
AN INVESTIGATION OF COMPUTER BASED TOOLS FOR MATHEMATICAL

PROG~G MODELLING

A Thesis submitted for the degree of Doctor of Philosophy

by

Cormac Anthony Lucas

Department of Mathematics and Statistics, BruneI University,

December 1986

Dedicated to my dear parents

Alphonsus Anthony and Mary Antoinette Lucas

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Dr. Gautam Mitra, for the excellent

guidance he has given me over the past four years. His encouragement

and enthusiasm have greatly helped to maintain my motivation and

interest in mathematical programming.

The advisory staff of BruneI's computer unit, especially Mr R Pank, have

been very helpful in overcoming computer problems. I wish to thank

them for their expertise and willingness to help.

Mrs Mary Storey and Mrs Pam Denham typed part of this thesis, and Mrs

Barbara Yates drafted some of the diagrams, to all of these I am

extremely grateful.

Finally, I would like to express my appreciation to the Science and

Engineering Research Council for awarding me a grant to pursue a Ph.D.

course of advanced study and research at BruneI University.

CONTENTS

CHAPTER 1 INTRODUCTION

1.1 Historical development of linear programming and

mathematical programming systems

1.2 Historical development of computer assisted

LP modelling

1.3 Mathematical programming: the major issues

1.4 Mathematical progl';:\mming modelling: the major issues

1.5 Research focus and the structure of the thesis

CHAPTER 2 STRATEGY AND TACTICS OF LP MODELLING

2.1 Introduction

2.2 A logical analysis of the problem

2.3 Derivation of a mathematical statement: an example

2.4 LP user formulation of the problem

2.5 Further examples

CHAPTER 3 CURRENT APPROACHES TO COMPUTER ASSISTED

MATHEMATICAL PROGRAMMING MODELLING

3.1 Introduction

3.2 Introductory and teaching systems

3.3 Activity based modelling systems

3.4 Modelling systems employing rOW-WIse specification

3.5 Generic modelling tools

3.6 Artificial intelligence aids

1

1

3

4

6

10

12

12

12

15

20

23

34

34

36

37

38

41

44

CHAPTER 4 COMPUTER ASSISTED MATHEMATICAL PROGRAMMING

(MODELLING) SYSTEM: CAMPS

4.1 Introduction

4.2 Salient and novel features of CAMPS

4.3 An annotated example

4.4 Support for separable and integer programming

reformulation

CHAPTER 5 DESIGN AND IMPLEMENTATION ISSUES

5.1 Introduction

5.2 System overview

5.3 Menu and screenform control

5.4 Strategy and tools for handling data tables

5.5 Sreen management tools

5.6 Analysis of model and creation of matrix generator

program

5.7 Integration with ANALYZE and model documentation

CHAPTER 6 AN APPROACH TO COMPUTER ASSISTED REFORMULATION

OF INTEGER, SEPARABLE AND FUZZY PROGRAMMING

PROBLEMS

6.1 Introduction

6.2 Statement of the general LP problem and notation

6.3 Analysis of bounds for linear forms

6.4 Representation of logical restrictions

6.5 Strategies for separating variables in nonlinear

programming problems

49

49

49

54

62

65

65

66

69

70

74

75

77

78

78

79

80

83

88

6.6 Reformulation of fuzzy decision problems as max-mIn LP

problems 96

6.7 Automatic approach to reformulation: a summary of Issues 99

CHAPTER 7 DISCUSSIONS, NEW DIRECTIONS AND CONCLUSIONS 101

7.1 Introduction 101

7.2 Artificial intelligence and mathematical programming

modelling 103

7.3 Programmer's interface 106

7.4 Summary and conclusions 109

REFERENCES 112

APPENDIX 1 A COMPARISON OF CAMPS WITH OTHER SYSTEMS 125

CHAPTER 1

INTRODUCTION

1.1 Historical development of linear programming and mathematical

programming systems

Mathematical programming is concerned with the efficient use or allocation

of limited resources to meet a desired objective. When all the

relationships

and popular

between the variables are linear

method of optimisation is linear

then the most extensive

programming (LP). The

earliest and also most established method to solve LP problems was

developed in 1947 by G.B. Dantzig [DANTZI51]. This method, well known as

the simplex, has been extended since then to solve large problems. In

practice LP problems tend to be large and sparse and it is well known

that the number of non zero elements is much smaller than the number

of elements in the constraint matrix. Thus a vast amount of computer

storage is required if a medium to large matrix is stored explicitly, and

substantial computer effort is needed to update the full matrix at each

iteration. This led to a revision of the computational aspects of the

simplex algorithm in 1953. Dantzig [DANTZI53] and Orchard-Hays

[ORCHAR56] created a more accurate and faster algorithm, which took full

advantage of the mathematical properties of sparse simultaneous linear

equations.

In addition to solving LP problems there are many algorithms for the

solution of certain problem structures and known forms of nonlinearities.

The very early mathematical programming systems used to represent

upper bounds on variables as separate equations. Subsequently these

were handled implicitly. Further, when sets of variables have common

page 1

upper bounds such that the constraint takes the following form

2 Xjk = bk, k = 1,2, ... t
j

then the right hand sides, bk, are general upper bounds (GUB) on the

appropriate sets of variables. These are also handled implicitly by the

mathematical programming system [BEALE70] and hence reduce the

problem size.

If in the statement of the LP problem it is desired that some or all of

the variables are constrained to take integer values (MIP), then this can

be solved by a Branch and Bound algorithm. This method employs the

approach of proposing mutually exclussive subproblems of new LPs and

solves these by the dual simplex algorithm [MITRA70]. Recently

considerable development has taken place to improve the performance of

integer optimisers [BEALE85], [HOFPAD85] and [WOLSEY85].

For certain classes of nonlinearities, the function may be approximated by

the representation

A1+ + Ak = 1

a1 A1+ +akAk = Xt

b 1A1+ +bkAk = f(Xt)

where f(xt) is the (variable separable) nonlinear function and (bi, ai) are

the coordinates of the k interpolation points. If any of the two adjacent

A'S are constrained to be non negative then the set of variables is

called an ordered set (of variables) of type two. If the A'S are

constrained to be 0-1 then the corresponding set of variables is called

an ordered set (of variables) of type one. Most mathematical

programming systems have an extended Branch and Bound procedure

where these two problem types can be solved more efficiently [TOMLIN70],

page 2

[SCICON78] than by conventional separable programming [BEALE68].

Other well established features include the solution of nonlinear

programming problems by the method of approximation and recurrent call

to the LP optimiser. This is a means whereby recursive solutions are

obtained to a finer linear approximation in the neighbourhood of the first

LP optimium solution. The process is continued until convergence or

until a satisfactory solution is obtained. Another major feature of

current mathematical programming systems is the use of the BASIC

procedure. Large problems are broken down into smaller subproblems.

These subproblems are solved and their solutions used to obtain a good

basic starting point to the overall problem. This approach leads to a

considerable saving In time In arriving at an optimal solution. A full

review of LP optimisers can be found in [TAMIZ86], while that of special

features is described in [ADBELM72].

1.2 Historical development of computer assisted LP modelling

While progress In the computational solution methods has led to the

development of powerful and robust optimisers for large scale LP models

and some restricted IP models, the ability to describe and communicate

models to the optimiser has not progressed as rapidly. Since the product

form of the inverse and the revised simplex method require that the data

is processed In a column-wise fashion, the early (simplex) optimisers

expected the problem matrix to be presented in this way. Due to sparsity

in all realistic models, it is convenient to communicate the non zero

values only. These can naturally be supplied by indicating the row and

column positions and the element value for each non zero entry. For ease

of interpreting the variables and restrictions, instead of using row and

column numbers, unique names are introduced to indicate rows and

page 3

columns. This led to IBM's LP90 [BEALE68] input format which has now

been superseded by the current defacto standard MPSX/370 [IBM76].

Creating these fixed format column order files is a tedious task. From

around 1958 special purpose computer programs were created with a view

to automating this step. In the early days, computer programs were

written in either FORTRAN or assembler to generate the problem matrix.

Then similar programs were written to read the results and create the

desired reports. These programs were model specific and inflexible. Hence

any new application required that a new program be written. In order to

create and investigate applications more efficiently, more general purpose

programs were developed. The next generation of tools were called matrix

generators and report writers. These special purpose languages were

mostly interpretive and were data driven generalised programs providing

support for both the modeller and the optimiser. Thus the modeller was

still involved in understanding certain conventions employed in the input

specification of the optimiser. This approach gave greater flexibility in

model formulation and solution analysis, but required careful and detailed

matrix and report specification, using special languages, which possessed

only a rudimentary syntax.

1.3 Mathematical programming: the major Issues

Two major computational tasks need to be undertaken to investigate an

application which involves mathematical programming. To start with there

is the requirement of constructing the mathematical formulation and then

specifying the problem data to represent the application. Subsequently,

it is necessary to solve the proposed (optimisation) problem by suitable

optimisation software. To develop software for these two tasks calls for

two separate and distinct skills. Considerable research is directed to

page 4

each of these two fields in their own right.

overview of the current state of the art.

LP & IP

MODELLING SYSTEM

Display 1.1 gives an

ROBUST OPTIMISER MODELLING SUPPORT

NEW STANDARD ESTABLISHED

SIMPLEX TECHNOLOGY METHODS LP MODELS

ALGORITHMS HYBRID

WHICH ALGORITHM

EXPLOIT STRUCTURE *

**

SEPARABLE

MODELS

*
Display 1.1

INTEGER

MODELS

*

INTELLIGENT

FRONT ENDS

**

Over the last thirty years, there has been a steady development in

optimisation methods to solve progressively larger problems efficiently

and robustly. This progress is due, as much to the development of

sparse matrix manipulation, as to improvements In computer hardware

[DARMIT77], [GREENB78], [GIMUSW84], [TAMIZ86]. Techniques such as

triangular factors of the basis matrix are used in preference to the

product form of the inverse. A major contribution from the field of

page 5

computer science came from Kalan [KALAN71] with the introduction of the

unique element pool storage strategy. This scheme takes advantage of

the fact that the number of distinct non zeros is considerably less than

the total number of non zero elements, thus leading to the concept of

'super sparsity'. In recent times some non simplex type methods,

Karmarkar [KARMAR84], have proven to be faster in optimisation for some

classes of large structured problems.

Although much effort continues to be invested in creating faster

optimisers capable of solving larger problems, the biggest burden of

mathematical programming is the amount of human time and resource it

takes to describe, translate and investigate a model.

1.4 Mathematical programming modelling: the major issues

A modeller can possibly follow four alternative approaches to obtain a

computer representation of his LP model. Each of these alternatives calls

for varying skills and provides different scope in creating applications.

The general skills and specific requirements about model structure and

MPSX matrix formats are now described for these approaches.

(i) High level language approach

In this approach, programs are written in a high level language.

These programs create the problem matrix in MPSX format.

Examples: FORTRAN, PL1.

General skills: Modelling, computer programming.

Model structure: Problem has to be conceived as a matrix comprising

a sequence of columns.

MPSX Format: Knowledge essential.

Model documentation: This is created 'off line' as a pen and paper

page 6

exercise. It is usually hard to keep the documentation uptodate

with model evolution.

(ii) Matrix Generator, Report Writer approach

In this approach a program is written In a traditional MGRW

language to create the problem matrix.

Examples: OMNI [HAVERL76], DATAFORM [KETRON75].

General skills: Modelling, some computer programming.

Model structure: Problem has to be conceived as a matrix comprising

a sequence of columns.

MPSX Format: Only naming convention needs to be considered.

Model documentation: It is possible to relate the mathematical model

directly to the MG program. Still model documentation in a

mathematical form is undertaken as a pen and paper exercise.

(iii) Modelling language approach

In this approach programs are written in a modelling language to

create the problem.

Examples: GAMS [BISMEE82], ULP [WITMCC85], MGG/RGG [SCICON75].

General skills: Modelling, only superficial knowledge of computer

programming.

Model structure: The models can be presented entirely In an

equational form.

MPSX Format: It IS inessential to know this format.

Model documentation: The source program reflects the mathematical

model fairly closely. Thus model documentation is no longer 'off

line' and stays uptodate with model evolution.

page 7

(iv) Interactive program generator approach

In this approach an executable program IS created after an

interactive session with the modeller. This generated program

creates the problem matrix.

Examples: CAMPS [LUCMIT85], SIMP [CARMON86].

General skills: Modelling.

Model structure: The models can be presented entirely in an

equational form.

MPSX Format: It IS inessential to know this format.

Model documentation: Documentation is automatic and is supplied as a

special feature including full textual annotation. Model documentation

is not 'off line' and stays uptodate with model evolution.

In the present research, four major Issues have been identified which

are important in any approach towards computer supported modelling.

These may be itemised as (a) data (base) storage and manipulation, (b)

high level (natural) language documentation, (c) analysis of model and

solution, and (d) computer support for reformulation.

(a) Data (base) storage and manipulation

It is now well accepted by analysts who are planning to create

applications in business or industry, that the models proposed by

them must communicate with existing management information systems.

Palmer et al [PALMER84] and Mitra and Darby-Dowman [MITDAR85],

show why it is important to have such an integrated approach.

page 8

(b) High level (natural) language documentation

A mathematical documentation of the model plays an important role in

communication between two analysts but a limited role as a means of

communication between a problem owner and a modeller. It is not

difficult to interpret the mathematical documentation at a higher

level as an English language description of the mathematical problem

[EDS86]. Documentation at this level is of great value as a means

of communication between the problem owner and the analyst.

(c) Analysis of model and solution

During the development phase of a model, one or more pertinent

details are often omitted. While the analyst can infer that some

data has been supplied incorrectly, or that some further detail

concerning the model is required, it is very difficult to obtain

advice on how to analyse the model. Similarly, when a solution is

obtained for a large model it is often necessary to carry out a

summary analysis of a few relevant decision variables or to

investigate different scenarios. These aspects have been extensively

investigated by O'Neill [ONEILL78] and Greenberg [GREENB83].

(d) Computer support for reformulation

In many applications reformulation methods have to be introduced to

represent nonlinearities or logical restrictions as linear/integer

programs. Usually this is achieved by following established but

complex procedures. These techniques are, in short, 'tricks of the

trade' that the modeller has to learn in order to develop his skills

and expertise. It is observed that a natural way of progress in

page 9

this area is to support the modelling of such reformulation

techniques with computer software facilities.

1.5 Research focus and the structure of the thesis

The purpose of this research has been to increase the speed as well as

the productivity of the LP lIP modelling process by addressing some of

the Issues mentioned above. A computer based LP modelling system

called CAMPS (this acronym IS derived from Computer Assisted

Mathematical Programming System) is implemented as part of the research.

The system encourages the analyst to follow a certain modelling strategy

which is set out in chapter two and involves a progressive definition of

the problem. This forces the modeller to structure his applications in a

systematic way while the system participates In trapping model

inconsistencies and promoting logically correct definitions.

In common with many of the modelling systems, there are special features

which help the modeller with problem formulation. Many of these

features can also be fou,>'1d in other current generation modelling systems

which are reviewed in chapter three.

The complete system (CAMPS) and some of its major features are

described in chapter four. A small example IS introduced to illustrate a

typical session with the system.

Mathematical documentation of the model can be generated by the system.

This documentation can be enhanced by introducing textual annotations at

the model input stage. The full documentation can be presented as four

components: the conceptual model, data tables, MPSX names and model

solution. By integrating the system with a solution analyser (due to

page 10

Greenberg [GREENB83]) the use of annotated documentation is extended

further. The solution analyser manipulates these textual annotations, held

by CAMPS, and provides a discourse with the modeller. This discourse

may take the form of advice giving which is very useful when

investigating a model. The major aspects of integrating the two systems

are discussed in chapter five.

In chapter six the techniques of reformulating nonlinear problems, fuzzy

linear programming problems and logical restrictions are presented. As a

result of investigating a number of nonlinear problems the system has

been extended with special constructs. A blueprint for a system

implementation to support reformulation of fuzzy linear programming

problems and logical restrictions is also discussed in chapter six.

A summary of the major research results and conclusions is presented in

chapter seven. Two main areas of further development are also

considered which are seen to be natural ways of enhancing the power of

present day LP modelling systems. These are a programmer's interface

which helps in creating specialist models rapidly, and artificial

intelligence techniques which use a rule base, a knowledge base and a

natural language dialogue (as appropriate) to create applications.

page 11

CHAPTER 2

STRATEGY AND TACTICS OF LP MODELLING

2.1 Introduction

Formulating linear and integer programming models for industrial

(optimisation) problems requires experience and specialist skill. The

method of analysing a physical problem IS discussed in section 2.2. The

logical sequence of steps which lead to a mathematical statement of the

model are set out in section 2.3; these concepts are illustrated by an

example. Having obtained a mathematical statement it IS necessary to

prepare the data for suitable processing by a computer based LP system.

This aspect is discussed in section 2.4. Further examples are considered

in section 2.5 to explain these principles of modelling. The purpose of

analysing the components which are used to construct LP models and of

considering a range of models is to highlight the major features which

need to be introduced into a general modelling support system.

2.2 A logical analysis of the problem

A modeller, when he comes across an industrial (optimisation) problem,

does not necessarily find it well described in summary form. It is more

than likely he is presented with a description of the problem containing

details which may be irrelevant for modelling purposes; further it may

also contain a number of gaps. Hence the first task of the modeller is to

consider only the modelling requirements and extract the quantative

relationships which are germane to that task. Having identified these

items he produces a compact statement of the problem which contains

only these pertinent details. The examples which are presented in section

page 12

3 of this chapter, and the planning model considered later are first

described in this summary form.

Model Entities

After identifying the key components of the model his next task is to

discover the underlying structure in the model. This amounts to finding

a way of categorising the modelling information. The following is an

illustrative list of typical categories (entities) that are found in practical

problems.

- number of (decentralised) geographical locations
- number of planning periods
- number of different products
- number of grades of people
- number of age groups

This categorisation helps him to decide to what details the quantitative

information relating to the problems should be req uested and

incorporated in the model. It also indicates to what details the answers

are to be provided.

Model Variables

Once the categories are defined the model (decision) variables or the

unknowns are broadly identified. An analysis of the decision variables

may also suggest new categories at this stage. The point to note here is

that the model variables are mostly detailed by categories. For the

purpose of illustration a number of decision variables taken from

different contexts are considered below.

- Production Planning: The quantity Xpm of a certain product p
manufactured on a machine m.

page 13

- Distribution Planning: The quantity Xprn of a product p that is
shipped from a source r to an outlet n.

- Inve,ntory Scheduling: The quantity Xpt of a product p that is kept as
closIng stock at the end of a period t.

- Project Analysis: Whether one should invest in project p at the
beginning of time period t, or not invest in this project Y pt = 1 or 0
may be represented by this zero-one variable Y pt.

Model Constraints

The constraints connect the decision variables and express the physical

restrictions of the' problem. By and large these are also detailed by

categories. A few examples of these are set out below.

- Material Balance Equation

XOt + XPt - XCt - Dt , t - 1,2, ..• T.

In this equation XOt represents the opening inventory, XCt represents

the closing inventory, and XPt the quantity to be produced. They are all

decision variables pertaining to the time period t. Dt represents the

customer demand for the product and is an input information.

- Capacity Restrictions

p

2 Xpm ' tpm ~ Am ' m
p=l

1,2, ... M.

Here p = 1,2, ••. P indicates the range of products which are manufactured

on machines m = 1,2, •.. M. The rate of production is indicated by t pm,

that is, the time taken to produce one unit of product p on machine m.

Am indicates the number of hours that machine m is available. Xpm is

the production variable and the constraints express the capacity of

production for the machine m as limited by the number of hours of its

availability.

page 14

- Blending Requirement

,
or

or
Q p=l, ... P
pr r=l, ... R

)

In this case c = 1,2, ••• C is the number of components used to be blended

into p = 1,2, ..• P products. The components for instance could be different

crudes and the prod ucts could be different types of gasoline. The index

range r = 1, •.. R indicates the quality requirements. Typical requirements

are maximum vapour pressure, minimum volatility index etc. Thus bcr , Qpr

are input information pertaining to linear blending rates and quality

requirements respectively. Xcp is the decision variable indicating

fractions (by volume or weight) of the components c that are blended to

derive the product p. Thus

Thus

c
2 Xcp

C=l

1 , p 1 , ••. P .

in the discussion of the model variables and model constraints

the subscripts p,m,n,c,r,t etc which have been introduced indicate entities

taken from the context of the model. Identifying these entities amounts to

setting out the basic structure of the model.

2.3 Derivation of a mathematical statement: an example

It follows from the preliminary analysis presented in the last section that

In order to derive a mathematical statement of the model one has to

formally define the matrix elements of the constraint relations. In order

to do this it is necessary to define the subscripts and their ranges.

Note that the matrix elements themselves may be derived out of tabular

input information relating to the problem. These matrix elements may be

page 15

considered to be model descriptors and are often referred to as

"technology coefficients". The model (decision) variables in contrast are

output information. Their values are obtained by solving the model. The

sequence of steps leading to the derivation of a model thus naturally

emerges and is set out below.

Step 1 Define the subscripts (entities) and their ranges (sets

and dimensions).

Step 2 Define model variables, model constraints and the matrix

coefficients in terms of these subscripts (step 1).

Step 3 Specify the linear relationships in a row-wise fashion

which connect the items defined in step 2.

In its simplest and most standard form an LP model can be stated in the

following way:

Su bscripts, Ranges:

i - 1, •.. m, j - 1, ... n.

Variables, constraints, coefficients:

x x' J - 1, •.• n r r' , i - 1, ... m
J

, 1

C c' j - 1, ... n b b· , i - 1, •.. m ,
J 1

A a" , i - 1, ... m , j - 1, ... n.
IJ

page 16

Linear objective function and constraints:

subject to ri:

n

Max 2 CjXj ,
j=l

1 , ... m,

Xj ~ 0, j = I, ... n.

However, in real life applications the corresponding models possess more

detailed structure than this standard form. As a result of such structure

the A-matrix turns out to be highly sparse and b,c can also be sparse.

In practice, therefore, formulating a model requires specifying only the

non zero coefficients of the A-matrix as used in stating the linear

constraint relations.

In deriving the mathematical statement of an LP model and especially the

linear constraint relations it is often convenient to prepare a material

flow diagram for the problem. This enables the modeller to visualise and

set out the balance rela~ions, the capacity restrictions etc. The principles

of LP modelling discussed so far are illustrated in the derivation of a

production cum distribution model considered here and further models

described in section 2.5.

A Production cum Distribution Problem: An Example.

A clothing manufacturer has two factories, Southall (FTl) and Leeds

(FT2). In the Southall factory he can manufacture Shirts (PI) and Denim

Jeans (P3), whilst in Leeds he can manufacture Shirts (PI), Skirts (P2)

and Denim Jeans (P3). The manufacturer ships these products directly to

three maIn dealers in quantities of thousands. The dealers are Young

Londoner (DLl), Beaute Paris (DL2) and Wiener Mode Anzug (DL3). The

page 17

manufacturer knows his production costs, the transport costs and the

monthly production capacity of his factories. The dealers send their

requirements for the next month on the first day of each month. All the

numerical data relating to the problem are set out in table 2.1. The line

diagram 2.1 illustrates the possible relationships between factories,

products and dealers.

DEALERS REQUIREMENTS AND PRODUCTION

CAPACITY IN UNITS OF THOUSANDS

Product Dealer Requirements Factory Capacity

DLI DL2 DL3 FTI FT2

PI 50 10 30 35 54

P2 15 15 20 - 60

P3 20 60 30 85 45

PRODUCTION AND TRANSPORT COST IN

POUND STERLING PER ITEM

Factory Production costs Transport costs

PI P2 P3 DL1 DL2 DL3

FTI 1.5 - 5.6 0.6 1.2 1.4

FT2 1.8 7.0 6.2 0.7 1.3 1.5

Table 2.1

page 18

FT2

DL1

Diagram 2.1

The manufacturer at the beginning of each month, needs to formulate and

solve a simple linear programming problem. A mathematical statement of

this problem is set out below.

- Subscripts and Dimensions.

i = 1,2 denotes the factories
j = 1,2,3 denotes the products
k = 1,2,3 denotes the dealers.

- Model Variables

X"k lJ

- Model

p ..
lJ

the quantity of product j manufactured in factory i and
shipped to dealer k. However, for i = 1 (Southall) the
product j = 2 skirts and it's shipment are not defined.

That is i = 1 , j = 1,3

} k = 1,2,3

i = 2, j = 1,2,3

Coefficients (Descriptors)

the cost of producing one unit of product j at factory 1,

the cost of transporting one unit of each product from
factory i to dealer k,
the derived cost of production as well as transport for
given i,j,k which may be expressed as

page 19

aij the production capacity of the factory i for the product j,

r jk the requirement of the dealer k for the product j.

- Linear Constraint Relations: A Mathematical Statement.

Minimise

2

Cost = 2
i=l

:3

2 [Cilk Xilk + Ci:3k Xi:3k]
k=l

Subject to the constraints:

capacity of production

:3

2 Xijk
k=l

1 = 1, J =
i = 2, j =

1, 3 }
1,2,3

and satisfying dealer requirements

2

2 Xijk = rjk j = 1,3
i=l k = 1,2,3

x 22k = r2k

and Xijk ~ O.

2.4 LP user formulation of the model

The mathematical statement of the model set out in the last section is

concise and convenient for communication and discussion by

mathematicians and analysts. However, for the purpose of processing the

model by a computer based LP system and deriving numerical solutions,

this form is abstract and unsuitable.

Model information is usually presented to an industrial LP system in a

compact form and it is appropriate to highlight a few features of LP

input at this point.

page 20

(i) All applicable LP models display a high degree of sparsity of

the constraint matrix.

(ii) Only the non zero coefficients of the matrix are specified as

input.

(iii) Instead of a row index and a column index, one uses a row

name and a column name to specify a non zero coefficient of

the matrix.

(iv) Feature (iii) requires that a suitable name is given for the

rows and columns of the matrix.

IBM's MPSX input format is industry's de facto standard for model

specification: this is described in [IBM76] and also in the CAMPS manual

[LUCMIT85].

To obtain the LP user formulation the following model variable and

constraint names are first defined.

- Model Variable name

FTIPIDLI The amount of product PI produced in the factory FTI and
shipped to the dealer DL 1 etc.

- Model Constraint Names

COSTROW
FTIPICAP

REQPIDLI

etc.

The objective row
The capacity constraint corresponding to the product PI
produced in factory FTI,

The requirement of the product PI by the dealer DLI

The sparse but complete constraint matrix in terms of these row and

column names is set out in tableau 2.1. The corresponding MPSX format

input data file in line images is set out in display 2.1.

page 21

:~:?~~7;;P')
- _RMAT LINE IMAGE INPUT >.- -NAME EXPROD

ROWS
N COSTROW
L FTIPICAP
L FTIP3CAP
L FT2PICAP
L FT2P2CAP
L FT2P3CAP
E REQPIDL1
E REQP2DLI . E REQP3DL1
E REQPIDL2
E REQP2DL2
E REQP3DL2
E REQP1DL3
E REQP2DL3
E REQP3DL3

COLUMNS
FTlPIDLl FTIPICAP 1.000000 REQPIDLI 1.000000
FTIPIDLI COSTROW 2.100000
FTIPIDL2 FTIPICAP 1.000000 REQPIDL2 1.000000
FTIPIDL2 COSTROW 2.700000
FTIPIDL3 FTIPICAP 1. 000000 REQPIDL3 1.000000
FTlPIDL3 COSTROW 2.900000
FTlP3DLl FTlP3CAP 1.000000 REQP3DLI 1.000000
FTlP3DL1 COSTROW 6.200000
FTIP3DL2 FTIP3CAP 1.000000 REQP3DL2 1.000000
FTlP3DL2 COSTROW 6.800000
FTlP3DL3 FTIP3CAP 1.000000 REQP3DL3 1.000000
FTlP3DL3 COSTROW 7.000000
FT2PIDLI FT2PICAP 1. 000000 REQPIDLI 1.000000
FT2PIDLI COSTROW 2.500000
FT2P1DL2 FT2pICAP 1.000000 REQPIDL2 1.000000
FT2pIDL2 COSTROW 3.100000
FT2PIDL3 FT2PICAP 1.000000 REQPIDL3 1.000000
FT2P1DL3 COSTROW 3.300000
FT2P2DLI FT2P2CAP 1. 000000 REQP2DLI 1.000000
FT2p2DLl COSTROW 7.700000
FT2P2DL2 FT2P2CAP 1.000000 REQP2DL2 1.000000
FT2P2DL2 COSTROW 8.300000
FT2P2DL3 FT2P2CAP 1. 000000 REQP2DL3 1.000000
FT2P2DL3 COSTROW 8.500000
FT2P3DLI FT2P3CAP 1.000000 REQP3DLI 1.000000
FT2p3DLl COSTROW 6.900000
FT2P3DL2 FT2P3CAP 1.000000 REQP3DL2 1.000000
FT2P3DL2 COSTROW 7.500000
FT2P3DL3 FT2p3CAP 1.000000 REQP3DL3 1.000000
FT2P3DL3 COSTROW 7.700000

RHS
RHSVALUE FTIPICAP 36.000000 FTIP3CAP 85.000000
RHSVALUE FT2PICAP 54.000000 FT2P2CAP 60.000000
RHSVALUE FT2p3CAP 45.000000 REQPIDLI 50.000000
RHSVALUE REQPIDL2 10.000000 REQPIDL3 30.000000
RHSVALUE REQP2DLI 15.000000 REQP2DL2 15.000000
RHSVALUE REQP2DL3 20.000000 REQP3DLI 20.000000
RHSVALUE REQP3DL2 60.000000 REQP3DL3 30.000000

ENDATA

Display 2.1

F F F F F F F F F F F F F F F R R
T T T T T T T T T T T T T T T E H
1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 L S

PRODUCTION P P P P P P P P P P P P P P P A V
1 1 1 3 3 3 1 1 1 2 2 2 3 3 3 T A

VARIABLES D D D D D D D D D D D D D D D I L
L L L L L L L L L L L L L L L 0 U
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 N E

COST
COSTROW 2.1 2.7 2.9 6.2 6.8 7.0 2.5 3.1 3.3 7.7 8.3 8.5 6.9 7.5 7.7 FREE

FACTCAP
FTIPICAP 1 1 1 LE 35
FTlP3CAP 1 1 1 LE 85
FT2PICAP 1 1 1 LE 54
FT2p2CAP 1 1 1 LE 60
FT2p3CAP 1 1 1 LE 45

DEALEREQ
REQPIDLl 1 1 EQ 50
REQPIDL2 1 1 EQ 10
REQPIDL3 1 1 EQ 30
REQP2DL1 1 EQ 15
REQP2DL2 1 EQ 15
REQP2DL3 1 EQ 20
REQP3DLI 1 1 EQ 20
REQP3DL2 1 1 EO 60
REOP3DL3 1 1 EO 30

Tableau 2.1

page 22

2.5 Further examples

Blending of Gasoline Products

An oil company in an off shore island maintains a reserve of five basic

components~ Butane, Light Naptha, Heavy Naptha, Catalytic Naptha and

Catalytic Reformate which are blended and replenished on a weekly basis

to meet the demands for two grades of gasoline called GASl and GAS2.

The availability, the linear blending coefficients and the costs for these

components are tabulated in table 2.2. The quality requirements and the

volume demands for the two gasoline products are set out in table 2.3.

The oil company wishes to derive an LP model that must be solved on a

weekly basis to find the optimal blending of the components.

Blending Components

Component Availability Research Vapour
thousands of octane pressure

barrels number

Butane 3.5 120.0 60.0
Light
naptha 2.0 84.5 18.0
Heavy

naptha 4.0 73.0 4.0
Catalytic

naptha 10.5 96.0 6.4
Catalytic

reformate 8.0 99.0 2.5

Table 2.2

page 23

Volatility Code Cost, cents
index name per

gallon

105 BU 5.2

30 LN 6.4

12 HN 8.3

15 CN 10.2

3 CR 11.0

Gasoline Requirements

Needed volume, Minimum research Maximum Minimum Code
thousands of octane number vapour volatility name

barrels pressure index

10.0 95.0 11.0 18 GASI

6.0 98.0 12.0 20 GAS2

Table 2.3

Diagram 2.2 shows how the two products connect the five components .

.. -

GAS 1

Diagram 2.2

- Subscripts and Dimensions

i - 1, ••• 5
j - 1,2,3

k - 1,2

denotes the components,
denotes the three quality indices: octane number, vapour
pressure, volatility index,
denotes the two gasoline products.

- Model Variables

The amount of component i that is blended into the
product k.

- Model Coefficients

a' 1
b·· IJ

The amount of component i that is available for blending
the linear blending coefficient for component i and
quality index j,
the cost of component i,
the blending quality requirement for the product k
against quality index j,
the demand for the gasoline product k.

page 24

- Linear Constraint Relations: A Mathematical Statement.

5 2

Minimise 2 2 Ci Xik
i=1 k=1

subject to

2

Availability restriction 2 Xik , ai , i = 1 ... 5 ,

k=1
Demand balance

5

2 Xik = dk , k = 1,2 ,
i=1

and
Blending requirements

5

2 Xik bi1) dk rk1
i=1

5

2 Xik bi2 , dk rk2
i=1

5

2 Xik bi3) dk rk3
i=1
and

LP User Formulation

- Model Variable Name

j = 1 Octane specification

k=1,2, J = 2 Vapour pressure

j = 3 Volatility index

i = 1 ... 5, k =1,2.

BUGASl, LNGAS1. ••
CRGAS2

The amount of Butane used to produce
GAS 1... until amount of Catalytic
Reformate used to produce GAS2.

- Model Constraint Name

AVAILBU ,... AVAILCR The restrictions on availability for the
five components.

DEMGASl, DEMGAS2 The demand balance equations for the two
products

BLOCTGS1. •. BLVLTGS2 The six constraints for blending
requirements.

The matrix of the constraint relations is now set out in tableau 2.2.

page 25

B L H C C B L H C C T R
U N N N R U N N N R Y H
G G G G G G G G G G P S
A A A A A A A A A A E V
S S S S S S S S S S A
1 1 1 1 1 2 2 2 2 2 L

COST 5.2 6.4 8.3 10.2 11.0 5.2 6.4 8.3 10.2 11.0 FR

AVAILABILITY

AVAILBU 1 1 LE 3.5

AVAILLN 1 1 LE 2.0

AVAILHN 1 1 LE 4.0

AVAILCN 1 1 LE 10.5

AVAILCR 1 1 LE 8.0

DEMANDS

DEMGAS1 1 1 1 1 1 EQ 10.0

DEMGAS2 1 1 1 1 1 EQ 6.0

BLENDING

REQUIREMENTS

BLOCTGS1 120 84.5 73 96 99 GE 950.0

BLVAPGS1 60 18 4 6.4 2.5 LE 110.0

BLVLTGS1 105 30 12 15 3.0 GE 180.0

BLOCTGS2 120 84.5 73 96 99 GE 588.0

BLVAPGS2 60 18 4 6.4 2.5 LE 72.0

BLVLTGS2 105 30 12 15 3.0 GE 120.0

Tableau 2.2

page 26

A Multi Time Period Multi Mode Production Problem

A company manufactures three products PI, P2, and P3 (NUTS, BOLTS,

and WASHERS) and has at its disposal three machines M1, M2, and M3.

The company can undertake normal and overtime production and needs to

plan for two time periods, say WINTER and SUMMER. Any product left

after the second time period has very little resale value. The necessary

information concerning the operation of the company is set out in tables

2.4, 2.5, 2.6.

It is necessary to find an LP formulation that maximises the profit of the

company's operation over the two periods.

- Subscripts and Dimensions

Let the four indices i, j, k, I be defined as

1 - 1,2 the index for the two time periods, Summer and Winter, -
J - 1,2 the index for the two modes of production, Normal, -

Overtime,
k - 1,2,3 the index for the three product types, PI, P2, P3, -
I - 1,2,3 the index for the three machines, Ml, M2, M3. -

- Model Variables

the quantity that is produced in the category 1, j, k, I,
the quantity of product k stored in period 1,

the quantity of product k sold in period i.

- Model Coefficients

The following information relating to the problem are available in the
table TABH.

number of hours required to produce one unit of the
product type k on the machine 1, in the time period i,
usipg Normal or Overtime production J,
machine availability in hours for the machine I in period
i and mode j.

In the table TABD

Pik selling price

demand, J
for the product type k In
period i,

time

storage cost for the prod uct type k In one time period,
the corresponding storage capacity,

page 27

the final resale value at the end.

In the table TABC,

Cijkl the production cost In the category I, j, k, 1.

- Linear Constraint Relation

The profit function of the problem may be expressed as

2 2 3 3

Profit = 2 2 2 2 (Pik - Cijkl)Xijkl
i=l j=l k=l 1=1

3 3

- 2 Sk Y1k + 2 (rk - P2k)Y2k
k=l k=l

In an optimal plan Profit must be maximised subject to the constraints

(i) machine availability

3

2 tijkl·Xijkl , aijl ' for all i,j,lj
k=l

(ii) stock balance in the two periods,

2 3 2 2 X1jkl - Y1k - Zlk = 0 for period 1, and all k
j=l 1=1

and

2 3 2 2 X2jkl +Y1k - Y2k - Z2k = 0 for period 2, and all k
j=l 1=1

(iii) minimum demand to be satisfied

Zik) dik , for all i , and k

(iv) upper bound on storage,

Y1k , hk for all k

(v) non negativity of the variables,

Yik) 0 for all i,k, and Xijkl) 0, for all i,j,k,l.

LP User Formulation

- Model Variable Name

Production:
TINPIMl. •• T20P3M3 The production variables x1111 .. ·x 2233'

Storage:
TIPISTR ... The storage variables y 11 etc.,

Amount meeting demand:

TIPID .•• The quantities that are allocated to satisfy
demand z 1 1 etc.,

page 28

TABLE OF MACHINE HOURS (TABH)

SUM MER PER I 0 D (HI) WIN T E R PER I 0 D (H2)

'd
\l)

Normal (N) (0) Total hours Normal (N) (0) Total hours IJO.
CD Working hours Overtime Available (AV) Working hours Overtime Available (A'
N
co

PI P2 P3 PI P2 P3 Normal Over PI P2 P3 PI P2 P3 Normal Ove:
W-Hrs time W-Hrs tim4

MACHINE 1 (Ml) 4 5 6 3 4 5 100 80 5 6 7 4 5 5 110 90

MACHINE 2 (M2) 7 6 6 6 5 5 100 90 8 7 7 7 6 6 110 100

MACHINE 3 (M3) 3 - - 2 - - 40 30 4 - - 3 - - 50 40

PI = 'NUTS P2 = BOLTS P3 = WASHERS

TABLE 2.4

"0
al

DO,
~

w
o

MACHINE 1

MACHINE 2

MACHINE 3

SUM MER

Normal
Working hours

PI P2 P3

2 3 4

4 3 2

1 - -
-_.-

PI = NUTS

TABLE OF PRODUCTION COSTS CTABC)

PER I 0 D WIN T E R PER I 0 D

Normal
Overtime Working hours Overtime

PI P2 P3 PI P2 P3 PI P2 P3

3 4 5 3 4 5 4 5 6

5 4 3 5 4 3 6 5 4

2 - - 2 - - 3 - -

P2 = BOLTS P3 = WASHERS

TABLE 2.5

'0
g)
~
CD

Y) ,....
SALE

MINIMUM

STORAGE

DATA

PRICE

DEMAND

CAPACITY

COST

RESALE VALUE

TABLE OF ADDITIONAL DATA (TABD)

SUM MER PER I 0 D WIN T E R PER I 0 D

NUTS BOLTS WASHERS NUTS BOLTS WASHERS

10 10 9 11 11 10

25 30 30 30 25 25

20 20

1 1 1

2 1 1

TABLE 2.6

- Model Constraint Name

PROFIT
TIMIAN

TIPIST

Objective row.
Availability of machine 1, time period 1 and
normal production,
Stock balance equation time period 1 product 1.

The other three constraints are satisfied by upper bound and lower

bound restrictions. The right hand side column is called RHS and the

bound is called LIM and the full model is set out in tableau 2.3.

page 32

'0
g,

DO.
(!)

w
w

-

VARIABLES~ T T T T T T T T T T T T T T
1 1 III 1 1 1 1 1 1 1 1 1
N N N N N N N 0 0 0 0 0 0 0
P P P P P P P P P P P P P P

CONSTRAINTS 1 1 1 2 2 3 3 1 1 1 2 2 3 3
J, M M M M M M M M M M M M M M

123 1 2 1 2 123 1 2 1 2

PROFIT 869 7 7 5 7 7 5 8 664 6
TIMIAN 4 5 6
TIM2AN 7 G 6
TIM3AN 3
TIMIAO 3 4 5
TIM2AO 6 5 5
TIM3AO 2
T2MIAN
T2M2AN
T2M3AN
T2MIAO
T2M2AO
T2M3AO
TIPlST III III
TIP2ST 1 1 1 1
TIP3ST 1 1 1 1
T2PlST
T2P2ST
T2P3ST

BOUND

LIM

UP

LO

T T T
III
P P P
123
S S S
T T T
R R R

-1-1-1

-1
-1

-1
1

1
1

20 20

-~

Tableau 2.3

T R
2 2 2 2 2 2 2 2 222 2 2 2 222 1 1 1 222 H
N N N N N N N 0 0 0 0 0 0 0 P P P P P P P P P S
P P P P P P P P P P P P P P 1 2 3 123 123
1 1 1 2 2 3 3 1 1 122 3 3 S S S D D D D D D
M M M M M M M M M M M M M M T T T
12312 1 2 123 1 2 1 2 R R R

7 5 8 6 6 4 6 6 4 7 5 5 3 5-9-9-9 N i
LE l~ LE 10
LE 4
LE 80
LE 90
LE 30

5 6 7 LE 110
8 7 7 LE 110

4 LE 50 I

4 5 5 90
I

LE ,

7 6 6 LE 100 I

3 LE 50 I

I -1 EQ
I -1 EQ

-1 EQ
III III -1 -1 EQ

1 1 1 1 -1 -1 EQ
1 1 1 1 -1 -1 EQ

2530303025 25

CHAPTER 3

CURRENT APPROACHES TO COMPUTER ASSISTED MATHEMATICAL

PROGRAMMING

3.1 Introduction

Linear and integer programming have a diverse range of applications,

and since the late nineteen sixties a number of alternate computer based

systems have been created to formulate models and to analyse their

solutions. In as much as analysts still like to write high level application

programs, the method of generating LP matrices using high level

languages such as FORTRAN, PL1, etc., remains a popular technique. The

scope of these systems is limited and these systems are not considered

any further.

Fourer [FOURER83] in his widely quoted reVIew paper has attempted to

classify modelling systems as matrix generators and general purpose

modelling languages. A careful analysis of these systems, their

implementation and run time characteristics shows that the boundary

between these two approaches IS rather blurred. For all practical

purposes in both types of systems the matrix layout and specification

provides the common theme. Thus all the systems provide suitable

language constructs to specify the main body of the constraint matrix,

right hand side values, bounds or variables and the relationships for

each constraint. The table manipulation, data manipulation and conditional

transfer of control and other language features are available in varying

degrees, depending upon when and how these systems were implemented.

page 34

By and large systems which are general enough to create a broad range

of linear programming applications are categorised into five main classes.

The first class of such sytems are called teaching or introductory

systems. Their purpose is to introduce undergraduate or postgraduate

students or new industry recruits to the methods of LP formulation.

These are discussed in section 3.2. A number of earlier systems which

are mentioned in chapter one, have survived the test of time and are

still in use in many key industries such as the chemical and energy

industries. These systems tend to model the problem using a

column-wise specification and are called activity based methods. This

column-wise specification of the model sometimes makes it easier to

conceive the model, and hence some new systems also employ this

strategy for model description. Many of these earlier systems are

described by Fourer [FOURER83] as matrix generators and these systems

are reviewed in section 3.3. In more recent times, there have been

developments in modelling languages. Many of these offer the ability to

describe a model in the equation form. From a mathematical point of

view, and for many modellers, this seems a more natural way of

describing the model. Systems which support this type of model creation

employing row-wise generators are described in section 3.4. Substantial

system development effort has gone into creating LP based corporate

modelling systems. Two well known and perhaps most successful

examples of these, PLANETS [EDS86] as used by General Motors, and

PLATOFORM [PALMER84] as used by Exxon, are discussed in section 3.5.

Some recent developments in block structured systems and generic

modelling tools are also included in this section. Finally, modelling

systems which are influenced by artificial intelligence ideas are briefly

described in section 3.6.

page 35

3.2 Introductory and teaching systems

These systems are aimed at introducing linear programming and

encouraging newcomers to learn the art of modelling decision problems.

In most cases the users are expected to possess a limited knowledge of

the computer and how to program it. These teaching systems are simple

to use, and help the beginner to describe, and investigate, elementary

problems such as food mix, transhipment and so on. The software is

usually supplemented by good quality courseware such as text books with

illustrative examples. In addition to teaching modelling, these are also

used to teach advanced algorithmic methods such as parametric simplex

steps and how to interpret results. Whereas the systems used are

excellent In presenting and editting small problems, they cannot be

extended to larger and more realistic industrial problems which have, in

general, a hundred or more rows and columns.

The one common theme throughout these systems is that they are easy to

use, although they do adopt alternative ways of presenting the model.

For instance in the LINDO [SCHRAG81A], [SCHRAG81B] system the model is

presented one equation at a time, as if it is directly transcribed from

the presentation seen in the text book. MICROSOLVE [JENSEN86], uses

menus and screenforms in order to present the model. What's Best

[HOLDAY86], is a typical spreadsheet based method which uses LOTUS123

[LOTUS84], to create the linear programming interface. Thus a person

who knows how to complete the spreadsheet cells does not need to learn

anything new to represent the LP matrix other than the linear equation

form.

The optimisers which go with these systems often solve much larger

models than can be realistically specified using these approaches. In

page 36

such cases the user is advised to write special programs to generate the

matrix. This calls for programming skill and limits the scope of applying

these systems to larger models.

3.3 Activity based modelling systems

A column-wise description of the linear programming model is naturally

suited for input to the revised simplex algorithm. Thus the early

systems were developed along these lines. These include DATAMAT

[MIT75], GAMMA3 [SPERRY78], MaGen [HAVERL77], OMNI [HAVERL76], IBM

MGRW [IBM77] and APEX-II MRG [CONTR074]. Over the years these

systems have been improved by incorporating industrial experience.

Their implementations have been invariably extended to deal with large

models and most of the obvious bugs have been removed. These systems

are hence reliable and very attractive from that point of view to serious

industrial users.

For these systems, clausal forms to specify columns are difficult to

comprehend leading to poor model documentation. Thus it is not easy to

communicate the model in the source form. These two points can easily

be seen in the example set out in Appendix one, showing input

specification of a model using the OMNI system. These column-wise

systems also lead to unnecessary amounts of code; for instance if there

are three sets of variables In a model, where a particular row is

undefined, then t~is requires the 'if clause' to be repeated three times

to define this exception. For multi time period problems the modeller is

required to understand a further set of constructs to represent the

matrix.

page 37

3.4 Modelling systems employing row-wise specification

Modelling systems which employ equation forms or row-wIse specification

of the LP problem are distinguished in the following way. These systems

were designed later than the column-wise systems described in the last

section. Thus they profit from the later developments in special purpose

application languages and incorporate many powerful language constructs.

Some of these systems were developed as compilers with associated

executors and a run time support library, and have the advantage of

efficiency In execution with alternative data sets. Thus the same

executable program representing a model can be run with different sets

of table data for different model SIzes.

Another important design consideration for these systems is that a

modeller finds it easier to conceive an LP problem in the equation form.

The designers of these systems also claimed that the source programs

(which specify the model In the equation form) serve as an adequate

documentation which may be used to communicate between analysts. A

number of these systems such as UIMP [MITELL82] [UNICOM77], DATAFORM

[KETRON75] and MGRW [IBM77] additionally incorporate column-wise

generation capability. This is because some models, or often parts of

models, are best presented in an activity basis. For example it is always

clear to present the right hand side vector in a column form. The

various points discussed so far are best illustrated by the full example

set out in Appendix one and also by considering a few language features

of the systems which are discussed in this section.

The logical operator '$' introduced by GAMS [BISMEE82] represents 'such

that' and is used to manipulate tables. the power of this operator is

illustrated by the following typical statement which sums over the set D

page 38

YR(R) - SUM (D $ RD(R,D), YD(R,D));

all values YD(R,D) when RD(R,D) is defined. Consider a manufacturing

problem where the sets P, I and M denote processess, plants and

machines respectively and let the parameter K(M,I) denote the number of

units of available capacity of machine M In plant 1. Also let the

parameter B(M,P) describe the required number of units of capacity of

machine M per unit level of process P. Consider the table PPOS(P,I) with

parameters having zero one values and defined by the statement

PPOSS(P,I) - SUM (M $ (K(M,I)EQ 0), B(M,P)NE O)EQ 0

In this statement the expression B(M,P)NE 0 takes the value one if

B(M,P) > 0, otherwise it takes the value zero (ie the machine M IS

dependant upon process P). This is then summed over all machines such

that K(M,I) = 0, that is, all machines not at plant 1. If the resulting

sum equals zero then PPOSS (P,I) takes the value one and thus the

process IS independant of unavailable machines and is taken into

consideration. Otherwise the process IS dependant upon at least one

unavailable machine and is not considered. The purpose of creating such

a table is that in one row generator statement all the corresponding

constraints may be specified/controlled by the zero one entries in this

table.

LMC [MEFEAV77] is another row-wise modelling system which also has

interactive capability. In LMC as in LINDO [SCHRAG81A] it is possible to

specify input in an equation (textual) form. Additionally it IS also

possible to create large scale matrices, matrix pictures or display an

equation. It uses an English-like discourse language to manipulate data

page 39

tables, but this is not a practical proposition to deal with any reasonably

sized data table.

Sets of entities and constructs to manipulate these sets play an

important role in all these systems. GAMS [BISMEE82] and LPMODEL

[KARIR080] allow three dimensional sets but in practice they are combined

and mapped into one extended set by short hand notation. An entity in

a set can be referenced either by a numbered element or as an

alphanumeric entity name. GAMS goes one step further, whereby sets

can be extended at the time of table data entry if this proves to be

convenient.

ULP [WITMCC85] contains an extensive collection of reserved words which

can be profitably used to state compactly a range of constraints. This

is illustrated below with the language constructs of LPMODEL and ULP.

Consider, for instance, the material balance relations taken over three

time periods as specified in LPMODEL.

MATERIALS.PERIOD 1 ?~INITIAL STOCK.MATERIALS - -

MATERIALS.PERIOD_2?=MATERIALS.PERIOD_1? -

SUM[PRODUCTS:COMPOSITION.MATERIALS.PRODUCTS x

PRODUCTS.PERIOD_l ?]

MATERIALS.PERIO:C 3?=MATERIALS.PERIOD_2? -

SUM[PRODUCTS:COMPOSITION .MATERIALS.PRODUCTS x

PRODUCTS.PERIOD_2?]

The corresponding formulation in ULP, using the reserved word NEXT

reduces to

page 40

CONSTRAIN(MATERIALS,NEXT(PERIODS):

S (MATERIALS ,NEXT (PERIODS)) - S (MATERIALS ,PERIODS)

+ COMPOSITION(MATERIALS,PRODUCTS) * X(PRODUCTS,PERIODS) =0)

BOUND (S(MATERIAL,'PERIOD 1') , INITIAL STOCK(MATERIALS))

The reserved word (NEXT in this example) reduces the source statement

and also enhances model clarity. Complex constraints can be represented

using words such as NETWORK, as these take advantage of well known

model structures.

Other features of modelling systems include looping and transfer of

control. More recently, MAGIC [DAYWIL86] has introduced FORTRAN like

constructs which also include FOR and END loop statements. Currently

there are many new row-wise systems under development such as

EXPRESS LP [DASH86] and [FOURER86] whose modelling concepts follow

the ideas set out in this section.

More recently there has been a move towards producing smart interactive

editors for existing modelling systems. These usually generate a

modelling language. PLATOFORM [PALMER84] and PAM [WELCH86] are two

good examples of systems generating statements in an existing modelling

system, DATAFORM. A discussion of PLATOFORM, which is a corporate

system, is postponed to the next section. PAM, however, is a more

general tool and adds to the productivity of creating applications using

DATAFORM.

3.5 Generic modelling tools

Many large corporations are the most committed users of management

science based planning and decision making tools. Energy industries

page 41

x

such as oil and gas companies and large multi national corporations such

as General Motors and General Electric are typical examples of these.

The planning problems of these organisations generally fall into broad

classes of long range planning (5 year time horizon) and operational

planning on a weekly or monthly time frame. Many of these

organisations have developed their own generic (mathematical

programming) model generation tools to deal with a range of business

problems. These tools are not only used for model generation but also

to carry out scenario analysis and management reports or financial

requirements, resource utilisation and so on.

Geoffrion in his structured modelling [GEOFF85] and [GEOFF86] has tried J .

to develop the framework of a unified system which is designed to aid:

(i) management communication, (ii)mathematical representation and

(iii)computer execution. Within this framework management science models

such as mathematical programming, decision trees, graph problems, markov

chains, and queuing problems can be all represented. The main aim of

his work is to improve the present state whereby modelling is a low

productivity process with poor managerial acceptance. He reports three

implementations of his work which are LEXICON, lIS, and UCLA. However,

the use of any of these in a real corporate environment is not reported

by him.

PLATOFORM, as reported by Palmer et aI, is perhaps the earliest example

of the use of mathematical programming modelling as a model generation

tool for corporate planning models. Within EXXON, PLATOFORM is used

extensively to generate a range of planning problems (long range,

strategic and operational). Often su bmodels germane to a particular

country's operation are extracted and solved to investigate a specific

decision problem. The PLATOFORM system actually generates DATAFORM

page 42

modelling statements which create these models and their corresponding

reports. The system, as currently implemented, uses a friendly menu

driven front end as well as making use of corporate information held

within the DATAFORM database.

The management SCIence group of General Motors have developed PLANETS

[EDS86], which is an acronym for Production Location Analysis NETwork

System. PLANETS was originally implemented in 1974 and has evolved

into a flexible framework for scenario description and analysis. The

system IS designed by individuals, with no prIor computer or

mathematical programming background, to evaluate complex business

problems. It IS a tool for generating mathematical models, facilitated by

the conversational definition

structured manner, using

of a variety of business problems in

standard business terminology with

a

a

comprehensive network of computer programs. This mathematical

representation of the problem is then automatically solved by using

commercially available optimisation tools. PLANETS interprets the

resulting mathematical programming output and then provides both

financial and operational results In an easily understandable business

format. A range of business problems such as marketing, manufacturing,

capital costs, purchasing and distribution can be modelled separately and

com bined as appropriate. The

investigation of multiple objectives.

system also allows specification and

Since actual problem formulation and

data input are facilitated by PLANETS through the use of standard

'building block' terminology, PLANETS has been referred to as an

open-ended scenario and model building 'language' for business planners.

It is worth reporting the statistics of different planning models which

have been studied using PLANETS. The histogram of these figures is set

out below.

page 43

BREAKDOWN OF PLANETS STUDIES BY TYPE

TOOLING ALLOCATION

PRODUCT MIX

SOURCING

MAKE VERSUS BUY

SITE SELECTION

OTHER

8%

8%

30%

27%

12%

15%

Although PLANETS is a generic tool by which business planning problems

can be specified and investigated, it is not sufficiently general whereby

other decision problems such as crew scheduling, paper trim loss, etc

can be modelled using the system. This contrasts with modelling systems

such as DATAFORM and UIMP which are more of an analyst's tool as

opposed to a corporate planner's tool and allow such problems to be

investigated.

3.6 Artificial intelligence aids

Artificial intelligence and prototyping aids are used increasingly to create

complex application models. Currently many researchers are working

towards the creation of 'intelligent mathematical programming systems'.

Reasoning mechanisms may be introduced into these to enable them to

learn to build well formulated models from incomplete specifications with a

discourse that is 'natural' for the analyst. This goal can be partitioned

into four su bgoals that reflect the central strategy of building an

intelligent system. These four sub goals are set out below: (l)

development of the structural specification of a model, (2) development of

tools for assessing model validity and quality, (3) incorporating learning

page 44

mechanisms, (4) development of tools for the interactive analysis of the

model solution. It is also necessary to undertake analysis and

integration of submodels, automatic generation of queries to an external

database and infeasibility and unboundedness analysis for general LP

models.

The use of artificial intelligence in mathematical programming modelling

systems dates back to a system created by Shen and Krulee [SHEKRU73]

in 1973. Simple English statements are supplied by the user, and from

these statements a mathematical model is created. The system processes

the sentences and produces property lists for each set (set names are

recognised via the dictionary -lexicon- look up). Then, by analysing the

property lists and basic sentences, variables of the model can be

identified resulting in a variable requirement table. Finally the problem

is fully constructed in a compact linear algebraic form. The following

example illustrates the process. Consider the following dialogue with the

system.

PI COSTS MY COMPANY $1.5 AT Fl AND $1.8 AT F2.*

P2 COSTS $7.0 AT SOUTHALL F2.*

THE COSTS OF PRODUCING P3 IS $5.6 AT Fl AND $6.2 AT F2.*

THE TRANSPORT COSTS FROM Fl TO Dl, D2, D3 ARE $0.6, $1.2, AND $1.4

RESPECTIVELY.*

THE TRANSPORT COSTS FOR Dl, D2, D3 ARE $0.7, $1.3, AND $1.5 FROM

F2.*

THE DEALER Dl REQUIRES 50 UNITS OF PI, 15 UNITS OF P2, AND 20

UNITS OF P3.*

WHILE DEALER D2 REQUIRES 10 UNITS OF PI, 15 UNITS OF P2, AND 60

UNITS OF p3.*

THE CAPACITIES OF Fl ARE 36 UNITS FOR PI, 0 UNITS FOR P2, AND 85

page 45

UNITS FOR P3.*

THE AVAILABLE CAPACITIES AT F2 FOR PI, P2, P3, ARE 54 UNITS, 60

UNITS, AND 40 UNITS. *

DEALER D3 REQUIRES 30 UNITS OF PI, 20 UNITS OF P2, AND 30 UNITS

OF P3.*

DETERMINE THE QUANTITIES OF PI, P2, P3 TO BE PRODUCED AT FI AND

F2.*

The resulting model is stated in the algebraic form as set out below.

THE PROBLEM IN FORMULA FORM

MINIMISE + 2.2 VI + 2.7 V2 + 2.9 V3 + 2.5 V4 + 3.1 V5 +3.3 V6 +

7.7 V7 + 8.3 V8 + 8.5 V9 + 6.2 VIO + 6.8 VII + 7.0 VI2

+ 6.9 VI3 + 7.5 VI4 + 7.7 VI5

SUBJECT TO 1 VI + 1 V2 + 1 V3 < = 36

1 VIO + 1 VII + 1 VI2 < = 85

1 V4 + 1 V5 + 1 V6 < - 54 -

1 V7 + 1 V8 + 1 V9 < = 60

1 VI3 + 1 VI4 + 1 VI5 < - 40 -

1 VI + 1 V4 = 50

1 V7 = 15

1 VIO + 1 VI3 = 20

1 V2 + 1 V5 = 10

1 VB - 15 -

1 VII + 1 V14 = 60

1 V3 + 1 V6 = 30

1 V9 - 20 -

1 VI2 + 1 V15 - 30 -

V5,V6, V7, V8,V9,VIO,Vl1,VI2, VI3,VI4, VI5 > = 0
VI, V2,V3, V4,

page 46

LPFORM [MURST085] is a currently proposed system purporting to employ

artificial intelligence techniques. It uses an LP generator [STOHR85],

IBM's MPSX system for solving linear and integer mathematical programs

[IBM76], IBM's SQL database management system (DBMS) [ASTCHA75] and

ANALYZE [GREENB83], a solution analyser. LPFORM is probably the first

mathematical programming system implemented in PROLOG. The knowledge

in LPFORM consists of a number of rules relevant to the formulation of

LP problems. This knowledge is not specific to any given application.

Specific application knowledge and data values for the coefficients of the

LP tableau are stored in the DBMS. The system is at an experimental

stage and as yet no user interface has been designed. An illustration of

a transportation example provides an insight into some of the rules

contained in the knowledge base. Consider

Minimise 2 2 c' . IJ x' . IJ
i J

Subject to

2 x' . IJ ~ s' 1

J

2 x' . IJ ~ d· J
i

then the following gives the internal representation of the data schema

and problem definition after interaction with the user.

Data schema

a. TRANS-COSTS (Vendor, Warehouse, C, $ per unit)

b. SUPPLY (Vendor, S, units)

c. DEMAND (Warehouse, D, units)

page 47

Problem Definition Statements

a. CREATE-BLOCKS (Trans-problem, [Vendors, Warehouses])

b. LINK-BLOCKS (ALL, [Vendors, Warehouses], X)

c. CREATE-BLOCKS (Vendors, Vendor = [Vl..V3])

d. CREATE-BLOCKS (Warehouses, Warehouses = [Wl,W2])

e. MINIMISE (Trans-costs)

Firstly, a, b, c define the tables cij' si, dj, and the units field is used

to check that the data for the problem is expressed in compatible units.

In the problem definition, the first statement, a, defines the problem

name and major blocks, Vendors, Warehouses. The next statement defines

the variable xij. Statements c and d result In constraint definitions.

Since statement c is by vendors, the system can infer that the right

hand side value IS SUPPLY and similarly the demand constraint is created.

page 48

CHAPTER 4

COMPUTER ASSISTED MATHEMATICAL PROGRAMMING (MODELLING) SYSTEM:

CAMPS

4.1 Introduction

In this chapter a new mathematical programming modelling system called

CAMPS is described. It is an interactive system and comprises a set of

integrated 'program generation' and data management tools which are

controlled by a series of menus and screenforms. The design objectives

are broad: thus the system encourages non expert LP users to come to

grips with the task of conceptualising and describing LP models whereas

the expert LP user IS also supported in his requirements to construct

large and complex models. The contents of this chapter are organised as

follows. Section 2 describes the salient and novel features of CAMPS

and an example of model construction using CAMPS IS illustrated In

Section 3. The method of automated reformulation of separable and 0-1

integer programming is considered In Section 4. For illustrative

purposes the problem of section 3 is reformulated using ULP [WITMCC85]

and OMNI [HA VERL 76] in the appendix and contrasts the CAMPS approach

with these well known systems.

4.2 Salient and novel features of CAMPS

\ Computer Assisted Mathematical Programming \Modellin~ System (CAMPS) is

an interactive system designed to aid model formulation, matrix generation

and model management. The main menu set out in display 4.1 and the

information flow diagram display 4.2 together provide an outline of the

structure and the major functions of the system. A full user

page 49

specification of the system IS given In [LUCMIT85].

. CAM P S .

USER: DATE:
MODEL: TIME:

SEC:

.
I.INPUT
2.GENERATE
3.0PTIMISE
4.REPORT
5.UTILITIES
6.LOGOUT

TYPE NUMBER« »:

Display 4.1.

The INPUT (and AMEND) option is used to construct and/or update all

aspects of a model created entirely within CAMPS. Display 4.3

illustrates the options under this subsystem and reflects the modelling

. CAM P S .

USER: DATE:
MODEL: TIME:

SEC:

.

I.NAMES
2.DIMENSIONS
3.TABLES
4.VARIABLES
5.CONSTRAINTS
6.RETURN

TYPE NUMBER« »:

Display 4.3.

methodolgy set out in section 3 of chapter 2.

The subscripts of the model correspond to 'basic entities' which are

elements of 'sets' and in actual models these 'sets' could represent

geographical regions, materials or time periods. This progressive approach

page 50

~
g,
00.
(J)

c:.n

t:;
rJ'J
~
g)
"<
~ .
N

,
(INPUT) (GENERATE)

IA GM

NAMES INTERNAL MOD
DIMENSIONS EXTERNAL MOD
TABLES SUMMARY
VARIABLES
CONSTRAINTS

MODEL DATA

I I

OPTIMISE) l REPORT
RO AR

PREPARE VARIABLES
RUN ROWS
SUM~1ARY

HIERARCHICAL RELATIONSHIP OF MAIN MENU OPTIONS

AND
INFORMATION FLOW THROUGH THE FIVE MASTER

FILES AS EFFECTED BY THE SUBSYSTEMS

MODEL SOLUTION
ANALYZE AND

REPORT

) (UTI LITI ES)
UT

LIST
RENAME
DELETE

I PRINT
DOCUMENTJ
DEBUG
---- ----

MODEL
DOCUMENTATION

to model definition allows avoidance of a procedural language by

replacing it with an option driven program generator approach. The

syntax of commands are captured in their context and thus mistakes

introduced by erroneous keystrokes are kept to a minimum. This is

because predefined indices, sets and names are prompted at the

appropriate fields of the screenforms. For instance, at the time of

defining variables and tables, currently defined sets are displayed. At

the time of entering the linear forms, the operators (+,-,*) are prompted

and a linear term is forced to comply with the dimensions of the

summation indices and the row indices. This is discussed further in the

example given in section 3.

The first four options of the main menu are designed to facilitate

construction and investigation of a model, whereas the fifth, the

UTILITIES option, provides model management support. In CAMPS the

usual model management functions such as DELETE, RENAME, LIST and

PRINT are augmented by a further option called DOCUMENT. Tabular

displays of the input data, variable(MPSX) and row(MPSX) names, and

tabulated results are essential aspects of documentation as supplied by

all known systems. In addition to these a mathematical formulation of

the model is also provided by CAMPS. This mathematical statement can be

enhanced by textual annotations specific for a given application. These

explanatory texts are introduced at the input stage.

The REPORT su bSYRtem allows information relating to the rows, columns

and reduced costs to be examined. The analysis module within REPORT

is now designed to interface with the interactive model and solution

analysis system ANALYZE by Greenberg [GREENB83]. For each 'basic

entity' a textual annotation may be supplied and a unique two character

stub is extracted out of this text. This stub is used to create the

page 52

'syntax file' of ANAL YZE. Thus the facilities of the ANALYZE which

provide tools for identifying structural infeasibility and the discourse

model to support explanatory dialogue can be reached in this way

[GRLUMI86]. The OPTIMISE option uses the FORTLP system [TAMIYA85].

For all practical purposes this is treated as a black box, although a few

algorithm control parameters can be set under this option.

LP/IP models are created in MPSX format under the GENERATE subsystem.

Within the GENERATE subsystem externally created models are also

accepted but REPORT and DOCUMENT options cannot be used in this case.

Whereas CAMPS itself is designed for high level interaction in the

modeller's form, at the GENERATE subsytem level a programmer's interface

for model generation is also available. Thus it is possible to create

MPSX models using data tables and model descriptions not held within

CAMPS. In this approach the system held subroutine library for model

generation is used. This approach is somewhat similar to the ideas put

forward by Forrest [FORRES86]. CAMPS has also been used in this way

to create set covering models in MPSX format [ELDMIT86]. These models

were supplied in a non standard format.

In order to deal with well established structured models or restrictive

modelling situations, a compendium of reserved words has been

introduced into the TABLES and ROWS section of the system. A reserved

table, RESTRICT, with appropriate dimensions is created by default as an

internal table of 0-1 entries. It is used subsequently to deal with

undefined entries in the primary tables. NETWORK, CONVEX and REFER

are reserved row names. NETWORK is used to create a compact networ k

model with balanced flows. CONVEX and REFER are used to achieve

separable programming (set type one and set type two) model

reformulation within the system [LUMIYA86].

page 53

4.3 An annotated example

In this section a problem taken from the book by Jensen and Barnes

[JENBAR80] is considered. This example is specially chosen as it displays

the typical structure of an integrated production and distribution model.

The example IS also adopted by Geoffrion [GEOFF85] and Bradley

[BRACLE85], [CLEMEN84] to illustrate their systems.

The Tanglewood Manufacturing Co. has four plants located around the

country. The fabrication and assembly cost per chair and the minimum

and maximum monthly production for each plant are shown in table 4.1.

PLANT Cost Max Production Min Production

Washington
Philadelphia
Denver
Buffalo

$

5.00
7.00
3.00
4.00

500
750

1000
250

o
400
500
250

FABRICATION COST AND PRODUCTION RESTRICTIONS BY PLANT

Table 4.1

The company obtains the twenty pounds of wood required to make each

chair from two suppliers who have agreed to supply any amount ordered.

In return, the company guarantees the purchase of at least 8 tons of

wood per month from each supplier. The cost of wood is $0.10/lb from

supplier 1 and $O.075/lb from supplier 2. The shipping cost in $/lb from

each supplier to each plant is shown in table 4.2.

$/lb of wood

ONTARIO
QUEBEC

Washington

0.01
0.04

Philadelphia

0.02
0.03

Denver

0.04
0.02

SHIPPING COST FROM SOURCE TO PLANT

Table 4.2

Buffalo

0.04
0.02

The chairs are sold in New York, Houston, San Francisco and Chicago.

page 54

Transportation costs in $/chair between the cities and plants are listed

in table 4.3. Finally table 4.4 shows the minimum demand that must be

satisfied, the maXImum demand that can be satisfied and the selling price

for chairs in each city.

$/Chair New York Houston San Francisco Chicago

Washington 1.00 1.00 2.00 0.00
Philadelphia 3.00 6.00 7.00 3.00
Denver 3.00 1.00 5.00 3.00
Buffalo 8.00 2.00 1.00 4.00

TRANSPORTATION COST BETWEEN PLANTS AND CITIES

Table 4.3

City Selling Price Max Min
Per Chair Demand Demand

New York $20.00 2000 500
Houston 15.00 400 100
San Francisco 20.00 1500 500
Chicago 18.00 1500 500

SELLING PRICE AND DEMAND RESTRICTIONS BY CITY

Table 4.4

It is desired to find the optimal production and shipment so as to

maximise profit. A mathematical statement of this problem is set out

below.

-Su bscripts and Dimensions

i=1,2
j=1,2,3,4
k=1,2,3,4

denotes the timber merchants,
denotes the wood plants,
denotes the chair retailers.

-Model Coefficients (Descriptors)

m" IJ

s' 1
d· 1

the cost of producing one chair at wood plant j,
the minimum production of chairs at wood plant j,
the maximum production of chairs at wood plant j,
the selling price of chairs at chair retailer k,
the minimum amount of chairs sent to chair retailer k,
the maximum amount of chairs sent to chair retailer k,
the shipment cost between wood plant j and chair
retailer k,
the shipment cost between timber merchant i and wood
plant j,
the cost of wood at timber merchant i,
the minimum order amount at timber merchant 1.

page 55

-Model Variables

z· . IJ The quantity of wood bought from timber merchant i
and processed in wood plant j,

Yjk the number of chairs bought by chair retailer k from
wood plant j.

-Linear Constraint Relations: A Mathematical Statement

Maximise

Profit =
4 4

2 2 (PkYjk - CjYjk - tjkYjk)
j=lk=1

2 4

- 2 2 (mijzij + SiZij)
i=1j=1

Subject to the constraints:

minimum demand of the timber merchant i,

4

2
j=1

Z·· 'I. d· 1J Q 1

production at plant j within allowable range,

4

2 Yjk :> n' J
k=1

4

2 Yjk
, qj

k=1

meeting customer demand at k within allowable

4

2 Yjk) lk
j=1

4

2 Yjk
, hk

j=1

stock balance at plant j,

2 4

2 z· . - 2 20Yjk 1J
i=1 k=1

page 56

range,

= 0

i=1,2

j=1,2,3,4

k=1,2,3,4

j=1,2,3,4.

This problem was created using CAMPS, and descriptive names for tables

and variables were used instead of one character algebraic symbols. For

example c j is replaced by PLNTCOST(j). Displays 4.4 to 4.18 comprise the

major sequence of screenforms and illustrate how the main components

are defined. The method of defining names is illustrated by the table

names screenform set out in display 4.4. The sets, the reference indices

and the corresponding textual annotations are shown in display 4.5. The

text for each individual elment of a set is entered using the screen

shown in display 4.6. Table dimension and annotations are shown in

display 4.7. A compact method for entering data which can accomodate

multidimensional (up to six) tables is illustrated In display 4.8. The

system also supports a faster spreadsheet type method of entering one

and two dimensional tables. The model variables are defined in display

4.9 and similarly, display 4.10 shows how the model rows are defined.

Display 4.11 presents the right hand side definitions while the method of

entering linear form relations is set out in display 4.12 to display 4.18.

In order to illustrate the method of specifying linear relations and the

restrictions introduced to ensure consistency of dimensions, consider the

linear form shown in display 4.15. This group of constraints is defined

for the index k and is summed over index j. Hence tables and variables

which are dimensioned by indices j and k are only displayed in this

screenform.

A mathematical statement of the problem is obtained using the

documentation facility of

displays 4.19a and 4.19b.

the UTILITY subsystem and IS illustrated in

This formulation is sufficiently detailed for

communication between analysts. In the linear expressions for the

objective row and the constraint rows each term is annotated: a feature

also found in GAMS [BISMEE82].

page 57

SEC: NAMES SECTION MODEL: TANGWOOD

TABLE NAME TEXT

.

PLNTCOST
PLNTMIN
PLNTMAX
CUSTPRCE
CUSTLDMD
CUSTHDMD
TCSTPTC
TCSTPTC

SEC:

SET NAME

1. 1-
2. J-
3. K-
4.
5.
6.
7.
8.

SEC:

.

.PLNTCOST.

.
.
.PLANT-COST------.
.
PLANT COST
MIN PRODUCTION
MAX PRODUCTION
CUSTOMER PRICE
MIN CUST DMND
MAX CUST DMND
TRAN COST TO CST
TRAN COST FR SRC

Display 4.4

INDICES SECTION

TEXT

TIMBER MERCHANTS
WOOD-PLANTS----­
CHAIR RETAILERS-

INDICES

1---------------­
j---------------­
k----------------

Display 4.5

INDICES SECTION

LLIM

---1
---1
---1

MODEL: TANGWOOD

ULIM STEP

---2 -1
---4 -1
---4 -1

MODEL: TANGWOOD

SET NAME 1- TEXT TIMBER-MERCHANTS

.

ONTARIO
QUEBEC

.

.ONTARIO---------.

.

Display 4.6

page 58

SEC: TABLES SECTION

TABLE NAME TEXT

1. PLNTCOST PLANT-COST------
2 • PLNTMIN- MIN-PRODUCTION--
3 . PLNTMAX- MAX-PRODUCTION--
4. CUSTPRCE CUSTOMER-PRICE--
5. CUSTLDMD MIN-CUST-DMND---
6. CUSTHDMD MAX-CUST-DMND---
7 . TCSTPTC- TRAN-COST-TO-CST
8. TCSTSTP- TRAN-COST-FR-SRC

Display 4.7

SEC: TABLES SECTION

TABLE NAME PLNTCOST

TYPE

-REAL--
-REAL--
-REAL--
-REAL--
-REAL--
-REAL--
-REAL--
-REAL--

MODEL: TANGWOOD

INDICES

J---------------­
j---------------­
J---------------­
k---------------­
k---------------­
k----------------
j-,k------------­
i-,j-------------

MODEL: TANGWOOD

TYPE -REAL--

.
j = 1 :FOR WASHINGTON

.------5.----.

Display 4.8

SEC: VARIABLES SECTION

VARIABLE NAME

1. WOFSTP--
2. CHFPTC--
3.
4.
5.
6.
7 .
8.

TEXT

TIMBER-SHIPPED-­
CHAIRS-SOLD-----

Display 4.9

page 59

TYPE

-REAL--
-REAL--

MODEL: TANGWOOD

INDICES

i-,j------------­
j-,k-------------

l.
2.
3.
4.
5.
6.
7.
8.

SEC: ROWS SECTION

ROW NAME TEXT RTYPE

WMINSRC- MIN-AMT-SHIPPED- GE
MPROD--- MIN-AMT-PRODUCED GE
XPROD--- MAX-AMT-PRODUCED LE
CLOW---- MIN-CUST-DEMAND- GE
THIGH--- MAX-CUST-DEMAND- LE
BSTOCK-- STOCK-BALANCE--- EQ
PROFIT-- MAXIMISE-PROFIT- FR
-------- ----------------

Display 4.10

SEC: ROWS SECTION

ROW NAME

1. WMINSRC-
2. MPROD---
3. XPROD---
4. CLOW----
5. THIGH---
6. --------
7. --------
8. --------

TEXT

MIN-AMT-SHIPPED­
MIN-AMT-PRODUCED
MAX-AMT-PRODUCED
MIN-CUST-DEMAND­
MAX-CUST-DEMAND-

Display 4.11

SEC: ROWS SECTION

ROW NAME WMINSRC(i)

MODEL: TANGWOOD

INDICES

i----------------
j----------------
J----------------
k----------------
k----------------
j----------------

MODEL: TANGWOOD

R.H.S.

SCRLDMD­
PLNTMIN­
PLNTMAX­
CUSTLDMD
CUSTHDMD

MODEL: TANGWOOD

.
SUM OVER j
FOR ALL i

1.00000*WOFSTP (i ,j)

Display 4.12

SEC: ROWS SECTION

ROW NAME MPROD (j)

MODEL: TANGWOOD

.
SUM OVER k
FOR ALL j

1.00000*CHFPTC (j, k)

Display 4.13

page 60

SEC: ROWS SECTION MODEL: TANGWOOD

ROW NAME XPROD (j)

· .
SUM OVER k
FOR ALL j

1.OOOOO*CHFPTC (j,k)

Display 4.14

SEC: ROWS SECTION

ROW NAME CLOW (k)

MODEL: TANGWOOD

· .
SUM OVER j
FOR ALL k

1.OOOOO*CHFPTC (j,k)

Display 4.15

SEC: ROWS SECTION

ROW NAME THIGH (k)

MODEL: TANGWOOD

· .
SUM OVER j
FOR ALL k

1.OOOOO*CHFPTC (j,k)

Display 4.16

SEC: ROWS SECTION

ROW NAME PROFIT

MODEL: TANGWOOD

· ..

SUM OVER J , k -PLNTCOST(j)*CHFPTC (j ,k)
SUM OVER j ,k CUSTPRCE(k)*CHFPTC (j ,k)
SUM OVER j ,k -TCSTPTC (j , k)*CHFPTC (j , k)
SUM OVER i , J -TCSTSTP (i , J)*WOFSTP (i , j)
SUM OVER i , j -SCRPRCE (i)*WOFSTP (i , J)

Display 4.17

page 61

SEC: ROWS SECTION MODEL: TANGWOOD

ROW NAME BSTOCK (j)

.
SUM OVER i
SUM OVER k
FOR ALL j

1.OOOOO*WOFSTP
20.00000*CHFPTC

Display 4.18

(i , j)
(j , k)

4.4 Support for separable and integer programming reformulation

In CAMPS, support for reformulating separable and integer programming

problems has been provided. A description of this approach is given in

[LUMIYA86]. For instance special table types, variable types (to define

SOS type 1 and type 2 variables) and row names (CONVEX*, REFER*) are

used to construct separable programming problems. These facilities have

been used to reformulate ten representative nonlinear optimisation

problems taken from Hock and Schittkowski [HOCSCH81]. In reformulation

support bound analysis of the linear form [BRMIWI75], [WILLIA83] plays a

fundamental role. CAMPS does not necessarily achieve the most compact

or tightest reformulation, but it carries out a range of burdensome

algebraic manipulation.

page 62

INDICES

= 1,
j = 1,
k =1,

TABLES

2
4
4

PLNTCOST(j)
PLNTMIN(j)
PLNTMAX(j)
CUSTPRCE(k)
CUSTLDMD(k)
CUSTHDMD(k)
TCSTPTC(j,k)
TCSTSTP(i,j)
SCRPRCE(i)
SCRLDMD(i)

VARIABLES

WOFSTP(i,j)
CHFPTC(j,k)

ROWS

WMINSRC(i)
MPROD(j)
XPROD(j)
CLOW(k)
THIGH(k)
BSTOCK(j)
PROFIT

CONSTRAINTS

* * * * * Model Documentation *
* *
* Prepared by · .. CLucas *
* *
* Problem name · .. TANGWOOD *
* * * Date · .. 07/01/86 *
* *
* Time · .. 11: 45 *
* *
* *

u
u
u

TIMBER MERCHANTS
WOOD PLANTS
CHAIR RETAILERS

U PLANT COST .. by ..
U MIN PRODUCTION .. by ..
U MAX PRODUCTION .. by ..
U CUSTOMER PRICE .. by ..
U MIN CUST DMND .. by ..
U MAX CUST DMND .. by ..
U TRAN COST TO CST .. by ..
U TRAN COST FR SRC .. by ..
U SOURCE PRICES .. by ..
U SOURCE DEMANDS .. by ..

U TIMBER SHIPPED .. by ..
U CHAIRS SOLD .. by ..

U MIN AMT SHIPPED .. by ..
U MIN AMT PRODUCED .. by ..
U MAX AMT PRODUCED .. by ..
U MIN CUST DEMAND .. by ..
U MAX CUST DEMAND .. by ..
U STOCK BALANCE .. by ..
U MAXIMISE PROFIT U

u
u
u

WOOD
WOOD

PLANTS
PLANTS

WOOD PLANTS
CHAIR RETAILERS
CHAIR RETAILERS
CHAIR RETAILERS
WOOD PLANTS
TIMBER MERCHANTS
TIMBER MERCHANTS
TIMBER MERCHANTS

TIMBER MERCHANTS
WOOD PLANTS

TIMBER MERCHANTS
WOOD PLANTS
WOOD PLANTS
CHAIR RETAILERS
CHAIR RETAILERS
WOOD PLANTS

U

U

U

U

U

U

.. and ..

.. and ..
U

.. U

.. and ..

.. and ..

U

U

U
U

U

U

CHAIR RETAILERS
WOOD PLANTS

WOOD PLANTS
CHAIR RETAILERS

Row name WMINSRC(i) U MIN AMT SHIPPED .. restriction .. U

Sum over j [+l.OOOOOO*WOFSTP(i,j)
U .. for .. TIMBER SHIPPED U

.. ge .. SCRLDMD (i) U .. SOURCE DEMANDS •• U

For all i

Row name MPROD(j) U MIN AMT PRODUCED .. restriction .. U

Sum over k [+l.OOOOOO*CHFPTC(j,k)
.. for .. CHAIRS SOLD

.. ge .. PLNTMIN(j) U ., MIN PRODUCTION

For all j

Display 4.19A

page 63

U

U

U

U

Row name XPROD(j) U MAX AMT PRODUCED .. restriction .. U

Sum over k [+l.OOOOOO*CHFPTC(j,k)
U .. for .. CHAIRS SOLD U

.. 1e .. PLNTMAX(j) U .. MAX PRODUCTION

For all j

Row name CLOW(k) U MIN CUST DEMAND .. restriction .. U

Sum over j [+l.OOOOOO*CHFPTC(j,k)
U .. for .. CHAIRS SOLD U

.. ge .. CUSTLDMD(k) U .. MIN CUST DMND

For all k

Row name THIGH(k) U MAX CUST DEMAND .. restriction .. U

Sum over j [+l.OOOOOO*CHFPTC(j,k)
U .. for .. CHAIRS SOLD U

.. 1e .. CUSTHDMD(k) U ., MAX CUST DMND

For all k

Row name PROFIT U MAXIMISE PROFIT .. no restriction .. U

Sum over j , k -PLNTCOST(j)*CHFPTC(j,k) 1
U PLANT COST .. for .. CHAIRS SOLD

Sum over j , k +CUSTPRCE(k)*CHFPTC(j,k) 1
U CUSTOMER PRICE · . for .. CHAIRS SOLD

Sum over j ,k -TCSTPTC(j,k)*CHFPTC(j,k) 1
U TRAN COST TO CST .. for .. CHAIRS SOLD

Sum over i , j -TCSTSTP(i,j)*WOFSTP(i,j) 1
U TRAN COST FR SRC · . for .. TIMBER SHIPPED

Sum over i , j -SCRPRCE(i)*WOFSTP(i,j) 1
U SOURCE PRICES · . for .. TIMBER SHIPPED

.. fr .. 0

Row name BSTOCK(j) U STOCK BALANCE .. restriction .. U

Sum over i

Sum over k

.. eq •. 0

+l.OOOOOO*WOFSTP(i,j)
U .. for .. TIMBER SHIPPED

-20.000000*CHFPTC(j,k) 1
U .. for .. CHAIRS SOLD

For all j

Display 4.19B

page 64

U

U

U

U

U

CHAPTER 5

DESIGN AND IMPLEMENTATION ISSUES

5.1 Introduction

The internal design and strategy followed to implement CAMPS IS

presented in summary form in this chapter. Section 5.2 contains the

system overview covering the main functions of CAMPS and the

supporting file structure. These external files are referred to as master

files and the actions of the main programs on these master files are also

presented in this section. The maIn logic of controlling menus and

screenforms is provided in section 5.3. The implications of changing the

external design of a screenform or menu and its effect on the screen

data structure is also discussed in this section. The method of managing

the internal data structures of CAMPS is briefly considered in section

5.4. CAMPS is conceived to serve as a work station. Thus all the major

controls are supplied using the visual display unit. Section 5.5 details

the various screen tools which have been adopted for communication

using the visual display unit. In common with many application systems,

INPUT & AMEND constitutes the main function of CAMPS. The other

major task in CAMPS is code generation; the target language in CAMPS is

FORTRAN. The implementation language of the system is also FORTRAN.

The maIn Issues of code generation and the compile, link and load

sequence is described in section 5.6. Finally, the method of constructing

external model documentation and that of integrating CAMPS with

ANALYZE, are presented in section 5.7.

page 65

5.2 System overview

At the top-most level CAMPS comprises a suite of five main programs. A

short FORTRAN driving program makes calls to the operating system In

order to run these main (subsystems) programs. Display 5.1 illustrates

the hierarchy of the system options and the information flow through the

five master files as effected by the subsystem.

MODEL DATA

INPUT &
AMEND
CIA)

CAMPS

GENERATE OPTIMISE REPORT

(GM)

MODEL SOLUTION

(RO) (AR)

ANALYZE AND
REPORT

Display 5.1

UTILITIES

(UT)

MODEL
DOCU~'ENTAT I ON

The subsystems are mostly FORTRAN based and are integrated with calls

to the screen tools which are written In PLl. The INPUT & AMEND

sUbsystem is implemented in FORTRAN. The other subsystems are also

written in FORTRAN but contain many calls to the operating system

commands and functions. FORTLP [TAMIYA85] IS the optimiser for the

system and is looked upon as a black box. This program is called with

page 66

a limited number of modifiable control variable settings.

There are five master files in the system. These are the Model Master

File, the MPSX Input Master File, the Solution Master File, the Report

Master File and the Documentation Master File. Any item of data in

these five master files is referred to as a Data Module and IS identified

by the model name which may occupy up to eight characters. For these

five master files, the name of any module is synonymous with the Model

Name. The contents of each of the files and how and why they are

processed by different subsystems IS described below. The short names

given In the information flow, display 5.1, are used for all the

subsystems.

(I) Model Data Master File

For each model a Data Module is created and altered by the INPUT &

AMEND (IA) subsystem. Each Data Module comprises dimension, table,

model variable, model constraint, and linear relationship information.

UT SUbsystem accesses it for List, Delete, Rename and similar functions.

IA subsystem uses it for INPUT & AMEND functions.

GM subsystem uses it for generation.

AR subsystem uses it to gather information for analysis and report.

(II) MPSX Input Master File

For each model the GM program creates MPSX input data which is then

held in this Master File. MPSX input data from some external source can

also be similarly held.

page 67

GM subsytem generates each of these data modules in MPSX format.

RO subsystem processes each of these modules to provide a solution.

AR subsystem may use an MPSX format Data Module to prepare a report.

UT subsystem uses it for List, Delete, Rename and such-like functions.

(III)Solution Master File

Each model in MPSX input format, when successfully solved by the

optimiser, leads to a solution which can be held in this Master File.

RO subsystem generates the solution data module.

AR subsystem loads the solution information for the purpose of analysis

and report.

UT subsystem accesses it for List, Delete, Rename and similar functions.

(IV) Report Master File

ANALYSIS & REPORT subsystem using the Model Data, the MPSX Data and

the Model Solution can produce user reports.

normally printed as text modules of report.

These user reports are

AR SUbsystem produces text modules of report which are held in this

file.

UT SUbsystem accesses it for List, Delete, Rename and other such-like

functions.

(V) Documentation Master File

For the purpose of users own reference, and for communicating with

others, a mathematical statement of a model is produced by the system

page 68

and IS called Model Documentation. The UT sUbsystem uses a Data

Module to produce a Documentation Module which may be printed or

stored in this Master File. The UT subsystem also accesses this Master

File for the purposes of List, Delete, Rename and other actions.

5.3 Menu and screenform control

The display text used for screens and menus is held in a screenform

con trol file. If this display text needs to be changed, this is achieved

by running a separate program which creates the new screen data

structure for the reformatted screens. The screenform control file also

contains a number of accompanying data tables which describe positions

of fields, types of screens (ie whether it IS a menu or screenform), menu

level and other related information. These data tables are then consulted

by the menu and screenform control program to obtain screen layouts.

The programs for menu and screenform have essentially the same

structure. A skeleton outline of the menu control algorithm is set out in

display 5.2.

When control passes to the screen handler, logical checks are introduced

to test for completeness of the model. Deletion of a data table name

leads to the deletion of a table of numerIC data and, by implication,

bounds may become equal to zero or right hand sides may be removed

or possibily a linear relationship may become undefined. Suitable advice

is supplied at screen level to inform the modeller of these consequences.

When a specific item of data is either supplied or amended, the screen

control program calls a field control tool. To maintain 'model

completeness' lists of admissible data values are created at screen level.

Subsequently, these are used at field level to check for validity of data

input.

page 69

Menu counter = 0
1 Display menu of current menu counter
2 Get user response

If invalid user response then
Sound action
Goto 2

Endif
If menu level is top and user response equals no of menu options
then

return
Endif
If menu level is top then

Menu counter = user response
Elseif user response equals no of menu options then

Menu counter =0
Else

Screen counter = 0
Do for i equals 1 to menu counter less 1

Screen counter = screen counter+no of menu options(i)-l
Continue
Screen counter = screen counter + user response
Display screen of current screen counter
Call screen handler

Endif
Goto 1

Display 5.2

5.4 Strategy and tools for handling data tables

The internal storage structure of CAMPS is made up of four main classes

of data arrays held in blank common. The first three arrays store real,

integer and character data while the fourth array (again integer)

consists of the parameters and pointers used in CAMPS. Two main

su broutines are used to manipulate these data arrays. These subroutines

access and return the global parameters and the local data tables to the

main store. The following illustration of local data update provides the

data maintenance philosophy of CAMPS. Consider display 5.3 representing

the information supplied by a user in the dimension definition

screenform.

1. 1- PLANTS---------- i------------------- 1- 3- 1-

2. J- FACTORIES------- j -, k--------- 1- 2- 1-

Display 5.3

page 70

The local tables and global parameters that can be updated in this

screenform are listed and described in display 5.4. There are also three

local text arrays which are not affected by amending the fields of this

screenform.

Table Name

STNMCH

STTEXA

STIDCH

STNID
STLLIM
STULIM
STSTEP
SETSIZ
INDSIZ
SETPNT

TEXPNT

TSET
TSETID
TSETSZ

Description

Address in a text array of the name of the chosen
set.
Address in a text array of any associated
annotation of the set name. A zero indicates there
is no text.
Address in a text array of the names of chosen
indices.
The number of indices associated with a given set.
The number of the first element in the set.
The number of the last element in the set.
The value of the increment of a given set.
The number of elements in a given set.
For each index, the number of elements in it's set.
For each index, this is the address in a text array
of the set name it references.
For each index this is the address in a text array
of any associated annotation of the set name as in
SETPNT.
The total number of sets defined.
The total number of indices defined.
This represents the total number of elements for
all sets.

Display 5.4

The data table values and parameters to represent display 5.3 together

with the text arrays are shown in display 5.5.

page 71

STNMCH SETNAM

No Element No Element

1 1 1 I

2 2 2 J

STTEXA TEXNAM

No Element No Element

1 1 1 PLANTS

2 2 2 FACTORIES

STIDCH INDNAM

No Element No Element

1 1 1 i

2 2 2 j

3 3 3 k

STLLIM STULIM

No Element No Element

1 1 1 3

2 1 2 2

STNID INDSIZ

No Element No Element

1 1 1 3

2 2 2 2

3 2

Display 5.5

page 72

TSET

TSETID

TSETSZ

SETPNT

No Element

1 1

2 2

3 2

TEXPNT

No Element

1 1

2 2

3 2

SETSIZ

No Element

1 3

2 2

STSTEP

No Element

1 1

1 1

PARAMETER

POOL

No Element

1 2

2 3

3 5

If at this stage the set I is removed then the updated local data tables

are shown in display 5.6

STNMCH

No Element

1 2 n
STTEXA

No Element

1 2 n

STIDCH

No Element

1 2

2 3
I

STLLIM

No Element

1 1

STNID

No Element

1 2

SETNAM

No Element

1 I

2 J

TEXNAM

No Element

1 PLANTS

2 FACTORIES

INDNAM

No Element

1 i

2 j

3 k

STULIM

No Element

1 2

INDSIZ

No Element

1 2

2 2

r ~

~

I

TSET

TSETID

TSETSZ

Display 5.6

page 73

SETPNT

No Element

1 2

2 2

TEXPNT

No Element

1 2

2 2

SETSIZ

No Element

1 2

STSTEP

No Element

1 1

PARAMETER

POOL

No Element

1 1

2 2

3 2

5.5 Screen mangement tools

The screen management tools are all written in PLl. In all these

procedures there is one or more calls to the operating system to carry

out the desired screen functions. The screen itself IS defined as a

matrix of twenty four rows and eighty columns and is addressed by row

and column numbers.

out below.

A brief description of the PLI procedures is set

clear screen

clear to eol

clear to eos

position cursor

the screen IS cleared and the cursor is positioned

in the top left hand corner.

text to the right hand side of the cursor is

cleared to the end of the row.

all text below the cursor and to the right In the

cursor row, is cleared.

the cursor is positioned at the row and column

coordinates specified provided they are within the

screen dimensions.

position_curs_rel the cursor is positioned relative to it's current

read text

write text

read char

position. Therefore negative arguments are

allowed. Screen dimensions must not be violated.

unechoed characters are read from the screen and

if defined they are echoed back. The DEL

function key has the effect of erasing the

previous typed character and the cursor is

repositioned one space to the left.

the text supplied in the arguments of this

procedure is echoed onto the screen starting from

the current cursor position.

one unechoed character is read from the screen.

page 74

ring bell an audio bell is sounded.

erase_character the character to the left of the cursor is erased

and the cursor IS relocated one place to the left.

get_curs_position the coordinates of the current cursor position are

returned as row and column numbers.

term screen the last procedure called in order to disconnect

the visual display unit.

init_screen the first procedure called In order to invoke and

initialise the visual display unit.

5.6 Analysis of model and creation of matrix generator program

The model generation subsystem involves three stages; display 5.7

illustrates the information flow of this subsystem through these three

stages.

The first stage of the model generation su bsystem IS the translation

phase. A FORTRAN program analyses the model in order to create

FORTRAN code. This is used to generate the matrix of the model. Due

to the logical analysis and progressive definition of the model components

as used by the INPUT & AMEND subsystem, the task of creating code is

made considerably easier. There are three main tasks of the CAMPS

translator. The first generates the declaration statements and also

creates an internal numeric ordering of the rows and columns. Next, a

data file IS created together with a matching set of subroutine calls

which enable the matrix generator program to access this data. Finally,

lines of code are generated to internally represent the linear

relationships, bounds, right hand side values and the type of linear

relationships that exist in the model. The ordering of the matrix is

always found by matching rows and column names as given in the model

page 75

r<: ""::::::loo

MATRIX
MPSX
FORMAT

-'

~ ______ ~I 1~ ____________ __
, -, r==:=----

_.' ---'
CAMPS
FORTRAN
LIBRARY

~-'-----'--- ,- ~=------.. --

CAMPS
TRANSLATOR

FORTRAN
SOURCE

-----~

/
FORTRAN
SOURCE

A T A

Display 5.7

FORTRAN
BINARY

\~
CAMPS r+­
LOAD

definition of INPUT & AMEND. Any exceptions or restrictions on linear

relationships result In FORTRAN IF statements, while reserved words

create calls to appropriate subroutines. For each line of code generated,

there is a character count in order to control when a continuation line

is needed.

The main task In the second stage IS to compile the generated code.

This generated code is then linked to a library of FORTRAN run time

subroutines. Some of these subroutines apply simple analysis to the

page 76

matrix to check for inconsistencies within the model. When the pr0gram

is run, if any incompleteness in the model is detected, these subroutines

inform the CAMPS load system and the program stops.

The final stage of the generate sUbsystem is to run the program. The

compilation messages are first interrogated and if the compilation is

successful, then the program is loaded and run. There are two possible

outcomes which the CAMPS load function copes with. If a successful

matrix is generated then this is passed back to the database. The other

outcome is that the CAMPS generated program detects an unsuccessful

situation. Some information is given and the program halted.

5.7 Integration with ANALYZE and model documentation

The integration with ANALYZE closely follows the philosophy for creating

external model documentation. CAMPS creates a syntax file together with

a separate MPSX input file with MPSX names constructed in accordance

with the requirements of ANALYZE. The syntax file provides descriptions

of the different name classes. In the result of an unsuccessful exit from

the optimiser (ie unbounded solution or no feasible solution) this MPSX

input file and syntax file are passed to ANALYZE. ANALYZE uses these

in its discourse model [GREENB86], [GRLUMI86] and attempts to provide

some rational explanation of the model failure. When creating external

documentation, a new file is created giving an annotated mathematical

description of thE> problem. CAMPS maintains data tables which indicate

whether a name used In the definition of a model has some text

associated with it. If such texts exists, then these are displayed in a

predefined documentation format.

page 77

CHAPTER 6

AN APPROACH TO COMPUTER ASSISTED REFORMULATION OF INTEGER,

SEPARABLE AND FUZZY PROGRAMMING PROBLEMS

6.1 Introduction

It is well known that reformulations of integer, and variable separable

programming problems also require considerable insight and modelling

skill. The experience with use of modelling support systems has shown

that there is a great scope for providing automatic support for

reformulating such nonlinear programming problems. The purpose of this

chapter IS to present a unified approach towards a range of such

problems. The methods described here can fit naturally into most LP

modelling support systems.

The contents of this chapter are organised as follows. In section 6.2 the

LP is defined in a general form in order to introduce notation which is

used in the rest of the chapter. Analysis of bounds for linear forms IS

well known In the context of model reduction [BRMIWI75], [WILLIA83].

Some of the bound analysis results which are pertinent to model

reformulation as well are presented in section 6.3. The principles and

methods underlying the reformulation technique are described in section

6.4. The main emphasis of this section is to show how logical statements

(clausal forms) can always be restated as equivalent integer forms

involving 0-1 integer variables. Strategies for separating variables to

represent a wide range of nonlinear programming problems are presented

and discussed In section 6.5. Reformulation of the fuzzy progamming

problem as a max-min LP problem and the relationship of this approach

to IP reformulation methods are presented in section 6.6.

page 78

The general scope and applicability of these reformulation methods are

discussed in section 6.7.

6.2 Statement of the general LP problem and notation

The general LP problem can be stated in the following form:

Subscripts and their ranges

i - l, ... m, j - l, ... n.

- Variables, constraints, and matrix coefficients:

Xj' j = 1. · · n, ri' i = 1 . . .m,

Cjl J = 1 . · · n I bi' 1 = 1 . . . m,

aij' 1 = 1. · • m I j = 1 . . . n .

- Linear objective function and constraints:

n

Max 2
j=1

n

C'X' J J

djl j = 1 I . . . n I

subject to ri: \ aijXjPibi
j~1

i = 1"",m

" " ",,, where Pi is an (in)equality relation of the form ~, " or

d· J
j - l, ... ,n,

,,_It - ,

f ' 't d u . may be +00 or finite. and Q j may be -00 or Ini e an J

page 79

(1)

6.3 Analysis of bounds for linear forms

- Use of Analysis in Model Reduction

Consider the restrictions r' 1 and d· J of the linear programming

problem set out in (1) expressed as two sets Rand D of Linear Form

constraints and Structural constraints respectively.

n

R = {(Xi""Xn) Ijt a i j x j Pi b i, i = l, ... ,m} (2)

D = {(Xi'" .Xn) I ~.
J
, X· J " Uj, J = 1, ... , n} (3)

It IS well known [BRMIWI75], [WILLIA83], that by considering the

constraint sets Rand D logically and iteratively, in many real life

problems one may deduce the following:

(i) whether a constraint in set R is redundant,

(ii) whether a constraint from set R may be removed and replaced

by a tighter bound in the set D,

(iii) whether a bound in the set D is redundant.

All these results follow from the analysis of the bounds on the linear

forms.

page 80

- An Analysis of the Linear Form

Let

n

Fi = 2 (4)
j=l

denote the ith linear form.

Introduce two index sets Pi' and Ni' column indices of the positive

and negative coefficients of the row i respectively:

Pi = {j I aij > O}, Ni = {j aij < O}, i = 1, ... ,m. (5)

Let

Li ~ Fi ~ Ui, i = l, ... ,m (6)

denote the bounds on the linear form From the definition of the

structural bounds (Q j ~ x j ~ u j the following is easily deduced:

U' = 2 a' 'u' + 2 a' . Q. , (7)
1 IJ J IJ J

JEPi jENi

L' = j~Pi a' . Q. + j~Ni a' 'u' . (8)
1 IJ J IJ J

In any of the following cases:

(a) Pi is "~" and Ui .(bi '

(b) Pi is ")" and Li:) bi .

the ith Linear Form constraint is redundant and may be removed from

page 81

the problem. Further, it is relevant in the present context to make the

following observations concerning this analysis.

(i) Li' may be -co or finite and Ui may be +co or finite. However,

for finite values of R j' Uj' j=l, .•. n it follows from (7)and (8)

that Li' Ui are finite.

(ii) If the linear form constraints are connected by logical

restrictions then Li' Ui values as necessary may be employed

to (re)formulate these as 0-1 mixed integer programs.

(iii) The derived bounds may be used in the improved

reformulation and partial solution of integer programs.

(iv) It is not well known and rarely discussed in the literature

that this analysis constitutes an essential part of any

procedure for the reformulation of nonlinear, not variable

separable functions into variable separable functions with

arguements defined between upper and lower bounds. These

can be obtained for the appropriate variable using (7) and (8).

The following examples illustrate some of the principles stated here and

serve as an understanding for computing the various bounds that are

later used to linearise the functions.

Let the constraint sets Rand D be as defined below.

R - { (Xl ,x2,x3)

D - { (Xl,X2,x3)

Xl + 2x 2 - X 3 , 11 }

o , Xl , 1, 0 , x2 , 2, 0 , x3 , 4 }

page 82

The bounds on the Linear Form F 1 may be deduced as

L 1 - -4, U 1 - 5.

Thus U 1 < b l' hence the constraint is redundant.

Further, consider Rand D as defined as below.

R - { (x1,x2,Xa)

D - { (x1,x2,Xa)

Since a1a < 0 and P1 is

X1 + x2 - 2xa - 2 }

o , x1 , 1, 0 , x2 , 3, 0 , xa , 4 }

"_" an improved bound on xa is given by

Now U 1 = 4, b 1 = 2, a1a = -2 and hence xa 'lis the new bound

which may be introduced in the set D. The bounds for x 1 and x 2 using

the new lower bound of xa are

giving x1 , 4 and x2 , 4 thus u 1 and u2 are valid bounds. These new

bounds are computed from the way the bounds on the Linear Forms are

constructed using the two sets Pi and Ni.

6.4 Representation of logical restrictions

Preliminary Considerations and Notation

It is well known that a large range of logical relationships connecting

variables and constraint sets may be represented as integer or mixed

page 83

integer programs [CONTR079], [WILLIA78], [SIMONN66], [DANTZI63].

Recently Jeroslow et al [BLJEL085] have set out an exposition and also

present experimental results which connect integer programming with

propositional logic and theorem proving. They, for instance, consider

three well known clausal forms, conjunctive normal form, disjunctive

normal form and Horn sentence. They then show how the equivalent

integer forms may be constructed. The interest in this chapter is to

interpret such theory and to automate reformulation methods which use

mixed integer programming. The reformulation methods set out in this

section do not necessarily lead to the tightest formulation.

Let

t:...
1 1 = 1,2, . .. denote logical variables which may

take values .TRUE. or .FALSE.,

s· 1
take the value 1, if and only if ~i is .TRUE.,
and 0, if and only if ~i is .FALSE.,

V denote inclusive .OR.,

.
V denote exclusive .OR.,

A denote . AND. ,

- denote equivalence.

Representing .OR.

If the condition t:..1 Vt:..2Vt:..3V ... Vt:..m is required to hold then this can be

represented by the constraint

Similarly exclusive .OR. relations as in the requirement

61 V6 2 ... V6m can be represented by the constraint

page 84

(9)

(10)

Furthermore, the relations

(11)

and

(12)

where k is an integer and 1 ~ k ~ m, represent the two statements

"k or more alternatives hold at any time" and "exactly k alternatives

hold at any time".

Representing OR and AND equivalence relations

Let Y denote a logical variable and y the corresponding 0-1 variable.

Then the condition : Y is . TRUE. if and only if ~ 1 V ~ 2 V ~3 "'~m is . TRUE.

(which is expressed as Y iii ~1 V~2V ... ~m)' can be represented by the

constraint

(13)

Similarly the logical condition Y = ~1 A~2A ... ~m can be represented by

the constraint

(14)

page 85

Logically Relating the Linear Form Constraints

A linear form constraint involving n variables represents a point set

If a number of these are stated and need to be satisfied then

these invoke the logical .AND. operation.

For example consider the relations

n

2 aijxj' hi' i = 1 ... m}. (16)
j=l

If p.
1 denotes the proposition that

then P is given by the logical form

i = 1 m

To represent the logical .OR. relation of these propositions P 1 'P2 ''''Pm it

is necessary to consider the structural constraint set D as in (3) where

some or all ~ j, u j j = l, ... n are finite such that the bounds Vi,i = I ... m

are finite. Also from the redundancy consideration it is required that

bi < Ui i = 1, •• ,m.

Thus the inclusive .OR. relation is given by the

integer and mixed integer forms (9) and (17).

page 86

n

2 aijXj - Bi(l - bi) ,bi, i = I ... ,m. (17)
j=l

In (17) Bi is a finite value such that for

greater than or equal to the upper bound Ui of

Thus any finite value for B· 1 such that

is

Fi defined in (4).

u· 1 i = l, ... ,m, (18)

leads to a valid formulation. The exclusive .OR. and the two forms of

k-fold alternatives for these propositions, are similarly obtained by

introducing (17) together with (10), (11) or (12) as appropriate.

An Example

This IS taken from [WILLIA 78] and modified.

Let Rl - { -

R2 - { -

R3 - { -

and Let D - { -

Then

S - H A -

(xl 'X2) Xl + X2 , 4 }

(xl 'X2) -Xl + X2 , 0 }

(X I 'X2) 3Xl - X2 , 8 }

(x l ,x 2) 0 , xl , 5, 0

D - HI A R2 A R3 A D -

Diagram 6.1

page 87

, x 2
, 5 }

is as shown in Diagram 6.l.

D

X 1

The three bounds on the linear forms may be computed as

A formulation which uses the logical .OR. as well as .AND. relation is

T !!! R1 V (R 2 A R 3) which may be stated as

X1 + x2 - 6(1 - b 1) ~ 4,

-x1 + x2 - 5(1 - b 2) ~ 0,

3x1 - x2 - 7(1 - b2) ~ 8,

b 1 + b 2 ~ 1 and b l' b 2 - 0,1. -

The constraint region T in this case is as shown in Diagram 6.2.

a Xl

Diagram 6.2

6.5 Strategies for separating variables in nonlinear programming

problems

Linearisation of Variable Separable Programming Problems

The problem

n

Max 2 f . (x .)
J J

j=l

page 88

subject to ~ gij(Xj) < bi , i = 1 , .•• ,m t

j=l

is a general statement of the variable separable programming problem.

In order to carry out piecewise linear approximations to the objective

and the constraint functions, it is necessary to make two further

assumptions concerning this problem.

(i) The functions j - l, .. ,n

are all single valued.

(ii) The arguments Xj, j - I, .•. n of these functions have finite

ranges (Qj' Xj , Uj J - I, ... ,n).

The construction of piecewise linear approximations using weighting

variables, convexity row, reference row, function row and the methods of

solution are well discussed in [BRHAMA77] and [MITRA76].

An Analysis of Nonlinear Programming Test Problems

It has been claimed by proponents of the separable programming method

of solving nonlinear programming problems that a large class of nonlinear

(not variable separable) programming problems can be transformed into

variable separable programming problems. In order to investigate the

reality of this claim a comprehensive collection of nonlinear programming

test problems which have been put together in [HOCSCH8I], have been

analysed and a selection of these formulated and solved.

Consider the test problems in the format

page 89

Maximise f (X1'''''X n)

subject to gi(x1""'Xn) (b· 1 1 = 1, ... ,m 1
gi(X1"" ,xn) = b· 1 = ml+1, ... ,m 1

and Q.
J

(X· J
, u' J j = l, ... ,n.

The frequency distribution of the 115 test problems is set out in Table

6.1. In [HOCSCH81] the problems are numbered from 1 to 119, however,

there are no problems numbered 58, 82, 94, 115!

The following types of objective and constraint functions are found in

the set of test problems.

Objective function types

(i) Constant objective function ..• function code C.

(ii) Linear objective function ... function code L.

(iii) Quadratic objective function ... function code Q .

(iv) Sum of squares objective function .. . function code S.

(v) Generalised polynomial objective function ... function code P.

This is of the form

f(x) =

n n n

a o + 2 aixi + 2 aijXiXj + 2 aijkXiXjXk + ... (19)

i=l i,j=l i,j,k=l

It may be observed that in the geometric programming problem [DEMB076]

a more general form is introduced which is called the signomial function

and is expressed as

2 II v.dl·J' f(x) = c· 1
J i

j€J

(20)

page 90

where J is used to label the terms appearing in the signomial function.

In (19) ao,ai,aij etc. and in (20) c j,dij are given real values.

(vi) General function ... function code G.

Constraint types

(i) Only upper and lower bounds on the variables

(ii) Linear constraint functions

(iii) Quadratic constraint functions

(iv) Generalised Polynomial constraint functions

This is of the same form as (19) or (20).

(v) Generalised constraint functions

... code B

... code L

... code Q

... code P

... code G.

Objective Function Codes

Constraint
Function
Codes

B

L

C

Q 1

Column
Sum

p

G

Experimental Investigations

1

L Q S p

1 1 5

10 8

7 18 2 9

2 2 14

3 6 7

12 37 3 43

Table 6.1

G

2

6

1

3

7

19

Row
sum

9

24

38

21

23

115

Some of the methods described in this section together with the bound

analysis discussed earlier, were applied to reformulate 10 out of 115 test

problems discussed earlier in this section. CAMPS was used to aid

these reformulations and generate these models. These problems are

discussed and the investigations are reported in [LUCMIT86].

page 91

Manipulation of Nonlinear Functions to Variable Separable Form.

The principal motivation of deriving variable separable formulations of

nonlinear functions is to approximate these functions by piecewise linear

forms. Consequently a standard mathematical programming system (e.g.

MPSX) can be used to solve these classes of nonlinear programming

problems. In order to apply a piecewise linear approximation it is

required that the variables of the separable formulation, which are

derived from the original nonlinear functions, be bounded. It IS

therefore necessary to apply a bound analysis to determine these bounds.

In practical applications it is possible to impose realistic bounds on any

unconstrained variable which may appear in the problem.

McCormick and Jackson [JACMCC84] have done considerable work on the

(reformulation) factorisation of highly complex nonlinear programming

problems. They analytically derive the hessian and gradient of the

tfactored' forms and are interested in the sensitivity properties of the

resulting nonlinear models.

A few frequently occuring instances of nonlinearities (nonlinear terms as

well as nonlinear forms) are now considered and the methods of

reformulating these are briefly discussed.

Product Term

A product term, xl x 2' may be replaced by (yf - y~) with the additional

then, given finite Q j and finite bounds Li and Ui may easily be

derived such that (Li ~ Yi ~ Ui)' i = 1,2.

By repeated application of this technique a variable separable formulation

page 92

of a higher order product term may be obtained.

Quadratic Function

For a general quadratic function, ~(xl , .•• xn)

separable formulation may be obtained.

a more compact variable

n

Let ~(xl'· .. xn) = U 2
i=l

with the constraints

n

Yk = 2
j=k

qk _x_
J J

n

2 qijXiXj
j=l

r

= 2
k=l

k = 1 , ... r

where r is the rank of the symmetric matrix Q - / / qij / /.

(21)

The coefficients qkj and d k can be determined by applying a standard

method such as Gaussian reduction [STIEFE63].

Given finite bounds Q j and u j on Xj, j = 1, ••. n, finite bounds Lk

and Uk on Yk, k = 1, ••. r, may be simply derived by considering the

linear forms (21). Thus a piecewise linear approximation can be used.

Ratio of Linear Forms

,
Let H = ~

j=l

,
h-x-and J J

" H = ~
j=l

" h -x­J J

The expression (H/H) may be manipulated in the following way.

Replace (H/H) by y 1 and introduce the constraint

page 93

n

2
j=l

,
h·x· = J J

n

2
j=l

As discussed earlier a variable separable formulation may be obtained for

the product terms of the constraint. The finite bounds on Xj,j - 1, ... n, -
,

" , , ,
" " " provide bounds on H and H such that L < H " U and L (: H (: U from

which bounds be obtained. " " on Yl may If L > 0 or U < 0, the bounds

on y 1 are finite and a piecewise linear formulation can be applied.

Power Forms - Constant Base

Consider the term aXl+X~ where a > o.

A variable separable formulation may be obtained by replacing
x l+ x 22 b d d' h . a y Yl an intro uClng t e constralnt

log Yl = (log a)(xl + x~). The bounds 11 and Ul on Yl can

be derived from the bounds on Xl and x2'

Power Forms - Variable Base

Consider the term x~2 This term can be handled using the

b x2
su stitution Yl = xl and introducing the constraints

= 10Y2 (22)

(23)

The constraint (23) can be handled using the techniques for product

terms and constant base power forms discussed earlier. For constraint

(22) it is necessary that 0 < ~ 1 <. Xl <. Ul from which the bounds on

Y2 are easily derived.

To illustrate these methods, consider the following problem.

page 94

Maximise

subject to

+ +

and

From restrictions (25) and (26) it follows that

Rewrite

4 ~ xl' X Z ' X3 ~ 0

X Z/ (1 + X I) = Y I

<. 4

Using (27) and (28) Q 4 <.. Y I <.. u 4 where Q 4 - 0, u 4 - 4.

Thus constraint (24) can be expressed as

The product terms of (27) are expressed as

Finally the complete formulation is given as follows

Minimise xl + 2xz + x3

subject to Y~ - y~ + y~ - y~ + x3 <.. 20

Yl - X z - y~ + y~ = 0

Yz -UYI -U xl = 0

Y3 -UYI +U Xl = 0

Y4 -UYI -UeX3 = 0

Ys -UYI +Ue X3 = 0

Ys -UXI -U Xz = 0

Y7 -UXI +U Xz = 0

Xl + Xz + X3 <.. 4

page 95

(24)

(25)

(26)

(27)

(28)

(29)

Lower Bounds

For the functions y~, y~, y~, y~, y~, y~, and e X 3 variables are

introduced to linearise the functions over their respective domains.

6.6 Reformulation of fuzzy decision problems as max-min LP problems

Background to the Model

Fuzzy set theory was first introduced by Zadeh [ZADEH65] and

subsequently Bellman and Zadeh [BELZAD70] discussed its application to

decision problems. Later developments and applications of this approach

are well discussed in the text book by Dubois and Prade [DUBPRA80].

In Fuzzy set theory an element

membership of a given set say

x

s.

is defined to have a degree of

The degree of membership is

denoted by a membership function xJ.L which is defined over the range

[o,u] where u IS a positive real number. For u=l it is the normal fuzzy

set, J.L(x)€ [0,1]. In the usual set theoretic terms x

is equivalent to J-I.(x) = 1 and J-I.(x) = 0 otherwise.

belongs to s

The major contribution of the seminal paper by Bellman and Zadeh

[BELZAD70] was to establish the relationship between goals and

constraints of a decision problem. In their words:

"goals and the constraints constitute classes of alternatives whose

boundaries are not sharply defined." They then proceed to

explain that their modelling framework "erases the differences

page 96

between goals and constraints and makes it possible to relate in a

relatively simple way the concept of a decision to those of the

goals and constraints of a decision process •.. II In short, a broad

definition of the concept of decision may be stated as:

Decision - Confluence of Goals and Constraints".

Fuzzy Programming as a decision model was mainly promoted by

Zimmermann [ZIMMER78]. Its applications to media selection [ZIMWIE78],

and power systems planning [SATSER82] are two of many applications

which have been reported. Dyson [DYSON80] considers the multicriteria

decision problems, analyses it following the Max-Min approach based on

utility function and shows how the latter has the identical form to that

of crisp equivalent formulation of the fuzzy LP.

Statement and Reformulation of Fuzzy Linear Programs

Consider the linear programming problem with l, .•. k objective (goal)

functions and m inexact (soft) restrictions defined as

Max Z ;e ex

subject to Ox (, d

x L 0

where

Let z =

maximum

Define

Let

x
d
C
o

is an
is an
is a
is an

n vector
m vector
k x n matrix
m x n matrix

[~11 denote the 'aspiration levels' (that is the
zk b' t' these are expected to achieve) of these k 0 Jec 1ves.

A = II§ II a (k+m) x (n) matrix, b = [a] a (k+m) vector

n

J..Li(x) = fie 2 a' ·X· 1J J)

j=l

page 97

denote the membership function of the ith goal or restrict1'on, . 1 1= , ••• k+m.

A typical membership function is illustrated in diagram 6.3.

1

Thus define

1

JJ.' 1
A

Diagram 6.3

n

if 2
j=l

a' ·X· I' b· IJ J ~ 1

n
[~ a' 'x.-b']

1 _ j-l IJ J 1 if bi < 2 aijXj , (bi+Pi)
j=l P.

1

o
n

if 2 aijXj
j=l

> b·+p· 1 1

If .LLD(x) denotes the membership function of the (optimal) decision set

then following the usual (but much debated) approach of applying tMin'

as the intersection operator leads to the following

.LLn(X) = Min .LLi(x)
i

Thus maximum satisfaction of constraints and targets are achieved by

solving the equivalent Max-Min linear program,

page 98

Max A
n

subject to 2 aijXj , bi+Pi,
j=l

i = 1 k+ , . •• m,

Xj } 0, j = 1, ... n .

The following observations can be made for this model.

(a) The mUltiple objective (or goal) model illustrates Zadeh and Bellman's

principle rather well. In the case of a single objective function, k = 1.

(b) The fuzzy goals and constraints are alternative ways of introducing

soft constraints in the model.

(c) If the variables Xj are bounded, that is 2 j , Xj , Uj as in section

6.3, then Vi as introduced in the section may be used to check the

consistency of the fuzzy membership function.

(d) If it is desired to construct models which involve crisp as well as

fuzzy relations then reformulation methods of section 6.4 and section 6.6

can be naturally put together.

6.7 Automatic approach to reformulation: a summary of issues

The bound analysis plays a key role in automating the steps which are

used in reformulating mixed integer, separable and fuzzy programming

problems. For i.nstance the algebraic relations which are used to

separate variables are also applied to derive bounds on new variables

introduced In the reformulation. These bounds are essential for

piecewise linear approximation. The bounds on linear forms are also

used in transforming propositions (which take logical forms) to equivalent

mixed integer linear forms.

page 99

The methods described in this chapter do not necessarily achieve the

most computationally efficient model after reformulation. Jeroslow

[JEROSL86] has given examples of how tighter reformulations can be

found. In this work the main aim has been to reduce the chore for an

experienced analyst, and also to provide support for a problem owner

who is capable of describing his problem but may not be experienced in

reformulation techniques. Computer support in these areas offers

increased scope and applicability of mathematical programming.

page 100

CHAPTER 7

DISCUSSIONS, NEW DIRECTIONS AND CONCLUSIONS

7.1 Introduction

The field of mathematical programming with its increasing acceptance as a

proven, tested and robust tool stimulates much research towards the

creation of computer based modelling systems. In conceiving and

designing such a system, the first task is to identify the audience for

whom the system is being built. Chapter three highlights the broad

range of constituents who have different requirements from a computer

based modelling system. Firstly there is the novice user who knows

very little computer programming and thinks of a model as a set of

equations~ Typically, his requirements can be met by one of the

available spreadsheet packages [CARMON86]. Then at the other end of

the spectrum, there are dedicated corporate users who run different

planning scenarios using large company databases. These systems have

to offer flexible and secure access to a large database and cope with

multiple users. Reports have to be quickly obtained and response time

to crisis modelling has to be good. There is also a need to provide

productivity tools for the analysts who create special purpose

applications. The main thrust of the present research has been to

investigate the type of tools which support these diverse range of

modellers in creating their applications quickly and efficiently.

In building models there are many structures that are common to

different models. The strategy for modelling these specific structures

remains the same no matter what the application. It therefore seems

natural that the knowledge of building these structures should be

page 101

embedded in the mathematical programming modelling system. Similarly,

when a problem owner communicates model data, the system should

validate this data within a specific range, and also establish that the

units are consistent with the modellers description of the data. This

level of support calls for the introduction of artificial intelligence

techniques in model building. The scope of integrating artificial

intelligence with mathematical programming is discussed in section two of

this chapter. This also includes looking at ways in which a natural

language could be employed in the modelling support. This ranges from

a conversation with the problem owner, to the ability to provide advice

concerning the model structure.

In order to harness the proven success of mathematical programming

optimisers, it is often necessary to create very special models. No

matter how powerful the systems constructs are and how flexible and

general the modelling language IS, there are often many situations where

a certain part of the problem is modelled much more easily by allowing

the model builder direct access to the system components which are used

for generating the LP matrix. There are also many applications wher(~

external programs need to be created to implement special heuristics

which have been tested and proven in a different environment. A

conscious design of a programmer's (analysts) interface to support these

specialist modelling tasks is therefore required. In section three of this

chapter the broad criteria of such an interface are discussed. A

summary of the major contributions of the research reported in

thesis is presented in the final section of this chapter.

page 102

this

7.2 Artificial intelligence and mathematical programming modelling

In this section, the background and possible use of artificial intelligence

in mathematical programming modelling systems is discussed. From time

to time considerable attention has been given by the specialists in the

field of mathematical programming to the methods of artificial intelligence

and vice versa. It is well known that the travelling salesman search

methods and heuristics [LINKER71], [GLOVER85] are of interest to both

mathematical programming and artificial intelligence specialists. In recent

times the links between logic programming theorem proving and integer

programming have been investigated by Jerslow [JERSLOW85], Williams

[WILLIA86] and others. From the viewpoint of applied problem solving, it

is well accepted that mathematical programming and artificial intelligence

methods (especially_ expert systems) are perhaps the most successfully

applied methodologies in industrial contexts. In his inspiring lecture in

1959, nobel laureate, Simon [SIMON60], developed and made a strong case

for artificial intelligence. In a recent plenary presentation at the

TIMS/ORSA meeting, Simon [SIMON86], recounted the success of these two

methodologies and argued why they should coevolve. There are,

however, not many reported developments which combine these two fields.

A few papers that have tackled this integration of the two fields are

Slagle and Hamburger [SLABAT85], Murphy and Stohr [MURST086] and the

work due to Greenberg [GREENB85]. In this research three areas have

been identified where the methods of artificial intelligence could be

introduced

methodology.

to improve the mathematical programming modelling

These are the scope of applying natural languages,

introducing rule bases to modelling, and enhancing modelling support

with a knowledge base.

page 103

Natural Languages

Natural language communication to control a particular application IS

gaining popularity and acceptance. This approach IS attractive for

interactive communication and it IS suitable for use by non experts,

although for a skilled modeller it is cumbersome. Gaines [GAISHA84]

illustrates how an expert system imitating a doctor, ELIZA [WEIZEN66],

mimics the patient in order to create an illusion of intelligence. There

is, however, scope for applying natural languages in three areas within

the modelling support system. Firstly, it IS possible to accept a

definition of the model in a natural language from the problem owner and

create a compact definition [SHEKRU73] so as to extract the exact

information germane to the problem. The second use of natural

languages is to create a textually annotated documentation of the model

described In English rather than in mathematics. This allows the problem

owner to have a simple understanding of the model and to be able to

communicate it. Another important use of natural languages is in advice

giving. The discourse models currently supplied by ANALYZE [GREENB83]

provide narratives in the English language about the model structure and

the possible causes for an unsatisfactory termination in the course of

optimisa tion.

Rule Base

The concept of using rule bases in particular problems can be applied in

the context of CAMPS whereby data presentation, model generation, and

b by I'ntroducing rule bases, model solution analysis can e overseen

These rule bases could include data validation. This could be used to

specify a range of values for which a specific data item is defined, Elnd

it could also be used to both check and map data items to consisten t

page 104

units. A second rule base could be used to verify that the indices of

coefficients in linear relationships correspond to those f th . o e summahon

indices and constraints. In the generation stage, a rule base could

investigate that the model contains an objective function and constraints.

It could also examine network structures to check that inputs and

outputs balance.

Knowledge Base

A knowledge base can be introduced to support the modeller's task in

the following way. An expert modeller when faced with the task of

modelling a new problem, consults a series of well known case studies of

similar situations and draws upon such 'knowledge'. Thus it is natural

to compile a collection of well known and established LP lIP modelling

structures. These could be constraints such as material balances, upper

and lower bounds, generalised upper bounds and quality constraints. In

addition to the components of known variable types and constraints, the

knowledge base may also contain complete submodels such as the common

form of networks, product mix and blending problems. These aspects of

the knowledge base are stored as 'templates' [MURST086]. One such

template could be a production process (ie the classical transportation

problem). This model requires inputs to be shipped to a location where

they become outputs. This automatically implies a shipping cost.

Further, the structure of the model is such that constraints exist for

each input and output. The activities can also be created by an

inference mechanism so that for every combination of supply and demand

Other rows, where flows are allowed, it leads to an individual activity.

information that can be stored concerning this problem are that each

activity intersects one supply row and one demand row, supply rows are

less than or equal to constraints, demand rows are greater than or equal

page 105

to constraints and the non zero coefficients are all ones. All these

'items of knowledge' can be obtal'ned f th k rom e nowledge base and can

be used by the inference makl'ng mod 1 t 'd u e 0 gUl e the modeller In

conceiving and constructing his model.

7.3 Programmer's interface

When creating an application, it IS often desired to customise the

interface between the problem owner and the computer to meet the

requirements specific to that situation. Further, sometimes it is easier to

describe a model using a programming language rather than be tied to

the modelling methodology of a system such as CAMPS. In this way it IS

possible to introduce heuristic descriptions which are peculiar to the

model. These ideas naturally lead to the extension of CAMPS whereby a

programmer's interface is introduced. The programmer's interface

comprises three new modules. One module of this interface is addressed

towards creating data entry screenforms and is a new option under the

UTILITIES subsystem. An analyst may use this module to create new

screenforms and describe the relationships between these and the data

tables which are defined within CAMPS. The screen support tool also

incorporates a submodule with field definition and data validation. In

this way the analyst can also introduce checks on data entered via these

special purpose screenforms. The second interface module is an addition

to the GENERATE subsystem. Within this module the analyst can directly

program in the implementation language of CAMPS in order to create the

linear/integer programming matrix. This offers greater flexibility in

building models and many of the subroutines in the CAMPS library may

be used which reduces the programming burden of the analyst. Similarly

a programmer's interface is added to the REPORT & ANALYSIS subsystem,

Through this module the analyst may specify any connections between

page 106

submodels and create driver programs for scenario analysis.

modules are shown in the appropriate SUbsystems in display 7.1.

The new

The programmer's interface and the scope of its use is now illustrated.

In a typical interactive modelling system, such as CAMPS, the end user

requirements invariably dictate that the screenform design for data entry

goes through a development and update phase. This plays a vital role

in the tailoring of an otherwise mathematically sound computer

implemented model whereby the non expert user can communicate with the

model. For instance, in an application such as combined heat and power

(optimisation) scheduling or portfolio selection it is easy to specify

screenforms for data entry that are much more appropriate for the

corresponding problem than the basic screenforms used in CAMPS to

enter data. This task is achieved through the screen support tool

within the programmer's interface.

The experience with CAMPS has highlighted that some specialised

applications are more efficiently constructed using a programming

language. Bus crew scheduling [DARMIT85] and trim loss minimisation

[DALUMI86], are examples of two such situations. An analysis of these

two models shows that the constraint matrix for the underlying linear

programs do not display any special structure. Thus it is necessary to

devise special heuristics to generate the columns of the problem matrix.

Therefore the analyst can create the generator program using the

programmer's interface which has been added to the GENERATE

SUbsystem. The link between the data entry and the model coefficients

as defined by the analyst's program would be created through the

screen support tool of the UTILITIES subsystem.

t d is briefly reviewed PLANETS is a versatile model generator sys em an

page 107

I [

(INPUT (GENERATE)
IA GM

NAMES INTERNAL f10D
'0 · · g,
00. · · (1)

t:::; · · rn
0 '0 00

g,

CONSTRAINTS PROGRAMMERS
INTERFACE

«
-::a

I
{ OPTIMISE)

RU

PREPARE
·
·
·

SUMMARY

SUBMODULES OF PROGRAMMERS INTERFACE
IN RELATION TO THE EXISTING

CAMPS SYSTEM

T
(REPORT)
AR

VARIABLES
·
·
·

PROGRAM~1ER

INTERFACE

~TILITIES)
UT

LIST
·
·
· FIELD DEFIN

SCREEN LAYOl
TION
T

in chapter three. It also has extensive facilities for scenario analysis.

In order to create a comparable application, it is necessary to define the

effects of changes In data values and the SIze and structure of

su bmodels on the main model. The main thrust of such an application is

built around running scenarios. This requires the use of all three

programmer's interface modules. The module of the REPORT & ANALYSIS

subsystem, is used to define the connections between the submodels in

order to cope with 'What if' statements. The other two su bmodules are

used as discussed before.

7.4 Summary and conclusions

This thesis is concerned with the analysis and design of methods leading

to software techniques which can be used to support mathematical

programming modelling. The sequence of logical steps which lead to the

construction of an LP model may be stated as a progressive definition of

dimensions, data tables, model variables, model constraints and the matrix

coefficients which connect the last two entities. As a result of this

research a computer based system is implemented which supports this

approach to model description.

The experimental LP modelling system, CAMPS, IS described in chapter

four. A number of other modelling systems have command and syntax

structure whereby the model description follows closely the mathematical

statement of the LP. The motivation behind such an approach is to

force the modeller to communicate his model in a form that serves also

as full documentation. Whereas model documentation is essential, it is not

t · th th d by whl'ch the modeller communicates his necessary to Ie e me 0

model to the documentation requirements. In CAMPS

communicated and updated using menus and screenforms.

page 109

the model is

Documentation

is divorced from this step and is obtained under a separate option. The

experience with the system has shown that the menus and screenforms

capture a model In far fewer keystr k th b o es an y using a modelling

language. Errors introduced due to mistyping are virtually removed: this

is due to the progressive and automatic syntax checking and prompting

mechanism of the system.

Earlier generation systems which involve high level languages, matrix

generators and modelling languages are introduced and discussed in

chapter one and are also considered in chapter three. It is shown that

set against this, the program generator method, developed in this

research, leads to a superior man-machine communication facility to

describe LP models. The data structure and data management tools and

overall system specification comprise the maIn design activity for system

implementation. This itself is a research area In its own right. In

chapter five some of these implementation aspects are considered and

presented. The integration of model generation with the ANALYZE

subsystem IS also described. This integration of CAMPS with model and

solution analysis capability extends the scope of annotated documentation.

As a result it is possible to provide an advice giving discourse to the

problem owner (modelled when more information regarding the model

needs to be supplied: for instance if the model is not solvable.

In chapter SIX a blueprint for integrating and automating a number of

reformulation met.hods of mathematical programming is presented. The

keyrole played by bound analysis in these models IS also illustrated,

Currently most modelling support systems only allow the user to create

the underlying LP model. It is shown that the basic modelling tool can

be naturally extended to incorporate reformulation support.
By

, , ' , " I t' 't's possible to reduce mtroducing the faCIlIty of algebraIC manipu a IOn 1 1

page 110

the chore of manual reformulation of models. This aspect may prove to

be particularly valuable for problem owners who are capable of

describing their problems precisely but may not be experienced in

reformulation techniques. computer support in these areas offers

increased scope and applicability of mathematical programming.

page 111

References

[ADBELM72] Adams, N., Beglari, F., Laughton, M., and Mitra, G.,

Mathematical Programming Systems in Electrical Power Generation,

Transmission and Distribution Planning, P.S.C.C., Grenoble, 1972.

[ASTCHA75] Astrahan, M.M., and Chamberlin, D.D., Implementation of a

Structured English Query Language, Communication of the ACM, Vol. 18,

No. 10, 580-588, 1975.

[BEALE68] Beale, E.M.L., Mathematical programming in practice, Pitman,

1968.

[BEALE70] Beale, E.M.L., Advanced Algorithmic features for General

Mathematical Programming Systems, in Integer and Nonlinear

Programming, Ed J. Abadie, North Holland, 1970.

[BEALE85] Beale, E.M.L., Integer Programming, in Computational

Mathematical Programming, Ed. K. Schittkowski, Springer-verlag, 1985.

[BELZAD70] Bellman, R., and Zadeh, L.A., Decision Making in a Fuzzy

Environment, Man. Sci, Vol 17, pp 141-164, 1970.

[BISMEE82] Bisschop, J., and Meeraus, A., On the Development of a

General Algebraic Modelling System in Strategic Planning Environment,

Mathematical Programming Study 20, 1982, North Holland.

[BLJEL085] Blair, C.E., Jeroslow, R.G., and Lowe, J.K., Some Results and

Experiments in Programming Techniques for Propositional Logic, Report

of Georgia Institute of Technology, January 1985.

page 112

[BRACLE85] Bradley, G.H. and Clemence, H., Implementation of a Structured

Modeling Language for Optimization, paper presented at the 12th

International Symposium on Mathematical P . MIT 1985 rogrammlng, ..., .

[BHHAMA77] Bradley, S.P., Hax, A.C., and Magnanti, T.L., Applied

Mathematical Programming, Addison-Wesley, 1977.

[BHMIWI75] Brearly, A.L., Mitra, G., and Williams, H.P., Analysis of

Mathematical Programming Models Prior to Applying the Simplex Algorithm,

Mathematical Programming, Vol. 8, 54-83, 1975.

[CAHMON86] Carmona, J., and Jones, C., S.I.M.P., Spreadsheet Interface to

Mathematical Programming User's Guide, Department of Management

Systems and Sciences, the University of Hull, 1986.

[CLEMEN84] Clemence Jr., R.D., A Structured Modeling System for

Optimization, Master's Thesis, Naval Postgraduate School, Monterey, CA,

1984.

[CONTR074] Control Data Corporation, APEX-II Reference Manual, No.

59158100, revision C,1974.

[CONTR079] Control Data Corporation, APEX III Reference Manual, Version

1.2, No. 7607000, Revisions G, 1979.

[DALUMI86] El-Darzi, E., Lucas, C., and Mitra, G., An Investigation of

Computer Based Methods for Minimising the Trim loss of Gasket

Production, internal report, Coopers Payen Ltd, 1986.

page 113

[DANTZI51] Dantzig, G.B., Maximisation of a Linear Functions of Variables

Subject to Linear Inequalities, in Activity Analysis of Production and

Allocation, ed. T.C. Koopmans, Wiley, New York, 1951.

[DANTZI53] Dantzig, G.B., Notes on Linear Programming (pt3):

Computational Algorithm of the Revised Simplex Method, The RAND

Corporation Tech. Rept. RM-1266, 1953.

[DANTZI63] Dantzig, G.B., Linear Programming and Extensions, Princeton

University Press, Princeton, N.J., 1963.

[DARMIT77] Darby-Dowman, K., and Mitra, G., Matrix Storage Schemes in

Linear Programming, Internal report No. STR/15, Department of Statistics

and O.R., BruneI University, 1977.

[DARMIT85] Darby-Dowman, K., and Mitra, G., An Extension of Set

Partitioning with Application to Scheduling Problems, European Journal of

o. R., 1985.

[DASH86] Dash Associates, XPRESS-LP, 1986.

[DAYWIL86] Day, R.E., and Williams, H.P., MAGIC: The Design and Use of

an Interactive Modelling Language for Mathematical Programming, IMA

1986.

[DEMB076] Dembo, R.S., A set of Geometric Programming Test Problems

and their Solutions, Mathematical Programming, Vol.10, pp 192-213, 1976.

[DUBPRA80] Dubois, D., d P d H Fuzzy Sets and Systems, Academic an ra e, .,

Press New York, 1980.

page 114

[DYSON80] Dyson, R.G., Maximin Programming, Fuzzy Linear Programming

and Multi-Criteria Decision Making, JORS, Vol 31, pp 263-267, 1980.

[EDS86] Lucas, J., Expert System/Mathematical Programming applied to

strategic decisions, presented to TIMS XXVII, Gold Coast, Australia, 1986

and winner of Franz Edelman award for Management Science achievement,

TIMS, 1986

[ELDMIT86] EI-Darzi, E., and Mitra, G., A collection of set covering and

set partitioning test problems, internal report, BruneI University, 1986.

[FORRES86] Forrest, J.J.H., A Minimalist Approach to a Modelling

Language, presented to TIMS/ORSA Joint National Meeting,Los Angeles,1986.

[FOURER83] Fourer, R., Modeling Languages versus Matrix Generators for

Linear Programming, ACM Transactions on Mathematical Software, Vol. 9,

No.2, 143-183, 1983.

[FOURER86] Fourer, R., A New Algebraic Modeling Language for Linear

Programming, presented at ORSA/TIMS Joint National Meeting Miami Beach,

1986.

R d Sh M L G The Art of Computer [GAISHA84] Gaines, B •• , an aw, ... ,

Conservation, Prentice Hall, 1984.

M Structured Modeling, Western Management [GEOFF85] Geoffrion, A. .,

h I of Management, University of California, Science Institute, Graduate Sc 00

Los Angeles, CA 90024, 1985.

page 115

[GEOFF86] Geoffrion, A.M., An Introduction to Structured Modeling.

Working Paper No. 338, Western Management Science Institute, UCLA, 1986.

[GIMUSW84] Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H.,

Sparse Matrix Methods in Optimization, SIAM J. SCI STAT. COMPUT., Vol

5, No 3,1984.

[GLOVER85] Glover, F., Mathematical Programming/Artificial Intelligence

links, presented at the 12th International Symposium on Mathematical

Programming, M.LT., Boston,1985.

[GREENB78] Greenberg, H.J., A Tutorial on Matricial Packing, Design and

Implementation of Optimization Software, Ed Greenberg, H.J., Sijthoff &

Noordhoff, The Netherlands, 185-224, 1978.

[GREENB83] Greenberg, H.J., A Functional Description of ANALYZE: A

Computer-Assisted Analysis System for Linear Programming Models, ACM

Transactions on Mathematical Software, Vol. 9, No.1, March 1983, pages

18-56.

[GREENB85] Greenberg, H.J. Towards an Intelligent Mathematical

Programming System, presented at the TIMS Workshop, Colorado School

of Mines, Golden, CO, 1985 (notes available from author).

[GREENB86] Greenherg, H.J., A Natural Language Discourse Model to

Explain Linear Programming Models, Technical Report, University of

Colorado at Denver, Denver, 1986.

page 116

[GRLUMI86] Greenberg, H.J., Lucas, Cad MOt G ., n 1 ra, ., Computer-Assisted

Modelling and Analysis of Linear Programming Problems: Towards a

Unified Framework, presented at ORSA/TIMS, MIAMI 1986.

[HAVERL76] Haverly Systems, Omni Linear Programming System:User and

Operating Manual, first edition, 1976.

[HAVERL77] Haverly Systems, MAGEN Reference Manual, 1977.

[HOCSCH81] Hock, W., and Schittkowski, K., Text Examples for Nonlinear

Programming Codes, Springer Verlag, 1981.

[HOFPAD85] Hoffman, K., and Pad berg, M., LP-Based Combinatorial Problem

Solving, in Computational Mathematical Programming, Ed. K. Schittkowski,

Springer-verlag, 1985.

[HOLDAY86] Holden-Day Inc, What's Best!, 4432 Telegraph Avenue,

Oakland,CA 94609, 1986.

[IBM76] IBM Corporation, Mathematical Programming System Extended,

MPSX/370, Reference Manual, SMI9-1095-1, 1976.

[IBM77] IBM Coproration, MGRW Program Reference Manual, Program

SHI9-5014, 1977.

[JACMCC84] Jackson, R.H.F., and McCormick, G.P., The Polyadic Structure

of Factorable Function Tensors with Application to High Order

Minimisation Techniques, Dept. of Operations Research, George Washington

University, 1984.

page 117

[JENBAR80] Jensen, P.A., and Barnes, J.W., Network Flow Programming,

Wiley, New York, 1980.

[JENSEN86] Jensen, P.A., MICRO SOLVE/OPERATIONS RESEARCH, Department

of Mechanical Engineering, University of Texas at Austin, U.S.A., 1986.

[JEROSL85] Jeroslow, R.G., Computation-oriented reduction of predicate to

propositional logic, internal report, Atlanta, Georgia, 1985.

[JEROSL86] Jeroslow, R., private communication, June 30, 1986.

[KALAN7!] Kalan, J.E., Aspects of large-scale in-core linear programming,

in proceedings of the 1971 annual conference of the A.C.M., Chicago, 1971.

[KARIR080] Katz, S., Risman, L.J., and Rodeh, M., A System for

Constructing Linear Programming Models, IBM Systems Journal 19, 505-520,

1980.

[KARMAR84] Karmarkar, N., A New Polynomial-Time Algorithm for Linear

Programming, Combinatorica, Vol 4, No 4, 1984.

[KETRON75] Ketron Inc., MPSIII DATAFORM User Manual, 1975.

[LINKER7!] Lin, S., and Kernighan, B.W., A heuristic technique for solving

a class of Combinatorial optimisation problems, Princeton Conference on

System Science, 1971.

t " Symphony Reference Manual, [LOTUS84] Lotus Development Corpora lOn,

161 First Street, Cambridge, MA 02142, 1984.

page 118

[LUCMIT85] Lucas, C., and Mitra, G., Computer Assisted Mathematical

Programming (Modelling) System: CAMPS, User Reference Manual, BruneI

University, 1985.

[LUCMIT86] Lucas, C., and Mitra, G., Reformulation of nonlinear

programming test problems to separable programming problems, BruneI

University, 1986.

[LUMIYA86] Lucas, C., Mitra, G., Yadegar, J., and Darby-Dowman, K.,

Linear, Integer, Separable and Fuzzy Programming Problems: A Unified

Approach Towards Reformulation, to be published in the JORS, UK.

[MEFEAV77] Mills, R.E., Fetter, R.B., and Averill, R.F., A Computer

Language for Mathematical Program Formulation, Decision Sciences 8,

427-444, 1977.

[MIT75] M.LT. Center for Computational Research in Economics and

Management Science, DATAMAT Reference Manual, third edition, No. D0078,

1975.

[MITDAR85] Mitra, G., and Darby-Dowman, K., CRU-SCHED - A Computer

Based Bus Crew Scheduling System, in Computer Scheduling of Public

Transport 2, Ed. J.M. Rousseau, North Holland, 1985.

[MITELL82] Mitra, G., and Ellison, E.F.D., User Interface to Mathematical

Programming:UIMP, ACM Transactions on Mathematical Software, Vol 8, No.

3, p229-255, 1982.

page 119

[MITRA70] Mitra, G., Designing Branch and Bound Algorithms for

Mathematical Programming, Paper presented at 7th International

Symposium on Mathematical Programming, the Hague, 1970.

[MITRA76] Mitra, G., Theory and application of Mathematical Programming,

Academic Press, 1976.

[MURST085] Murphy, H.M., and Stohr, E.A., An Intelligent System for

Formulating Linear Programs, Center for Research on Information Systems,

Computer Applications and Information Systems Area, Graduate School of

Business Administration, New York University, 1985.

[MURST086] Murphy, F.H., and Stohr, E.A. Incorporating Rules for Model

Building in an Artificial Intelligence System for Formulating Linear

Programs, Working Paper, New York University, 1986.

[ONEILL78] O'Neill, R.P., An interactive Query System for MPS Solution

Information, in Design and Implementation of Optimization Software, Ed

Greenberg, H.J., Sijthoff & Noordhoff, The Netherlands, 175-183, 1978.

[ORCHAR56] Orchard-Hays, W., The Revised Simplex Method, The RAND

Corporation Tech. Rept. P-911,1956.

[PALMER84] Palmer, K.H., Boudwin, N.K., Patton, H.A., Rowland, A.J.,

Sammes, J.D., and Smith, D.M., A Model Management Framework for

Mathematical Programming, An Exxon Monograph, John Wiley, New York,

1984.

page 120

[SATSER82] Satoh, H., and Serizawa, Y., An Application of Fuzzy Linear

Programming to Expansion Planning of Electric Power Generation, lEE,

Japan Technical Meeting, PE-82-3, 1982.

[SCHRAG81A] Schrage, L., Linear Programming Models with LINDO, The

Scientific Press, 1981.

[SCHRAG81B] Schrage, L., User's Manual for LINDO, The Scientific Press,

Palo Alto, CA, 1981.

[SCICON75] Scicon Computer Services, MGG User Guide, RWG User Guide,

1975.

[SCICON78] SCICON, Computer Services, SCICONIC User Manual, 1978.

[SHEKRU73] Shen, S.N.T., and Krulee, G.K., Solving Linear Programming

Problems Stated in English by Computer, Proceedings ACM 73, 299-303,

1973.

[SIMON60] Simon, H.A., The Shape of Automation, reprinted in

Perspectives on the Computer Revolution, Ed Z.W. Pylyshyn, Prentice

Hall, 1970.

[SIMON86] Simon, H.A., Plenary talk at ORSA/TIMS Joint National Meeting,

Miami, 1986.

[SIMONN66] Simonnard, M., Linear Programming, Prentice Hall

International, 1966.

page 121

[SLABAT85] Slagle, J.R., and Hamburger, H., An Expert System for a

Resource Allocation Problem, Communications of the ACM, Vol 28, No 9,

1985.

[SPERRY78] Sperry Univac, GAMMA3, User Manual for UNIVAC 1108

Computers, 1978.

[STIEFE63] Stiefel, E.L., An Introduction to Numerical Mathematics,

Academic Press 1963.

[STOHR85] Stohr, E.A., A Mathematical Programming Generator System In

APL, Working Paper 96, Center of Research in Information Systems,

Graduate School of Business Administration, New York University, 1985.

[TAMIYA85] Tamiz, M., Mitra, G., and Yadegar, J., FORTLP: A Linear,

Integer and Nonlinear Programming System, User Manual, BruneI

University, 1985.

[TAMIZ86] Tamiz, M., Design Implementation and Testing of a General

Linear Programming System Exploiting Sparsity, Phd thesis, BruneI

University, 1986.

[TOMLIN70] Tomlin, J.A., Branch and Bound Methods for Integer and

Non-convex Programming, in Integer and Nonlinear Programming, Ed J.

Abadie, North Holland, 1970.

[UNICOM77] UIMP, User Interface to Mathematical Programming, UNICOM

Consultants Limited, 1977.

page 122

[WEIZEN66] Weizenbaum, J., ELIZA- A Computer Program for the Study of

Natural Language Communications Between Man and Machine,

Communications of the ACM, 36-45, 1966.

[WELSH86] Welsh Jr., J.S., PAM - A Practitioner's Approach to Modelling,

presented at ORSA/TIMS Joint National Meeting Miami Beach, 1986.

[WILLIA78] Williams, H.P. Model Building in Mathematical Programming,

John Wiley & Sons, 1978.

[WILLIA83] Williams, H.P., A Reduction Procedure for Linear and Integer

Programming Models, in Redundancy in Mathematical Programming, Edited

by S. Zionts et aI, 87-109, Springer Verlag, 1983.

[WILLIA86] Williams, H.P., Linear and Integer Programming Applied to

Artificial Intelligence, internal report, University of Southampton, 1986.

[WITMCC85] Witzgall, C., and McClain, M., Problem and Data Specification

for Linear Programs, U.S. Department of Commerce, National Bureau of

Standards, Report NBSIR 85-3125, 1985.

[WOLSEY85] Wolsey, J., Mixed Integer Programming Model Formulations

and Algorithms, presented at the 12th International Symposium on

Mathematical Programming, M.LT., Boston, 1985.

[ZADEH65] Zadeh, L.A., Fuzzy Sets, Information and Control, Vol. 8,

p338-353, 1965.

page 123

[ZIMMER78] Zimmermann, H.J., Fuzzy Programming and Linear

Programming with Several Objective Functions, Fuzzy Sets and Systems,

Vol 1, pp 45-46, 1978.

[ZIMWIE78] Zimmermann, H.J., and Wiedey, G., Media Selection and Fuzzy

Linear Programming, JORS, Vol 29, pp 1071-1084, 1978.

page 124

APPENDIX 1

A COMPARISON OF CAMPS WITH OTHER SYSTEMS

Using the sample problem of chapter four, a comparison of CAMPS

problem specification method with those of ULP and OMNI IS presented

here. OMNI is a well established matrix generator system In which the

linear programming matrix is specified a column at a time. ULP is a

recently developed modelling language and incorporates many ideas also

found in CAMPS. Thus the data entry which is separate from model

definition follows the logical sequence whereby the sets are first defined

and then the data tables. The model is then conceived in the equation

form and generated using row statements. The problem formulations in

ULP and OMNI have not been tested but were developed by reading user

manuals, however the CAMPS formulation has been tested and the

resulting model optimised.

TANGLEWOOD - ULP

*RANGES

MERCHANTS:ONTARIO,QUEBEC;

PLANTS:WASHINGTON,PHILADELPHIA,DENVER,BUFFALO;

RETAILERS:NEW YORK,HOUSTON,SAN FRANCISCO,CHICAGO;

*TABLES

PLANT COSTS(PLANTS): 5 734;

MIN PROD(PLANTS): 0 400 500 250;

MAX PROD(PLANTS): 500 750 1000 250;

page 125

SELL PRCE(RETAILERS):20 15 20 18;

MIN CUST DMND(RETAILERS): 500 100 500 500;

MAX CUST DMND(RETAILERS): 2000 400 1500 1500;

TRAN COST CUST(PLANTS,RETAILERS): 1.0 1.0 2.0 0.0

3.0 6.0 7.0 3.0

3.0 1.0 5.0 3.0

8.0 2.0 1.0 4.0;

TRAN COST DLR(MERCHANTS,PLANTS): 0.01 0.02 0.04 0.04

0.04 0.03 0.02 0.02;

SCR PRCE(MERCHANTS): 0.1 0.075;

SCR DMND(MERCHANTS): 8 8

UNKNOWN (X(MERCHANTS,PLANTS),Y(PLANTS,RETAILERS))

COMMENT (X(MERCHANTS,PLANTS)=AMOUNT TIMBER FROM MERCHANT TO

PLANT)

COMMENT (Y(PLANTS,RETAILERS)=AMOUNT CHAIRS FROM PLANT TO

RETAILER)

LPMAX (SELL PRCE(RETAILERS)*Y(PLANTS,RETAILERS)

-PLANT COSTS(PLANTS)*Y(PLANTS,RETAILERS)

-TRAN COST CUST(PLANTS,RETAILERS)*Y(PLANTS,RETAILERS)

-TRAN COST DLR(MERCHANTS,PLANTS)*X(MERCHANTS,PLANTS)

-SCR PRCE(MERCHANTS)*X(MERCHANTS,PLANTS»)

CONSTRAIN (PLANTS:X(MERCHANTS,PLANTS))SCR DMND(MERCHANTS»

CONSTRAIN (RETAILERS:Y(PLANTS,RETAILERS)MIN PROD(PLANTS»

CONSTRAIN (RETAILERS:Y(PLANTS,RETAILERS)'MAX PROD(PLANTS)

CONSTRAIN (PLANTS:Y(PLANTS,RETAILERS)MIN CUST DMND(RETAILERS»

CONSTRAIN (PLANTS:Y(PLANTS,RETAILERS)'MAX CDST DMND(RETAILERS»)

page 126

CONSTRAIN (MERCHANTS,RETAILERS:Y(PLANTS,RETAILERS)

-20*X(MERCHANTS,PLANTS)=O)

TANGLEWOOD - OMNI

DICTIONARY

CLASS MER

ONT

QUE

CLASS PLA

WAS

PHI

DEN

BUF

CLASS RET

NEW

HOU

SAN

CHI

Set of timber merchants:

Ontario

Quebec

Set of plants:

Washington

Philadelphia

Denver

Buffalo

Set of retailers:

New York

Houston

San Francisco

Chicago

page 127

DATA

*

TABLE A

COSTS

WAS 5

PHI 7

DEN 3

BUF 4

Plant costs for production of

CHAIRS

TABLE B Minimum production level at each plant

MIN

WAS 0

PHI 400

DEN 500

BUF 250

TABLE C

MAX

WAS 500

PHI 750

DEN 1000

BUF 250

TABLE D

PRC

NEW 20

HOU 15

SAN 20

CHI 18

Maximum production level at each plant

Selling prices to retailers

page 128

TABLE E Minimum retailer demands

MIN

NEW 500

HOU 100

SAN 500

CHI 500

TABLE F Maximum retailer demands

MAX

NEW 2000

HOU 400

SAN 1500

CHI 1500

TABLE G Cost of transport from each plant to

* each retailer

NEW HOU SAN CHI

WAS 1. 0 1.0 2.0 0.0

PHI 3.0 6.0 7.0 3.0

DEN 3.0 1.0 5.0 3.0

BUF 8.0 2.0 1.0 4.0

TABLE H Costs of transport from each

* merchant to each plant

WAS PHI DEN BUF

ONT 0.01 0.02 0.04 0.04

QUE 0.04 0.03 0.02 0.02

page 129

*

*

TABLE I

PCE

ONT 0.1

QUE 0.075

TABLE J

MIN

ONT 8

QUE 8

FORM ROW ID

*Maximise operating profit

OBJ=OBJ

Costs of timber at each timber

merchant

Minimum demand at each timber

merchant

*Satisfy minimum production at plants limit

PLN(PLA)=MIN

*Satisfy maximum production at plants limit

PLX(PLA)=MAX

*Satisfy minimum order quantity

MEN(PLA)=MIN

*Satisfy minimum customer demand limit

CUN(RET)=MIN

*Satisfy maximum customer demand limit

CUX(RET)=MAX

*Satisfy balance of wood stock at each plant

WOB(PLA)=FIX

page 130

~ [J) IT, rnrr~l!ill t~

COLUMNS

*Shipping activity for wood from merchants

FORM VECTOR X(MER)(PLA)

*The amount of timber bought from merchant

MEN(PLA)=1

*The amount of wood consumed ln making chairs

WOB(PLA)=-20

*The cost of buying and shipping timber

OBJ=-TABLE H ((PLA), (MER» - TABLE I (PCE,(MER»

*Shipping activity for chairs from plants to retailers

FORM VECTOR Y(PLA)(RET)

*The amount of chairs produced at the plant

PLN(PLA)=1

*The amount of chairs produced at plant

PLX(PLA)=1

*The amount of chairs retailer buys

CUN(RET)=1

*The amount of chairs retailer buys

CUX(RET)=1

*Amount of chairs produced at plant

WOB(PLA)=1

*The effective profit of selling chairs

RHS

OBJ=TABLE D (PRC, (RET» - TABLE A (COSTS, (PLA»

-TABLE G ((RET), (PLA»

FORM VECTOR RHSIDE

*Minimum plant production

PLN(PLA)=TABLE B (MIN,(PLA»

*Maximum plant production

PLX(PLA)=TABLE C (MAX, (PLA»

page 131

*Minimum order amount

MEN(PLA)=TABLE J (MIN,(MER))

*Minimum customer demand

CUN(RET)=TABLE E (MIN, (RET))

*Maximim customer demand

CUX(RET)=TABLE F (MAX,(RET))

*Note the right hand sides for the balance rows and

*objective are zero

ENDATA

page 132

	374043_0001
	374043_0002
	374043_0003
	374043_0004
	374043_0005
	374043_0006
	374043_0007
	374043_0008
	374043_0009
	374043_0010
	374043_0011
	374043_0012
	374043_0013
	374043_0014
	374043_0015
	374043_0016
	374043_0017
	374043_0018
	374043_0019
	374043_0020
	374043_0021
	374043_0022
	374043_0023
	374043_0024
	374043_0025
	374043_0026
	374043_0027
	374043_0028
	374043_0029
	374043_0030
	374043_0031
	374043_0032
	374043_0033
	374043_0034
	374043_0035
	374043_0036
	374043_0037
	374043_0038
	374043_0039
	374043_0040
	374043_0041
	374043_0042
	374043_0043
	374043_0044
	374043_0045
	374043_0046
	374043_0047
	374043_0048
	374043_0049
	374043_0050
	374043_0051
	374043_0052
	374043_0053
	374043_0054
	374043_0055
	374043_0056
	374043_0057
	374043_0058
	374043_0059
	374043_0060
	374043_0061
	374043_0062
	374043_0063
	374043_0064
	374043_0065
	374043_0066
	374043_0067
	374043_0068
	374043_0069
	374043_0070
	374043_0071
	374043_0072
	374043_0073
	374043_0074
	374043_0075
	374043_0076
	374043_0077
	374043_0078
	374043_0079
	374043_0080
	374043_0081
	374043_0082
	374043_0083
	374043_0084
	374043_0085
	374043_0086
	374043_0087
	374043_0088
	374043_0089
	374043_0090
	374043_0091
	374043_0092
	374043_0093
	374043_0094
	374043_0095
	374043_0096
	374043_0097
	374043_0098
	374043_0099
	374043_0100
	374043_0101
	374043_0102
	374043_0103
	374043_0104
	374043_0105
	374043_0106
	374043_0107
	374043_0108
	374043_0109
	374043_0110
	374043_0111
	374043_0112
	374043_0113
	374043_0114
	374043_0115
	374043_0116
	374043_0117
	374043_0118
	374043_0119
	374043_0120
	374043_0121
	374043_0122
	374043_0123
	374043_0124
	374043_0125
	374043_0126
	374043_0127
	374043_0128
	374043_0129
	374043_0130
	374043_0131
	374043_0132
	374043_0133
	374043_0134
	374043_0135
	374043_0136
	374043_0137
	374043_0138

