
BRUNEL
UNIVERSITY

UNCERTAINTY MODELLING IN POWER SYSTEM

STATE ESTIMATION

by

AbdulRahman K. AI-Othman

A Thesis Submitted for the Degree of

Doctor of Philosophy

Brunei Institute of Power Systems
School of Engineering and Design

Brunei University

August 2004



This thesis is dedicated to

myoId man

and the people of old Kuwait

ii



Abstract

As a special case of the static state estimation problem, the load-flow problem is studied

in this thesis. It is demonstrated that the non-linear load-flow formulation may be solved

by real-coded genetic algorithms. Due to its global optimisation ability, the proposed

method can be useful for off-line studies where multiple solutions are suspected.

This thesis presents two methods for estimating the uncertainty interval in power system

state estimation due to uncertainty in the measurements. The proposed formulations are

based on a parametric approach which takes in account the meter inaccuracies. A non-

linear and a linear formulation are proposed to estimate the tightest possible upper and

lower bounds on the states. The uncertainty analysis, in power system state estimation, is

also extended to other physical quantities such as the network parameters. The

uncertainty is then assumed to be present in both measurements and network parameters.

To find the tightest possible upper and lower bounds of any state variable, the problem is

solved by a Sequential Quadratic Programming (SQP) technique.

A new robust estimator based on the concept of uncertainty in the measurements is

developed here. This estimator is known as Maximum Constraints Satisfaction (MCS).

Robustness and performance of the proposed estimator is analysed via simulation of

simple regression examples, D.C. and A.C. power system models.
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CHAPTER ONE: INTRODUCTION

1.1 Overview of State Estimation

Power system activities such as planning, decision making, operational control and on-

line monitoring are necessary for secure operation. In order to carry out these activities

properly, technical information on the system must be obtained by estimation. Both

mathematical models and measurement are used to obtain these estimates. Ever since

Schweppe et al. introduced state estimation more than three decades ago in [1-3], state

estimation for the real-time modeling of the electric power system has remained an

exceptionally active area of research. Thus far, there have been more than a thousand

research and development publications on innovative and improved techniques, for

further improvement of power system state estimation. More recently, such efforts have

even advocated new approaches such as, dynamic, distributed, and non-WLS (Weighted

Least Squares).

State estimation may be defined as a digital processing procedure that calculates a set of

system states from a set of redundant measurements and applicable physical laws in an

optimal way. Normally, having accurate estimation of the system's state variables is

sufficient to comprehensively monitor the system operating conditions. Usually, the

input information is classified as:

• Real time telemetered measurements of certain quantities of the system.



• The mathematical model of the system and its instrumentation.

• Prior knowledge of some of the system measurements known as

pseudomeasurements.

Pseudomeasurements are introduced as a form of redundancy. They are old

measurements which are obtained from historical data, load forecasts, generation trends

and data provided by neighboring grids. The inclusion of pseudomeasurements has a

crucial effect on the estimation procedure, since the number of actual telemetered

measurements is probably less than the states (unknowns) in large networks. Ultimately,

such redundancy in the measurements allows for smoothing out of the gross noise in the

measurements, and therefore reducing the estimation error. Examples of

pseudomeasurements are known voltages and other settings of regulators, known

generation and load trends and transaction schedules, and load forecasts.

The traditional objective of state estimation is to reduce the effects of measurement errors

by utilizing the redundancy available in most measurement systems. In particular, the

objective is to reduce the variance of the estimates and improve their overall accuracy.

There are other major objectives of traditional state estimation:

• Detection of erroneous measurements and bad data.

• Detection of erroneous assumptions about the system, particularly the status of

switches and breakers.
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• Use of redundancy in order to improve the parameters for the electrical models of

the system.

Power system state estimation usually employs more measurements than the minimum

number necessary to completely define the state of the system. Availability of

measurement redundancy is very crucial for improving the quality of the estimate by

detecting erroneous (bad data) measurements that may be inadvertently included in a

given set. Broadly, the estimation process is formulated as an optimization problem and

the system state variables are estimated by maximizing or minimizing a selected

criterion. For electric power systems, the fundamental basis for most state estimators is

the method of least squares. Schweppe et al. in [1-3] have laid out the main framework

of static state estimation in electric power system, in which the residual vector is

minimized in a least squares sense. The handling of measurements, however, was

proposed such that a single batch of measurements is processed. Larson et al. have

described, on the other hand, a state estimator configuration that is suitable for on-line

and real-time processing of measurements [4, 5]. Their method was also based on least

squares. An obvious advantage of models advocated in [1-5], is that

pseudomeasurements can be used together with real-time measurements for the purpose

of reducing the metering and communication cost.

Generally state estimation may be categorized according to optimization criterion used in

the objective function (minimization I maximization), which is usually formulated as

either quadratic, i.e. least squares and least mean squares, or non-quadratic such as least

absolute value. A great deal of papers on power system state estimation has employed

variants of least squares and least absolute value, including a constrained formulation of
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them. Equality constraints have long been used in weighted least squares (WLS)

estimators [6, 7]. Abur and Celik [8] have reformulated and solved a constrained WLS

using an interior point method. Both equality and inequality constrained least absolute

value (LAV) criterion had been adopted by [9-11] for estimation. Another example of

adoption of a non-quadratic criterion was suggested by Irving et al. , in [12], in which the

problem is formulated as a linear programming of the sum of the least absolute values.

1.1.1 State Estimation and Power-Flow

The state estimation model is closely related to load-flow analysis, nevertheless, the main

reason for introducing state estimation to large scale power systems was to deal with the

many uncertainties associated with traditional load-flow calculations for a real electric

system using real-time telemetered readings [I]. Uncertainty emerges due to

communication errors, unexpected operational system changes, and errors in the

mathematical model assumed. Other sources of uncertainty in measurements will be

discussed in a subsequent section. The load-flow study of an electric power system is

also known as "power-flow" study. In essence, this study involves the calculation of line

loading given the generation and demand levels. In comparison, the classical load-flow

employs a minimal set of the accurate measurements to determine the true state of the

system. On the other hand, power system state estimation employs a larger set of

redundant and possibly contaminated, measurements in order to estimate the true state of

the electrical system.
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As a matter of fact, load-flow may be considered as a special case of state estimation. As

an example, when the number of measurements used in a particular state estimation

problem is equal to the number of unknowns, i.e. there is no redundancy, then the

problem is equivalent to the A.C. load-flow problem [4]. In fact, the load-flow program

is considered as an important element of the on-line state estimation model advocated by

Larson et al. in [5]. In their proposed model, a load-flow solution is carried out, (based

on exact set of measurements), and is utilized as an initial starting point for the on-line

estimator.

1.1.2 State Estimation and Power Market

Without any doubt, state estimation plays a vital role in the emerging scenarios of the

deregulation of the electric power industry. Many market decisions will be based on

knowing the present state of the system accurately. Proper operation and monitoring of

the power market, reliably and accurately, would be impossible without state estimators.

Real-time power markets can not drive their valuations of real time information without

having precise and ongoing information of almost all voltages and all flows in the electric

network at all times.

1.1.3 State estimation and the 2003 Blackout

On August 14, 2003, large portions of the Midwest and Northeast United States and

Ontario, Canada, experienced an electric power blackout. The outage affected an area
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with an estimated 50 million people and 61,800 megawatts (MW) of electric load in the

states of Ohio, Michigan, Pennsylvania, New York, Vermont, Massachusetts,

Connecticut, and New Jersey and the Canadian province of Ontario. The blackout began

a few minutes after 4:00 pm Eastern Daylight Time (16:00 EDT), and power was not

restored for 2 days in some parts of the United States. Parts of Ontario suffered rolling

blackouts for more than a week before full power was restored. In three minutes, 21

power plants shut down, including 10 nuclear plants. An area of 9,300 square miles in

the U.S. and Canada were without power.

According to the final report of United States & Canada outage task force [13], a number

of violations of North American Electric Reliability Council (NERC), Reliability

Standards were committed:

1. Following the outage of the Chamberlin-Harding 34S-kV line, FirstEnergy did not

take the necessary actions to return the system to a safe operating state within 30

minutes.

2. FirstEnergy did not notify other systems of an impending system emergency.

3. FirstEnergy's state estimation/contingency analysis tools were not used to assess

the system conditions.

4. FirstEnergy operator training was inadequate for maintaining reliable operation.

5. The Midwest ISO did not notify other reliability coordinators of potential

problems.

6. The Midwest ISO did not have adequate monitoring capability.
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Generally, the primary functions of Independent System Operator (ISO) is to manage in

real time and on a day-ahead basis the reliability of the bulk power system and the

operation of wholesale electricity markets within their footprint.

Figure 1.1 2003 blackout sequence of events

Figure 1.1 (which was derived form reference [14]) describes the sequence of events that

led to 2003 blackout. Clearly, the initial problem was related to the state estimation

procedure, in which the Midwest ISO state estimator and contingency analysis was

ineffective from 12:37 to 16:04. In fact the state estimator was not functioning due to

missing information on transmission line outages in Cinergy then DPL [13]. Also,

human error made a significant contribution to the problem, which was not resetting a

state estimation automatic trigger when they were required to do so.

7



Among the primary causes of the 2003 blackout was the inadequacy of diagnostic

support. This primary cause is explained as:

• Midwest ISO did not have real-time data from Dayton Power and Light's Stuart-

Atlanta 345-kV line incorporated into its state estimator. This precluded Midwest

ISO from becoming aware of FirstEnergy's system problems earlier and

providing diagnostic assistance to FirstEnergy.

• Midwest ISO's reliability coordinators were using non-real-time data to support

real-time "flowgate" monitoring. This prevented Midwest ISO from detecting any

security violation in FirstEnergy's system and from assisting FirstEnergy in

necessary relief actions.

1.2 Uncertainty and State Estimation

While state estimation is essential for reliable and secure operation of a power system, it

must be emphasised that both mathematical models and measurements, used to estimate

the state of the system, do not necessarily guarantee a relatively accurate estimation.

That is because of modelling errors and the possible presence of erroneous

measurements. As a consequence, uncertainty in the estimates obtained is inevitable.
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The uncertainty is a parameter associated with the measurement that describes the

dispersion of the values that could reasonably be attributed to the measured quantity [15].

This uncertainty reflects the lack of complete knowledge of the exact value of the

quantity being measured. Theoretically, availability of complete knowledge about the

measured quantity requires an infinite amount of information, which is practically

impossible. Phenomena that contribute to the uncertainty are called sources of

uncertainty. In fact, there are various possible sources of uncertainty in a measurement

[15], including:

• Incomplete definition of the measured quantity.

• Imperfect realization of the definition of the measured quantity.

• Non-representative sampling (the sample measured may not represent the defined

measured quantity).

• Insufficiently known effects of environmental conditions or imperfect

measurements of these.

• Personal bias in reading analogue instruments (human error).

• Finite instrument resolution or discrimination threshold.

• Inexact values of measurement standards and reference materials.

• Inexact values of constants and other parameters obtained from external sources

and used in the data-reduction algorithm.

• Approximations and assumptions incorporated in the measurement method and

procedure.
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Traditionally, this uncertainty is handled using probability theory. Problems arise,

however, due to the possibly invalid underlying assumptions concerning the probabilistic

model of uncertainty and to nonlinearities in the network model. As a result, the power

system operator can be faced with estimates whose values cannot be robustly assessed.

1.3 Content of the Thesis

In conventional state estimation techniques the accurate knowledge of error statistics of

transducers and metering equipments is very essential. Nonetheless, such knowledge is

not precisely available, leading to less accurate estimates. Providing estimate bounds

together with the point estimates provides additional information that can improve the

overall quality of the estimation. The knowledge of limiting values or bounds that may

apply to measured quantities, due to possible physical limitations or operational

characteristics, would facilitate a problem formulation that enables computation of

estimate bounds. Thus, the main theme of this thesis is to model the uncertainties

associated with the measured quantities in a way that defines an interval (range) with

respect to their nominal values. Such a range is governed by the tolerance (claimed

accuracy provided by the manufacturer), of the measuring instrument. Ultimately, by

utilizing appropriate mathematical programming techniques, the confidence intervals (or

bounds) on the state variables are obtained. The thesis is organized as follows:

Chapter two investigates, as a special case of the state estimation problem, the traditional

non-linear formulation of the load-flow problem. An improved real-coded genetic
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algorithm (RGA) has been implemented. The outcome shows that the real-coded (RGA)

consistently finds better solutions than those obtained using a conventional Genetic

Algorithms. The proposed method shows reliability, accuracy and repeatability in

solving the power-flow problem.

In chapter three, two methods for estimating the uncertainty interval in power system

state estimation are presented. A non-linear and a linear formulation are presented to

estimate the tightest possible upper and lower bounds on the states. The performance of

both formulations is compared in terms of estimating the bounds of the uncertainty

interval. In addition, an assessment of time performance for both methods is carried out

with varying measurement redundancy level on a small test system. The linear method is

considered further and is implemented to perform various estimation scenarios to

estimate uncertainty bounds of power system state variables on larger test systems. It is

also shown in this chapter that the method has the ability to provide useful additional

information for both metered and non-metered elements of the system. The effects of

network parameter errors are also studied.

The uncertainty formulation can also be extended to other physical quantities such as the

network parameters. In chapter four a parametric method for uncertainty analysis in

power system state estimation is proposed. The uncertainty is present in both

measurements and network parameters. To find the tightest possible upper and lower

bounds of any state variable, the problem is solved by Sequential Quadratic Programming

(SQP) techniques.
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In chapter five, the robust estimators developed in statistics are reviewed. The well-

known Least Median of Squares (LMS) robust estimator and its application in power

systems are revisited. A comparison between the LMS and LS is carried out to illustrate

robustness concepts in estimation. Effects of collinearity in the measurement on the

robust LMS estimator are studied.

A new robust estimator based on the concept of uncertainty in the measurements is

developed. This estimator is known as Maximum Constraints Satisfaction (MCS).

Robustness and performance of the proposed estimator is discussed via simulated

examples of simple regression examples, D.C three-bus system and the six-bus test

system.

Chapter six concludes the thesis and suggests proposals for further studies and future

work in the field. Information and raw data of all tests systems are included in the

appendix section, together with an adaptive version of Genetic Algorithms. Also,

included in the appendix section, is the modelling of an unbalanced three-phase

transformer, which has been developed during the current research, and which would be

important for possible future work extending state estimation methods to unbalanced

three-phase networks.
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1.4 Contributions of the Thesis

• An enhanced genetic algorithm (GA) for solving the load-flow problem is

presented. The minimization of the total mismatch of the power balance

equations is carried out with the help of a real-coded genetic algorithm (RGA) for

the first time. Test results suggests that the real-coded (RGA) consistently finds

better solutions than the conventional Genetic Algorithms.

• The uncertainty in power system state estimation is studied. Uncertainty in the

measurements is modelled via a parametric approach. Two methods for

estimating the uncertainty interval in power system state estimation are presented.

A constrained non-linear and a linear formulation are proposed to estimate the

tightest possible upper and lower bounds on the states. The proposed

formulations have the advantage of providing useful additional information for

both metered and non-metered elements of the system.

• A study of the effects of uncertainty in the network parameters and in the

measurements is carried out in a unified framework. A parametric approach for

uncertainty analysis in power system state estimation is proposed. The non-linear

optimization problem is solved by Sequential Quadratic Programming (SQP)

techniques.
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• An alternative robust estimator based on the concept of uncertainty in the

measurements is developed. This estimator is known as Maximum Constraints

Satisfaction (MCS). Robustness and effectiveness of the proposed estimator is

discussed via simulated examples, where collinearity in the measurement

undermines the performance of conventional, well-known robust estimators.
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CHAPTER TWO: LOAD FLOW ANALYSIS WITH REAL-CODED GENETIC

ALGORITHMS

2.1 Introduction

In this chapter an improved genetic algorithm (GA) solution of the load-flow problem is

presented. In order to minimize the total mismatch of the power balance equations, a

real-coded genetic algorithm (RGA) has been implemented. The method is illustrated by

various tests on a six-bus system. The results confirm that the real-coded (RGA)

consistently find better solutions than the conventional Genetic Algorithms do. The

proposed method shows reliability, accuracy and repeatability in solving the power-flow

problem.
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2.2 Background

The power flow study of an electric power system is also known as "load-flow" study. In

essence, this study involves the calculation of line loading given the generation and

demand level. Ward and Hale [16] are frequently credited for being the first to formulate

the load-flow problem. This problem has been studied widely and solved with the help of

various numerical iterative methods such as Gauss-Seidel and Newton-Raphson [17-20].

Even though these numerical methods are very popular due to their effectiveness in

finding solutions, they suffer from two main problems. First, they may not be able to

converge unless a good initial guess is provided. Second, these methods may get stuck at

some local optima since they possess poor global search capability.

Optimization Algorithms such as Non-linear programming, quadratic programming,

sequential unconstrained minimization techniques and interior point methods are possibly

good candidates to solve the load-flow problem. Nonetheless, most of these approaches

apply sensitivity or Gradient-based techniques to probe the optimum by calculating the

local gradient information. Unfortunately, the load-flow problem is highly nonlinear and

has more than one local optimum solution. Consequently, the optimum obtained from

local optimization methods may not be a global one, particularly in the load-flow

optimization.

Heuristic algorithms such as genetic algorithms have the ability to combat the above

drawbacks. As an optimization technique, genetic algorithms [21, 22] are much less
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dependent on the start values of the variables in the optimization problem when

compared with the widely used Newton-Raphson or mathematical programming

techniques such as SQP (Sequential Quadratic Programming). In addition GAs do not

rely on the guidance of the gradient information, such as the Jacobian matrix, hence they

are more capable of determining the global optimum solution. GAs can deal with

problems that are usually considered very hard by researchers, such as integer variables,

non-convex functions, non-differentiable functions, domains not connected, badly

behaved functions, multiple local optima, and multiple objectives [23, 24]. For these

reasons, GAs has been adopted in this study to solve the load-flow problem.

Converging to a global optimum in the continuous domain is challenging for GAs. In

traditional GAs, binary representation has been used for chromosomes, which equally

discretizes a real design space. While such binary-coded GAs have been effectively

applied to a wide range engineering problems, binary-coded GAs suffer from

disadvantages, when applied to the problems involving a large number of real design

variables (see appendix D). Since binary substrings representing each parameter with

the desired precision are concatenated to form a chromosome for the GAs, the resulting

chromosome encoding a large number of design variables would result in a large string

length. Further more, there exist an inconsistency between the binary representation

space and the actual problem space. For instance, two points close to each other in the

representation space might be far away (in terms Hamming distance) in the binary

represented problem space.
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Yin and Germay were the first who applied GAs to solve the load-flow problem.

Unfortunately weaknesses of the traditional GAs have led to results being not very near

the solution. It was shown in [25] that the total mismatch (accuracy) achieved for three

runs of GA on the six-bus test system were 1.0216, 0.5356 and 0.5218. Apparently, these

mismatches can only suggest that the solution is quite inaccurate and the problem

remains to be solved. These inaccuracies were probably due to the binary representation

of candidates, which led to discretization errors. Also, it has been conceded in [25] that

those GA solutions can only serve as a guide within the solution search space. The GA

solution could then be used as an initial guess for the Newton-Raphson method, which

would hopefully converge to the exact solution.

Wong et al. introduced, in [26-28], a constrained GA for solving power-flow. This

approach was based on a constraint satisfaction technique to force the mismatch of the

total power balance equations to zero. By incorporating the concept of dependant

variables in the formulation [28] and setting the mismatch to zero, the power injection

equations are reorganized to solve for the unknowns (nodal phasor voltages). Using this

reformulation of the loadflow equations, Wong et al. found that the GA could

successfully converge to the correct solution.

One way to solve the problems posed by the conventional GAs is the use of floating point

representation of parameters as a chromosome [22, 29], which is known as real-coded

GAs. In these real-coded GAs, a chromosome is coded as a finite-length string of the real

numbers corresponding to the design variables. The real-coded GAs are rigorous,
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precise, and efficient because the floating point representation is conceptually closest to

the real design space, and additionally, the string length reduces to the number of design

variables. A comparative study conducted by Janikow et al., in [30], has concluded that

the real-coded GAs outperformed binary-coded GAs in many optimization problems.

The proposed RGA has the ability to overcome all the problems which confronted the

binary coded GA. In this study an efficient RGA is employed to solve the conventional

formulation of the load-flow problem. The RGA solution will be compared to that

obtained from N-R to demonstrate the quality of solution and the robustness ofRGA.

2.3 Problem Formulation

There are two well known expressions for load-flow computations. One is expressed in

polar form, where unknowns take the form V = V eJ(J. And the second is expressed in

rectangular, in which unknowns take the form V = E + j F .

Interestingly, polar and rectangle expressions differ in their load-flow convergence

characteristics. Analysis of load-flow convergence characteristics [31, 32] demonstrated

that the rectangular co-ordinate formulation has better convergence characteristics in the

vicinity of multiple solutions. Therefore, rectangular expressions for the load-flow are

adopted in this study.

The load-flow rectangular formulation can be described as follows. Consider a network

with total number of N nodes (buses). At any bus i, the nodal active Pi and reactive Qi

are given by:
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P; =E, f «r,«, -BijF;)+F; f (GjjF; -BijEj)
J~ J~

i = 1,2,3 ,N

(2-1)

Qj =F; f «s,», -BijF;)-E; l:«s,», -BijE;)
J~ J~

i = 1,2,3 ,N

(2-2)

where Gij and Bij are the (i,j)th element of the admittance matrix. E, and F; are the

real and the imaginary parts of the voltage at bus j. Whether the bus i is PV or PQ bus

the mismatch in active and reactive powers, A P; and A Q respectively, are given by:

A P = Ip'p -piI I I

A Q; =jQ;'P -Q;I
(2 -3)

(2-4)

in which P;'P and Q;'P are the prespecified active and reactive power injection levels of

bus i. The unknown variables in the above formulation are the real and the imaginary

parts of the voltages at PV and PQ buses respectively. It is essential to determine the

values of the unknowns such that the mismatch in equations (2-1) and (2-2) are zero

(ideally).

Apart from solving the load-flow problem by conventional methods, the problem can be

viewed as an optimization problem, in which the objective function g is to be minimized.

The objective function can be defined as the sum of the squares of the power mismatches:

(2-5)
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where N PV and N PQ are the total number of PQ and PV buses, respectively. It is

essential to point out that the voltage magnitude on all PV buses are set floating in

equation 2-5.

Figure 2.1 illustrates the shape of the objective function gCE, F), for an arbitrary bus i

and fixing all variables of other buses. It is obvious that the minimum is located at the

very bottom of the basin shape plot. In fact the bottom of the basin is relatively flat,

where conventional GA might be trapped and therefore produce an abnormal solution.

An adjustment to the objective function can be introduced to force convergence toward

the normal solution [33].

Figure 2.1 Three-dimensional plot of the objective function g(E,F)
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2.4 Genetic Algorithms

GAs are inspired by the study of genetics [21, 22, 34]. They are conceptually based on

natural evolution mechanisms working on populations of solutions. An interesting

feature of GAs is that they do not require any prior knowledge of the solution and they

tend to exhibit reliable performance on the majority of the problems [22].

Initially, GAs were designed to operate using binary representations of the problem

parameters (or unknowns). In recent studies however, the superiority of higher

cardinality alphabet GAs (floating point or integer) has been demonstrated with respect to

their applications to various problems.

Application of real-coded GAs in power systems is limited to economic dispatch problem

[35, 36]. Reference [36] presents a new, two-phase hybrid real coded genetic algorithm

(GA) based technique to solve economic dispatch (ED) problem with multiple fuel

options. A brief description of a real-coded GA developed for the solution of the load-

flow problem is given in the next section.

2.4.1 Real coded GA

In a real-coded GA, all decision variables (unknowns) are expressed as real numbers (see

appendix D). Explicit conversion to binary does not take place. A reduction of

computational effort is an obvious advantage of real-coded GA. Another advantage is
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that an absolute precision is now attainable by making it possible to overcome the crucial

decision of how many bits are needed to represent potential solutions.

As in a conventional GA, an initial population of chromosomes (potential solutions) is

randomly created. The best size of this population is subject to experimentation with the

problem at hand. Having created a population of chromosomes, it is possible to assess

the performance, or fitness, of individual members of a population. This is done through

an objective function (equation 2-5) that characterizes an individual's performance in the

problem domain. Then a method known as ranking [37], is used to rank individuals

according to their objective values. Based on that ranking (Le. fitness) of each

chromosome in the initial population, a selection scheme is carried out to pick the best

individuals as members of the new generation.

The selection scheme used is known as Stochastic Universal Sampling [38]. This

scheme, probabilistically selects individuals for reproduction according to their fitness.

That is simply implemented by finding the cumulative sum of fitness of each

chromosome in the population and generating equally spaced numbers between 0 and that

sum. Therefore, only one random number is generated, all the others used being equally

spaced from that point. The index of the chromosome selected is determined by

comparing the generated numbers with the cumulative sum. The probability of an

individual being selected is then given by

F(x)= !(xi)
I N~

L!(Xi)
i-I

(2-6)
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where f(xJ is the fitness of individual Xi and F(xJ is the probability of that individual

being selected.

A discrete recombination method (equivalent to crossover) is employed for mating

individuals and breeding of offsprings. Discrete recombination exchanges variable

values between the individuals. A method known as simple crossover [22, 39] is

implemented. Specifically, let's assume that Cl = (e: ...e!) and C2 = (el
2 ••• e;) are two

chromosomes that are being subjected to crossover. A position i E (1,2,3, ,n -1) is

randomly assigned. The two new chromosomes are made as the following:

Mutation of real-valued population is accomplished with the breeder genetic algorithm in

[40]. Each variable is mutated with a probability by addition of small random values

(size of the mutation step). The mutation step can be reduced as the algorithm evolves.

The proposed algorithm uses a generation gap and fitness-based reinsertion to implement

an elitist strategy whereby the most fit individuals always propagate through to

successive generations. For example, if G-gap = 90%, then population_size xG-gap new

individuals are produced at each generation. And then population_size x(G-gap -1) best

chromosomes are copied intact from the parent generation to the new generation to
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complete the population size (Le. fill the gap). According to [21], a better average fitness

is attained with the adoption of elitist strategy.

2.S Results

8u2

..~I--

a.••
a.d---

I--

8us4

I--
Generator ()--1

-. Load
~

Figure 2.2 Six-bus test system
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To demonstrate the accuracy and the repeatability of the proposed method, RGA has been

applied to the six-bus system from [41], shown in figure 2.2. The RGA parameters used

in these tests are: population_size = 200, mutation rate = 0.01 and generation gap G-gap

= 0.8. To prove repeatability, the algorithm was executed forty times; table 2.1 shows

results obtained from five runs of RGA. Solution of the same network was also carried

out by Newton-Raphson for comparative purposes. Execution time and total squared

mismatches have also been provided for each run.

Table 2.1 Normal solution six-bus test system

Variable N-R
Real-Coded RGA

Runt Runt Run3 Run4 RunS
Ft 0 0 0 0 0 0
Fl -0.0682 -0.0682 -0.0682 -0.0682 -0.0682 -0.0682
FJ -0.0809 -0.0808 -0.0808 -0.0808 -0.0808 -0.0808
F4 -0.0719 -0.0719 -0.0719 -0.0719 -0.0719 -0.0719
Fs -0.0892 -0.0892 -0.0892 -0.0892 -0.0892 -0.0892
FlO -0.1042 -0.1041 -0.1041 -0.1041 -0.1041 -0.1041
El 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500
E, 1.0478 1.0478 1.0478 1.0478 1.0478 1.0478
E3 1.0669 1.0669 1.0669 1.0669 1.0669 1.0669
E4 0.9838 0.9838 0.9838 0.9838 0.9838 0.9838
Es 0.9756 0.9756 0.9756 0.9756 0.9756 0.9756
E" 0.9960 0.9960 0.9960 0.9960 0.9960 0.9960

Total Mismatch: 9.27e-008 3.61e-007 1.31e-007 1.38e-007 9.78e-008
Execution Time: 2.981min 2.652min 3.297min 2.409min 2.980min

Solution of the sates obtained by RGA for each of the five runs appears to be identical to

those obtained by N-R. This shows that RGA is able to reproduce the normal solution,

unlike the binary-coded GA which suffers from not being able to do so accurately. Also

it is clearly shown that RGA can drive down the total squared mismatch to the order of

10-8 (in reasonable CPU time), while the smallest mismatch attained by binary-coded GA

was 0.5218 for the Ward-Hale six-bus system in [25]. The execution time required by

RGA seems to be approximately half that required by the binary-coded GA.
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It may be important to mention that the six-bus test system used in this study is relatively

larger than the Ward-Hale six-bus system. In fact the test system from [41] has three

generator bus and eleven branches, while the Ward-Hale six-bus system consists only of

two generator bus and seven branches.

Figure 2.3 illustrates the convergence characteristics of the RGA for four of the tests in

table I. Variation in convergence of each run is apparent from the plot. It is evident that

run 1 has the best convergence amongst these runs.
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Figure 2.3 Real-Coded GA convergence behaviour of the six-bus test system
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2.6 Summary

Although it has been claimed in the literature that GAs can only provide near optimal

solution for the load-flow problem, this study has demonstrated that a real-coded GA is

able to provide an exact solution to the problem. Various tests have been conducted on a

six-bus test system. Results show that the proposed method was accurate, reliable, and in

particular repeatable. The proposed RGA can be regarded as an efficient method when

compared to other evolutionary methods for solving the load-flow problem. It is

important to mention that the RGA approach is not expected to be practical for on-line

applications, but can be useful off-line studies where multiple solutions are suspected and

also forms a basis for some more advanced methods presented later in this thesis.
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CHAPTER THREE: ANALYSIS OF POWER SYSTEM STATE ESTIMATION

WITH UNCERTAIN MEASUREMENTS

3.1 Introduction

This chapter presents two methods for estimating the uncertainty interval in power

system state estimation. The proposed formulations are based on a parametric approach.

A non-linear and a linear formulation are proposed to estimate the tightest possible upper

and lower bounds on the states. The non-linear formulation is solved by a Sequential

Quadratic Programming (SQP) technique. The linear formulation relies upon two-step

method that uses static weighted least-squares analysis to compute 'point' state estimates.

Linear programming is then employed to obtain the upper and lower bounds of the

uncertainty interval.

The performance of both formulations is compared in terms of estimating the bounds of

the uncertainty interval. In addition, an assessment of time performance for both

methods is carried out with varying measurement redundancy level on the six-bus test

systems. Due to its superiority and efficiency, relative to the non-linear, the linear

method is considered further and is implemented to perform various estimation scenarios

to estimate uncertainty bounds of power system state variables. It is also shown that the

method has the ability to provide useful additional information for both metered and non-
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metered elements of the system. The effects of network parameter errors are also studied.

For illustrative purposes, the linear method is tested using the six-bus, IEEE 30-bus and

IEEE l lx-bus standard systems. Results show that the proposed methods are an accurate

and reliable tool for estimating the uncertainty bounds in power system state estimation.

3.2 Background

The availability of an accurate picture of the system-state is an important aspect of power

system operation. While a SCADA system is capable of providing operators with

measured information, a state estimator has the ability to filter the available information

creating a more accurate and complete picture of the system conditions. The traditional

objective of state estimation is to reduce the effect of measurement errors by utilizing the

redundancy available in the measurement system. In particular, the objective is to reduce

the variance of the estimates and improve their overall accuracy. The other major

objectives of state estimation methods include: detection of gross errors, detection of

invalid topological information and detection of model parameter errors.

If the errors in the measurements follow a known probability distribution, then the set of

feasible estimates can also be modelled by a probability distribution function.

Unfortunately, the statistics of the observation errors are difficult to characterize in

practice. In such circumstances, it is desirable to provide not just a single 'optimal'

estimate of each state variable but also an uncertainty range within which we can be

assured that the 'true' state variable must lie. The idea of an uncertainty range is
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recognizable in engineering practice, where the accuracy of a particular measurement is

often described as (for example) plus or minus 2 percent, rather than by quantifying the

standard deviation or variance.

Schweppe [42] introduced the concepts of uncertainty in the general context of

engineering analysis, estimation and optimization. Schweppe proposed a new class of

estimation problems called "unknown-but-bounded" estimation. As indicated by its

name, unknown-but-bounded estimation does not assume any a priori knowledge of the

measurement uncertainty. These concepts have been extended and developed recently

and have been applied in a number of areas. The present author is not aware of any

previous applications in power system state estimation. However, uncertainty estimation

has been considered in the context of water distribution networks. Bargiela and

Hainsworth [14] introduced bounds on the measurements, with an intention to increase

the robustness of estimation. The approach was developed by Brdys and Chen [43], who

introduced the term Set Bounded State Estimation (SBSE). Anderson et al [44]

formulated a variant of WLS state estimator, in which the measurement bounds are

incorporated into a cost function. That procedure is termed maximally constrained

weighted least square estimator (M-WLS).

The most widely adopted techniques for power system state estimation are based on

weighted least squares (WLS). Some efficient algorithms for solution of the WLS sub-

problem are given by Bjorck [45, 46]. Hitherto, no research seems to have been

conducted on uncertainty interval analysis for power system state estimation. This
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chapter propose two methods for estimating the uncertainty interval around the system

state variables.

3.3 Problem Formulation

3.3.1 Weighted Least Square (WLS)

WLS is the most popular method of point estimation. For a set of measurement

equations:

(3 -1)

where:

~ is the (m xl) measurement vector.

!1 is a vector of non-linear functions that relate the states to the measurements.

x is an (n xl) state vector to be estimated.

e is an (m xl) measurement error vector.

The measurements are usually obtained from transducers in the electrical network. For

observability, it is necessary that m ~ n and that the m measurements are in locations

such that the resulting Jacobian (sensitivity matrix with respect to the state variables) has

rank n.

The measurement error vector f. is assumed to be, zero mean, normally distributed, with

known covariance,

E (f.)=O

32

(3-2)



(3-3)

where E denotes the expected value, and R is the measurement covariance matrix. It is

also assumed that the measurement errors are uncorrelated, so that R is a diagonal matrix.

Therefore [R]ij = oijG'~ , where G'j is the standard deviation of the jth measurement and

Oij is the Kronecker delta. The state estimates are said to be unbiased if and only if (3-2)

and (3-3) are satisfied.

The optimal state estimate vector x may be determined by minimizing the sum of

weighted squares of residuals:

(3-4)

Equation (3-4) is linearized using a Taylor series expansion, retaining the first two terms

and ignoring higher order terms. This leads to a linear weighted least squares problem

having the solution:

A!_ = (JT R-1Jt JT R-I!l~

where J is the Jacobian of !!(!) .

(3-5)

Repeated linearization and solution of (3-5) then solves the non-linear problem via the

Newton-Raphson approach. The dependence on the iteration index is implicitly assumed

for A!, J and A~, where the current state vector is updated at each iteration until a

stopping criterion is reached. Further details of the WLS formulation are available in

references [45-48].
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3.3.2 Uncertainty interval estimation via linear programming (UILP)

Uncertainty intervals can be determined by the solution of a series of appropriately

formulated optimization problems. Each measurement, with its associated uncertainty,

can be represented by upper and lower limits. These constraint limits define the

tolerances on the measurements (Le. the range of values within which the true value of

the measured quantity must lie). Minimizing a particular state variable of interest,

subject to all the measurement inequality constraints, provides the lower bound on that

state variable. Similarly, maximizing that state variable, again subject to all the

measurement inequalities, provides the upper bound for that state. In mathematical form:

subject to

minx;
,{_

g_' S l!(~) S g_u

(3-6)

where ~'is the lower bound of the measurement vector and ~u is upper bound, with:

,
t: =g_-! (3-7)

(3-8)U +
t: =g_ +r

where !+ and !- are the transducer tolerances. The tolerances describe the deterministic

uncertainty of each measurement. They represent the overall accuracy of the meter and

can usually be provided by the manufacturer. Different values for the elements of

positive and negative tolerances are permissible so that a transducer can be specified to

have asymmetric accuracy if required (e.g. an accuracy of -3% to +5% of the nominal

value). However, without loss of generality, we will usually assume that r+ = !-= r,

giving a symmetric tolerance around the nominal value.
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Equation (3-6) defines a non-linear constrained optimization problem, which can be

solved directly by a suitable non-linear programming algorithm such as Sequential

Quadratic Programming (SQP) [49]. However, it is known that power system models are

amenable to solution using the Newton-Raphson approach. Consequently, an alternative

approach is to linearize equation (3-6) about a suitable point! (which in this case can be

provided by the WLS estimate) and then a series of linear programmes are solved to

obtain updates dx, to the uncertainty bounds on the state variables. For example, the

incremental change to the lower bound for the I"" state can be computed by solving the

following LP problem:

mindx;
~!:.

(3-9)

subject to

where dx, is the j'h element of Il.x • Similarly, the incremental change to the upper bound

on the ,o/h state can be found by solving the LP problem:

subject to

maxdx;
~!:.

Il.g_' s J4 s Il.g_u

(3 -10)

where J is the Jacobian of h(!J evaluated at !, and !:!.~' and !:!.~u are vectors of the

incremental changes to measurement lower and upper bounds respectively, computed in

the following form:

(3-11)

(3 -12)
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Therefore by performing 2n linear programming solutions, all the elements of the vectors

d:! + and as- can be calculated. Once d:! + and «s- are known, the bounds on g are

simply found as:

+ A d +x =X + :!.. (3-13)

(3-14)

where g is the point estimate obtained by WLS.

The complexity of the of the optimization problems in (3.9) and (3.10) is of the order

O~I:!- gl12 ),[50, 51]. The computational burden of the process arises from the need to

perform two LP solutions for every uncertainty interval sought. Nevertheless, with the

measurement redundancy level available in power systems, the computational time is

reasonable using modem hardware and software. For large networks it is possible that

the dual LP formulation could be applied to reduce the execution time [52-54].

3.3.3 Uncertainty interval calculation for other quantities:

In addition to solving for the uncertainty ranges of the state variables (voltage magnitudes

and phase angles), it is possible to compute the uncertainty range of other estimated

quantities (such as power flows and injections), whether these quantities are measured or

not. For example, with a change in the objective functions of (9) and (10), the

incremental change in the lower bound of the ;'h measurement could be found by solving

the following LP problem:
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subject to

minj ..1o!..
d!. -I

.1g_1 s J do!.. ~.1g_u

(3 -15)

where t is the ;th row of the Jacobian corresponding to the ;'h measurement. The
-I

solution of (3-15) is a set of incremental changes for all system state variables.

Evaluating the objective function at this solution, Le. i.[A!]min , provides the incremental
-I

change in the lower bound for the r measurement.

Similarly, the incremental change in the upper bound of the ;'h measurement is

constructed from:

subject to

maxj ..1o!..
4!. -I

.1g_1 ~ J4 S .1g_u

(3 -16)

Ultimately, the uncertainty bounds are computed as:

(3-17)

(3 -18)

Uncertainty estimation is a 'worst-case' analysis in the sense that the LPs are seeking the

extreme limits of uncertainty for the quantity of interest. This property is illustrated in

Figure 3.1, based on a simple example described in reference [50]. The sequence of LPs

calculates the bounding polytope due to uncertainty, i.e. the interior diamond shape in the

figure. Weighted least squares estimation, on the other hand, produces an 'average-case'

or maximum likelihood estimate of x .
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Figure 3.1 Two-dimensional example of LP uncertainty estimation

The geometry of the uncertainty estimation problem leads to the question of whether an

infeasible problem might arise (Le. no feasible polytope exists). This cannot occur if all

the measurement uncertainties are correctly specified. However, if any gross

measurement errors have not been eliminated, an infeasible problem is likely to arise. To

avoid this in practice, it would be possible to perform gross error detection and

elimination prior to the point estimation and uncertainty interval estimation procedures.

In a later chapter, an extended robust formulation of the uncertainty problem will also be

considered.
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3.4 Comparison of Two Formulations

This section compares two different methods for estimating the uncertainty interval in

power system state estimation. The first is a non-linear formulation, solved by a

Sequential Quadratic Programming (SQP) technique. The second relies upon two-step

formulation using weighted least-squares analysis to compute 'point' state estimates and

then linear programming to obtain the upper and lower bounds of the uncertainty

intervals. A six-bus test system from [41] is used here as a test bed, to check the ability

of both methods in accurately and efficiently estimating the uncertainty interval for

power system state estimation problems.

The computation of all state variables will be shown to illustrate the concepts. However,

for improved computational efficiency, only the variables of present interest to the power

system operator would need to be computed.

The non-linear problems have been solved by the function fmincon incorporated in the

MATLAB TM 6.1 optimization toolbox [49]. The function finds a solution by

accumulating second order information regarding the KKT equations. This method is

commonly referred to as Sequential Quadratic Programming (SQP). A detailed

description of (SQP) will be shown in chapter 4. The linear programmes have been

solved by the function linprog.

Table 4.1 presents results obtained by both methods, when applied to the 6-bus network.

For the non-linear method, the upper and lower uncertainty bounds of the state variables
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are found using equations (3-1) to (3-3) with t == 3%. The same tolerance was also used

for the linear formulation. A WLS estimator was used to compute the (centre point)

estimated states. Then, equations (3-4) to (3-9) are used to find the upper and lower

bounds. It is apparent that both formulations provide almost identical estimates. Results

of table 3.1 are illustrated in figure 3.2. We also notice that solution obtained by WLS is

strictly bounded by the solution of SQP and WLS-LP.

Table 3.1 Estimated state variables of the 6-bus system with redundancy IW 2.

LP-(Jower bound) LP+(upper bound) SQP-(Iower bound) SQP+(upper bound)

Bus ##
IVI(pU) IVI(pU) IVI(pU) IVI(pU)3(rad) 3(rad) 3(rad) 3(rad)

1 1.0175 0 1.0825 0 1.0175 0 1.0825 0
2 1.0175 -0.0912 1.0825 -0.0388 1.0175 -0.0905 1.0825 -0.0380
3 1.0375 -0.1082 1.1025 -0.0431 1.0375 -0.1082 1.1025 -0.0431
4 0.9539 -0.0888 1.0190 -0.0571 0.9539 -0.0890 1.0190 -0.0572
5 0.9471 -0.1169 1.0122 -0.0654 0.9471 -0.1179 1.0122 -0.0663
6 0.9689 -0.1367 1.0340 -0.0717 0.9689 -0.1367 1.0340 -0.0717
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Figure 3.2 Estimated states for the six-bus system redundancy 1t12

Table 3.2 Execution time of (WLS-LP) and (SQP)

# of measurements CPU time
Linear (WLS-LP) Non-Linear(SQP)

23(redundancy ~ 2) 0.201 sec 10.725 sec
67 (Full) 0.270 sec 15.743 sec

Table 3.2 shows execution time for both methods with different redundancy levels (CPU:

Pentium 4, 1.7 GHZ). A redundancy ~ 2 and full set of measurements are used (all

possible constraints: 12 injection equations, 44 flow equations and 11 state equations).

Clearly, the linear (WLS-LP) outperforms the non-linear method, in these tests. The
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linear (WLS-LP) algorithm seems more suitable for estimating uncertainty interval,

particularly when larger systems are considered. Hence, in the next section (WLS-LP) is

chosen for further analyses on larger systems.

3.S Implementation of Case Studies and Results Analysis

This section presents some typical results obtained by applying the linear algorithms

(WLS-LP) to six-bus, IEEE 30-bus and IEEE 118-bus test network data. The

computation of all state variables and some measurements will be shown to illustrate the

concepts. However, for improved computational efficiency, only the variables of present

interest to the power system operator would need to be computed. The LP problems have

been solved by the function linprog incorporated in the MATLAB1M optimization

toolbox [49].
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3.5.1 Six Bus System

3.5.1.1 Confidence Bounds Analysis with (UILP)

Table 3.3 Estimated state variables and uncertainty bounds for the six-bus network

Simulated LY(lower bound) WL~eentre point) LP+(upper bound)
Bus ##

IVI(pu) IVI(pu) IVI(pu) IVI(pu)6(rad) 6(rad) 6(rad) 6(rad)
1 1.0500 0 1.0417 0 1.0738 0 1.1018 0
2 1.0500 -0.0650 1.0265 -0.0908 1.0678 -0.0612 1.0908 -0.0440
3 1.0700 -0.0756 1.0248 -0.1027 1.0606 -0.0683 1.0891 -0.0560
4 0.9864 -0.0729 0.9678 -0.0865 1.0058 -0.0693 1.0321 -0.0541
5 0.9797 -0.0912 0.9395 -0.0891 0.9614 -0.0845 1.0038 -0.0664
6 1.0014 -0.1042 0.9768 -0.0900 1.0005 -0.0840 1.0411 -0.0257

Table 3.3 shows a comparison of simulated (from a load flow solution) and estimated

states for the six-bus network. The measurement uncertainty has been represented as a

uniform distribution over the interval [-3%, 3%] of the nominal value of the

measurements. A WLS estimator was used to compute the (centre point) estimated

states. Discrepancies between the simulated and the estimated centre point are fairly

large, due to the significant noise level (i.e. ±3%, uniformly distributed). The upper and

lower uncertainty bounds of the state variables are found using equations (3-9) to (3-12),

with 't ::3%. It is apparent that the centre point estimates are within the upper and lower

uncertainty bounds, in this case as illustrated by figure 3.3.
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Figure 3.3 Estimated states and uncertainty bounds for the six-bus system

Further tests were undertaken to examine the effects of parameter uncertainty in the

power network parameters. An error of +3% was introduced into the resistance,

inductance and capacitance parameters of the most heavily loaded line (connecting bus I

and bus 4). Figure 3.4 shows the estimated states with their bounds (which are

designated by '+' signs).

In the phase angle results, it is interesting to note that a 'crossing' occurs. The estimated

state as does not lie within its calculated bounds. This crossing suggests that the

estimated centre point is inaccurate. The WLS process assumes normally distributed

errors (where errors of any magnitude are considered to be possible) and can therefore
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produce estimates that fall outside the uncertainty bounds. In general, the width of the

uncertainty interval, the location of the point estimate within the uncertainty range, and

the occurrence of 'crossing' are examples of the useful additional information generated

by UILP.
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Figure 3.4 Estimated states and uncertainty bounds for the six-bus network

The execution times of the of the proposed method for the six-bus network are given in

table 3.4; which provides the CPU time for test cases with both a full measurement set

and a subset sets of measurements (redundancy e 2.0 to 2.5).

Table 3.4 CPU and execution time of six-bus network

Test system # of measurements (& constraints) CPU time
6-bus 28(redundancy ~ 2) 0.24 sec

6-bus 67 (Full) 0.38 sec
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3.5.1.2 Confidence Bounds Analysis of other Quantities

Equations (3-15) to (3-18) may be used to find uncertainty bounds for measured and

unmeasured quantities, in addition to the state variables. In Table 3.5, selected estimated

measurements are presented with their bounds.

Table 3.S Estimated measurements with uncertainty bounds

Type (pu) Z (lower bo ...... l Z(ceatre aoi.atl ZCun ....r boundl

PI 1.0439 1.0824 1.0835
Pz (laiedionl 0.4536 0.4843 0.5187
PS'" . -0.7283 -0.6851 -0.6632
Q. (laiectionl -0.9623 -0.9295 -0.8972

P Ii..., (bu •• in h ... ZI 0.2924 0.2924 0.3140
P lin .. (bud to buoll -0.2990 -0.2822 -0.2765
P line (busl to bus41 0.4262 0.4441 0.4683
P Hn.e(bUM to bus n -0.4581 -0.4334 -0.4160

Sz(rad) -0.0861 -0.0662 -0.0538
~(rad) -0.0827 -0.0638 -0.0469
84(rad) -0.0809 -0.0725 -0.0609
8s(rad) -0.0801 -0.0799 -0.0622
8,(rad) -0.1094 -0.0936 -0.0704
IVI. 1.0481 1.0672 1.0886
IVIz 1.0397 1.0747 1.1048
IVh 1.0140 1.0553 1.0790
IVI4 0.9725 1.0085 1.0376
IVI!! 0.9569 0.9702 1.0168
lVI, 0.9642 0.9943 1.0293
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Figure 3.5 shows all possible estimated measurements, with bounds for the 6-bus

network. The results are sorted in descending order for clarity.
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Figure 3.5 the estimated measurements with uncertainty bounds for six-bus system

The upper and lower bounds of all measurement changes from equations 3-11 and 3-12

are plotted in figure 3.6 along with the incremental changes of measurement obtained

from the solution of the optimization problems of equations 3-15 and 3-16. Interestingly,

the estimated incremental bounds of all measurements, (i.e. solution from the

optimization problem), either lie within or on the allowed bounds.
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Figure 3.6 Measurements Bounds

3.5.2 IEEE 30-bus test System

Tests were also conducted on the IEEE 30-bus network. In this example, + I0%

parameter errors are introduced for the most heavily loaded line. With r == 6%, the

estimated states and bounds are shown in table 3.6 and Figure 3.7. A 'crossing' is again

apparent. The state a17 does not lie within its bounds.

In the tests presented here and in further tests the Newton Raphson process was found to

perform reliably, with convergence occurring within 3 to 4 iterations. This is consistent

48



with the behaviour of the Newton Raphson process m solving other types of power

system state estimation problems.
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Figure 3.7 Estimated states and uncertainty bounds for the IEEE 30-bus network
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Table 3.6 Estimated state variables and uncertainty bounds for the IEEE 30-bus
network.

True states LP-(Iower bound) WLSl_tre DOlan LpTrUDD rboundl
Bus# IVI(pu) ii(rad) IVI(pu) ii(rad) IVI(pu) ii(rad) IVI(pu) ii(rad)

1 1.0600 0 1.0261 0 1.0783 0 1.1410 0
2 1.0430 -0.0932 1.0124 -0.1053 1.0641 -0.0926 1.1265 -0.0817
3 1.0269 -0.1328 0.9994 -0.1494 1.0472 -0.1305 1.1129 -0.1010
4 1.0194 -0.1635 0.9998 -0.1782 1.0414 -0.1611 l.l016 -0.1293
5 1.0100 -0.2467 0.9785 -0.2738 1.0361 -0.2378 1.0903 -0.2011
6 1.0138 -0.1937 0.9884 -0.2077 1.0360 -0.1910 1.0909 -0.1581
7 1.0045 -0.2247 0.9739 -0.2495 1.0311 -0.2210 1.0941 -0.1854
8 1.0100 -0.2057 0.9769 -0.2270 1.0289 -0.2051 1.0879 -0.1685
9 1.0364 -0.2507 0.9960 -0.2500 1.0566 -0.2400 i.n u -0.2041
10 1.0256 -0.2804 0.9899 -0.2777 1.0459 -0.2737 1.1119 -0.2481
11 1.0820 -0.2507 1.0322 -0.2627 1.1135 -0.2292 1.1873 -0.1810
12 1.0340 -0.2681 0.9771 -0.2806 1.0553 -0.2577 l.l220 -0.1922
13 1.0710 -0.2681 1.0076 -0.2787 1.0943 -0.2563 1.1743 -0.1862
14 1.0191 -0.2841 0.9466 -0.3297 1.0415 -0.2825 1.0883 -0.2011
15 1.0148 -0.2856 0.9647 -0.3191 1.0437 -0.2785 l.l061 -0.2016
16 1.0228 -0.2782 0.9762 -0.2928 1.0449 -0.2691 1.1360 -0.2261
17 1.0196 -0.2836 0.9886 -0.2679 1.0443 -0.2734 1.1183 -0.2383
18 1.0062 -0.2964 0.9352 -0.3039 1.0345 -0.2809 l.l302 -0.1994
19 1.0043 -0.2994 0.9323 -0.2893 1.0220 -0.2851 1.1211 -0.2141
20 1.0089 -0.2957 0.9373 -0.2914 1.0270 -0.2791 l.l172 -0.2150
21 1.0125 -0.2884 0.9564 -0.3013 1.0264 -0.2841 1.1051 -0.2707
22 1.0128 -0.2882 0.9573 -0.3062 1.0285 -0.2860 1.1102 -0.2755
23 1.0042 -0.2921 0.9224 -0.3324 1.0289 -0.2800 l.l075 -0.2059
24 0.9987 -0.2945 0.9156 -0.3609 1.0168 -0.3049 1.1226 -0.2692
25 0.9914 -0.2855 0.9161 -0.3593 1.0213 -0.2963 1.1273 -0.2554
26 0.9732 -0.2932 0.8981 -0.4242 1.0302 -0.3264 l.l943 -0.2393
27 0.9956 -0.2752 0.9172 -0.3246 1.0269 -0.2781 1.1145 -0.2154
28 1.0099 -0.2044 0.9801 -0.2289 1.0357 -0.2045 1.0993 -0.1619
29 0.9752 -0.2979 0.9386 -0.3091 1.0384 -0.3005 l.l784 -0.1997
30 0.9633 -0.3142 0.8544 -0.3818 0.9892 -0.3184 1.0882 -0.1967

The execution time of the of the proposed methods on the IEEE 30-bus network is shown

in table 3.7 which provide the CPU time for both full set of measurements (redundancy ~

3.98) and, a reduced set of measurements (redundancy ~ 2.0 to 2.5).
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Table 3.7 CPU and execution time ofIEEE 30-bus system

Test system # of measurements (& constraints) CPU time
IEEE 30-bus 150(redundancy ~ 2.5) 1.9336 min
IEEE 30-bus 283 (Full) 4.0535 min

3.5.3 IEEE 118-bus test System

Tests were also conducted on the IEEE II8-bus network. In this example, r == 10%, all

estimated states and bounds are shown in table 3.8. Figure 3.8 illustrates the estimated

phase angles from bus 1 to 6 of the IEEE 1I8-bus network. Figure 3.9 shows the

estimated voltage magnitudes with their bounds from bus 77 to 82.
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Figure 3.8 Estimated phase angles and uncertainty bounds for the IEEE 118-bus
network
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Table 3.8 Estimated state variables and uncertainty bounds for the IEEE lIS-bus
network

Bus#
LP-flower bound) WLS( centre Doint) LP+1un r boundl

IVI(pU) o(rad) IVI(pU) o(rad) IVI(pU) o(rad)

1 1.0346 0.1777 1.0350 0.1974 1.0355 0.2172
2 0.9546 0.2641 0.9550 0.2782 0.9554 0.2922
3 0.9974 0.2216 0.9980 0.2381 0.9986 0.2546
4 0.9900 0.3635 0.9900 0.3754 0.9900 0.3872
5 1.0140 0.6260 1.0150 0.6343 1.0159 0.6426
6 1.0472 0.2079 1.0500 0.2240 1.0527 0.2401
7 0.9893 0.1933 0.9900 0.2066 0.9907 0.2199
8 0.9693 0.2002 0.9700 0.2120 0.9707 0.2238
9 0.9725 0.1908 0.9730 0.2037 0.9735 0.2165
10 0.9625 0.3658 0.9630 0.3711 0.9635 0.3764
11 0.9907 0.4884 0.9920 0.4946 0.9933 0.5008
12 1.0482 0.5161 1.0500 0.5253 1.0518 0.5344
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Table 3.8 Estimated state variables and uncertainty bounds for the IEEE US-bus
network (continue)

13 1.0085 0.2697 1.0150 0.2764 1.0214 0.2831

14 0.9661 0.2231 0.9680 0.2318 0.9698 0.2404

15 0.9645 0.2592 0.9670 0.2669 0.9694 0.2745

16 0.9616 0.1985 0.9640 0.2093 0.9664 0.2202

17 0.9832 0.1921 0.9860 0.2022 0.9889 0.2122

18 0.9775 0.1284 0.9800 0.1375 0.9825 0.1466

19 0.9682 0.1498 0.9700 0.1563 0.9718 0.1629

20 0.9827 0.3268 0.9850 0.3273 0.9872 0.3279

21 1.0048 0.3697 1.0050 0.3698 1.0051 0.3699

22 1.0250 0.2710 1.0250 0.2710 1.0250 0.2711

23 0.9550 0.2660 0.9550 0.2660 0.9550 0.2660

24 0.9520 0.2692 0.9520 0.2692 0.9520 0.2692

25 0.9540 0.3416 0.9540 0.3429 0.9540 0.3441

26 0.9849 0.4221 0.9849 0.4230 0.9850 0.4239

27 0.9947 0.4122 0.9947 0.4123 0.9947 0.4124

28 0.9981 0.4824 0.9981 0.4860 0.9981 0.4896

29 1.0015 0.4801 1.0045 0.4835 1.0076 0.4868

30 1.0495 0.3922 1.0495 0.3951 1.0496 0.3979

31 0.9835 0.3651 0.9840 0.3699 0.9845 0.3747

32 0.9787 0.3817 0.9800 0.3844 0.9814 0.3871

33 0.9906 0.3753 0.9911 0.3779 0.9916 0.3805

34 0.9573 0.3794 0.9580 0.3794 0.9588 0.3794

35 0.9430 0.4645 0.9430 0.4649 0.9430 0.4653

36 1.0059 0.5016 1.0061 0.5032 1.0062 0.5048

37 1.0401 0.5655 1.0401 0.5655 1.0401 0.5655

38 0.9850 0.5462 0.9850 0.5462 0.9850 0.5462

39 1.0150 0.6909 1.0150 0.6909 1.0150 0.6909

40 1.0050 0.5791 1.0050 0.5791 1.0050 0.5791

41 0.9850 0.5795 0.9850 0.5795 0.9850 0.5795

42 0.9800 0.5880 0.9800 0.5880 0.9800 0.5880

43 0.9930 0.4699 0.9930 0.4699 0.9930 0.4699

44 1.0101 0.4874 1.0101 0.4874 1.0101 0.4874

45 1.0171 0.4245 1.0171 0.4245 1.0171 0.4245

46 1.0011 0.3767 1.0011 0.3767 1.0011 0.3767

47 0.9711 0.3574 0.9711 0.3574 0.9711 0.3574

48 0.9651 0.3040 0.9651 0.3040 0.9651 0.3040

49 0.9521 0.3138 0.9521 0.3138 0.9521 0.3138

SO 0.9731 0.3425 0.9731 0.3425 0.9731 0.3425

51 0.9801 0.2597 0.9801 0.2597 0.9801 0.2597

52 0.9751 0.2384 0.9751 0.2502 0.9751 0.2621

53 0.9909 0.4696 0.9930 0.4744 0.9952 0.4791

54 1.0352 0.1888 1.0356 0.2069 1.0360 0.2251

SS 0.9713 0.1955 0.9714 0.2133 0.9715 0.2310

56 0.9662 0.2732 0.9663 0.2873 0.9664 0.3014

57 0.9961 0.2137 0.9963 0.2303 0.9965 0.2469
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Table 3.8 Estimated state variables and uncertainty bounds for the IEEE ll8-bus
network (continue)

58 0.9891 0.4918 0.9893 0.5020 0.9895 0.5122
59 1.0408 0.2175 1.0429 0.2333 1.0450 0.2491
60 0.9839 0.1958 0.9841 0.2093 0.9842 0.2228
61 0.9668 0.1970 0.9675 0.2116 0.9682 0.2262
62 0.9831 0.2044 0.9836 0.2195 0.9841 0.2347
63 0.9808 0.2414 0.9812 0.2531 0.9816 0.2648
64 0.9865 0.2069 0.9868 0.2182 0.9870 0.2295
65 0.9565 0.2369 0.9579 0.2453 0.9592 0.2537
66 0.9568 0.2824 0.9586 0.2892 0.9604 0.2959
67 0.9681 0.3680 0.9697 0.3739 0.9713 0.3798
68 0.9991 0.2400 0.9998 0.2466 1.0004 0.2532
69 0.9592 0.5236 0.9616 0.5236 0.9639 0.5236
70 0.9606 0.2214 0.9632 0.2296 0.9658 0.2379
71 1.0291 0.3270 1.0312 0.3380 1.0333 0.3490
72 0.9663 0.1857 0.9673 0.1980 0.9683 0.2103
73 0.9767 0.1924 0.9791 0.2025 0.9816 0.2126
74 0.9804 0.2097 0.9830 0.2202 0.9856 0.2307
75 1.0380 0.2956 1.0409 0.3051 1.0438 0.3145
76 0.9651 0.1469 0.9671 0.1579 0.9690 0.1688
77 0.9646 0.1213 0.9668 0.1294 0.9690 0.1375
78 0.9767 0.1963 0.9792 0.2068 0.9818 0.2173
79 0.9831 0.2418 0.9851 0.2480 0.9872 0.2541
80 0.9859 0.2758 0.9868 0.2790 0.9877 0.2823
81 1.0170 0.3654 1.0171 0.3656 1.0172 0.3658
82 1.0206 0.3522 1.0206 0.3523 1.0207 0.3525
83 1.0011 0.3343 1.0011 0.3343 1.0011 0.3343
84 0.9669 0.2886 0.9669 0.2886 0.9669 0.2887
85 0.9568 0.2720 0.9568 0.2720 0.9568 0.2720
86 0.9460 0.2551 0.9460 0.2551 0.9460 0.2551
87 0.9706 0.2902 0.9706 0.2902 0.9706 0.2902
88 0.9590 0.2752 0.9590 0.2752 0.9590 0.2752
89 0.9930 0.4075 0.9930 0.4075 0.9930 0.4075
90 1.0161 0.3993 1.0161 0.3999 1.0161 0.4005
91 1.0120 0.4288 1.0121 0.4304 1.0123 0.4321
92 1.0196 0.4369 1.0196 0.4372 1.0197 0.4374
93 1.0200 0.4787 1.0223 0.4826 1.0246 0.4864
94 0.9856 0.3853 0.9869 0.3881 0.9882 0.3909
95 0.9665 0.3970 0.9673 0.3997 0.9682 0.4025
96 1.0035 0.4595 1.0035 0.4595 1.0035 0.4595
97 1.0093 0.4645 1.0093 0.4645 1.0093 0.4645
98 1.0605 0.4851 1.0609 0.4882 1.0613 0.4914
99 0.9888 0.4734 0.9889 0.4736 0.9889 0.4737
100 0.9846 0.4943 0.9846 0.4943 0.9846 0.4943
101 0.9798 0.5385 0.9798 0.5385 0.9798 0.5385
102 0.9867 0.5416 0.9867 0.5416 0.9867 0.5416
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Table 3.8 Estimated state variables and uncertainty bounds for the IEEE 118-bus
network (continue)

103 0.9875 0.6201 0.9875 0.6201 0.9875 0.6201
104 0.9875 0.5355 0.9875 0.5355 0.9875 0.5355
105 0.9909 0.4980 0.9909 0.4980 0.9909 0.4980
106 0.9813 0.4810 0.9813 0.4810 0.9813 0.4810
107 0.9929 0.4781 0.9929 0.4781 0.9929 0.4782
108 1.0115 0.4845 1.0115 0.4846 1.0116 0.4846
109 1.0237 0.4762 1.0237 0.4762 1.0237 0.4762
110 0.9928 0.5148 0.9928 0.5148 0.9928 0.5148
111 0.9916 0.5618 0.9916 0.5618 0.9916 0.5618
112 0.9612 0.3530 0.9612 0.3530 0.9612 0.3530
113 0.9663 0.3365 0.9663 0.3365 0.9663 0.3365
114 0.9671 0.3286 0.9671 0.3286 0.9671 0.3286
115 0.9584 0.2549 0.9606 0.2611 0.9629 0.2673
116 0.9589 0.2548 0.9605 0.2609 0.9621 0.2671
117 0.9724 0.1803 0.9739 0.1971 0.9755 0.2139
118 0.9490 0.3800 0.9496 0.3821 0.9503 0.3843

3.6 Summary

Two formulations of uncertainty analysis in power system state estimation are presented

in this study. The uncertainty is modeled via deterministic upper and lower bounds on

measurement errors, which take into account known meter accuracies. Linear and non-

linear and formulations are provided to estimate the upper and lower bounds on the

states. Both methods provided almost identical estimates, when applied to the six-bus

test system. It is concluded from execution time analysis that (WLS-LP) is faster than

(SQP) and more appropriate for uncertainty interval estimation in larger power networks.

Consequently, analysis of uncertainty in power system state estimation with (WLS-LP) is

applied on six-bus, IEEE 30-bus and the IEEE lIS-bus test systems, for which a

conventional WLS estimator is used to obtain point estimates of the states, and then a

series of LP solutions is used to compute the tightest possible bounds on the states and

55



other quantities of interest. The method offers useful additional information to the power

system operator. By examining bounds on the estimates one can infer the quality of the

metering configuration and determine the proximity of estimated quantities to voltage

and flow limits with greater confidence. An interesting "cross-over" phenomena can

occur in cases where network parameter errors exist, and this may be useful for model

validation purposes.

It is important to stress that formulations proposed in this chapter assume that the

transducer tolerances r must be known and fixed. In realty the instrument inaccuracies

will become unknown as the instruments age under the action of various unknown

processes and as the instruments are not recalibrated. It must be noted that measurement

recalibration is rarely carried out in a systematic manner by utilities [55, 56]. This is

mainly due to the fact that large numbers of measurements exist in a power network and

the time and expertise required to check each individual transducer would be expensive.
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CHAPTER FOUR: ANALYSIS OF POWER SYSTEM STATE ESTIMATION

WITH UNCERTAIN MEASUREMENTS AND PARAMETERS

4.1 Introduction

The uncertainty analysis, in power system state estimation, can also be extended to other

physical quantities such as the network parameters. In this chapter a parametric method

for uncertainty analysis is proposed. The uncertainty is assumed to be present in both

measurements and network parameters. Uncertainties in both measurements and

parameters are known and bounded. The problem is formulated as a constrained non-

linear optimization problem. To find the tightest possible upper and lower bounds of any

state variable, the problem is solved by Sequential Quadratic Programming (SQP)

techniques. When applied to the six-bus, IEEE l4-bus and IEEE 30-bus networks, the

proposed method shows reliability and accuracy in estimating the uncertainty bounds in

power system state estimation.
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4.2 Background

In chapter 3, the uncertainty analysis of power system state estimation was strictly

confined to the measurements received from the network. In fact, the uncertainties in the

state estimates are not only due to the inaccuracies of the measurements. They are also

due to the inaccuracies of the network mathematical model being used, which is

expressed by ~(!)in equation 3-1 (a vector of non-linear functions that relate the states

to the measurements). These uncertainties originate from the approximations of the 1r

equivalent model of the network topology. Approximations of transmission lines and

transformers, values of the resistances, reactances and shunt capacitances and the time-

skew between the metered values are likely sources of inaccuracies of final network

model (Le. Y- admittance matrix).

Power line length and height above the ground also have a direct effect on the parameters

(Le. resistance, inductance and capacitance) [17]. According to [57, 58], factors like line

loading, ambient temperature, wind speed and solar irradiation (direct sunshine) are

known to affect the conductor heating (or, cooling) and, as a result, would cause

variations in power line sag. Therefore, the transmission line parameters are susceptible

to this variation. Which in tum, leads to some degree of uncertainty in their values.

Consequently, this uncertainty in parameters should be considered in power system

computation such as load-flow analysis and state estimation.
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Golub et al. have argued in [59], that optimization methods such as, regularized least

squares (which is used to combat much of the ill-conditioning that arises in pure LS

problems [60, 61]), ridged regression and total least squares (which provides a way to

deal with uncertainties in the data [62]) allow, in their various ways, the inclusion of a

priori knowledge (probability distribution, for example) of the uncertain parameters in the

problem at hand. Recently new algorithms have been proposed to solve the problem

Ax ~ B in a total least square sense with uncertainty introduced in both the A matrix and

the B vector. For instance, Chandrasekaran et al. in [63], has considered the case in

which only selected columns of the coefficient matrix are subject to perturbations. The

method guarantees that the effect of the uncertainties will never lead to an over-

estimation. On the other hand, the Structured Total Least Norm (STLN) described in

[64], preserves the structure of the problem and minimizes the measure of the error in a

discrete norm.

There has been little work on the effects of measurements and parametric uncertainty in

engineering applications. In fact, concepts of uncertain estimation have been adopted

mainly in the context of water distribution networks. Bargeila in [65], has adopted the

ellipsoid method to provide confidence limit on state estimate the nonlinear water system.

Nagar et al. [66] apply concepts from robust control theory and allowed for uncertainty in

both the parameters and the measurements. The uncertainty is isolated with the use of a

Linear Fractional Transformation (LFT), which enables the preservation of the structure

of the uncertainty and allows for a separate manipulation of the nominal and uncertain

part. The physical meaning of the LFT is described in figure 4.1, where M is the
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nominal matrix of the system at hand and ~ is a diagonal matrix where the uncertainties

are isolated. In robust control this terminology called "pulling out the uncertainty" [67].

The LFT problem is an NP-hard problem. El Ghaoui and Calafiore in [68], have

demonstrated that an LFT problem may be formulated as a convex semi-definite

programming problem (SOP). A Linear Matrix Inequalities (LMI) [69] approach is then

used to solve the (SOP) problem to obtain the upper and lower confidence bounds [70].

A ......

- M
.. ...... -x z

Figure 4.1 LFT representation where all the uncertainties isolated in A.

This chapter proposes an alternative method for estimating the uncertainty interval

around the system state variables. The method combines measurement and parameter

uncertainties in a unified framework. A non-linear formulation is utilized to estimate the

tightest possible upper and lower bounds on the states and the parameters. The

estimation problem is then solved directly by means of Sequential Quadratic

Programming (SQP).
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4.3 Proposed Formulation

Uncertainty intervals can be determined by the solution of a series of appropriately

formulated optimization problems. Each measurement, with its associated uncertainty,

can be represented by upper and lower limits. These constraint limits define the

tolerances on the measurements (i.e. the range of values within which the true value of

the measured quantity must lie). Minimizing a particular state variable of interest,

subject to all the measurement inequality constraints, provides the lower bound on that

state variable. Similarly, maximizing that state variable, again subject to all the

measurement inequalities, provides the upper bound for that state. In mathematical form:

minx,
.L

(4-1)

subject to

where Z' is the lower bound of the measurement vector and Z" is upper bound, as

described in equations 3-7 and 3-8 of chapter 3.

The introduction of parametric uncertainty would clearly increase the dimensionality of

the problem. The number of unknowns increases because the network parameters are no

longer considered constants in the constraint evaluation phase (i.e. elements of the

admittance matrix in power flow and injection equations must now be regarded as

variables). The solver has to find the optimum values of not only the states, but also the

network parameters that satisfy the available constraints. Hence, to account for
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parametric uncertainty in addition to measurement uncertainty the non-linear

mathematical formulation in equation 4-1 would be extended to the following form:

subject to

min[x i or Pi]
L·e

ZIS H(x,e) SZu

el
S e sl

(4-2)

The new objective function is to minimize a particular element of interest contained in

the vector :! or in E!., subject to all the measurement inequality constraints, to obtain a

lower bound. Similarly, maximizing that element provides an upper bound. Vector j;

contains all the states (excluding the slack bus angle), which are arranged

[82,..,8N,VI'''' vNy, where N is the total number of nodes. Vector E!. includes all network

transmission lines resistances R, reactances X and the total line charging values B

(susceptance). Also, z' is the lower bound of the measurement vector and z: is upper

bound. Furthermore, a set of double-sided inequality constraints has been added to the

formulation, subjecting the varying (uncertain) transmission line parameters to a defined

range. e' And p" are vectors of the lower and upper bounds on transmission line

parameters respectively.

Clearly, the matrix H could include the active and reactive power injections at any bus:

P, =Vi j~rj [G(e)ij cos(Oij)+ B(p)ij sin(Olj)]

o. =V, j~rj [G(e)lj sin(~j )-B(p)lj cos(~j) ]

(4-3)

(4-4)
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where N is the total number of buses, ~ is the magnitude of the bus i voltage and 8/j is

the voltage phase angle between bus i and bus j.

Also, any measured active and reactive line flows (sending end) are included as:

P;j =V/G(E!..)ij -VrjG(E!..)ij cos(~j )+VrjB(E!..)ij sin(8ij) (4-5)

i = 1,2,3 .......,N and j = 1,2,3 .......,N

Qij = -V,2 [B(E!..)/j + B(p)~J+VrjB(E!..)/j cos(~j )+VrjG(E!..)/j sin(8/j) (4-6)

i = 1,2,3 .......,N and j = 1,2,3 .......,N

It is important to note that the elements of admittance matrix, G /j and Bij' are no longer

constants when calculating power flows and injections. Equations 4-3 to 4-6 are a

function of the state variables and the varying network parameters contained in E!..'As a

result, when the solver iterates on the unknowns of the optimization problem, an update

of the admittance matrix has to be recomputed for proper evaluation of equations. 4-3 to

4-6. With modern high speed computers and utilizing sparsity techniques, this issue

poses no significant computational burden.
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4.4 Overview of non-linear optimization:

The main objective in a constrained optimization problem is to transform the problem

into subproblem that can be handled without very much difficulty. That subproblem can

then be solved and used as the basis of an iterative process [71]. Occasionally,

translation of the constrained problem to a basic unconstrained problem is achieved using

penalty functions for constraints that are near or outside the constraint boundary. Then

the constrained problem is solved using a sequence of parameterized unconstrained

optimizations, which converge to the solution of the constrained problem.

These ways of solving constrained optimization problems are now considered relatively

ineffective, in some situations, and inaccurate. As an alternative, optimization methods

have focused on the solution of the Kursh-Kuhn- Tucker (KKn equations. The KKT

equations are necessary conditions for optimality for a constrained optimization problem.

If the problem (both the objective function and the constraints) at hand is convex, then

the KT equations are necessary and sufficient for finding a global solution point. The

Kuhn-Tucker equations can be formulated as:

Vf(x')+ fA; *'V'g;(x')=O (4-7)
;=1

A; *Vg; (x") = 0 i = 1,..... ,me

i = me + 1,..... ,m

where f (x) is the objective function.

g (x) is the constraints of the objective function.
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A is the Lagrange multiplier.

yo is the gradient.

me is the number of equality constraint.

m is the number of inequality constraint.

The first equation is necessary for cancelling gradients between the objective function

and the active constraints at the solution point x·. In order to cancel out the gradients, the

Lagrange multipliers, i.e. Ai .i = 1,.....,m are necessary to balance the deviations, or

incremental changes, in the objective function magnitude and constraint gradients. Only

active constraints must be included in this operation. Lagrange multipliers of non-active

constraints must be set equal to zero.

The non-linear programming method used is based on Powell's algorithm [72, 73], which

solves a sequence of positive definite quadratic programming subproblems. The non-

linear programming method can be geometrically interpreted as finding a solution point

within all the measurement constraints hyperplanes. The estimated values lie at the

intersection of p hyperplanes in p dimensional space, where the estimator will select a set

of p hyperplanes from the nm available values to minimize the objective function.

Therefore, the bounding p measurements are selected to define the solution point [12,

74].
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4.4.1 Sequential Quadratic Programming (SQP)

The solution of the KT equations forms the basis of many nonlinear programming

algorithms. These algorithms attempt to compute the Lagrange multipliers directly.

Constrained quasi-Newton methods guarantee superlinear convergence by accumulating

second order information regarding the KT equations using a quasi-Newton updating

procedure [75]. These methods are commonly referred to as Sequential Quadratic

Programming (SQP) methods, since a QP subproblem is solved at each major iteration

(also known as Iterative Quadratic Programming, Recursive Quadratic Programming, and

Constrained Variable Metric methods). The QP optimization problem can be described

as follows:

Where

min(idJHkdk +Vf(xkt dk) (4-8)

suject to [Vg(xk)Jdk+g;(Xk)=O i=l, ..... .m,

[Vg(xk)J d, +s, (xk)SO i =me +l, .....,m

is the Hessian matrix of the Lagrange function L(x, A. ) = f (x) + f A.I *gi(x) .
i-I

is a basis of the search direction of the k th iteration.

SQP can be decomposed into three main stages:

• Updating of the Hessian matrix of the Lagrangian function.

• Line search and merit function calculation.
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• Quadratic programming problem solution.

A convergence test is made at each iteration, after the solution of the quadratic

programming problem until the control variables, gradient of functions and objective

function reaches a specified tolerance value [72, 76].

4.5 Results and analysis

This section presents some typical results obtained by applying the proposed algorithms

on three sample power systems. The first system has six buses, is originally obtained

from reference [41] and shown in figure 2.2. The second system is the IEEE 14-bus test

network [77], shown in figure 4.2. The third system is the IEEE 30-bus test network [77]

which is shown in figure 4.3. The associated network data of all test systems are

provided in the appendix.

The computation of all state variables and all parameters will be shown to illustrate the

concepts for the six-bus and IEEE 14-bus systems. However, for improved

computational efficiency, only the variables of present interest to the power system

operator would need to be computed. The non-linear problems have been solved by the

functionjjnincon incorporated in the MATLASTM6.1 optimization toolbox [49]

As an application of non linear programming in power system state estimation, Abbasy

and Shahidehpour have employed (SQP) to estimate the states of five-bus network in
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[74]. Outcome of (SQP) was identical to those obtained from (LP) and (WLS).

® GENERATORS

® SYNCHRONOUS
CONCENSERS

Figure 4.2 IEEE 14-bus test system

4.5.1 Estimation of states confidence bounds

To demonstrate the effect of parametric uncertainty on the estimation process, a test with

fixed (certain) measurements and uncertain parameters is carried out on the six-bus test

system. All parameters in e are permitted to vary within a range of ±2% of their

nominal values. The outcome is shown in table 4.1. Estimation of the states with

conventional WLS (to define a central point estimate) are included for comparative
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purposes with the SQP estimates. Results in table 4.1 are illustrated in figures 4-4 and 4-

5.

1MII1t WIHOINI TRNfIfOllMrll IQUIYALEJITI

HANCock noANOlC!~. Fe

Figure 4.3 IEEE 30-bus test system
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Table 4.1 Estimated state variables with uncertain parameters for the six-bus
system

Bus#
SQP-(Iower bound) WLS centre) SQP+(up er bound)

IVI(pU) 6(rad) IVI(pU) 6(rad) IVI(pU) 6(rad)

1 1.0475 0 1.0500 0 1.0525 0
2 1.0481 -0.0675 1.0500 -0.0650 1.0519 -0.0625
3 1.0674 -0.0791 1.0700 -0.0756 1.0727 -0.0722
4 0.9841 -0.0754 0.9864 -0.0729 0.9887 -0.0705
5 0.9777 -0.0940 0.9797 -0.0912 0.9817 -0.0884
6 0.9989 -0.1076 1.0014 -0.1042 1.0040 -0.1008

From figure 4-2 and 4-3, we notice that solution provided by WLS is strictly bounded by

the solution ofSQP.
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Figure 4.4 Estimated phase angles and uncertainty bounds for the six-bus system

70



1.081---,-----,--~==:::::!========::c=======:::;l

--- -_.. -... _.--_.-{y

- center (WLS)
--G>- (min/max)-parm Unc Only

1.06

:::::J

.s 1.04
Cl)
Q)
"C
.2'e
Cl
~ 1.02
Q)
Cls
"0
>

" .'
" "

0.98

2 3 4 5 6
State variables

Figure 4.5 Estimated magnitudes and uncertainty bounds for the six-bus system

When uncertainties in both measurements and parameters are present, the results obtained

are shown in table 4-2. The deterministic uncertainty in the measurements is assumed to

cover a range of [-3%, 3%] of nominal values, while parametric uncertainties pare

bounded by ±2%.

Table 4.2 Estimated states with uncertain measurements and parameters

SQP·llower boundI WLS centre I SQP+1un, r bound)
Bus #

IVICPU) o(rad) IVICPU) o(rad) IVI(pU) o(rad)

1 1.0178 0 1.0500 0 1.0818 0
2 1.0235 -0.0818 1.0500 -0.0650 1.0762 -0.0495
3 1.0436 -0.0981 1.0700 -0.0756 1.0960 -0.0549
4 0.9584 -0.0887 0.9864 -0.0729 1.0141 -0.0586
5 0.9533 -0.1105 0.9797 -0.0912 1.0058 -0.0735
6 0.9757 -0.1275 1.0014 -0.1042 1.0268 -0.0827
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The result of table 4.2 is illustrated in figures 4.6 and 4.7, together with the solution from

equation 4-2. As would be expected, the estimates allowing uncertainty in the

measurements and the parameters are wider than those with uncertainty only in the

measurements. Also, the estimated bounds of the IEEE 14-bus system are shown in table

4.3 and figure 4.8, where p = ±2% & t = ±6%. Selected state variables estimates of the

IEEE 30-bus network with their bound are shown in table 4.4, where p = ±3% & t =

±10%.
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Figure 4.6 Estimated phase angles and uncertainty bounds for the six-bus system
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Table 4.3 The estimated bounds of the IEEE 14-bus system

Bus#
SQP-(Iower boaad) WLS (eeatre ) SQP+luDller boaadl

IVI(pU) 8(rad) IVI(pU) 8(rad) IVI(pU) 8(rad)

1 0.9314 0 1.0600 0 1.1000 0
2 0.9239 -0.1454 1.0450 -0.0859 1.0959 -0.0514
3 0.9000 -0.3405 1.0100 -0.2181 1.0696 -0.1510
4 0.9269 -0.3083 1.0427 -0.1839 1.0933 -0.1103
5 0.9319 -0.2725 1.0514 -0.1601 1.1000 -0.0933
6 0.9298 -0.4434 1.0700 -0.2539 1.1000 -0.1357
7 0.9114 -0.4141 1.0500 -0.2353 1.0698 -0.1239
8 0.9464 -0.4240 1.0900 -0.2353 1.1000 -0.1153
9 0.9000 -0.4550 1.0429 -0.2629 1.0795 -0.1422
10 0.9000 -0.4671 1.0401 -0.2663 1.0839 -0.1391
11 0.9464 -0.4659 1.0514 -0.2622 1.0963 -0.1334
12 0.9000 -0.4787 1.0542 -0.2687 1.1000 -0.1341
13 0.9000 -0.4761 1.0485 -0.2697 1.0932 -0.1386
14 0.9000 -0.4977 1.0272 -0.2836 1.0796 -0.1477

Table 4.4 The estimated bounds of the IEEE 30-bus system

Bus#
SQP-(Jower bouadl WLS (ceatre) SQP+luDlier bouad)

IVI(pu) 8(rad) IVI(pu) 8(rad) IVI(pu) 8(rad)

1 0.9413 0 1.0600 0 1.1300 0
8 0.9564 -0.3200 1.0100 -0.2057 1.1330 -0.2000
9 0.9033 -0.5540 1.0364 -0.2507 1.0895 -0.1454
10 0.9047 -0.3675 1.0256 -0.2804 1.0855 -0.1541
27 0.9464 -0.5658 0.9956 -0.2752 1.1063 -0.2334
28 0.9300 -0.5787 1.0099 -0.2044 1.1033 -0.2991
29 0.9210 -0.4760 0.9752 -0.2979 1.0982 -0.3006
30 0.9001 -0.4707 0.9633 -0.3142 1.0890 -0.3505
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Figure 4.7 Estimated magnitudes and uncertainty bounds for the six-bus system

4.5.2 Estimation of confidence bounds on parameters

Equation (4-2) is also capable of estimating (minimize or maximize) any chosen

parameter. Table 4.5 shows the nominal parameters of the each line (The six-bus

network has 11 lines) with associated upper and lower bound.
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Table 4.5 Estimated parameter bounds for the 6-bus system

line K Rnominal
R+ x- Xnominal x+ B- Bnominal B+

1-2 0.0980 0.1000 0.1020 0.1960 0.2000 0.2040 0.0196 0.0200 0.0204
1-4 0.0490 0.0500 0.0510 0.1960 0.2000 0.2040 0.0196 0.0200 0.0204
1-5 0.0784 0.0800 0.0816 0.2940 0.3000 0.3060 0.0294 0.0300 0.0306
2-3 0.0490 0.0500 0.0510 0.2450 0.2500 0.2550 0.0294 0.0300 0.0306
2-4 0.0490 0.0500 0.0510 0.0980 0.1000 0.1020 0.0098 0.0100 0.0102
2-5 0.0980 0.1000 0.1020 0.2940 0.3000 0.3060 0.0196 0.0200 0.0204
2-6 0.0686 0.0700 0.0714 0.1960 0.2000 0.2040 0.0245 0.0250 0.0255
3-5 0.1176 0.1200 0.1224 0.2548 0.2600 0.2652 0.0245 0.0250 0.0255
3-6 0.0196 0.0200 0.0204 0.0980 0.1000 0.1020 0.0098 0.0100 0.0102
4-5 0.1960 0.2000 0.2040 0.3920 0.4000 0.4080 0.0392 0.0400 0.0408
5-6 0.0980 0.1000 0.1020 0.2940 0.3000 0.3060 0.0294 0.0300 0.0306
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Figure 4.8 Estimated states and uncertainty bounds for the IEEE 14-bus system
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4.5.3 Estimation of other quantities

In addition to solving for the uncertainty ranges of the state variables (voltage magnitudes

and phase angles) or the network parameters, it is also possible to compute the

uncertainty range of other estimated quantities (such as power flows and injections),

whether these quantities are measured or not. For example, with a change in the

objective functions of (4-2), the lower bound of the lh measurement could be found by

solving the following minimization problem:

min f, (x ,p)
lL·e

Z 1!5; H (x, e) !5;z II

el
!5; e !5;e_"

where f is an active or reactive power flow or injection chosen from equations 4-3 to 4-

(4-9)

subject to

6. Some typical results are shown in table 4.6.

Table 4.6 Estimated bounds of injection and flows of the 6-bus system

Type (DU) Z ()ower bound) Z(center ooint) Zt.",_ bouad)

Plllnl ......Aft' 0.9337 1.0824 1.2375
Q. -0.9543 -0.9295 -0.8986
PS(lnl_ ..nl -0.7277 -0.7000 -0.6722
Q3.· . -0.26453 -0.2367 -0.20894

P 6ne (buot ... hU'l) 0.2924 0.2924 0.3140
P line (bua) 10h...4) 0.40917 0.4370 0.46476
Q line(b ... " ... h... 1\ 0.19948 0.2273 0.25507
P U..., (bull in huol 0.40838 0.4362 0.46396

Table 4.7 shows the values of the line parameters connecting bus 3 and 6, when the

estimated active power flow of that line is maximized or minimized.

Table 4.7 Parameters of transmission line connecting bus 3 and bus 6.

Objective Function RJ-6 X3-6 B3-6

Max {P Une (bull 10bua6)) 0.0204 p.u 0.0995 p.u 0.0102 p.u
Min {P &ne (bull 10bua6)) 0.0196 p.u 0.1020 p.u 0.0101 p.u
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4.6 Summary

An analysis of uncertainty in power system state estimation is presented in this chapter.

The uncertainty is modelled via deterministic upper and lower bounds on measurement

errors, which take into account known meter accuracies. Parametric uncertainties are

also known and bounded. A non-linear formulation is provided to estimate the upper and

lower bounds on the states and the parameters. The non-linear problem is solved by

Sequential Quadratic Programming (SQP) techniques. The method offers useful

additional information to the power system operator. By examining bounds on the

estimates one can infer the quality of the metering configuration and determine the

proximity of estimated quantities to voltage and flow limits with greater confidence.
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CHAPTER FIVE: ROBUST STATE ESTIMATION

5.1 Introduction

In traditional power system state estimation, estimators based on statistical methods such

as least squares and least absolute values, along with their variants, are well documented

and have been widely applied. Researchers have begun to realize that measurements

acquired from the field usually do not entirely satisfy the assumptions on which those

estimators have been initially bulit. Circumstances such as faulty measurements pose a

serious threat to the quality of the estimator outcome. Hence, robust estimators have

been introduced as an alternative, to eliminate or down-weigh the effects of faulty

measurements (or outliers).

Indeed, the uncertainty interval estimation methods presented in previous chapters

assume that measurements obtained from the power network are filtered and error free

(i.e., there exist no outliers or leverage points). Otherwise, an attempt to solve either the

linear or the non-linear optimisation problems would result in either failure due to

infeasibility or production of erroneous bounds.

In this chapter, robust methods developed in statistics literature are reviewed. The well-

known Least Median Square (LMS) robust estimator [78, 79] and its application in power

systems [80-83] are revisited. A comparison between the LMS and LS is carried out to

show effectiveness in the presence of outliers. It is also shown how collinearity in the
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measurements undermines the performance of LMS estimator. A new robust estimator

based on the concept of uncertainty in the measurements is developed here. This

estimator is known as Maximum Constraints Satisfaction (MCS). Robustness and

performance of the proposed estimator is discussed via simulated problems of simple

regression examples, D.C. three-bus system and the six-bus test system.

5.2 Background

In statistics and regression analysis, an outlier is an observation that is inconsistent with

the remainder of the measurements. In other words, the corresponding error or residual is

large compared with those of the majority of the other observations. Theoretically, one

can identify whether the observations are outliers or not, only after finding the regression

coefficients (or the fit) from which a residual analysis could be carried out for

identification.

Generally, outliers occur quite frequently, as a consequence of high amplitude noise in

measurements (e.g., due to induction during large transients), brief loss of measurement

data and noise occurring due to unintended signal paths and measurements [84].

Furthermore, many AC applications result in frequent measurement errors and "periodic

noise". Periodic errors are common in power electronic switched applications.

As far as state estimation is concerned, when the measurement noise is modelled as

Gaussian with a given covariance, the least squares estimator gives the maximum-
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Iikihood minimum variance estimates. In practice however, due to the massive amount

of metering that exists in a large power network, it is very highly likely that the noise

statistics are not accurately determined. Therefore, if some of the measurements are

extremely contaminated, estimation by the least squares estimator will give deceptive

results. Consequently, for a proper and accurate estimation it is imperative that a robust

estimator is employed in such circumstances.

This chapter is organized as follows: An overview of regression analysis is presented in

section 5.3. In section 5.4 the concept of breakdown point is discussed. In section 5.5,

available robust regression methods are reviewed. The shortcoming of the LMS

estimator is presented in section 5.6. The MCS estimator is described in section 5.7,

followed by the conclusion in 5.8.

S.3 Overview of Regression Analysis

The main objective of regression analysis is fitting equations to observed variables. To

illustrate the concept, simple linear regression examples are used throughout this chapter.

The simple regression model is:

YI =xA +02 +el

Y2 =x/JI +02 +e2
Y 3 = X ill +O2+e3 where m > n (5-1)
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Where Yi are the observation or the measurements, and XI are the explanatory variable,

or the index of the observations. The main objective in regression analysis, as opposed to

state estimation, is to estimate the regression coefficients B; (unknowns):

(5-2)

which makes it possible to obtain estimated measurements y, which can be calculated

as:

(5-3)

The well-known LS regression estimator proceeds with finding the best fit of YI and XI'

by minimizing the sum of squared residuals between the actual and the estimated

measurements.

(5-4)

Figure 5.1 illustrates the LS fit, showing the scatter plot of seven points, (XI' YI ) , .... ,

(X7' Y7 ), which almost lie on a straight line. As can be seen from the figure, the LS

estimator seems to have perfectly fitted all of the measurements. Let us now assume that

an error takes place in the communication or processing of measurements, affecting (for

instance) the decimal point positioning of the values of X6 and X7• As a result these

points lie away from their ideal position (i.e. ideal position being indicated by diamond

points in the scatter plot). These two points are an example of outliers in the x-direction.

Figure 5.2 illustrates that scenario. It is apparent that the LS estimator has difficulties
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fitting the good measurements, and the outliers have a great influence on the LS solution,

which differs from the solution in figure 5.1.
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Figure 5.1 Least squares regression with no outliers

There would be similar problem for outliers occurring in the y-direction. Figure 5.3

illustrates such a situation, where outliers in the y-direction significantly influence the

regression coefficients of the LS estimator. The points (X6'Y6) and (X7'Y7) actually tilt

or "pull" the line of the LS fit. With the terminology borrowed from mechanics, theses

points are called Leverage Points. In general, a leverage point is an observation that is

isolated from the bulk of the observations.
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Figure 5.2 Least squares regression with outliers in the x-direction

It is a point that deviates severely from the regression line defined by other observations.

Normally, leverage measurements can appear in power system networks in areas of low

local redundancy [80, 85].

Other causes of leverage measurements in power systems are claimed to be [80, 85, 86]:

• Injection measurements taken at a bus with a large number of incident branches.

• Flow measurement on a line with impedance that is drastically different to most

other lines in the system.
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Abur et. al presented in [86], a 'matrix stretching' technique, by which conditions leading

to leverage measurements can be eliminated.
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Figure 5.3 Least squares regression with outliers in the direction

The difficulties posed by the LS estimator can be attributed to the non-robust nature of

least squares fit. As an attempt towards a more robust estimator, the least absolute value

(LA V) regression estimator was proposed by Edgeworth [87]. The objective is to

minimize the least absolute value of the residual:

(5-5)
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The weight least absolute value (WLAV) estimator was considered first by Irving, Owen

and Sterling [12] as a robust estimator. Confirming the robustness, Kotiuga and

Vidyasagar have proved the bad data rejection is a property of (WLAV) estimator [88].

Nonetheless, it was illustrated later by Falcao and Assis [89], that the (WLAV) estimator

would indeed fail to reject specific bad data. It is then established in[79, 90,91] that the

LAV estimator can only deal with outliers in the x-direction [79, 90, 91].

Regrettably, the uncertainty interval estimation formulation presented in chapters 3 and 4

assumes that measurements obtained from the power network are free of gross errors.

For the uncertainty interval estimation formulations to be practical and work as intended,

measurements must be outlier free. Otherwise, the outcome of the linear formulations

(WLS-LP) in equations (3-9) and (3-10), in particular, would be compromised. To be

specific, providing intervals for the WLS state estimates does not preclude these

estimates to be strongly biased. Thus, the uncertainty intervals estimated by the (WLS-

LP) formulation may be meaningless when the measurements are grossly erroneous. As

an example, an incorrectly metered zero value of a power flow when its actual value is

within the upper and lower measurement limits.

This weakness of the previously provided formulation for estimating the uncertainty

interval may be overcome by using a static robust estimator instead of the WLS, such as

Least Median Squares (LMS) or Least Trimmed Squares (LTS) [78, 79, 92]. Generally,

robust estimators are those estimators that exhibit stable behaviour (bounded bias and

variance) under deviation from the assumptions on which they are based. That way, any

outliers would be identified and eliminated from the measurement set, prior to the
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estimation process for the uncertainty bounds. Consequently, the outcome of the

proposed formulations would be more precise and meaningful.

Before overviewing the robust regression methods described in the literature, it is

essential to define how one can measure the robustness of a given regression procedure or

robust estimator.

5.4 Breakdown Points

Several concepts have been proposed in the literature on how to analyse the stability of

an estimator. Hampel proposed the concept of an influence function, in [93], in order to

assess the robustness of an estimator. Hodges, in [94], has introduced another way to

quantify the robustness of an estimator used in regression analysis. It was called the

Breakdown Point. Nonetheless, Hodges definition was limited to the one-dimensional

estimation of location. Hampel provided a more generalized definition for the

breakdown point in [95]. A simple version and a widely used definition of the

breakdown point was introduced by Donoho and Huber [96], which can be loosely

defined as the smallest fraction of contaminations that critically offsets the estimator from

the true measurements. Formally, the breakdown point of an estimator can be defined for

a set of m measurements as follows: Let

z = {(x."""~n'Y.)"""( x",., ...,x_,y",)} (5-6)

also, let T be the regression estimator being evaluated for robustness. Then, applying T

to the set of samples Z, would yield the (estimated) regression parameter as
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T(Z)=9 (5-7)

Let the contaminated sample Z', which is obtained by replacing p number of

measurements in m by erroneous values. Then the maximum bias as a result of such

contamination [79] is

bias(p;T, Z) = s~pllT(Z') - T (Z)II (5-8)

where the supremum is over all possible Z', (the supremum is the least upper bound

over the set Z' ,[97]). If we assume that the bias(p;T,Z) is finite, then that leads to p

outliers can have serious effect on the estimator T. Hence, the breakdown point of the

estimator is

E;(T,Z)=min{~;bias(p;T'Z) is finite} (5-9)

Even though it was illustrated in figures 5.2 and 5.3, that the LS estimator has failed with

two outliers in the measurement set; Rousseeuw and Leroy [79] have shown examples

with the least squares estimator failing with only a single outlier in the measurement set.

Therefore, the breakdown point for the LS estimator is

e; (T,Z) = _!_
m

If the number of observation, m, increases, then the least squares estimator has a

(5-10)

breakdown point of 0%. That breakdown percentage clearly shows how vulnerable the

least squares estimator is to outliers. The LAV estimator also has the same breakdown

point, since it can fail with one leverage point as shown in [79].
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s.s Overview of robust regression

Robust estimators are those estimators that are resistant against all kinds of outlier and

leverage points. Generally, robust estimators can be classified according to two main

categories:

• Robust regression methods.

• Regression diagnostic methods.

Robust regression methods and regression diagnostic methods have the same objective,

but proceed in the opposite order in the manner by which they accomplish that objective.

Both classifications are briefly explained in the following subsections.

S.S.1 Robust regression methods

The robust regression approach starts the estimation procedure by fitting the bulk (the

majority) of the data and at the same time reveals the outliers as observations with large

residuals.

Generally, one would like to have a robust procedure that has a very high breakdown

point. In theory, however, the highest breakdown point one can achieve is 0.5 (or 50%)

because for any higher contamination level, one is not guaranteed to be able to

distinguish the good points from the bad.
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To illustrate this point, let us assume that one is looking for a straight line fit of a given

data set. Then, if the contaminating points "conspire" to form another straight line, and if

the contamination level is larger than 50%, one cannot distinguish between the true line

and the line represented by the contamination.

Robust regression methods include:

• The M-estimator and the Generalized M-estimator (GM) [98], where M stands for

maximum likelihood. These methods are probably the most popular. They

proceed to downweigh the highly influential points as well as large residual points

by replacing the (y i - Y It in equation 5-4, by some other symmetric function of

the residual. Normally, both methods have a 30% breakdown point.

• L-estimator is based on linear combination of order statistics [99].

• R-estimator is based on the ranks of the residuals [100].

• S-estimator is based on the minimization of a robust M-scale, (estimate), of the

residual scale [101-103].

• Non-quadratic estimators such as the LAV are used for bad data suppression in

[104].
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• Least Median of Squares (LMS) and Least Trimmed Squares (LTS) estimator

approaches [78, 79, 105-107]. They are both based on minimizing a robust

measure of the scatter of the residual.

In this chapter, the LMS estimator is considered amongst the above robust methods to

demonstrate the concept of robust regression and for comparison with the MCS method

proposed in this thesis.

5.5.1.1 Least Median of Squares

The idea of minimizing the mean of absolute (or squared) residuals was first introduced

by Hampel in [108]. Rousseeuw developed the least median of squares estimator (LMS)

[78]. The LMS estimator is based on the following objective function:

~in me~ian[(YI - yJ2] (5-11)

where y i = 0IX i +O2, for the simple regression case. The LMS estimator is obtained by

minimizing the hth-order residual, where h = [m /2] +[( n + I)/ 2] [79]. Mili et. 01 [81]

have derived a general expression for the optimal order, such that the breakdown point of

the LMS attains the highest possible fraction of outliers.
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The LMS objective function can be geometrically explained as finding the narrowest strip

covering half of the measurements, i.e. m /2, and the LMS line lies in the middle of that

strip, as illustrated in figure 5.4. This property makes the LMS a robust estimator with

50% breakdown point. For multiple regression, the LMS is obtained from the smallest

plane or hyperplane slice that covers the majority of the data.

The LMS estimator performs remarkably well on the previous example where the LS and

the LAV have failed. For the situation where the two outliers are in the x-direction, the
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LMS estimator yields the following solution: O'MS ~ [O~5J where the LS solution is

A [0.5]BlS = 2 . Plots of both solutions are shown in figure 5.5. As for the situation of the

A [0.5]two outliers in the y-direction, the LMS yield the following solution BlMS = ° ,and

A [0.2124Jthe LS solution is BlS = . Plots of both solutions are shown in figure 5.6. Thus,
0.8185

the LMS estimator seems to working perfectly well in identifying outliers, particularly in

the previous two examples, regardless of what type of outlier and what direction they

may take in the measurements.
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Unfortunately, LMS suffers from poor performance in terms of asymptotic efficiency. In

Figure 5.6 LMS result of two outliers in the y-direction

fact the LMS has an asymptotic efficiency of zero [79], which means that the LMS has an

apparently slow convergence rate. Despite that, LMS is still one of the most common

robust regression estimators that is frequently used. In an effort to handle this problem,

Rousseeuw introduced the Least Trimmed Squares (LTS) estimator in [79], which has the

following objective function:
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where r is the residual vector of all measurements. Note that the residuals are arranged

in an ascending order as (r2)t:m ~ ... ~ (r2tm' For best robust properties, h has to

approximately m /2 . It is rather interesting to note that the objective of the LTS

estimator is very similar to the LS, however, the largest residuals are excluded in the

summation. Implementation of LTS estimator in power system has been presented by

Mili et. al in [109].

5.5.2 Regression diagnostic methods

The diagnostic approach is a strictly quantitative measure of leveraging which proceeds

by identifying the outliers and then fits the rest of the data by a classic method such as

LS. Regression diagnostic methods have a combination of numerical and graphical tools

for detection and identification of outliers.

In general, regression diagnostic methods may be categorized as:

• Classical diagnostic methods.

• Robust diagnostic methods.

Both methods are briefly explained in the following subsections.

5.5.2.1 Classical diagnostic methods

The classical method computes what is known as the Mahalanobis distance as
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(5-13)

for every X; ,where T (X) is the arithmetic mean of the data set X and C (X) is the

usual sample covariance matrix. For a simple regression case, the data set matrix

X looks like

XJ XJ

X2 X2

X= X3 = 1 (5-14)
X4 xm_1 1
Xs xm 1

The significance of that distance, MD;, is it indicates how far a given state x , is from

the centre of the cloud of data. Although this method proved to be useful in identifying

outlying effects in measurements, unfortunately, this approach seriously suffers from the

masking effect of outliers. Rousseeuw and Zomeren have argued in [110, 111], that

multiple outliers may have some masking effects on each other and do not necessarily

have MD; far away from the cloud. This finding seems to be rather obvious, since

neither C (X) or T (X) are robust against outliers, in particular leverage points.

5.5.2.2 Robust diagnostic methods

In an effort to combat the masking effects, Rousseeuw and Zomeren have proposed the

robust distance denoted as (RD), in [110, 111], where C (X) and T (X) in equation 5-

13 are based on minimum volume ellipsoid (MVE) proposed by Rousseeuw in [112].

The robust distance may be calculated as
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(5-15)

where T (X) is the centre of the minimum volume ellipsoid covering half of the

measurements, and C (X) may be determined by the same ellipsoid multiplied by a

correction factor.

Figure 5.6 illustrates the distinction between the classical and the robust diagnostic

methods. The data in this example are from Hertzsprung-Russell for star clusters, which

are obtained from [79].

Figure 5.6 Mahalanobis distance (dasbed ellipse) vena Robust distance (dasbed
ellipse)

The plot shows 47 points of log temperature (x-axis) versus the log of the light intensity

(y-axis), with 97.5% tolerance ellipse. The dashed line ellipse is obtained form the

classical mean and covariance (Mahalanobis distance), which is quite large, due to the

attraction of the top right hand side four outliers. The classical ellipse is trying to engulf

the outliers. On the other hand, the solid line ellipse (Robust distance) is produced based

on the MVE estimator, which is smaller and essentially fits the main bulk. Therefore, the
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extreme outliers can be identified with high certainty as outliers, since they are far a way

from the bulk designated by the MVE ellipse.

Robust diagnostics have been applied in power system state estimation by Mili et. 01 [82,

83], and were referred to as projection statistics. It was shown that projection statistics

indicate the degree of leveraging in a given set of measurements.

5.6 The shortcoming of the LMS estimator

The LMS estimator was initially appealing due to its robustness and effectiveness in

detecting outliers. However, in certain circumstances, the LMS is not very effective.

One situation where sever problems can potentially occur for LMS is when collinearity

exists in the measurements. Collinearity may be defined as near linear dependency

among the measurements [113]. Collinearity can cause large variability in the state

estimates, occasionally resulting in estimates that differ from the true values by an order

of magnitude and/or have the incorrect sign.

5.6.1 Illustrative example

Stefanski has argued that high-breakdown estimators, e.g. LMS, can exhibit unusual

finite-sample behaviour [114]. Stefanski has shown, via a simple example, that an LMS

estimator may produce dubious estimates where collinearity does exist among a certain

set of measurements. This simple example was slightly modified by Ryan, in [92], to

further illustrate the weakness of the LMS estimator. The data for this example is shown
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in table 5.1. The outcome of LMS and LS estimators on the Stefanski example is

illustrated in figure 5.8.

Table 5.1 Ryan's example

x y
2.5 5.0
7.5 2.6
14.0 2.6
15.0 3.9
16.0 5.1
22.0 13.0
23.0 14.2
23.0 5.1
29.0 2.7

It appears from figure 5.8 that the outliers have successfully misled the LMS fit and

attracted its line. This phenomenon is mainly caused by colIinearity in the

measurements. In this example m = 9 and n = 1, therefore the 5 lower valued squared

residuals will be minimized by LMS. Interestingly, five points of the data set fall on the

same line, three good points and two outliers, which consequently appears to be the best

candidate solution that the can be provided by the LMS estimator. Thus, for this

example, the LMS solution was very far from the correct solution. In comparison, the

outliers seem to have less effect on the LS estimate. Subjectively, the LS fit appears to

be better and closer to a correct solution (a correct solution should have approximately a

zero slope). Certainly, had the seven good data only been used in the LMS regression

procedure, the slope would have been virtually zero. However, the colIinearity of three

good data points with two outliers has misled the LMS estimator.
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Figure 5.8 Illustration of LMS shortcoming

Collinearity of measurements in power systems state estimation takes place as a

consequence of unintended dependence among measurements [84]. For instance, the

measurement of frequency at two points in a power system for a power system stabilizer

(PSS) application may be collinear if the same reference clock is used for both

measurements. Furthermore, common mode error in measurements often results in

collinearity. As an example, the use of a common sequence ground for several voltage

measurements. In such a case, the measurements may be collinear. Mathematically,

collinearity could very well result in an ill-conditioned matrix, meaning that the matrix
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inversion can be very inaccurate [113]. Generally, collinearity in the measurements tends

to inflate the variance and absolute value of the least squares equation coefficients (power

system state estimation Jacobian).

Furthermore, the LMS estimator had also been criticised by Hettmansperger and Sheather

in [115]. Hettmansperger and Sheather dismissed the generally held belief that LMS is

highly resistant to perturbations in the datum. In fact it was shown that slight changes in

a centrally located data, can cause the LMS regression coefficients to differ drastically.

S.7 The Maximum Constraints Satisfaction Estimator

It was discussed in the previous sections how a high-breakdown regression technique, Le.

LMS, suffers from statistical difficulties. Authors in [92, 114, 115] have particularly

discussed many illustrative examples showing LMS estimator failing in identifying

outliers. Indeed, collinearity and perturbations in the measurements generally undermine

the robustness of an LMS fit.

The concept of uncertainties in the measurements may be considered to develop a more

robust estimator. In this section a new robust state estimator is proposed based on

measurements uncertainty. The proposed Maximum Constraints Satisfaction (MCS)

estimator has the ability not only to detect outliers, but is also resistant with respect to

bad leverage points. The MCS estimator is based on the idea of searching for a point !
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in the space of all possible estimates that maximizes the number of satisfied uncertain

measurements. To be specific, each measurement with its associated uncertainty can be

represented by double inequality constraints (upper and lower limits). These constraint

limits define the tolerances on the measurements (Le. the range of values within which

the true value of the measured quantity must lie). A point ! satisfying most of the

available double inequality constraint, if not all, must be a valid solution point. The

fundamental concept of the MCS estimator may be explained better by the illustration in

figure 5.9. This illustration shows three uncertain measurements along with their bounds.

The intersection of these bounds defines an area known as the "feasible region" of the

uncertain measurements. An arbitrary point in the feasible region may certainly be

considered as a potential solution that satisfies all those uncertain measurements (i.e.

double inequality constraints). It must be noted that any given solution point in the

feasible region is not necessarily optimum but is a valid feasible solution.

Suppose that outliers exist in the measurement set. These outliers with their bounds

might, or might not, create a region of their own. If by coincidence the uncertain bounds

of the erroneous measurements mange to establish a region of their own, a solution point

in that region can never have a maximum number of satisfied constraints that exceeds

that of the region established by the good measurements, (given that the level of

contamination in a given set of measurements can never be more than 50%, for the worst

case scenario). Therefore, the MCS estimator guarantees a robust solution, which is not

influenced by outliers or erroneous measurements. That is because the MCS estimator

always seeks a solution point in the feasible region with the largest number of satisfied
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measurements, (which ought to be created only by the good measurements in the set).

Consequently, erroneous measurements can never affect the quality of the MCS solution.

/",/

"// region of satisfying
_/ .uncertain measurements measurement uncertainty range

Figure 5.9 The Maximum Constraints Satisfaction

Mathematically, for a vector of measurements ~, the uncertain measurements may be

represented by the following double inequality constraints:

(5-16)

Z I 5. hex ) 5. z U
m - m

where hC~) is set of mathematical equation that relates the states ~ to the measurements

f_. Also ~I is the lower bound of the measurement vector and ~u is upper bound, and

they are formed as:
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I
~ =~-! (5-17)

(5-18)u +s. =z.+r

where !+ and I-are the transducer tolerances. The tolerances describe the deterministic

uncertainty of each measurement. Nevertheless, without loss of generality, we will

usually assume that !+ = !-= ! ,giving a symmetric tolerance around the nominal value.

The proposed estimator aims at searching for a particular state variable vector that

maximizes the number of satisfied uncertain measurements (constraints) described in

equation (5-16). Formally the objective function of the proposed estimator is to

maximize the number of satisfied constraints for a given potential solution !.

Max n (5-19)

where n denotes the number of double inequality constraints of equation 5-16 satisfied

by :!... Geometrically, the shape of the objective function may be analogous to a campus

map, where the objective is to search for the top of the tallest building. The value n is

analogous to the number of floors in each building, and :!.. represents the ground co-

ordinates of a point on the campus. The tallest top is the feasible region established by

the good measurements. For that reason, a Real-Coded Genetic Algorithm is chosen to

solve the optimisation problem of equation 5-19, which starts by generating a random

population of potential solutions, of which each potential solution is evaluated and

checked for how many double inequality constraints are satisfied. The potential solution
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with highest number of satisfied constraints, ell' is picked up by RGA for the next

generation, and so on. The reason a Genetic Algorithm was chosen is because of its

capability to search the whole space to find that region with the most satisfied constraints.

The proposed method has been tested on simple regression test cases, a three-bus D.C test

system and a six-bust A.C network. The proposed method proved to be robust and

successful in identifying outliers.

5.7.1 Simple linear regression example

For a simple regression test case, with m measurements, the MCS formulation may be

given as:

Max el
~.82

z; ~XllOl +02 ~zt (5-20)
where m >-2

We can now apply the MCS estimator on the example, which had two outliers in the x-

direction from section 5.3. It was demonstrated in section 5.5.1.1, that the LMS

estimator has successfully detected these two outliers. With a symmetric tolerance of,

r=± 3%, applied on all seven measurements of that example, the MCS formulation

would be
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Max Cl~.~
z ; s X lJ) + 82sz t (5-21)

As shown in figure 5.10, the MCS has effectively solved for the correct regression

coefficients, 0.." = [O~5], fitting all five good points, perfectly unaffected by the outliers

in the x-direction. The least squares fit is shown for comparison. The bottom subfigure

in figure 5.10, illustrates the number of satisfied constraints, Cl, progressively increasing

throughout the evolution process of GA. It is interesting to see that the maximum

number of constraints that could possibly be satisfied is five, in this case, which is the

number of good measurements.
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Figure 5.10 Application of MCS with outliers in the x-direction

As expected, when the MCS estimator has been applied to a simple regression case which

had two outliers in the y-direction, both leverage points, the regression parameters were

. [0.5]BMCS = 0 . The outcome of the MCS is compared with least squares, and an

illustration of that outcome is shown in figure 5.11. Clearly, these two leverage points

had no effect on the MCS estimator. (For these tests, the population size = I00, crossover

= 0.8, mutation = 0.09 and elitism rate = 8%.)
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Figure 5.11 Application of MCS with outliers in the y-direction

So far the proposed method has effectively solved two problem, one with outliers in the

x-direction and another with leverage points. For further assessment of the robustness

and performance of the MCS estimator, particularly in situations where collinearity

exists, the MCS estimator has also been tested on the data set provided by Stefanski [114]

and shown in table 5.1. (With tolerance t: = ±3% , population size = I00, crossover = 0.8,

mutation = 0.09 and elitism rate = 8%.) Figure 5.12 illustrates the outcome of the MCS

estimator on Stefanski's example. Apparently, the solution from that run has produced a

A [-0.0017] .zero slope approximately, to be specific BMes = . As far as the maximum
3.4088
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number of satisfied measurements is concerned, it is apparent form the plot that only four

double inequality constraints had been satisfied in the specific run; giving four data

points adjacent to the MCS curve in the figure. This suggests that the number of satisfied

constraints cannot always be used as an indication of number of outliers in the

measurements. Had the tolerance been wider, (e.g. r = ±5%), more measurements

would have been satisfied. In this example, outliers could be visually identified, however

for higher dimension problems, residual analysis may be carried out for proper detection

of the number of outliers.
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Figure 5.12 Application of MCS on Stefanski's example
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Even though the solution of the MCS seemed intuitively correct, for comparison the LS

solution of measurement set, excluding the outliers, had been carried out. With the two

. .' [-0.0182]outliers taken out form the data set, the LS regression coefficients are BLS = .
4.1350

This solution is depicted in figure 5.13. As shown in the figure, the two estimators seem

to have almost converged to the same regression parameters. The numerically

discrepancy between the two outcomes may be attributed to the tolerance imposed on the

measurements, as dictated by the formulation of the MCS estimator of uncertain

measurements.
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Figure 5.13 Stefanski's example without outliers
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S.7.2 D.C. three-bus test system

For further assessment and testing of the MCS estimator on a more realistic example, the

D.C. model of a three-bus system is considered. An on-line diagram of the test system is

displayed in figure 5.14. The system was originally proposed by Monticelli and et. 01, in

[116], in their study of the identification of multiple bad data for state estimation. Milli

et. 01, in [80], have applied the LMS estimator on the same system. Physically, the

resistance of all lines of the three-bus network are taken to be zero. All line reactances

are however to 0.1 p.u. Suppose that the six real power measurements are taken with

zero variances, the measurements Jacobian is given as:

H - [ 10 -10 10 0 -10 -IOJ (5-22)\c \* Arabic \* MERGEFOF
-10 10 0 10 5 -10

Having assumed busl as the slack, (reference bus), the true states 02and 03 are zero.

Hence, the true flows and injections are all zero, i.e. Z =[ 0 0 0 0 0 0].
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Figure 5.14 Three-bus test system

In order to test the MCS estimator, various scenarios of bad data occurring in the

measurement set will be considered. In order to check the validity of the proposed

method, these scenarios are exactly the same as those considered in [116].

Case A: Suppose that a single bad data had been acquired for the fifth measurement, the

real power injection at bus 2, for example Z =[ 0 0 0 0 I 0]. The MCS estimator yields

82= 0.0010 and 83= 0.0008. From that solution the residual is calculated as [ -0.0027,

0.0027, -0.0 I02, -0.0075, 1.0065, 0.0177], and the corresponding standard deviation

for the residuals is 0.4110. It is apparent that the fifth residual is the only one which is

larger than the standard deviation, suggesting that the fifth measurement must be a bad

data point.
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Figure 5.15 MCS performance with single bad data

Figure 5.15, displays the convergence of the MCS estimator. It shows that only five

double inequality constraints can possibly be satisfied in this case, signifying that one

measurement in the set must be erroneous.

Case B: Assume that readings for the same network are Z =[0 -1 0 0 1 0]. Generally,

measurements 2 and 5 are considered interacting, since they are both related to the line

flows of bus2. These measurement values are however nonconforming. The MCS

estimator yields 8
2
= -0.0039 and 83 = 0.0132, leading to residual vector [ -0.0274, -

0.9726, -0.0129, 0.0145, 1.021, -0.0016] with a standard deviation 0.6305. From this
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result, it can be deduced that measurement 2 and 5 are erroneous. This type of error

distribution is usually known as multiple interacting nonconforming bad data.
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Figure 5.16 MCS performance with multiple interacting bad data

The maximum number of constraints that may be satisfied is four, as indicated by figure

5.16. That indication appears to be correct, since it is known that two out of the six

readings are bad.

Case C: Suppose that readings for the same network are Z =[0 1 0 0 1 0]. In this case

measurements 2 and 5 are considered interacting and conforming, since they are both

related to the line flows of bus2 and they are consistent. This is known as multiple

interacting conforming bad data, which is known to cause failure in most estimators [47,
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116], in particular the largest normalized residual (LNR) method which is presented by

Monticelli et. al in [117]. The MCS yields 02= -0.0017 and 03 = 0.0004, leading to

residual vector [ 0.0210, 0.9790, 0.0168, -0.0042, 0.9811, -0.0126] and a standard

deviation 0.5035. From this result, it can be concluded that measurement 2 and 5 are

erroneous. It is notable that MCS has found the correct solution for this notoriously

difficult problem.
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Figure 5.17 MCS performance with multiple interacting conforming bad data

Figure 5.17 shows the progressive count of satisfying constraints throughout the GA

evolution. It suggests that a maximum of four constraints only can be satisfied for that
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estimation process, which is consistent with the number of good measurement in this

specific example.

5.7.3 Six bus A.C. example

In this section the MCS estimator has been applied on an A.C six-bus network from [41].

Initially, a clean set of measurements has been fed in to the MCS estimator, including a

total of twelve measurements (six real power injections and six reactive power injections,

this gives a redundancy e 1.1). With a population size of 200, a symmetric tolerance of

t: = ±5% has been applied to the measurements.
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Figure 5.18 Number ofsatisfied constraints: six-bus test with no bad data
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Figure 5.18 shows the convergence characteristic of the MCS estimator. It is clear from

that twelve double inequality constraints have been satisfied in this test. Therefore, the

convergence characteristics of the MCS may be used as an indication for the number of

good and bad measurements in the set.

To simulate an error in telemetry, a single outlier has been introduced, where the correct

real power injection at bus I has been deliberately changed. As in the previous test, the

population size = 100, crossover = 0.8, mutation = 0.09, elitism rate = 80% and tolerance

of t: = ±5% has been applied to the measurements.
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Figure 5.19 Number of satisfied constraints: six-bus test with a single bad data
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As expected, the convergence characteristic in figure 5.19, shows clearly that a maximum

of eleven constraints are satisfied in this test. Table 5.2 shows the true and estimated

states of the six-bus system. The non exact fit property of the MCS estimator is the

reason of the discrepancies in the true and estimated states. Also included in table 5.2,

are the measurement residuals, which have a standard deviation of 0.5907. It is apparent

that the residual of the power injection of bus 1 is the only residual larger than the

standard deviation.

Table 5.2 Outcome of MCS estimator with siDgle outlier iDthe measurement set

States True States MCS-GA Measurements Measurements
Residuals

8. (rad) 0 0 p.(rad) 2.0576
82 (rad) -0.0650 -0.0641 P2 (rad) 0.0099

83(rad) -0.0756 -0.0743 P3 (rad) 0.0124

84(rad) -0.0729 -0.0719 P4 (rad) 0.0186

o, [rad] -0.0912 -0.0910 Ps[rad] 0.0022

86 (rad) -0.1042 -0.1021 P6 (rad) 0.0308

IV.I(p·u.) 1.0500 1.0417 Q. [rad] 0.0174

IV21(p·u.) 1.0500 1.0417 Q2 [rad] 0.0041

IV31(p·u.) 1.0700 1.0615 Q3(rad) 0.0031

IV41(p·u.) 0.9864 0.9786 Q4 (rad) 0.0082

IVsl(p·u.) 0.9797 0.9719 Qs[rad] 0.0164

IV61(p·u.) 1.0014 0.9935 Q6 (rad) 0.0050
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Table S.3 Outcome of MCS estimator with two outliers in the measurement set

States True States MCS-GA Measurements Measurements
Residuals

9. [rad] 0 0 p. (rad) 2.0483
92 (rad) -0.0650 -0.0593 P2 (rad) 0.0009
93(rad) -0.0756 -0.0695 P3[rad] 0.0202
91, (rad) -0.0729 -0.0677 PI,(rad) 0.0252
9s(rad) -0.0912 -0.0864 Ps[rad] 0.0000
96 (rad) -0.1042 -0.0974 P6(rad) 0.0314
Iv.l(p·u.) 1.0500 1.0483 Q. [rad] 2.7739

IV21(p·u.) 1.0500 1.0383 Q2 (rad) 0.0101
IV31(p·u.) 1.0700 1.0547 Q3(rad) 0.0080
IV41(p·u.) 0.9864 0.9755 QI, (rad) 0.0298
IVsl(p·u.) 0.9797 0.9657 Qs(rad) 0.0346
IV61(p·u.) 1.0014 0.9871 Q6(rad) 0.0000

Results of another test with two outliers, real and reactive power injections of bus I, are

shown in table 5.3 with convergence characteristics illustrated in figure 5.20. As infered

from the figure, only ten constraints can be satisfied. The standard deviation of the

residuals is 0.9451. It is apparent that residuals corresponding to real and reactive power

injection of bus 1 are larger than the standard deviations.
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Figure 5.19 Number of satisfied constraints: six-bus test with two bad data

From the convergence characteristics, it appears that the estimation procedure for twelve

measurements of the six-bus test system is completed after a quite high number of

iterations. It is expected that with the application of the MCS estimator on larger

networks with higher numbers of measurements would be quite expensive in term of

execution time. This drawback is mainly due to the difficult search space of the objective

function, which can be visualized as a campus map, where different buildings with

different heights are scattered all over the area of the campus. The surface of each entity

in the campus is normally flat, i.e. there is no gradient to drive the GA. Hence,

application of the MCS estimator to the non-linear A.C. state estimation problem may be

inefficient and not suitable for practical application, as yet.
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5.8 Summary

In this chapter a robust estimator based on the satisfaction of uncertain measurements,

has been presented. The robustness of the MCS has been successfully demonstrated

through different simple regression examples, a three-bus D.C. and a six-bus A.C. test

systems. Various scenarios of leverage measurements and bad data have been considered

for further assessment of the performance of the MCS estimator. Specifically the MCS

estimator has been very effective as apposed to LMS, in situations where collinearity

exists amongst measurements, in the case of linear regression. The distinct robustness of

the MCS may be due to the uncertainty tolerance on the measurements, such that no exact

fit of measurements is required. For accurate estimation, the use of the MCS estimator is

recommended for identification and elimination of the outliers, prior the use of any non-

robust estimator. On the other hand, the high computational time burden of the MCS

estimator was apparent due to the exhaustive nature of the proposed estimator and the

lack of drive that the proposed objective function exhibits. Possibly, one way to deal

with this drive problem is to use another search method in conjunction with RGA that

does not rely on drive that of the objective function.
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CHAPTER SIX: CONCLUSION

6.1 Introduction

As a special case of the state estimation problem, the load-flow problem has been

investigated. Although it has been claimed in the literature that GAs can only provide

near optimal solution for the load-flow problem, in chapter two of this thesis it has been

demonstrated that a real-coded GA is able to provide an exact solution to the problem.

The proposed RGA can be regarded as an efficient method when compared to other

evolutionary methods for solving the load-flow problem. It is important to mention that

the RGA approach is not expected to be practical for on-line applications. but can be

useful off-line studies where multiple solutions are suspected and also forms a basis for

some more advanced methods presented later in this thesis.

Two formulations of uncertainty analysis in power system state estimation are presented

in chapter three. The uncertainty is modelled via deterministic upper and lower bounds on

measurement errors, which take into account known meter accuracies. Linear and non-

linear and formulations are provided to estimate the upper and lower bounds on the

states. Both methods provided almost identical estimates. It is concluded from execution

time analysis that (WLS-LP) is faster than (SQP) and more appropriate for uncertainty

interval estimation in larger power networks. Consequently, analysis of uncertainty in

power system state estimation with (WLS-LP) is applied on six-bus, IEEE 30-bus and the

IEEE 1I8-bus test systems, for which a conventional WLS estimator is used to obtain
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point estimates of the states, and then a series of LP solutions is used to compute the

tightest possible bounds on the states and other quantities of interest. It is deduced that

the method offers useful additional information to the power system operator. By

examining bounds on the estimates one can infer the quality of the metering

configuration and determine the proximity of estimated quantities to voltage and flow

limits with greater confidence. An interesting "cross-over" phenomena can occur in

cases where network parameter errors exist, and this may be useful for model validation

purposes.

The uncertainty analysis in power system state estimation is extended to include the

uncertainty of the network parameters. In chapter four, the uncertainty is modelled via

deterministic upper and lower bounds on measurement errors, which take into account

known meter accuracies. Parametric uncertainties are also known and bounded. A non-

linear formulation is provided to estimate the upper and lower bounds on the states and

the parameters. The non-linear problem is solved by Sequential Quadratic Programming

(SQP) techniques. Uncertainty analysis in power system state estimation offers useful

additional information to the power system operator. By examining bounds on the

estimates one can infer the quality of the metering configuration and determine the

proximity of estimated quantities to voltage and flow limits with greater confidence.

In chapter five a robust estimator based on the satisfaction of uncertain measurements,

has been presented. The robustness of the MCS has been successfully demonstrated

through different simple regression examples, a three-bus D.C. and a six-bus A.C. test
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systems. Various scenarios of leverage measurements and bad data have been considered

for further assessment of the performance of the MCS estimator. Specifically the MCS

estimator has been very effective as apposed to LMS, in situations where collinearity

exists amongst measurements, in the case of linear regression. The distinct robustness of

the MCS may be due to the uncertainty tolerance on the measurements, such that no exact

fit of measurements is required. For accurate estimation, the use of the MCS estimator is

recommended for identification and elimination of the outliers, prior the use of any non-

robust estimator.

6.2 Proposal for future work

The solution of non-linear load-flow formulation by means of genetic algorithms may be

further improved, (in terms of accuracy and convergence speed), by using and adaptive

range genetic algorithms. The essence of their idea is to adapt the population toward

promising design regions during the optimization process, which enables efficient and

robust search in good precision while keeping the string length small. Adaptive Range

Genetic Algorithms (ARGAs) are a quite new approach, which employs dynamic coding

scheme proposed by Arakawa and Hagiwara [118] for binary-coded GAs to treat

continuous design space. In addition, a real-coded ARGA is also introduced by Oyama et

al. in [119], which possesses both advantages of the binary-coded ARGA and the

floating-point representation to overcome the problems of having a large search space

that requires continuous sampling. For confirmation, a full description and

implementation of the proposed method in [118] is shown in appendix A. The result

123



confirms that the ARGA consistently finds better solutions than the conventional real-

coded genetic algorithms do.

In this research, the uncertainty in power system state is modeled by a probabilistic

approach, but such a representation may not always be adapted for representation of

meter inaccuracies, since the formulations proposed in this thesis assume transducer

tolerances I must be known and fixed. As mentioned, in realty the instrument

inaccuracies will become unknown as the instruments age under the action of various

unknown processes and as the instruments are not recalibrated. It must be noted that

measurement recalibration is rarely carried out in a systematic manner by utilities [55,

56]. This is mainly due to the fact that large numbers of measurements exist in a power

network and the time and expertise required to check each individual transducer would be

expensive. For future research, a fuzzy representation, based on the possibility theory,

seems to be suitable for modeling of uncertainty may be used for uncertainty modeling of

power system state estimation. A truncated triangular probability-possibility

transfonnation is introduced in [120] where a unimodal and symmetric probability

distribution may be used for computation of the bounds, (i.e. :...1,:...", III ,a:...u of

equations 3-7, 3-8, 3-11 and 3-12 ), of the double inequality constraints formulations

presented in this thesis. Moreover, another fuzzy approach Mauris et al. [121] may be

used for the same objective which consists of representing the uncertainty in the

measurements by a family of intervals of confidence stacked atop one another, which

define the upper bound of the probability distributions consistent with these intervals of
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confidence. This approach is compatible with the ISO Guide for the expression of

uncertainty in measurement, and is particularly interesting because it allows both the

handling of specificity and uncertainty of measurement.
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Appendix A

Adaptive Real Range Genetic Algorithms (ARGAs)

Adaptive Range Genetic Algorithms (ARGAs) are a new approach, which employ

dynamic coding schemes proposed by Arakawa and Hagiwara [118] for binary-coded

GAs to treat a continuous design space. The essence of their idea is to adapt the

population toward promising design regions during the optimization process, which

enables efficient and robust search in good precision while keeping the string length

small. Furthermore, ARGAs eliminate prior definition of boundaries of the search

regions since ARGAs distribute design candidates according to the normal distributions

of the design variables in the present population.

In conventional binary-coded GAs, discrete values of real design variables are given by

evenly discretizing prior-defined search regions for each design variable according to the

length of the binary substring. Traditionally, a conversion from binary to real number of

a design variable x , for the searching range [x I ,min ,x, ,max] may be accomplished by

(A .1)

where Pi denote a binary chromosomes, C (P, )denotes an integer after conversion of

p, to integer by either binary coding or gray coding, and R (P, ) denotes a real number
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after conversion to real number. One disadvantage of this conversion method is that it is

almost impossible to obtain an exact solution due to the fixed discretization procedure of

the searching range.

In binary-coded ARGAs, when vectors of design variables are given as individuals, a

specific number of bits are assigned it each design variable. For instance, when there are

three variables, and 2, 3, 4 bits are assigned for each variable; chromosomes will be

composed of 9 bits. For each variable, we will consider the following processes. As the

most popular way of expressing continuous numbers the conventional method, equation

(A. I), evenly divides a given search range or boundary. However, in the proposed

method, we can calculate mean (fi,) and standard deviation (u,) for each design

variable in each generation. By using these values, we can determine some sort of

distribution such as a normal distribution normalized to the maximum value of 1 as

(A.2)

This distribution shows the situation of each generation and it adapts automatically to the

best-fit searching range in some generation. Using this distribution, we can divide the

vertical axis evenly to give continuous variables as

R (P,) =
1', + -20",' In (UB'

_ -2 21 (LB (UB, - LB;)e (p, ») fi e( ) 2m-Iu, U; n ; + 2m-I -1 ,or P;-<

(A.3)
(UB; - LB; He (p;) - 2

m
-
I )J for e ( .)~ 2m-I

2m-I -1 ' P,
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where VB i and LB i are system parameters shown in figure A.I Pi is the mean value of

the population remaining in the preceding generation, and (Yi is the standard deviation.

(Y, is concerned with the determination of searching range, and we can treat upper and

lower bounds for (Yi as system parameters (ai,min,ai,max)' ai,max aims to prevent

extension of the searching range in the first few generation, and ai,min aims to prevent the

searching range becoming too narrow to keep an efficient range. The vertical axis of

figure A.I is given to determine the discrete values (x I to x 7 ) ; thus it has no physical

meaning. '\\' means that we divide the vertical axis evenly, and x i in the horizontal axis

represents the discrete values given by the proposed decoding method. For example, if

we obtained the integer 3 after initial decoding, the real number will be x 3' As for the

initial generation, we use a conventional method because we do not have any information

on mean values or standard deviations of the preceding generation.

range

preVIOUS
distribution

xo

Figure A.I Adaptive range GAs
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In the proposed method, the searching range varies according to the distribution of

population in the preceding generation as shown in figure A.I. When distribution tends to

concentrate at the upper or lower side of the mean value, the searching range is shifted to

that direction, as shown in figure A.I. However, these tendencies will not liquidate in

single generation even when it becomes unsuitable. Thus, the searching range sometimes

goes beyond the suitable range to obtain the global optimum. In such a case, it is possible

to miss the global optimum especially in a multi-peak problem. Even if the searching

range can be returned, to the suitable range, one of the easiest ways of solving these

problems is to change the searching range in every other specific generation, which is

sufficient for liquidating these tendencies. However, it might be difficult to predict the

number of generations needed to liquidate tendencies, and this will also slow down the

adaptability of the searching range. Thus it is not the appropriate solution. Another way

it to narrow down adaptability to adjust the searching range to the suitable range,

especially when the optimum solution will be beyond the initial given range. In order to

adjust the searching range to the range suitable for obtaining the global optimum rapidly,

we need to widen the searching range; for that purpose, it is preferable to assign a smaller

LD. , and a larger a . value. This leads to conflicting requirements in setting system
I l.nuD

parameters.

One of the reasons for overshooting and missing the range near the global optimum lies

in the phenomenon that the best solution to all preceding generations becomes the outside

the searching range. In order to keep it within the searching range, we treat standard
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deviation, determines the searching range separately for both upper and lower sides, as

shown in the following equations

for Max value; ~ P;

if Max value; ~ P; + ~-2(j; In (LB; )

then R _ Max value; - P;
(j;,new - .J-2In(LB

I
)

(A.4)
for Max value; ~ P;

if Max value; ~P; -~-2(j; In (LB;)

then t: _ -Max value; +PI
(j;,new - .J-2In (LB;)

Max value; means the design variable i that gives the best-fit function value from the

initial generation to the preceding generation to the preceding generation, (jIRnew , (j;l new, ,

denote the new system parameters for right and left hand sides. Using this new

operation, the searching range will be changed from the "old range" which includes

Max value;.

The following are characteristics of the proposed method

• The real searching range will change with every generation according to the

remaining individuals' mean values and standard deviations. Its adapt the

condition for the optimization process. Thus, even if the optimum solution is
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outside the range of the initially given searching range, we can obtain the

optimum solutions.

• As the generation goes by, mean values will become some unique values and

standard deviation will decrease. This means that we do not need to assign many

bits in order to improve the accuracy of the solution (Save computational memory

and improve convergence).

Illustrative examples

In order to show effectiveness, the proposed method has been applied and verified on the

following simple function:

f = 100000 - (x 1-150)2 -(X2 - 5.5)2 -(x 3 + 150)2 - (x 4 + 5.5)2 (A .5)

The objective is to maximize f. For every design variable, an initial searching range of

lower boundary ::;::0.0 and upper boundary = 10.0 is assigned. 3 bits is assigned for all

designed variables. Each generation has a population size = 50 %, crossover = 80 %, and

mutation rate = 0.01. LB = 0.9 and UB = 0.1 for convenience, the standard deviations

( (Ii ,min' a, ,max) has no assignment and limitation. The convergence characteristics of the

fitness function and the mean value of each designed variables are shown in figure A.2

and A3. For this particular problem, a quite good convergence can be seen from figure

A.2. It can be seen from figure A.3 we can obtain the results that are initially not within

the given searching range. Therefore, it is confirmed that true optimum solution can be

found without having any pre-knowledge searching range.
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AppendixB

Admittance Matrix Models of Three-Phase

Transformers with various Neutral Grounding

Configurations

Nodal admittance matrix models are obtained for Wye-connected three-phase

transformers with various grounding impedance configurations. The derivations have

been performed using computational symbolic algebra, avoiding the necessity for

simplifying assumptions. An original model for the general case of a Wye-Wye

transformer, with grounding impedances on both primary and secondary neutrals, is

given. It is shown that this model does not correspond to the simple combination of the

previously known formulae for cases where neutral impedance occurs on either the

primary side only or the secondary side only. It is also demonstrated that the new model

simplifies to the well-known limiting cases for solid grounding and no grounding. A

model is also given for multiple transformers sharing a single neutral grounding

impedance. The models obtained here may form a useful basis for further research in

applying the uncertainty estimation techniques presented in this thesis to unbalanced

power-flow models.
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The increasing need to study unbalanced conditions in transmission and distribution

networks has led to the development of three-phase load-flow and short-circuit study

programs. The use of phase co-ordinates, rather than sequence components, has become

more popular recently [122, 123]. This may be because the sequence components are

only independent of each other when the mutual inductance between pairs of phases are

all equal (Le. the phase conductors, or windings, have geometrical symmetry). It is

common practice to apply a nodal admittance matrix formulation for both loadflow and

short-circuit programs, and it is then necessary to obtain admittance matrix terms that

accurately represent the possible three-phase transformer configurations encountered in

power networks. Suitable models are available in the literature for common, and some of

the less common, configurations.

This appendix develops the admittance matrix model for the general case of a Wye-Wye

transformer with neutral grounding impedances on both the primary and secondary sides.

It is shown that this general model is consistent with the well-known cases for solid

grounding and/or no grounding on either side. The general model is also consistent with

the previously given case of impedance grounding on either the primary side or the

secondary side (but not both). Interestingly, it is found that simply adding the appropriate

terms for grounding impedance on the primary side, together with similar terms arising

from grounding impedance on the secondary side, does not produce the correct result

when both are present. Furthermore, it is noted that the correct model for solid grounding

on one side, with no grounding on the other side (often referred to as WyeG -Wye, or
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Wye-WyeG), is correctly given in the earlier reference works but has sometimes been

misprinted in recent publications.

In practice, two or more transformers may share a single grounding impedance. The

general model for such cases is also given. Derivation of the various models presented

here has been greatly facilitated by the use of computerised algebra (e.g. the MathCAD

package). This approach allows various configurations to be analysed rapidly and also

allows any of the usual simplifying assumptions to be relaxed where necessary. For

example, it is straightforward to include different values for self-admittance and mutual

admittance, and to allow for asymmetry in the mutual admittances arising from the

transformer geometry (as for 3- or 5-limb Iron cores). However, for the sake of brevity

and clarity, this paper will discuss the simplified cases, which can be readily compared

with previously known results.

Wye-Wye Transformer with Neutral Grounding Impedances: To consider the most

general case for a Wye-Wye transformer, figure B.l shows neutral grounding via

impedances on both the primary and secondary sides.
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Figure B.l Wye-Wye transformer with neutral impedance on primary and
secondary side

The primitive network for this case is shown in figure B.2.

Figure B.2 corresponding primitive network

The nodal admittance matrix for this case can be obtained as follows, using the primitive

admittance matrix and the appropriate connection matrix [123]. It is assumed that all

mutual admittances (m) are equal and that the leakage admittance (y) is constant

throughout.

TY ...J =c . y .. Cnoae prim (B .1)

where
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and

y . =pnm

1m
1
1

: m 1
1 1Y 1 m 1_________ L ~ _

1 1
1 Y 1
1 1
1 Y 1I 1
I 1m: y :---------~---------T---------
I Iy
i i np
1 1
1 1
I I

y
y

m
m

: i-I
1 1

: : -1
I 1

i : -1------,-------,------
1 1 1 -1
I I
1 1
I 1 I -1
1 1

iIi -1------~-------~------I I 1
I 1
1 1
I I
1 1

c=

{zero entries are omitted for clarity}

This results in the following (8 by 8) admittance matrix:

y =node

1m
I
I
1
I
I IY 1 m 1 -y -m____________ L ~ _

1 1
1 Y 1 -m -y
1 I

i y i
I I

m : y i -m -y------------~------------~------------------y -y -y 1 -m -m -m I 3y +y 3mi : np
I I

-m -m -m 1 -y -y -y 1 3m

y

y

m
m

m
-y
-y -m

-m

-m -y

3y +y ns
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The above matrix should be reduced to a 6 by 6 nodal admittance matrix by eliminating

the neutral point nodes (noting that the injected currents at the neutral points, inpand ins,

are zero), considering the (8 by 8) admittance matrix in partitioned form.

V np

Vns

VaYaa
=

---------------------+------------I
I
I
I
I

o
o

(B.3)

Y =Y _Y . Y -I y
reduced aa ap pp' pa

Using computerised symbolic algebra, it is very straightforward to obtain expressions for

each admittance matrix element. Indeed, the assumptions of equal mutual admittances

between primary and secondary windings on each phase, and zero mutual admittance

between different phases, implicit in figure B.2, can easily be relaxed if appropriate data

is available. However, these assumptions, together with the further assumption that y =
m, will be made here for simplicity and brevity and so that the results obtained can be

compared with earlier results.
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The admittance matrix is then:

y =reduced

I
I
I

Y i Y
I
I-------f-------
I
I

Y i Y
I
I
I

(B.4)

where

Y =[-: -: =!]
-g -g h

and

h = Y (2yy np + 2yy,.. + Y npY ,.. )
3yy np +3yy,.. + Y npY,..

g = Y 2 (Y np +Y ,.. )
3yy np +3yy ns +Y npY ns

This general case can be compared to well-known results in the literature. For example,

if we take the limit as Ynp tends to infinity and Yns tends to zero (solid grounding on

primary and no grounding on secondary) we obtain:

2h=-y
3

and (B.5)

This corresponds to the correct result given in reference [122]. However, it should be

noted that some recent references have misprinted this case. The other limiting cases of
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solid grounding and no grounding give results that correspond to those available in the

literature.

If we take the limit as Yns tends to infinity but Ynp retains a finite value, we have

impedance grounding on one side of the transformer. This case is not widely quoted in

the literature, but it is analysed in reference [124] and also stated in reference [125]. In

this case:

[

y -c -c
y = -c y-c

-c -c
(B.6)

where

Given the above formulae for impedance grounding on one side, it might be assumed that

similar correction terms (c) can simply be added to cover the case of impedances on both

primary and secondary sides, giving a formula such as:

(B.7)

Comparison of the above with Equation 3 shows that the above formula is not correct

however, and that Equation 3 should be implemented in three-phase load-flow and short-
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circuit programs as the general case. Introduction of typical numerical values indicates

that the two formulae in question are by no means close approximations.

Wye connected windings with shared neutral grounding impedance:

It is quite common practice to have two or more transformers sharing a single grounding

impedance. This configuration has been analysed using the above principles, giving the

following admittance sub-matrices for the case where the secondary windings of two

transformers share a common grounding impedance:

y =reduced

I
I
I
I
I Y
I
I
I

--------1--------
I
I
I
I
I
I
I
I

y

y y

(B.8)

Where

y =[Y ~c Y-C__c • and Y' =[: : :]
-c -c Y -c -c -c -c

y2
c=-:'__

6y + Yns

For the case where the secondaries of three transformers share a common grounding

impedance, we obtain.
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y y y

y
reduced -

y y y (B.9)

y y y

with c=
y2

9y +Yns

In the general case of k transformer secondaries sharing a common grounding impedance,

we have:

2

C = Y
3ky +y ns

(B .10)

Conclusions: Some general cases of three-phase transformer neutral grounding have

been analysed. The use of computational symbolic algebra is recommended, as this has

greatly facilitated the analysis and will allow various simplifying assumptions to be

relaxed where necessary. The admittance matrix model of a Wye-Wye transformer with

impedance grounding on both sides has been presented for the first time. The limiting

cases of this model are consistent with the well-known models in the literature. It is

found that the previously known model for impedance grounding on one side only, does

not trivially generalise to the case where both the primary and the secondary are

grounded via impedances. A general model is also given for configurations in which two

or more transformers share a common grounding impedance.
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Appendix C

Network Data for Test Cases Used in Simulation

The network data for the six-bus is provided below:

Table C.I Operating Conditions for six-bus network system

Bus Voltage Generation Load
number magnitude (PU) (MW) (MVAR)
I 1.0500 100 -
2 1.0500 50 -
3 1.0700 60 -
4 1.0000 70 70
5 1.0000 70 70
6 1.0000 70 70

Table C.2 Impedance and Line Charging Data six-bus network system

Line Designation Resistance Reactance Line Charging
From To (PU) (PU) (PU)
I 2 0.1000 0.2000 0.0200
I 4 0.0500 0.2000 0.0200
I 5 0.0800 0.3000 0.0300
2 3 0.0500 0.2500 0.0300
2 4 0.0500 0.1000 0.0100
2 5 0.1000 0.3000 0.0200
2 6 0.0700 0.2000 0.0250
3 5 0.1200 0.2600 0.0250
3 6 0.0200 0.1000 0.0100
4 5 0.2000 0.4000 0.0400
5 6 0.1000 0.3000 0.0300
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The network data for the IEEE 14-bus is provided below:

Table C.3 Impedance and Line Charging Data of IEEE 14-bus system

Line Designation Resistance Reactance Line Charging
From To (PU) (PU) (PU)
1 2 0.0194 0.0592 0.0528
1 5 0.0540 0.2230 0.0492
2 3 0.0470 0.1980 0.0438
2 4 0.0581 0.1763 0.0374
2 5 0.0570 0.1739 0.0340
3 4 0.0670 0.1710 0.0346
4 5 0.0134 0.0421 0.0128
4 7 0 0.2091 0
4 9 0 0.5562 0
5 6 0 0.2520 0
6 11 0.0950 0.1989 0
6 12 0.1229 0.2558 0
6 13 0.0662 0.1303 0
7 8 0 0.1762 0
7 9 0 0.1100 0
9 10 0.0318 0.0845 0
9 14 0.1271 0.2704 0
10 11 0.0820 0.1921 0
12 13 0.2209 0.1999 0
13 14 0.1709 0.3480 0

The network data for the IEEE 30-bus is provided below:

Table C.4 Impedance and Line Charging Data of IEEE 30-bus system

Line Designation Resistance Reactance Line Charging
From To (PU) (PU) (PU)
1 2 0.0192 0.0575 0.0528
1 3 0.0452 0.1652 0.0408
2 4 0.0570 0.1737 0.0368
3 4 0.0132 0.0379 0.0084
2 5 0.0472 0.1983 0.0418
2 6 0.0581 0.1763 0.0374
4 6 0.0119 0.0414 0.0090
5 7 0.0460 0.1160 0.0204
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Table C.4 Impedance and Line Charging Data of IEEE 30-bus system (continue)

6 7 0.0267 0.0820 0.0170
6 8 0.0120 0.0420 0.0090
6 9 0 0.2080 0
6 10 0 0.5560 0
9 11 0 0.2080 0
9 10 0 0.1100 0
4 12 0 0.2560 0
12 13 0 0.1400 0
12 14 0.1231 0.2559 0
12 15 0.0662 0.1304 0
12 16 0.0945 0.1987 0
14 IS 0.2210 0.1997 0
16 17 0.0524 0.1923 0
15 18 0.1073 0.2185 0
18 19 0.0639 0.1292 0
19 20 0.0340 0.0680 0
10 20 0.0936 0.2090 0
10 17 0.0324 0.0845 0
10 21 0.0348 0.0749 0
10 22 0.0727 0.1499 0
21 22 0.0116 0.0236 0
15 23 0.1000 0.2020 0
22 24 0.1150 0.1790 0
23 24 0.1320 0.2700 0
24 25 0.1885 0.3292 0
25 26 0.2544 0.3800 0
25 27 0.1093 0.2087 0
28 27 0 0.3960 0
27 29 0.2198 0.4153 0
27 30 0.3202 0.6027 0
29 30 0.2399 0.4533 0
8 28 0.0636 0.2000 0.0428
6 28 0.0169 0.0599 0.0130
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The network data for the IEEE llS-bus is provided below:

Table C.S Impedance and Line Charging Data of IEEE llS-bus system

Line Designation Resistance Reactance Line Charging
From To (PU) (PU) CPU)
1 2 0.0303 0.0999 0.0254
1 3 0.0129 0.0424 0.0108
4 5 0.0018 0.0080 0.0021
3 5 0.0241 0.1080 0.0284
5 6 0.0119 0.0540 0.0143
6 7 0.0046 0.0208 0.0055
8 9 0.0024 0.0305 1.1620
8 5 0 0.0267 0
9 10 0.0026 0.0322 1.2300
4 11 0.0209 0.0688 0.0175
5 11 0.0203 0.0682 0.0174
11 12 0.0060 0.0196 0.0050
2 12 0.0187 0.0616 0.0157
3 12 0.0484 0.1600 0.0406
7 12 0.0086 0.0340 0.0087
11 13 0.0222 0.0731 0.0188
12 14 0.0215 0.0707 0.0182
13 15 0.0744 0.2444 0.0627
14 15 0.0595 0.1950 0.0502
12 16 0.0212 0.0834 0.0214
15 17 0.0132 0.0437 0.0444
16 17 0.0454 0.1801 0.0466
17 18 0.0123 0.0505 0.0130
18 19 0.0112 0.0493 0.0114
19 20 0.0252 0.1170 0.0298
15 19 0.0120 0.0394 0.0101
20 21 0.0183 0.0849 0.0216
21 22 0.0209 0.0970 0.0246
22 23 0.0342 0.1590 0.0404
23 24 0.0135 0.0492 0.0498
23 25 0.0156 0.0800 0.0864
26 25 0 0.0382 0
25 27 0.0318 0.1630 0.1764
27 28 0.0191 0.0855 0.0216
28 29 0.0237 0.0943 0.0238
30 17 0 0.0388 0
8 30 0.0043 0.0504 0.5140
26 30 0.0080 0.0860 0.9080
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Table C.S Impedance and Line Charging Data of IEEE 118-bus system (continue)

17 31 0.0474 0.1563 0.0399
29 31 0.0108 0.0331 0.0083
23 32 0.0317 0.1153 0.1173
31 32 0.0298 0.0985 0.0251
27 32 0.0229 0.0755 0.0193
15 33 0.0380 0.1244 0.0319
19 34 0.0752 0.2470 0.0632
35 36 0.0022 0.0102 0.0027
35 37 0.0110 0.0497 0.0132
33 37 0.0415 0.1420 0.0366
34 36 0.0087 0.0268 0.0057
34 37 0.0026 0.0094 0.0098
38 37 0 0.0375 0
37 39 0.0321 0.1060 0.0270
37 40 0.0593 0.1680 0.0420
30 38 0.0046 0.0540 0.4220
39 40 0.0184 0.0605 0.0155
40 41 0.0145 0.0487 0.0122
40 42 0.0555 0.1830 0.0466
41 42 0.0410 0.1350 0.0344
43 44 0.0608 0.2454 0.0607
34 43 0.0413 0.1681 0.0423
44 45 0.0224 0.0901 0.0224
45 46 0.0400 0.1356 0.0332
46 47 0.0380 0.1270 0.0316
46 48 0.0601 0.1890 0.0472
47 49 0.0191 0.0625 0.0160
42 49 0.0715 0.3230 0.0860
42 49 0.0715 0.3230 0.0860
45 49 0.0684 0.1860 0.0444
48 49 0.0179 0.0505 0.0126
49 50 0.0267 0.0752 0.0187
49 51 0.0486 0.1370 0.0342
51 52 0.0203 0.0588 0.0140
52 53 0.0405 0.1635 0.0406
53 54 0.0263 0.1220 0.0310
49 54 0.0730 0.2890 0.0738
49 54 0.0869 0.2910 0.0730
54 55 0.0169 0.0707 0.0202
54 56 0.0027 0.0095 0.0073
55 56 0.0049 0.0151 0.0037
56 57 0.0343 0.0966 0.0242
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Table C.S Impedance and Line Charging Data of IEEE ll8-bus system (continue)

50 57 0.0474 0.1340 0.0332
56 58 0.0343 0.0966 0.0242
51 58 0.0255 0.0719 0.0179
54 59 0.0503 0.2293 0.0598
56 59 0.0825 0.2510 0.0569
56 59 0.0803 0.2390 0.0536
55 59 0.0474 0.2158 0.0565
59 60 0.0317 0.1450 0.0376
59 61 0.0328 0.1500 0.0388
60 61 0.0026 0.0135 0.0146
60 62 0.0123 0.0561 0.0147
61 62 0.0082 0.0376 0.0098
63 59 0 0.0386 0
63 64 0.0017 0.0200 0.2160
64 61 0 0.0268 0
38 65 0.0090 0.0986 1.0460
64 65 0.0027 0.0302 0.3800
49 66 0.0180 0.0919 0.0248
49 66 0.0180 0.0919 0.0248
62 66 0.0482 0.2180 0.0578
62 67 0.0258 0.1170 0.0310
65 66 0 0.0370 0
66 67 0.0224 0.1015 0.0268
65 68 0.0014 0.0160 0.6380
47 69 0.0844 0.2778 0.0709
49 69 0.0985 0.3240 0.0828
68 69 0 0.0370 0
69 70 0.0300 0.1270 0.1220
24 70 0.0022 0.4115 0.1020
70 71 0.0088 0.0355 0.0088
24 72 0.0488 0.1960 0.0488
71 72 0.0446 0.1800 0.0444
71 73 0.0087 0.0454 0.0118
70 74 0.0401 0.1323 0.0337
70 75 0.0428 0.1410 0.0360
69 75 0.0405 0.1220 0.1240
74 75 0.0123 0.0406 0.0103
76 77 0.0444 0.1480 0.0368
69 77 0.0309 0.1010 0.1038
75 77 0.0601 0.1999 0.0498
77 78 0.0038 0.0124 0.0126
78 79 0.0055 0.0244 0.0065
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Table C.S Impedance and Line Cbarging Data of IEEE 118-bus system (continue)

77 80 0.0170 0.0485 0.0472
77 80 0.0294 0.1050 0.0228
79 80 0.0156 0.0704 0.0187
68 81 0.0018 0.0202 0.8080
81 80 0 0.0370 0
77 82 0.0298 0.0853 0.0817
82 83 0.0112 0.0367 0.0380
83 84 0.0625 0.1320 0.0258
83 85 0.0430 0.1480 0.0348
84 85 0.0302 0.0641 0.0123
85 86 0.0350 0.1230 0.0276
86 87 0.0283 0.2074 0.0445
85 88 0.0200 0.1020 0.0276
85 89 0.0239 0.1730 0.0470
88 89 0.0139 0.0712 0.0193
89 90 0.0518 0.1880 0.0528
89 90 0.0238 0.0997 0.1060
90 91 0.0254 0.0836 0.0214
89 92 0.0099 0.0505 0.0548
89 92 0.0393 0.1581 0.0414
91 92 0.0387 0.1272 0.0327
92 93 0.0258 0.0848 0.0218
92 94 0.0481 0.1580 0.0406
93 94 0.0223 0.0732 0.0188
94 95 0.0132 0.0434 0.0 III
80 96 0.0356 0.1820 0.0494
82 96 0.0162 0.0530 0.0544
94 96 0.0269 0.0869 0.0230
80 97 0.0183 0.0934 0.0254
80 98 0.0238 0.1080 0.0286
80 99 0.0454 0.2060 0.0546
92 100 0.0648 0.2950 0.0472
94 100 0.0178 0.0580 0.0604
95 96 0.0171 0.0547 0.0147
96 97 0.0173 0.0885 0.0240
98 100 0.0397 0.1790 0.0476
99 100 0.0180 0.0813 0.0216
100 101 0.0277 0.1262 0.0328
92 102 0.0123 0.0559 0.0146
101 102 0.0246 0.1120 0.0294
100 103 0.0160 0.0525 0.0536
100 104 0.0451 0.2040 0.0541
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Table C.S Impedance and Line Charging Data oflEEE ll8-bus system (continue)
103 104 0.0466 0.1584 0.0407
103 105 0.0535 0.1625 0.0408
100 106 0.0605 0.2290 0.0620
104 105 0.0099 0.0378 0.0099
105 106 0.0140 0.0547 0.0143
105 107 0.0530 0.1830 0.0472
105 108 0.0261 0.0703 0.0184
106 107 0.0530 0.1830 0.0472
108 109 0.0105 0.0288 0.0076
103 110 0.0391 0.1813 0.0461
109 110 0.0278 0.0762 0.0202
110 III 0.0220 0.0755 0.0200
110 112 0.0247 0.0640 0.0620
17 113 0.0091 0.0301 0.0077
32 113 0.0615 0.2030 0.0518
32 114 0.0135 0.0612 0.0163
27 115 0.0164 0.0741 0.0197
114 115 0.0023 0.0104 0.0028
68 116 0.0003 0.0040 0.1640
12 117 0.0329 0.1400 0.0358
75 118 0.0145 0.0481 0.0120
76 118 0.0164 0.0544 0.0136
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AppendixD

Real-Coded GA

Initial population: The first step in real-coded genetic algorithm is to create an initial

population consisting of random individuals. The function crtrp produces a matrix,

Chrom, containing uniformly distributed random values in its elements.

Let's for example create a random population of 3 individuals with 4 variables. The

range for every variable is defined as:

50
-20]

30 20
% Lower hound
% Upper hound[

-100
hounds = 100

-50 -30

Creating initial population, would yield:

[

-72.2218 10.3792
Chrom = -59.4470 -22.7812

-60.2557 -30.1186

-29.0836
14.8071
-3.2942

17.2726] % parent 1
-1.3602 % parent 2
-3.2540 % parent3

152



Crossover: A discrete recombination method (equivalent to crossover) is employed for

mating individuals and breeding of offsprings. Discrete recombination exchanges

variable values between the individuals.

A method known as simple crossover [22, 39] is implemented. Specifically, let's assume

that Chrom, = (c.·..c ;) and Chrom, = (c.2.. ,c;) are two chromosomes that are being

subjected to crossover. A position i E (1,2,3, ......,n -1) , where n is the number of

variables, is randomly assigned. The two new chromosomes are made as the following:

In the package used the corssover is done through the recdis function I which

intermediately produce an internal mask table determining which parents contribute

which variables to the offspring, (with probability = to crossover rate), e.g. let

mask =[~ 2 2
1 1

o 0

% for producing offspring 1
% for producing offspring2
appended without recombination

Thus, after recombination NewChrom would become:

["n.2218 -22.7812 14.8071 17.2726] % parentI &2

newChrom = -59.4470 10.3792 -29.0836 17.2726 % parent2 & 1

-60.2557 -30.1186 -3.2942 -3.2540 % parent3
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Mutation: Mutation of real-valued population is accomplished with the breeder genetic

algorithm in [126]. Each variable is mutated with a probability by addition of small

random values (size of the mutation step). The mutation step can be reduced as the

algorithm evolves.

The function mutbga produces an internal mask table, MutMask (a matrix of

o ,land -I, assigned with probability = to mutation rate) , to determine which

variable to mutate and assign a sign. delta is a second internal matrix that specifies

the normalized mutation step size for every variable, (see Algorithm in [126]). The

mutation of a variable is then computed as follows:

mutated variable = variable + MutMask*(bounds·0.5)*del ta

Thus, after mutation Chrom

[

-72.2218 50.0000 0.9164
newChrom = -59.4470 -22.7812 14.8071

-60.2557 -30.1186 -3.2942

-2.7274]
-1.9876
-3.2735

NewChrom - Chrom shows the mutation steps
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Representation of Real Numbers in modern PC

20.0000J
0.6274
0.0195

• A real number n is represented by a floating-point approximation.

• The computer uses 32 bits (or more) to store each approximation

• It needs to store

- the mantissa

- the sign of the mantissa

- the exponent (with its sign)

The standard way to allocate 32 bits (specified by IEEE Standard 754) is:

- 23 bits for the mantissa

- 1 bit for the mantissa's sign
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- 8 bits for the exponent

Example:

Represent -118.625 (32-bit machine)

We need to get the sign, the exponent and the fraction. Because it is a negative number,

the sign is "1". Then we write the number (without the sign) using binary notation. The

result is 1110110.101

Now, let's move the radix point left, leaving only a

1110110.101=1.110110101.26

at its left:

The fraction (or mantissa), is the part at the right of the radix point, filled with 0 on the

right until we get a1l23 bits. That is 11011010100000000000000.

The exponent is 6, but we need to convert it to binary and bias it. For the 32-bit IEEE 754

format, the bias is 127 and so 6 + 127 = 133. In binary, this is written as 10000101.

• Sign: 1

• Mantissa: 11011010100000000000000

• Exponent (excess-127 format): 10000101
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