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CHAPTER 1 

INTRODUCTION 

1.1 Historical development of linear programming and mathematical 

programming systems 

Mathematical programming is concerned with the efficient use or allocation 

of limited resources to meet a desired objective. When all the 

relationships 

and popular 

between the variables are linear 

method of optimisation is linear 

then the most extensive 

programming (LP). The 

earliest and also most established method to solve LP problems was 

developed in 1947 by G.B. Dantzig [DANTZI51]. This method, well known as 

the simplex, has been extended since then to solve large problems. In 

practice LP problems tend to be large and sparse and it is well known 

that the number of non zero elements is much smaller than the number 

of elements in the constraint matrix. Thus a vast amount of computer 

storage is required if a medium to large matrix is stored explicitly, and 

substantial computer effort is needed to update the full matrix at each 

iteration. This led to a revision of the computational aspects of the 

simplex algorithm in 1953. Dantzig [DANTZI53] and Orchard-Hays 

[ORCHAR56] created a more accurate and faster algorithm, which took full 

advantage of the mathematical properties of sparse simultaneous linear 

equations. 

In addition to solving LP problems there are many algorithms for the 

solution of certain problem structures and known forms of nonlinearities. 

The very early mathematical programming systems used to represent 

upper bounds on variables as separate equations. Subsequently these 

were handled implicitly. Further, when sets of variables have common 
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upper bounds such that the constraint takes the following form 

2 Xjk = bk, k = 1,2, ... t 
j 

then the right hand sides, bk, are general upper bounds (GUB) on the 

appropriate sets of variables. These are also handled implicitly by the 

mathematical programming system [BEALE70] and hence reduce the 

problem size. 

If in the statement of the LP problem it is desired that some or all of 

the variables are constrained to take integer values (MIP), then this can 

be solved by a Branch and Bound algorithm. This method employs the 

approach of proposing mutually exclussive subproblems of new LPs and 

solves these by the dual simplex algorithm [MITRA70]. Recently 

considerable development has taken place to improve the performance of 

integer optimisers [BEALE85], [HOFPAD85] and [WOLSEY85]. 

For certain classes of nonlinearities, the function may be approximated by 

the representation 

A1+ + Ak = 1 

a1 A1+ +akAk = Xt 

b 1A1+ +bkAk = f(Xt) 

where f(xt) is the (variable separable) nonlinear function and (bi, ai) are 

the coordinates of the k interpolation points. If any of the two adjacent 

A'S are constrained to be non negative then the set of variables is 

called an ordered set (of variables) of type two. If the A'S are 

constrained to be 0-1 then the corresponding set of variables is called 

an ordered set (of variables) of type one. Most mathematical 

programming systems have an extended Branch and Bound procedure 

where these two problem types can be solved more efficiently [TOMLIN70], 
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[SCICON78] than by conventional separable programming [BEALE68]. 

Other well established features include the solution of nonlinear 

programming problems by the method of approximation and recurrent call 

to the LP optimiser. This is a means whereby recursive solutions are 

obtained to a finer linear approximation in the neighbourhood of the first 

LP optimium solution. The process is continued until convergence or 

until a satisfactory solution is obtained. Another major feature of 

current mathematical programming systems is the use of the BASIC 

procedure. Large problems are broken down into smaller subproblems. 

These subproblems are solved and their solutions used to obtain a good 

basic starting point to the overall problem. This approach leads to a 

considerable saving In time In arriving at an optimal solution. A full 

review of LP optimisers can be found in [TAMIZ86], while that of special 

features is described in [ADBELM72]. 

1.2 Historical development of computer assisted LP modelling 

While progress In the computational solution methods has led to the 

development of powerful and robust optimisers for large scale LP models 

and some restricted IP models, the ability to describe and communicate 

models to the optimiser has not progressed as rapidly. Since the product 

form of the inverse and the revised simplex method require that the data 

is processed In a column-wise fashion, the early (simplex) optimisers 

expected the problem matrix to be presented in this way. Due to sparsity 

in all realistic models, it is convenient to communicate the non zero 

values only. These can naturally be supplied by indicating the row and 

column positions and the element value for each non zero entry. For ease 

of interpreting the variables and restrictions, instead of using row and 

column numbers, unique names are introduced to indicate rows and 
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columns. This led to IBM's LP90 [BEALE68] input format which has now 

been superseded by the current defacto standard MPSX/370 [IBM76]. 

Creating these fixed format column order files is a tedious task. From 

around 1958 special purpose computer programs were created with a view 

to automating this step. In the early days, computer programs were 

written in either FORTRAN or assembler to generate the problem matrix. 

Then similar programs were written to read the results and create the 

desired reports. These programs were model specific and inflexible. Hence 

any new application required that a new program be written. In order to 

create and investigate applications more efficiently, more general purpose 

programs were developed. The next generation of tools were called matrix 

generators and report writers. These special purpose languages were 

mostly interpretive and were data driven generalised programs providing 

support for both the modeller and the optimiser. Thus the modeller was 

still involved in understanding certain conventions employed in the input 

specification of the optimiser. This approach gave greater flexibility in 

model formulation and solution analysis, but required careful and detailed 

matrix and report specification, using special languages, which possessed 

only a rudimentary syntax. 

1.3 Mathematical programming: the major Issues 

Two major computational tasks need to be undertaken to investigate an 

application which involves mathematical programming. To start with there 

is the requirement of constructing the mathematical formulation and then 

specifying the problem data to represent the application. Subsequently, 

it is necessary to solve the proposed (optimisation) problem by suitable 

optimisation software. To develop software for these two tasks calls for 

two separate and distinct skills. Considerable research is directed to 
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each of these two fields in their own right. 

overview of the current state of the art. 

LP & IP 
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Over the last thirty years, there has been a steady development in 

optimisation methods to solve progressively larger problems efficiently 

and robustly. This progress is due, as much to the development of 

sparse matrix manipulation, as to improvements In computer hardware 

[DARMIT77], [GREENB78], [GIMUSW84], [TAMIZ86]. Techniques such as 

triangular factors of the basis matrix are used in preference to the 

product form of the inverse. A major contribution from the field of 
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computer science came from Kalan [KALAN71] with the introduction of the 

unique element pool storage strategy. This scheme takes advantage of 

the fact that the number of distinct non zeros is considerably less than 

the total number of non zero elements, thus leading to the concept of 

'super sparsity'. In recent times some non simplex type methods, 

Karmarkar [KARMAR84], have proven to be faster in optimisation for some 

classes of large structured problems. 

Although much effort continues to be invested in creating faster 

optimisers capable of solving larger problems, the biggest burden of 

mathematical programming is the amount of human time and resource it 

takes to describe, translate and investigate a model. 

1.4 Mathematical programming modelling: the major issues 

A modeller can possibly follow four alternative approaches to obtain a 

computer representation of his LP model. Each of these alternatives calls 

for varying skills and provides different scope in creating applications. 

The general skills and specific requirements about model structure and 

MPSX matrix formats are now described for these approaches. 

(i) High level language approach 

In this approach, programs are written in a high level language. 

These programs create the problem matrix in MPSX format. 

Examples: FORTRAN, PL1. 

General skills: Modelling, computer programming. 

Model structure: Problem has to be conceived as a matrix comprising 

a sequence of columns. 

MPSX Format: Knowledge essential. 

Model documentation: This is created 'off line' as a pen and paper 
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exercise. It is usually hard to keep the documentation uptodate 

with model evolution. 

(ii) Matrix Generator, Report Writer approach 

In this approach a program is written In a traditional MGRW 

language to create the problem matrix. 

Examples: OMNI [HAVERL76], DATAFORM [KETRON75]. 

General skills: Modelling, some computer programming. 

Model structure: Problem has to be conceived as a matrix comprising 

a sequence of columns. 

MPSX Format: Only naming convention needs to be considered. 

Model documentation: It is possible to relate the mathematical model 

directly to the MG program. Still model documentation in a 

mathematical form is undertaken as a pen and paper exercise. 

(iii) Modelling language approach 

In this approach programs are written in a modelling language to 

create the problem. 

Examples: GAMS [BISMEE82], ULP [WITMCC85], MGG/RGG [SCICON75]. 

General skills: Modelling, only superficial knowledge of computer 

programming. 

Model structure: The models can be presented entirely In an 

equational form. 

MPSX Format: It IS inessential to know this format. 

Model documentation: The source program reflects the mathematical 

model fairly closely. Thus model documentation is no longer 'off 

line' and stays uptodate with model evolution. 
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(iv) Interactive program generator approach 

In this approach an executable program IS created after an 

interactive session with the modeller. This generated program 

creates the problem matrix. 

Examples: CAMPS [LUCMIT85], SIMP [CARMON86]. 

General skills: Modelling. 

Model structure: The models can be presented entirely in an 

equational form. 

MPSX Format: It IS inessential to know this format. 

Model documentation: Documentation is automatic and is supplied as a 

special feature including full textual annotation. Model documentation 

is not 'off line' and stays uptodate with model evolution. 

In the present research, four major Issues have been identified which 

are important in any approach towards computer supported modelling. 

These may be itemised as (a) data (base) storage and manipulation, (b) 

high level (natural) language documentation, (c) analysis of model and 

solution, and (d) computer support for reformulation. 

(a) Data (base) storage and manipulation 

It is now well accepted by analysts who are planning to create 

applications in business or industry, that the models proposed by 

them must communicate with existing management information systems. 

Palmer et al [PALMER84] and Mitra and Darby-Dowman [MITDAR85], 

show why it is important to have such an integrated approach. 
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(b) High level (natural) language documentation 

A mathematical documentation of the model plays an important role in 

communication between two analysts but a limited role as a means of 

communication between a problem owner and a modeller. It is not 

difficult to interpret the mathematical documentation at a higher 

level as an English language description of the mathematical problem 

[EDS86]. Documentation at this level is of great value as a means 

of communication between the problem owner and the analyst. 

(c) Analysis of model and solution 

During the development phase of a model, one or more pertinent 

details are often omitted. While the analyst can infer that some 

data has been supplied incorrectly, or that some further detail 

concerning the model is required, it is very difficult to obtain 

advice on how to analyse the model. Similarly, when a solution is 

obtained for a large model it is often necessary to carry out a 

summary analysis of a few relevant decision variables or to 

investigate different scenarios. These aspects have been extensively 

investigated by O'Neill [ONEILL78] and Greenberg [GREENB83]. 

(d) Computer support for reformulation 

In many applications reformulation methods have to be introduced to 

represent nonlinearities or logical restrictions as linear/integer 

programs. Usually this is achieved by following established but 

complex procedures. These techniques are, in short, 'tricks of the 

trade' that the modeller has to learn in order to develop his skills 

and expertise. It is observed that a natural way of progress in 
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this area is to support the modelling of such reformulation 

techniques with computer software facilities. 

1.5 Research focus and the structure of the thesis 

The purpose of this research has been to increase the speed as well as 

the productivity of the LP lIP modelling process by addressing some of 

the Issues mentioned above. A computer based LP modelling system 

called CAMPS (this acronym IS derived from Computer Assisted 

Mathematical Programming System) is implemented as part of the research. 

The system encourages the analyst to follow a certain modelling strategy 

which is set out in chapter two and involves a progressive definition of 

the problem. This forces the modeller to structure his applications in a 

systematic way while the system participates In trapping model 

inconsistencies and promoting logically correct definitions. 

In common with many of the modelling systems, there are special features 

which help the modeller with problem formulation. Many of these 

features can also be fou,>'1d in other current generation modelling systems 

which are reviewed in chapter three. 

The complete system (CAMPS) and some of its major features are 

described in chapter four. A small example IS introduced to illustrate a 

typical session with the system. 

Mathematical documentation of the model can be generated by the system. 

This documentation can be enhanced by introducing textual annotations at 

the model input stage. The full documentation can be presented as four 

components: the conceptual model, data tables, MPSX names and model 

solution. By integrating the system with a solution analyser (due to 
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Greenberg [GREENB83]) the use of annotated documentation is extended 

further. The solution analyser manipulates these textual annotations, held 

by CAMPS, and provides a discourse with the modeller. This discourse 

may take the form of advice giving which is very useful when 

investigating a model. The major aspects of integrating the two systems 

are discussed in chapter five. 

In chapter six the techniques of reformulating nonlinear problems, fuzzy 

linear programming problems and logical restrictions are presented. As a 

result of investigating a number of nonlinear problems the system has 

been extended with special constructs. A blueprint for a system 

implementation to support reformulation of fuzzy linear programming 

problems and logical restrictions is also discussed in chapter six. 

A summary of the major research results and conclusions is presented in 

chapter seven. Two main areas of further development are also 

considered which are seen to be natural ways of enhancing the power of 

present day LP modelling systems. These are a programmer's interface 

which helps in creating specialist models rapidly, and artificial 

intelligence techniques which use a rule base, a knowledge base and a 

natural language dialogue (as appropriate) to create applications. 
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CHAPTER 2 

STRATEGY AND TACTICS OF LP MODELLING 

2.1 Introduction 

Formulating linear and integer programming models for industrial 

(optimisation) problems requires experience and specialist skill. The 

method of analysing a physical problem IS discussed in section 2.2. The 

logical sequence of steps which lead to a mathematical statement of the 

model are set out in section 2.3; these concepts are illustrated by an 

example. Having obtained a mathematical statement it IS necessary to 

prepare the data for suitable processing by a computer based LP system. 

This aspect is discussed in section 2.4. Further examples are considered 

in section 2.5 to explain these principles of modelling. The purpose of 

analysing the components which are used to construct LP models and of 

considering a range of models is to highlight the major features which 

need to be introduced into a general modelling support system. 

2.2 A logical analysis of the problem 

A modeller, when he comes across an industrial (optimisation) problem, 

does not necessarily find it well described in summary form. It is more 

than likely he is presented with a description of the problem containing 

details which may be irrelevant for modelling purposes; further it may 

also contain a number of gaps. Hence the first task of the modeller is to 

consider only the modelling requirements and extract the quantative 

relationships which are germane to that task. Having identified these 

items he produces a compact statement of the problem which contains 

only these pertinent details. The examples which are presented in section 
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3 of this chapter, and the planning model considered later are first 

described in this summary form. 

Model Entities 

After identifying the key components of the model his next task is to 

discover the underlying structure in the model. This amounts to finding 

a way of categorising the modelling information. The following is an 

illustrative list of typical categories (entities) that are found in practical 

problems. 

- number of (decentralised) geographical locations 
- number of planning periods 
- number of different products 
- number of grades of people 
- number of age groups 

This categorisation helps him to decide to what details the quantitative 

information relating to the problems should be req uested and 

incorporated in the model. It also indicates to what details the answers 

are to be provided. 

Model Variables 

Once the categories are defined the model (decision) variables or the 

unknowns are broadly identified. An analysis of the decision variables 

may also suggest new categories at this stage. The point to note here is 

that the model variables are mostly detailed by categories. For the 

purpose of illustration a number of decision variables taken from 

different contexts are considered below. 

- Production Planning: The quantity Xpm of a certain product p 
manufactured on a machine m. 
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- Distribution Planning: The quantity Xprn of a product p that is 
shipped from a source r to an outlet n. 

- Inve,ntory Scheduling: The quantity Xpt of a product p that is kept as 
closIng stock at the end of a period t. 

- Project Analysis: Whether one should invest in project p at the 
beginning of time period t, or not invest in this project Y pt = 1 or 0 
may be represented by this zero-one variable Y pt. 

Model Constraints 

The constraints connect the decision variables and express the physical 

restrictions of the' problem. By and large these are also detailed by 

categories. A few examples of these are set out below. 

- Material Balance Equation 

XOt + XPt - XCt - Dt , t - 1,2, ..• T. 

In this equation XOt represents the opening inventory, XCt represents 

the closing inventory, and XPt the quantity to be produced. They are all 

decision variables pertaining to the time period t. Dt represents the 

customer demand for the product and is an input information. 

- Capacity Restrictions 

p 

2 Xpm ' tpm ~ Am ' m 
p=l 

1,2, ... M. 

Here p = 1,2, ••. P indicates the range of products which are manufactured 

on machines m = 1,2, •.. M. The rate of production is indicated by t pm, 

that is, the time taken to produce one unit of product p on machine m. 

Am indicates the number of hours that machine m is available. Xpm is 

the production variable and the constraints express the capacity of 

production for the machine m as limited by the number of hours of its 

availability. 

page 14 



- Blending Requirement 

, 
or 

or 
Q p=l, ... P 
pr r=l, ... R 

) 

In this case c = 1,2, ••• C is the number of components used to be blended 

into p = 1,2, ..• P products. The components for instance could be different 

crudes and the prod ucts could be different types of gasoline. The index 

range r = 1, •.. R indicates the quality requirements. Typical requirements 

are maximum vapour pressure, minimum volatility index etc. Thus bcr , Qpr 

are input information pertaining to linear blending rates and quality 

requirements respectively. Xcp is the decision variable indicating 

fractions (by volume or weight) of the components c that are blended to 

derive the product p. Thus 

Thus 

c 
2 Xcp 

C=l 

1 , p 1 , ••. P . 

in the discussion of the model variables and model constraints 

the subscripts p,m,n,c,r,t etc which have been introduced indicate entities 

taken from the context of the model. Identifying these entities amounts to 

setting out the basic structure of the model. 

2.3 Derivation of a mathematical statement: an example 

It follows from the preliminary analysis presented in the last section that 

In order to derive a mathematical statement of the model one has to 

formally define the matrix elements of the constraint relations. In order 

to do this it is necessary to define the subscripts and their ranges. 

Note that the matrix elements themselves may be derived out of tabular 

input information relating to the problem. These matrix elements may be 
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considered to be model descriptors and are often referred to as 

"technology coefficients". The model (decision) variables in contrast are 

output information. Their values are obtained by solving the model. The 

sequence of steps leading to the derivation of a model thus naturally 

emerges and is set out below. 

Step 1 Define the subscripts (entities) and their ranges (sets 

and dimensions). 

Step 2 Define model variables, model constraints and the matrix 

coefficients in terms of these subscripts (step 1). 

Step 3 Specify the linear relationships in a row-wise fashion 

which connect the items defined in step 2. 

In its simplest and most standard form an LP model can be stated in the 

following way: 

Su bscripts, Ranges: 

i - 1, •.. m, j - 1, ... n. 

Variables, constraints, coefficients: 

x x' J - 1, •.• n r r' , i - 1, ... m 
J 

, 1 

C c' j - 1, ... n b b· , i - 1, •.. m , 
J 1 

A a" , i - 1, ... m , j - 1, ... n. 
IJ 
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Linear objective function and constraints: 

subject to ri: 

n 

Max 2 CjXj , 
j=l 

1 , ... m, 

Xj ~ 0, j = I, ... n. 

However, in real life applications the corresponding models possess more 

detailed structure than this standard form. As a result of such structure 

the A-matrix turns out to be highly sparse and b,c can also be sparse. 

In practice, therefore, formulating a model requires specifying only the 

non zero coefficients of the A-matrix as used in stating the linear 

constraint relations. 

In deriving the mathematical statement of an LP model and especially the 

linear constraint relations it is often convenient to prepare a material 

flow diagram for the problem. This enables the modeller to visualise and 

set out the balance rela~ions, the capacity restrictions etc. The principles 

of LP modelling discussed so far are illustrated in the derivation of a 

production cum distribution model considered here and further models 

described in section 2.5. 

A Production cum Distribution Problem: An Example. 

A clothing manufacturer has two factories, Southall (FTl) and Leeds 

(FT2). In the Southall factory he can manufacture Shirts (PI) and Denim 

Jeans (P3), whilst in Leeds he can manufacture Shirts (PI), Skirts (P2) 

and Denim Jeans (P3). The manufacturer ships these products directly to 

three maIn dealers in quantities of thousands. The dealers are Young 

Londoner (DLl), Beaute Paris (DL2) and Wiener Mode Anzug (DL3). The 
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manufacturer knows his production costs, the transport costs and the 

monthly production capacity of his factories. The dealers send their 

requirements for the next month on the first day of each month. All the 

numerical data relating to the problem are set out in table 2.1. The line 

diagram 2.1 illustrates the possible relationships between factories, 

products and dealers. 

DEALERS REQUIREMENTS AND PRODUCTION 

CAPACITY IN UNITS OF THOUSANDS 

Product Dealer Requirements Factory Capacity 

DLI DL2 DL3 FTI FT2 

PI 50 10 30 35 54 

P2 15 15 20 - 60 

P3 20 60 30 85 45 

PRODUCTION AND TRANSPORT COST IN 

POUND STERLING PER ITEM 

Factory Production costs Transport costs 

PI P2 P3 DL1 DL2 DL3 

FTI 1.5 - 5.6 0.6 1.2 1.4 

FT2 1.8 7.0 6.2 0.7 1.3 1.5 

Table 2.1 
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FT2 

DL1 

Diagram 2.1 

The manufacturer at the beginning of each month, needs to formulate and 

solve a simple linear programming problem. A mathematical statement of 

this problem is set out below. 

- Subscripts and Dimensions. 

i = 1,2 denotes the factories 
j = 1,2,3 denotes the products 
k = 1,2,3 denotes the dealers. 

- Model Variables 

X"k lJ 

- Model 

p .. 
lJ 

the quantity of product j manufactured in factory i and 
shipped to dealer k. However, for i = 1 (Southall) the 
product j = 2 skirts and it's shipment are not defined. 

That is i = 1 , j = 1,3 

} k = 1,2,3 

i = 2, j = 1,2,3 

Coefficients (Descriptors) 

the cost of producing one unit of product j at factory 1, 

the cost of transporting one unit of each product from 
factory i to dealer k, 
the derived cost of production as well as transport for 
given i,j,k which may be expressed as 
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aij the production capacity of the factory i for the product j, 

r jk the requirement of the dealer k for the product j. 

- Linear Constraint Relations: A Mathematical Statement. 

Minimise 

2 

Cost = 2 
i=l 

:3 

2 [Cilk Xilk + Ci:3k Xi:3k] 
k=l 

Subject to the constraints: 

capacity of production 

:3 

2 Xijk 
k=l 

1 = 1, J = 
i = 2, j = 

1, 3 } 
1,2,3 

and satisfying dealer requirements 

2 

2 Xijk = rjk j = 1,3 
i=l k = 1,2,3 

x 22k = r2k 

and Xijk ~ O. 

2.4 LP user formulation of the model 

The mathematical statement of the model set out in the last section is 

concise and convenient for communication and discussion by 

mathematicians and analysts. However, for the purpose of processing the 

model by a computer based LP system and deriving numerical solutions, 

this form is abstract and unsuitable. 

Model information is usually presented to an industrial LP system in a 

compact form and it is appropriate to highlight a few features of LP 

input at this point. 
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(i) All applicable LP models display a high degree of sparsity of 

the constraint matrix. 

(ii) Only the non zero coefficients of the matrix are specified as 

input. 

(iii) Instead of a row index and a column index, one uses a row 

name and a column name to specify a non zero coefficient of 

the matrix. 

(iv) Feature (iii) requires that a suitable name is given for the 

rows and columns of the matrix. 

IBM's MPSX input format is industry's de facto standard for model 

specification: this is described in [IBM76] and also in the CAMPS manual 

[LUCMIT85]. 

To obtain the LP user formulation the following model variable and 

constraint names are first defined. 

- Model Variable name 

FTIPIDLI The amount of product PI produced in the factory FTI and 
shipped to the dealer DL 1 etc. 

- Model Constraint Names 

COSTROW 
FTIPICAP 

REQPIDLI 

etc. 

The objective row 
The capacity constraint corresponding to the product PI 
produced in factory FTI, 

The requirement of the product PI by the dealer DLI 

The sparse but complete constraint matrix in terms of these row and 

column names is set out in tableau 2.1. The corresponding MPSX format 

input data file in line images is set out in display 2.1. 
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:~:?~~7;;P' ) 
- _RMAT LINE IMAGE INPUT >.- -NAME EXPROD 

ROWS 
N COSTROW 
L FTIPICAP 
L FTIP3CAP 
L FT2PICAP 
L FT2P2CAP 
L FT2P3CAP 
E REQPIDL1 
E REQP2DLI . E REQP3DL1 
E REQPIDL2 
E REQP2DL2 
E REQP3DL2 
E REQP1DL3 
E REQP2DL3 
E REQP3DL3 

COLUMNS 
FTlPIDLl FTIPICAP 1.000000 REQPIDLI 1.000000 
FTIPIDLI COSTROW 2.100000 
FTIPIDL2 FTIPICAP 1.000000 REQPIDL2 1.000000 
FTIPIDL2 COSTROW 2.700000 
FTIPIDL3 FTIPICAP 1. 000000 REQPIDL3 1.000000 
FTlPIDL3 COSTROW 2.900000 
FTlP3DLl FTlP3CAP 1.000000 REQP3DLI 1.000000 
FTlP3DL1 COSTROW 6.200000 
FTIP3DL2 FTIP3CAP 1.000000 REQP3DL2 1.000000 
FTlP3DL2 COSTROW 6.800000 
FTlP3DL3 FTIP3CAP 1.000000 REQP3DL3 1.000000 
FTlP3DL3 COSTROW 7.000000 
FT2PIDLI FT2PICAP 1. 000000 REQPIDLI 1.000000 
FT2PIDLI COSTROW 2.500000 
FT2P1DL2 FT2pICAP 1.000000 REQPIDL2 1.000000 
FT2pIDL2 COSTROW 3.100000 
FT2PIDL3 FT2PICAP 1.000000 REQPIDL3 1.000000 
FT2P1DL3 COSTROW 3.300000 
FT2P2DLI FT2P2CAP 1. 000000 REQP2DLI 1.000000 
FT2p2DLl COSTROW 7.700000 
FT2P2DL2 FT2P2CAP 1.000000 REQP2DL2 1.000000 
FT2P2DL2 COSTROW 8.300000 
FT2P2DL3 FT2P2CAP 1. 000000 REQP2DL3 1.000000 
FT2P2DL3 COSTROW 8.500000 
FT2P3DLI FT2P3CAP 1.000000 REQP3DLI 1.000000 
FT2p3DLl COSTROW 6.900000 
FT2P3DL2 FT2P3CAP 1.000000 REQP3DL2 1.000000 
FT2P3DL2 COSTROW 7.500000 
FT2P3DL3 FT2p3CAP 1.000000 REQP3DL3 1.000000 
FT2P3DL3 COSTROW 7.700000 

RHS 
RHSVALUE FTIPICAP 36.000000 FTIP3CAP 85.000000 
RHSVALUE FT2PICAP 54.000000 FT2P2CAP 60.000000 
RHSVALUE FT2p3CAP 45.000000 REQPIDLI 50.000000 
RHSVALUE REQPIDL2 10.000000 REQPIDL3 30.000000 
RHSVALUE REQP2DLI 15.000000 REQP2DL2 15.000000 
RHSVALUE REQP2DL3 20.000000 REQP3DLI 20.000000 
RHSVALUE REQP3DL2 60.000000 REQP3DL3 30.000000 

ENDATA 

Display 2.1 

F F F F F F F F F F F F F F F R R 
T T T T T T T T T T T T T T T E H 
1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 L S 

PRODUCTION P P P P P P P P P P P P P P P A V 
1 1 1 3 3 3 1 1 1 2 2 2 3 3 3 T A 

VARIABLES D D D D D D D D D D D D D D D I L 
L L L L L L L L L L L L L L L 0 U 
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 N E 

COST 
COSTROW 2.1 2.7 2.9 6.2 6.8 7.0 2.5 3.1 3.3 7.7 8.3 8.5 6.9 7.5 7.7 FREE 

FACTCAP 
FTIPICAP 1 1 1 LE 35 
FTlP3CAP 1 1 1 LE 85 
FT2PICAP 1 1 1 LE 54 
FT2p2CAP 1 1 1 LE 60 
FT2p3CAP 1 1 1 LE 45 

DEALEREQ 
REQPIDLl 1 1 EQ 50 
REQPIDL2 1 1 EQ 10 
REQPIDL3 1 1 EQ 30 
REQP2DL1 1 EQ 15 
REQP2DL2 1 EQ 15 
REQP2DL3 1 EQ 20 
REQP3DLI 1 1 EQ 20 
REQP3DL2 1 1 EO 60 
REOP3DL3 1 1 EO 30 

Tableau 2.1 
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2.5 Further examples 

Blending of Gasoline Products 

An oil company in an off shore island maintains a reserve of five basic 

components~ Butane, Light Naptha, Heavy Naptha, Catalytic Naptha and 

Catalytic Reformate which are blended and replenished on a weekly basis 

to meet the demands for two grades of gasoline called GASl and GAS2. 

The availability, the linear blending coefficients and the costs for these 

components are tabulated in table 2.2. The quality requirements and the 

volume demands for the two gasoline products are set out in table 2.3. 

The oil company wishes to derive an LP model that must be solved on a 

weekly basis to find the optimal blending of the components. 

Blending Components 

Component Availability Research Vapour 
thousands of octane pressure 

barrels number 

Butane 3.5 120.0 60.0 
Light 
naptha 2.0 84.5 18.0 
Heavy 

naptha 4.0 73.0 4.0 
Catalytic 

naptha 10.5 96.0 6.4 
Catalytic 

reformate 8.0 99.0 2.5 

Table 2.2 
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Volatility Code Cost, cents 
index name per 

gallon 

105 BU 5.2 

30 LN 6.4 

12 HN 8.3 

15 CN 10.2 

3 CR 11.0 



Gasoline Requirements 

Needed volume, Minimum research Maximum Minimum Code 
thousands of octane number vapour volatility name 

barrels pressure index 

10.0 95.0 11.0 18 GASI 

6.0 98.0 12.0 20 GAS2 

Table 2.3 

Diagram 2.2 shows how the two products connect the five components . 

.. -

GAS 1 

Diagram 2.2 

- Subscripts and Dimensions 

i - 1, ••• 5 
j - 1,2,3 

k - 1,2 

denotes the components, 
denotes the three quality indices: octane number, vapour 
pressure, volatility index, 
denotes the two gasoline products. 

- Model Variables 

The amount of component i that is blended into the 
product k. 

- Model Coefficients 

a' 1 
b·· IJ 

The amount of component i that is available for blending 
the linear blending coefficient for component i and 
quality index j, 
the cost of component i, 
the blending quality requirement for the product k 
against quality index j, 
the demand for the gasoline product k. 
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- Linear Constraint Relations: A Mathematical Statement. 

5 2 

Minimise 2 2 Ci Xik 
i=1 k=1 

subject to 

2 

Availability restriction 2 Xik , ai , i = 1 ... 5 , 

k=1 
Demand balance 

5 

2 Xik = dk , k = 1,2 , 
i=1 

and 
Blending requirements 

5 

2 Xik bi1 ) dk rk1 
i=1 

5 

2 Xik bi2 , dk rk2 
i=1 

5 

2 Xik bi3 ) dk rk3 
i=1 
and 

LP User Formulation 

- Model Variable Name 

j = 1 Octane specification 

k=1,2, J = 2 Vapour pressure 

j = 3 Volatility index 

i = 1 ... 5, k =1,2. 

BUGASl, LNGAS1. •• 
CRGAS2 

The amount of Butane used to produce 
GAS 1... until amount of Catalytic 
Reformate used to produce GAS2. 

- Model Constraint Name 

AVAILBU ,... AVAILCR The restrictions on availability for the 
five components. 

DEMGASl, DEMGAS2 The demand balance equations for the two 
products 

BLOCTGS1. •. BLVLTGS2 The six constraints for blending 
requirements. 

The matrix of the constraint relations is now set out in tableau 2.2. 
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B L H C C B L H C C T R 
U N N N R U N N N R Y H 
G G G G G G G G G G P S 
A A A A A A A A A A E V 
S S S S S S S S S S A 
1 1 1 1 1 2 2 2 2 2 L 

COST 5.2 6.4 8.3 10.2 11.0 5.2 6.4 8.3 10.2 11.0 FR 

AVAILABILITY 

AVAILBU 1 1 LE 3.5 

AVAILLN 1 1 LE 2.0 

AVAILHN 1 1 LE 4.0 

AVAILCN 1 1 LE 10.5 

AVAILCR 1 1 LE 8.0 

DEMANDS 

DEMGAS1 1 1 1 1 1 EQ 10.0 

DEMGAS2 1 1 1 1 1 EQ 6.0 

BLENDING 

REQUIREMENTS 

BLOCTGS1 120 84.5 73 96 99 GE 950.0 

BLVAPGS1 60 18 4 6.4 2.5 LE 110.0 

BLVLTGS1 105 30 12 15 3.0 GE 180.0 

BLOCTGS2 120 84.5 73 96 99 GE 588.0 

BLVAPGS2 60 18 4 6.4 2.5 LE 72.0 

BLVLTGS2 105 30 12 15 3.0 GE 120.0 

Tableau 2.2 
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A Multi Time Period Multi Mode Production Problem 

A company manufactures three products PI, P2, and P3 (NUTS, BOLTS, 

and WASHERS) and has at its disposal three machines M1, M2, and M3. 

The company can undertake normal and overtime production and needs to 

plan for two time periods, say WINTER and SUMMER. Any product left 

after the second time period has very little resale value. The necessary 

information concerning the operation of the company is set out in tables 

2.4, 2.5, 2.6. 

It is necessary to find an LP formulation that maximises the profit of the 

company's operation over the two periods. 

- Subscripts and Dimensions 

Let the four indices i, j, k, I be defined as 

1 - 1,2 the index for the two time periods, Summer and Winter, -
J - 1,2 the index for the two modes of production, Normal, -

Overtime, 
k - 1,2,3 the index for the three product types, PI, P2, P3, -
I - 1,2,3 the index for the three machines, Ml, M2, M3. -

- Model Variables 

the quantity that is produced in the category 1, j, k, I, 
the quantity of product k stored in period 1, 

the quantity of product k sold in period i. 

- Model Coefficients 

The following information relating to the problem are available in the 
table TABH. 

number of hours required to produce one unit of the 
product type k on the machine 1, in the time period i, 
usipg Normal or Overtime production J, 
machine availability in hours for the machine I in period 
i and mode j. 

In the table TABD 

Pik selling price 

demand, J 
for the product type k In 
period i, 

time 

storage cost for the prod uct type k In one time period, 
the corresponding storage capacity, 
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the final resale value at the end. 

In the table TABC, 

Cijkl the production cost In the category I, j, k, 1. 

- Linear Constraint Relation 

The profit function of the problem may be expressed as 

2 2 3 3 

Profit = 2 2 2 2 (Pik - Cijkl)Xijkl 
i=l j=l k=l 1=1 

3 3 

- 2 Sk Y1k + 2 (rk - P2k)Y2k 
k=l k=l 

In an optimal plan Profit must be maximised subject to the constraints 

(i) machine availability 

3 

2 tijkl·Xijkl , aijl ' for all i,j,lj 
k=l 

(ii) stock balance in the two periods, 

2 3 2 2 X1jkl - Y1k - Zlk = 0 for period 1, and all k 
j=l 1=1 

and 

2 3 2 2 X2jkl +Y1k - Y2k - Z2k = 0 for period 2, and all k 
j=l 1=1 

(iii) minimum demand to be satisfied 

Zik ) dik , for all i , and k 

(iv) upper bound on storage, 

Y1k , hk for all k 

(v) non negativity of the variables, 

Yik ) 0 for all i,k, and Xijkl ) 0, for all i,j,k,l. 

LP User Formulation 

- Model Variable Name 

Production: 
TINPIMl. •• T20P3M3 The production variables x1111 .. ·x 2233' 

Storage: 
TIPISTR ... The storage variables y 11 etc., 

Amount meeting demand: 

TIPID .•• The quantities that are allocated to satisfy 
demand z 1 1 etc., 
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TABLE OF MACHINE HOURS (TABH) 

SUM MER PER I 0 D ( HI ) WIN T E R PER I 0 D ( H2 ) 

'd 
\l) 

Normal (N) (0) Total hours Normal (N) (0) Total hours IJO. 
CD Working hours Overtime Available (AV) Working hours Overtime Available ( A' 
N 
co 

PI P2 P3 PI P2 P3 Normal Over PI P2 P3 PI P2 P3 Normal Ove: 
W-Hrs time W-Hrs tim4 

MACHINE 1 (Ml) 4 5 6 3 4 5 100 80 5 6 7 4 5 5 110 90 

MACHINE 2 (M2) 7 6 6 6 5 5 100 90 8 7 7 7 6 6 110 100 

MACHINE 3 (M3) 3 - - 2 - - 40 30 4 - - 3 - - 50 40 

PI = 'NUTS P2 = BOLTS P3 = WASHERS 

TABLE 2.4 



"0 
al 

DO, 
~ 

w 
o 

MACHINE 1 

MACHINE 2 

MACHINE 3 

SUM MER 

Normal 
Working hours 

PI P2 P3 

2 3 4 

4 3 2 

1 - -
-_.-

PI = NUTS 

TABLE OF PRODUCTION COSTS CTABC) 

PER I 0 D WIN T E R PER I 0 D 

Normal 
Overtime Working hours Overtime 

PI P2 P3 PI P2 P3 PI P2 P3 

3 4 5 3 4 5 4 5 6 

5 4 3 5 4 3 6 5 4 

2 - - 2 - - 3 - -

P2 = BOLTS P3 = WASHERS 

TABLE 2.5 



'0 
g) 
~ 
CD 

Y) ,.... 
SALE 

MINIMUM 

STORAGE 

DATA 

PRICE 

DEMAND 

CAPACITY 

COST 

RESALE VALUE 

TABLE OF ADDITIONAL DATA (TABD) 

SUM MER PER I 0 D WIN T E R PER I 0 D 

NUTS BOLTS WASHERS NUTS BOLTS WASHERS 

10 10 9 11 11 10 

25 30 30 30 25 25 

20 20 

1 1 1 

2 1 1 

TABLE 2.6 



- Model Constraint Name 

PROFIT 
TIMIAN 

TIPIST 

Objective row. 
Availability of machine 1, time period 1 and 
normal production, 
Stock balance equation time period 1 product 1. 

The other three constraints are satisfied by upper bound and lower 

bound restrictions. The right hand side column is called RHS and the 

bound is called LIM and the full model is set out in tableau 2.3. 
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'0 
g, 

DO. 
(!) 

w 
w 

-

VARIABLES~ T T T T T T T T T T T T T T 
1 1 III 1 1 1 1 1 1 1 1 1 
N N N N N N N 0 0 0 0 0 0 0 
P P P P P P P P P P P P P P 

CONSTRAINTS 1 1 1 2 2 3 3 1 1 1 2 2 3 3 
J, M M M M M M M M M M M M M M 

123 1 2 1 2 123 1 2 1 2 

PROFIT 869 7 7 5 7 7 5 8 664 6 
TIMIAN 4 5 6 
TIM2AN 7 G 6 
TIM3AN 3 
TIMIAO 3 4 5 
TIM2AO 6 5 5 
TIM3AO 2 
T2MIAN 
T2M2AN 
T2M3AN 
T2MIAO 
T2M2AO 
T2M3AO 
TIPlST III III 
TIP2ST 1 1 1 1 
TIP3ST 1 1 1 1 
T2PlST 
T2P2ST 
T2P3ST 

BOUND 

LIM 

UP 

LO 

T T T 
III 
P P P 
123 
S S S 
T T T 
R R R 

-1-1-1 

-1 
-1 

-1 
1 

1 
1 

20 20 

-~ 

Tableau 2.3 

T T T T T T T T T T T T T T T T T T T T T T T R 
2 2 2 2 2 2 2 2 222 2 2 2 222 1 1 1 222 H 
N N N N N N N 0 0 0 0 0 0 0 P P P P P P P P P S 
P P P P P P P P P P P P P P 1 2 3 123 123 
1 1 1 2 2 3 3 1 1 122 3 3 S S S D D D D D D 
M M M M M M M M M M M M M M T T T 
12312 1 2 123 1 2 1 2 R R R 

7 5 8 6 6 4 6 6 4 7 5 5 3 5-9-9-9 N i 
LE l~ LE 10 
LE 4 
LE 80 
LE 90 
LE 30 

5 6 7 LE 110 
8 7 7 LE 110 

4 LE 50 I 

4 5 5 90 
I 

LE , 

7 6 6 LE 100 I 

3 LE 50 I 

I -1 EQ 
I -1 EQ 

-1 EQ 
III III -1 -1 EQ 

1 1 1 1 -1 -1 EQ 
1 1 1 1 -1 -1 EQ 

2530303025 25 



CHAPTER 3 

CURRENT APPROACHES TO COMPUTER ASSISTED MATHEMATICAL 

PROGRAMMING 

3.1 Introduction 

Linear and integer programming have a diverse range of applications, 

and since the late nineteen sixties a number of alternate computer based 

systems have been created to formulate models and to analyse their 

solutions. In as much as analysts still like to write high level application 

programs, the method of generating LP matrices using high level 

languages such as FORTRAN, PL1, etc., remains a popular technique. The 

scope of these systems is limited and these systems are not considered 

any further. 

Fourer [FOURER83] in his widely quoted reVIew paper has attempted to 

classify modelling systems as matrix generators and general purpose 

modelling languages. A careful analysis of these systems, their 

implementation and run time characteristics shows that the boundary 

between these two approaches IS rather blurred. For all practical 

purposes in both types of systems the matrix layout and specification 

provides the common theme. Thus all the systems provide suitable 

language constructs to specify the main body of the constraint matrix, 

right hand side values, bounds or variables and the relationships for 

each constraint. The table manipulation, data manipulation and conditional 

transfer of control and other language features are available in varying 

degrees, depending upon when and how these systems were implemented. 
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By and large systems which are general enough to create a broad range 

of linear programming applications are categorised into five main classes. 

The first class of such sytems are called teaching or introductory 

systems. Their purpose is to introduce undergraduate or postgraduate 

students or new industry recruits to the methods of LP formulation. 

These are discussed in section 3.2. A number of earlier systems which 

are mentioned in chapter one, have survived the test of time and are 

still in use in many key industries such as the chemical and energy 

industries. These systems tend to model the problem using a 

column-wise specification and are called activity based methods. This 

column-wise specification of the model sometimes makes it easier to 

conceive the model, and hence some new systems also employ this 

strategy for model description. Many of these earlier systems are 

described by Fourer [FOURER83] as matrix generators and these systems 

are reviewed in section 3.3. In more recent times, there have been 

developments in modelling languages. Many of these offer the ability to 

describe a model in the equation form. From a mathematical point of 

view, and for many modellers, this seems a more natural way of 

describing the model. Systems which support this type of model creation 

employing row-wise generators are described in section 3.4. Substantial 

system development effort has gone into creating LP based corporate 

modelling systems. Two well known and perhaps most successful 

examples of these, PLANETS [EDS86] as used by General Motors, and 

PLATOFORM [PALMER84] as used by Exxon, are discussed in section 3.5. 

Some recent developments in block structured systems and generic 

modelling tools are also included in this section. Finally, modelling 

systems which are influenced by artificial intelligence ideas are briefly 

described in section 3.6. 
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3.2 Introductory and teaching systems 

These systems are aimed at introducing linear programming and 

encouraging newcomers to learn the art of modelling decision problems. 

In most cases the users are expected to possess a limited knowledge of 

the computer and how to program it. These teaching systems are simple 

to use, and help the beginner to describe, and investigate, elementary 

problems such as food mix, transhipment and so on. The software is 

usually supplemented by good quality courseware such as text books with 

illustrative examples. In addition to teaching modelling, these are also 

used to teach advanced algorithmic methods such as parametric simplex 

steps and how to interpret results. Whereas the systems used are 

excellent In presenting and editting small problems, they cannot be 

extended to larger and more realistic industrial problems which have, in 

general, a hundred or more rows and columns. 

The one common theme throughout these systems is that they are easy to 

use, although they do adopt alternative ways of presenting the model. 

For instance in the LINDO [SCHRAG81A], [SCHRAG81B] system the model is 

presented one equation at a time, as if it is directly transcribed from 

the presentation seen in the text book. MICROSOLVE [JENSEN86], uses 

menus and screenforms in order to present the model. What's Best 

[HOLDAY86], is a typical spreadsheet based method which uses LOTUS123 

[LOTUS84], to create the linear programming interface. Thus a person 

who knows how to complete the spreadsheet cells does not need to learn 

anything new to represent the LP matrix other than the linear equation 

form. 

The optimisers which go with these systems often solve much larger 

models than can be realistically specified using these approaches. In 
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such cases the user is advised to write special programs to generate the 

matrix. This calls for programming skill and limits the scope of applying 

these systems to larger models. 

3.3 Activity based modelling systems 

A column-wise description of the linear programming model is naturally 

suited for input to the revised simplex algorithm. Thus the early 

systems were developed along these lines. These include DATAMAT 

[MIT75], GAMMA3 [SPERRY78], MaGen [HAVERL77], OMNI [HAVERL76], IBM 

MGRW [IBM77] and APEX-II MRG [CONTR074]. Over the years these 

systems have been improved by incorporating industrial experience. 

Their implementations have been invariably extended to deal with large 

models and most of the obvious bugs have been removed. These systems 

are hence reliable and very attractive from that point of view to serious 

industrial users. 

For these systems, clausal forms to specify columns are difficult to 

comprehend leading to poor model documentation. Thus it is not easy to 

communicate the model in the source form. These two points can easily 

be seen in the example set out in Appendix one, showing input 

specification of a model using the OMNI system. These column-wise 

systems also lead to unnecessary amounts of code; for instance if there 

are three sets of variables In a model, where a particular row is 

undefined, then t~is requires the 'if clause' to be repeated three times 

to define this exception. For multi time period problems the modeller is 

required to understand a further set of constructs to represent the 

matrix. 
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3.4 Modelling systems employing row-wise specification 

Modelling systems which employ equation forms or row-wIse specification 

of the LP problem are distinguished in the following way. These systems 

were designed later than the column-wise systems described in the last 

section. Thus they profit from the later developments in special purpose 

application languages and incorporate many powerful language constructs. 

Some of these systems were developed as compilers with associated 

executors and a run time support library, and have the advantage of 

efficiency In execution with alternative data sets. Thus the same 

executable program representing a model can be run with different sets 

of table data for different model SIzes. 

Another important design consideration for these systems is that a 

modeller finds it easier to conceive an LP problem in the equation form. 

The designers of these systems also claimed that the source programs 

(which specify the model In the equation form) serve as an adequate 

documentation which may be used to communicate between analysts. A 

number of these systems such as UIMP [MITELL82] [UNICOM77], DATAFORM 

[KETRON75] and MGRW [IBM77] additionally incorporate column-wise 

generation capability. This is because some models, or often parts of 

models, are best presented in an activity basis. For example it is always 

clear to present the right hand side vector in a column form. The 

various points discussed so far are best illustrated by the full example 

set out in Appendix one and also by considering a few language features 

of the systems which are discussed in this section. 

The logical operator '$' introduced by GAMS [BISMEE82] represents 'such 

that' and is used to manipulate tables. the power of this operator is 

illustrated by the following typical statement which sums over the set D 
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YR(R) - SUM ( D $ RD(R,D), YD(R,D)); 

all values YD(R,D) when RD(R,D) is defined. Consider a manufacturing 

problem where the sets P, I and M denote processess, plants and 

machines respectively and let the parameter K(M,I) denote the number of 

units of available capacity of machine M In plant 1. Also let the 

parameter B(M,P) describe the required number of units of capacity of 

machine M per unit level of process P. Consider the table PPOS(P,I) with 

parameters having zero one values and defined by the statement 

PPOSS(P,I) - SUM ( M $ ( K(M,I)EQ 0), B(M,P)NE O)EQ 0 

In this statement the expression B(M,P)NE 0 takes the value one if 

B(M,P) > 0, otherwise it takes the value zero (ie the machine M IS 

dependant upon process P). This is then summed over all machines such 

that K(M,I) = 0, that is, all machines not at plant 1. If the resulting 

sum equals zero then PPOSS (P,I) takes the value one and thus the 

process IS independant of unavailable machines and is taken into 

consideration. Otherwise the process IS dependant upon at least one 

unavailable machine and is not considered. The purpose of creating such 

a table is that in one row generator statement all the corresponding 

constraints may be specified/controlled by the zero one entries in this 

table. 

LMC [MEFEAV77] is another row-wise modelling system which also has 

interactive capability. In LMC as in LINDO [SCHRAG81A] it is possible to 

specify input in an equation (textual) form. Additionally it IS also 

possible to create large scale matrices, matrix pictures or display an 

equation. It uses an English-like discourse language to manipulate data 
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tables, but this is not a practical proposition to deal with any reasonably 

sized data table. 

Sets of entities and constructs to manipulate these sets play an 

important role in all these systems. GAMS [BISMEE82] and LPMODEL 

[KARIR080] allow three dimensional sets but in practice they are combined 

and mapped into one extended set by short hand notation. An entity in 

a set can be referenced either by a numbered element or as an 

alphanumeric entity name. GAMS goes one step further, whereby sets 

can be extended at the time of table data entry if this proves to be 

convenient. 

ULP [WITMCC85] contains an extensive collection of reserved words which 

can be profitably used to state compactly a range of constraints. This 

is illustrated below with the language constructs of LPMODEL and ULP. 

Consider, for instance, the material balance relations taken over three 

time periods as specified in LPMODEL. 

MATERIALS.PERIOD 1 ?~INITIAL STOCK.MATERIALS - -

MATERIALS.PERIOD_2?=MATERIALS.PERIOD_1? -

SUM[PRODUCTS:COMPOSITION.MATERIALS.PRODUCTS x 

PRODUCTS.PERIOD_l ?] 

MATERIALS.PERIO:C 3?=MATERIALS.PERIOD_2? -

SUM[PRODUCTS:COMPOSITION .MATERIALS.PRODUCTS x 

PRODUCTS.PERIOD_2?] 

The corresponding formulation in ULP, using the reserved word NEXT 

reduces to 
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CONSTRAIN(MATERIALS,NEXT(PERIODS): 

S (MATERIALS ,NEXT (PERIODS)) - S (MATERIALS ,PERIODS) 

+ COMPOSITION(MATERIALS,PRODUCTS) * X(PRODUCTS,PERIODS) =0) 

BOUND (S(MATERIAL,'PERIOD 1') , INITIAL STOCK(MATERIALS)) 

The reserved word (NEXT in this example) reduces the source statement 

and also enhances model clarity. Complex constraints can be represented 

using words such as NETWORK, as these take advantage of well known 

model structures. 

Other features of modelling systems include looping and transfer of 

control. More recently, MAGIC [DAYWIL86] has introduced FORTRAN like 

constructs which also include FOR and END loop statements. Currently 

there are many new row-wise systems under development such as 

EXPRESS LP [DASH86] and [FOURER86] whose modelling concepts follow 

the ideas set out in this section. 

More recently there has been a move towards producing smart interactive 

editors for existing modelling systems. These usually generate a 

modelling language. PLATOFORM [PALMER84] and PAM [WELCH86] are two 

good examples of systems generating statements in an existing modelling 

system, DATAFORM. A discussion of PLATOFORM, which is a corporate 

system, is postponed to the next section. PAM, however, is a more 

general tool and adds to the productivity of creating applications using 

DATAFORM. 

3.5 Generic modelling tools 

Many large corporations are the most committed users of management 

science based planning and decision making tools. Energy industries 
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x 

such as oil and gas companies and large multi national corporations such 

as General Motors and General Electric are typical examples of these. 

The planning problems of these organisations generally fall into broad 

classes of long range planning (5 year time horizon) and operational 

planning on a weekly or monthly time frame. Many of these 

organisations have developed their own generic (mathematical 

programming) model generation tools to deal with a range of business 

problems. These tools are not only used for model generation but also 

to carry out scenario analysis and management reports or financial 

requirements, resource utilisation and so on. 

Geoffrion in his structured modelling [GEOFF85] and [GEOFF86] has tried J . 

to develop the framework of a unified system which is designed to aid: 

(i) management communication, (ii)mathematical representation and 

(iii)computer execution. Within this framework management science models 

such as mathematical programming, decision trees, graph problems, markov 

chains, and queuing problems can be all represented. The main aim of 

his work is to improve the present state whereby modelling is a low 

productivity process with poor managerial acceptance. He reports three 

implementations of his work which are LEXICON, lIS, and UCLA. However, 

the use of any of these in a real corporate environment is not reported 

by him. 

PLATOFORM, as reported by Palmer et aI, is perhaps the earliest example 

of the use of mathematical programming modelling as a model generation 

tool for corporate planning models. Within EXXON, PLATOFORM is used 

extensively to generate a range of planning problems (long range, 

strategic and operational). Often su bmodels germane to a particular 

country's operation are extracted and solved to investigate a specific 

decision problem. The PLATOFORM system actually generates DATAFORM 
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modelling statements which create these models and their corresponding 

reports. The system, as currently implemented, uses a friendly menu 

driven front end as well as making use of corporate information held 

within the DATAFORM database. 

The management SCIence group of General Motors have developed PLANETS 

[EDS86], which is an acronym for Production Location Analysis NETwork 

System. PLANETS was originally implemented in 1974 and has evolved 

into a flexible framework for scenario description and analysis. The 

system IS designed by individuals, with no prIor computer or 

mathematical programming background, to evaluate complex business 

problems. It IS a tool for generating mathematical models, facilitated by 

the conversational definition 

structured manner, using 

of a variety of business problems in 

standard business terminology with 

a 

a 

comprehensive network of computer programs. This mathematical 

representation of the problem is then automatically solved by using 

commercially available optimisation tools. PLANETS interprets the 

resulting mathematical programming output and then provides both 

financial and operational results In an easily understandable business 

format. A range of business problems such as marketing, manufacturing, 

capital costs, purchasing and distribution can be modelled separately and 

com bined as appropriate. The 

investigation of multiple objectives. 

system also allows specification and 

Since actual problem formulation and 

data input are facilitated by PLANETS through the use of standard 

'building block' terminology, PLANETS has been referred to as an 

open-ended scenario and model building 'language' for business planners. 

It is worth reporting the statistics of different planning models which 

have been studied using PLANETS. The histogram of these figures is set 

out below. 
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BREAKDOWN OF PLANETS STUDIES BY TYPE 

TOOLING ALLOCATION 

PRODUCT MIX 

SOURCING 

MAKE VERSUS BUY 

SITE SELECTION 

OTHER 

8% 

8% 

30% 

27% 

12% 

15% 

Although PLANETS is a generic tool by which business planning problems 

can be specified and investigated, it is not sufficiently general whereby 

other decision problems such as crew scheduling, paper trim loss, etc 

can be modelled using the system. This contrasts with modelling systems 

such as DATAFORM and UIMP which are more of an analyst's tool as 

opposed to a corporate planner's tool and allow such problems to be 

investigated. 

3.6 Artificial intelligence aids 

Artificial intelligence and prototyping aids are used increasingly to create 

complex application models. Currently many researchers are working 

towards the creation of 'intelligent mathematical programming systems'. 

Reasoning mechanisms may be introduced into these to enable them to 

learn to build well formulated models from incomplete specifications with a 

discourse that is 'natural' for the analyst. This goal can be partitioned 

into four su bgoals that reflect the central strategy of building an 

intelligent system. These four sub goals are set out below: (l) 

development of the structural specification of a model, (2) development of 

tools for assessing model validity and quality, (3) incorporating learning 
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mechanisms, (4) development of tools for the interactive analysis of the 

model solution. It is also necessary to undertake analysis and 

integration of submodels, automatic generation of queries to an external 

database and infeasibility and unboundedness analysis for general LP 

models. 

The use of artificial intelligence in mathematical programming modelling 

systems dates back to a system created by Shen and Krulee [SHEKRU73] 

in 1973. Simple English statements are supplied by the user, and from 

these statements a mathematical model is created. The system processes 

the sentences and produces property lists for each set (set names are 

recognised via the dictionary -lexicon- look up). Then, by analysing the 

property lists and basic sentences, variables of the model can be 

identified resulting in a variable requirement table. Finally the problem 

is fully constructed in a compact linear algebraic form. The following 

example illustrates the process. Consider the following dialogue with the 

system. 

PI COSTS MY COMPANY $1.5 AT Fl AND $1.8 AT F2.* 

P2 COSTS $7.0 AT SOUTHALL F2.* 

THE COSTS OF PRODUCING P3 IS $5.6 AT Fl AND $6.2 AT F2.* 

THE TRANSPORT COSTS FROM Fl TO Dl, D2, D3 ARE $0.6, $1.2, AND $1.4 

RESPECTIVELY.* 

THE TRANSPORT COSTS FOR Dl, D2, D3 ARE $0.7, $1.3, AND $1.5 FROM 

F2.* 

THE DEALER Dl REQUIRES 50 UNITS OF PI, 15 UNITS OF P2, AND 20 

UNITS OF P3.* 

WHILE DEALER D2 REQUIRES 10 UNITS OF PI, 15 UNITS OF P2, AND 60 

UNITS OF p3.* 

THE CAPACITIES OF Fl ARE 36 UNITS FOR PI, 0 UNITS FOR P2, AND 85 
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UNITS FOR P3.* 

THE AVAILABLE CAPACITIES AT F2 FOR PI, P2, P3, ARE 54 UNITS, 60 

UNITS, AND 40 UNITS. * 

DEALER D3 REQUIRES 30 UNITS OF PI, 20 UNITS OF P2, AND 30 UNITS 

OF P3.* 

DETERMINE THE QUANTITIES OF PI, P2, P3 TO BE PRODUCED AT FI AND 

F2.* 

The resulting model is stated in the algebraic form as set out below. 

THE PROBLEM IN FORMULA FORM ......................... . 

MINIMISE + 2.2 VI + 2.7 V2 + 2.9 V3 + 2.5 V4 + 3.1 V5 +3.3 V6 + 

7.7 V7 + 8.3 V8 + 8.5 V9 + 6.2 VIO + 6.8 VII + 7.0 VI2 

+ 6.9 VI3 + 7.5 VI4 + 7.7 VI5 

SUBJECT TO 1 VI + 1 V2 + 1 V3 < = 36 

1 VIO + 1 VII + 1 VI2 < = 85 

1 V4 + 1 V5 + 1 V6 < - 54 -

1 V7 + 1 V8 + 1 V9 < = 60 

1 VI3 + 1 VI4 + 1 VI5 < - 40 -

1 VI + 1 V4 = 50 

1 V7 = 15 

1 VIO + 1 VI3 = 20 

1 V2 + 1 V5 = 10 

1 VB - 15 -

1 VII + 1 V14 = 60 

1 V3 + 1 V6 = 30 

1 V9 - 20 -

1 VI2 + 1 V15 - 30 -

V5,V6, V7, V8,V9,VIO,Vl1,VI2, VI3,VI4, VI5 > = 0 
VI, V2,V3, V4, 
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LPFORM [MURST085] is a currently proposed system purporting to employ 

artificial intelligence techniques. It uses an LP generator [STOHR85], 

IBM's MPSX system for solving linear and integer mathematical programs 

[IBM76], IBM's SQL database management system (DBMS) [ASTCHA75] and 

ANALYZE [GREENB83], a solution analyser. LPFORM is probably the first 

mathematical programming system implemented in PROLOG. The knowledge 

in LPFORM consists of a number of rules relevant to the formulation of 

LP problems. This knowledge is not specific to any given application. 

Specific application knowledge and data values for the coefficients of the 

LP tableau are stored in the DBMS. The system is at an experimental 

stage and as yet no user interface has been designed. An illustration of 

a transportation example provides an insight into some of the rules 

contained in the knowledge base. Consider 

Minimise 2 2 c' . IJ x' . IJ 
i J 

Subject to 

2 x' . IJ ~ s' 1 

J 

2 x' . IJ ~ d· J 
i 

then the following gives the internal representation of the data schema 

and problem definition after interaction with the user. 

Data schema 

a. TRANS-COSTS (Vendor, Warehouse, C, $ per unit) 

b. SUPPLY (Vendor, S, units) 

c. DEMAND (Warehouse, D, units) 
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Problem Definition Statements 

a. CREATE-BLOCKS (Trans-problem, [Vendors, Warehouses]) 

b. LINK-BLOCKS (ALL, [Vendors, Warehouses], X) 

c. CREATE-BLOCKS (Vendors, Vendor = [Vl..V3]) 

d. CREATE-BLOCKS (Warehouses, Warehouses = [Wl,W2]) 

e. MINIMISE (Trans-costs) 

Firstly, a, b, c define the tables cij' si, dj, and the units field is used 

to check that the data for the problem is expressed in compatible units. 

In the problem definition, the first statement, a, defines the problem 

name and major blocks, Vendors, Warehouses. The next statement defines 

the variable xij. Statements c and d result In constraint definitions. 

Since statement c is by vendors, the system can infer that the right 

hand side value IS SUPPLY and similarly the demand constraint is created. 
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CHAPTER 4 

COMPUTER ASSISTED MATHEMATICAL PROGRAMMING (MODELLING) SYSTEM: 

CAMPS 

4.1 Introduction 

In this chapter a new mathematical programming modelling system called 

CAMPS is described. It is an interactive system and comprises a set of 

integrated 'program generation' and data management tools which are 

controlled by a series of menus and screenforms. The design objectives 

are broad: thus the system encourages non expert LP users to come to 

grips with the task of conceptualising and describing LP models whereas 

the expert LP user IS also supported in his requirements to construct 

large and complex models. The contents of this chapter are organised as 

follows. Section 2 describes the salient and novel features of CAMPS 

and an example of model construction using CAMPS IS illustrated In 

Section 3. The method of automated reformulation of separable and 0-1 

integer programming is considered In Section 4. For illustrative 

purposes the problem of section 3 is reformulated using ULP [WITMCC85] 

and OMNI [HA VERL 76] in the appendix and contrasts the CAMPS approach 

with these well known systems. 

4.2 Salient and novel features of CAMPS 

\ Computer Assisted Mathematical Programming \Modellin~ System (CAMPS) is 

an interactive system designed to aid model formulation, matrix generation 

and model management. The main menu set out in display 4.1 and the 

information flow diagram display 4.2 together provide an outline of the 

structure and the major functions of the system. A full user 
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specification of the system IS given In [LUCMIT85]. 

. CAM P S . 

USER: DATE: 
MODEL: TIME: 

SEC: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
I.INPUT 
2.GENERATE 
3.0PTIMISE 
4.REPORT 
5.UTILITIES 
6.LOGOUT 

TYPE NUMBER« »: 

Display 4.1. 

The INPUT (and AMEND) option is used to construct and/or update all 

aspects of a model created entirely within CAMPS. Display 4.3 

illustrates the options under this subsystem and reflects the modelling 

. CAM P S . 

USER: DATE: 
MODEL: TIME: 

SEC: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

I.NAMES 
2.DIMENSIONS 
3.TABLES 
4.VARIABLES 
5.CONSTRAINTS 
6.RETURN 

TYPE NUMBER« »: 

Display 4.3. 

methodolgy set out in section 3 of chapter 2. 

The subscripts of the model correspond to 'basic entities' which are 

elements of 'sets' and in actual models these 'sets' could represent 

geographical regions, materials or time periods. This progressive approach 
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to model definition allows avoidance of a procedural language by 

replacing it with an option driven program generator approach. The 

syntax of commands are captured in their context and thus mistakes 

introduced by erroneous keystrokes are kept to a minimum. This is 

because predefined indices, sets and names are prompted at the 

appropriate fields of the screenforms. For instance, at the time of 

defining variables and tables, currently defined sets are displayed. At 

the time of entering the linear forms, the operators (+,-,*) are prompted 

and a linear term is forced to comply with the dimensions of the 

summation indices and the row indices. This is discussed further in the 

example given in section 3. 

The first four options of the main menu are designed to facilitate 

construction and investigation of a model, whereas the fifth, the 

UTILITIES option, provides model management support. In CAMPS the 

usual model management functions such as DELETE, RENAME, LIST and 

PRINT are augmented by a further option called DOCUMENT. Tabular 

displays of the input data, variable(MPSX) and row(MPSX) names, and 

tabulated results are essential aspects of documentation as supplied by 

all known systems. In addition to these a mathematical formulation of 

the model is also provided by CAMPS. This mathematical statement can be 

enhanced by textual annotations specific for a given application. These 

explanatory texts are introduced at the input stage. 

The REPORT su bSYRtem allows information relating to the rows, columns 

and reduced costs to be examined. The analysis module within REPORT 

is now designed to interface with the interactive model and solution 

analysis system ANALYZE by Greenberg [GREENB83]. For each 'basic 

entity' a textual annotation may be supplied and a unique two character 

stub is extracted out of this text. This stub is used to create the 
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'syntax file' of ANAL YZE. Thus the facilities of the ANALYZE which 

provide tools for identifying structural infeasibility and the discourse 

model to support explanatory dialogue can be reached in this way 

[GRLUMI86]. The OPTIMISE option uses the FORTLP system [TAMIYA85]. 

For all practical purposes this is treated as a black box, although a few 

algorithm control parameters can be set under this option. 

LP/IP models are created in MPSX format under the GENERATE subsystem. 

Within the GENERATE subsystem externally created models are also 

accepted but REPORT and DOCUMENT options cannot be used in this case. 

Whereas CAMPS itself is designed for high level interaction in the 

modeller's form, at the GENERATE subsytem level a programmer's interface 

for model generation is also available. Thus it is possible to create 

MPSX models using data tables and model descriptions not held within 

CAMPS. In this approach the system held subroutine library for model 

generation is used. This approach is somewhat similar to the ideas put 

forward by Forrest [FORRES86]. CAMPS has also been used in this way 

to create set covering models in MPSX format [ELDMIT86]. These models 

were supplied in a non standard format. 

In order to deal with well established structured models or restrictive 

modelling situations, a compendium of reserved words has been 

introduced into the TABLES and ROWS section of the system. A reserved 

table, RESTRICT, with appropriate dimensions is created by default as an 

internal table of 0-1 entries. It is used subsequently to deal with 

undefined entries in the primary tables. NETWORK, CONVEX and REFER 

are reserved row names. NETWORK is used to create a compact networ k 

model with balanced flows. CONVEX and REFER are used to achieve 

separable programming (set type one and set type two) model 

reformulation within the system [LUMIYA86]. 
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4.3 An annotated example 

In this section a problem taken from the book by Jensen and Barnes 

[JENBAR80] is considered. This example is specially chosen as it displays 

the typical structure of an integrated production and distribution model. 

The example IS also adopted by Geoffrion [GEOFF85] and Bradley 

[BRACLE85], [CLEMEN84] to illustrate their systems. 

The Tanglewood Manufacturing Co. has four plants located around the 

country. The fabrication and assembly cost per chair and the minimum 

and maximum monthly production for each plant are shown in table 4.1. 

PLANT Cost Max Production Min Production 

Washington 
Philadelphia 
Denver 
Buffalo 

$ 

5.00 
7.00 
3.00 
4.00 

500 
750 

1000 
250 

o 
400 
500 
250 

FABRICATION COST AND PRODUCTION RESTRICTIONS BY PLANT 

Table 4.1 

The company obtains the twenty pounds of wood required to make each 

chair from two suppliers who have agreed to supply any amount ordered. 

In return, the company guarantees the purchase of at least 8 tons of 

wood per month from each supplier. The cost of wood is $0.10/lb from 

supplier 1 and $O.075/lb from supplier 2. The shipping cost in $/lb from 

each supplier to each plant is shown in table 4.2. 

$/lb of wood 

ONTARIO 
QUEBEC 

Washington 

0.01 
0.04 

Philadelphia 

0.02 
0.03 

Denver 

0.04 
0.02 

SHIPPING COST FROM SOURCE TO PLANT 

Table 4.2 

Buffalo 

0.04 
0.02 

The chairs are sold in New York, Houston, San Francisco and Chicago. 
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Transportation costs in $/chair between the cities and plants are listed 

in table 4.3. Finally table 4.4 shows the minimum demand that must be 

satisfied, the maXImum demand that can be satisfied and the selling price 

for chairs in each city. 

$/Chair New York Houston San Francisco Chicago 

Washington 1.00 1.00 2.00 0.00 
Philadelphia 3.00 6.00 7.00 3.00 
Denver 3.00 1.00 5.00 3.00 
Buffalo 8.00 2.00 1.00 4.00 

TRANSPORTATION COST BETWEEN PLANTS AND CITIES 

Table 4.3 

City Selling Price Max Min 
Per Chair Demand Demand 

New York $20.00 2000 500 
Houston 15.00 400 100 
San Francisco 20.00 1500 500 
Chicago 18.00 1500 500 

SELLING PRICE AND DEMAND RESTRICTIONS BY CITY 

Table 4.4 

It is desired to find the optimal production and shipment so as to 

maximise profit. A mathematical statement of this problem is set out 

below. 

-Su bscripts and Dimensions 

i=1,2 
j=1,2,3,4 
k=1,2,3,4 

denotes the timber merchants, 
denotes the wood plants, 
denotes the chair retailers. 

-Model Coefficients (Descriptors) 

m" IJ 

s' 1 
d· 1 

the cost of producing one chair at wood plant j, 
the minimum production of chairs at wood plant j, 
the maximum production of chairs at wood plant j, 
the selling price of chairs at chair retailer k, 
the minimum amount of chairs sent to chair retailer k, 
the maximum amount of chairs sent to chair retailer k, 
the shipment cost between wood plant j and chair 
retailer k, 
the shipment cost between timber merchant i and wood 
plant j, 
the cost of wood at timber merchant i, 
the minimum order amount at timber merchant 1. 
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-Model Variables 

z· . IJ The quantity of wood bought from timber merchant i 
and processed in wood plant j, 

Yjk the number of chairs bought by chair retailer k from 
wood plant j. 

-Linear Constraint Relations: A Mathematical Statement 

Maximise 

Profit = 
4 4 

2 2 (PkYjk - CjYjk - tjkYjk ) 
j=lk=1 

2 4 

- 2 2 (mijzij + SiZij ) 
i=1j=1 

Subject to the constraints: 

minimum demand of the timber merchant i, 

4 

2 
j=1 

Z·· 'I. d· 1J Q 1 

production at plant j within allowable range, 

4 

2 Yjk :> n' J 
k=1 

4 

2 Yjk 
, qj 

k=1 

meeting customer demand at k within allowable 

4 

2 Yjk ) lk 
j=1 

4 

2 Yjk 
, hk 

j=1 

stock balance at plant j, 

2 4 

2 z· . - 2 20Yjk 1J 
i=1 k=1 
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i=1,2 

j=1,2,3,4 

k=1,2,3,4 

j=1,2,3,4. 



This problem was created using CAMPS, and descriptive names for tables 

and variables were used instead of one character algebraic symbols. For 

example c j is replaced by PLNTCOST(j). Displays 4.4 to 4.18 comprise the 

major sequence of screenforms and illustrate how the main components 

are defined. The method of defining names is illustrated by the table 

names screenform set out in display 4.4. The sets, the reference indices 

and the corresponding textual annotations are shown in display 4.5. The 

text for each individual elment of a set is entered using the screen 

shown in display 4.6. Table dimension and annotations are shown in 

display 4.7. A compact method for entering data which can accomodate 

multidimensional (up to six) tables is illustrated In display 4.8. The 

system also supports a faster spreadsheet type method of entering one 

and two dimensional tables. The model variables are defined in display 

4.9 and similarly, display 4.10 shows how the model rows are defined. 

Display 4.11 presents the right hand side definitions while the method of 

entering linear form relations is set out in display 4.12 to display 4.18. 

In order to illustrate the method of specifying linear relations and the 

restrictions introduced to ensure consistency of dimensions, consider the 

linear form shown in display 4.15. This group of constraints is defined 

for the index k and is summed over index j. Hence tables and variables 

which are dimensioned by indices j and k are only displayed in this 

screenform. 

A mathematical statement of the problem is obtained using the 

documentation facility of 

displays 4.19a and 4.19b. 

the UTILITY subsystem and IS illustrated in 

This formulation is sufficiently detailed for 

communication between analysts. In the linear expressions for the 

objective row and the constraint rows each term is annotated: a feature 

also found in GAMS [BISMEE82]. 
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SEC: NAMES SECTION MODEL: TANGWOOD 

TABLE NAME TEXT 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

PLNTCOST 
PLNTMIN 
PLNTMAX 
CUSTPRCE 
CUSTLDMD 
CUSTHDMD 
TCSTPTC 
TCSTPTC 

SEC: 

SET NAME 

1. 1-
2. J-
3. K-
4. 
5. 
6. 
7. 
8. 

SEC: 

. . . . . . . . . . 

.PLNTCOST. 

. . . . . . . . . . 
. . . . . . . . . . . . . . . . . . 
.PLANT-COST------. 
. . . . . . . . . . . . . . . . . . 
PLANT COST 
MIN PRODUCTION 
MAX PRODUCTION 
CUSTOMER PRICE 
MIN CUST DMND 
MAX CUST DMND 
TRAN COST TO CST 
TRAN COST FR SRC 

Display 4.4 

INDICES SECTION 

TEXT 

TIMBER MERCHANTS 
WOOD-PLANTS----­
CHAIR RETAILERS-

INDICES 

1---------------­
j---------------­
k----------------

Display 4.5 

INDICES SECTION 

LLIM 

---1 
---1 
---1 

MODEL: TANGWOOD 

ULIM STEP 

---2 -1 
---4 -1 
---4 -1 

MODEL: TANGWOOD 

SET NAME 1- TEXT TIMBER-MERCHANTS 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

ONTARIO 
QUEBEC 

. . . . . . . . . . . . . . . . . . 

.ONTARIO---------. 

. . . . . . . . . . . . . . . . . . 

Display 4.6 
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SEC: TABLES SECTION 

TABLE NAME TEXT 

1. PLNTCOST PLANT-COST------
2 • PLNTMIN- MIN-PRODUCTION--
3 . PLNTMAX- MAX-PRODUCTION--
4. CUSTPRCE CUSTOMER-PRICE--
5. CUSTLDMD MIN-CUST-DMND---
6. CUSTHDMD MAX-CUST-DMND---
7 . TCSTPTC- TRAN-COST-TO-CST 
8. TCSTSTP- TRAN-COST-FR-SRC 

Display 4.7 

SEC: TABLES SECTION 

TABLE NAME PLNTCOST 

TYPE 

-REAL--
-REAL--
-REAL--
-REAL--
-REAL--
-REAL--
-REAL--
-REAL--

MODEL: TANGWOOD 

INDICES 

J---------------­
j---------------­
J---------------­
k---------------­
k---------------­
k----------------
j-,k------------­
i-,j-------------

MODEL: TANGWOOD 

TYPE -REAL--

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
j = 1 :FOR WASHINGTON 

.------5.----. 

Display 4.8 

SEC: VARIABLES SECTION 

VARIABLE NAME 

1. WOFSTP--
2. CHFPTC--
3. 
4. 
5. 
6. 
7 . 
8. 

TEXT 

TIMBER-SHIPPED-­
CHAIRS-SOLD-----

Display 4.9 
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TYPE 

-REAL--
-REAL--

MODEL: TANGWOOD 

INDICES 

i-,j------------­
j-,k-------------



l. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

SEC: ROWS SECTION 

ROW NAME TEXT RTYPE 

WMINSRC- MIN-AMT-SHIPPED- GE 
MPROD--- MIN-AMT-PRODUCED GE 
XPROD--- MAX-AMT-PRODUCED LE 
CLOW---- MIN-CUST-DEMAND- GE 
THIGH--- MAX-CUST-DEMAND- LE 
BSTOCK-- STOCK-BALANCE--- EQ 
PROFIT-- MAXIMISE-PROFIT- FR 
-------- ----------------

Display 4.10 

SEC: ROWS SECTION 

ROW NAME 

1. WMINSRC-
2. MPROD---
3. XPROD---
4. CLOW----
5. THIGH---
6. --------
7. --------
8. --------

TEXT 

MIN-AMT-SHIPPED­
MIN-AMT-PRODUCED 
MAX-AMT-PRODUCED 
MIN-CUST-DEMAND­
MAX-CUST-DEMAND-

Display 4.11 

SEC: ROWS SECTION 

ROW NAME WMINSRC(i ) 

MODEL: TANGWOOD 

INDICES 

i----------------
j----------------
J----------------
k----------------
k----------------
j----------------
-----------------
-----------------

MODEL: TANGWOOD 

R.H.S. 

SCRLDMD­
PLNTMIN­
PLNTMAX­
CUSTLDMD 
CUSTHDMD 

MODEL: TANGWOOD 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
SUM OVER j 
FOR ALL i 

1.00000*WOFSTP (i ,j ) 

Display 4.12 

SEC: ROWS SECTION 

ROW NAME MPROD (j) 

MODEL: TANGWOOD 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
SUM OVER k 
FOR ALL j 

1.00000*CHFPTC (j, k ) 

Display 4.13 
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SEC: ROWS SECTION MODEL: TANGWOOD 

ROW NAME XPROD (j) 

· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
SUM OVER k 
FOR ALL j 

1.OOOOO*CHFPTC (j,k) 

Display 4.14 

SEC: ROWS SECTION 

ROW NAME CLOW (k) 

MODEL: TANGWOOD 

· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
SUM OVER j 
FOR ALL k 

1.OOOOO*CHFPTC (j,k) 

Display 4.15 

SEC: ROWS SECTION 

ROW NAME THIGH (k) 

MODEL: TANGWOOD 

· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
SUM OVER j 
FOR ALL k 

1.OOOOO*CHFPTC (j,k) 

Display 4.16 

SEC: ROWS SECTION 

ROW NAME PROFIT 

MODEL: TANGWOOD 

· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 

SUM OVER J , k -PLNTCOST(j )*CHFPTC (j ,k ) 
SUM OVER j ,k CUSTPRCE(k )*CHFPTC (j ,k ) 
SUM OVER j ,k -TCSTPTC (j , k )*CHFPTC (j , k ) 
SUM OVER i , J -TCSTSTP ( i , J )*WOFSTP (i , j ) 
SUM OVER i , j -SCRPRCE (i )*WOFSTP ( i , J ) 

Display 4.17 
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SEC: ROWS SECTION MODEL: TANGWOOD 

ROW NAME BSTOCK (j) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
SUM OVER i 
SUM OVER k 
FOR ALL j 

1.OOOOO*WOFSTP 
20.00000*CHFPTC 

Display 4.18 

(i , j ) 
(j , k ) 

4.4 Support for separable and integer programming reformulation 

In CAMPS, support for reformulating separable and integer programming 

problems has been provided. A description of this approach is given in 

[LUMIYA86]. For instance special table types, variable types (to define 

SOS type 1 and type 2 variables) and row names (CONVEX*, REFER*) are 

used to construct separable programming problems. These facilities have 

been used to reformulate ten representative nonlinear optimisation 

problems taken from Hock and Schittkowski [HOCSCH81]. In reformulation 

support bound analysis of the linear form [BRMIWI75], [WILLIA83] plays a 

fundamental role. CAMPS does not necessarily achieve the most compact 

or tightest reformulation, but it carries out a range of burdensome 

algebraic manipulation. 

page 62 



INDICES 

= 1, 
j = 1, 
k =1, 

TABLES 

2 
4 
4 

PLNTCOST(j) 
PLNTMIN(j) 
PLNTMAX(j) 
CUSTPRCE(k) 
CUSTLDMD(k) 
CUSTHDMD(k) 
TCSTPTC(j,k) 
TCSTSTP(i,j) 
SCRPRCE(i) 
SCRLDMD(i) 

VARIABLES 

WOFSTP(i,j) 
CHFPTC(j,k) 

ROWS 

WMINSRC(i) 
MPROD(j) 
XPROD(j) 
CLOW(k) 
THIGH(k) 
BSTOCK(j) 
PROFIT 

CONSTRAINTS 

***************************************** 
* * * * * Model Documentation * 
* * 
* Prepared by · .. CLucas * 
* * 
* Problem name · .. TANGWOOD * 
* * * Date · .. 07/01/86 * 
* * 
* Time · .. 11: 45 * 
* * 
* * 
***************************************** 

u 
u 
u 

TIMBER MERCHANTS 
WOOD PLANTS 
CHAIR RETAILERS 

U PLANT COST .. by .. 
U MIN PRODUCTION .. by .. 
U MAX PRODUCTION .. by .. 
U CUSTOMER PRICE .. by .. 
U MIN CUST DMND .. by .. 
U MAX CUST DMND .. by .. 
U TRAN COST TO CST .. by .. 
U TRAN COST FR SRC .. by .. 
U SOURCE PRICES .. by .. 
U SOURCE DEMANDS .. by .. 

U TIMBER SHIPPED .. by .. 
U CHAIRS SOLD .. by .. 

U MIN AMT SHIPPED .. by .. 
U MIN AMT PRODUCED .. by .. 
U MAX AMT PRODUCED .. by .. 
U MIN CUST DEMAND .. by .. 
U MAX CUST DEMAND .. by .. 
U STOCK BALANCE .. by .. 
U MAXIMISE PROFIT U 

u 
u 
u 

WOOD 
WOOD 

PLANTS 
PLANTS 

WOOD PLANTS 
CHAIR RETAILERS 
CHAIR RETAILERS 
CHAIR RETAILERS 
WOOD PLANTS 
TIMBER MERCHANTS 
TIMBER MERCHANTS 
TIMBER MERCHANTS 

TIMBER MERCHANTS 
WOOD PLANTS 

TIMBER MERCHANTS 
WOOD PLANTS 
WOOD PLANTS 
CHAIR RETAILERS 
CHAIR RETAILERS 
WOOD PLANTS 

U 

U 

U 

U 

U 

U 

.. and .. 

.. and .. 
U 

.. U 

.. and .. 

.. and .. 

U 

U 

U 
U 

U 

U 

CHAIR RETAILERS 
WOOD PLANTS 

WOOD PLANTS 
CHAIR RETAILERS 

Row name WMINSRC(i) U MIN AMT SHIPPED .. restriction .. U 

Sum over j [+l.OOOOOO*WOFSTP(i,j) 
U .. for .. TIMBER SHIPPED U 

.. ge .. SCRLDMD ( i) U .. SOURCE DEMANDS •• U 

For all i 

Row name MPROD(j) U MIN AMT PRODUCED .. restriction .. U 

Sum over k [ +l.OOOOOO*CHFPTC(j,k) 
.. for .. CHAIRS SOLD 

.. ge .. PLNTMIN(j) U ., MIN PRODUCTION 

For all j 

Display 4.19A 
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Row name XPROD(j) U MAX AMT PRODUCED .. restriction .. U 

Sum over k [+l.OOOOOO*CHFPTC(j,k) 
U .. for .. CHAIRS SOLD U 

.. 1e .. PLNTMAX(j) U .. MAX PRODUCTION 

For all j 

Row name CLOW(k) U MIN CUST DEMAND .. restriction .. U 

Sum over j [+l.OOOOOO*CHFPTC(j,k) 
U .. for .. CHAIRS SOLD U 

.. ge .. CUSTLDMD(k) U .. MIN CUST DMND 

For all k 

Row name THIGH(k) U MAX CUST DEMAND .. restriction .. U 

Sum over j [+l.OOOOOO*CHFPTC(j,k) 
U .. for .. CHAIRS SOLD U 

.. 1e .. CUSTHDMD(k) U ., MAX CUST DMND 

For all k 

Row name PROFIT U MAXIMISE PROFIT .. no restriction .. U 

Sum over j , k -PLNTCOST(j)*CHFPTC(j,k) 1 
U PLANT COST .. for .. CHAIRS SOLD 

Sum over j , k +CUSTPRCE(k)*CHFPTC(j,k) 1 
U CUSTOMER PRICE · . for .. CHAIRS SOLD 

Sum over j ,k -TCSTPTC(j,k)*CHFPTC(j,k) 1 
U TRAN COST TO CST .. for .. CHAIRS SOLD 

Sum over i , j -TCSTSTP(i,j)*WOFSTP(i,j) 1 
U TRAN COST FR SRC · . for .. TIMBER SHIPPED 

Sum over i , j -SCRPRCE(i)*WOFSTP(i,j) 1 
U SOURCE PRICES · . for .. TIMBER SHIPPED 

.. fr .. 0 

Row name BSTOCK(j) U STOCK BALANCE .. restriction .. U 

Sum over i 

Sum over k 

.. eq •. 0 

+l.OOOOOO*WOFSTP(i,j) 
U .. for .. TIMBER SHIPPED 

-20.000000*CHFPTC(j,k) 1 
U .. for .. CHAIRS SOLD 

For all j 

Display 4.19B 
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CHAPTER 5 

DESIGN AND IMPLEMENTATION ISSUES 

5.1 Introduction 

The internal design and strategy followed to implement CAMPS IS 

presented in summary form in this chapter. Section 5.2 contains the 

system overview covering the main functions of CAMPS and the 

supporting file structure. These external files are referred to as master 

files and the actions of the main programs on these master files are also 

presented in this section. The maIn logic of controlling menus and 

screenforms is provided in section 5.3. The implications of changing the 

external design of a screenform or menu and its effect on the screen 

data structure is also discussed in this section. The method of managing 

the internal data structures of CAMPS is briefly considered in section 

5.4. CAMPS is conceived to serve as a work station. Thus all the major 

controls are supplied using the visual display unit. Section 5.5 details 

the various screen tools which have been adopted for communication 

using the visual display unit. In common with many application systems, 

INPUT & AMEND constitutes the main function of CAMPS. The other 

major task in CAMPS is code generation; the target language in CAMPS is 

FORTRAN. The implementation language of the system is also FORTRAN. 

The maIn Issues of code generation and the compile, link and load 

sequence is described in section 5.6. Finally, the method of constructing 

external model documentation and that of integrating CAMPS with 

ANALYZE, are presented in section 5.7. 
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5.2 System overview 

At the top-most level CAMPS comprises a suite of five main programs. A 

short FORTRAN driving program makes calls to the operating system In 

order to run these main (subsystems) programs. Display 5.1 illustrates 

the hierarchy of the system options and the information flow through the 

five master files as effected by the subsystem. 

MODEL DATA 

INPUT & 
AMEND 
CIA) 

CAMPS 

GENERATE OPTIMISE REPORT 

(GM) 

MODEL SOLUTION 

(RO) (AR) 

ANALYZE AND 
REPORT 

Display 5.1 

UTILITIES 

(UT) 

MODEL 
DOCU~'ENTAT I ON 

The subsystems are mostly FORTRAN based and are integrated with calls 

to the screen tools which are written In PLl. The INPUT & AMEND 

sUbsystem is implemented in FORTRAN. The other subsystems are also 

written in FORTRAN but contain many calls to the operating system 

commands and functions. FORTLP [TAMIYA85] IS the optimiser for the 

system and is looked upon as a black box. This program is called with 
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a limited number of modifiable control variable settings. 

There are five master files in the system. These are the Model Master 

File, the MPSX Input Master File, the Solution Master File, the Report 

Master File and the Documentation Master File. Any item of data in 

these five master files is referred to as a Data Module and IS identified 

by the model name which may occupy up to eight characters. For these 

five master files, the name of any module is synonymous with the Model 

Name. The contents of each of the files and how and why they are 

processed by different subsystems IS described below. The short names 

given In the information flow, display 5.1, are used for all the 

subsystems. 

(I) Model Data Master File 

For each model a Data Module is created and altered by the INPUT & 

AMEND (IA) subsystem. Each Data Module comprises dimension, table, 

model variable, model constraint, and linear relationship information. 

UT SUbsystem accesses it for List, Delete, Rename and similar functions. 

IA subsystem uses it for INPUT & AMEND functions. 

GM subsystem uses it for generation. 

AR subsystem uses it to gather information for analysis and report. 

(II) MPSX Input Master File 

For each model the GM program creates MPSX input data which is then 

held in this Master File. MPSX input data from some external source can 

also be similarly held. 
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GM subsytem generates each of these data modules in MPSX format. 

RO subsystem processes each of these modules to provide a solution. 

AR subsystem may use an MPSX format Data Module to prepare a report. 

UT subsystem uses it for List, Delete, Rename and such-like functions. 

(III)Solution Master File 

Each model in MPSX input format, when successfully solved by the 

optimiser, leads to a solution which can be held in this Master File. 

RO subsystem generates the solution data module. 

AR subsystem loads the solution information for the purpose of analysis 

and report. 

UT subsystem accesses it for List, Delete, Rename and similar functions. 

(IV) Report Master File 

ANALYSIS & REPORT subsystem using the Model Data, the MPSX Data and 

the Model Solution can produce user reports. 

normally printed as text modules of report. 

These user reports are 

AR SUbsystem produces text modules of report which are held in this 

file. 

UT SUbsystem accesses it for List, Delete, Rename and other such-like 

functions. 

(V) Documentation Master File 

For the purpose of users own reference, and for communicating with 

others, a mathematical statement of a model is produced by the system 
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and IS called Model Documentation. The UT sUbsystem uses a Data 

Module to produce a Documentation Module which may be printed or 

stored in this Master File. The UT subsystem also accesses this Master 

File for the purposes of List, Delete, Rename and other actions. 

5.3 Menu and screenform control 

The display text used for screens and menus is held in a screenform 

con trol file. If this display text needs to be changed, this is achieved 

by running a separate program which creates the new screen data 

structure for the reformatted screens. The screenform control file also 

contains a number of accompanying data tables which describe positions 

of fields, types of screens (ie whether it IS a menu or screenform), menu 

level and other related information. These data tables are then consulted 

by the menu and screenform control program to obtain screen layouts. 

The programs for menu and screenform have essentially the same 

structure. A skeleton outline of the menu control algorithm is set out in 

display 5.2. 

When control passes to the screen handler, logical checks are introduced 

to test for completeness of the model. Deletion of a data table name 

leads to the deletion of a table of numerIC data and, by implication, 

bounds may become equal to zero or right hand sides may be removed 

or possibily a linear relationship may become undefined. Suitable advice 

is supplied at screen level to inform the modeller of these consequences. 

When a specific item of data is either supplied or amended, the screen 

control program calls a field control tool. To maintain 'model 

completeness' lists of admissible data values are created at screen level. 

Subsequently, these are used at field level to check for validity of data 

input. 
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Menu counter = 0 
1 Display menu of current menu counter 
2 Get user response 

If invalid user response then 
Sound action 
Goto 2 

Endif 
If menu level is top and user response equals no of menu options 
then 

return 
Endif 
If menu level is top then 

Menu counter = user response 
Elseif user response equals no of menu options then 

Menu counter =0 
Else 

Screen counter = 0 
Do for i equals 1 to menu counter less 1 

Screen counter = screen counter+no of menu options(i)-l 
Continue 
Screen counter = screen counter + user response 
Display screen of current screen counter 
Call screen handler 

Endif 
Goto 1 

Display 5.2 

5.4 Strategy and tools for handling data tables 

The internal storage structure of CAMPS is made up of four main classes 

of data arrays held in blank common. The first three arrays store real, 

integer and character data while the fourth array (again integer) 

consists of the parameters and pointers used in CAMPS. Two main 

su broutines are used to manipulate these data arrays. These subroutines 

access and return the global parameters and the local data tables to the 

main store. The following illustration of local data update provides the 

data maintenance philosophy of CAMPS. Consider display 5.3 representing 

the information supplied by a user in the dimension definition 

screenform. 

1. 1- PLANTS---------- i------------------- 1- 3- 1-

2. J- FACTORIES------- j -, k--------- 1- 2- 1-

Display 5.3 
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The local tables and global parameters that can be updated in this 

screenform are listed and described in display 5.4. There are also three 

local text arrays which are not affected by amending the fields of this 

screenform. 

Table Name 

STNMCH 

STTEXA 

STIDCH 

STNID 
STLLIM 
STULIM 
STSTEP 
SETSIZ 
INDSIZ 
SETPNT 

TEXPNT 

TSET 
TSETID 
TSETSZ 

Description 

Address in a text array of the name of the chosen 
set. 
Address in a text array of any associated 
annotation of the set name. A zero indicates there 
is no text. 
Address in a text array of the names of chosen 
indices. 
The number of indices associated with a given set. 
The number of the first element in the set. 
The number of the last element in the set. 
The value of the increment of a given set. 
The number of elements in a given set. 
For each index, the number of elements in it's set. 
For each index, this is the address in a text array 
of the set name it references. 
For each index this is the address in a text array 
of any associated annotation of the set name as in 
SETPNT. 
The total number of sets defined. 
The total number of indices defined. 
This represents the total number of elements for 
all sets. 

Display 5.4 

The data table values and parameters to represent display 5.3 together 

with the text arrays are shown in display 5.5. 
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STNMCH SETNAM 

No Element No Element 

1 1 1 I 

2 2 2 J 

STTEXA TEXNAM 

No Element No Element 

1 1 1 PLANTS 

2 2 2 FACTORIES 

STIDCH INDNAM 

No Element No Element 

1 1 1 i 

2 2 2 j 

3 3 3 k 

STLLIM STULIM 

No Element No Element 

1 1 1 3 

2 1 2 2 

STNID INDSIZ 

No Element No Element 

1 1 1 3 

2 2 2 2 

3 2 

Display 5.5 
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TSET 

TSETID 

TSETSZ 

SETPNT 

No Element 

1 1 

2 2 

3 2 

TEXPNT 

No Element 

1 1 

2 2 

3 2 

SETSIZ 

No Element 

1 3 

2 2 

STSTEP 

No Element 

1 1 

1 1 

PARAMETER 

POOL 

No Element 

1 2 

2 3 

3 5 



If at this stage the set I is removed then the updated local data tables 

are shown in display 5.6 

STNMCH 

No Element 

1 2 n 
STTEXA 

No Element 

1 2 n 

STIDCH 

No Element 

1 2 

2 3 
I 

STLLIM 

No Element 

1 1 

STNID 

No Element 

1 2 

SETNAM 

No Element 

1 I 

2 J 

TEXNAM 

No Element 

1 PLANTS 

2 FACTORIES 

INDNAM 

No Element 

1 i 

2 j 

3 k 

STULIM 

No Element 

1 2 

INDSIZ 

No Element 

1 2 

2 2 

r ~ 

~ 

I 

TSET 

TSETID 

TSETSZ 

Display 5.6 
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SETPNT 

No Element 

1 2 

2 2 

TEXPNT 

No Element 

1 2 

2 2 

SETSIZ 

No Element 

1 2 

STSTEP 

No Element 

1 1 

PARAMETER 

POOL 

No Element 

1 1 

2 2 

3 2 



5.5 Screen mangement tools 

The screen management tools are all written in PLl. In all these 

procedures there is one or more calls to the operating system to carry 

out the desired screen functions. The screen itself IS defined as a 

matrix of twenty four rows and eighty columns and is addressed by row 

and column numbers. 

out below. 

A brief description of the PLI procedures is set 

clear screen 

clear to eol 

clear to eos 

position cursor 

the screen IS cleared and the cursor is positioned 

in the top left hand corner. 

text to the right hand side of the cursor is 

cleared to the end of the row. 

all text below the cursor and to the right In the 

cursor row, is cleared. 

the cursor is positioned at the row and column 

coordinates specified provided they are within the 

screen dimensions. 

position_curs_rel the cursor is positioned relative to it's current 

read text 

write text 

read char 

position. Therefore negative arguments are 

allowed. Screen dimensions must not be violated. 

unechoed characters are read from the screen and 

if defined they are echoed back. The DEL 

function key has the effect of erasing the 

previous typed character and the cursor is 

repositioned one space to the left. 

the text supplied in the arguments of this 

procedure is echoed onto the screen starting from 

the current cursor position. 

one unechoed character is read from the screen. 
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ring bell an audio bell is sounded. 

erase_character the character to the left of the cursor is erased 

and the cursor IS relocated one place to the left. 

get_curs_position the coordinates of the current cursor position are 

returned as row and column numbers. 

term screen the last procedure called in order to disconnect 

the visual display unit. 

init_screen the first procedure called In order to invoke and 

initialise the visual display unit. 

5.6 Analysis of model and creation of matrix generator program 

The model generation subsystem involves three stages; display 5.7 

illustrates the information flow of this subsystem through these three 

stages. 

The first stage of the model generation su bsystem IS the translation 

phase. A FORTRAN program analyses the model in order to create 

FORTRAN code. This is used to generate the matrix of the model. Due 

to the logical analysis and progressive definition of the model components 

as used by the INPUT & AMEND subsystem, the task of creating code is 

made considerably easier. There are three main tasks of the CAMPS 

translator. The first generates the declaration statements and also 

creates an internal numeric ordering of the rows and columns. Next, a 

data file IS created together with a matching set of subroutine calls 

which enable the matrix generator program to access this data. Finally, 

lines of code are generated to internally represent the linear 

relationships, bounds, right hand side values and the type of linear 

relationships that exist in the model. The ordering of the matrix is 

always found by matching rows and column names as given in the model 
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r<: ""::::::loo 

MATRIX 
MPSX 
FORMAT 

-' 

~ ______ ~I 1~ ____________ __ 
, -, r==:=----

_.' ---' 
CAMPS 
FORTRAN 
LIBRARY 

~-'-----'--- ,- ~=------.. --

CAMPS 
TRANSLATOR 

FORTRAN 
SOURCE 

-----~ 

/ 
FORTRAN 
SOURCE 

A T A 

Display 5.7 

FORTRAN 
BINARY 

\~ 
CAMPS r+­
LOAD 

definition of INPUT & AMEND. Any exceptions or restrictions on linear 

relationships result In FORTRAN IF statements, while reserved words 

create calls to appropriate subroutines. For each line of code generated, 

there is a character count in order to control when a continuation line 

is needed. 

The main task In the second stage IS to compile the generated code. 

This generated code is then linked to a library of FORTRAN run time 

subroutines. Some of these subroutines apply simple analysis to the 
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matrix to check for inconsistencies within the model. When the pr0gram 

is run, if any incompleteness in the model is detected, these subroutines 

inform the CAMPS load system and the program stops. 

The final stage of the generate sUbsystem is to run the program. The 

compilation messages are first interrogated and if the compilation is 

successful, then the program is loaded and run. There are two possible 

outcomes which the CAMPS load function copes with. If a successful 

matrix is generated then this is passed back to the database. The other 

outcome is that the CAMPS generated program detects an unsuccessful 

situation. Some information is given and the program halted. 

5.7 Integration with ANALYZE and model documentation 

The integration with ANALYZE closely follows the philosophy for creating 

external model documentation. CAMPS creates a syntax file together with 

a separate MPSX input file with MPSX names constructed in accordance 

with the requirements of ANALYZE. The syntax file provides descriptions 

of the different name classes. In the result of an unsuccessful exit from 

the optimiser (ie unbounded solution or no feasible solution) this MPSX 

input file and syntax file are passed to ANALYZE. ANALYZE uses these 

in its discourse model [GREENB86], [GRLUMI86] and attempts to provide 

some rational explanation of the model failure. When creating external 

documentation, a new file is created giving an annotated mathematical 

description of thE> problem. CAMPS maintains data tables which indicate 

whether a name used In the definition of a model has some text 

associated with it. If such texts exists, then these are displayed in a 

predefined documentation format. 
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CHAPTER 6 

AN APPROACH TO COMPUTER ASSISTED REFORMULATION OF INTEGER, 

SEPARABLE AND FUZZY PROGRAMMING PROBLEMS 

6.1 Introduction 

It is well known that reformulations of integer, and variable separable 

programming problems also require considerable insight and modelling 

skill. The experience with use of modelling support systems has shown 

that there is a great scope for providing automatic support for 

reformulating such nonlinear programming problems. The purpose of this 

chapter IS to present a unified approach towards a range of such 

problems. The methods described here can fit naturally into most LP 

modelling support systems. 

The contents of this chapter are organised as follows. In section 6.2 the 

LP is defined in a general form in order to introduce notation which is 

used in the rest of the chapter. Analysis of bounds for linear forms IS 

well known In the context of model reduction [BRMIWI75], [WILLIA83]. 

Some of the bound analysis results which are pertinent to model 

reformulation as well are presented in section 6.3. The principles and 

methods underlying the reformulation technique are described in section 

6.4. The main emphasis of this section is to show how logical statements 

(clausal forms) can always be restated as equivalent integer forms 

involving 0-1 integer variables. Strategies for separating variables to 

represent a wide range of nonlinear programming problems are presented 

and discussed In section 6.5. Reformulation of the fuzzy progamming 

problem as a max-min LP problem and the relationship of this approach 

to IP reformulation methods are presented in section 6.6. 
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The general scope and applicability of these reformulation methods are 

discussed in section 6.7. 

6.2 Statement of the general LP problem and notation 

The general LP problem can be stated in the following form: 

Subscripts and their ranges 

i - l, ... m, j - l, ... n. 

- Variables, constraints, and matrix coefficients: 

Xj' j = 1. · · n, ri' i = 1 . . .m, 

Cjl J = 1 . · · n I bi' 1 = 1 . . . m, 

aij' 1 = 1. · • m I j = 1 . . . n . 

- Linear objective function and constraints: 

n 

Max 2 
j=1 

n 

C'X' J J 

djl j = 1 I . . . n I 

subject to ri: \ aijXjPibi 
j~1 

i = 1"",m 

" " ",,, where Pi is an (in)equality relation of the form ~, " or 

d· J 
j - l, ... ,n, 

,,_It - , 

f ' 't d u . may be +00 or finite. and Q j may be -00 or Ini e an J 
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6.3 Analysis of bounds for linear forms 

- Use of Analysis in Model Reduction 

Consider the restrictions r' 1 and d· J of the linear programming 

problem set out in (1) expressed as two sets Rand D of Linear Form 

constraints and Structural constraints respectively. 

n 

R = {(Xi""Xn ) Ijt a i j x j Pi b i, i = l, ... ,m} (2 ) 

D = {(Xi'" .Xn ) I ~. 
J 
, X· J " Uj, J = 1, ... , n} (3) 

It IS well known [BRMIWI75], [WILLIA83], that by considering the 

constraint sets Rand D logically and iteratively, in many real life 

problems one may deduce the following: 

(i) whether a constraint in set R is redundant, 

(ii) whether a constraint from set R may be removed and replaced 

by a tighter bound in the set D, 

(iii) whether a bound in the set D is redundant. 

All these results follow from the analysis of the bounds on the linear 

forms. 
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- An Analysis of the Linear Form 

Let 

n 

Fi = 2 (4) 
j=l 

denote the ith linear form. 

Introduce two index sets Pi' and Ni' column indices of the positive 

and negative coefficients of the row i respectively: 

Pi = {j I aij > O}, Ni = {j aij < O}, i = 1, ... ,m. (5 ) 

Let 

Li ~ Fi ~ Ui, i = l, ... ,m (6 ) 

denote the bounds on the linear form From the definition of the 

structural bounds (Q j ~ x j ~ u j the following is easily deduced: 

U' = 2 a' 'u' + 2 a' . Q. , ( 7 ) 
1 IJ J IJ J 

JEPi jENi 

L' = j~Pi a' . Q. + j~Ni a' 'u' . (8) 
1 IJ J IJ J 

In any of the following cases: 

(a) Pi is "~" and Ui .( bi ' 

(b) Pi is ")" and Li:) bi . 

the ith Linear Form constraint is redundant and may be removed from 
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the problem. Further, it is relevant in the present context to make the 

following observations concerning this analysis. 

(i) Li' may be -co or finite and Ui may be +co or finite. However, 

for finite values of R j' Uj' j=l, .•. n it follows from (7)and (8) 

that Li' Ui are finite. 

(ii) If the linear form constraints are connected by logical 

restrictions then Li' Ui values as necessary may be employed 

to (re)formulate these as 0-1 mixed integer programs. 

(iii) The derived bounds may be used in the improved 

reformulation and partial solution of integer programs. 

(iv) It is not well known and rarely discussed in the literature 

that this analysis constitutes an essential part of any 

procedure for the reformulation of nonlinear, not variable 

separable functions into variable separable functions with 

arguements defined between upper and lower bounds. These 

can be obtained for the appropriate variable using (7) and (8). 

The following examples illustrate some of the principles stated here and 

serve as an understanding for computing the various bounds that are 

later used to linearise the functions. 

Let the constraint sets Rand D be as defined below. 

R - { (Xl ,x2,x3) 

D - { (Xl,X2,x3) 

Xl + 2x 2 - X 3 , 11 } 

o , Xl , 1, 0 , x2 , 2, 0 , x3 , 4 } 
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The bounds on the Linear Form F 1 may be deduced as 

L 1 - -4, U 1 - 5. 

Thus U 1 < b l' hence the constraint is redundant. 

Further, consider Rand D as defined as below. 

R - { (x1,x2,Xa) 

D - { (x1,x2,Xa) 

Since a1a < 0 and P1 is 

X1 + x2 - 2xa - 2 } 

o , x1 , 1, 0 , x2 , 3, 0 , xa , 4 } 

"_" an improved bound on xa is given by 

Now U 1 = 4, b 1 = 2, a1a = -2 and hence xa 'lis the new bound 

which may be introduced in the set D. The bounds for x 1 and x 2 using 

the new lower bound of xa are 

giving x1 , 4 and x2 , 4 thus u 1 and u2 are valid bounds. These new 

bounds are computed from the way the bounds on the Linear Forms are 

constructed using the two sets Pi and Ni. 

6.4 Representation of logical restrictions 

Preliminary Considerations and Notation 

It is well known that a large range of logical relationships connecting 

variables and constraint sets may be represented as integer or mixed 
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integer programs [CONTR079], [WILLIA78], [SIMONN66], [DANTZI63]. 

Recently Jeroslow et al [BLJEL085] have set out an exposition and also 

present experimental results which connect integer programming with 

propositional logic and theorem proving. They, for instance, consider 

three well known clausal forms, conjunctive normal form, disjunctive 

normal form and Horn sentence. They then show how the equivalent 

integer forms may be constructed. The interest in this chapter is to 

interpret such theory and to automate reformulation methods which use 

mixed integer programming. The reformulation methods set out in this 

section do not necessarily lead to the tightest formulation. 

Let 

t:... 
1 1 = 1,2, . .. denote logical variables which may 

take values .TRUE. or .FALSE., 

s· 1 
take the value 1, if and only if ~i is .TRUE., 
and 0, if and only if ~i is .FALSE., 

V denote inclusive .OR., 

. 
V denote exclusive .OR., 

A denote . AND. , 

- denote equivalence. 

Representing .OR. 

If the condition t:..1 Vt:..2Vt:..3V ... Vt:..m is required to hold then this can be 

represented by the constraint 

Similarly exclusive .OR. relations as in the requirement 

61 V6 2 ... V6m can be represented by the constraint 
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(10) 

Furthermore, the relations 

(11) 

and 

(12) 

where k is an integer and 1 ~ k ~ m, represent the two statements 

"k or more alternatives hold at any time" and "exactly k alternatives 

hold at any time". 

Representing OR and AND equivalence relations 

Let Y denote a logical variable and y the corresponding 0-1 variable. 

Then the condition : Y is . TRUE. if and only if ~ 1 V ~ 2 V ~3 "'~m is . TRUE. 

(which is expressed as Y iii ~1 V~2V ... ~m)' can be represented by the 

constraint 

(13) 

Similarly the logical condition Y = ~1 A~2A ... ~m can be represented by 

the constraint 

( 14 ) 
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Logically Relating the Linear Form Constraints 

A linear form constraint involving n variables represents a point set 

If a number of these are stated and need to be satisfied then 

these invoke the logical .AND. operation. 

For example consider the relations 

n 

2 aijxj' hi' i = 1 ... m}. (16) 
j=l 

If p. 
1 denotes the proposition that 

then P is given by the logical form 

i = 1 m 

To represent the logical .OR. relation of these propositions P 1 'P2 ''''Pm it 

is necessary to consider the structural constraint set D as in (3) where 

some or all ~ j, u j j = l, ... n are finite such that the bounds Vi,i = I ... m 

are finite. Also from the redundancy consideration it is required that 

bi < Ui i = 1, •• ,m. 

Thus the inclusive .OR. relation is given by the 

integer and mixed integer forms (9) and (17). 
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n 

2 aijXj - Bi(l - bi) ,bi, i = I ... ,m. (17) 
j=l 

In (17) Bi is a finite value such that for 

greater than or equal to the upper bound Ui of 

Thus any finite value for B· 1 such that 

is 

Fi defined in (4). 

u· 1 i = l, ... ,m, (18) 

leads to a valid formulation. The exclusive .OR. and the two forms of 

k-fold alternatives for these propositions, are similarly obtained by 

introducing (17) together with (10), (11) or (12) as appropriate. 

An Example 

This IS taken from [WILLIA 78] and modified. 

Let Rl - { -

R2 - { -

R3 - { -

and Let D - { -

Then 

S - H A -

(xl 'X2) Xl + X2 , 4 } 

(xl 'X2) -Xl + X2 , 0 } 

(X I 'X2) 3Xl - X2 , 8 } 

(x l ,x 2 ) 0 , xl , 5, 0 

D - HI A R2 A R3 A D -

Diagram 6.1 
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The three bounds on the linear forms may be computed as 

A formulation which uses the logical .OR. as well as .AND. relation is 

T !!! R1 V (R 2 A R 3 ) which may be stated as 

X1 + x2 - 6(1 - b 1) ~ 4, 

-x1 + x2 - 5(1 - b 2) ~ 0, 

3x1 - x2 - 7(1 - b2) ~ 8, 

b 1 + b 2 ~ 1 and b l' b 2 - 0,1. -

The constraint region T in this case is as shown in Diagram 6.2. 

a Xl 

Diagram 6.2 

6.5 Strategies for separating variables in nonlinear programming 

problems 

Linearisation of Variable Separable Programming Problems 

The problem 

n 

Max 2 f . (x . ) 
J J 

j=l 
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subject to ~ gij(Xj) < bi , i = 1 , .•• ,m t 

j=l 

is a general statement of the variable separable programming problem. 

In order to carry out piecewise linear approximations to the objective 

and the constraint functions, it is necessary to make two further 

assumptions concerning this problem. 

(i) The functions j - l, .. ,n 

are all single valued. 

(ii) The arguments Xj, j - I, .•. n of these functions have finite 

ranges (Qj' Xj , Uj J - I, ... ,n). 

The construction of piecewise linear approximations using weighting 

variables, convexity row, reference row, function row and the methods of 

solution are well discussed in [BRHAMA77] and [MITRA76]. 

An Analysis of Nonlinear Programming Test Problems 

It has been claimed by proponents of the separable programming method 

of solving nonlinear programming problems that a large class of nonlinear 

(not variable separable) programming problems can be transformed into 

variable separable programming problems. In order to investigate the 

reality of this claim a comprehensive collection of nonlinear programming 

test problems which have been put together in [HOCSCH8I], have been 

analysed and a selection of these formulated and solved. 

Consider the test problems in the format 

page 89 



Maximise f (X1'''''X n ) 

subject to gi(x1""'Xn ) ( b· 1 1 = 1, ... ,m 1 
gi(X1"" ,xn ) = b· 1 = ml+1, ... ,m 1 

and Q. 
J 

( X· J 
, u' J j = l, ... ,n. 

The frequency distribution of the 115 test problems is set out in Table 

6.1. In [HOCSCH81] the problems are numbered from 1 to 119, however, 

there are no problems numbered 58, 82, 94, 115! 

The following types of objective and constraint functions are found in 

the set of test problems. 

Objective function types 

(i) Constant objective function ..• function code C. 

(ii) Linear objective function ... function code L. 

(iii) Quadratic objective function ... function code Q . 

(iv) Sum of squares objective function .. . function code S. 

(v) Generalised polynomial objective function ... function code P. 

This is of the form 

f( x) = 

n n n 

a o + 2 aixi + 2 aijXiXj + 2 aijkXiXjXk + ... (19) 

i=l i,j=l i,j,k=l 

It may be observed that in the geometric programming problem [DEMB076] 

a more general form is introduced which is called the signomial function 

and is expressed as 

2 II v.dl·J' f(x) = c· .... 1 
J i 

j€J 

(20) 
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where J is used to label the terms appearing in the signomial function. 

In (19) ao,ai,aij etc. and in (20) c j,dij are given real values. 

(vi) General function ... function code G. 

Constraint types 

(i) Only upper and lower bounds on the variables 

(ii) Linear constraint functions 

(iii) Quadratic constraint functions 

(iv) Generalised Polynomial constraint functions 

This is of the same form as (19) or (20). 

(v) Generalised constraint functions 

... code B 

... code L 

... code Q 

... code P 

... code G. 

Objective Function Codes 

Constraint 
Function 
Codes 

B 

L 

C 

Q 1 

Column 
Sum 

p 

G 

Experimental Investigations 

1 

L Q S p 

1 1 5 

10 8 

7 18 2 9 

2 2 14 

3 6 7 

12 37 3 43 

Table 6.1 

G 

2 

6 

1 

3 

7 

19 

Row 
sum 

9 

24 

38 

21 

23 

115 

Some of the methods described in this section together with the bound 

analysis discussed earlier, were applied to reformulate 10 out of 115 test 

problems discussed earlier in this section. CAMPS was used to aid 

these reformulations and generate these models. These problems are 

discussed and the investigations are reported in [LUCMIT86]. 

page 91 



Manipulation of Nonlinear Functions to Variable Separable Form. 

The principal motivation of deriving variable separable formulations of 

nonlinear functions is to approximate these functions by piecewise linear 

forms. Consequently a standard mathematical programming system (e.g. 

MPSX) can be used to solve these classes of nonlinear programming 

problems. In order to apply a piecewise linear approximation it is 

required that the variables of the separable formulation, which are 

derived from the original nonlinear functions, be bounded. It IS 

therefore necessary to apply a bound analysis to determine these bounds. 

In practical applications it is possible to impose realistic bounds on any 

unconstrained variable which may appear in the problem. 

McCormick and Jackson [JACMCC84] have done considerable work on the 

(reformulation) factorisation of highly complex nonlinear programming 

problems. They analytically derive the hessian and gradient of the 

tfactored' forms and are interested in the sensitivity properties of the 

resulting nonlinear models. 

A few frequently occuring instances of nonlinearities (nonlinear terms as 

well as nonlinear forms) are now considered and the methods of 

reformulating these are briefly discussed. 

Product Term 

A product term, xl x 2' may be replaced by (yf - y~) with the additional 

then, given finite Q j and finite bounds Li and Ui may easily be 

derived such that (Li ~ Yi ~ Ui)' i = 1,2. 

By repeated application of this technique a variable separable formulation 
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of a higher order product term may be obtained. 

Quadratic Function 

For a general quadratic function, ~(xl , .•• xn) 

separable formulation may be obtained. 

a more compact variable 

n 

Let ~(xl'· .. xn ) = U 2 
i=l 

with the constraints 

n 

Yk = 2 
j=k 

qk _x_ 
J J 

n 

2 qijXiXj 
j=l 

r 

= 2 
k=l 

k = 1 , ... r 

where r is the rank of the symmetric matrix Q - / / qij / /. 

(21) 

The coefficients qkj and d k can be determined by applying a standard 

method such as Gaussian reduction [STIEFE63]. 

Given finite bounds Q j and u j on Xj, j = 1, ••. n, finite bounds Lk 

and Uk on Yk, k = 1, ••. r, may be simply derived by considering the 

linear forms (21). Thus a piecewise linear approximation can be used. 

Ratio of Linear Forms 

, 
Let H = ~ 

j=l 

, 
h-x-and J J 

" H = ~ 
j=l 

" h -x­J J 

The expression (H/H) may be manipulated in the following way. 

Replace (H/H) by y 1 and introduce the constraint 
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n 

2 
j=l 

, 
h·x· = J J 

n 

2 
j=l 

As discussed earlier a variable separable formulation may be obtained for 

the product terms of the constraint. The finite bounds on Xj,j - 1, ... n, -
, 

" , , , 
" " " provide bounds on H and H such that L < H " U and L (: H (: U from 

which bounds be obtained. " " on Yl may If L > 0 or U < 0, the bounds 

on y 1 are finite and a piecewise linear formulation can be applied. 

Power Forms - Constant Base 

Consider the term aXl+X~ where a > o. 

A variable separable formulation may be obtained by replacing 
x l+ x 22 b d d' h . a y Yl an intro uClng t e constralnt 

log Yl = (log a)(xl + x~). The bounds 11 and Ul on Yl can 

be derived from the bounds on Xl and x2' 

Power Forms - Variable Base 

Consider the term x~2 This term can be handled using the 

b x2 
su stitution Yl = xl and introducing the constraints 

= 10Y2 (22) 

(23) 

The constraint (23) can be handled using the techniques for product 

terms and constant base power forms discussed earlier. For constraint 

(22) it is necessary that 0 < ~ 1 <. Xl <. Ul from which the bounds on 

Y2 are easily derived. 

To illustrate these methods, consider the following problem. 
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Maximise 

subject to 

+ + 

and 

From restrictions (25) and (26) it follows that 

Rewrite 

4 ~ xl' X Z ' X3 ~ 0 

X Z/ (1 + X I) = Y I 

<. 4 

Using (27) and (28) Q 4 <.. Y I <.. u 4 where Q 4 - 0, u 4 - 4. 

Thus constraint (24) can be expressed as 

The product terms of (27) are expressed as 

Finally the complete formulation is given as follows 

Minimise xl + 2xz + x3 

subject to Y~ - y~ + y~ - y~ + x3 <.. 20 

Yl - X z - y~ + y~ = 0 

Yz -UYI -U xl = 0 

Y3 -UYI +U Xl = 0 

Y4 -UYI -UeX3 = 0 

Ys -UYI +Ue X3 = 0 

Ys -UXI -U Xz = 0 

Y7 -UXI +U Xz = 0 

Xl + Xz + X3 <.. 4 
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Lower Bounds 

For the functions y~, y~, y~, y~, y~, y~, and e X 3 variables are 

introduced to linearise the functions over their respective domains. 

6.6 Reformulation of fuzzy decision problems as max-min LP problems 

Background to the Model 

Fuzzy set theory was first introduced by Zadeh [ZADEH65] and 

subsequently Bellman and Zadeh [BELZAD70] discussed its application to 

decision problems. Later developments and applications of this approach 

are well discussed in the text book by Dubois and Prade [DUBPRA80]. 

In Fuzzy set theory an element 

membership of a given set say 

x 

s. 

is defined to have a degree of 

The degree of membership is 

denoted by a membership function xJ.L which is defined over the range 

[o,u] where u IS a positive real number. For u=l it is the normal fuzzy 

set, J.L(x)€ [0,1]. In the usual set theoretic terms x 

is equivalent to J-I.(x) = 1 and J-I.(x) = 0 otherwise. 

belongs to s 

The major contribution of the seminal paper by Bellman and Zadeh 

[BELZAD70] was to establish the relationship between goals and 

constraints of a decision problem. In their words: 

"goals and the constraints constitute classes of alternatives whose 

boundaries are not sharply defined." They then proceed to 

explain that their modelling framework "erases the differences 
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between goals and constraints and makes it possible to relate in a 

relatively simple way the concept of a decision to those of the 

goals and constraints of a decision process •.. II In short, a broad 

definition of the concept of decision may be stated as: 

Decision - Confluence of Goals and Constraints". 

Fuzzy Programming as a decision model was mainly promoted by 

Zimmermann [ZIMMER78]. Its applications to media selection [ZIMWIE78], 

and power systems planning [SATSER82] are two of many applications 

which have been reported. Dyson [DYSON80] considers the multicriteria 

decision problems, analyses it following the Max-Min approach based on 

utility function and shows how the latter has the identical form to that 

of crisp equivalent formulation of the fuzzy LP. 

Statement and Reformulation of Fuzzy Linear Programs 

Consider the linear programming problem with l, .•. k objective (goal) 

functions and m inexact (soft) restrictions defined as 

Max Z ;e ex 

subject to Ox (, d 

x L 0 

where 

Let z = 

maximum 

Define 

Let 

x 
d 
C 
o 

is an 
is an 
is a 
is an 

n vector 
m vector 
k x n matrix 
m x n matrix 

[ ~11 denote the 'aspiration levels' (that is the 
zk b' t' these are expected to achieve) of these k 0 Jec 1ves. 

A = II§ II a (k+m) x (n) matrix, b = [a] a (k+m) vector 

n 

J..Li(x) = fie 2 a' ·X· 1J J ) 

j=l 
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denote the membership function of the ith goal or restrict1'on, . 1 1= , ••• k+m. 

A typical membership function is illustrated in diagram 6.3. 

1 

Thus define 

1 

JJ.' 1 
A 

Diagram 6.3 

n 

if 2 
j=l 

a' ·X· I' b· IJ J ~ 1 

n 
[ ~ a' 'x.-b'] 

1 _ j-l IJ J 1 if bi < 2 aijXj , (bi+Pi) 
j=l P. 

1 

o 
n 

if 2 aijXj 
j=l 

> b·+p· 1 1 

If .LLD(x) denotes the membership function of the (optimal) decision set 

then following the usual (but much debated) approach of applying tMin' 

as the intersection operator leads to the following 

.LLn(X) = Min .LLi(x) 
i 

Thus maximum satisfaction of constraints and targets are achieved by 

solving the equivalent Max-Min linear program, 
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Max A 
n 

subject to 2 aijXj , bi+Pi, 
j=l 

i = 1 k+ , . •• m, 

Xj } 0, j = 1, ... n . 

The following observations can be made for this model. 

(a) The mUltiple objective (or goal) model illustrates Zadeh and Bellman's 

principle rather well. In the case of a single objective function, k = 1. 

(b) The fuzzy goals and constraints are alternative ways of introducing 

soft constraints in the model. 

(c) If the variables Xj are bounded, that is 2 j , Xj , Uj as in section 

6.3, then Vi as introduced in the section may be used to check the 

consistency of the fuzzy membership function. 

(d) If it is desired to construct models which involve crisp as well as 

fuzzy relations then reformulation methods of section 6.4 and section 6.6 

can be naturally put together. 

6.7 Automatic approach to reformulation: a summary of issues 

The bound analysis plays a key role in automating the steps which are 

used in reformulating mixed integer, separable and fuzzy programming 

problems. For i.nstance the algebraic relations which are used to 

separate variables are also applied to derive bounds on new variables 

introduced In the reformulation. These bounds are essential for 

piecewise linear approximation. The bounds on linear forms are also 

used in transforming propositions (which take logical forms) to equivalent 

mixed integer linear forms. 
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The methods described in this chapter do not necessarily achieve the 

most computationally efficient model after reformulation. Jeroslow 

[JEROSL86] has given examples of how tighter reformulations can be 

found. In this work the main aim has been to reduce the chore for an 

experienced analyst, and also to provide support for a problem owner 

who is capable of describing his problem but may not be experienced in 

reformulation techniques. Computer support in these areas offers 

increased scope and applicability of mathematical programming. 
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CHAPTER 7 

DISCUSSIONS, NEW DIRECTIONS AND CONCLUSIONS 

7.1 Introduction 

The field of mathematical programming with its increasing acceptance as a 

proven, tested and robust tool stimulates much research towards the 

creation of computer based modelling systems. In conceiving and 

designing such a system, the first task is to identify the audience for 

whom the system is being built. Chapter three highlights the broad 

range of constituents who have different requirements from a computer 

based modelling system. Firstly there is the novice user who knows 

very little computer programming and thinks of a model as a set of 

equations~ Typically, his requirements can be met by one of the 

available spreadsheet packages [CARMON86]. Then at the other end of 

the spectrum, there are dedicated corporate users who run different 

planning scenarios using large company databases. These systems have 

to offer flexible and secure access to a large database and cope with 

multiple users. Reports have to be quickly obtained and response time 

to crisis modelling has to be good. There is also a need to provide 

productivity tools for the analysts who create special purpose 

applications. The main thrust of the present research has been to 

investigate the type of tools which support these diverse range of 

modellers in creating their applications quickly and efficiently. 

In building models there are many structures that are common to 

different models. The strategy for modelling these specific structures 

remains the same no matter what the application. It therefore seems 

natural that the knowledge of building these structures should be 
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embedded in the mathematical programming modelling system. Similarly, 

when a problem owner communicates model data, the system should 

validate this data within a specific range, and also establish that the 

units are consistent with the modellers description of the data. This 

level of support calls for the introduction of artificial intelligence 

techniques in model building. The scope of integrating artificial 

intelligence with mathematical programming is discussed in section two of 

this chapter. This also includes looking at ways in which a natural 

language could be employed in the modelling support. This ranges from 

a conversation with the problem owner, to the ability to provide advice 

concerning the model structure. 

In order to harness the proven success of mathematical programming 

optimisers, it is often necessary to create very special models. No 

matter how powerful the systems constructs are and how flexible and 

general the modelling language IS, there are often many situations where 

a certain part of the problem is modelled much more easily by allowing 

the model builder direct access to the system components which are used 

for generating the LP matrix. There are also many applications wher(~ 

external programs need to be created to implement special heuristics 

which have been tested and proven in a different environment. A 

conscious design of a programmer's (analysts) interface to support these 

specialist modelling tasks is therefore required. In section three of this 

chapter the broad criteria of such an interface are discussed. A 

summary of the major contributions of the research reported in 

thesis is presented in the final section of this chapter. 
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7.2 Artificial intelligence and mathematical programming modelling 

In this section, the background and possible use of artificial intelligence 

in mathematical programming modelling systems is discussed. From time 

to time considerable attention has been given by the specialists in the 

field of mathematical programming to the methods of artificial intelligence 

and vice versa. It is well known that the travelling salesman search 

methods and heuristics [LINKER71], [GLOVER85] are of interest to both 

mathematical programming and artificial intelligence specialists. In recent 

times the links between logic programming theorem proving and integer 

programming have been investigated by Jerslow [JERSLOW85], Williams 

[WILLIA86] and others. From the viewpoint of applied problem solving, it 

is well accepted that mathematical programming and artificial intelligence 

methods (especially_ expert systems) are perhaps the most successfully 

applied methodologies in industrial contexts. In his inspiring lecture in 

1959, nobel laureate, Simon [SIMON60], developed and made a strong case 

for artificial intelligence. In a recent plenary presentation at the 

TIMS/ORSA meeting, Simon [SIMON86], recounted the success of these two 

methodologies and argued why they should coevolve. There are, 

however, not many reported developments which combine these two fields. 

A few papers that have tackled this integration of the two fields are 

Slagle and Hamburger [SLABAT85], Murphy and Stohr [MURST086] and the 

work due to Greenberg [GREENB85]. In this research three areas have 

been identified where the methods of artificial intelligence could be 

introduced 

methodology. 

to improve the mathematical programming modelling 

These are the scope of applying natural languages, 

introducing rule bases to modelling, and enhancing modelling support 

with a knowledge base. 
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Natural Languages 

Natural language communication to control a particular application IS 

gaining popularity and acceptance. This approach IS attractive for 

interactive communication and it IS suitable for use by non experts, 

although for a skilled modeller it is cumbersome. Gaines [GAISHA84] 

illustrates how an expert system imitating a doctor, ELIZA [WEIZEN66], 

mimics the patient in order to create an illusion of intelligence. There 

is, however, scope for applying natural languages in three areas within 

the modelling support system. Firstly, it IS possible to accept a 

definition of the model in a natural language from the problem owner and 

create a compact definition [SHEKRU73] so as to extract the exact 

information germane to the problem. The second use of natural 

languages is to create a textually annotated documentation of the model 

described In English rather than in mathematics. This allows the problem 

owner to have a simple understanding of the model and to be able to 

communicate it. Another important use of natural languages is in advice 

giving. The discourse models currently supplied by ANALYZE [GREENB83] 

provide narratives in the English language about the model structure and 

the possible causes for an unsatisfactory termination in the course of 

optimisa tion. 

Rule Base 

The concept of using rule bases in particular problems can be applied in 

the context of CAMPS whereby data presentation, model generation, and 

b by I'ntroducing rule bases, model solution analysis can e overseen 

These rule bases could include data validation. This could be used to 

specify a range of values for which a specific data item is defined, Elnd 

it could also be used to both check and map data items to consisten t 
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units. A second rule base could be used to verify that the indices of 

coefficients in linear relationships correspond to those f th . o e summahon 

indices and constraints. In the generation stage, a rule base could 

investigate that the model contains an objective function and constraints. 

It could also examine network structures to check that inputs and 

outputs balance. 

Knowledge Base 

A knowledge base can be introduced to support the modeller's task in 

the following way. An expert modeller when faced with the task of 

modelling a new problem, consults a series of well known case studies of 

similar situations and draws upon such 'knowledge'. Thus it is natural 

to compile a collection of well known and established LP lIP modelling 

structures. These could be constraints such as material balances, upper 

and lower bounds, generalised upper bounds and quality constraints. In 

addition to the components of known variable types and constraints, the 

knowledge base may also contain complete submodels such as the common 

form of networks, product mix and blending problems. These aspects of 

the knowledge base are stored as 'templates' [MURST086]. One such 

template could be a production process (ie the classical transportation 

problem). This model requires inputs to be shipped to a location where 

they become outputs. This automatically implies a shipping cost. 

Further, the structure of the model is such that constraints exist for 

each input and output. The activities can also be created by an 

inference mechanism so that for every combination of supply and demand 

Other rows, where flows are allowed, it leads to an individual activity. 

information that can be stored concerning this problem are that each 

activity intersects one supply row and one demand row, supply rows are 

less than or equal to constraints, demand rows are greater than or equal 
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to constraints and the non zero coefficients are all ones. All these 

'items of knowledge' can be obtal'ned f th k rom e nowledge base and can 

be used by the inference makl'ng mod 1 t 'd u e 0 gUl e the modeller In 

conceiving and constructing his model. 

7.3 Programmer's interface 

When creating an application, it IS often desired to customise the 

interface between the problem owner and the computer to meet the 

requirements specific to that situation. Further, sometimes it is easier to 

describe a model using a programming language rather than be tied to 

the modelling methodology of a system such as CAMPS. In this way it IS 

possible to introduce heuristic descriptions which are peculiar to the 

model. These ideas naturally lead to the extension of CAMPS whereby a 

programmer's interface is introduced. The programmer's interface 

comprises three new modules. One module of this interface is addressed 

towards creating data entry screenforms and is a new option under the 

UTILITIES subsystem. An analyst may use this module to create new 

screenforms and describe the relationships between these and the data 

tables which are defined within CAMPS. The screen support tool also 

incorporates a submodule with field definition and data validation. In 

this way the analyst can also introduce checks on data entered via these 

special purpose screenforms. The second interface module is an addition 

to the GENERATE subsystem. Within this module the analyst can directly 

program in the implementation language of CAMPS in order to create the 

linear/integer programming matrix. This offers greater flexibility in 

building models and many of the subroutines in the CAMPS library may 

be used which reduces the programming burden of the analyst. Similarly 

a programmer's interface is added to the REPORT & ANALYSIS subsystem, 

Through this module the analyst may specify any connections between 
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submodels and create driver programs for scenario analysis. 

modules are shown in the appropriate SUbsystems in display 7.1. 

The new 

The programmer's interface and the scope of its use is now illustrated. 

In a typical interactive modelling system, such as CAMPS, the end user 

requirements invariably dictate that the screenform design for data entry 

goes through a development and update phase. This plays a vital role 

in the tailoring of an otherwise mathematically sound computer 

implemented model whereby the non expert user can communicate with the 

model. For instance, in an application such as combined heat and power 

(optimisation) scheduling or portfolio selection it is easy to specify 

screenforms for data entry that are much more appropriate for the 

corresponding problem than the basic screenforms used in CAMPS to 

enter data. This task is achieved through the screen support tool 

within the programmer's interface. 

The experience with CAMPS has highlighted that some specialised 

applications are more efficiently constructed using a programming 

language. Bus crew scheduling [DARMIT85] and trim loss minimisation 

[DALUMI86], are examples of two such situations. An analysis of these 

two models shows that the constraint matrix for the underlying linear 

programs do not display any special structure. Thus it is necessary to 

devise special heuristics to generate the columns of the problem matrix. 

Therefore the analyst can create the generator program using the 

programmer's interface which has been added to the GENERATE 

SUbsystem. The link between the data entry and the model coefficients 

as defined by the analyst's program would be created through the 

screen support tool of the UTILITIES subsystem. 

t d is briefly reviewed PLANETS is a versatile model generator sys em an 
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in chapter three. It also has extensive facilities for scenario analysis. 

In order to create a comparable application, it is necessary to define the 

effects of changes In data values and the SIze and structure of 

su bmodels on the main model. The main thrust of such an application is 

built around running scenarios. This requires the use of all three 

programmer's interface modules. The module of the REPORT & ANALYSIS 

subsystem, is used to define the connections between the submodels in 

order to cope with 'What if' statements. The other two su bmodules are 

used as discussed before. 

7.4 Summary and conclusions 

This thesis is concerned with the analysis and design of methods leading 

to software techniques which can be used to support mathematical 

programming modelling. The sequence of logical steps which lead to the 

construction of an LP model may be stated as a progressive definition of 

dimensions, data tables, model variables, model constraints and the matrix 

coefficients which connect the last two entities. As a result of this 

research a computer based system is implemented which supports this 

approach to model description. 

The experimental LP modelling system, CAMPS, IS described in chapter 

four. A number of other modelling systems have command and syntax 

structure whereby the model description follows closely the mathematical 

statement of the LP. The motivation behind such an approach is to 

force the modeller to communicate his model in a form that serves also 

as full documentation. Whereas model documentation is essential, it is not 

t · th th d by whl'ch the modeller communicates his necessary to Ie e me 0 

model to the documentation requirements. In CAMPS 

communicated and updated using menus and screenforms. 
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is divorced from this step and is obtained under a separate option. The 

experience with the system has shown that the menus and screenforms 

capture a model In far fewer keystr k th b o es an y using a modelling 

language. Errors introduced due to mistyping are virtually removed: this 

is due to the progressive and automatic syntax checking and prompting 

mechanism of the system. 

Earlier generation systems which involve high level languages, matrix 

generators and modelling languages are introduced and discussed in 

chapter one and are also considered in chapter three. It is shown that 

set against this, the program generator method, developed in this 

research, leads to a superior man-machine communication facility to 

describe LP models. The data structure and data management tools and 

overall system specification comprise the maIn design activity for system 

implementation. This itself is a research area In its own right. In 

chapter five some of these implementation aspects are considered and 

presented. The integration of model generation with the ANALYZE 

subsystem IS also described. This integration of CAMPS with model and 

solution analysis capability extends the scope of annotated documentation. 

As a result it is possible to provide an advice giving discourse to the 

problem owner (modelled when more information regarding the model 

needs to be supplied: for instance if the model is not solvable. 

In chapter SIX a blueprint for integrating and automating a number of 

reformulation met.hods of mathematical programming is presented. The 

keyrole played by bound analysis in these models IS also illustrated, 

Currently most modelling support systems only allow the user to create 

the underlying LP model. It is shown that the basic modelling tool can 

be naturally extended to incorporate reformulation support. 
By 

, , ' , " I t' 't's possible to reduce mtroducing the faCIlIty of algebraIC manipu a IOn 1 1 
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the chore of manual reformulation of models. This aspect may prove to 

be particularly valuable for problem owners who are capable of 

describing their problems precisely but may not be experienced in 

reformulation techniques. computer support in these areas offers 

increased scope and applicability of mathematical programming. 
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APPENDIX 1 

A COMPARISON OF CAMPS WITH OTHER SYSTEMS 

Using the sample problem of chapter four, a comparison of CAMPS 

problem specification method with those of ULP and OMNI IS presented 

here. OMNI is a well established matrix generator system In which the 

linear programming matrix is specified a column at a time. ULP is a 

recently developed modelling language and incorporates many ideas also 

found in CAMPS. Thus the data entry which is separate from model 

definition follows the logical sequence whereby the sets are first defined 

and then the data tables. The model is then conceived in the equation 

form and generated using row statements. The problem formulations in 

ULP and OMNI have not been tested but were developed by reading user 

manuals, however the CAMPS formulation has been tested and the 

resulting model optimised. 

TANGLEWOOD - ULP 

*RANGES 

MERCHANTS:ONTARIO,QUEBEC; 

PLANTS:WASHINGTON,PHILADELPHIA,DENVER,BUFFALO; 

RETAILERS:NEW YORK,HOUSTON,SAN FRANCISCO,CHICAGO; 

*TABLES 

PLANT COSTS(PLANTS): 5 734; 

MIN PROD(PLANTS): 0 400 500 250; 

MAX PROD(PLANTS): 500 750 1000 250; 
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SELL PRCE(RETAILERS):20 15 20 18; 

MIN CUST DMND(RETAILERS): 500 100 500 500; 

MAX CUST DMND(RETAILERS): 2000 400 1500 1500; 

TRAN COST CUST(PLANTS,RETAILERS): 1.0 1.0 2.0 0.0 

3.0 6.0 7.0 3.0 

3.0 1.0 5.0 3.0 

8.0 2.0 1.0 4.0; 

TRAN COST DLR(MERCHANTS,PLANTS): 0.01 0.02 0.04 0.04 

0.04 0.03 0.02 0.02; 

SCR PRCE(MERCHANTS): 0.1 0.075; 

SCR DMND(MERCHANTS): 8 8 

UNKNOWN (X(MERCHANTS,PLANTS),Y(PLANTS,RETAILERS)) 

COMMENT (X(MERCHANTS,PLANTS)=AMOUNT TIMBER FROM MERCHANT TO 

PLANT) 

COMMENT (Y(PLANTS,RETAILERS)=AMOUNT CHAIRS FROM PLANT TO 

RETAILER) 

LPMAX (SELL PRCE(RETAILERS)*Y(PLANTS,RETAILERS) 

-PLANT COSTS(PLANTS)*Y(PLANTS,RETAILERS) 

-TRAN COST CUST(PLANTS,RETAILERS)*Y(PLANTS,RETAILERS) 

-TRAN COST DLR(MERCHANTS,PLANTS)*X(MERCHANTS,PLANTS) 

-SCR PRCE(MERCHANTS)*X(MERCHANTS,PLANTS») 

CONSTRAIN (PLANTS:X(MERCHANTS,PLANTS))SCR DMND(MERCHANTS» 

CONSTRAIN (RETAILERS:Y(PLANTS,RETAILERS)MIN PROD(PLANTS» 

CONSTRAIN (RETAILERS:Y(PLANTS,RETAILERS)'MAX PROD(PLANTS) 

CONSTRAIN (PLANTS:Y(PLANTS,RETAILERS)MIN CUST DMND(RETAILERS» 

CONSTRAIN (PLANTS:Y(PLANTS,RETAILERS)'MAX CDST DMND(RETAILERS») 
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CONSTRAIN (MERCHANTS,RETAILERS:Y(PLANTS,RETAILERS) 

-20*X(MERCHANTS,PLANTS)=O) 

TANGLEWOOD - OMNI 

DICTIONARY 

CLASS MER 

ONT 

QUE 

CLASS PLA 

WAS 

PHI 

DEN 

BUF 

CLASS RET 

NEW 

HOU 

SAN 

CHI 

Set of timber merchants: 

Ontario 

Quebec 

Set of plants: 

Washington 

Philadelphia 

Denver 

Buffalo 

Set of retailers: 

New York 

Houston 

San Francisco 

Chicago 
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DATA 

* 

TABLE A 

COSTS 

WAS 5 

PHI 7 

DEN 3 

BUF 4 

Plant costs for production of 

CHAIRS 

TABLE B Minimum production level at each plant 

MIN 

WAS 0 

PHI 400 

DEN 500 

BUF 250 

TABLE C 

MAX 

WAS 500 

PHI 750 

DEN 1000 

BUF 250 

TABLE D 

PRC 

NEW 20 

HOU 15 

SAN 20 

CHI 18 

Maximum production level at each plant 

Selling prices to retailers 
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TABLE E Minimum retailer demands 

MIN 

NEW 500 

HOU 100 

SAN 500 

CHI 500 

TABLE F Maximum retailer demands 

MAX 

NEW 2000 

HOU 400 

SAN 1500 

CHI 1500 

TABLE G Cost of transport from each plant to 

* each retailer 

NEW HOU SAN CHI 

WAS 1. 0 1.0 2.0 0.0 

PHI 3.0 6.0 7.0 3.0 

DEN 3.0 1.0 5.0 3.0 

BUF 8.0 2.0 1.0 4.0 

TABLE H Costs of transport from each 

* merchant to each plant 

WAS PHI DEN BUF 

ONT 0.01 0.02 0.04 0.04 

QUE 0.04 0.03 0.02 0.02 

page 129 



* 

* 

TABLE I 

PCE 

ONT 0.1 

QUE 0.075 

TABLE J 

MIN 

ONT 8 

QUE 8 

FORM ROW ID 

*Maximise operating profit 

OBJ=OBJ 

Costs of timber at each timber 

merchant 

Minimum demand at each timber 

merchant 

*Satisfy minimum production at plants limit 

PLN(PLA)=MIN 

*Satisfy maximum production at plants limit 

PLX(PLA)=MAX 

*Satisfy minimum order quantity 

MEN(PLA)=MIN 

*Satisfy minimum customer demand limit 

CUN(RET)=MIN 

*Satisfy maximum customer demand limit 

CUX(RET)=MAX 

*Satisfy balance of wood stock at each plant 

WOB(PLA)=FIX 

page 130 



~ [J) IT, rnrr~l!ill t~ 

COLUMNS 

*Shipping activity for wood from merchants 

FORM VECTOR X(MER)(PLA) 

*The amount of timber bought from merchant 

MEN(PLA)=1 

*The amount of wood consumed ln making chairs 

WOB(PLA)=-20 

*The cost of buying and shipping timber 

OBJ=-TABLE H ((PLA), (MER» - TABLE I (PCE,(MER» 

*Shipping activity for chairs from plants to retailers 

FORM VECTOR Y(PLA)(RET) 

*The amount of chairs produced at the plant 

PLN(PLA)=1 

*The amount of chairs produced at plant 

PLX(PLA)=1 

*The amount of chairs retailer buys 

CUN(RET)=1 

*The amount of chairs retailer buys 

CUX(RET)=1 

*Amount of chairs produced at plant 

WOB(PLA)=1 

*The effective profit of selling chairs 

RHS 

OBJ=TABLE D (PRC, (RET» - TABLE A (COSTS, (PLA» 

-TABLE G ((RET), (PLA» 

FORM VECTOR RHSIDE 

*Minimum plant production 

PLN(PLA)=TABLE B (MIN,(PLA» 

*Maximum plant production 

PLX(PLA)=TABLE C (MAX, (PLA» 
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*Minimum order amount 

MEN(PLA)=TABLE J (MIN,(MER)) 

*Minimum customer demand 

CUN(RET)=TABLE E (MIN, (RET)) 

*Maximim customer demand 

CUX(RET)=TABLE F (MAX,(RET)) 

*Note the right hand sides for the balance rows and 

*objective are zero 

ENDATA 
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