I . 
~ 

I 
I z •• 

~ 

FIGURE ~ I PERFORMOACT MODELLING;' D81AND vs EFFECTIVENESS 

--------------------------------------------------------------
MIN 5 10 15 20 25 

(~~;;----~;~;;~~~-~~~~~---5-------1~------i\------~-r------Sr-
~teS )OBSERVED EFFECT~ j·S 9·1,1 10''\ 12.05 1'l..·qS 

LIN PERFORMOACT MODEL : A="1'31 B= ·10 DF=. ~3 
EXP PERFORMOACT MODEL : A=3-30 B= .03 DF=. 'IS t1 
LOG PERFORMOACT MODEL : A= -Y.l~ B= Z;.lq DF=. a.'rf -T: gES.T .. /11)/'(0# 

PWR PERFORMOACT MODEL : A='$ B= • h, DF=. qb 
(~~~;-----~;~~;~;~-~~~~~~~--------tb-------~i------~j------4j 
~tes ) OBSERVED EFFECT.1-'3 t,·S'1 Ij.O'l \0"'1 12,·Lf'i 

LIN PERFORMOACT MODEL: A=3-11 B=',q DF=.g'1 
EXP PERFORMOACT MODEL: A= 3''1'( B= ·01 DF=.~L.f 
LOG PERFORMOACT MODEL: A=-1.1'f B= 3'"7~ . DF=.%2. *,~*A£)Nu~ 
PI'iR PERFORMOACT MODEL : A= ,.1& B=. bO DF=. '\6 \ 
(~li'l~J~~;;~;~;~--~~~~~--~---------iif-------3C-------iir----slt 

CON ) OBSERVED EFFECT • .1· 6$ 7-'i'f 11·26 /D·,(g 12.0' 
LIN PERForomAcT MODEL : A=l.j.'2.~ B= .16 DF=. 'Z5 
EXP PERFORMOACT MODEL : A= .3-gl B= '02. DF=. '6' 
LOG PERFORMOACT MODEL: A=-1·40 B=3'b\ DF=.C\6 ~'&f:ST*.IluN/J~ 
PWR PERFO.RMOACT MODEL : A= I· 3~ B=· 51 DF=. ,,5 
(~;;i---~~;~;;~;~-~;~~~-5---------~--------3\-------q3-----5] 
bJ~ ) OBSERVED EFFECT.2.·Q'; '1·31 11·113 lo-~1 13·/0 

LIN PERFORMOACT MODEL : A=4-35 B= ,I,.. DF=.~ 
EXP PERFORMOACT MODEL : A= Lj -03 B= '02 DF=.'bi 
LOG PERFORMOACT MODEL: A= -:1.·QI B= 4·01 DF=.'}, 1ft- t€ST*.AI)I'1I~ 
PriR PERFORMOACT MODEL: A= \.30 B= ·bo DF=.q'i 
--------------------------------------------------------------
Where : THE NU~BER OF CONCURRENT JOBS REPRESENTING THE DEMAND 

THE AV. RESPONSE TIME REPRESENTING EFFECTIVENESS 
LINEAR PERFORMOACT MODEL = EFF = A + B * DEMAND 
EXPONENTIAL PERFORMOACT MODEL= EFF = A EXP( B* DEMAND) 
LOGARITHMIC PERFORMOACT MODEL= FFF = A +B* LIN( DEMAND) 

POlvER PERFORHOACT MODEL = EFF = A*DEMAlI.'DB 

Table,"): THE EFFECTS OF A". NerrrYj RE'f".I·,iJ b a 3. h UPON 
THE AVERAGE RESPONSE TIME INDEX 

46 



--"..--"" 'ilJU...A TOR vtnI AVERAaE ItSIJtIIED ..... J&:XR)8 FCIIt A Jt8 • '_I 
----~----ZaDf' SZIU.ATOR VITH AVERAaE I&I.IIRB) • .1. J&:XR)8 FCIIt A Jt8 • _ 
--+-----ItaJt> SrlU.ATOR VITH AVERAaE I&I.IZ-"" 8. ~ ...., .................. FCIIt A JOB • 311 

• ltaJt> SIIU.ATOR VITH AVSWiE 1&1.1"'"" •• __ 
~ .... ~FCIItAJOB· .. 

,.. ,.. 

I! ... ... 

I . 
l 

ZZ Z 

+ 

DEIW() ( No. oP ctN:UIRENT Jta ) 

F I SURE q I PERFORMOACT MODELLI NS I DEMAND vs EFFECTI VENESS 

--------------------------------------------------------------
MIN 5 10 15 20 2S 

(100------~;~~;~~~-~~~~~---5-------Tb------35------~7~-----~--
,..-ewcJ.s )OBSERVED EFFECT. 1·53 S-~ 6-f~ 6·8~ 'i'lIO 

LIN PERFORMOACT MODEL : A= 2·S! B= -01 DF=.Q3 
EXP PERFORMOACT MODEL: A=:1·Qg B= '01 DF=.S! 
LOG PERFORMOACT MODEL: A= -·11 B= 'l.12 DF='Q7 -'i gE-sT1f A[)ItIIS-iI 
PWR PERFORMOACT MODEL : A= 1·32 B= -'15 DF=-q6 

(~~-------~;~~;~~~-~~~~~-~-------IS-------3i-----4LT------s~ 
('e£-orJ~) OBSERVED EFFECT. 1.65 /;"65 &-61 b-70 S· 5~ 

LIN PERFORMOACT MODEL: A=3·61 B='O~ DF=.~~ 
EXP PERFORMOACT MODEL : A=3.~~ B='O\ DF=.~o 
LOG PERFORMOACT MODEL : A=. '13 B= \ .~, DF=·q3 t( i ~Sl ~ fiDNif,t 
PWR PERFORMOACT MODEL: A= 1'71 B= 'sCJ DF=.q2 

~~~g:~~:~~g--~~~~~~-~~;----~~;-----~~~~---~~~~;----~~Oq 
LIN PERFORMOACT MODEL : A=I.f.i'f B= - Ii:> DF=. ~5
EXP PERFORMOACT MODEL: A='3"1 B=-02 DF=.$1
LOG PERFORMOACT MODEL : A= -\-<iD B= 3·61 DF=. 'l6 .. &Es-r-AL)/'ItJ;'
PWR PERFO.RMOACT MODEL : A= \.3g B= -51 DF=.~5

(~OO----~~;~~;~~~-~~~~~--i------,O---------27-------1q------i7
(el.dJ~) OBSERVED EFFECT. 3·16 S·6S 12-7~ Il.cn Il·i2,

LIN PERFORMOACT MODEL A=l{'3S B= ·27 DF=.q3
EXP PERFORMOACT MODEL: A=4'21 B='O~ DF=·C08
LOG PERFORtt,OACT MODEL: A='U B=3·Lfi DF=.qq ~tl If- BES/'fAiJl'1ISt'
PVIR PERFORMOACT MODEL : A= 2,-'{7 B= '~8 DF=. "IB
--
Where : THE NUMBER OF CONCURRENT JOBS REPRESENTING THE DEMAND

THE AV. RESPONSE TIME REPRESENTING EFFECTIVENESS
LINEAR PERFORMOACT MODEL = EFF = A + B * DEMAND
EXPONENTIAL PERFORMOACT MODEL= EFF = A EXP(B* DEMAND)
LOGARITHMIC PERFORMOACT MODEL= EFF = A +B* LIN(DEMAND)

POIoJER PERFORMOACT MODEL = EFF = A*DEMAND
B

Table q: THE EFFECTS OF ~ All. l<.e~I"J.I·(J BaJ.·~ £1-0" e~/~ UPON
\ THE AVERAGE RESPONSE TIME INDEX

6.. . B -~e d
,,:)' ~ - AJIY\"S

4t:.

APPENDIX A.
5

3. Processor context switching time,

4. Disc transfer time, and

5. Drum latency time.

A.I0 Experiment-II: Average Segment Size vs Av. Re

sponse Time

With an average segment size of 1024 bytes the average response time decreases even

when the degree of concurrency increases, but when we increase the average segment size

we notice an increasing trend in the average response time highly effected by an increasing

slop of the degree of concurrency in the system (see Figure JO and Table 10).

A.ll Experiment-12: Total Memory Size vs Av. Response

Time

When we increased the total memory size available to the non residential processes in

the system, we noticed a slight change in a lower level of concurrency and the response time

starting to increase when the memory size decreases and the concurrency level increases

(see Figure 11 and Table 11).

A.12 Experiment-13: Context Switching Time vs Av. Re

sponse Time

With the increase of processor context switching time (i.e. the processor speed to

switch from one process to another), we noticed slight increase in the average response time

and the major effective factor seems the concurrency level (see Figure 12 and Table 12).

--ICSDrP SIrt.LA TCR WITH I'EI'1ORY SEaren' SI ZE • 182i BYTES
-----e>-----ICSOMP SIrt.LA

TCR WITH I'1El'1(Ry SEEI'ENT SIZE. 28't8 BYTES
--+----lCSDrP SIrt.LATCR WITH rIB10RY SEBI'1ENT SIze. 3e72 BYTES

If ICSDrF S I I'U.A TCR uI
• TH ~ SE6rENT SIZE • 1896 BYTES

I .
.l

I
i

~ ,/ ,
+ /'/ +

,
, ,

+,' ---L_------
_----~7-,

",

DBWIl (No. oP CONCUIREHT JtR)

e

F I SURE ,'0 I PERFORMOACT MODELLI NS r DEMAND vs EFFECTI VENESS

--
MIN 5 10 15 20 25
-----------------(lOll{ OBSERVED -~~~~~----y------'r-----iy-----~~-----lT-

e,"\+es)OBSERVED EFFECT. 5"l'i 5·'-14 'Hb "3.'!1 ~.~
LIN PERFORMOACT MODEL : A='·b~ B=-·\I DF=.q\ *ECST~
EXP PERFORMOACT MODEL : A= ,·16 B= -'01 DF=. ~b '
LOG PERFORMOACT MODEL : A= \-.25 B= - \·3\ DF=. ct.'\ .. /U)/ {,!,.4A

PWR PERFORMOACT MODEL : A= \O·1.y B= -'3\ DF=. Cbs
(~i------~;~~;;~~-~~~~~--l------I'--------!'------ll------63
~,\\e.~) OBSERVED EFFECT. 1·63 7.5'1 II·~ IO·~ 'H

LIN PERFORMOACT MODEL : A=~·5 \ B=.o~ DF=. 'iii
EXP PERFORMOACT MODEL: 1.= ~-11 B=·00"l DF=. Lfq
LOG PERFORMOACT MODEL : A= 1. 03 B= .i"7 DF". 6{) ~'Ai)I'IIS1f
P~iR PERFORMOACT MODEL: A= 1'/0 B= ·oq DF=.6.J"f,. !ES; rf
(;;72---~;;~;~~--~~~~--~------\D----------\~--------~\-----fo
B.j~es) OBSERVED EFFECT. 6·3 q.'i 10'1' IO'7~ I\.~
LIN PERFORt-l0ACT MODEL : 1.= ,.Ii B="~ DF=.~;'
EXP PERFORMOACT MODEL : A=I·o5 B= '01 DF=.~q
LOG PERFORMOACT MODEL: 1.=5." B= 1'~1 DF=. qqAII ..".. ,&E-ST *AJ)I'fi~
PWR PERFO.RMOACT MODEL : 1.= 5.5.1 B= • '-.2. DF= .Q9,

(~;q6-~~~~;~~;;;~-~~~~~--~-------I't-----------3r-------4"3-----5Y

CON) OBSERVED EFFECT.2.65 7·99 1'l-1~· Io·n Il.o~
LIN PERFORMOACT MODEL A='1'2~ B= .Ib DF=.g5"
EXP PERFORMOACT MODEL : 1.= 3.£1 B= .02. DF=. SO
LOG PERFORMOACT MODEL: 1.= -\.qO B= -;·bl DF=.q6 *l>fST.-.Il.u.HIj..-'
PVlR PERFORMOACT MODEL : A= ,.~ B= ·51 DF=.q;
--
Where : THE NUMBER OF CONCURRENT JOBS REPRESENTING THE DEMAND

THE AV. RESPONSE TIME REPRESENTING EFFECTIVENESS
LINEAR PERFORMOACT MODEL = EFF = A + B * DEMAND
EXPONENTIAL PERFORt-IOACT MODEL= EFF = A EXP (B* DEMAND)
LOGARITHMIC PERFORMOACT MODEL= EFF = A +B* LIN(DEMAND)

POlvER PERFORMOACT MODEL = EFF = A*DEMAND
B

Table (0: THE EFFECTS OF T"-e Av. Se1",el1'~ S,·<..e UQ/loJ:<Y1 UPON
THE AVERAGE RESPONSE TIME1NDEX

~: lS_Be~~

o ' ~ - f-d (11 's

5q

--+--iC6Of> 8II'UJITOt VITl4 TOTAl.. S"t'STB1 reorr SIZE • ~ 12 I"r1EI

-----&---- ICSD'f> 8II'UJITOt VITl4 TOTAl.. 8"I"8'TeI reorr IIZE • "e=!82 8'rT'ES

--+----iCSD'f> 8II'UJITOt VInt TOTAl.. S"rSTB1 IEUn' SIZE • 131m rna

• ICSOIP 8I1'U.J1TOt VITl4 TOTAl.. 8"t'8Te1 Ie1OR"f' lIZE • '5t~ 8'rT'ES

,.. ,..

I!

I .
.l

I
i

•

FIGURE 1\1 PERFORMOACT MOOELLINGI DEMAND ~ EFFECTIVENESS

--
MIN 5 10 15 20 25

«(t~/l~~) g:~~:~~~ ~~~~~~--:.~;-----~~:~-----~~;~----~;~----7!.~:
LJli[PERFORMOACT MODEL : A= 4 ·10 B="~ DF=. it
EXP PERFORMOACT MODEL : A= 3'7¥ B= '02. DF=.i/
LOG PERFORMOACT MODEL: A= -3'6l B=Lf·'35 DF=. qt .. ADrl(S~
PWR PERFORMOACT MODEL: A= \"Lf B= ,/'s DF='Q3 *~~ST oJ(.

----------------------------------r~----------------~--------(lIosq2 OBSERVED DEMAND Lf I 31 Li.:> 55
gjkS) OBSERVED EFFECT. 1-61 g-S2. "-bS 'l81 1\.7'
LIN PERFORMOACT MODEL : A=I.I-'II B= .15 DF'"'.'ll
EXP PERFORMOACT MODEL : A= 3·gS B= '02. DF::.l!
LOG PERFORMOACT MODEL: A=-I.'O B= 1·3i DF=.qS 1t BGST-4i-fiUHlJ~
Pt,R PERFORMOACT MODEL: A= '-L(O B= -56 DF=.,,'i

(8(07ig~;;;;~;~--~~~~~--~-------'q--------3\------~1------S~
CON) OBSERVED EFFECT. ~·~S 7-1~ '2-.2~ 10·43 \1-0~

LIN PERFORMOACT MODEL : A=L(·2.~ B= ./b DF=.~
EXP PERFORMOACT MODEL : A= 3-~' B= '02.. DF=.~l
LOG PERFORMOACT MODEL : A= -I' qo B= 3·b! DF=.Q6D i BEST ... AUHtft
PWR PERFO.RMOACT MODEL: A= "3& B= ·51 DFo:.Q5

~~i~i-;~g~~~:~~~-~~~~~~~:~----~~~~-------~~:;----~:.;;----;:51
LI~ PERFORMOACT MODEL : A= ~'~8 B= • n DF=. g~
EXP PERFORMOACT MODEL : A= 3'l{lf B= ,02. DF=.~Li ~
LOG PERFORMOACT MODEL : A= -3.;Q B= 3·qb DF=. qb\ 1(- 1!,EST ~ ,I1j)fII;J ~
Pt-lR PERFORMOACT MODEL : A= ,.05 B=. 63 DF= .q-;.
--
Where : THE NUMBER OF CONCURRENT JOBS REPRESENTING THE DEMAND

THE AV. RESPONSE TIME REPRESENTING EFFECTIVENESS
LINEAR PERFORJ.10ACT MODEL = EFF = A + B * DEMAND
EXPONENTIAL PERFORMOACT MODEL= EFF = A EXP(B* DE~AND)
LOGARITHMIC PERFORMOACT MODEL= EFF = A +B* LIN(DEMA~~)

POWER PERFORJ.10ACT MODEL = EFF = A*DEMAND
B

Table 1\: THE EFFECTS OF 10 fal Mel11t:)f1 S,":;"e Val.qi.:Ot1 UPON
THE AVERAGE RESPONSE TIME INDEX

JA : IS-E>es+
O· \S - f4,Jtf\ ; >

51,

--+ C8Of> 8IlU..ATtIt VITH CPU CONTcrr SVITDfINe TIlE • e.'
- -----Ic:&OP 8IlU.ATtR VrTH -.c
+ CPU COtfTEXT hnOUNI TIlE • 1.2 -.c

-- -----Ic:&OP SIIU..ATtIt
WITH CPU COtfTEXT SVITDfIN19 Tnt: • '.3 -.c

,.. ,..

t!!

I

• Ic:&OP 8IlU.ATtR VITH CPU COtfTEXT -.~
OW£ , lNI9 T1I£ -.c

FIGURE\L 1 PERFORMOACT MODELLING. DEMAND vs EFFECTIVENESS

--
MIN 5 10 15 20 25

(~~-~:-~;;~;~~~-~~~~~---~-------~-------31------~3~-----5~--
CoN) OBSERVED EFFECT. iAS 7·'f~ Jl.~~ /0'113 11·07

LIN PERFORMOACT MODEL: A= L.j·1~ B= -16 DF=.~5
EXP PERFORMOACT MODEL: A=S·gl B=·O~ DF='!1
LOG PERFORMOACT MODEL: A=-/.cJO B= 3.b\ DF='Q6 ;;t&ES'i., f}j)f'1tJ· ..
PWR PERFORMOACT MODEL : A= I.~'. B= .5"1 DF=.qs
----------------------------------Tir--------------------------
(0.1 rile:. OBSERVED DEMAND 1.\ 0 3~ '-13 51.

) OBSERVED EFFECT • .1.!" la·bt 1/·05 11·10 11-'t2
LIN PERFORMOACT MODEL : A=Lf·5b B= ·/7 DFE:. %
EXP PERFORMOACT MODEL : A=Lf·DJ B= '01 DF=. 'ill
LOG PERFORMOACT MODEL : A= -1·65 .B= F'- c? DF=. 'Y1 ~ &~srt4IJJ)"'fl.s~
Pi'i'R PERFORMOACT MODEL : A= /'5{) B= '51 DF=. qS
--------------------------,-------Ib-------;,------ql-------~f

(0·3 OBSERVED DEMAND 2. dQ 0.,/0 ".35 It.crt l'l-t"
NlStc.) OBSERVED EFFECT. 'Cl ,

LIN PERFORt-lOACT MODEL A=3·b6 B=·21 DF=.90
EXP PERFORMOACT MODEL : A= 3.63 B= . /)3 DF=. ~~
LOG PERFORMOACT MODEL: A= -5'.o~ B=",.'H' DF=.~g ~ &tST-)1.v/'/,.f6
PWR PE."RFO_RMOACT MODEL : A= .~ 1- B= .70 DF=. CIS
---[-------r
(0.4 'OBSERVED DE~1AND 1.\ Ib ~l '1 Lfb
~ec,) OBSERVED EFFECT. ,,2.51 'A·S~)1·~1 r1.3D 12·76

LIN PERFORMOACT MODEL A='3·18 B=·22 DF=.Q3
EXP PERFORMOACT MODEL : A= 3''13 B='O] DF='!7
LOG PERFORMOACT MODEL : A= -)'l1 B= '+15 DF= 'q~ r:. D ~ l.t SM(. fiv,tf-ft{~
PrlR PERFORMOACT MODEL : A= I· O~ B= ,b~ DF= '''1-
--
Where : THE NUMBER OF CONCURRENT JOBS REPRESENTING THE DEMAND

THE AV. RESPONSE TIME REPRESENTING EFFECTIVENESS
LINEAR PERFORMOACT MODEL = EFF = A + B * DEMAND
EXPONENTIAL PERFORMOACT MODEL= EFF = A EXP(B* DEMAND)
LOGARITHMIC PERFORMOACT MODEL= EFF = A +B* LIN(DEMAND)

POl~ER PERFORt-lOACT MODEL = EFF = A*DEMAND
B

TablefL: THE EFFECTS OF ~"ft~1 Sw.JcJ,j ~f> UPON
THE AVERAGE RESPONSE TIME INDEX

A
o

5c

APPENDIX A. 6

A.13 Experiment-14: Disc Transfer Time vs Av. Response

time

Increasing the disc transfer time, we noticed the average response time increases and

become more higher with the increasing level of concurrency (see Figure 13 and Table 13).

A.14 Experiment-15: Drum Transfer Time vs Av.

sponse time

Re-

Finally, when the drum latancy time is increased, the average response time again in

creased slightly and become higher as the level of concurrency increases (see Figure 14 and

Table 14).

Software-based changes vs. Av. response time: The software-dependent parameters

changed in this experiment includes:

1. the average number access right passes a user process allowed to pass during the

process life time,

2. the processor scheduling policies,

3. the inferential inspection period,

4. memory system swapping time, and

5. processor system primitive calling time.

A.IS Experiment-16: No. of passing rights vs. average

response

With increasing the number of rights a process allowed to pass to other processes

(a parameter belong to the memory system (the dynamic memory protection mechanism),

the average response time increases in ratio of 1.5 seconds per one extra pass (refer to Figure

l' and Table 1~).

--+---i:C8OP 8I1U..J1 TOR VIn! DISC TJW«iFER TIl'E • .883 _

-----&-----IC&OP 8IIU..JITOR WIn! DISC nwe=£R TM • ..eee _
--+----IC&OP 8IIU..JITOR WIn! DISC ~ TIl'£ • ..eee_

1---I.E----iIC&OP 811U..J1TOR WIn! DI8C ~ TDIE • .8t3 _

DEIWCJ (No. oP CONCl.JR:HT Jta)

,"-

FIGURE \51 PERFORMOACT MODELLINGI DEMAND vs EFFECTIVENESS

--
MIN 5 10 15 20 25

(~;;~~::~;~~;~~~-~~~~;;---~-------,~------;1------4~~-----S~--
CON)OBSERVED EFFECT. :l·{,S I·~q Il·2~ ID'Ys \'1..0,

LIN PERFORMOACT MODEL: A=U,·14 B= 'lb DF=. ZS
EXP PERFORMOACT MODEL : A= ~·<jl B= • 02 DF=.!\
LOG PERFORMOACT MODEL : A= -I·qo B=~. 61 DF=.CJ' '*: gf::Si.I1D/'IIJ~
PWR PERFORMOACT MODEL: A= lost B= '57 DF=.'t5

(;;o66-----6;~~;~~~-~;~~;;--~-----,g---------~o-----ql------53-
mse.c) OBSERVED EFFECT. 2,·11 9·17 II·l\ n·\1 ('-1'(

LIN PERFORMOACT MODEL: A= 1·b4 B=·11 DF=.C1f'1
EXP PERFORMOACT MODEL : A= l·bQ B=' 03 DF=.S7 60
LOG P ERFORMOACT MODEL : A= - '3,17 B= 'i' b I DF=. q'l\ off &6- ~T"It fiDN6f'
Ph'R PERFORMOACT MODEL : A= f. 2 f B= • b 5 DF=. 'i
(;.;~--~;~~;~~~--~;~;;----~------li--------l~------~,-----~l-
lYIS€£) OBSERVED EFFECT. 2 .~% 5? .Q3 \'·15 11.~' \~ tlq

LIN PERFORMOACT MODEL : A= '-\'\~ B= 'H DF=.Cn
EXP PERFORMOACT MODEL : A= ,,/.07 B= -02 DFe. CDS
LOG PERFORMOACT MODEL : A= -~-~'l B= '1.~14 DF=. qQO * 'iC$"T It"A..D~5,*,
PWR PERFO.RMOACT MODEL : A= (.45 B= ·bl DF=. 'Jb
(;,~i3i---~~;~~;~~~-~~~~;;---~------lf--------f~------Lio-----"4q

/Y1SeL) OBSERVED EFFECT. !,.Q3 "·17 \:2,.'1Lf 14.qq IS·li
LIN PERFORMOACT MODEL: A= 4'52 B=.iS DF=.'U.
EXP PERFORMOACT MODEL : A= Lf'2~ B= ·O~ DF=. ~3
LOG PERFORMOACT MODEL : A= - 3 '17 B= Lf· q 3 DF=. qqo "It i1f:'5,T~I1~ftS*
P\OlR PERFORMOACT MODEL: A= I-r;o B= '63 DF=.q$
--
Where : THE NUMBER OF CONCURRENT JOBS REPRESENTING TAE DEMAND

THE AV. RESPONSE TIME REPRESENTING EFFECTIVENESS
LINEAR PERFORMOACT MODEL = EFF = A + B * DEMAND
EXPONENTIAL PERFORMOACT MODEL= EFF = A EXP(B* DEMAND)
LOGARITHMIC PERFORMOACT MODEL= EFF = A +B* LIN(DEMAND)

POh'ER PERFOR1'lOACT MODEL = EFF = A*DEMANDB

Table\'3: THE EFFECTS OF D,'{, Tr"'fI'{fIlr T.~ \/",(,'",4;011 UPON
THE AVERAGE RESPONSE TIME INDEX

A . i?_j?e$~
o £' -p,jffl (5

--+--ic:an» 8IlU.ATOft VITM IJU1 LATNC"I' TUtE _

---+---IaDP 8IIU.ATOft VITM IJU1 l',TNC"I' TUtE • ' • .8 _

--+----laDP lIIU.ATOft VITM IJU1 LATNC"I' TUtE • ~.8 _

,.. ,..

I!

I .
~

• laDP 8IIU.ATOft VITM IJU1 LATNC"I' TUtE • 12.8 _

I

oewc (No. " CXN:UIAEKT Jfa)

FIGUREIY. PERFORMOACT MODELLINGI DEMAND vs EFFECTIVENESS

--
MIN 5 10 15 20 25

(~~O~~-~;~;;~;~-~~~~~---y-------T~------~,------~3~-----6-~-
CON)OBSERVED EFFECT. ~·~S ,.~ 12·2, /0·"13 11.o~

LIN PERFORMOACT MODEL : A= 'i-itt B= .1 b DF=. ~5
EXP PERFORMOACT MODEL : A= 3·CJI B=· O~ DF".~ 1
LOG PERFORMOACT MODEL : A= -1·~O B= 3.bl DF=.q& lor '8EST~ Af)/'"Ilh
PWR PERFORMOACT MODEL: A= 1·3~ B= .51 DF ... Q5
({iD~-----~;~~;~;~-~~;~~---~-------if-------31------~i------S3
rn5~) OBSERVED EFFECT. l·b1 ~'ls \1,'1 \1·1' 12.f\

LIN PERFORMOACT MODEL: A=lf·oq B=.I'l OF=." ,
EXP PERFORMOACT MODEL : A= ~·Sl B=·01. OF=. \r~ 0

LOG PERFORMOACT MODEL: A=-l·SI/ B= Lf·OJ DF ... qq1.A~~:>T .. ADHI.S~
PWR PERFORMOACT MODEL : A= '·3q B=. ~O OF=. ~

(i~~---~;~;;~;~--~~;~~----~-------T3--------3-0-- --~~----S2
In~ec.) OBSERVED EFFECT. i.~ I ~.$'1 1I·i3 12..7'1 1~.03
LIN PERFORMOACT MODEL A= 4·31 B=·I'f OF=.'IO
EXP PERFORMOACT MODEL : A=~'07 B='02 OF=.i~
LOG PERFORMOACT MODEL : A= ... 1.3\ B= '"t·o3 DF='~I'" -8f:ST-I\r~.bI'lISi
PWR PERFO.RMOACT MODEL : A= 1.5D B= • S"Sl DF=·qb

(3i.o---- ~ ~;~~;~~~ -~~~~~ --z(------, i - -------i'1-------~'f ----"52-
,."sec.) OBSERVED EFFECT. ,l.qq '6·Q2 12.S2. 1~·1S ,~.qb

LIN PERFORMOACT MODEL : A= "1·62. B= ,20 DF=.'1D
EXP PERFORMOACT MODEL : A=~'31 B=,02 DF=·i1
LOG PERFORMOACT MODEL: A=-l·Ljl B=L{·.1i DF=·'t'li *~f:ST-'I1D/1.(IS,f
Pi'lR PERFORMOACT MODEL: A= 1·57 B= ,sS DF=''15
--
Where : THE NUMBER OF CONCURRENT JOBS REPRESENTING THE DEMAND

THE AV. RESPONSE TIME REPRESENTING EFFECTIVENESS

Table fq :

LINEAR PERFORMOACT MODEL = EFF = A + B * DEMAND
EXPONENTIAL PERFORMOACT MODEL= EFF = A EXP(B* DEMAND)
LOGARITHMIC PERFORMOACT MODEL=. EFF = A +B* LIN(DEMAND)

POh'ER PERFORr-IOACT MODEL = EFF = A*DEMAND
B

THE EFFECTS OF DrlolM lP.+~ "'",e ·l/O.r,t:tA (0,\
THE AVERAGE RESPONSE TIME rNDEX

b ~-ged
o B- f1dfJ\~S

.6b

UPON

"'--lean» 8II't.I..ATtIR VITW lev. No. CF ACCBBII RIaml A I'ROC:ea ~ • 1

----.----Iean» 8~TtIR VITW lev. No. CF ACCaI8 IWIn"I A ~ PII8EB • 2

--+----{C8IJ'P 8II't.I..ATtIR VITW lev. No. CF IoCCaI RI&n"8 A ~ PAI8E3B • a
• 1C8IJ'P SII't.l..ATtIR VITW lev. No. CF ACCaI8 IWIn"I II PIUH8 f>A8E8 ...

v

~ 1

I .
~

I
i

DBWI) (No. oP COtC.UR:HT Jt&)

//

FIGURE 15' PERFORMOACT MODELLING' DEMAND vs EFFECTIVENESS

--
MIN 5 10 15 20 25

(O~-~---~;~~;~;~-~~~~~---5-------/6------l3------~b~-----51--
}OBSERVED EFFECT. 1·'37 7·7/ II·?>7 11'53 1I.'l1

LIN PERFORMOACT MODEL : A= 3 ·51 B= '\7 DF=. ~O
EXP PERFORMOACT MODEL : A=3·t~ B= -02 DF=.~3
LOG PERFORMOACT MODEL : A= -S.cgg B= 4.~ DF=. qgAD * l~"'" AOl'{15Jf
PWR PERFORMOACT MODEL: A=·q3 B= ·61 DF=.'Y6

(~:-;:;---~;~;;~;~-~;~~~-Lf------f~-------~I------y3-------~

CON) OBSERVED EFFECT. 2."5 1·1Q 12.18 lo·tt3 \2,.01
LIN PERFORMOACT MODEL : A=Y,2.'-I B= ·Ib DF=.95
EXP PERFORMOACT MODEL : A='!'81 B= '02 DF=.!/
LOG PERFORMOACT MODEL: A=+'iO B=3·61 DF=.q6. ~~tS*.nMIH
PlvR PERFORMOACT MODEL : A= \.!~ B= • 57 DF=''l5

(~:;-~~;~~;~~--~;;~~----~------\3-------10------q1-------~i

) OBSERVED EFFECT.2.7~ iJ.lq 13-3/ 1'1.7q 1'-{.'11
LIN PERFORJIlOACT MODEL: A=4'77 B=·2.1 DF=.~7
EXP PERFORMOACT MODEL : A= ~·10 B= '01 DF=. UJ
LOG PERFORMOACT MODEL: A=-1·7f B= 4'''1 6 DF=.~1 ~ n~11(ADM/~~
PWR PERFO.RMOACT MODEL : A= ,·,,0 B= ·62 DF=. ~'i

(~:;~-~~;;~;~;~-~~~~~--3------/2--------29------yO-------51
) OBSERVED EFFECT.2.~q 10''13 1"i.92. 13~3 I'~.'t~

LIN PERFORMOACT MODEL : A=5·cn B= ,10 DF=. ~
EXP PERFORMOACT folODEL : A='1·7b B= '02. DF=.76
LOG PERFORMOACT MODEL: A=-·b2. B= y.,O DF=''15 4SCSI4t I1DNli-i:
PWR PERFORMOACT MODEL: A= ,·~O B= ,56 DF=. q3
--
Where : THE NUMBER OF CONCURRENT JOBS REPRESENTING THE DE~AND

THE AV. RESPONSE TIME REPRESENTING EFFECTIVENESS
LINEAR PERFORMOACT MODEL = EFF = A + B * DEMAND
EXPONENTIAL PERFORMOACT MODEL= EFF = A EXP(B* DEMAND}
LOGARITHMIC PERFORMOACT MODEL= EFF = A +B* LIN(DE~AND)

POlvER PERFOR1010ACT MODEL = EFF = A*DEMANDB

Table'S: THE EFFECTS OF No. 0/ PoJse.J tlor.·~I,d/lS
THE AVERAGE RESPONSE TIME INDEX

D. ~_lSe..S+

D e _AdM'S

UPON

APPENDIXA. 1

A.I6 Experiment-I7: Scheduling Policies vs Average Re

sponse Time

The processor system scheduling policy can be altered using the parameters (mh, th,

minf, tinf) of the system loss function mentioned in section (originally developed based

upon the scheme of Kleinrock 1910). Round Robin scheduling policy (1,6000, 1, 3.6 * 106)

proved to produce the minimal average response time, followed by the Selfish Round Robin

(0.7,6000,0.1,3.6*106), the FCFS (0.1,6000,0.1,3.6*106), and the Bulk Service (0,6000,

0, 3.6 * 106
). This means for an optimal response a Round Robin policy should be adopted

(refer Figure 16 and Table 16).

A.I7 Experiment-IS: Inferential Inspection Period vs A.R. T.

The inferential inspection period represent the processor system time slice. With the

increase of this period, we notice an increase in the average response time becoming more

higher with higher levels of concurrency (see Figure 11 and Table 17).

A.IS Experiment-I9: Swapping Speed vs Average Response

Time

With the increase of the memory system swapping speed or time with the backing store,

we noticed an increase in the average response time (0.5 sec for 0.5 msec speed increase)

becoming more higher as the level of concurrency increases (see Figure 18 and Table 18).

A.I9 Experiment-20: Processor Speed vs Average Response

Time

With the decrease of the processor system speed in invoking the primitives (system subrou

tines), we noticed a decrease in the average response time becoming a sharper decrease as

the level of concurrency decreases (see Figure 19 and Table 19).

· ... ---ICCIP tII'I..I.ATOR !lTlf CPU IIIO.tC IUlDl ICiED.LIHI

----&----ICCIP tII'I..I.ATOR V11l4 CPU E..FltH AIlHl DIH IICIeU..De

--+----iCSDf> 8DU.ATOR VI1l4 CPU FC:R 8OEDl.LIHI

• ICSDf> 8II'I..I.ATOR VI1l4 CPU IUJ(1BtV1CE 8CHn.Loe

,.. ,..

I .
~

i

DBWC) (No. " aH.'lRIEHT JtBI)

/

FIGURE Ibl PERFORMOACT MODELLING: DEMAND vs EFFeCTIVENESS

MIN 5 10 15 20 25

(~::iR~-~;~;;~;~-~;~~~---~-------~-------~I-------q3-----5~--
CON)OBSERVED EFFECT. 1·65 7.QQ Il·2i la·LlS 11.oq

LIN PERFORMOACT MODEL : A= "I.'ll{ B=·Ib DF=. is
EXP PERFORMOACT MODEL : A= :S'il B= '01 DF=. 'gl
LOG PERFORMOACT MODEL: A=-\.qO B='3·61 DF=.'16 -4t'B.€ST .. ADI'f,j.l.
PWR PERFORMOACT MODEL : A= I· 3~ B= .51 DF=. qS
(~~;~-R~R~-~;~;;~;~-~;~~~---~-----T!---------jD------43-----51

) OBSERVED EFFECT. 1·70 ~·21 /1.,1 II~ \s·lO
LIN PERFORMOACT MODEL : A= 'H~ B=·lq DF- .ql
EXP PERFORMOACT MODEL : A= '3." B= '01 DF=.1>'1
LOG PERFORMOACT MODEL -: A= -2.511 B= '1-01 DF=. qq~O ~ i>eSl)C A-DHI5.,
PWR PERFORMOACT MODEL: A= 1'3~ B=./:,o DF=.qb

(F~PS--~;~;;~~--~;~~~---~-------11---------~I-------j~----~-1
) OBSERVED EFFECT. 2.~ /1·31 13·'3 1~.2' 1'I.~2.

LIN PERFORMOACT MODEL: A=r;·bH B= ·13 DF=.U
EXP PERFORMOACT MODEL : A=Lf ,s'S B= ·~3 DF=.7q
LOG PERFORMOACT MODEL : A=-l·~s B= 4.6 DF=Jf6 -.: F:£ST. AJ)""j'~
PWR PERFO_RMOACT MODEL : A= I.'tq B= 'b3 DF=.qi.

(g~~;~~-~~;~;;~;~-~;~~~---~------'o---------i7------3~-----43
:S'eT,,;e6.) OBSERVED EFFECT. Vii 12·71 11.Ql 15·21 IS·sq

LIN PERFORMOACT MODEL A=;·7S B=,2.5 DF=.~
EXP PERFORMOACT MODEL : A= 4·7li B= '()3 DF=. 75
LOG PERFORMOACT MODEL : A= -1'77 B= /i·77 DF=.q I If. iE'S1 *' ;JljIYH~
FrlR PERFORMOACT MODEL : A= I.(If B= -63 DF=. g~
--
Where : THE NUMBER OF CONCURRENT JOBS REPRESENTING THE DEMAND

THE AV. RESPONSE TIME REPRESENTING EFFECTIVENESS
LINEAR PERFORMOACT MODEL = EFF = A + B * DEMAND
EXPONENTIAL PERFOro10ACT MODEL= EFF = A EXP(B* DEMAND)
LOGARITHMIC PERFORMOACT MODEL= EFF = A +B* LIN(DEMAND)

POlVER PERFOrolOACT MODEL = EFF = A*DEMAND
B

Table'b: THE EFFECTS OF C. p\.J ScJ...eJv..\I·~ ~.oI,·c..\Q.~ OPON
THE AVERAGE RESPONSE TIME INDEX

7a

... o.-< -~CSOP SIIU...ATat wm IN=BtEHTlAL. IHIiPECTIC»4 f'9U£O •• oS -.c:

----.... ----IC&DrP lIIU...ATat wm 1N=etEHTlAI.. D8'9:TIC»4 PaIOl • , .. -.c:

--r-~ 8I1'U...ATat WITM nFBIENTIAL. IHl&PB:rIC»4 PaUl) • f oS -.c:

• IC80P 8IlU...ATat wm IN=BtEHTIAL. Da'B:TIC»4 PaUl) • 2 .. -.c:

,... ,...

I! ...
I-

I .
~

I
I

e
+

DEIWIl (No. tI CCtClRtEHT JI:R)

r
./

FIGURE nJ PERFORMOACT MODELLINGI DEMAND vs EFFECTIVENESS

--
MIN 5 10 15 20 25
-----------------------(0·5 OBSERVED DEMA~---y-------/1------~i------~-f-----SI--

rn SC() OBSERVED EFFECT. 2'('5 1·q~ lO·lg IO·£g (0·5(,
LIN PERFORMOACT MODEL : A=3·:tb B= 'Ib DF=.~~
EXP PERFORMOACT MODEL : A=~''''l B= ·01. DF=.gLf
LOG PERFORMOACT MODEL : A=-\'ltl B= 3'33 DF=.,fo *BES.7~ I){yIM~
P\-iR PERFORMOACT MODEL : A= "31 B=. 56 DF=.91
-----------------------------------p--------------------------
(1-0 f{'.'ec. OBSERVED DEMAND 4 Lf 11 y! s'"t
co"';) OBSERVED EFFECT. 1.~S 1·QQ Il.,2B ID.'tS 11.0'

LIN PERFORMOACT MODEL : A=L.f.1~ B= ·Ib DF=. ~
EXP PERFORMOACT MODEL: A= 3.~1 B= ·01 DF=.<r,\
LOG PERFORMOACT MODEL : A= -\.qO B= 1.61 DF=.q~ ~ iES1' .. ,A£);\(,S¥-
Ph'R PERFORMOACT MODEL : A= ,.SS B= . 51 DF=.as

(/.S----~;~~;~~--~~~~----~------r(-------~lL---J--Gl------~1
('f\5t!L) OBSERVED EFFECT. ,2.,. 7·9 I\.q,. \l.ll, q ·is

LIN PERFORMOACT MODEL : A=3·b~ B= .11 DF=.%3
EXP PERFORMOACT MODEL: A=3''f1 B= '01 DF=.tl_
LOG PERFORMOACT MODEL : A= -l.~O B= :"lb DF=.,,~ -kfJDMtJ ~
PWR PERFO.RMOACT MODEL: A= \,12 B= '&2. DF=.~j *£ES"T~

(1~------~;~~;~~~-~~~~~--5-------'q--------3T--- --ff-----5i
(I'1sec) OBSERVED EFFECT. ~·61 1'~ 13'\1 ~,S6 1~·11

LIN PERFORMOACT MODEL: A=3'bl B=·lq DF=. g~
EXP PERFORMOACT MODEL : A= 3'Ljt B= '02. DF=. %3
LOG PERFORMOACT MODEL : A= -:'·i6 B= ~·ll DF=. 92 -* /I D1'-115
P\'lR PERFORMOACT MODEL: A= I'D~ B= ·£5 DF=.'1~ * BfST~
--
Where : THE NUMB~R OF CONCURRENT JOBS REPRESENTING THE DEMA~~

THE AV. RESPONSE TIME REPRESENTING EFFECTIVENESS
LINEAR PERFORMOACT MODEL = EFF = A + S • DEMAND
EXPONENTIAL PERFORMOACT MODEL= EFF = A EXP(B· DEMA~~)
LOGARITHMIC PERFORMOACT MODEL= EFF = A +S· LIN(DEMAND)

POlvER PERFOR.f.l0ACT MODEL = EFF = A*DEMAND
B

Tabl e'-~: THE EFFECTS OF fJ....e l"/e/tn{,o (I,.SfecJd" Ptfl'OJ UPON
THE AVERAGE RESPONSE T1ME INDEX

D. ~ _ t> s":'

C' t _ I- ~r~)

7b

--+---{CUP 8Il't..l.ATtR VInf 8Ii"""IHB TUI: • 105 -.c
-----&-----IaD9' 8IlU..ATtR WInf at"""IHB TUI: • f.l -.c
--+-~CUP 8IlU..ATtR WInf 8liN'PIHB TUE • f., -.c

I! ...
I-

I .
~

• ICUP 8IlU..ATtR VITH 8liN'PllIt TUE • 2.1 -.c

z

FIGURE:~' PERFORMOACT MODELLING' DEMAND vs EFFECTIVENESS

--
MIN 5 10 15 20 25

(;S------~;;;;;;~-~~~~~---~-------,S------3lC-----i/~-----55--
m)~c.)OBSERVED EFFECT. '.2.·&6 -7-33 10'35 lo·sq 1/.73

LIN PERFORMOACT MODEL : A='$,(,1 B= ·I{, DF=.Q2.
EXP PERFORMOACT MODEL : A='3·5~ B= '02. DF=. 96
LOG PERFORMOACT MODEL : A= - I.qq B= ~·l{i DF=. "q I * 'BE-Sf .. /11:>,. .. -4,5-1(
PWR PERFORMOACT MODEL: A= \.3L.j B= 5(, DF=. q1
(;1-~~~--~;;~;;~~-~~;.~~--~------\q-------ll-------~3-----5~-
CO/V) OBSERVED EFFECT. i·~5 l·q~ Il.~~ 10·43 12.,O'f

LIN PERFORMOACT MODEL : A=~.2.Y B= ·16 DF=. 'is
EXP PERFORMOACT MODEL : A= 3,,&1 B= '01 DF=. i 1
LOG PERFOR...Y,DACT MODEL : A= _ l.qO· B=~. 61 DF=. q~ ~ StST ... f1j)""/~;It-
PiiR PERFORMOACT MODEL : A= "3~ B=, 57 DF=. '15
({.5---~;;~;~~--~;;.~~-~-3-------iLt--------~------~f----53-

fTlKl.) OBSERVED EFFECT. ~.~ <&. 3b 1\·71 \1.·77 12."
LIN PERFORMOACT MODEL A= 4'U B= "1 DF=~I
EXP PERFORMOACT MODEL: A='3'QLj B=,O DF='8S'
LOG PERFORMOACT f:l.ODEL : A= -).20 B= l'c7 DF="'fl1t.tr * ~f-S," ,..,nlll,9
PWR PERFO_RMOACT MODEL : A= 1.61 B= 'EIi DF=.'lS

(i.o------~;;;;;~~-~;~~;;--3-------I~---------io------4f-----5~
m$<"t..) OBSERVED EFFECT .l·tt~ 'J·ol Il·~3 \3.qS Il-qq

LIN PERFORMOACT MODEL A= 'i·5'1 B='1\ DF=.q l
EXP PERFORMOACT MODEL: A=tt.2.D B= ·01 DF=. ~4
LOG PERFORMOACT MODEL : A= -I.'tl B= "1.05 DF=.qq, ~ ~~T4f IJOM/S"
PvlR PERFORMOACT MODEL : A= \075 B= ,56 DF='~J:
-- -----------
Where : THE NUMBER OF CONCURRENT JOBS REPRESENTING THE DEMA~~

THE AV. RESPONSE TIME REPRESENTING EFFECTIVENESS
LINEAR PERFORJolOACT MODEL = EFF = A + B * DEMAND
EXPONENTIAL PERFORMOACTMODEL= EFF = A EXP(B* DEMAND)
LOGARITHMIC PERFORMOACT MODEL= EFF = A +B* LIN(DEMAND)

POWER PERFORJolOACT MODEL = EFF = A*DEMANDB

Table~: THE EFFECTS OF Mt!lYIOfK S..,Q.fP''n£j 'i:~ Vt:JJ.·~\·o"
THE AVERAGE RESPONSE TIME IND~X

v ~_

.... -- ~';'I

,I- _I (. '::

qc

UPON

-+-~~T 8IPU..ATOR VITH CPU I'RlmTM CALUN8 TutE - I.' -.c
_"~..---- IC&JP 8IPU..ATOR VITH CPU I'RImTM tAU..IN8 lutE - 1.2 -.c:
---r-~CIDI'f" 8I/t.UTOR VITH CPU I'RWTM tAU..IN8 TO£ - 1.3 -.c:

• tCSClt" 8I/t.UTOR VITH CPU I'RII1lTnE CALLIN8 TutE - -.c:

,.. ,..

M '
...,
! ,

. .-

I
:z
+

.
~

I ...

i :z ...

FIGURE y~ PERFORMOACT MODELLINGI D81ANO vs EFFECTIVENESS

--
MIN 5 10 15 20 25

(~1-:~;Z.-~;;~;~~~-~~~~~---~------lq-------~\------4~~-----5~--
CoAl)OBSERVED EFFECT. ~·'5 I·q~ 11.1~ {O·liS \'l.O~

LIN PERFORMOACT MODEL : A= '-t.iL.(B=·lb DF.:. Ss
EXP PERFORMOACT MODEL: A= "3'~1 B= '02 DF=. ~I
LOG PERFORMOACT MODEL: A= -I.qo B=)'61 DF=''lb tt-~~ .. ~i>l'1tS
PWR PERFORMOACT MODEL : A= \'5i B= '51 DF=.t.l5
---~------------
(o.i OBSERVED DEMAND ~ 13 '30 '-\1. 60
/flS~t.·) OBSERVED EFFECT. 2·8\ g., 11'7 12.·n \~·I \

LIN PERFORMOACT MODEL: A= ~.~q B= ·~O DF='C:12
EXP PERFORMOACT MODEL: A= 3.'k) B= '01 DF". ~6
LOG PERFORMOACT MODEL: A= -'1.63 B= 1-1.07 . DF-. q, I ,.t&s-r. IJbr1t5~
P\,R PERFORMOACT MODEL : A= I. '5 ~ B= , bD DF =. Dtl
(~~----~;~~;~~~--~~~~---i-------'2---------i'--- Lio-----~~
II'\S~c...) QBSERVED EFFECT. 1·~1 't'l \1-1 n.o, ';·27

LIN PERFORMOACT MODEL: A='i·/D B=·l'f DF=.qq
EXP PERFORMOACT MODEL : A= 4.05 B= '03 DF=. ~7 tt
LOG PERFORMOACT MODEL: A= -\.7\? B= Lf· 21 DF='Gfll3t, ~ !E;ST"'Abl"1,J.I.
PWR PERF~RMOACT MODEL: A= 1'70 B= .57 DF=.~~

(O.4------~;~~;~~~-~~~~~-3--------IT---------27-- ----fq----Y7
M9:r.) OBSERVED EFFECT. 3-3 q., 11."" '3·~3 IS· 71

LIN PERFORMOACT MODEL A= /..f-SS B= ·is DF=.q"l
EXP PERFORMOACT MODEL : A= 1.(.52 B= '02. DF=.9,7
LOG PERFORMOACT MODEL: A=-I.I.j'i B= Li·35 DF=·'fqO.tf I?rST» /Ji)N{~
P\-lR PERFORMOACT MODEL : A= ,2..00 B='55 DF=. qg
--
Where : THE NUMBER OF CONCURRENT JOBS REPRESENTING THE DEr.AND

THE AV. RESPONSE TIME REPRESENTING EFFECTIVENESS
LINEAR PERFORMOACT MODEL = EFF = A + B * DEMAND
EXPONENTIAL PERFORMOACT MODEL= EFF = A EXP(B* DEMAND)
LOGARITHMIC PERFORMOACT MODEL= EFF = A +B* LIN(DEMAND)

POI-lER PERFORJol0ACT MODEL = EFF = A*DEMAND
B

Table '-I: THE EFFECTS OF CPO pr,'m:be. G:t" •. I\GII;,....Q Va(:cf~OI(JPON
THE AVERAGE RESPONSE TIME INDEX 0

~: B-B~I
0: 8_ AJ"",'$

1d

	372516_0001
	372516_0002
	372516_0003
	372516_0004
	372516_0005
	372516_0006
	372516_0007
	372516_0008
	372516_0009
	372516_0010
	372516_0011
	372516_0012
	372516_0013
	372516_0014
	372516_0015
	372516_0016
	372516_0017
	372516_0018
	372516_0019
	372516_0020
	372516_0021
	372516_0022
	372516_0023
	372516_0024
	372516_0025
	372516_0026
	372516_0027
	372516_0028
	372516_0029
	372516_0030
	372516_0031
	372516_0032
	372516_0033
	372516_0034
	372516_0035
	372516_0036
	372516_0037
	372516_0038
	372516_0039
	372516_0040
	372516_0041
	372516_0042
	372516_0043
	372516_0044
	372516_0045
	372516_0046
	372516_0047
	372516_0048
	372516_0049
	372516_0050
	372516_0051
	372516_0052
	372516_0053
	372516_0054
	372516_0055
	372516_0056
	372516_0057
	372516_0058
	372516_0059
	372516_0060
	372516_0061
	372516_0062
	372516_0063
	372516_0064
	372516_0065
	372516_0066
	372516_0067
	372516_0068
	372516_0069
	372516_0070
	372516_0071
	372516_0072
	372516_0073
	372516_0074
	372516_0075
	372516_0076
	372516_0077
	372516_0078
	372516_0079
	372516_0080
	372516_0081
	372516_0082
	372516_0083
	372516_0084
	372516_0085
	372516_0086
	372516_0087
	372516_0088
	372516_0089
	372516_0090
	372516_0091
	372516_0092
	372516_0093
	372516_0094
	372516_0095
	372516_0096
	372516_0097
	372516_0098
	372516_0099
	372516_0100
	372516_0101
	372516_0102
	372516_0103
	372516_0104
	372516_0105
	372516_0106
	372516_0107
	372516_0108
	372516_0109
	372516_0110
	372516_0111
	372516_0112
	372516_0113
	372516_0114
	372516_0115
	372516_0116
	372516_0117
	372516_0118
	372516_0119
	372516_0120
	372516_0121
	372516_0122
	372516_0123
	372516_0124
	372516_0125
	372516_0126
	372516_0127
	372516_0128
	372516_0129
	372516_0130
	372516_0131
	372516_0132
	372516_0133
	372516_0134
	372516_0135
	372516_0136
	372516_0137
	372516_0138
	372516_0139
	372516_0140
	372516_0141
	372516_0142
	372516_0143
	372516_0144
	372516_0145
	372516_0146
	372516_0147
	372516_0148
	372516_0149
	372516_0150
	372516_0151
	372516_0152
	372516_0153
	372516_0154
	372516_0155
	372516_0156
	372516_0157
	372516_0158
	372516_0159
	372516_0160
	372516_0161
	372516_0162
	372516_0163
	372516_0164
	372516_0165
	372516_0166
	372516_0167
	372516_0168
	372516_0169
	372516_0170
	372516_0171
	372516_0172
	372516_0173
	372516_0174
	372516_0175
	372516_0176
	372516_0177
	372516_0178
	372516_0179
	372516_0180
	372516_0181
	372516_0182
	372516_0183
	372516_0184
	372516_0185
	372516_0186
	372516_0187
	372516_0188
	372516_0189
	372516_0190
	372516_0191
	372516_0192
	372516_0193
	372516_0194
	372516_0195
	372516_0196
	372516_0197
	372516_0198
	372516_0199
	372516_0200
	372516_0201
	372516_0202
	372516_0203
	372516_0204
	372516_0205
	372516_0206
	372516_0207
	372516_0208
	372516_0209
	372516_0210
	372516_0211
	372516_0212
	372516_0213
	372516_0214
	372516_0215
	372516_0216
	372516_0217
	372516_0218
	372516_0219
	372516_0220
	372516_0221
	372516_0222
	372516_0223
	372516_0224
	372516_0225
	372516_0226
	372516_0227
	372516_0228
	372516_0229
	372516_0230
	372516_0231
	372516_0232
	372516_0233
	372516_0234
	372516_0235
	372516_0236
	372516_0237
	372516_0238
	372516_0239
	372516_0240
	372516_0241
	372516_0242
	372516_0243
	372516_0244
	372516_0245
	372516_0246
	372516_0247
	372516_0248
	372516_0249
	372516_0250
	372516_0251
	372516_0252
	372516_0253
	372516_0254
	372516_0255
	372516_0256
	372516_0257
	372516_0258
	372516_0259
	372516_0260
	372516_0261
	372516_0262
	372516_0263
	372516_0264
	372516_0265
	372516_0266
	372516_0267
	372516_0268
	372516_0269
	372516_0270
	372516_0271
	372516_0272
	372516_0273
	372516_0274
	372516_0275
	372516_0276
	372516_0277
	372516_0278
	372516_0279
	372516_0280
	372516_0281
	372516_0282
	372516_0283
	372516_0284
	372516_0285
	372516_0286
	372516_0287
	372516_0288
	372516_0289
	372516_0290
	372516_0291
	372516_0292
	372516_0293
	372516_0294
	372516_0295
	372516_0296
	372516_0297
	372516_0298
	372516_0299
	372516_0300
	372516_0301
	372516_0302
	372516_0303
	372516_0304
	372516_0305
	372516_0306
	372516_0307
	372516_0308

