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Abstract

Human body scanners used to extract anthropological data have a significant drawback, the
subject is required to undress or wear tight fitting clothing. This thesis demonstrates an
ultrasonic based alternative to the current optical systems, that can potentially operate on a fully
clothed subject. To validate the concept several experiments were performed to determine the
acoustic properties of multiple garments. The results indicated that such an approach was

possible.

Beamforming is introduced as a method by which the ultrasonic scanning area can be increased,
the concept is thoroughly studied and a clear theoretical analysis is performed. Additionally,
Matlab has been used to demonstrate graphically, the results of such analysis, providing an

invaluable tool during the simulation, experimental and results stages of the thesis.

To evaluate beamfoming as a composite part of ultrasonic body imaging, a hardware solution
was necessary. During the concept phase, both FPGA and digital signal processors were
evaluated to determine their suitability for the role. An FPGA approach was finally chosen,
which allows highly parallel operation, essential to the high acquisition speeds required by some
beamforming methodologies. In addition, analogue circuitry was also designed to provide an
interface with the ultrasonic transducers, which, included variable gain amplifiers, charge
amplifiers and signal conditioning. Finally, a digital acquisition card was used to transfer data
between the FPGA and a desktop computer, on which, the sampled data was processed and

displayed in a coherent graphical manner.

The beamforming results clearly demonstrate that imaging multiple layers in air, with
ultrasound, is a viable technique for anthroplogical data collection. Furthermore, a wavelet

based method of improving the axial resolution is also proposed and demonstrated.
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Chapter 1

Introduction

Anthropological data has traditionally been collected with tape measures, callipers and height
gauges, all of which involve the subject being constantly repositioned. If the subject is elderly,
physically impaired or disabled such movements can be awkward and uncomfortable. Recently,
body-scanning systems have become very popular in the clothing industry for improving the fit
of clothing by providing accurate data. A subject typically stands in a booth for 30 seconds
while data is collected and a three-dimensional reconstruction is generated on computer.
Unfortunately, the current generation of scanners have a significant drawback: the subject has to
undress or wear tight clothing. In the case of a physically impaired subject, undressing and

standing still for a period of time may not be possible.

Therefore, the aim of this project is to conceptually develop a body scanning system that
permits a fully clothed subject to be scanned, while providing a similar resolution and scan time

to the current, commercially available systems.

1.1 Current Body Scanning Techniques

The vast majority of scanning systems illuminate the subject with lasers or structured white light
and capture the reflected images on charge-coupled devices (CCD) and then, using complex

image processing algorithms, generate a three-dimensional point cloud.

There are several manufactures that do not use white light or lasers, for example, Hamamatsu
employ arrays of Near Infrared LEDs and Position Sensitive Devices (PSD). Several companies
are investigating systems based on millimeter wavelength electromagnetic radiation which are,

in at least one instance, derived from military technology.

Discussed in chapter 2 are four body scanners from: Cyberware, Wicks and Wilson, TC2 and

Hamamatsu, each implementing a different technology.



1.2 Millimeter Wavelength Devices.

Millimeter wavelength technology is becoming a very important area in human body imaging,
operating between 30-300GHz; it has the unique ability to ‘see’ through clothing. Several

companies have produced such systems, these include the DERA, Pacific Northwest National

Laboratory and Chang Industry.

Millimeter waves can penetrate clothing with very little absorption, transmission through a
cotton T-shirt is typically 95% and a leather jacket up to 85%, but reflect off the body and any
metallic objects [1]. Plastics are much more difficult to detect, as they are almost transparent to

millimeter wavelengths and only reflect a small percentage of the source.

Pacific Northwest use a linear array, rotated around the subject, actively emitting
electromagnetic radiation and then mathematically reconstruct the data in to a high resolution
image of the target [2]. DERA use a completely passive system that makes use of naturally

occurring radiation, capable of providing images in real time (25 frames per second).

Currently, the technology is firmly aimed at the security sector, due to its high price and ability
to detect concealed weapons, however, as the technology improves and costs come down it may

prove to be an alternative to current body scanning systems.

Millimeter-wave technology will undoubtedly come under scrutiny because of its ability to
provide high-resolution images of the body. Although the images are not of optical quality,
they are quite revealing and because of this, the Federal Aviation Authority do not want such
images presented to an operator, therefore, further research is being conducted into pattern

recognition and automatic detection of concealed weapons [2].

1.3 An Alternative Method of Body Scanning.

The initial project brief suggested that infrared imaging and ultrasound could be combined to
form a body scanning system. Infrared could extract accurate results where clothing came into
contact with the body, and ultrasound would alloW measurements to be taken where there are
multiple layers of clothing, or the body and clothing do not interact. However, a feasibility
study into ultrasonic methods of scanning the human body was conducted as part of this project

(Chapter 4), and concluded that: a system based on ultrasound would allow body measurements



to be extracted through clothing, and with additional signal processing, could potentially work
with small distances between the layers. Therefore, this thesis focuses on the ultrasonic

component of the body scanning system and introduces the acoustic techniques required to

achieve the project goal.

1.4 Ultrasound to Capture 3D Body Information

Airborne ultrasound can be simply defined as high frequency acoustic waves beyond the human
hearing range, the highest frequency the human ear can detect is approximately 20KHz, which

deteriorates with age.

Ultrasound first came to prominence during the First World War, with the invention of SONAR
(SOund Navigation And Ranging), which showed promise as a means of detecting submarines
and underwater communication. After the war, progress continued rapidly, frequencies
extending to mega-hertz were being used and investigations into the acoustic properties of gases
and liquids were making steady progress. During the 1930s, the properties of solids were being
investigated and by 1934 the first work on ultrasonic flaw detection was published, followed by
non-destructive testing and SONAR becoming widely used during the Second World War [3].
In the post war years and with advancements in material science and electronics, many more
applications were realized, underwater surveys, fishing, welding, and medical ultrasound all
became possible. Medical ultrasound is now essential in many areas of health care, prenatal
scans and vascular monitoring are all dependent on ultrasound and recent developments include

the ability to construct three-dimensional images of an unborn child.

All of the aforementioned applications rely on ultrasound being transmitted through a medium
other than air, typically solids or liquids. Unfortunately, there has been very limited research
into airborne ultrasound, with typical applications limited to the measurement of distance
between objects. Polaroid have been using ultrasonic transducers in their cameras to determine
focusing distances for a number of years. The technology is available as a range finding kit
which, during the 1990s became very popular in the field of robot navigation. Low cost, high-
speed data acquisition and processing systems were available and many robots started to appear
with integrated Polaroid range finding kits. Unfortunately, such systems didn’t really provide a
robot with ‘sight’ and were largely limited to discrete object avoidance. Later work by [4]

provided a much better system of robot navigation, which is discussed later in the chapter.



1.5 Time of Flight.

A large proportion of ultrasonic applications rely on measuring the time taken for an output
pulse to be reflected back to the source, often referred to as the Time Of Flight (TOF) principle.
A through study of the TOF technique has been performed in [5], including reflections from
non-linear surfaces, but the work didn’t take into consideration multiple reflections from the
same surface. [6] performed a review of TOF and included distortion and addressed the

problems of the echo being an unknown shape. But the work was limited to one reflector and

the estimation of a single TOF.

Reflections occur every time there is an impedance change in the medium through which the
sound is propagating. The human body is made of different types of tissue, each of which has

unique acoustic impedance which provide the basis for medical ultrasound.

1.6 How to Scan a Body.

Experiments performed during the course of this research and detailed in chapter 4; have shown
that multiples layers can be detected in air, using Polaroid ultrasonic transducers with an
exaggerated clothing scheme. Due to the nature of a clothed human body, multiple reflections

are inevitable, which will require a novel technique for imaging in air.

Scanning a body quickly and easily is a very challenging topic. A simple solution would be to
take TOF measurements at discrete points across a clothed body. This would provide good
depth resolution but poor horizontal and vertical accuracy. To overcome these drawbacks,
several ideas were considered: employing transducers that operate at different frequencies,
miniaturised transducers and mechanical methods to move transducers. The oﬁly sensible

solution was to use a beam forming technique similar to that employed in SONAR and

RADAR.

At a basic level, beamforming can be described as a spatial filter - the outputs of many omni-
directional transducers arranged in an array can be combined to enhance signals from one
direction while suppressing those from another. This can be achieved in two ways,
mechanically and electronically. Mechanical beamforming systems are often categorised by a
rotating parabolic dish, often seen at airports - clearly this isn’t a practical proposition for a

body scanning system. Electronic systems require a significant amount of processing, which is



rapidly becoming less significant with the ever increasing performance of low cost desktop

computers and increasingly fast Field Programmable Gate Arrays (FPGA).

1.7 System Concept

Figure 1.1 demonstrates the basic concept of how an ultrasonic body scanner could work. An
array of transducers are positioned at appropriate locations about the subject — this may be
multiple arrays or a single array moved around the subject by a mechanical system. Control of
such systems could be by computer, either directly through a standard I/O port such as a

Universal Serial Bus (USB) connector, or indirectly through a third party data interface card.

Transducer Array

Desktop Computer

Subject
Interface/Data Acquisition

Figure 1.1 Possible Body Scanning Solution

Once the data has been captured, it can be processed onboard the acquisition system or handed
over to the desktop computer. Processing will consist of: any necessary filtering, beamforming

and a graphical representation of the resulting data.

1.7.1 Objectives

To achieve the aim of a conceptual human body scanning system, using ultrasound imaging as a

method of extrapolating anthropological data, the following objectives have been identified:



Conceptual development of the ultrasonic scanning system is required, before
dedicating resources on design and realisation. This is initiated through
experimentation and examination of garments to determine parameters such as:
absorption and reflection coefficients. Finally, the concept can be justified

through algorithm development and validation.

A thorough investigation of array theory is a necessary, before any decisions

involving beamforming solutions can be made.

A broad hardware concept that meets the project aims will be developed and
implemented. Such a system will include both hardware and software design,
and Figure 1.2 illustrates some of the key areas necessary to meet this goal.

The diagram has been separated into the basic hardware and software

components.

Due to the comparatively long wave length of ultrasound in air, when compared
to other mediums, a method of improving the axial resolution, beyond the
standard peak envelope detection method, is required to maximise the potential

success of the project.

Transducer selection is a fundamental issue, with any beamforming system.
Therefore, an evaluation of production devices, and the benefits of a custom

design are necessary before the hardware specification can be finalised.

Finally, the system will be tested, the results will be analysed and the thesis will

be written up.



Figure 1.2 Ultrasonic Body Scanner System Overview



1.8 Thesis Overview

The thesis is presented in eight chapters and two appendices. Chapter 2 contains a literature
review, introducing beamforming concepts and the current state of the art body scanners.
Chapter 3 discusses the methodology used during the course of the project. Chapter 4 presents

the initial experimental evaluation of ultrasound as a method of body scanning.

The remaining 4 chapters deal with the development of beamforming hardware and software,
from the theory in chapter 2, to the hardware and software designs of chapters 5 and 6

respectively, concluding with a presentation of the results in chapter 7. A conclusion and

discussion of further work can be found in chapter 8.

Chapter 2: Literature Review.
This chapter introduces the fundamental concepts to the project, these include: an

introduction to beamforming theory with derivations of essential formulae and Matlab
simulations demonstrating graphically, the effects of array size and window functions

on the beam pattern, a description of existing body scanners and the basic operation of

ultrasonic transducers.

Chapter 3: Methodology.
The methodological approach taken throughout the thesis is presented here. Which,

also illustrates the reasoning behind the experimental apparatus used in chapter 4, and
the conceptual ideas, that formed the basis of the beamforming system. Additionally, a
description of the software tools used (Xilinx ISE, Mentor Graphics — Board Station,

Borland C++ Builder and Matlab) and the reasons for choosing those applications are

presented.

Chapter 4: Initial Experimentation
To validate the hypothesis of ultrasound as a means of scanning a clothed subject,

chapter 4 presents the initial investigation into the ultrasonic properties of 'clothing.

Several types of garment are tested, to determine the levels of acoustic energy, both

absorbed and reflected.

Chapter 5: Hardware Design
The project concepts and aims have been laid out in chapters 2 and 3, chapter 5 takes

the theoretical hardware described in those chapters, and produces a unique



implementation. Discussions include: the selection of an FPGA or Digital Signal
Processor (DSP) as the main processing component, the choice of transducer and
physical arrangement is made. Furthermore, designs are provided for: the pre-amplifier,

variable gain amplifier, low-pass filter and analogue to digital conversion circuits.

Chapter 6: Software.
The operation of the hardware described in chapter 5 is dependent upon several

software solutions, each, with a particular function to perform. VHSIC (Very High
Speed Integrated Circuits) Hardware Description Language (VHDL) is used to describe
the logical operation of the FPGA, and chapter 6 includes the steps taken during
development of the VHDL code, which includes several code extracts to highlight
certain functions. Also, descriptions and extracts from both Matlab, which was used to

process and visualise data, and Borland C++ Builder, from which the hardware

interface was developed, are presented.

Chapter 7: Implementation.
The first images of multiple layer, airborne beamforming, are presented in chapter 7.

Results are shown as B-mode images, this allows for a precise interpretation of the data
and demonstrates clearly, that multiple layers can be successfully imaged in air. An
examination of techniques to improve axial resolution, results in the demonstration of a

Wavelet based system of enhancing the performance of standard airborne transducers.

Many of the issues stemming from the practical application of the hardware, to
capturing real data are also illustrated in chapter 7. Most of which are minor issues,
such as, warping of the Printed Circuit Board (PCB), which was easily corrected, and

ideas to increase the transmitted pulse width by using multiple transducers in a two

dimensional configuration.

1.9 Contribution

This thesis makes several important contributions to airborne ultrasound and 3D imaging

systems:

e As discussed during the introduction, airborne ultrasound has, until now, been limited to

single layer applications. Demonstrated in this thesis is an ultrasonic imaging system



capable of differentiating multiple layers of clothing in air. The concept is based on an
array processing system, which, allows large areas to be scanned from a single location.
Such an approach offers a number of improvements over current body scanning
systems, the subject no longer has to remove clothing, possibly allowing shy subjects to
feel a little more comfortable, and in comparison to millimetre wave technology,

ultrasound potentially represents a much more cost effective solution.

One of the short comings associated with airborne ultrasound, is the axial resolution of
layered targets, to overcome. this, a unique, wavelet based method of analysis is
introduced. Traditionally, the ultrasonic pulse envelope has been extracted to determine
the echo source, but when imaging muiltiple layers with a long wavelength, the
envelopes quickly become superimposed. To improve the performance, a short
distortion is inserted into the transmitted ultrasound pulse. Therefore, the distortion is
also present in the echo, and by the process of wavelet analysis, the time domain
location can be determined, and providing the distortion is sufficiently narrow, an

improvement in axial resolution is possible.

A comprehensive examination of beamforming algorithms is often excluded from
academic papers and text books. Therefore, a thorough derivation of both two-
dimensional and three dimensional imaging techniques are included in this thesis.
Starting with a basic vector representation of the source plane wave and array geometry,
chapter 2 works through the necessary functions and simulations, while illustrating the

effects various array geometries can have on the beam pattern.

Evaluating the concepts introduced during the course of this thesis required the
development of a unique hardware solution. The system is FPGA based, capable of 20
Million Samples per Second (Msps) in its current configuration, with an estimated
maximum of 35-40 Msps. Computer interfacing is provided by a Digital Input/Output
card (DIO), located in a PCI expansion slot.

Custom hardware was necessary, as commercial solutions, with a similar sampling rate,
are extremely expensive and lack certain features desirable in a beamforming system,
such as: integrated variable gain amplifiers. Additionally, using third party solutions
would only provide a limited insight in to any future requirements as the project moves

towards production hardware.
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1.10 Publications

The following are the publications resulting from this work.

Richard Heys and Amar Aggoun, ‘The potential of Ultrasound to Extract Human
Anthropological Data From a Clothed Subject’, Proceedings of the 3D Human Modelling, Paris,

France, 23-25 April 2003..

Richard Heys and Amar Aggoun, ‘Hardware Requirements for a Human Body Scanning System
Using Ultrasound’, Proceedings of the Eurasia-Tex Conference on 3D Scanning and Virtual

Try-On Systems, Athens, Greece, November 2003.
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Chapter 2

Current Methodologies and Array Processing

This chapter introduces the idea of beamforming, and includes a detailed derivation of the
necessary equations. Simulations are presented demonstrating some of the effects when certain
parameters, such as the number of transducers used in the array, are changed. The effects of
common windowing functions are also examined. Additionally, an examination of existing
body scanning systems is performed and a brief description of the operating principles of

ultrasonic transducers is provided.

2.1 Current Body Scanning Systems.

The following section provides an overview of four different types of body scanners. The

systems examined are from: Cyberware, Wicks and Wilson, TC2 and Hamamatsu, each

implementing a different technology

2.1.1 System 1. Cyberware

Founded in 1982, Cyberware, currently produce many different scanning systems, these include

head and face scanners, model shop scanners and full body scanners[7].

The Cyberware WB4 is the full body scanning system and consists of four scanning heads
positioned in pairs, each pair separated by 105 degrees and each element 75degrees, this layout
gives the appropriate overlap for maximum coverage. Each scanning head contains
servomotors to allow movement in the vertical plane, during data acquisition the scanning heads

will move from top to bottom, simultaneously scanning the subject.

To capture three-dimensional data a plane of laser light is projected onto the subject by each
scan head, controlled by a cylindrical lens and focusing equipment [8]. The interference pattern
is captured from two locations, either side of the laser source. A beam splitter overlays both
images and captures the result on CCD [9]. Using image-processing software, a three-
dimensional data cloud of over 200,000 points can be generated [10]. Scanning the entire body

takes approximately 30 seconds to complete.
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Cyberware have recently produced the WBX body scanner specifically for the clothing industry,
and currently being used by the United States Military to scan new recruits for uniform sizes.
The system was designed at the request of the military and is still in the prototype stage, but
current specifications would indicate it is much more compact and approximately half the price

of the WB4.

Figure 2.1 A Cyberware WB4 Installation [7]

| Scan Method | Laser Light w
| Cost | , $350,000 ﬂ
| Field of View | i o j
| | Diameter 120cm
1 Height 200cm
| Sampling Pitch |
1 | Horizontal ~ 5mm e ;
[ | Vertical Typically 2mm, depending on head speed |

[Depth  — O5mm ____
' Colour ' Yes 8 bits each for Red, Green and Blue
i Sampling ; 60,000 Points per second
| Speed >200,000 In total
| Size i J

Width 360cm

| Height 292cm - ] |
\ | Depth 300cm e
\ | Weight 450Kg
| Interface T Scsl

Table 2.1 Cyberware WB4 Summary

2.1.2 System 2. Wicks and Wilson

Wicks and Wilson use a variation of the moiré fringe technique to extrapolate 3D body data.
Lord Rayleigh first described the pattern of moiré fringe in 1874, in a paper “On the

manufacture and theory of diffraction gratings” [11]. The application of moiré fringe
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topography to the human body became popular in the late 1970°s as a method of measuring
deformity in patients with musculoskeletal diseases as described by [12]. Such methods
involved projecting light through a moiré fringe pattern onto the patient and recording the
resultant pattern with a camera. The contours can then be extrapolated by comparing the
photographed interference pattern with the original moiré fringe pattern. In early experiments
this was done by hand but by the early 1980’s computers and scanning equipment had become

readily available, dramatically reducing processing time.

LY
: '\\'u

—
—

o .
.’

Figure 2.2: A Moiré Pattern Projection [13]

In the case of Wicks and Wilson, a number of moiré patterns are generated on an LCD projector
and superimposed on to the subject. A CCD camera, connected to a PC frame grabber, captures
the image, which is then processed on a PC. Each CCD pixel is analyzed to determine how far
away the subject is [14]. Unfortunately technical details of the Wicks and Wilson system are
not readily available, however, it appears the system it employs is very similar to that of the

TC2 Scanner, discussed later.
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Scan Method Structured White Light
Cost N/A
Field of View
Diameter 70cm
Height 195cm
Sampling Pitch
Horizontal Smm
Vertical Typically 2mm, depending on head speed
Depth 0.5mm
Colour Yes
No. 3D Points 150,000
Size
Width 150cm
Height 240cm
Depth 230cm
Weight 1120Kg
Scan Time 12 Seconds
Interface SCSI

Table 2.2 A summary of the Wicks and Wilson body scanner

2.1.3 System 3. TC2 Body Scanner

The TC2 scanner uses a similar method to that found in the Wicks and Wilson scanner - a
pattern is projected on to the subject and then captured using CCD cameras. In the case of TC2,
it utilizes four scanning heads, located in two towers, each head consisting of a projector and
CCD camera, the arrangement provides vertical triangulation with the subject [15]. The moiré
pattern is sinusoidal, similar to that seen in Figure 2.2, with varying intensity in the vertical
plane but remaining constant along the horizontal. Although moiré fringe patterns are used, the

TC2 uses a variation on the technique, known as Phase Measurement Profilometry (PMP).

The PMP method involves shifting the sinusoidal pattern preset distances in the direction of the
varying phase and capturing images at each position [15]. Each camera captures 4 images every
time the grating is phase shifted 7 /2. Using the 4 images obtained, it is possible to determine
the phase at each CCD pixel and using image-processing techniques, extract accurate 3D
information. The two grating patterns have a pitch of Imm and 5Smm, the former to provide the
required depth resolution and the latter to provide gross depth information, to resolve any
ambiguity encountered. A full description of the TC2 PMP method is available in [16]. The
original research into PMP as a method of 3D imaging was performed by Halioua and Hsin-Chu

Liu [17].



Projector grating and lws
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Figure 2.3 TC2 Phase Measuring Profilometry

Scan Method Structured Light
Cost $65000
Field of View

Diameter 110cm

Height 200cm
Sampling Pitch

Horizontal 3mm

Vertical 3mm

Depth itmm
Colour No
Data Points 150000 (Average)
Size

Width 411cm

Height 240cm

Depth 162cm

Weight <250Kg
Scan Time 10 Seconds
Interface Proprietary

Table 2.3 Summary of The TC2 Body Scanner

2.1.4 System 4 Hamamatsu Body Line Scanner

Hamamatsu [18] have been involved with optical electronics for many years. Their products
range from CCD units to laser diodes. One area they are also focused on is near infrared;
systems based on this technology are varied in their application, ranging from equipment to

measure the freshness of fruit to monitoring blood hemoglobin in a clinical environment.
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The Hamamatsu Body Line scanner is based on arrays of near infrared emitters and position
sensitive devices (PSD), all of which combined to form a triangulation system. The current
scanner consists of eight scanning heads located in two groups of four, fore and aft of the
subject, as shown in Figure 2.5. Each scanning head consists of two position sensitive devices,
either side of a Near Infrared LED array, this can be seen in Figure 2.4. As with the Cyberware
system, the heads traverse in the vertical plane to scan a human body. The luminous flux
emitted by each element of the near infrared LED is condensed by a projection lens and

irradiated on the surface of the measured object, the reflected ray is being condensed on a pair

of PSDs [19].

The information received can then be used to triangulate the position of the subject; redundancy
is available through the second PSD. If for any reason the return path to one of PSDs is
obscured data will be available from the second. Measurements are taken every Smm and the
total scan time is in the region of 10 seconds. Accuracy of the current scanner isn’t quite as
good as some of the other manufactures; the 32 element LED array is being replaced with a 64

element which will increase the number of discrete 3D points from 102,400 to over 200,000.

Position Sensitive Detector

Photodetection Lens

"
e®
.®
ot hd Projection Lens
3
l'/"/

Position Sensitive Detector

Photodetection Lens

Figure 2.4 Hamamatsu Projection Head
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Projection Heads
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[k 1] -

[k . . ]

L h ] I

Figure 2.5 Hamamatsu Head Arrangement

The heads are moved in a vertical direction at increments of Smm; each head produces

measurements per horizontal scan, therefore 256 * 400 = 102,400 discrete measurements.

Scan Method Near Infrared Triangulation
Cost $350,000
Field of View
Diameter 83cm
Height 200cm
Sampling Pitch
Horizontal 10mm
Vertical Smm
Depth 0.5mm
Colour No
No. Of Data Points 102,400
Sampling Speed 10 Seconds
Size
Width 160cm
Height 255cm
Depth 172¢cm
Weight 390Kg
Interface GP-IB

Table 2.4: Summary of the Hamamatsu Body Line Scanner

2.1.5 Summary of Current Body Scanners

There are many more body scanners available than the four listed above. Telmat, Loughbrough
Antropometric Shadow Scanner and Techmat are all popular, but each system uses a variation
of the techniques discussed. In general, all scanners share one thing in common: they are based

on light, either laser or structured white light. Because low intensity light does not penetrate
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clothing very well, the subject must undress or wear tight fitting garments. Most manufactures

recommend that the subject wear their usual under garments.

Scan times for all systems are very similar, typically between 20 and 30 seconds, for which
period the subject must remain standing still. Structured white light systems have a price
advantage over their laser based counterparts, largely because many of the components are
commonly available and the scanning heads do not move. Lasers do have the benefit of being

slightly more accurate and are not affected by ambient light, so the subject does not have to

remain in a dark cubicle during the scanning process.

2.2 Transducers and Ranging.

There are two common types of transducers used in ultrasound applications, piezoelectric and

electrostatic, the following section describing the basic operating principles of each.

2.2.1 Piezoelectric Transducers.

Piezoelectric devices make up a large percentage of ultrasonic devices in use today. In 1880,
the brothers Pierre and Jacques Curie discovered that certain crystals would produce an electric
charge when subjected to pressure [20]. The crystals must have one or more polar axis and be
cut with its parallel surfaces perpendicular to the polar axis. Typical crystals include quartz,

lithium sulphate and some semiconductors such as barium titanate and lead zirconate titanate

(PZT).

The opposite effect was predicted by Lippmann and proved experimentally by the Curie
brothers in 1881. If an electric field is applied to a crystal in the direction of its polar axis it will

become mechanically strained, the amount of strain being proportional to the intensity of the

applied field [3].

2.2.2 Electrostatic Transducers (Capacitive).

The operating principle of such transducers is straightforward, two plates one fixed and the
other free to move are separated by a distance (d), as illustrated in Figure 2.6. A deflection in
the free plate is achieved by applying a bias voltage causing electrostatic attraction; an AC

19



signal is then superimposed on the bias voltage, resulting in deflection. The deflection causes

pressure variations in the surrounding medium, which radiates in a manner known as the beam

pattern.

Fixed Plate — , _a— Free Moving Plate
ol led

Figure 2.6 Electrostatic Transducer

2.3 Beamforming Background

Beamforming is used in many different applications, including SONAR [21]-[22], RADAR
astronomy and Medical Ultrasound, all of which have been very well documented. [21] in
particular provides a detailed review of SONAR theory on which [23] elaborates and from

which much of the beamforming theory is based.

Unfortunately, limited work has been performed in air. Horiguchi [24] implemented a 16

element array, in air, that provided reasonable results, but the microphone size meant the field of

view was severely limited by side lobes.

More recently, [25], [26], have developed systems in the field of robot navigation to overcome

the A/2 limitation, and have produced beam forming arrays that operate with a much larger

element separation. The technique is a hybrid solution, combining beam forming and

triangulation to determine the location of discrete objects in the immediate vicinity of a robot,

because of this its ability to map the contours of a body is limited. The transducers used were

also custom made for the application [26].

Hayes [27] developed an ultrasonic array and applied synthetic aperture algorithms as a way of

improving the lateral resolution in airborne ultrasound. Once again, the technical limitations of

the transducers available hampered his work.
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2.4 Basic Beamforming Theory

A three-dimensional coordinate system can form the basis of any analysis. Such an

arrangement is shown in Figure 2.7. A three dimensional array of sensors is assumed to be

located at r,,, where m is the sensor index.

|

[

!

I
Iy
I

I

I

4

Figure 2.7: A Three-Dimensional Coordinate System

For this analysis, the incoming plane wave, x(f), is assumed to be from a far field source
(Figure 2.8). If we let x(¢f) be represented by the vector u, the array of sensors will be
operating in the direction represented by vector u, The location of the vectors u and u, is
determined by the azimuth (¢, ¢,) and the elevation (6, 4,) respectively [23].

Near Field

Transducer Array

Far Field

Figure 2.8: Far Field and Near Field Sources
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Assuming the complex sinusoid, x(f) =e’”, is propagating through the medium with an angular

frequency @ and speed c. The signal at the m™ sensor is therefore:

xm(t) = e/ P o m = 0,...M-1 2.1

Where k& = @/ c is the wave number and (= u) is the scalar product representing the difference
in distance the incoming wave has to travel to the m" transducer. The coordinates of the (rm)

and (u) vectors can be represented in Cartesian form, demonstrated below.

Ux FVxm
u=|uy r, =| m
U: ¥zm

The vector u can be derived from Figure 2.7 and is shown in Equation 2.3

cosgcost
u =|singcosé 22
sinf@

I'm-W = FxmCOS @ COS @ + rymSin g cos @ + rzmsin &

Summing Equation 2.1 for each transducer element yields:

)= me(t)

] M-1 o
=ef‘”’Ze" " 23

m=0

2.4.1 Linear Array

For practical purposes, a linear array is often the easiest way of validating ideas. Such an array

consists of M sensors along a linear axis, X, separated equally by distance .
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Plane Wave

Y]

Figure 2.9. Plane Wave Incident on a Linear Array

Since the array is now one dimensional the array location vector becomes:

r,=(md 0 0)
Therefore

r, -u=mdcosgcosd

Equation 2.3 then becomes:

M-1
] —jkmd cos ¢ cos
yoy=e") e’

24
Because a linear array can only operate on the azimuth, cos #cosé =sin g .

M-1
y(t) — eja)tze—jkmdsin¢

2.5
m=0
Applying the sum of a geometric series (Equation 2.6), to Equation 2.5 produces Equation 2.7

f"m _ 1—_rM

m=1 1

” 2.6
. l_e—jkMdsingt
4

y(t)':ejw[ l_e—jkdsin¢ 2.7

It can be seen that the array output is the product of the single input, e’ , and a combination of

frequency ( f), element separation (4), beam angle (#) and the number of elements (A1),
Wwhich is often expressed as A(#) [28].

() = e’ A(P)
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l—-e JkMd sin ¢
A(p) = EECTTE 2.8
if we expand k and let § = fgr_dsin(¢).
[
r -j2M5
1-e™
A(g) = W}
~ re—ij' (_e—jMJ +ejM6)
| e’ (e’ +e”)
—e”’ 4o
- sinMo
e ks
siné 29
where e¢/*™" is the phase and SinM5 e amplitude.
sind
Substituting & back into Equation 2.9 yields:
sin dsing)/c
(A =[SnlrMdsin ) ]
| sin[(zfdsing)/c] | 2.10

which is commonly referred to as the beam pattern of a linear array.

2.5 Beam Steering A Linear Array.

To steer the array in a direction other than broadside, delays need to be added to the incoming
signals, to produce coherency in the required direction. Referring back to the three dimensional

coordinate system in Figure 2.7, it can be seen that the vector (u —u,) is projected on to the
Sensor vector (r,). u has already been established in Equation 2.2 and therefore u, can be

determined in a similar fashion.

cosgcosd | |cosd, cosb,
u—u, =| singcosd || sing, cosb,
sing siné,

r =(md 0 0)
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r, .(u-u,)=md(cospcosd —cosg, cosé,)
= md(sing —sing,)

Equation 2.3 becomes:

M-1
— eja)t Ze‘jkrm(ll—lh)
=0

. M_l 'k]nd . -
— eja)tze—j (sing-sing,)

2.11
m=0
Following the same process as outlined above, the beam pattern in turn, becomes
_ |sin[( #fMd sin @ —sin @)/ ]
4= sin[( #ifd sin ¢ — sin do)/ c] 2.12

This only applies to linear one dimensional arrays, different geometries would inevitably lead to

different equations.

2.6 Matlab Simulations.

Matlab is a very useful tool in that it allows algorithms to be scripted very quickly and allowing
changes to be visualised in a short space of time.

Implementing Equation 2.5 in Matlab with g, =0 (broadside), it can be seen in Figure 2.9 that
the summed inputs from each transducer are indeed spatially selective, i.e. the inputs from each

channel arrive simultaneously and are therefore summed in phase.

Its is now important to re-examine Equation 2.10, on closer inspection of the nominator,

sin[(zMd sin #)/c] , it can be seen that zero crossings occur at:

T

vl <]
+ sin M

Therefore, the width of the main lobe, located between the first two zero crossings, is

determined by a combination of frequency, number of transducer elements and element
separation. Figure 2.11 demonstrates the same array but steered to 20 degrees, using Equation

2.11.
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Figure 2.10 Linear array beam patterns, 40KHz, 16 transducers, 4/2 separation
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Figure 2.11 Linear Array 40KHz, 16 transducers, /2 separation, steered to 20 Degrees
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2.7 Basic Hardware Implementation.

From the beamforming basics, it is now possible to demonstrate a simple time domain
beamforming solution. Figure 2.12 provides a brief outline of how it may work. An array of
transducers receives the incoming plane wave; each channel is then delayed by an amount

determined by the beam direction and finally all of the elements are summed to produce the

beam output.

Since the late 1980’s, digital electronics have come to dominate beamforming systems [29];

previously systems had been analogue based, with delay lines based on analogue phase shifters

[4].

Delay Elements

" Plane Wave

Figure 2.12 Basic Beamforming Hardware Setup

Figure 2.13 illustrates how a simple time domain digital beamformer can be implemented; the
outputs of the transducer elements are captured by Analogue to Digital Converters (ADC) at a

rate of once every 7, seconds. At this point an array shading function, q,,, is often applied,
which is commonly a Hamming or Hanning window [30]. A delay, d,,, is then inserted, which
corresponds to the desired beam angle and finally each element is summed to form the beam

output,
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Figure 2.13 Digital Beamformer

As the beamformer is now a discrete time system, delays are no longer continuous therefore it is

worth re-examining Equation 2.5.

From Equation 2.1 the phase delay ,d,,, for each element is defined as 4r,, - u

d =kr -u
m

m

kmd sin ¢

Because d,, is no longer continuous, the time displacement that arises from the phase shift can
only be an integer multiple of the sampling interval,z, , therefore it stands to reason that the

beam can only be directed at intervals that are also multiples of ¢, and is therefore quantised. If

d,, represents the time displacement for the m" channel:

d, = kmd sing where k=w/c

Therefore, the minimum time delay can only be equal to ¢, ,which is derived from the sampling

frequency f, If welet d, =t then:
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_dsing

c

t

§

Therefore the beam resolution can be defined as:

¢ =sin"'(t,c/d) ) 2.13

i

where ¢, is the maximum beam resolution achievable at sampling frequency f, . For example,
if f,=12MHz, c¢=340ms™ and d=0.001m, the beam resolution is approximately 1.62

degrees.

2.8 Further Beamformer Analysis

The beamforming basics were introduced in the previous sections. The remainder of chapter 2
continues with further analysis and investigates alternative beamfoming techniques and

discusses the hardware requirements.

2.8.1 Spatial Aliasing

Spatial aliasing is a phenomenon which occurs when the spatial domain is not sampled with a

suitable spacing, at which point the ability to unambiguously determine the conic angle ¢ is

lost.

Referring back to Equation 2.12, it can be seen that the beam pattern will reach a peak when the

denominator is zero. This can happen when ¢ =g, or alternatively at ¢ = ¢, if the frequency

S satisfies Equation 2.14.

f=%‘5(sin¢—sin¢o)“ 2.14

Equation 2.14 is a simple derivation of the denominator in Equation 2.12

sin[ fd(sin g — sin @, )} o

c
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therefore [ ;y”d(sm ¢ sin ¢, ) ] nr 1t =0 SE] S

f=%|sin¢—sin¢0|_] n=0,+142.....

If we consider solutions to f such that f <c¢/2d, the maximum value of lsing —sing, | is 2,
therefore Equation 2.14 has no solution and 2.12 has a maximum at #,- It f=c/2d then when
the beam is steered to ¢, =190°, a solution for 2.14 exists when n=1 and ¢ =190°; these

solutions are grating lobes and are illustrated in Figure 2.14

20 T T T T T T T T T

10 d

Beam Magnitude

<10 1 1 1 ! 1 1 1
-100 80 60 -40 -20 0 20 40 60 80 100

Beam Angle {Degrees)

D T T T T T T T T T

Beam Power (dB)

x 1 1 L 1 1
5—900 80 60 -40 -20 0 20 40 60 80 100
Beam Angle (Degrees)

Figure 2.14 Linear Array 40KHz, 16 transducers, 4/2 separation, ¢ 90°

It is clear that we would not be able to determine the conic angle ¢ to the source; if the
frequency is increased above f =c¢/2d the side lobes move towards broadside. Furthermore,
when the frequency reaches f:c/d, a solution is available for 2.14 when ,=2. This

introduces a second beam, as illustrated in Figure 2.15.
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Figure 2.15 Linear Array 40KHz, 16 transducers, A separation, ¢ =25°

A beam is steered to 25 degrees but a second beam is also present at approximately 39 degrees.

It would therefore not be possible to determine the direction of any incoming data.

Since ¢ =490° Equation 3.14 can be written as 4 =§(1+ [sin¢0|)"'. This allows the

calculation of the frequency at which grating lobes appear, which can be seen in Table 2.5

Beam Angle ¢, Frequency (%1) Element Spacing (d )
+90 0.500 0.5004
+ 60 0.536 0.5364
+ 45 0.586 0.5864
+30 0.667 0.6674
+15 0.794 0.7942
1.000 1.0004

Table 2.5 Location of Grating Lobes

The similarities to temporal sampling have now become clear. Ideally transducers need to be

located no further apart than 1/2 , and such separation, in practice, is only really good for + 75
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degrees operation. Element separation above a half wavelength and below the point at which
n=2 can still be used, but the angle at which the direction of data can be unambiguously

determined is reduced.

2.8.2 Beamwidth

It is important to know the beam width, as it allows us to determine the number of discrete
beams required to cover a particular area and is based on the 3dB point. Once again, returning

to Equation 2.12, if we let x = (fd/c)(sing —sing,), then:

'A(¢), - sin( 7zx)

sin(ﬂMx)'
2.15

Applying the small angle approximation function to Equation 2.15, it can be further reduced to

the Sinc function:

|4(p)| =

sin(ﬂMx),
e 2.16

We can now investigate calculating the 3dB point. Figure 2.16 illustrates how it applies to the

beam.

3+ 3dB/Half .
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N
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Figure 2.16 Beam Width Measurement
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Since x is small, typically a maximum of 1 if the element separation is 1/2, we can apply
the Maclaurin Series to the nominator and denominator of Equation 2.16 and approximate the

beam angle Ag, ,,. The Maclaurin Series is typically defined by text books as [31]:
, , x2 ” x3 I~ xn
pX)=3O0)+y' Ox+y'(0)=-+y O+t y O —
Using the denominator from Equation 2.6, let y =sin(zx)

y =sin(z0) + z cos(z0)x — 7 sin(ﬂO)% - cos(er)—J;_

3
—0+m-0-7"2

31
3
=m— ___(m) 2.17
3!
After applying the same maths to the nominator, Equation 2.6 becomes
()’
aMx — ~———
3
T w
3!
-1 ()’ M?
_6 L
@y 2
6
- g1 )
- () (ﬁw -1)=0- ﬁ)s
g=xl | & 62 2.19

7 \2M? -1
Since the -1 term in the denominator of Equation 2.19 is small in comparison to M?, it can be

eliminated, which allows further simplification to be carried out.

x=x ——042 2.20
M

Earlier we let x = (fd/c)(sing —sing,), - Substituting Equation 2.20 back in, yields

+ g‘_‘z = (fd/C)(Sln¢ sing, ),

Rearranging for ¢ gives:

0.42¢
¢ = SiIl_l (sin ¢0 + —j\}f_d—] 2.21
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Therefore the difference in the two 3db angles can be summed to yield the beamwidth (Ad, )

Apy 45 ~sin™ (sin g, +0.42¢/ Mfd) - sin™" (sin g, — 0.42c / Mfd) 2.22

It can be seen from Equation 2.22 that the 3dB beam width is proportional to ¢, and similarly,

inversely proportional to Md. To illustrate this point, the beam width for a four transducer,

A/2 system, operating at 40KHz, is calculated for several values of ¢, .

¢0 A¢3dB
0 24.25
30 28.37
45 36.70

Table 2.6 Beam Width as a Function of Beam Angle

It is also worth examining the accuracy of the approximated beam width; in the diagram below
(Figure 2.17), the 3dB point from a simulation using Equation 2.12 is measured to be 26.28°.
The 3dB width from Equation 3.22 is 24.245°.

Ay ~sin™ (sin 0 + 0.42 * 340/ 4 * 40000 * 0.00425) — sin ™' (sin 0 — 0.42 * 340/ 4 * 40000 * .00425)
A, ~24.245°

10

Beam Power (dB)

121

14}

16+

-2
-80 80 -40

Beam Angle (Degrees)

Figure 2.17 Beam Width Comparison
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which is an error of 7.744%. Due to the nature of the Taylor and Maclaurin series, the error will
inevitably increase with beam width but performance could be improved by using further
derivatives. Therefore to achieve good array performance, a high number of transducers with a

wide element separation (avoiding aliasing) are required.

2.8.3 Array Weighting

Array weightings are commonly used to reduce the effects of spatial side-lobes on the beam
pattern. Typically a shading function is applied across the array, which is often a Hamming or

Hanning window [32]. The weighting functions have a direct analogy with their DFT counter

parts, which is demonstrated in the following section.

As shown in chapter three, the closed form can be represented by A(#)

IA (¢)| — Aile—jbnd (sin ¢~—sin @) ‘ 2.23

m=0

and then applying a weighting function w, 2.23 becomes 2.24
M-I _ o
IA(¢)| - z wme-Jhnd (sin ¢-sin ¢y) 294
m=0

If we once again consider that the incoming plane wave is represented by a complex signal,

e’ , and apply it to the DFT (Equation 2.25) [33] if also the output sequence is represented by

X ¢ » then:

N-1
X,(6)=3 x(nlm" 225

- . . 27fn! £ .
If the continuous input €’” is represented by the discrete version e’ , where f, is
equal to the sampling frequency, then the DFT expression 2.25 becomes 2.26.
X (k)= Nz_lejzm/f,e-jzmm 226

Working through in a similar manner as to that used to obtain Equation 2.10, the output

sequence X . can be shown as 2.27

-0 Y -44) sin[sNz(f /£, ~k/N)]
X =" sinn(f/7, - k/N)] 2
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Comparing Equation 2.27 with Equation 2.10, it is clear that the equations take the same form
and therefore there is a direct analogy between weighting for spatial analysis and the use of
window functions for the DFT. [34] provides a comprehensive overview of windowing

functions and below is a summary of some commonly used windowing functions

Window Function 3dB Sidelobe
Name w(n) Beamwidth ~ Height
(Degrees)  (dB)
Rectangular w(n)=1, for ,n=0,12,., N -1 6.32 -13
Hanning w(n)=0.5-0.5cos( 2zn/N - 1) 11.04 -31
Hamming w(n) = 0.54 — 0.46 cos( 2zn/N —1) 9.72 - 41
Table 2.7 Windowing Functions

Several of the windowing functions have been implemented with Matlab, and the outputs are

illustrated below; each simulation operates with the following parameters f = 40000,

d =0.00425 and M = 16.
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Figure 2.20 Hanning Window
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2.9 Beamforming Methods

The following sections cover several important topics, which include an investigation into some
of the ways in which errors can be introduced during the quantization process, and describes
concepts that can be used to improve the signal to noise ratio. Additionally, several different
beamforming techniques are discussed, which include both time domain and frequency domain

methodologies, both of which are analysed in detail.

2.9.1 Delay-sum Beamformer

The theory behind the delay sum beamformer has been discussed previously and provides the
basis for time domain beamforming. A more practical examination is now performed, which

highlights some of the points that must be taken into consideration when designing hardware.

x (¢ )D— ADC 2

x,(n)

X, (t ADC

Data Storage

X, (1)

x, D> ADC a,x,(n-d,)

L]

a

m

Figure 2.21 Delay-Sum Beamformer

Using Figure 2.21 as a reference, the delay-sum implementation quantizes the sensor data at

I/t, Hz. The sampled data has to be buffered/stored until there is a sufficient number of samples
to satisfy d_; the beam output can then be calculated. This approach has several disadvantages,

the first is the high sampling rate required to achieve the desired beam angles, secondly the
amount of storage required can be large, as the size of the transducer array increases, the

corresponding time delay across the array also increases, requiring more storage. Finally, the
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throughput of the system is potentially very high, with a large number of transducers being
sampled at many times the Nyquist frequency, there is inevitably a large amount of data

generated.

The benefit of delay-sum beamforming is that although the system has a very high data
throughput, the technique is very simple to implement, analogue hardware is kept to a minimum
and the emphasis is placed on the digital circuits, which are generally cheaper and less time

consuming to implement that any analogue counterpart.

2.9.2 Interpolation Beamforming

The delay sum method relies on oversampling to achieve an acceptable number of steering
directions, which is obtained through the use of high speed analogue to digital converters. An
alternative method of oversampling is the interpolation of the sampled data, which in turn
permits the sensor data to be sampled at the Nyquist rate. Examples of interpolation

beamformers can be seen in [22], [32], [35] and Figure 2.22.

Sampling rateincreasedto Df,

x,(n) ax,(n-d,)
% (1) D ADC Zero Padding FIR LowPass Filter
f,= 1 D-1 f Fillter Coefficients h(k)
tl
x,(n)
X (1) Lt ADC Zero Padding FIR LowPass Filter
A ‘ Output Beam
Transducers S -l D-1 Fillter Coefficients h(k)
‘

Figure 2.22 Interpolation Beamforming

In this example, the sample rate of the transducer data x,, is increased by factor D, therefore the

steering direction is achieved with a new set of integer delays, i, [22], where:

j _mDsing, 228
mb C

and from Equation 3.5 the beam resolution @, becomes:

4 =— 2.29
" D-f,-d
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The example in Figure 2.21 provides an overview of an interpolation beamformer. The linear
array of sensors x,, is sampled at a frequency f, and padded with D—1 zeroes before being
low pass filtered to produce the interpolated sensor data. The sensor data can now be sampled
at its Nyquist frequency, eliminating the need for high speed analogue to digital converters, but
for each beam, M low pass filter operation are now required, increasing the computational
requirements. However, depending upon the number of transducers and number of
simultaneous beams required, it is possible to reduce the number of low-pass filter operations.
Since interpolation and beamforming operations are linear, the placement of the two operations

can be interchanged [22].

It has been demonstrated that interpolation beamforming can be used to dramatically reduce the
sampling rate of that required by a simple delay-sum configuration at the expense of increased

computations.

2.9.3 Quadrature Beamforming

Quadrature beamforming ([36], [37]), relies on quadrature sampling to down convert a band-

pass analogue signal so that its spectrum is centred about zero Hz, producing a complex

envelope on which the beamforming operation can be performed.

®—xmj (t) LowPass Filter im (t) ADC —=i,(n)
t
x,, (¢ )D cos(24/)

@ X ) Lowpass Filter |12 ® ADC —>4,(n)
t

- sin(27f:t)

Transducer Array

Figure 2.23 Quadrature Beamforming

Figure 2.23 represents a typical quadrature sampling system, the complex demodulating

frequency e is mixed with the analogue signal, x,, , resulting in two output paths, in-phase
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(/) and quadrature (q). Examining the in-phase path, the incoming signal x, occupies the
bandwidth B and is centred at f, Hz (Figure 2.24a). Once mixed with the cos(27gfct) term,

f. becomes centred at baseband, with a spectral duplicate at 2 f, (Figure 2.24b). The duplicate

is removed by low pass filtering the mixer output, which results in the spectrum as shown in

Figure 2.24c. It can now be seen that the highest frequency to be sampled isB/2.

1.0 2 l
-'f, 5 f =
(a)

~~~~~~~
......

Y

—2'L . 2f.

b0

B2 o0 B2

©)

(a) Input Spectrum
(b) In-phase Mixer Output Spectrum
(c) In-phase Filter Output Spectrum

Figure 2.24 Quadrature Beamforming Spectrum

The discrete time version of Equation 2.3 can be written as:
M-l
y(n)= Z a,xn(n— d,) 2.30
=0
Where x, represents the input from each transducer, a,, is the weighting associated with each

channel and d,, is the beamfoming delay.
An input at the m™ sensor can be represented by its complex envelope X, .

%, (1) = %, (n)e’™" + %, (me”™" 231
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where the real component can be obtained by using the identity R(c)= e+ c). Substituting

Equation 2.31 into 2.30 yields:

M-l :
y(m) =Y a,[%,(n-d, e’ + %, (n—d,)e "] 232

m=0

Similarly, the output of the beamformer can also be expressed in terms of its complex envelope.

Jjougn

y(n) = 5(m)e’™" + 3, (n)e ™"

233

To develop an expression for the complex beam output, y(n) , Equations 2.32 and 2.33 can be

equated, resulting in the following expression.

-1

TOEDy

3
o

S

1]
1M

X

y(n) =

3
Il
=

a,x,(n-d,)e’ "
am.’i‘m (n _ dm )e ja)t,ne—jwl,d,,,

a,x, (n-d,)e ~Jotdy

2.34

where j'(n) represents the complex envelope of the beamformer output and is demonstrated

graphically in Figure 2.25.

X (t Quadrature Delay Weighting
" Sampling d. a.
[roion Wowhang
Xy (£ ) : PR J
Transducer Array ?

Figure 2.25 Quadrature Sampling

M-l
Y= Za,,i‘.(n —-d e

m=0

Unfortunately, baseband demodulation removes phase information as it reaches DC levels [36],

therefore a demodulation frequency £, is chosen so that the bandpass signal doesn’t overlap

DC.

O<fd<fc—BV%

Quadrature sampling is commonly used in communication systems.

235

One of the main

advantages can be a reduction in cost of front end data acquisition hardware. In narrow band
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and band-pass applications, a real signal, x,, (1), only requires sampling at a rate corresponding

to the bandwidth of the signal.
Despite the increased complexity, gains are made from lower speed ADCs, power savings from

lower clock speeds and improved FFT efficiency due to wider frequency coverage [33].

A Matlab simulation of a quadrature beamformer was also performed and can be seen in Figure

2.26, the corresponding code can be seen in Appendix 2.

Beam Magnitude

-20 1 1 1 (2 1 1 1 1 1
-qED -80 -60 -40 -20 0 20 40 60 80 100
Beam Angle (Degrees)

Beam Power (dB)

f 1 1 1 L 1 1
5—?00 -80 -60 -40 -20 0 20 40 60 80 100
Beam Angle (Degrees)

Figure 2.26 Matlab Simulation of a Quadrature Beamformer

2.10 Frequency Domain Beamforming

Time domain beamformers require high sample rates, interpolating algorithms and large
amounts of storage space to achieve good results. The benefits are that the actual beamforming

algorithms are straight forward, primarily simply delaying and summing of the incoming data
with additional low pass filtering for the interpolation algorithms. Frequency domain

beamformers can reduce the dependence on the sampling hardware in exchange for more

complex algorithms.

This chapter looks at two frequency domain beamfoming methodologies, the discrete Fourier

transform and phase shift beamforming.
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2.10.1 Frequency Domain Introduction

Frequency domain beamforming concepts are the application of the Fourier transform to the
discrete time Equation (2.30). One of the first things to note about working in the frequency
domain is that a time delay becomes a phase shift.

x(t—1,) © e’ X ()
Because beamforming and the Fourier transform are linear operations, the Fourier transform of
the beam output can be achieved by taking the Fourier transform of the individual sensor

outputs.

B(a,y) =7 {y(t. )} 236
= y{Mz—lamxm(t-td)}

M-l A
B(o,4) = Y. a, X, (w)e”™ 2.37

m=0

From Equation 2.37 it is clear that the Fourier transform of each channel, X, , is equivalent to

the Fourier transform of the beam output, as illustrated in Figure 2.27

A0}
Fourier E
Xm (t) D Transform B(@.4,)
«
x,, (1)
Transducer Array

Figure 2.27 Frequency Domain Beamforming

In practice, the Fourier transform cannot be used as the beamforming inputs are not continuous,

but several methods are available which rely on the aforementioned concepts. The discrete



Fourier transform (DFT) can be directly applied to the beamforming data and is suitable for low
pass and band pass signals. Secondly, phase shift beamforming can be used, which is suitable

for bandpass signals only.

2.10.2 Discrete Fourier Transform

The DFT, in its exponential form, can be expressed as:

X(k)= fx(n)e-ﬂmk/N

n=0

where X (k) represents the discrete frequency domain sequence. Applying the DFT to the

sensor outputs x,, , results in Equation 2.38
& 2mk/ N
X, (k)= x,(m)e™” 238
n=0

Referring back to Equation 2.37 The frequency domain output can be represented by the

following equation.

N-1

Bk, ¢h) =Y. a, X, (n)e”™" 239

27k and 1, = mdsing,
c

where w, =

As can be seen from the frequency domain beamforming equations, the steering direction is not
dependant upon the sampling frequency, unlike the delay sum beamformers in which the
steering angle is quantized. Furthermore, the sampling rate only has to satisfy the Nyquist

criterion. A Matlab simulation of Equation 2.39 is straight forward; the resulting beam pattern,

set at 45 degrees, is shown in Figure 2.28
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Figure 2.28 DFT Beamformer Simulation

An FFT (Fast Fourier Transform) is used to generate the frequency domain data, which is
multiplied by a phase shift matrix and the power magnitude calculated to generate the

beamforming pattern.

2.10.3 Phase Shift Beamforming

Phase shift beamforming is based on the DFT beamformer, but is restricted to narrow band
signals. Further more, since the technique is frequency based, steering resolution is not a

function of the sampling frequency and therefore is not discrete [22].

Unlike the DFT method, the phase shift beamformer uses a constant phase shift, which limits

the method to a single frequency bin, unlike the DFT process which uses a linear phase shift,

determined by the frequency bin.

wt, ~o,t, where , represents the centre frequency of a narrowband signal. It is important

to note that the Phase Shift Beamformer is limited to a single frequency bin. Therefore

Equation 2.39 becomes:

M-1 e
B(a)p5¢0) = Zame(a)p)e o 240

m=0
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2.11 Time and Frequency Domain Beamforming Summary

Two distinct types of beamforming have been discussed in this chapter: frequency domain
beamfoming and time domain beamforming. The following section summarises the techniques

associated with each method.

2.11.1 Time Domain Beamforming
Three time domain beamfoming methodologies have been discussed:

° Delay-Sum
o Interpolation

. Quadrature

The basic delay-sum beamformer is a simple concept, a beam can be formed by summing data
from each transducer. The direction of the beam can be adjusted by inserting delays into each
channel, which compensate for propagation delays. Furthermore, weighting functions are often

added to reduce the effects of spatial side lobes.

A major problem associated with the delay-sum method is the fact that is requires a very high
sampling rate, to obtain an acceptable angular resolution. To reduce the dependence on high
speed ADCs, interpolation can be used to effectively increase the sampling rate and therefore
allow good angular resolution at much lower frequency. A reduction in sampling rate can lower

systems cost in several ways, firstly lower cost ADCs may be used and the total system

throughput can also be reduced.

Delay-sum and interpolation beamforming rely on high sampling rates and digital manipulation
respectively; quadrate sampling reduces the required sampling rate through analogue techniques
and narrowband signal processing. To achieve such a reduction in sampling rates, quadrature

sampling is used, which makes use of demodulation theory commonly used in communication

systems.
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2.11.2 Frequency Domain Beamforming

The primary methods of frequency domain beamfoming discussed previously in this chapter

are:

o DFT
) Phase Shift

The concept on which frequency domain beamforming is based is that a delay in the time
domain corresponds to a phase shift in the frequency domain. The Fourier transform of a
delayed time domain signal can be found in many text books and is represented by
x(t —1,) <> e’ X(w). Although the theory is based around the DFT, it is implemented using
the FFT, as the efficiency is far better. The DFT and phase shift methods are essentially the
same, the difference being phase shift beamforming only utilises one frequency bin and is

therefore limited to narrow band signals.

2.12 Beamforming Summary

Much work has been done by various authors ([22], [23], [38]) comparing beamfoming
algorithms. [22] performed a very comprehensive review of common algorithms; the following

table attempts to provide a simple comparison of the methods discussed in this chapter.

Spectrum Hardware Requirements
. C tational
Beamforming omputatio
. Lowpass Bandpass Narrowband ADC Speed Data Storage Complexity
Technique
Delay-Sum v v High High
Interpolation v Low Medium Medium
Quadrature with ‘/ Low Low Medium
Interpolation E
Discrete Fourier v v . Low High High
Transform
Phase Shift v Low Low Low

Table 2.8 Beamformer Comparison
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A ‘Low’ in the ADC speed column would indicate that a sampling rate of no more than the
Nyquist frequency is required. A high would be in the order of at least five times a low
sampling requirement. Data storage is dependent upon the number of transducers and the
beamforming methodology. For a ‘Low’ data storage entry, the amount of data stored must be
consistent with the number of transducers and a Nyquist sampling rate. Computational
complexity is the amount of extra data processing and circuit complexity in comparison to the

delay-sum beamformer.

2.12.1 Current Implementations

There have been many beamforming solutions published over the last 25 years, but much of the
foundation was laid in the early 1980’s, which includes the example [32]. The technology
available to produce beamformers has improved greatly since those designs were published.
One of the key problems with beamformers up until the 1990°s was a lack of high speed ADCs
with wide outputs [29]. The dramatic increase in VLSI gate counts and ever improving design

software also enable improvements.

The cost of designing VSLI systems is high, but developments in FPGAs and High Speed

Digital Signal Processors made them a more attractive choice.

2.13 Sampling Errors

Quantization introduces errors, which can often be seen as additional noise and distortion;
fortunately a lot of these problems are well established and can be predicted. Therefore, in this

section, multiple error sources are presented and methods of improving noise performance are

demonstrated.

2.13.1 Static Errors

Static errors affect the accuracy of on ADC when it is converting a DC signal and can be
described by four terms. These are offset error, gain error, integral nonlinearity and differential

nonlinearity all of which can be expressed in term of the LSB ( Least Significant Bit) or as a

percentage of the FSR (Full Scale Resolution)[39].
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2.13.1.1 Offset Error

The offset error is defined as the difference between the ideal and actual offset. In an ADC, the
offset is defined as the midstep value when the digital output is zero. Figure 2.29 shows an

offset error of 1 ¥4 LSB.

2.13.1.2 Gain Error

Gain error (Figure 2.30) can be defined as the difference between the ideal gain point and the
actual gain point, once the offset error has been corrected to zero. Gain errors are typically
dominated by errors in the converters reference voltage, since the reference value determines the

full scale range, and can therefore be reduced by trimming [40].

2.13.1.3 Differential Nonlinearity (DNL) Error

Differential Nonlinearity, as shown in Figure 2.31, is the deviation from the ideal 1 LSB step
width and the actual step width. If the DNL error exceeds 1 LSB, there is the possibility of
missing output codes and the converter becoming non-monotonic i.e. the output may get smaller

despite an increase in the input voltage [39].
2.13.1.4 Integral Nonlinearity (INL) Error

Integral Nonlinearity is the deviation of the actual transfer function for a straight line; the
straight line can either be a best fit straight line drawn to minimize any deviations or a line can

be drawn between the endpoints, taking in to account gain and offset errors (Figure 2.32).
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Figure 2.29 ADC Offset Error Figure 2.30 ADC Gain Error
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2.13.2 Quantization Noise

Quantization errors occur as the A/D converter is constrained to binary output words of finite

length. Therefore, the least significant bit value of, for instance, an 8 bit A/D converter

operating over 2V, can be determined by the following equation.

full voltage range 2
2word length =—§_=7'81mV

Isb value =

Therefore, it is clear to see that the maximum error due to quantization is 3.905mV or ¥ the Isb.
To quantify noise it is common to use the SNR (Signal to Noise Ratio), but because
quantization noise is random, it’s power level can’t be explicitly represented, instead the

statistical equivalent, variance, can be used to define SNRap [33].

Input Signal Variance
A/ D QuantizationVariance

SNR ,,, =10elog,,

2 .
o ’signal } 2.41

=10e L
Ogm(a'zA/Dnoise

If the full scale (—V, to+V,) input range of a b-bit ADC is 2V, then a single quantization

level (g) can be defined as g =2V, /2°. The probability density function p(e) indicates that

there is an equal chance that any error value between —¢/2 and +4/2 can occur.
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2

1 pi2
24/ Droise = [ e*ple)de=— [ e*de =L 2.42
[ noise [Iq/ze ple)de . fq/ze de s

Therefore, the maximum SNR is:
SNR ., =6.02b+1.76dB 243

2.14 Minimizing ADC Noise

Several techniques are commonly used to reduced quantization noise: the first is oversampling,
which as it suggests is sampling at many times the Nyquist frequency and the second is

dithering, which is the process of adding noise to reduce the quantization error.

2.14.1 Oversampling

As mentioned earlier, oversampling is essential in time domain beamforming to achieve good
spatial resolution, but here we are looking at its effect on quantization noise.
The basis of oversampling is the assumption that an A/D converter’s total quantization noise

power (variance) is the converter’s least significant bit value squared over 12 [33].

» _ LSBvalue

Total quantization noise power =& D

The noise has to be considered random, a flat frequency domain spectrum, which holds true if
the A/D converter is used over it’s full analogue range and the input signal is not highly

periodic.

Next the PSD (power spectral density) can be considered. The noise can be measured in power

per hertz.
PSD

# PSDhise

- Frequency
£/2 0 /2

Figure 2.33 Power Spectral Density

As this is a discrete system, it can be assumed that the total quantization noise is distributed

evenly from —f/2 to £/2, as illustrated in Figure 2.33.The amplitude of the quantization noise

(PSDyise) can be expressed as:
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_(LSB value)®

= 2.44
noise ]zf"

PSD

On examination of Equation 2.44, there are several ways in which the PSD,ise Value can be
improved. Clearly increasing the width of the A/D converter is one and increasing f; is the
other. Increasing the sampling frequency has the affect of spreading the total noise power

density, over a larger area, as shown below.

Signal
PSD / Quantization noise

i . = Frequency
£ 0 /2

Figure 2.34 Spread Power Density

2.14.2 Dithering

Another commonly used technique to reduce A/D converter noise, is dithering, which involves
adding noise to the input signal, before sampling, which may seem counter productive, but does

improve the signal to noise ratio.

To show the effect of dithering, a simple demonstration was performed with Matlab (Appendix
2). A simple sine wave is digitised with a resolution of 2' bits. Figure 2.35 shows the
normalised spectrum of the resulting digitised signal. The 1KHz fundamental is clearly visible,
followed by regular spectral peaks; these harmonics are the result of the periodic nature of the

quantization noise. Adding random noise, of between 0.7 and 1 LSB(RMS) [33], eliminates the

spectral peaks, but at the cost of increasing the noise floor.
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Figure 2.35 Effects of Dithering

2.15 Summary

Chapter 2 has introduced the concept of beamfoming and demonstrated some of the important
aspects such as beam width, beam resolution and windowing with Matlab simulations, different
beamforming methodologies and sampling theory, but the most significant contribution is the
introduction of the general beamfoming equation, which can be used as the basis for any array

geometry.

Using the beamforming equations a linear array model was shown and it has been clearly

demonstrated that care must be taken when determining the size of an array and element
separation; if d becomes too large then side lobes will appear, possibly making the array un-

useable.

Table 2.8 illustrates that there are a number of compromises to be made in choosing the method

of beamforming.
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The Delay-Sum method requires very little computational input, but the compromise is in the
high sampling rate required to provide a satisfactory resolution. Frequency domain approaches
can be sampled as low as the Nyquist rate but require more computational resources and in
some case increased complexity in the analogue circuits. No matter which approach is chosen
sampling of the analogue signal is required and a brief overview of sampling errors and
techniques to reduce noise is provided. It is demonstrated that an oversampling approach as in

the Delay-Sum can be used to reduce noise. Furthermore, in the case of dittering, random noise

can be added to reduce spectral peaks.
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Chapter 3

Methodology

This previous two chapters have introduced the basic concepts and aims of the thesis. Chapter 3
investigates the methodologies used during the course of the project, from concept to system

testing.

3.1 System Concept.

The original project was conceived as a two pronged approach to imaging through clothing — an
infrared system to evaluate where garments came into contract with the body and ultrasound to
extract measurements where there was a gap between the two. Because Infrared is limited to
surface temperature, it was felt the ultrasonic component would offer the greatest contribution

towards successful imaging, therefore, this thesis explores that concept.

The project was broken down into five major parts. The first stage was to verify that ultrasound
could penetrate clothing and still have sufficient energy to be reflected back to the source. Once
it was clear that the project was feasible, several concurrent paths were followed: the choice of
transducer and hardware and software concepts. Additionally, tool chains were also factored
into the design process, as software licenses are expensive and new applications could add a
significant expenditure to the project. The following chapter presents the methodology

employed for each stage or the project, from the top level concept to the low level hardware.

3.2 Concept Verification.

To confirm that ultrasound could be used, several simple experiments were performed. The
goal was to determine the level of acoustic energy that could be expected to return to the source,
after reflection from a clothed subject. To achieve this, a system was setup as in Figure 3.1.
The firing circuit is a simple design, based on the Polaroid unit [44], and also utilises a Polaroid
electrostatic transducer[41]. To stimulate the transducers a short pulse train is required,
typically 3 to 5 pulses, depending upon the output signal required. To generate the necessary
signal, and allow for an easy change in length; a simple application was developed, in assembly

language, for the Philips 80C552 microcontroller[42]. Making use of the RS232 serial
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connection [43] to interface with a desktop computer, allowed complete control of the output, in

both the number of pulses sent and their duration.

RS232 Serial Link Ultrasonic Transducer

80C552 -H-”-

Development Bosid - Firing Circuit ~ |———= ‘

Desktop Computer

A

Oscilloscope

Figure 3.1 Initial Experimental Setup

Using this setup, several experiments were conducted, examining the acoustic properties of

garments. The experiments, and a detailed analysis are presented in chapter 4.

3.3 Hardware Methodology.

From the early stages of the project, it was apparent that custom hardware was going to be
required to evaluate the beamforming concepts. Before any decisions could be made, a
preliminary specification was necessary, to provide a basic understanding of what would be

required. The literature review provided the necessary information, allowing an initial

specification to be extrapolated.

As beamforming is a data intensive process, the ability to process large amounts of information
was deemed to be a key parts of the design methodology. The first step was an investigation
into the current research direction of beamforming. Hardware, such as that found in SONAR
and medical ultrasound applications were examined, and additionally, commercial data
acquisition hardware were also considered, and eventually ruled out, primarily due to its nature
as simply an expensive acquisition system. Therefore, a custom designed solution was required.
One of the fundamental choices that had to be made, was the method, by which the data is
processed. The possible solutions were: an Application Specific Integrated Circuit (ASIC), a
Digital Signal Processor (DSP) or a Field Programmable Gate Array. The ASIC was quickly

ruled out as it isn’t suitable for a development process. The choice was therefore between a
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DSP or an FPGA. Chapter 5 illustrates why an FPGA was eventually chosen and part 3.31
describes the basic operation of the Xilinx Spartan 2 FPGA [45].

Component selection during the hardware design stage comprised of a lot of difficult decisions.
The overriding factor was to produce a high performance, high quality, low noise beamforming
system. Parameters such a power consumption and size were considered secondary for the
prototype device. Therefore, the choice of components reflects this methodology. To help keep
the costs manageable, many of the Integrated Circuits (ICs) were obtained through their
respective manufactures sample programs. Clearly, this is not sustainable for a production
system. However, it is much more viable to downgrade components, once the performance of
the prototype system has been established, rather than finding the performance to be

unsatisfactory due to shortcomings in lower cost circuits.

Testing new designs, when there is a reliance on both hardware and software, is very
challenging, and can prove,‘both difficult and time consuming. Certain parts, such as the
amplifiers and pre-amplifiers, only require a controlled input and a means of measuring the
output. This can typically be performed with an Oscilloscope and Spectrum analyser. The
performance parameters of the amplifier can them be determined. However, testing of the
FPGA and digital components requires that the functionality of hardware can be verified and
also that of the software. To achieve this, many simple VHDL applications were constructed to
test small areas of the design. The routines were kept as simple as possible, to minimise the

possibility of coding errors, and when combined with an Oscilloscope the hardware can be

thoroughly tested.

3.3.1 Xilinx Spartan FPGA

The FPGA is an extremely flexible device, and found anywhere from prototype systems to high
volume products. In certain instances, an ASIC will be a better choice — typically in mass

production parts where the cost curve of the FPGA and ASIC crossover and device speed is a

high priority.

The following section provides a brief overview of the Xilinx Spartan architecture, describing

the basic operation, and some of the low level functionality.

Figure 3.2 is a simplified block diagram of a Spartan FPGA, as can be seen there are four major
components: I/O logic, Block RAM, Common Logic Blocks (CLB) and Delay Locked Loops
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(DLL). The I/O logic is the electrical interface between any external components and the
FPGA. It is also compatible with many different signalling technologies, including: LVTTL,
PCI and GTL. Figure 3.3 represents a detailed view of the /O Logic. The three IOB registers

function as either edge-triggered D-type flip-flops or as level sensitive latches.
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Figure 3.2 Xilinx Spartan Block Diagram
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Figure 3.3 Xilinx Spartan I/O Block Diagram

59



Each IOB also has a shared clock (CLK) and an independent clock enable (CE) for each register
[45]

When a port is configured as an input, the signal can be routed directly to the internal logic, or
through a flip-flop. The optional delay element, at the D-input eliminates pad to pad hold time,
as the delay is matched to the internal clock distribution delay.

If configured as an output, a 3-state output buffer applies the output signal onto the pad, prior to
output the signal can be routed directly to the buffer from internal logic, or through an IOB flip-
flop. The 3-state control can also be routed from internal logic or through a flip flop, which

permits synchronous enable and disable.

Block RAM is organised in columns, in the Spartan device they run along each vertical edge

(Figure 3.2). Each Block RAM is four CLBs high — in the case of the Spartan XC2S200 this

results in 14 blocks, seven on each side.

The CLB is built upon a Logic Cell (LC). An LC includes: a 4 input function generator, carry
logic and a storage element. The output from the function generator of each LC drives the CLB

output, and the D-input of the flip-flop. Each CLB contains four LCs configured as two slices, a

single slice is shown in Figure 3.4
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Figure 3.4 Xilinx Single Slice CLB
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3.4 Tool Chain.

Software applications that offer the functionality required by this project can be extremely
expensive. Therefore, to avoid unnecessary expenditure, the tool chain was partially shaped by

which tools were actively licensed by the University.

As previously discussed, the project can be broken down into two fundamental parts, hardware

and software, each requiring one or more software applications to achieve the design goal.

3.4.1 Software Applications: Hardware Design

For all aspects of the hardware design, a combination of Mentor Graphics [46] applications
were used - known as the ‘Mentor Graphics Board Station Flow’. Board Station [47] is a
mature, feature rich, enterprise level software suite; the version used during the course of this

thesis ran on Sun Sparc hardware under the Solaris operating system[48].

Figure 3.5 illustrates the packages used for each stage of the project development and the

following section provides a brief description of the design stage, and each application used.

Design Stage Mentor Graphics Application

Y

Schematic Entry Board Architect

/

vl Hardware - - Analogue Simulation |———— Accusim

\ PCB Design - Librarian
\ High Speed Layout

Board Station RE

Fablink

Figure 3.5 Software Applications used for Hardware Design
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Schematic entry is a fundamental part of any hardware design process, and in the Board Station
flow this is performed with Board Architect [49]. One of the key differences when targeting a
PCB, rather than circuit simulations, is the inclusion of component geometry information.
Before any routing can take place each component must have geometry data associated with it,
often these can be found in the standard library parts. However, if a custom component is
required, it can be created in ‘Librarian’ [46]. Additionally, provided the necessary information
is available, analogue circuit simulations and be performed with ‘Accusim II’ [50]. Once the
design schematic has been completed the design flow moves on to the Printed Circuit Board

(PCB) layout and routing stage.
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Figure 3.6 Mentor Graphics Board Station RE Environment
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‘Board Station RE’ [51] is the primary layout tool in the Board Station flow, however the older
package, ‘Layout’ [46] has certain features which are easier to use, or which are not included in
the license for Board Station RE. Switching between the two applications is seamless, allowing
the key features of each package to be fully utilised. Figures 3.6 and 3.7 illustrate the
differences in the design environment. Board Station RE has an interface very similar to most
Microsoft Windows [52] applications, with pull-down menus and user configurable tools bars at

the top of the design page.
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Figure 3.7 Mentor Graphics Layout Environment

Alternatively, ‘Layout’ (Figure 3.7) doesn’t have a modern look and feel, however the

functionality available is considerable.
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Listed below are the features utilised within each application, during the design period:

‘Board Station RE’;

¢ Routing — the environment is much more user friendly, allowing traces to be
g

manipulated quickly and easily.
¢ Autorouting — not licensed in ‘Layout’, used for small, non-critical parts of the design.

‘Layout’:

e Component placement and labelling.
e Configuration of design rules, such as hole and pad clearances.

¢ Reuse blocks — certain parts of the design are repeated many times, utilising the reuse

functionality allowed the original four layer prototype amplifiers to be mapped to the 6

layer final design.

¢ High speed routing options allowed critical traces to be matched for length.

The final stage of the process is to translate the design, into a suitable format for the

manufacturing process. In the Board Station flow this is achieved with the ‘Fablink’
application. Fablink produces the industry standard ‘Gerber File’ for each layer of the design,

this can include silkscreen layers, solder mask layers and the routing layers.

3.4.2 Software Applications: Software Design

Several applications for software design were required to complete the project, these included:
Electronic Design Automation (EDA) tools for the FPGA design, program development
software to target Microsoft Windows, and compatible with the Application Programming

Interface (API), supplied with the interface card, and tools to allow rapid visualisation and

testing of beamforming applications.
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3.4.2.1 EDA Application

The FPGA chosen for this project was a Xilinx device. Therefore, as a license was available,
the Xilinx EDA package was selected as the primary development environment (Xilinx ISE

v6.1) [54].

A typical FPGA design flow starts with the design entry, as illustrated in Figure 3.8, the Xilinx
ISE supports both schematic and HDL(Hardware Description Language) entry. The HDLs
supported are VHDL and Varilog, for which language templates are provided.

At the synthesis stage several applications were available: included in the EDA is the standard
Xilinx XST product and, made available through the Mentor Graphics licence, Leonardo
Spectrum [54] and Precision RTL Synthesis [55] were also possible choices. Both third party
products interface directly into the Xilinx design environment, therefore the selection of a
synthesis tool was made by examination of product information and user recommendations.

Leonardo Spectrum was finally chosen, as it is one of the industry standards and rich in features.

The remaining steps in the FPGA design cycle were all performed with proprietary Xilinx
software: translation and mapping take the technology specific netlist, generated by Leonardo
Spectrum, and creates an output file describing the logical design, and I/O assignments. ‘Place
and Route’ is the process of placing and routing the logical components on the device die. The
procedure can be performed automatically, by the software, or to maximise performance, the

designer can intervene and specify the placement and routing of logic elements.

The final stage in the FPGA design flow is: generation of the bit file, and programming of the
FPGA or PROM. The software to generate the bit files is once again proprietary, however the

actual programming is not and third party software can be used.

3.4.2.2 Programming Applications

One of the key parts of the project is: bi-directional data transfer between the development
hardware and a desktop computer. On a physical level this is achieved with a Digital /O Card

(DIO), however, at the software level this can be performed in several different ways.
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Design Stage : Application

Schematic Entry HDL Xilinx ISE
—— Simulation Modelsim
A
|
Synthesis Leonardo Spectrum
Y
Translate
|
Map Xilinx ISE
|
Place and Route
|
Programming File Xilinx ISE

Figure 3.8 Xilinx FPGA Design Flow

The DIO card used is a National Instruments [56] based device, described in chapter 5, and is

supplied with Microsoft Windows [52] and Linux software drivers as well as an API —

compatible with ANSI C, Visual Basic and C#.

Compatibility with ANSI C allowed Borland C++ Builder (BCB) [57] to be chosen as the
application development platform -- this was preferable for reasons of familiarity and the ability
to rapidly develop a Graphical User Interface (GUI). One of the features that allows Rapid

Application Development (RAD) within BCB are components, these allow traditionally time
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consuming programming tasks, such as instantiating and managing a new window, to be

performed quickly and with far less input required by the developer.

3.4.2.3 Data Processing and Simulation

Throughout the project, data processing and simulations represent a large contribution to the
success of the project. It was therefore essential, to select the appropriate software application,

therefore Matlab [58] was the only realistic solution.

Matlab is an extremely flexible, high level technical computing language and interactive
environment. One of its fundamental features is the ability to work with vector and matrix
operations — essential for scientific and engineering applications. Furthermore, the built in
functions, such as signal and image processing, linear algebra, Fourier analysis and numerical
integration allow complex algorithms to be implemented quickly and presented graphically.

If a similar example was to be coded in ‘C’, it would take many more lines of programming to

calculate the function and plot it within a window.

3.5 Chapter Summary

Chapter 3 has discussed many of the methodologies used throughout the course of this project,

including: the experimental setup used to validate the hypothesis, many of the design decisions,

component selection and the choice of software tools.

The choice of software packages was largely dependent upon the availability of licenses. The

Mentor Graphics Board Station flow is examined in detail, and the differences between the two

routing packages are clearly illustrated.
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Chapter 4

Experimental Evaluation of Ultrasonic Body Scanning

Before committing resources to the project, an evaluation of the ultrasonic body scanning
concept was conducted. The purpose being to determine the energy levels of reflected and
absorbed ultrasonic waves. Since there is a large disparity in acoustic impedance between air

and solid media the results of experiments in this chapter were used to determine certain aspects

of the hardware specification such as the sampling period and amplifier gain stages.

The general methodology used during the experiments and a description of the apparatus used is

detailed in section 3.2

4.1 Absorption

To measure absorption, a technique shown in Figure 4.1, similar to that used in non-contact

ultrasonic testing was adopted. An ultrasonic pulse was transmitted through the test material

and the resultant signal detected by a second transducer.

4 Polaroid Ultrasonic Transducers

v

P

Material Under Test

BC.

Oscilloscope
4! Firing Circuit I‘

Figure 4.1 Measuring Absorption

i

Because clothing is a non-homogeneous medium, consisting of various size fibres, calculating
the absorption coefficient through simulation would have been impractical; a more practical

approach is to compare the received signal with a baseline reference signal.
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A reference was obtained by removing any test material from between the transducers and

recording the result. Several garments were then tested and the results listed in Table 4.1.

Material Absorption (Percent of Baseline)
Shirt (75% Cotton, 25% Polyester) 52
Jumper (100% Cotton) 21
T-Shirt (100% Cotton) 60
Sweat Shirt (100% Cotton) 66
Shirt (100% Linen) 74
Jacket 50

Table 4.1: Absorption as Percent of Baseline

In Figure 4.2 the reference signal is compared with the signals received through each garment.

The most interesting is the signal from the thick jumper, a phase delay of almost 7/2 is
present, which is quite a significant problem if beam forming is to be employed. The
construction of the jumper is very different to that of the other garments; the cotton threads are a

lot thicker, increasing the overall thickness, and assembled into a layered pattern.

The high absorption of the jumper is proportional to the extra thickness, but in Figure 4.3 it can
be seen that the reflection coefficient is also significantly lower, therefore scattering has to be

significantly higher than in other garments.

The 50KHz ultrasound signal performed very well. The attenuation through a thick cotton
Jjumper is in the region of 12dB, which is of course one-way, therefore 24dB attenuation for a
return journey and 1.5dB/m attenuation in air (when including the reflection coefficient of skin)
makes detecting the second layer through a thick jumper difficult. The other garments pass

ultrasound with relative ease and shouldn’t present any problems.
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4 .2 Reflections

Reflections occur when a sound wave encounters a boundary layer separating two materials of
different acoustic impedances (Figure 4.4). This has always been a significant problem when
using ultrasound in air as the impedance mismatch of air with any solid is very high. Therefore,
a large proportion of the signal is reflected at boundary layers, making air coupled applications
very thin on the ground. With recent advances in transducer technology, MEMS, non-contact
air coupled ultrasonic testing has received a lot more attention [35]. Traditional non-contact

testing uses a medium such as water to provide improved coupling.

Medium A Medium B

Source Wave

< Reflection Transmitted Wave

Boundary

Figure 4.4 Acoustic Boundary

The relative amounts of reflected and transmitted intensities are expressed by the reflection and

transmission coefficients [3].

Reflection Coefficient = Intensity of reflected wave / Intensity of incident wave.

Transmission Coefficient = Intensity of transmitted wave / intensity of incident wave.

Reflection coefficients were calculated from the experimental data in Figure 4.3. The peak
amplitude of each reflection was compared to a reference, obtained by recording the reflection
form Y inch thick aluminium plate. The acoustic impedance of aluminium is approximately 17
* 10° Rayles while air is only 415 Rayles, therefore, the reflection coefficient can assumed to be

I. The experiment was set up in a similar manner to that in Figure 4.1, except only one
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transducer was used, as both transmitter and receiver (Figure 4.6). The following reflection

coefficients were obtained.

Material Reflection (Percent of Baseline)
Shirt (75% Cotton, 25% Polyester) 47
Jumper (100% Cotton) 8
T-Shirt (100% Cotton) 44
Sweat Shirt (100% Cotton) 21
Shirt (100% Linen) 22
Jacket 18
Human Skin (Inner Fore arm) 41

Table 4.2 Reflection Coefficients

Once again the jumper appears to have dramatically different properties to the other garments.
As discussed earlier, this is probably due to diffuse reflections, caused by the large thread sizes
and corresponding pattern. As can be seen in Figure 4.5 an ultrasonic wave incident on an

uneven target is scattered quite considerably, with only a small amount of energy being returned

to the source.

Reflections

T

Incident wave source 4 — Target Surface

/7]

Figure 4.5 Diffuse Reflection

Diffuse reflections are highly dependent on the ratio of incidence wave wavelength to surface
smoothness; a smoother surface will reduce scattering [3]. Experiments have shown that fine

cotton garments, such as shirts, provide a good reflection, while allowing the sound wave to

pass through, indicating a low scatter effect.
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Figure 4.6 Measuring the Reflection Coefficient

To verify that an acoustic signal, incident on a target, can be returned through a layer of
clothing, a second experiment was conducted, using the same setup as in Figure 4.6, except that

a second target was placed behind the original layer of clothing.

Figure 4.7 shows the reflections from a shirt with an aluminium plate placed behind it at varying
distances. With a separation of 15mm, a second reflection is clearly visible; a slight phase shift
can be seen at the start of the second reflection. At 8mm, the high energy parts of the
reflections from the shirt and aluminium are starting to overlap, but a second reflection is clearly
visible. Between 5 and 8mm the reflections overlap quite significantly and it is only because
there is a large phase shift that the two reflections can be identified. With separation of over

8mm a second reflection can be detected with a simple threshold system.

Using the same apparatus to obtain reflections from an arm located behind a shirt shows once
again that a second reflection can be seen (Figure 4.8). The second reflection is not as

pronounced, due to the reflection coefficient of body tissue, but it is clearly noticeable.

Figure 4.9 shows real results obtained from the arm of a subject wearing a shirt; it can be clearly
seen that the attenuation is much greater than the results obtained with ideal experiments. This

is due to the angle of incidence, a shirt being worn doesn’t reside at right angles to the

transducer and therefore refraction must be taken into account.
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Figure 4.7 Ultrasound Reflections from a Second Target
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Figure 4.8 Ultrasound Refection from a Shirt and Arm
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Figure 4.9 Reflection from a Shirt Covered Arm
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4.3 Chapter Summary

The results in chapter 4 have established that there is sufficient energy in the reflected acoustic
waves, of multilayered targets for an ultrasonic body scanning system to be a viable alternative

to the current systems.

Tables 4.1 and 4.2 demonstrate that light clothing, such as linen or cotton shirts, allow enough
acoustic energy to pass through to the subject, while at the same time, reflecting enough energy

back to the source to allow for detection.
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Chapter 5

Hardware Design and Implementation

So far this thesis has introduced the concepts required to perform ultrasonic beamforming. The
following chapter describes the process of designing and implementing the hardware. The
beamformer implementation has to be decided upon, frequency domain, phase-shift or time
domain; from there, the hardware can be broken down into two distinct parts, analogue and
digital. The analogue side includes the processing of any incoming transducer data,
amplification and ensuring it is ready to be sampled. The digital components have to collect the

sampled data, store it and if necessary perform any processing.

5.1 Beamformer Specification

As this is to be a prototype system it is worth considering how the beamforming is to be
performed i.e. should the beamforming take place on the hardware or would it be more
productive to pass the data over to a desktop computer for processing. At this stage the
processing doesn’t have to be in real time as there is simply no need — the test targets are all
static objects so no human test subjects have to remain motionless while data is captured and
processed; simply data capture and processing is adequate for evaluation purposes. Removing
the need for real time processing can significantly reduce the processing power required to
perform the beamforming calculations. On any moderate desktop computer (2.4GHz Pentium
4) it should take no more than several seconds to form the necessary beams. Incorporating the
beamforming into hardware is only necessary once a satisfactory algorithm has been developed,
therefore the hardware development should be focused on collecting data and passing it over to

a desktop computer for processing but allowing for a later implementation in hardware.

Another very important consideration is the number of sensors that will be used, as with any
digital sampling system: additional channels add to the complexity and expense therefore a
balance needs to be found between the accuracy, more specifically the beam width, and
cost/complexity. Beam width can be calculated form Equation 2.22. Table 5.1 compares the

beam width at broadside for different numbers of transducers, separated by A/2, where

c=340ms™".
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Clearly, more transducers will provide the resolution, but in turn more beams are required to
cover the same spatial area. At this stage in the project 16 transducers appears to provide the
best performance/cost ratio, component counts and board complexity should be manageable and

achievable.

M Adsu
4 24.2
12.1
16 6.0
32 3.0
64 1.5

Table 5.1 Beam Width Comparison as a Function of the Number of Transducers

The selection of transducers warrants its own section. There were numerous difficulties in

selecting suitable devices which is discussed further in part 5.1.1.

5.1.1 Transducers

Airborne ultrasonic applications are usually simple range finding devices, such as those used in
Polaroid cameras, robot navigation and more recently, car bumpers. Robot navigation is of
most interest as although the transducers are often used as discrete measuring devices there has
been research into the application of beamfoming arrays to object avoidance and tracking;

Wykes has published several papers on the subject.

Using phased arrays in an airborne environment introduces several problems, the first of which

is the element spacing. In chapter 3 it was determined that for correct operation, a spacing of

half a wavelength is required.

In many ultrasound applications this is not an issue, as the propagation speed of sound in liquids
and solids is much greater than that of air, fypically 1500 ms~'in water, depending upon
temperature, pressure, salinity and other factors; human tissues are roughly similar [20]. A look
at some of the more popular transducers highlights the problem. Figure 5.1 illustrates the

dimensions of two popular transducers, 5.1a is the Polaroid (Now Senscomp) 600 series
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electrostatic transducer [41] and 5.1b is another Polaroid transducer, the (40KTO08) piezoelectric

device [59].
(a)
Q :
l<—~ —

429 mm 9.1 mm

g

Figure 5.1 Transducer Sizes

The electrostatic device operates at 50 KHz which equates to a wavelength (in air) of
approximately 6.8 mm. It is therefore clear to see that achieving a linear separation of 4/2 is
not possible. The second transducer operates at 40 KHz, which results in a wavelength of 8.5
mm but despite its size, a beamfoming array can be created, the first solution is to simply place

the transducers on a single axis, allowing for assembly tolerances would result in a separation of

00ee

9.5 mm

9.5mm (Figure 5.2)

Figure 5.2 Linear Array

From section 2.5.1 we know that grating lobes will be present when d exceeds A/2 and in the
case of an arrangement as in Figure 5.2 with 16 transducers operating at 40 KHz, the field of

view would be limited to +25°.

A second possible solution would be to stagger the transducers as in Figure 5.3.

Figure 5.3 Staggered Linear Array
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This reduces the separation to just above 1/2, allowing the field of view to be increased to

approximately 50°

A disadvantage of piezoelectric transducers is that their output power and sensitivity are much
lower than that of similar electrostatic devices, for example the receiving sensitivity for the two

devices discussed is -42dB (Electrostatic) and -80dB (Piezoelectric).

MicroElectroMechanical Systems (MEMS) offer another possible transducer solution. In 1986
Higuchi developed a 32 element electrostatic array, manufactured on a 20mm x 30mm silicon
wafer [60]. A typical electrostatic MEMS transducer operates in a similar manner to any other
transducer. A silicon nitride membrane is typically suspended above a metallic back plate,

forming a capacitor and therefore operating in similar fashion to a typical electrostatic device..

Clearly one of the main benefits of such transducers is their size, which is comfortably within
the A/2 ideal separation. A second benefit is the possibility of integrating support electronics
on to the same silicon wafer. Since Higuchi’s work, the focus of ultrasonic MEMS has been
towards medical applications, which operate at much higher frequencies than can realistically be
used in air. Several companies were contacted about the possibility of supplying such devices
and while technically possible the fact that the devices are focused on high frequency medical
applications meant a custom design would be required, which was not achievable with the
budget and time constraints. Therefore the hardware had to focus on the available transducers,

such as the piezoelectric devices but allowing for the possible use of MEMS devices in the

future.

Silicon Nitride
Membrane

— Air Gap

Metal Layers

Figure 5.4. Capacitive Micromachined Ultrasonic Transducer
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5.1.2 Beamforming Type

There are many ways in which a beam former can be implemented and several methods have
been discussed in chapter 2. As this is a prototype system it would be prudent to be as flexible

as possible with the hardware design.

The phase shift beam former initially looked very promising; the steering direction is not
dependent on sampling frequency and demodulation reduces the sampling rates. Since the
phase shift beam former is designed to reduce the sampling requirements, complexity has been
moved to the analogue front end. If different transducers are to be evaluated, the demodulating

frequency needs to be variable to match the transducer centre frequency; furthermore

demodulation limits the system to narrowband signals.

Y

_® LowPass Filter
t

X, (t ) D - -sin(24/1) Multiplexer -»=  4ADC BeamFormer

Sample & Hold

®— LowPass Filter ™1 Sample& Hold -

cos(24/t)

.........

Quadrature

Generator

Transducer Array

Figure 5.5. Phase Shift Beamformer

The digital hardware can be simplified by multiplexing the analogue to digital converter, but

sample and hold units will be required to maintain synchronization between channels.

Since high speed ADCs are now readily available, it was felt that a simple time domain
hardware implementation could be produced quickly and cheaply, while also allowing for

frequency domain beam forming. This would eliminate the need for a more complex analogue

front end but place greater demands on the digital processing components.
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5.2 Beamformer Implementation

Section 5.1 presented the basic specification and highlighted some of the limitations: such as
transducer geometry and also defined which beamforming methodology was most appropriate;

the remainder of this chapter covers the hardware design and implementation issues.

5.2.1 Analogue Front End Amplification

Ideally, the beamforming system should be compatible with different types of transducers
(Electrostatic or Piezoelectric). To achieve this, the amplification stage is broken down in to

two parts, an initial pre-amplifier and a second variable gain amplifier.

o ) _ | Variable Gain | Low Pass .
x,(t) D—e{  Pre-amplifier alfor o P = ADC |-»~ BeamFormer

1

Analogue Control
Signal

DAC |- et———————— BeamFormer

Transducer Array ]
Figure 5.6. Time Domain Beam Former Implementation

Therefore, to permit the use electrostatic, piezoelectric and possibly MEMs transducers, the pre-
amplifier has to be interchangeable; which lead to the development of daughter cards which
plug into the main board, as shown in Figure 5.7. This allows the transducer and pre-amplifier

to be designed with a large amount of independence from the main board and specific to the

type of transducer used.

The pre-amplifier design is entirely dependent upon the type of transducer used, as the signal
conditioning requirements for piezoelectric and electrostatic devices are very different. As the
only suitable transducers available at the time of design were the Polaroid 40KR08/40KT08

series [59], the pre-amplifier must be designed for use with piezoelectric devices, which

suggests a charge amplifier based design.
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Figure 5.7. Amplifier Printed Circuit Board Layout

A piezoelectric device can be modelled as a charge source with a shunt capacitor and resistor, as

in Figure 5.8.

qp@ Cp :F Rp

Figure 5.8 Piezoelectric Transducer Model [61]

S 5~

A simple amplifier can therefore be constructed using a single operational amplifier, in a

configuration similar to an integrator.

- Vo

==
[J»
Y

'A-V—oc
Figure 5.9 Charge Ampliﬁer'

The circuit schematic and printed circuit board design can be seen in appendixes A4, A5 and
A6. Each daughter card consists of four pre-amplifiers and buffers manufactured using a simple

two layer board, with a combination of surface mount and through hole components.
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The output from the pre-amplifiers is still small, in the region of 10m¥ . The second stage
variable gain amplifier allows the signal to be brought up the full scale range of the ADC.
Variable gain is essential in such systems as the distance to the target is variable and the

attenuation of radiation, including sound, is an exponential function (Equation 5.1)

Attenuation =e~ % 5.1
Where z is the distance travelled from the source and « is the attenuation coefficient of the

wave travelling in the z direction.

Gain

L 2
Target | Target 2
Distance (z)

Figure 5.10 Amplifier Gain as a Function of Distance

This type of gain control is often referred to as Time Gain Control (TGC) and is a fundamental
component in ultrasound systems. A solution is illustrated in Figure 5.11, the Analog Devices
AD604 is a low noise, wide bandwidth, dual channel variable gain amplifier designed
specifically for ultrasound and sonar applications. The gain is programmable via a control
voltage applied to the appropriate pin; between 0.5V(4dB gain) and 2.5V(44dB gain) the gain
scales linearly. The scaling is programmable from 20dB/V to 40dB/V; in this case it has been
set to the former. Input impedance is low, 300 KQ, which resulted in an output buffer being
included in the pre-amplifier. Power consumption is quite high, each channel typically

consuming 220mW, therefore the total power consumption for 16 channels is approximately 3.5

Watts.
0dB-48dB Gain
Low Pass P
fi P AD604 i " - ADC
Pre bl Filter
]
Analogue
Control
Voltage former
AD7305 [~ 8 Bit Gain Value

Figure 5.11 Variable Gain Sampling System
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As each channel has an independent gain operation, windowing functions such as Hamming or
Blackman etc can be applied directly to the analogue channels, reducing the possible demand on

the digital processing components.

An AD7305 is an 8 bit analogue digital converter used to generate the gain control voltage, the
device is four channel; each channel can operate independently at approximately 1 MHz. The

reference, used to determine the full scale output, is fixed at 2.5V to match the linear range of

the variable gain amplifier.

5.2.2 Low Pass Filter

Once the incoming transducer signal has passed through the amplification stage, all that remains
before conversion is signal conditioning in the form of a low pass filter. As discussed in the
specification, it would be beneficial if the hardware can operate with a range of sensors possibly
operating at different frequencies. The upper limit to ultrasound in air is 150KHz to 200KHz.
Any higher frequency and the attenuation becomes too high, therefore a cut-off frequency of
200KHz would cover the full range of possible transducer solutions. Linear Technology [62]

manufactures a range of configurable low pass filters; the device chosen was the LTC1563-3,

which can be configured for a linear phase response (Figure 5.13).
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Figure 5.12 Linear Phase Filter

86



Linear Technology also supply design tools which allow component selection to be made
quickly, an example of which is shown in Figure 5.12. The benefits of such devices are a
reduced component count and a fourth order implementation. Cost is higher than for a
traditional active filter design but as this is a prototype design it was felt the time saving and
PCB space warranted the extra cost. To meet the Nyquist criteria, a sampling rate of at least

400 KHz is required. If time domain beam forming is also required the sampling rate will have

to be in the order of 20 times the transducer centre frequency.

& Low Pass flt:Frequency Response

~ 997.931kHz | 797.931kHz

Frequency | 200.000kHz | [
= (Gain ! F 3.049d8 | _ADB3AdB | __ -37.585dB
N dB Group Delay | 1.597usecs 165.792nsecs | . -1.43Tpsecs usecs
= E it o e ey e e 8 DY
| 0.007 13.00
B 200 2.50
oy ;
N 40.04 12.00
jitl Z ‘
-60.04 1.50
g .
-80.01 1.00
f
-1001 0.50
' T e
-1204 v i AT
100 165 Lo
Fileg. 1 lean KHz " Phase  GroupDelapy (" None

Figure 5.13 Linear Phase Filter Response

For the 40 KHz transducers, such a requirement is quite straight forward to obtain, as the

sampling frequency would be 800 KHz but for transducers operating at 150 KHz to 200 KHz

the difficulty of achieving an appropriate sampling rate increases greatly.

5.2.3 Analogue to Digital Conversion

For effective beam forming, each channel must be sampled simultaneously to avoid sampling
skew. There are two ways to achieve this: a sample and hold unit can be used on each channel
and a multiplexer switching between channels to reduce the number of A/D converters required
or alternatively a converter can be used for each channel. Due to the required speeds, the
decision was made to use one A/D converter per channel; the extra time required for a

multiplexer to switch channels could be used more effectively to increase the sampling rate.
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There is a vast number of analogue to digital converters to choose from and it is important to
make the correct selection to maximise system performance. The speed and width of the
converter are the dominant factors in selecting an A/D converter, in this particular case the
maximum sampling rate needed to be no more than 3 MHz, which usually means a pipelined
device. The width is often a compromise between the desired level of quantization noise and

speed. Fortunately, a converter was available which met most of the requirements and exceeded

others.

The Texas Instruments ADS850 [63] is a 14 bit, 10 Msps pipelined device. The digital outputs
are three state with a 40 nS enable time. This allows multiple A/D converters to be placed on a

bus reducing the number of connections but possibly increasing the sample time. The final

design schematic can be seen in Appendix A.10

5.2.4 Completed Sampling System and Test Design

Figure 5.14 illustrates how the analogue front end components are composed; the AD604 is a
dual channel device and therefore requires 2 analogue signals to control the gain. The D/A

converter is used to supply the analogue control signals; each device has four independent

channels with a 60 nS output time.

The ADS850 A/D converters require 4 control channels, two input (calibrate and output enable)
and two output (busy and out of range) a clock and a 14 bit output bus.

To verify the design would function correctly, a single channel prototype was built. The unit
includes a 50 pin IDC connector to allow the output of the A/D converter to be monitored by the
digital /O card (see next section), a BNC connector for the A/D converter clock signal and a
seven segment display to aid with debugging. The prototype proved invaluable, as several
faults with the initial schematic were discovered, most significant of which was a missing
ground connector on the AD604. The unit also enabled the final design of the pre-amplifier to
be completed, which included adjustments to the component values. Once the corrections had
been made to the schematic it was used as a ‘Reuse Block’ within the Mentor Graphics design

flow, which allowed the one schematic instance to be used a further seven times in the final

hardware design.
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Figure 5.14 Detailed Front End Design

5.3 Digital Design

This section covers the digital hardware design side of the system, including data storage,
communication with a desktop computer and selection of a either an FPGA or digital signal

processor as the core of the system..

5.3.1 FPGA or Digital Signal Processor

FPGAs and digital signal processors both offer unique features, and examples of beamforming
have been documented using both methodologies [64],[65]. DSPs are focused on performing
complex mathematical algorithims quickly, programming is typically assembly code at the
lowest level or at a higher level C can be used. For this application I/O currently takes
precedent, 16 channels require simultaneous sampling at speeds over 1 MHz which negates the
DSPs algorithmic capabilities. As the DSP is a serial device and not suited to moving large
amounts of parallel data. The solution, therefore, lies with the FPGA. FPGAs are much more
suited to the task, their reconfigurable parallel nature and the high number of user definable I/O

pins makes them the ideal solution.

The Xilinx XC2S200 Spartan 2 (Speed Grade 5) [45] was chosen to be the target device as it
represented the best compromise between speed and cost. The device is available in several
package types of which the PQ and BG (Figure 5.15) are most suitable. The PQ package is
limited to 140 user I/Os, which on its own isn’t enough but the package does allow for

modifications to be made after PCB mounting, which would be valuable in the advent of any
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routing errors. Therefore, consideration was given to using two PQ devices in a parallel
arrangement. However, it was eventually decided that the additional complexity of mounting
and routing two devices nullified the benefits, and the BG package was selected which permits

284 user I/Os.

(® ()

Figure 5.15 Xilinx Spartan 2 Package Type (a) PQ, (b) BG

5.3.2 Data Transfer

The specification in part 5.1 stipulates that data transfer to a desktop computer for processing is
a requirement; this can either be raw data for processing or beam outputs for visualization.
Ideally the data needs to be transferred quickly, which could facilitate the ability to produce near
real time imaging. To transfer the data at high speed several options are available, first to be
considered was the USB port which is available on most new computers. It allows for high
transfer speeds, from 11Mbps to 480Mbps for versions 1 and 2 respectively [66]. However, to
implement in prototype hardware would take far too long, software drivers for the desktop
computer would need investigating and a lot of complexity would be added to the FPGA. The
second solution to be looked at was a Digitial I/O card which could be fitted to one of the PCI
slots in the computer; this would allow a simple interface between the FPGA and computer to

be created; although the throughput would be lower than that of a USB implementation, the

design time would be much more acceptable.

The Digital I/O card chosen was the National Instruments PCI-DIO-96 [67] unit, which
provides 96 1/O lines configured as four 24 bit ports. The 24 bit ports can be broken down
further in to three 8 bit ports, A, B and C. A and B can only be used for digital I/O, while port C
can be configured for digital I/O, control, status or handshake signals [67]. To maximize the
data transfer speed, digital interfaces A and B are used in handshaking mode, with the
remaining connections being used for status indicators and control signals. The design

schematic covering the digital I/O connectors can be seen in Appendix A.17
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Figure 5.16 DIO-96 Internal Block Diagram
5.3.3 Data Storage

Storage is required for several reasons; in a purely sampling scenario the data throughput is
significantly in excess of the maximum rate at which it can be transferred to a computer and
therefore a buffer is required to store the data before it is sent to the computer. Secondly, in a
beamforming scenario, space is required to store the formed beams and the amount of storage
required is dependent upon the angular resolution. To maximize the rate at which data can be
collected, the A/D converters and memory system is broken into 4 semi-independent parts.

Each group consists of four A/D converters, Static Random Access Memory (RAM), one data
bus and a shared address bus (Figure 5.17).
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Figure 5.17 FPGA and Memory PCB Layout
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Figure 5.18 Data Storage Arrangement for Each Group of Four Channels
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Ordinarily, one address bus would be adequate, but for PCB routing issues the bus has been
broken in to two parts, A and B, as shown in Figure 5.18. This layout allowed the routing to be

simplified at the expense of using extra I/O channels.

5.3.4 Ultrasonic Transmission

The transmission system must complement the detection characteristics and therefore a
programmable frequency output has been included. The ultrasonic receiver (40KR08) can be
used in conjunction with the 40KTO08 transmitter, which made up the initial design. To drive the
transmitter, an OPAS544 power amplifier was included on the pre-amplifier PCB which operates
from a separate high voltage supply. The input signal can either be a synthesised sine wave or a

simple train of pulses.

Output Select

Y
®

FPGA Ve Ai(;‘;’i:irer _’. /\/

4 DAC - LOW Pass - g/
8 Filter

Analogue Switch

Figure 5.19 Power Amplifier Drive Select

Early tests with the 40KTO08 transmitters proved unsuccessful. There were two major problems,
firstly the resonance was much greater than expected, resulting in an almost continuous output
rather than the desired pulse, and secondly, the output power wasn’t sufficient. The only
alternative was to use the Polaroid electrostatic transducer for transmission, which included the
Polaroid drive circuitry. The only disadvantage to using the aforementioned arrangement is that
the electrostatic device is centred around 50KHz. Fortunately, the output power is still greater
than that of the piezoelectric at 40 KHz. The transmit response can be seen in the associated
data sheet [41]. The Digital/Analogue converter used is the Texas Instruments DAC7802 dual
channel 12 bit device[68]. This was originally included in an earlier design, as a method of
generating the quadrature components for a phase shift beamformer, which was eventually
superseded by the current design. The inclusion of a DAC to generate an output signal allows

the possible inclusion of pulse compression techniques such as a chirp pulses.
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5.4 Hardware Overview

The previous sections have dealt with specific parts of the hardware design. Figure 5.20

combines the parts to provide a simplified diagram of the final design.
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Figure 5.20 Simplified Hardware Diagram
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Figure 5.21 is a photograph of the assembled main board with labels for key components. Also
attached to the board is one of the pre-amplifiers; connectors for the remaining boards can be

seen along the left handside.

5.5 Chapter Summary

This chapter has outlined the physical design of the hardware for this project. At the centre is a
Xilinx Spartan 2 FPGA (XC2S200-FG456AMS0413-5C), which controls 16 A/D converters, on
four independent busses and 4 Mbytes of static RAM. An interface to a desktop computer is
also included in the design, which utilises a 28 bit wide data bus, 5 bit instruction bus and an 8
bit general purpose bus. Each transducer is connected to a pre-amplifier on a daughter card.
This strategy allows for a change in transducer to be accompanied by a suitable pre-amplifier.
After initial amplification, a second variable gain stage is employed; the gain for each channel is

controlled independently by four, four channel D/A converters.

The hardware design took a considerable amount of time to complete, during which several
revisions were made. The initial design was based on a phase shift beamformer; this solution
eventually evolved into the design detailed in this chapter. The change was made because each
channel had evolved from using a sample and hold system to having its own analogue to digital
converter. Sample and hold systems or an A/D converter per channel are essential to eliminate
sampling skew. One of the advantages to phase shift beamforming is the dramatic reduction in
sampling speed by quadrature processing, which in turn allows a multiplexed A/D converter to
be used, reducing the system cost. However, to avoid skew a sample and hold unit is required

on each channel to maintain the analogue signal until the multiplexed A/D converter performed

a conversion.

Surprisingly, at the time of design, sample and hold units were expensive and not particularly

fast. It was therefore decided that an A/D converter for each real channel was a more flexible

solution than the 32 sample and hold units required for quadrature sampling.
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Chapter 6
Software

6.1 Introduction

The previous chapter dealt with the hardware design, this chapter follows on by examining the
VHDL code used for the FPGA, including how the design was broken down into modules to
make the project more manageable. A short section focuses on the Windows application used to
interface with the hardware via a National Instruments digital I/O card and the final section

describes some of the Matlab scripts developed for signal processing of the sampled data.

VHDL was chosen as the development language for the Xilinx FPGA as it is an industry
standard and the author had a small amount of previous experience. Xilinx provide the ISE [53]
range of development tools for use with their FPGAs, this package includes synthesis tools,
simulators, floor planners etc. The standard Xilinx synthesis tool (XST [53]) was replaced with
the third party Leonardo Spectrum [54] and the default simulator was substituted for Modelsim
[69], both of which are directly supported from within ISE and offer greater functionality.

6.2 VHDL Design

The prototype stage of the project focuses on hardware data collection and software

beamforming, therefore the VHDL design reflects that fact and it is aimed toward collecting

data rather than beamforming.

The priority in collecting data requires several key areas to perform at high levels of efficiency:

e Data Transfer From FPGA Hardware to Desktop Computer
e Management of High Speed A/D converters
e Temporary Data Storage

The main VHDL design was broken down into sections, to enable a modular design, with well
defined I/O parameters; such a method allows each module to operate as a separate entity and

therefore is not dependent upon other sections in the system hierarchy.
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6.3 Modular Design

The design can be broken down into four major components, /O, Memory, A/D converters, and
Amplifier Gain. I/O can be defined as any external communication including data transfer and
command instructions from the desktop computer. The memory module would control the eight
512x8 memory ICs, this would include maintaining the address bus and read/write enables.
Analogue to digital conversion is closely related to the memory functions; as described
previously, a data bus is shared between the two. The initial idea was to operate each part as its

own module with a central control module overseeing communication between each part, as

/

D/A Conversion
Memo
Amplifier Gain J ( Ty Converswn

shown in Figure 6.1.

~=-——p Data Flow

Figure 6.1 Modular FPGA Design

However such an approach does lead to a complex and time consuming design and in this case
certain modules could be joined with only a slight loss in certain functionality but with a
significant saving in design and verification time. The I/O and control functionality was joined
to form one unit and the A/D conversion process was joined with the memory module. This
arrangement is particularly suited to the data acquisition mode as a conversion can be written
straight to memory and additionally there are no arithmetic operations to be performed (Figure
6.2). Each of the main modules will be briefly examined in the remainder of this section,

starting with lower level parts and finishing with the Control/IO module.

Control
I/O
D/A Conversion A/D Conversion
Ampllﬁer Gain Memory

—a——Data Flow

Figure 6.2 Simplified FPGA Design
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6.3.1 D/A Converter Module

The D/A module is a very simple unit, comprising of a three level hierarchy which interfaces

the analogue gain controlling D/A converters to the main control module (Figure 6.3).

dac_top

»1 dac_crtl

- dac decode

Figure 6.3 D/A Module VHDL Hierarchy

The code extract below, illustrates the instantiation process required to successfully build the
VHDL code in a modular manner. Within the architecture statement of the ‘dac_top’ module
the dac_crtl component is declared; each port entry corresponds to the ports included in the
entity declaration of the ‘dac_crtl’ module. To complete the process, within the main body of
the architecture the code ‘crtl : dac_crtl port map' is used to perform the instantiation — where
‘ertl’ is the name of the new instance. The ‘=>’ operator is used to map the ports within the

dac_crtl code to signals or ports within the dac_top module.

entity dac_top is
Port (

reset : in std_logic;
clk : in std_logic;
dac_channel : in std_logic_vector(3 downto 0);
dac_weight : in std_logic_vector(7 downto 0);
set : in std_logic;
busy : out std_logic;
dac_reset : in std_logic;
dac_wr ; out std_logic_vector(3 downto 0);
dac_ldac : out std_logic_vector(3 downto 0);
dac 1 2 ad: out std_logic_vector(l downto 0);
dac_3 4 _ad: out std_logic_vector(l downto 0);
dac_1 2 : out std_logic_vector(7 downto 0);
dac_3 4 : out std_logic_vector(7 downto 0));

end dac_top;

architecture Behavioral of dac_top is

component dac_crtl
port(  clk: IN std_logic;

reset : in std_logic; C
dac_channel : IN std_logic_vector (3 downto 0);
dac_weight : IN std_logic_vector (7 downto 0);
write : IN std_logic;
write_busy : out std_logic;
dac_wr : OUT std_logic_vector (3 downto ();
dac_ldac : OUT std_logic_vector (3 downto ());
dac_1_2_ad : OUT std_logic_vector (I downto 0);
dac_3_4_ad : OUT std_logic_vector (1 downto 0);
dac_1_2 : OUT std_logic_vector (7 downto 0);



dac_3 4 : OUT std_logic vector (7 downto ()
),.

end component;

begin
crtl : dac_crtl port map(

reset => reset,

clk => clk,

write => write,

write_busy => write_busy,
dac_channel => dac_channel op,
dac_weight => dac_weight op,
dac_wr => dac_wr,

dac_ldac => dac_ldac,
dac 1 2 ad=>dac 1 2 ad,
dac 3 4 ad =>dac 3 4 ad,
dac 1 2=>dac 1 2,

dac 3 4=>dac 3 4

),.

The I/O ports in the ‘dac_top” entity declaration, with the exception of the ‘busy’ signal, are all
physical connections to the D/A converters (Appendix A.10 DAC diagram) The ‘busy’ line is

sent high while a conversion takes place and can be used by the main control module to

determine when instructions can be issued to the D/A process.

The inputs: ‘dac_channel’ and ‘dac_weight’ control the channel selection and weighting of the
D/A converters. For example, using the simulation in Figure 6.4, the signal ‘dac_channel’ is set
to ‘1111” and ‘dac_weight’ to ‘10101010 at time position (a)’. A rising edge is detected on the
‘set” input at time (b), the D/A converter control signals are selected at point (¢) and written at
(d); the process is finished once the ‘busy’ line returns to a low state. Alternatively, if

‘dac_reset’ is made active, all the D/A converter channels will be set to 0 on a rising edge at the

‘set’ input.
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Channel Weighting | Set D/A Converter Data Written to ADC Write Finished

/
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Idac_topidac_weight ~foromor0
dac_toplset
Idac_tophusy
Idac_top/dac_reset
Idac_top/dac_wr 1111
Idac_top/dac_ldac 0000
ldac_top/dac_1_2_ad 10
Idac_topidac_3_4_ad 00 [oT

Idac_top/dac_1_2
{10101010 W*
I b c d e

]

i JREE}

Idac_top/dac_3_4

Figure 6.4 D/A VHDL Module Simulation
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6.3.2 A/D Conversion and Memory Access

The A/D module is one of the more complex parts of the design as it has to acquire data from
the analogue to digital converters, write it to memory and read the data back from memory for
transfer to a desktop computer. Furthermore, functionality such as the pre-trigger and threshold

system are closely integrated with memory access.

As previously described in part 5.3.3, the A/D converters and memory are broken into four
identical parts, each consisting of 4 A/D converters and two 512K * 8bit memory devices [70]
configured as one 512K * 14bit device. Because the 16 A/D converters sample simultaneously,

16 conversion values have to be written to memory during one cycle of the sampling clock.

Memory Bank 0 Memory Bank 1 Memory Bank 2 Memory Bank 3
...... ( .v;,:,.”.,;\:{_.\,. ) “ 2 § Channel 6 : : Channel 10 : : "(-‘1.14.1:\-111‘.1';;- B
Channel 1 0100 Channel § Channel 9 Channel 13
Channel 4 Channel 8 Channel 12 Channel 16
. Channel 3 Channel 7 Channel 11 Channel 15
1 Sample Period
Channel 2 Channel 6 Channel 10 Channel 14
Channel 1 0000 Channel 5 Channel 9 Channel 13

Memory Locations

Figure 6.5 FPGA Memory Organization

Figure 6.5 illustrates how the memory banks are configured. Examining Memory Bank 0 it can
be seen that during one sampling period four A/D channels are written sequentially to memory

and then repeated for each sample clock. The number of memory locations used is user

programmable.

As each ADC/Memory group is physically independent, four conversion values can be written
to memory simultaneously, which is referred to in the VHDL code (Appendix B) as a

‘bank_count’, it therefore follows that there are four banks consisting of four channels.

Bank Count1 | Bank Count2 | Bank Count3 Bank Count4
‘bank_count’ 00 01 T 10 11
1 -2 3 4
Channel 5 6 7 8
Number 9 10 11 12
13 14 15 16

Table 6.1 Break Down of Bank/Channel Relationship
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The ‘bank_count’ signal is used to set the output enable status of the analogue to digital
converters and ‘bank’ maintains the output enable, chip select and write enable pins of the
memory circuits. Keeping track of the memory access during a sampling operation is very
simple; all samples are stored sequentially and therefore a simple routine can be used to

increment the memory address bus (mem_counter).

PROCESS(current_state,bank_count,clk)
BEGIN
if (clk = '’ and clk'event) then

if (current_state = sample_g and mem_counter < mem_max) then  --Cycle next bank if not at

bank_count <= bank_count + 1; --end of memory allocation
mem_counter <= mem_counter + I; --and increase memory
--counter
elsif (current_state = init_st) then —Initialisation state
bank_count <= '00"; --reset counters

mem_counter <= ‘0000000000000000000";
elsif (current_state = sample_g and mem_counter = mem_max) then

bank_count <= bank_count + ‘01°; --Max memory reached
mem_counter <= ‘0000000000000000000°; --reset counter

else
mem_counter <= mem_counter;
bank_count <= bank_count;
end if;
end if;

end process;

From the above code extract it can be seen that the memory counter and bank counter are both
incremented when the state machine is in the ‘sample_g’ state and the memory counter is less
than the maximum allocated for use by the sampling process. If the main process is in the

‘init_st’ state or the maximum amount of memory has been reached, the memory counter is

reset to zero.

Another important part of the A/D module is the pre-trigger and threshold system, both of which
are programmable via the desktop computer. The two routines work in conjunction to acquire
the reflected ultrasound signal, while minimizing the amount of memory used. Once the
transmitter has been fired, the A/D module immediately starts sampling and storing the data; the
pre-trigger is disabled until d ~15cm to prevent false triggers from reflections local to the
transmitters. The trigger is activated when the magnitude of a single sample is greater than that
of the threshold value; the pre-trigger is then subtracted from the current value of the memory

counter to provide the start address. Sampling continues until the memory counter equals the
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‘data start’ memory location, added to the total number of samples required. Figure 6.6
demonstrates how this process works. Essentially the SRAM acts as First In First Out (FIFO)

memory until a pre-trigger threshold level is detected.

Trigger
0011

$
0000 r T 111

Data Start Data End
(Trigger-0010) Data Start + 1101

Memory Locations

Pre-trigger = 0010
Total Data Samples = 1101

Figure 6.6 Pre-Trigger Memory Operation

process(clk.data_0, data_l, data 2, data_3, bank_count, thres_trig, thres, current_state)
begin
if (clk = '’ and clk'event) then

if (data_O_temp >= thres or data_1_temp >= thres or data 2 _temp >= thres or
data_3_temp >= thres) and lockout = 'l")

then
thres_trig <="1";

else
if (current_state = init_st or current_state = ready _st) then

thres_trig <="0";
else
thres_trig <= thres_trig;
end if;
end if;
end if;
end process;

The process above examines each sample from all 16 of the analogue to digital converters to

determine when the threshold level has been exceeded, at which time the ‘thres_trig’ signal is

set.

To illustrate some of the functions discussed in this section, simulation data in the form of
Figure 6.7 has been included. A simulation of all the parts which contribute to A/D conversion
and storage simply isn’t practical to include within this thesis; therefore, Figure 6.7 focuses on

the period from receiving the signal to start data acquisition to storage of the first four A/D

converter samples.
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Data acquisition starts on a positive edge of the ‘ch_acquire’ signal, on the next leading edge of
the system clock the ‘adc_busy’ signal is sent high — informing the control module sampling has
been successfully started. As the start of sampling was requested mid-way through a period of
the sampling clock, no data is written to memory until the next full cycle. Therefore, the first
sampled data is acquired from the A/D converters at point ‘M1°, after the necessary set-up
period, for the memory, the data is then stored by sending two bits of the ‘bank_0’ to ‘bank_4’
busses low. Before the second sample can be written, the address busses ‘addr_a’ and ‘addr_b’
are incremented; once again allowing for the correct set-up time. The process is repeated until

the necessary amount of data has been collected or the process is interrupted by the user.

6.3.2.1 Memory Transfer

Once the data has been captured, there is a requirement for it to be transferred to a desktop
computer via a digital I/0 card; as the computer has no direct access to the A/D module, the

data has to be passed on to the main control module before being transferred to the computer.

Once a sampling run has been completed the main ‘adc_module’ process waits for instruction

from the control module. This can be either a signal to transfer the data or reset back to the

initialization states.

On a transfer signal, a handshaking system is used to maintain a coherent transfer system

between the two modules and furthermore, the data is transferred in channel order rather than a

bank at a time.

PROCESS(current_state,clk,upload_start_position_0,upload_start_position_1,upload_start_position 2, upload start
_bosition_3)
BEGIN

if (clk = 'l' and clk'event) then
if (current_state = upload_inc_location and upload_mem_counter <= mem_max) then

if (upload_channel_group = ‘00°) then
if ((upload_mem_counter_4) > mem_max) then
upload_mem_counter <= ‘0000000000000000000°;
else .
upload - mem_counter <= upload_mem_counter + 4;
end if;
elsif (upload_channel_group = ‘01°) then
if ((upload_mem_counter_4) > mem_max) then
upload_mem_counter <= ‘0000000000000000001 *;

else
upload_mem_counter <= upload_mem_counter + 4;

end if;
elsif (upload_channel_group = ‘10’) then
if ((upload_mem_counter_4) > mem_max) then
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upload_mem_counter <= ‘0000000000000000010";
else
upload_mem_counter <= upload_mem_counter + 4;
end if;
elsif (upload_channel_group = ‘11°) then
if ((upload_mem_counter_4) > mem_max) then
upload_mem_counter <= ‘000000000000000001 1 *;

else
upload_mem_counter <= upload mem_counter + 4;
end if;
end if;
else
if (current_state = start_upload 1) then
if (upload_channel_group = ‘00°) then
upload_mem_counter <= upload_start_position_0;
elsif (upload_channel_group = ‘01°) then
upload_mem_counter <= upload_start_position_l;
elsif (upload_channel_group = ‘10°)  then
upload_mem_counter <= upload_start_position_2;
else (upload_channel_group = ‘11°)  then
upload_mem_counter <= upload_start_position_3;
end if;
end if;
end if;
else
upload_mem_counter <= upload_mem_counter;

end if;
end process;

The purpose of the process listed above is to maintain the correct address of the memory
counter, which is slightly more complicated by the fact of the upload order. After uploading
four values from one memory bank the process is repeated on the next bank. Before that can

take place the memory counter has to be returned to the correct value.

6.3.3 Control Module

The control module sits at the top of the FPGA hierarchy, its purpose is to maintain control over
the system functions and supervise external communication. Instructions are issued to the
control module from the desktop computer, over one 5 bit instruction bus and two 16 bit data
busses; the data busses are only required when there is additional data associated with an
instruction or a data transfer is being performed. For example firing the transducers doesn’t
require additional information but setting the threshold level requires a 14 bit value to be placed

on one of the data busses, allowing the control ‘module to read the bus and transfer the threshold

level to the data acquisition module.
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5 Bit Command Signal Instruction
00000 Write value on data bus to LEDs
00001 Start an acquisition
00010 Set DACs
00011 Threshold Level
00100 Pre-Trigger
01000 DAC Reset
10000 Calibrate ADCs
00101 Fire Transducers
00110 Maximum memory usage
00111 Number of samples to upload

Table 6.2 FPGA Control Instructions

Many of the instructions are to set internal values for the sampling routine, such as the
maximum memory usage, threshold, etc and therefore only require a simple process to transfer
the incoming data to a register. Alternatively routines such as the D/A conversion process
require interaction between it and the main control module. The following code extract

demonstrates how the main control state machine deals with an incoming instruction.

when decode_instr =>
start_download <= push_button_1_inv;

cancel_download <= '0%;
ch_acquire <="0";
calibrate <= 0';

shake _out_temp <="0%

dac_set <= 0"
dac_reset _temp <= 0

data_oe <="0'

data_oe b <="0";

dio_stb_a temp <="'l" --strobe dio card
-- active low

dio_stb b _temp <="'l"

fire_go <="0"
if (current_instr = ‘00001 ") then --start a sample
next_state <= sample;
elsif current_instr = ‘00000’ then --write values to leds
next_state <= instr_complete_st;
elsif current_instr = ‘00010’ then --set dacs
next_state <= dac_program;
elsif current_instr = ‘01000’ then -- reset dacs
next_state <= dac_reset_crtl;
elsif current_instr = 10000’ then --calibrate adcs
next_state <= calibrate_st;
elsif current_instr = ‘00101’ then -~fire transducer

next_state <= fire_st;
else next_state <= instr_complete_st;
end if;
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Once the ‘decode_instr’ state has been entered -- which is only possible when an instruction has
been sent from the desktop computer -- the ‘current_instr’ signal is examined to determine the
incoming instruction. This is achieved through the if, elsif and else statements, if the value of
‘current_instr’ matches one of the hard coded command signals the else/elsif operator is used to

set an appropriate next state.

6.3.4 Additional Modules

The operation of several low level modules are critical to the functionality of the FPGA, these
include clock dividers and Delay Locked Loops (DLL) (Figure 6.8). A 25 MHz oscillator
provides the clock signal for the FPGA, and using the internal DLLs it is then doubled to 50
MHz. On examination of Figure 6.9 it can be seen that: once ‘reset’ is taken low, the DLL
become active and ‘clk2x’ starts to establish a lock on the system clock (clkin); which takes

approximately 400nS to complete and the output become stable.

IBUFG

CLKDLL G
>-—| >—JCLON C o_b—
—] CLFR &% E
BUFG
cLK2x l\
IBUF LKy — l/ou.n:
.——D RST LOCKED —.D__..
Figure 6.8 Xilinx CLKDLL

okin 1L mmﬂrwﬂ{uww
reset |
clk2x | | | L‘__H_‘JULiUUFULlUU

400 ns 600 ns 800 ns tus

Figure 6.9 Clock DLL Simulation

A clock divider is used to genefate the sampling.clock from the main 50 MHz FPGA clock; this
is a simple routine that divides the incoming signal by an integer number. In Figure 6.10 the

‘clk’ signal is divided by 20 to produce the ‘clk_out’ signal.
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Figure 6.10 Clock Divider Simulation
6.3.5 VHDL Implementation Summary

Taking the VHDL from concept to a fully operational system was an extremely challenging part
of the project. The initial learning curve was extremely steep and taking a purely synthetic
VHDL design to a placed and routed version was much more difficult and time consuming than
expected. However, the finished application performed very well meeting almost all of the
design targets. The one goal that wasn’t met was the overly ambitious FPGA operating
frequency. Initially targeting a speed of 100 MHz, the maximum theoretical speed calculated by
the development tools was 87 MHz. As there are only three possible clock settings: 25 MHz, 50
MHz and 100 MHz, the design had to fall back to the next highest setting (50 MHz). The

affects of the clock changed proved minimal.

If there was need for improved performance it would have been a straight forward task to

replace the base 25 MHz oscillator with a frequency that allowed the FPGA to operate closer to

its maximum potential.

6.4 Desktop Application

As discussed in chapter 5, all communications between the computer and FPGA hardware is via
the DIO-96 digital I/O card, therefore an application is required to interface with the card and

allow a user to operate the hardware quickly and effectively.

National Instruments supply a programming API)with their hardware which allows software
development tools such as Visual Basic, Visual Studio.net and C/C++ to be used for application

design. As a rapid solution was required, the C/C++ interface was selected, alongside Borland

C++ Builder (Version 6) [57], as the development platform.
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6.4 1 Functionality

The functionality of the Windows application is determined by the features implemented in the
FPGA, and can therefore be considered as a graphical front end to the system hardware. As the
project is still in the prototype stages the interface is quite minimal, as demonstrated in Figure
6.12. The following section describes the functions available and how they have been
implemented at a software level. All instructions are clocked into the FPGA in the same
manner, a five bit Instruction (Table 6.2) is placed on the ‘instr’ bus and a leading edge on the

instruction clock loads the instruction into the FPGA (Figure 6.11).

Instruction Clock

A\

Instruction Bus»

il mrr———
One Clock Cycle

Figure 6.11 Instruction Bus Timing Diagram

The ‘C’ code example below illustrates how the D/A converters are reset. Ports for the clock
and instruction bus are configured, followed by the appropriate instruction value being written
to the ‘instr’ variable, which is then placed on the instruction bus and finally the clock is pulsed

high. If an error occurs during any part of the process it is handled by the error routine and the

output displayed in the ‘Information’ text box.

TaskHandle taskHandle_0=0;
TaskHandle taskHandle 1=0;

/instr
DAQmxErrChk (Configure_WriteDigPort(‘Devl /port10’,&taskHandle_0)); //Configure port
: // for instruction

DAQmxErrChk (Start_WriteDigPort(taskHandIe_O));

/Helk
DAQmxErrChk (Configure _ WriteDigPort(‘Dev1/portl 1/line6:7’, &taskHandle 1)); //Configure
// clock port

DAQmxErrChk (Start_ WriteDigPort(taskHandle_1));
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Error:

instru = 0x08;

DAQmxErrChk (Write_WriteDigPort(taskHandle 0,instru));

DAQmxErrChk (Write_WriteDigPort(taskHandle 1,clk_mb _0));
DAOmxErrChk (Write_WriteDigPort(taskHandle 1,clk mb 1));
DAQmxErrChk (Write_WriteDigPort(taskHandle 1,clk mb 0));

iflt DAQmxFailed(error) )
DAQmxGetExtendedErrorInfo(errBuff,2048);
if( taskHandle 0!=0)
Stop WriteDigPort(taskHandle 1);
Stop WriteDigPort(taskHandle 0);
ift DAQmxFailed(error) )
Memo2->Text = errBuff;

Beamforming Data Capture

Programmable Settings

75eg | [ - ADC Calibrate DAC Control
K|
Sample Sample Save I FleJ 120
Reset Save Raw Data '
125000
Information i |
12050
Kl
16384
Kl e |

//nstruction 01000 - reset dacs
//Write instruction

//Clock = 0
//Clock =1
//Clock = 0

//Put error in buffer

//Close tasks

//Display error

_.l Pre Trigger

0 Samples

Figure 6.12 Application User Interface
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e Seven Segment Display Control — ‘7 Seg’

Port 7 of the I/O card is directly connected to the 7 segment display ‘D2’ (Appendix A.11 and
A.17) and is primarily used for debugging purposes. As the windows application performs
certain functions, it will also output to the LEDs, which provides extremely useful feedback for

debugging purposes.

e Calibration of the A/D Converters — ‘ADC Calibrate’

The ADS850 D/A converters have an internal calibration system and once the calibrate

instruction has been sent to the FPGA, it places all of the converters into calibration mode.

e Initiating Data Capture — ‘Sample’ and ‘Sample Save’

The functions ‘Sample’ and ‘Sample Save’ are very similar, they both perform a sampling run

but ‘Sample Save’ writes the results to disc where as ‘Sample’ doesn’t and is only useful for

debugging.

Once the FPGA has received the ‘Sample’ command and collected the data, a handshaking
mode is used to transfer the data [67]. Two channels of data are received simultaneously, as one
32 bit integer, to extract the two 14 bit A/D converter values a small amount of binary shuffling

is required. Firstly the two upper bits are set to zero by using a logical ‘And’ instruction, then a

‘union’ is used to obtain two 16 bit integers.

union all_data {
struct ints{
unsigned short int data_a;
unsigned short int data_b;
Jints;
int full;
} test;

The union is loaded with the 32 bit integer tést.ﬁdl = new_datafa] and then the 16 bit integer

values can be obtained:
data_chl[a] = test.ints.data_a;
data_ch5[a] = test.ints.data_b;
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In this example channels 1 and 5 are extracted. Once all the data has been obtained, it is written
to disc, with a file name chosen by the user. The data is formatted in a comma delimited

fashion from channels 1 to 16, with a carriage return at the end of each line, as shown below.

7717,8002,7875,7839,7902,8244,7562,8034,7614,8237,8196,7996,7713,7677,7733,7667
7823,8184,7988,7895,7942,8196,7600,8039,7600,8200,8130,8033,7712,7543,7669,7586
7987,8338,8108,7938,7986,8152,7689,8064,7588,8101,7998,8032,7757,7452,7649,7603

¢ Firing the Transducers — ‘Fire’

Stimulates the ultrasonic transducers used for transmission. In the case of the electrostatic

Polaroid transducers (600 Series) a 5 cycle 50KHz pulse train is used to provide a wideband
signal.
e Reset

Used if a software bug causes the DIO-96 card to stop responding — resets to default settings.

e Save

This button is used in conjunction with ‘Sample’ during the debugging process, saves data after
a sampling run.

e Raw Data

This is another debugging function, used to save the original 32 bit integer numbers to disc.

e Setting the Gain Values — ‘Set DAC and Set All’

‘Set DAC’ and “Set All’ set the D/A converts used for controlling the analogue gain. The slider
control sets the 8 bit level of the converters and then using ‘Set DAC’ an individual D/A

converter can be set to the slider value or ‘Set All’ sets all the converters to the same level.

e  Pre-Trigger, Threshold and Samples

The pre-trigger slider is slightly confusing as the actual number of samples kept prior to the
trigger is: 131072 subtracted from the slider value. 131072 corresponds to the maximum

permitted number of samples per channel. Threshold corresponds directly to the 14 bit level of
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the A/D converters and represents the value at which the trigger is activated. ‘Samples’ refers

to the total number of samples per channel to collect.

6.5 Matlab Processing

Matlab scripts were used extensively in chapter 2 to examine various beamforming
methodologies. In this section an outline of the script used to visualize transducer data is

presented. The following example is based on the FFT beamforming method.

Before any processing takes place, the constants are declared:

clear;

¢ = 340; %speed of sound

d = 0.00475; Y%sensor separation

J5 = 125000; %sampling frequency

ts = 1/fs; Y%sampling interval
M=16; Y%number of transducers

angle res = 0.5  %anglular resolution(deg)

c and d have already been defined in previous chapters; the remaining constants can be

identified from the associated comments. Transducer data can then be read from file and loaded

in to a matrix:

Sull_matrix = dimread('d: \thesis\data\data_pole_I2_cl.txt’’);

The data is corrected for offset. From data previously collected during experimentation, the

following line of code corresponds to one channel of data:

Jull_mawix(-,1) = full matrix(:,1) -8320; Y%calibration

Due to the A/D converter configuration all data is sampled with a 2.5V D.C. offset. The integer

value of 8320 is used to remove the offset and calibrate the input to 0.
Before beamforming takes place several other functions can be performed depending upon

sampling rates and output requirements. As described previously, the FFT beamforming

method only requires a sampling rate of twice the maximum frequency, therefore the
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computational demands can be reduced by decimation of the data if a high sampling frequency

has been used.

Jor m_index = 1:16
Jull_matrix_int(:,m_index) = decimate(full matrix(",m_index), 10); % decimate matrix

end

Windowing functions can also be applied at this stage:

Jor win = 1:(size(full_matrix, 1))
Jull_matrix(win,:) = full matrix(win,:) .* window;

end

The Fast Fourier Transform is then applied to each data channel, of which only the single sided
spectrum is required:

op_fft = ffi(full_matrix_int); % perform fft on matrix

op_fit = op ffi(1:N/2,:); % single sided

A *“for’ loop is necessary to generate the phase shifts for each beam. This allows a vector to be

constructed, containing the necessary phase shifts for each frequency bin of the current beam.

it _exp = (2 * pi * fs * d * sin(ins_angle*pi/180))/(N * c);
Mt _delay = exp(-j * fit_exp * (0:(N/2)-1)" * (0:M-1)); % complex demodulation delay

op_d=op fft.*ffi delay;

To make use of the beamformed data, an inverse FFT is essential. This allows the beamformed
data to be presented in a graphical manner. To produce a B-Mode image, the intensity of each
reflection needs to be determined, to achieve this, the envelope of each beam can be extracted

using the Hilbert transform to demodulate the data, as in Figure 6.13.

(b)

(@) (a) Beamformed Data
(b) Demodulation of (a)
Figure 6.13 Demodulating Beamformed Data
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Peak detection is them employed to determine the location of each reflection. Two matrices are
generated, one containing the location of the peak in the data matrix, the other storing the value

of each peak.

Sforr=1:(j)
maxflags(:,r) = [upordown(1,r)<0; difftupordown(:,r))<0; upordown(end,r)>0]; %positive peaks
maxima = find(maxflags(:,r)); %find index position

[mi,mj] = size(maxima);
m_locn(:,r)=padarray(maxima,(25-mi), 'post’); %get values as well
values = b_data([maxima],r);

m_valuen(:,r)=padarray(values,(25-mi), post’);

end

From the locations and intensity of each peak an image matrix can be constructed, allowing the
data to be presented as a B-Mode scan; as illustrated in Figure 6.14. Bright colours, such as the
red, define high intensity reflections. Where as the cooler colours such as green and blue are the

lower level reflections.

Figure 6.14 B-Mode Image of Transducer Data

Matlab also includes an application known as ‘GUIDE’ which allows GUIs to be created.
Figure 6.15 illustrates a GUI devised to create B-mode images quickly and easily.
Configuration data, such as the speed of sound and element separation is entered into text boxes.

The data file can then be selected with a dialog box and processing performed with one button

press.
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/ fread_gui

Speed of Sound (mis) | 349
Distance (m) | 000475
Sampling Frequency (Hz) | 125000
Anguler Resolution (degrees) | 5
Window Function | Rectangular _J

Current Data
data_pole_6_ref2 txt

Process

Load Data

Figure 6.15 Matlab Processing Using Custom GUI

6.6 Chapter Summary

Chapter 6 has covered the software development phase of the project, which includes the VHDL
design, C++ Windows application and Matlab scripts to perform data analysis. All parts of the
process have proven very successful — all three parts have combined to deliver an advanced

platform to help further airborne beamforming.

The VHDL was particularly challenging, managing the high number of 1/Os required and
ensuring each one matched the physical design was extremely time consuming; but ultimately

successful as there were no significant implementation issues.

The windows based application does have one minor issue, which appear to be related to the ‘C’
APL. When a button is pressed the corresponding function is called and data written to the
ports. Between calls to different functions some of the outputs appear to enter an undefined
state which occasionally causes the wrong action to be taken by the FPGA. The issue manifests

itself by not allowing a sample run to take place and data integrity is not affected.
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Chapter 7

Implementation

7.1 Introduction

The following chapter highlights some of the steps taken during the initial hardware evaluation
phase. This includes the techniques used to ensure all transducers were aligned correctly and
also includes simulations, demonstrating the effects that misalignment can have on the output

beam.

Once initial testing had been completed and the beamforming system, including both hardware
and software aspects, was full functional, multilayered beamforming became possible. The tests
are detailed in part 7.4 onwards and include: B-mode images of multiple layered targets and

graphical demonstrations, illustrating the effects of windowing.

7.2 Hardware Testing

The initial hardware testing ran concurrently with the software development. As the hardware
is FPGA based, certain parts required the Xilinx to be configured in such a way to test the
functionality of certain components. Examples of this include the A/D converters and memory

systems, which were tested with a specific VHDL applicaton, in combination with an

oscilloscope resulting in a very thorough testing system.

The hardware design methodology of isolating analogue and digital components meant the
analogue testing was performed almost entirely independently of all digital components. The

only exception being; the need to test the D/A converters used to control the analogue gain and

the A/D converters.

During the course of this project, a significant portionAof the time was spent on hardware
concepts and design. It can now be seen that this time was well spent; as the only problems
encountered during the hardware testing were: a missing ground connection from the Xilinx
programming connector, and one of the filters had been placed incorrectly by. the board

manufacturing company. Both issues were subsequently corrected.
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7.3 Implementation Considerations

One of the key elements of successful beamfoming is a suitable array geometry. The staggered
linear array as shown in Figure 5.3 allows for a wide field of view, but at the expense of
additional sidelobes. As the array is no longer truly linear and any elevation changes at the
target will result in a phase delay between the two, offset, rows of transducers. Figure 7.1
demonstrates the effect of an elevated target, on the beamforming pattern, it is clear that an

additional side lobe is present at approximately 50 degrees.
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Figure 7.1 Staggered Array Beamforming Pattern

To effectively evaluate the array, careful alignment of the targets is required to minimise any
variations in elevation. The arrangement in Figure 7.2 is an example of how the targets and
transducers can be arranged to minimise such effects. The alternative is the linear array, and as
described in chapter 5 the element separation is limited to 9.5mm, which limits the field of view
to approximately +20 degrees before side lobes interfere with the beam. The benefit of the

wide element separation is the narrow beam angle, which can be seen when comparing F igures

7.1 and 7.3.
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Figure 7.3 Linear Array Beamforming Pattern
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An additional area which can have an effect on the accuracy of the beamforming is the printed
circuit board to which the transducers are connected. PCBs are not completely flat; therefore to
minimize the possibility of errors, the transducers were soldered in while placed face down on
flat surface. This technique effectively eliminates any effects warping may have had on the

beamforming accuracy.

/ Transducers

l I I I r I | I /mnted Circuit Board

=11 [T

Figure 7.4 Minimising the Effects of PCB Distortion on the Transducer Array

Furthermore, the tolerances on the transducers pins and PCB holes, allow for both horizontal

and vertical movement as illustrated in Figure 7.5

Potential Vertical Error

Transducer Pin

Potential Horizontal Error

PCB Hole

Figure 7.5 Transducer Location Errors

With careful construction, it is possible to align the transducer legs and PCB holes prior to
soldering; once again reducing any potential source of errors. It is also worth noting the beam
pattern of the Series 600 ultrasonic transducers. As can be seen from Figure 7.6, the beam is

extremely narrow, at the 3 dB point the beam is approximately 6 degrees wide.

Typicel Besm Pattern At 50 kHz

Figure 7.6 Senscomp Series 600 Transmit Beam Pattern [41]
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To try and increase the effective beamwidth, it was felt a three transducer arrangement might be

a viable alternative; a mounting plate was manufactured to the design in Figure 7.7.

......... 6 °\;—_—_:__::::/:\, T t . /‘%

Figure 7.7 Three Element Series 600 Transducer Mounting Plate

600 Series Transducers

Several tests were performed, and while the beamformer has an improved field of view, targets
around the azimuth were not as effectively identified. This can be explained as the result of
each transducer not forming one coherent beam. As the receiving beam angle is already
restricted, it was concluded that the multiple transmission scenario, while potentially very

effective, could not be fully evaluated until a wider field of view became available.

7.4 Initial Beamforming Results

The first beamforming tests were to evaluate the systems ability to identify static targets. An
arrangement as in Figure 7.2 was used without any clothing present. Additionally, the initial

tests also used the staggered linear array, later a comparison with the linear array is made using

real data.

One of the standard ways in which to evaluate beamformed data, is by plotting it graphically as

a B-mode image; first illustrated in Figure 6.14

The image in Figure 7.8 clearly shows that the two targets have been identified; through the use
of several simple calculations, the distances and angles, between the two targets can be
determined. The first target is located at 68 on the y-axis and the second target at 78, for this
particular sample each pixel corresponds to 4145, therefore the distance between the targets is
6.9 cm, which compares to a measured distance of 6.7 cm.. The x-axis represents the beam
angle, and once again a simple calculation is required to provide a measurement in degrees, in
this case 50 marks the azimuth and each pixel corresponds to 0.5 degrees, therefore the targets

are approximately 5.5 degrees apart, compared to a measured separation of 6 degrees.
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Figure 7.8 Initial Beamforming Results A

One of the most noticeable features in Figure 7.8 is the apparent overlap of the targets, despite

the fact the edges are 10 cm apart. This can be explained by the beam width, which at the target

distance is approximately 10 cm wide.

The test was repeated with clothing in front of the transducers, as in Figure 7.2. The
beamformed results are shown in Figure7.10; the data cursors have been removed for image
clarity. Once again the targets can be seen to overlap and despite the clothing obscuring both
targets, the results suggest that only a small portion of the targets was hidden. This could occur
for several reasons: firstly, the fabric may be positioned in such a way as to provide a coherent
reflection in only a small aperture, or the filtering used to determine the intensity levels of the
displays has removed the information. To reduce the noise an exponential function is used to
scale the peaks to a maximum of 255, as illustrated Figure 7.9. The effectiveness of such

filtering is clearly visible when comparing Figure 7.10 and Figure 7.11

255

Intensity

Amplitude

Figure 7.9 Exponential Function Used for Plotting Intensity
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Figure 7.10 Beamformed Output of Two Targets Concealed by Clothing With Staggered Array
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Figure 7.11 Raw Beamfoming Data (Same data as Figure 7.10)



As a comparison, the array was reconfigured from the staggered arrangement to a linear layout
(Figure 5.2). The arrangement was similar to the previous tests, although the target locations
were slightly different, as a small amount of variation occurs when the targets are moved or

replaced during experimentation.
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Figure 7.12 Beamformed Output of Two Targets Concealed by Clothing With Linear Array

From the output in Figure 7.12 it can be seen that the narrow beam of the linear array has
improved the angular resolution of the system; target 1 is clearly better defined than that of
Figure 7.11. The high intensity reflections, coloured red, are much narrower, suggesting an
improvement in angular resolution. The image can also be enhanced at the expense of angular
resolution by applying a window function, as previously described in chapter 2. Figure 7.13
demonstrates the effect of the Blackman window on the data from Figure 7.12: the target images
are more distinct and there is very little overlap but as expected the angular resolution has
deteriorated. The second test with clothing (Figure 7.14) was arranged as in Figure 7.2 and
proved quite successful; the clothing is clearly visible in front of the targets and extends the full

width of the targets, although there are a lot of incoherent reflections surrounding the targets.

All of the tests to date have used exaggerated gaps between the targets, primarily to evaluate the

beamformer functionality, which isn’t truly representative of a clothed human target.
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Figure 7.13 Beamformed Output of Two Targets with Blackman Shading
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Figure 7.14 Beamformed Output of Two Targets Concealed by Clothing with Blackman Shading
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The gap between target 2 and the clothing was reduced in the first case, to approximately 15
mm; the distance can only be approximated because of the nature of the clothing, which is
allowed to hang loosely and therefore is not completely flat.

To get an accurate measurement, a higher resolution image was generated in which 1 pixel =

10.24,5 . Figure 7.15 provides the y-axis values which can be used to calculate the distances

between targets, in this case the calculated distance is 17 mm between the clothing and target 2.

Clathingfy

Target 1{y=291)

Figure 7.15 High Resolution Beamformed Output of Two Targets Concealed by Clothing with Blackman Shading

As the clothing gap approaches 5 - 10 mm it becomes very difficult to differentiate between
layers. This is clearly a function of wavelength and at 40 KHz this corresponds to

approximately 9 mm depending upon temperature.

_Target 2 or Clothing

Target 1

™ Ine oherent Reflections

Figure 7.16 High Resolution Beamformed Output Unable to Differentiate Two Layers (Blackman Shading)
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Figure 7.16 highlights the imaging problems when the gap between multiple surfaces becomes

too small, in this case target 2 is superimposed onto the clothing.

In the following results the target was a human subject (Figure7.17) wearing a linen shirt,
several images were taken from locations around the subject, from the side (Figure 7.18), front

(Figure 7.19) and back (Figure 7.20).

|
/ 0 ~80cm
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Figure 7.17 Array Location With Human Subject
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Figure 7.18 Human Subject Side View
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Figure 7.19 Human Subject Back View
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Figure 7.20 Human Subject Front View

On initial inspection, the results appear promising. There is clearly two layers visible on the
results but on measuring the difference the problem becomes apparent. In each of the images
the layers are separated by 7 — 9 pixels which corresponds to a distance of 49mm — 62mm,
although the actual distance between the shirt and body can’t be measured accurately it was not
5cm—6 cm. An approximate measurement suggested the distance was no more than 2cm. The
short comings of a linear array have become apparent: it is not possible to distinguish between
reflections on the azimuth or from elevated sources. The following sections discuss two-

dimensional arrays and possible solutions to the resolution issues.

7.5 Three Dimensional Beamforming

From the previous sections it became apparent that a linear array, while providing good initial
data, has shortcomings in differentiating targets and noise. Any sources other than those on the
azimuth are effectively of undeterminable origin. A solution is to make the array 2 dimensional
(planar), with the current transducers; this presents similar problems to the ones associated with

the previous linear array, mainly sidelobes.

(a) (b)
(a) Planar Array (b) Staggered Planar Array

Figure 7.21 16 Element 2-Dimensional Arrays
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As the array is now made up of 4 transducers on each axis, the linear array simulations are still
useful and can be used used to determine beam width and the extent of the sidelobes. As can be
seen in Figure 7.22 the sidelobes are significant, with 3dB points at approximately =+ 50
degrees, but provided the beam is kept to within + 20 degrees and there are no sources at 40

degrees or more, which is unlikely due to the narrow output from the transmitter, it would be

possible to make effective use of the planar array.
4 : ; : ; | .
3L -
2k 4
1+ -
ot -

T T

1 1 1 1
-100 -80 -60 -40 20 0 20 40 60 80 100
Beam Angle (Degrees)

Beam Magnitude

0 p——— T T T T T T T M — —=a

Beam Power (dB)
5 8
T T
1 1

8

80 1 L Il L 1 L
-100 -80 -60 -40 -20 1] 20 40 60 80 100
Beam Angle (Degrees)

Figure 7.22 4 Element Beam Pattern (d=0.095,c=340m/ s)

From chapter 2 we know that the coordinates of the T, and u vectors can be represented in

Cartesian form and that:

I, U ="rmCoS ¢ cos @ + rmsin ¢ cos @ + rnsin &
Since the array is now two dimensional, the array location vector becomes:
r, =(md I1d 0)

Therefore r, -uw=md cos ¢ cos @ + Id sin ¢ cos 0 14

The beamforming equation then becomes:
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L-1 M-l
y(t) — ejwtz Z e—jk(mdcos¢cos9+1dsin¢cosa) .
=0 m=0

As in chapter 2, the projection of the u vector on the x-axis can be represented by the conic

angle sin @, = cos ¢ cos @ and similarly the elevation becomes sin ¢, = sin ¢ cos 8
o1 X jk(mdsing, +Idsi
y(t) — ejwtz ze—J (mdsing,+ldsing,) 73
1=0 m=0

The steering calculations are also similar to previous examples.

cosgcosé | |cosg, cosb,
u-u, =| singcosf |—| sing, cosf,
sing sin 6,

r,l=(md Ild 0)

rm - (u—u,) = md(cos ¢ cos 8 — cos @, cos 8, ) + ld(sin ¢ cos & — sin @, cos 8,)
= md (sin ¢, —sin @,,) + ld(sin ¢, — @,,)
Equation 7.3 becomes:

— jktm-(u—uo)

the beamforming equation is now operating on the / and m axis and hence three dimensional
imaging is now possible.

] — jkd (m(sin p, —sin @, )+ (sin @, —sin @,
jot e’ (m(sing Pap )+ (sin @, —SiN P, )) 74

In chapter 2 the beam pattern is presented multiple times as a two dimensional image. Equation

7.4 can now be used to generate the three dimensional equivalent (Figure 7.23). The main beam

is at the centre and surrounded by sidelobes.
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Figure 7.23 4 Element Three Dimensional Beam Pattern (d =0.0095m,1 = 0.0095m, ¢ = 340m / s)

7.5.1 3D Beamforming Results

The three dimensional beamforming results are presented in a similar manner to that of the two
dimensional results. The same limitations also apply and in the case of the angular resolution,
hampered by the transducer arrangement. With only four transducers on each axis the beam
width is increased to approximately 10 degrees, which reduces the ability of the beamformer to
differentiate targets on the azimuth and elevation. From F igure 7.24 it can be seen that the three
dimensional processing worked very well. There is clearly a marked improvement in noise
performance; when compared to the earlier two dimensional results. However, due to the

increased beam width, there is also an increased amount of overlap between the targets.

To provide a comparison with earlier results, clothing was once again placed in front of the
targets. The results (Figure 7.25) were as expected, both of the targets are clearly identifiable
behind the clothing; the axial resolution limitation is still present, but the absence of any

incoherent reflections illustrates the benefits of a planar array.
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Figure 7.25 Three Dimensional Imaging of Two Targets and Clothing.
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The 3D beamforming process takes considerably longer than its 2D counter part. This is due to
the high number of beams being formed and the inverse FET being used to extract the time

domain representation.

7.6 Axial Resolution

One of the main limitations of the current implementation, as determined by the experimental
work, is the axial resolution, which is simply defined as the minimum distance at which the

reflections from a layered source can be identified (Figure 7.26).

Axial Resolution

Transducer
I ' Multiple Reflections

Clearly Identifiable
Ultrasonic Pulse /

Reflections I | Superposition of Reflections

Figure 7.26 Axial Resolution

The output pulse of the Polaroid transducer is a damped harmonic motion; similar to that
illustrated in Figure 7.27a. If scattering sources are separated by less than half a pulse length
the two reflections (Figures 7.27a and 7.27b) become superimposed (Figure 7.27¢). However
after demodulation (Figure 7.27d), amplitude peaks are still clearly visible, although once the
overlap exceeds 50% of the pulse width the location of the demodulated peaks no longer

represents an accurate location of the reflected signals.

The superposition of reflections represents a significant problem with the current transducers.
the current pulse width is in the order of 0.15 mS which allows a minimum resolution of 25mm
or a maximum of 12.5mm, if overlapping of the reflections is acceptable. Shortening the pulse
width isn’t possible with the current arrangement, as the transducers resonate at their centre
frequency and despite the heavy damping of electrostatic devices, continue to oscillate for

several cycles after the removal of any stimulation.

The following section investigates possible ways in which the superposition of two reflections

an be evaluated to determine the axial origin of each echo.
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7.6.1 Wavelet Analysis

Figure 7.27 Envelope Peaks and Reflection Superposition

(a)

Wavelets have become a well established tool, with a wide range of applications in the signal

processing domain. The underlying theory is well documented with good examples being [71]

and [72], both of which provide a comprehensive overview.

One of the commonly used properties of wavelets is in the detection of signal discontinuities. In

Figure 7.28 the Daubechies 4 wavelet is used to locate the point at which two signals overlap,

Figures (a) and (b) are the two original signals, (c) is the sum of (a) and (b), (d) is the first

decomposition of (c). In this very simplistic demonstration, the point at which the two signals

overlap is clearly visible in (d)
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7.6.2 Pulse Compression

Pulse compression is a commonly used technique in radar applications, to improve the Signal to
Noise Ratio (SNR) while maintaining moderate peak power levels when compared to
conventional techniques [73]. However, in this application, SNR is not a concern but it was felt
that some of the features used in pulse compression could be utilized to improve the axial

resolution of the beamforming system.

The chirp signal is a commonly used form of pulse compression, the object of which is to
improve the SNR. However it may be possible to use the frequencies within the chirp pulse to

identify the location of two heavily overlapped echos in the time domain.

The piezoelectric transducers used for receiving are relatively narrowband and therefore
receiving a chirp signal may be difficult. After experimentation, the best that could be achieved
was inducing a distortion in the received signal. The frequency spectrum of the distorted output
is compared to the typical output (Figure 7.30): the bandwidth has clearly increased with a
second peak at approximately 50 KHz. To be useful for beamforming, the location of the
distortion in the time domain is required. To achieve this the continuous wavelet transform is

used to generate a time/scale plot.

Original Output
Distorted Output
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In Figure 7.33a, two distorted waveforms are shifted out of phase by 60 samples. The signals
are then summed (Figure 7.33b). It is clear that if the outputs were to be demodulated, there
would be only one peak and hence two separate reflections would appear as though from one
source of scatter. Figure 7.33¢ is similar to the previous examples of a time/frequency plot,
except the colouring is now independent for each frequency scale. Although not immediately
obvious, the distortions are still visible: following the green vertical lines the time frequency

plot irregularities can be seen, highlighted by the arrows.
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Using the green markers, it can be clearly seen that the distortions in the original signal are

manifested as spikes in the coefficients line.
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As a further method of enhancing the resolution, wavelet analysis has also been introduced. By
inducing a distortion in to the transducer output, the time domain location can then be identified
by the application of wavelets. This technique has demonstrated significant promise, despite

being in the very early stages of development.
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Chapter 8

Conclusion and Further Work

The images of multilayered targets presented in this thesis, clearly demonstrate that the original
concept of using ultrasound as a body scanning solution is valid. This represents a significant
contribution to the field of airborne acoustic applications, and opens a new field of future
research. Furthermore, a novel method of improving axial resolution was also introduced,
which, in early testing, has proven successful in allowing low frequency transducers to operate

with improved accuracy.

One of the first objectives was to examine array theory, and to that part, Chapter 2 formed the
basis from which the rest of the project could be successfully completed. Introducing the
necessary array theory and starting with a straightforward vector based analysis of a three
dimensional array space, the chapter also goes on to cover, the derivation of equations from,
which an analysis of beam patterns can be analysed, sampling requirements and A/D converter
performance, and discusses the issues surrounding the available beamfoming methodologies. It
was from the aforementioned discussions that permitted the concept of an initial hardware

scheme, based upon the frequency domain and delay-sum theory, to be developed.

The experimental results in chapter 4 satisfied a further objective, by demonstrating that
ultrasound could successfully penetrate clothing and return to the signal origin. The tests
featured a selection of garments, all made of different fabric compositions. Only one item
proved to be beyond the ability of ultrasound to penetrate, with adequate signal strength, and

that was a thick cotton jumper.

One objective that significantly influenced the course of the project was the research into
transducers. At an early stage, it became clear that: traditional airborne sensors had several
short comings — in particular their physical size. Research in to the current state-of-the-art
devices, led to MEMs being considered. It was concluded that they were ideal for the project.
However, the cost and time constraints proved prohibitive. This led back to the standard
transducers, and the development of a wavelet based, echo analysis technique to improve the

axial resolution.

The final hardware concept was constructed around an array of 16 transducers, supporting

either: a frequency domain or time domain, beamforming methodology. At the centre, was a
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Xilinx FPGA, which allowed sampled data to be stored, before being transferred to a desktop
computer for processing. As a major contributor to the project, the hardware was invaluable.
There were never any issues with the design, which functioned flawlessly. The insight gained
during the concept, design and manufacturing stages will prove extremely useful, as the
ultrasonic beamformer moves to the next stage of development. The only issue that may need
addressing in future work is the power consumption, which was slightly higher than expected,
15 to 20 watts, depending on the amplifier gain. But, as power was determined to be secondary

to performance, in the project methodology, it meets the design requirements.

The initial concept for a wavelet based approach came after a review of the chip pulse, found in
RADAR systems. While the transducers couldn’t produce a chirp, it was possible to induce a
distortion. Through Fourier analysis, it was clear that the output did contain additional
frequencies. If their location in the time domain could be determined, it would be possible to
perform a beamforming operation. The technique has been demonstrated in chapter 7, and is
unique, as its purpose is to improve axial resolution rather than the signal to noise ratio. The
concept is not only limited to low frequency transducers, as the effect could also be reproduced

on any device capable of operating within a moderate bandwidth.

To summarise, all parts of the project have proven successful. The foundations, in the form of:
improved axial resolution, multilayered imaging and multiple hardware concepts, have been

laid, and demonstrate ultrasounds potential as a body scanning solution.

8.1 Future Work

Undoubtedly, one of the key features required in further iterations of the beamforming system
are, MEMS transducers. A minimum array size of 16x16 would be a good next step. The 4x4
array used in chapter 7 demonstrated good noise performance, and when combined with the

beam width of the 16 element, linear array, could provide excellent results.
To complement a larger array, second generation hardware will also be required. The first
prototype has demonstrated that high sampling rates are achievable and can quite easily form

the basis of any further hardware.

Currently 16 A/D converters are used to perform 20 Msps but with minor modifications to the

VHDL code and an increased FPGA system clock, 35-40 Msps should be achievable. If
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frequency domain beamforming is used, 133 elements of a 16x16 array could be sampled with
the current FPGA/ADC setup.

An interesting technique, often used in RADAR and SONAR, that could be applied to this
project, is synthetic aperture imaging. In chapter 2 it was demonstrated that the resolution can
be increased by adding additional transducers to the array (increasing the aperture size).
However, if an array can be moved in a known direction, with respect to the target, a much

larger array can be synthesized [74].

144



References

(1]

[2]

(3]

[4]

(5]

[6]

(7]

(8]

[9]

[10]

[11]

Gordon N. Sinclair, Rupert N. Anderton, Roger Appleby, ‘Passive Millimeter-wave
Concealed Weapon Detection’, SPIE Vol. 4232, pp. 142-151, 2001.

David Sheen, Douglas McMakin, Thomas E. Hall, ‘Combined Illumination Cylindrical
Millimeter-wave Imaging Technique for Concealed Weapon Detection’, Proceeding of
the SPIE, Vol. 4032, pp. 52-60, 2000.

Jack Blitz, ‘Fundamentals of Ultrasonics’, ASIN: BOOOOEGNJ2, Butterworths, London,
1967

P. Webb and C. Wykes, ‘High Resolution Beam Forming for Ultrasonic Arrays’, IEEE
Transactions on Robotics and Automation, Vol. 12, No. 1, pp. 138-146, 1996.

Roman Kuc, ‘Physically Based Simulation Model for Acoustic Sensor Robot
Navigation’. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 9,
No. 6, pp. 766-778. 1987.

Hakan Eriksson, Per Ola Borjesson, Per Odling, Nils-Gunnar Holmer, ‘A Robot
Correlatioin Receiver for Distance Estimation’, IEEE Transaction on Ultrasonics,

Ferroelectrics and Frequency Control, Vol. 41, No. §, pp. 596-603, 1994,
Cyberware, www.cyberware.com, 3/4/2007

Stephen Addleman, ‘Whole-Body 3D Scanner and Scan Data Report’ Proceedings SPIE
Vol. 3023, pp. 2-5, 1997.

Email from Sue Addleman: sue@cyberware.com

Hein Daanen, Stacie E. Taylor, Matthew A. Brunsman, Joseph H. Nurre, ‘Absolute
accuracy of the Cyberware WB4 whole body scanner’, Proceedings SPIE Vol 3023, pp
6-11, 1997.

Lord Rayleigh, ‘On the Manufacture and Theory of Diffraction Gratings’, Philosophical
Magazine, Ser. 4. 36: pp. 81-93, 1874,

145


http://www.cyberware.com,
mailto:fromSueAddleman:sue@cyberware.com

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

M. S. Moreland, M. H. Pope, D. G. Wilder, L. Stokes, J. W. Frymoyer, ‘Moire Fringe
Topography of the Human Body’, Medical Instrumentation, Vol 15, No. 2, pp. 129 -
132, 1981.

Wicks and Wilson Limited, ‘www.wwl.co.uk’, 28/3/2007.

Stuart Winsborough, ‘Towards Photo-realistic 3D Image Capture’, Wicks and Wilson,

‘www.wwl.co.uk/images/towardsphotorealism.pdf’, 3/4/2007

Textile/Clothing Technology Corporation, ‘www.tc2.com/RD/RDBody.htm’, 5/6/2004

Michelle H. Demers, Jeffery D. Hurley, Richard C. Wulpern, ‘Three Dimensional
Surface Capture for Body Measurement using Projected Sinusoidal Patterns’, SPIE Vol.
3023, pp. 13-25, 1997.

Maurice Halioua and Hsin-Chu Liu, ‘Optical Three-Dimensional Sensing by Phase
Measuring Profilometry’, Optics and Lasers in Engineering, 0143-8166, pp. 185 — 215,
1989.

Hamamatsu Photonics UK Limited, 2 Howard Court, 10 Tewin Road, Welwyn Garden
City, Hertfordshire, AL7 1BW.

Chiyoharu Horiguchi, ‘Sensors that Detect Shapes’, Journal of Advanced Automation
Technology, Vol. 7, No. 3, pp. 210-216, 1995.

Stefan Kocis and Zdenko Figura, ‘Ultrasonic Measurements and Technologies’, ISBN
0-412-63850-9, Springer, 1996.

Richard O. Nielsen. ‘Sonar Signal Processing’, Artech House, ISBN 0-89006-453-9,
1991.

Ronald A. Mucci, ‘A Comparison of Efficient Beamforming Algorithms’, IEEE

Transactions on Acoustics, Speech and Signal Processing, Vol. 32, No. 3, pp. 548-558,
1984.

146


http://'www.wwl.co.uk',
http://'www.wwl.co.uk/images/towardsphotorealism.pdf,

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

(33]

[34]

G. Hampson, ‘Implementing Multi-Dimensional Digital Hardware Beamformers’, Ph.D

Thesis, Monash University, 1997.

T. Horiguchi, ‘A Full Digital Compensation Beam Forming Scheme for Ultrasonic
Imaging Arrays’, NEC Reseach and Devlopment, No. 88, pp. 47-55, 1988.

P. Webb and C. Wykes, ‘Analysis of Fast Accurate Low Ambiguity Beam Forming for
non A/2 Ultrasonic Arrays’, Ultrasonics, Vol. 39, pp. 69-78, 2000.

W. S. H. Munro and C. Wykes, ‘Arrays for Airborne 100KHz Ultrasound’, Ultrasonics,
Vol. 32, No. 1, pp. 57-64, 1994,

Michael P. Hayes, ‘Ultrasonic Imaging in Air with a Broadband Inverse Synthetic
Aperture Sonar’, Imaging and Sensing Team, Industrial Research Limited, New

Zealand, ‘www.is.irl.cri.nz/pubdoc/1997/dicta97-mph.pdf>, 4/4/2007.

Peter M. Clarkson, ‘Optimal and Adaptive Signal Processing’, CRC Press Inc, ISBN 0-
8493-8609-8, 1993.

Kai. E. Thomenius, ‘Evolution of Ultrasound Beamformers’, IEEE Ultrasonics

Symposium,, pp. 1615-1622, 1996.

Curtis Technology, ‘Principles of Sonar Beamforming’,

‘www.curtistech.co.uk/papers/beamform.pdf’, 4/4/2007.

A. Croft, R. Davidson, M. Hargreaves, ‘Engineering Mathematics’, Addison Wesley,
ISBN 0-201-17557-6, 1992.

T. E. Curtis and R. J. Ward, ‘Digital Beam Forming for Sonar Systems’, IEE Proc., Vol.
127, Pt. F, No. 4, pp 257-265, 1980.

Richard. G. Lyons, ‘Understanding Digital Signal Processing’, Prentice Hall,
ISBN 0-13-108989-7, 1997.

F. J. Harris, ‘On the Use of Windows for Harmonic Analysis with the Discrete Fourier
Transform’, Proceedings of the IEEE, Vol. 66, Issue 1, pp. 51-83, 1978.

147


http://'www.curtistech.co.uk/papers/beamform.pdf,

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Wolfgang H. Kummer, ‘Basic Array Theory’, Proceedings of the IEEE, Vol. 80, No. 1,

pp. 127-140, 1992.

R. G. Pridham and R. A.Mucci, ‘Shifted Sideband Beamformer’, IEEE Transactions
on Acoustics, Speech and Signal Processing, Vol. ASSP 27, pp. 713-722, 1979.

M. O'Donnell et al., ‘Real-Time Phased Array Imaging Using Digital Beam Forming
and Autonomous Channel Control’, Ultrasonics Symposium, pp. 1499-1502, 1990.

P. M. Pierre Da Sylva and D. Roy, ‘A Reconfigurable Real-Time Interpolation

Beamformer’, IEEE Journal of Oceanic Engineering, Vol. OE-11, pp. 123-125, 1986.

Texas Instruments, ‘Understanding Data Converters’, SLAA013,
“focus.ti.com/lit/an/slaa013/slaa013.pdf’, 4/4/2007.

Texas Instruments, ‘Selecting an A/D Converter’, SBAA004
‘focus.ti.com/lit/an/sbaa004/sbaa004.pdf’, 4/4/2007.

Senscomp Inc, Michigan, ‘600 Series Instrument Transducer’,

‘www.senscomp.com/specs/600%20instrument%20spec.pdf’, 4/4/2007.

NXP, Eindhoven, 80C552 Data Sheet,
‘www.nxp.com/acrobat_download/datasheets/80C552_83C552_4.pdf’, 4/4/2007

Electronics Industries Association, "EIA Standard RS-232-C Interface Between Data
Terminal Equipment and Data Communication Equipment Employing Serial Data

Interchange", 1969.

Senscomp Inc, Michigan, ‘6500 Ranging Modules’,
‘www.senscomp.com/specs/6500%20module%20spec.pdf’, 4/4/2007.

Xilinx Inc, San Jose, ‘Spartan —II 2.5V FPGA Family: Complete Data Sheet’,
‘direct.xilinx.com/bvdocs/publications/ds001.pdf*, 4/4/2007

Mentor Graphics Corporation, 8005 SW Boeckman Road, Wilsonville, OR 97070.

148



[47]

(48]

[49]

(50]

[51]

[52]

[53]

[54]

[55]

(56]

(57]

(58]

Mentor Graphics Corporation, ‘Board Station’,
‘www.mentor.com/products/pcb/boardstation’, 4/4/2007.

Sun Microsystems, Inc, Santa Clara, ‘www.sun.com’, 4/4/2007.

Mentor Graphics Corporation, ‘Board Architect’,
‘www.mentor.com/products/pcb/boardstation/system_design/board_architect/upload/Bo
ard-Architect-Datasheet.pdf’, 4/4/2007.

Mentor Graphics Corporation, ‘Accusim II’,
‘www.mentor.com/products/pcb/boardstation/analysis_verification/accusim_ii/upload/a
ccusim_ds.pdf®, 4/4/2007.

Mentor Graphics Corporation, ‘Board Station RE’,
‘www.mentor.com/products/pcb/boardstation/physical _design/boardstation_re/upload/b
oardstation_re_ds.pdf’, 11/4/2007.

Microsoft Corporation, Seattle, ‘www.microsoft.com’, 4/4/2007.

Xilinx Inc, San Jose, ‘www.xilinx.com’, 4/4/2007.

Mentor Graphics Corporation, ‘Leonardo Spectrum’,
‘www.mentor.com/products/fpga_pld/synthesis/leonardo_spectrum/upload/datasheet.pd
f, 11/4/2007.

Mentor Graphics Corporation, ‘Precision RTL’,
‘www.mentor.com/products/fpga_pld/synthesis/precision_rtl/upload/PrecisionDatasheet
_10_1.pdf’, 11/4/2007.

National Instruments Corporation, Texas, ‘www.ni.com’, 11/4/2007

CodeGear, California, ‘www.codegear.com’, 11/4/2007.

The Mathworks Inc, Massachusetts, ‘www.mathworks.com’, 11/4/2007.

149


http://.www.mentor.com/products/pcblboardstation.
http://'www.sun.com',
http://.www.mentor.com/products/pcblboardstationlsystem
http://.www.mentor.com/products/pcblboardstationlanalysis
http://.www.mentor.com/products/pcblboardstationlphysical_
http://'www.microsoft.com
http://'www.xilinx.com',
http://'www.mentor.com/products/fpga
http://'www.rnentor.com/products/fpga
http://'www.ni.com
http://'www.codegear.com

[59]

[60]

(61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Senscomp Inc, Michigan, ‘Piezo Transducer 40KR08/40KTO08’,
‘www.senscomp.com/specs/40kt08%20%20spec.pdf’, 4/4/2007.

K. Higuchi, K. Suzuki, H. Tanigawa, ‘Ultrasonic Phased Array Transducer for Acoustic
Imaging in Air’, IEEE Ultrasonics Symposium, pp. 559-562, 1986.

James Karki, Texas Instruments, ‘Signal Conditioning Piezoelectric Sensors’,

SLOAO33A, September 2000.

Linear Technology, California, ‘LTC 1563-3’,
‘www.linear.com/pc/downloadDocument.do?navlid=H0,C1,C1154,C1008,C1148,P1837
,D2883°, 11/4/2007.

Texas Instruments, Dallas, ‘ADS850 A/D Converter’,
‘focus.ti.com/docs/prod/folders/print/ads850.html’, 11/4/2007.

C.R. Hazard and G.R. Lockwood, ‘Developing a High Speed Beamformer Using The
TMS320C6201 Digital Signal Processor’, IEEE Ultrasonics Symposium, Vol. 2, pp.
1755-1758, 2000.

Borislav Gueorguiev Tomov and Jorgen Arendt Jensen, ‘Compact FPGA-Based
Beamformer Using Oversampled 1-bit A/D Converters’ IEEE Transactions on
Ultrasonics, Ferroelectrics and Frequency Control, Vol. 52, No. 5, pp. 870-880, 2005.

Universal Serial Bus, ‘www.usb.org’, 11/04/2007.

National Instruments Corporation, Texas, ‘PC-DIO-96",
‘www.ni.com/pdf/products/us/4daqsc379-384 374-376.pdf*, 11/4/2007.

Texas Instruments, Dallas, ‘DAC7802 D/A Converter’,
“focus.ti.com/docs/prod/folders/print/dac7802.html’, 11/4/2007.

Mentor Graphics Corporation, ‘Modelsim’,

‘www.model.com/products/products_le.asp’, 11/04/2007.

150


http://'www.usb.org',

[70]

[71]

[72]

[73]

[74]

Samsung, ‘K6X4008C1F’,
‘www.samsung.com/products/semiconductor/LowPowerSRAM/5V/4Mbit/K6X4008C1
F/K6X4008C1F.htm’, 11/04/2007

S. Mallat ‘A Wavelet Tour of Signal Processing’, Academic Press, ISBN
012466606X, 1998.

G. Strang and T. Nguyen , ‘Wavelets and Filter Banks’, Wellesley-Cambridge Press,
ISBN 0961408871, 1996.

Eli Brookner, ‘Phased Array Radars’, Scientific America, 252 No. 2, 1985.

J.M. Blackledge, ‘Quantitive Coherent Imaging’, Academic Press, ISBN 0-12-103300-
7, 1989.

151



Appendix A

Schematic Diagrams and Printed Circuit Board Layouts.

The following appendix contains all of the schematic diagrams and printed circuit board layouts.
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Figure A.8. Analogue Amplifier and Filters Schematic
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Figure A.17 Computer Connectors Schematic
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Figure A.19 Main Board, PCB Second Routing Layer, Gerber Drawing
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Figure A.21 Main Board, Top Layer Component Locations
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Appendix B

VHDL Source Code.

brary IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
USE work.dac_write_state.ALL;

~-Tibrary UNISIM;

--use UNISIM.vComponents.altl;

entity adc_bottom is

port(

clk : IN std_logic;
clk_sample : IN std_logic;
adc_busy : out std_logic;

reset : IN std_logic;

thres

: IN std_logic_vector (13 downto 0)

pre_trigger : IN std_logic_vector (16 downto 0);
start_download : IN std_logic;
cancel_download : IN std_logic;

ch_acquire : IN std_logic;

calibrate : IN std_logic;

adc_cal_busy : IN_std_logic_vector (15 downto 0);
adc_ovr : IN std_logic_vector (15 downto 0);

--handshaking

shake_out : out std_logic;
shake_in : IN std_logic;

--configuration values

std_logic_vector (18 downto 0);

mem_max :
no_to_upload : std_logic_vector (16 downto 0);

--out

data_out_a : OUT std_logic_vector gn downto og;
data_out_b : ouT std_logic_vector

adc_cal

adc_oe_0 : ouT std_logic_vector (3 downto 0);
adc_oe_1 : ouT std_logic_vector
adc_oe_2 : OUT std_logic_vector
adc_oe_3 : OUT std_logic_vector

13 downto 0

H
: ouT std_logic_vector (15 downto 0);
3 downto O,

3 downto 0
3 downto 0,

--io

data_0 : IN std_logic_vector (13 downto 0);
data_1 IN std_logic.vector (13 downto 0);
data_2 : IN std_logic_vector (13 downto 0);
data_3 : IN std_logic_vector (13 downto 0);
--memory N

bank_0 : oUT std_logic_vector (2 downto 0);
bank_1 : oUT std_logic_vector (2 downto 0);
bank_2 : ouT std_logic_vector (2 downto 0);
bank_3 : OUT std_logic_vector (2 downto 0);
addr_a : oUT std_logic_vector ElB downto 0;;
addr_b : OUT std_logic_vector (18 downto 0

i

end adc_bottom;

architecture Behavioral of adc_bottom is

AL un
Q
3
o

gna
gna

nwuunann
a
3
»

gna
gna
gna
gna

wunn

signa
signa)
signa)
signa’

signa;
signa)
signa
signa
signa
signa;
signa’
signa;
signal

signal
signa)
signal

signal
signal

signal
signal

current_state : adc_bottom_states;
next_state : adc_bottom_states;
sample_count_temp : std_logic_vector (18 downto 0);
sample_counter : std_logic_vector (16 down

mem_counter : std_
bank_count : std_logic_vector (1 downto 0) :=

bank_O_temp : std_logic_vector (2 downto Q);
ank_1_temp : std_logic_vector (2 downto 0);
bank_2_temp : std_logic_vector (2 downto 0);
ank_3_temp : std_logic_vector (2 downto 0);
addr_a_temp : std_logic_vector 218 downto 0;;
addr_b_temp : std_logic_vector (18 downto 0);

adc_oe_0_temp : std_logic_vector (3 downto o;~
adc_oe_]1_temp : std_logic_vector

adc_oe_2_temp : std_logic_vector )]
adc_oe_3_temp : std_logic._vector )]
adc_oe_0_op : std._logic_vector (3 downto 0);
adc_oe_1 op : std_logic_vector 53 downto O

adc_oe_2_op : std_logic_vector (3 downto 0
adc_oe_3_op : std_logic_vector (3 downto O

mem_trig location : std_logic_vector (18 downto 0) :
00000

mem_trig : std_logic_vector (18 downto 0) := *

to 0) := ‘0000000000
samp'le_counter_sto? : std_logic_vector (16 downto 0) := ‘00000
ogic_vector (18 downto 0) :fo(‘)(_)OOOOOOOOOOOOOOOOO

--sample clock

--threshold level, user defined
--pre trigger in memory locations

--start an acquistion run
--calibrate all adcs
--busy signal

--adc over max input

-- := ‘0000000111110011111";--3999
-- := '00000001111100111'; --1000 per channel

--data from memory during memory read

-~-adc output enables
--data io

--memory control and address

0000000 ;
ooooogqoéooo' ;
;

= *0000000000000000000° ;
0000000000000 ;

mem_trig stop : std_logic_vector (18 downto 0) := ‘0000000000000000000° ;

thres_trig : std_logic;

thres_trig_op : std_'logic;
upload_start_position 0 :
upload_start_position_l :

iti std_logic_vector
upload_start_position_2 : i

std_logic_vector

18 downto 0

std_logic_vector gls downto 0;
)
upload_start_position_3 : std_logic_vector (18 downto 0)

H
i
H
H

upload_mem_counter ; std_logic_vector (18 downto 0) := ‘0000000000000000000° ;
upload_mem_counter_4 : std_logic_vector (18 downto 0) := ‘0000000000000000000° ;
upload_count : std_logic_vector (16 downto 0) := ‘00000000000000000"

upload_channel_group : std_logic_vector (1 downto 0);

read_bank_count : std_logic;

bank_O_read : std_logic_vector EZ downto og;
bank_1_read : std_logic_vector (2 downto O
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signal bank 2_read : std_logic_vector (2 downto 0);
signal bank_3_read : std_logic_vector (2 downto 0);

signa)l data_Q_temp : std_logic_vector (13 downto 0);
signal data_l temp : std_logic_vector §13 downto 03;
signal data_2 temp : std_logic_vector (13 downto 0 H
signal data_3_temp : std_logic_vector (13 downto 0);

signal data_out_a_temp : std_logic_vector (13 downto 0);
signal data out_b_temp : std_logic_vector (13 downto 0);

signal start_calc : std_logic;
signal start_calc_done : std_1og1c;

signal lockout_count : std_logic_vector (21 downto 0);-- <= 0000000000000000000000" ;
signal lockout : std_logic;

constant mem_max : std_logic_vector (18 downto 0) := ‘0000000111110011111°; --~3999
constant no_to_upload : std_logic_vector (16 downto 0) := '00000001111100111" ; --1000 per channel

begin

rocess
r(,c1 k,current_state, sample_count_temp adc_cal_busy,calibrate,ch_acquire ,clk_sample,sample_counter,sampl e_counter_stop,mem_counter,bank_count,s
tart_download, cancel_download, shake_in,upload_channel_group, upToad_count .upload_mem_counter,adc_oe_0_temp,adc_oe_1_temp, adc_oe_2_temp,adc_oe_
3_temp,bank_0_read,bank_1_read,bank_2_read,bank_3_read, read_bank_count)

begin
CASE current_state IS

when init_st =>

adc_cal <= ‘0000000000000000* ;
adc_oe_0_op <= '1111°;
adc_oe_l op <= ‘1111';
adc_oe 2_op <= ‘1111°;
adc.oe_3_op <= ‘1111°;

bank_0_temp <= ‘111°’;

bank_1_temp <= ‘111°;

bank_2_temp <= ‘111°’;

bank_3_temp <= ‘111’;

ddr_a_temp <= ‘0000000000000000000 " ;
. addr_b_temp <= ‘0000000000000000000‘;

next_state <= ready_st;

when ready_st =>

adc_cal <= ‘0000000000000000";
adc_oe_0_op <= adc_oe_0_temp;
adc_oe_1_op <= adc_oe_1 temp;
adc_oe_2_op <= adc_oe_2_temp;
adc_oe_3_op <= adc_oe_3_temp;

bank_0_temp <= ‘111';
bank_1_temp <= ‘111°;
bank_2_temp <= ‘111';
bank_3_temp <= ‘111°;
addr_a_temp <= ‘0000000000000000000° ;
addr_b_temp <= ‘0000000000000000000 " ;

if (calibrate = '1') then . --wait for calibrate or sample signal
next_state <= init_st_calibrate;

else

if (ch_acquire = '1') then
nngstate <= sample_start;
else

next_:tate <= ready_st;
H

end i
end if;
when init_st_calibrate => --calibrate four adcs at a time
adc_cal <= *1111111111111111';
adc_oe_0_op <= ‘'1111°;

adc_oe_1 op <= ‘1111°;
adc_oe_2_op <= ‘1111';
adc_oe_3_op <= ‘1111’;

bank_0_temp <= ‘111°;
bank_1_temp <= *111’;
bank_2_temp <« ‘111°;
bank_3_temp <= ‘111';
addr_a_temp < '0000600000000000000':
addr_b_temp < 0000000000000000000° ;

next_state <= init_st_calibrate_a;

when init_st_calibrate_a => ~--wait _for de]a{ so that the
-- calibrate pulse is clk_sample x2
adc_cal <= ‘1111111111111111°';
adc_oe_0_op <= '1111';
adc_oe_1_op ‘1111°;
adc_oe_2_op ‘1111
adc_oe_3_op ‘11117

bank_0_temp <= ‘111°;
bank_1_temp <= ‘111’;
bank_2_temp <= ‘l111';
bank_3_temp <= ‘111':
addr_a_temp <= ‘0000000000000000000" ;
addr_b_temp <= *‘000000000000Q000000° ;

if (clk_sample = '0') then . --wait for the sample clock to go low
next_state <= init_st_calibrate_a a;

else
next_state <= init_st_calibrate_a;
end if;
when init_st_calibrate_a_a => --clk_sample x2 delay

adc_cal <= ‘1111111111111111';
adc_ce_0_op <= '1111°;
adc_oe_l op <= ' H
adc_oe_2_op <= ‘1111';
adc_oe_3_op <= '1111°;

bank_O_temp <= ‘111°;
bank_1_temp <= *111';
bank_2_temp <= ‘111°;
bank_3_temp <= ‘111’;
addr_a_temp <= *+0000000000000000000° ;
addr_b_temp <= ‘0000000000000000000° ;

if (clk_sample = '1') then
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next_state <= init_st_calibrate_a b;

else
end if;

next_state <= init_st_calibrate_a_a;

when init_st_calibrate_a b =>

adc_cal <= '1111111111111111’
adc_oe_0_op <= '1111°;

adc_oe_1_op
adc_oe_2_op
adc_oe_3 op <= ‘1111’;

bank_0_temp <= ‘111’;
bank_1_temp <= ‘111’;
bank_2_temp <= ‘111’;
bank_3_temp <= ‘111°;
addr_a_temp <= ‘0000000000000000000' H
addr_b_temp <= ‘0000000000000000000' H

if (clk_sample = '0') the

N
next_state <= init_st_calibrate_a c;

else

next_state <= init_st_calibrate_a_b;

end if;
when init_st_calibrate_a_c =>

adc_cal <= ‘1111111111111111"
adc_oe_0_op <= ‘1111°’;
adc_oe_l_op <= ‘1111';
adc_oe_2_op <= ‘1111";
adc_oe_3_op <= ‘1111°; ;

bank_0_temp <= ‘111’;
bank_1_temp <= ‘111’;
bank_2_temp <= ‘111';
bank_3_temp <= ‘111’';
addr_a_temp <= ‘0000000000000000000’;
addr_b_temp <= ‘0000000000000000000" ;

if (clk_sample = '1') then

next_state <= init_st_calibrate_a d;

else
end if;

next_state <= init_st_calibrate_a_c;

when init_st_calibrate_a_d =>

adc_cal <= ‘1111111111111111'-
adc_oe 0_op <= ‘1111°;
adc_oe. 1 op <= ‘1111';
adc_oe_2_op <= ‘l111';
adc_oe_3_op <= ‘1111°;

bank_0_temp <= ‘111’;
bank_1_temp <= ‘'111’;
bank_2_temp <= ‘111°;
bank_3_temp <= '111';
addr_a_temp <= 0000000000000000000' H
addr_b_temp <= '0000000000000000000' H

if (clk_sample = "0') t
1 next_. state <= 1mt st_calibrate_a_e;
else

next_state <= init_st_calibrate_a d;
end if;

when init_st.calibrate_a_e =>

adc_cal <= ‘1111111111111111°;
adc_oe_0_op <= ‘1111°
adc_oe. )l op <= ‘1111
adc_oe_2_op <=
adc_oe_3_op <=

bank_0_temp <=
bank _1_temp <=
bank_2_temp <=
bank_3_temp <= ‘111

addr_a_temp <= ‘0000600000000000000"
addr_b_temp <= *0000000000000000000" ;

if (clk_sample = "1') then
next_state <= init_st_calibrate_a_f;

else

next_state <= init_st_calibrate_a_e;
end if;

when init_st_calibrate_a_f =x

adc_cal <= ‘1111111111111111’
adc_oe_0_op <= ‘1111°;
adc_oe_1_op <= ‘1111’;
adc_oe_2_op <= ‘1111’;
adc_oe_3_op <= '1111°;

bank_0_temp *111';
bank_1_temp ‘111°;
bank_2_temp ‘111°;
bank_3_temp ‘111°;
addr_a_temp N 0000000000000000000 ’
addr_b_temp '0000000000000000000‘ H

if (clk_sample = '0') then
. next_state <= init_st_calibrate_a_g;
else

. next_state <= init_st_calibrate_a_f;
end if;

when init_st_calibrate_a_g =>

adc_cal <= l1111111111111111'
adc_oe_O_op <= ‘1111

adc_oe_1 op <= H
adc_oe_2_op <= ‘1111°;
adc_oe_3_op <= ‘1111"

bank_0_temp <= ‘111';
bank_1_temp <= ‘111°;
bank _2_temp <= ‘111';
bank_3_temp <= ‘111’;
addr_a_temp <= ‘0000000000000000000
addr_b_temp <= ‘0000000000000000000" ;

if (clk_sample = '1') then
next_state <= init_st_calibrate_a_ h;

else

next_state <= init_st_calibrate_a_g;
end if;
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when init_st_calibrate_a_h =>

adc_cal <= *1111111112111111°;
adc_oe_0_op <= ‘1111°;
adc_oe_1 op <= ‘1111°;
adc_oe_2_op <= ‘1111’;
adc_oe_3 op <= ‘1111';

bank_0_temp <= ‘111’;
bank_1_temp <= ‘111’;
bank_2_temp <= '111’;
bank_3_temp <= ‘'111’;
addr_a_temp <= *0000000000000000000" ;
addr_b_temp <= ‘0000000000000000000" ;

if (clk_sample = ‘0') then
1 next_state <= init_st_calibrate_b;
else

next_state <= init_st_calibrate_a_h;
end if;

when init_st_calibrate_b =>

adc_cal <= ‘0000000000000000" ;
adc_oe_0_op ‘111175

adc_oe_1 op ‘ '
adc_oe_2 _op <=
adc._oe_3_op <= ‘1111

bank_0_temp <=
bank_1_temp <=
bank_2_temp <=
bank_3_temp <= ‘111';

addr_a_temp <= * 00000000000000000° ;
addr_b_temp <= ‘0000000000000000000" ;

next_state <= init_st_calibrate_c;

when init_st_calibrate_c => --wait until all ades have finished calibrati ng

adc_cal <= *0000000000000000" ;
adc_oe_Q_op <= ‘1111°;
adc_oe_1_op <= ‘1111';
adc_oe_2_op <= ‘1111';
.adc_oe_3_op <= ‘1111°;

bank_0_temp <= ‘111’;
bank_1_temp <= ‘111';
bank_2_temp <= ‘111’;
bank_3_temp <= *111';
addr_a_temp <= ‘0000600000000000000' H
addr_b_temp <= ‘0000000000000000000" ;

if (adc_cal_busy /= *0000000000000000°) then
X next_state <= init_st_calibrate_c;
else

next_state <= ready_st;
end if;

start sampling routing

when sample_start => --start of sample routine

adc_cal <= ‘0000000000000000";
adc_oe_0_op <= ‘1111°;

adc_oe_1_op <=
adc_oe_2_op <=
adc_oe_3_op <=

bank_0_temp <= ‘111°;
bank_1_temp <= ‘111’;
bank_2_temp <= ‘111’;
bank_3_temp <= '111°;
addr_a_temp <= mem_counter;
addr_b_temp <= mem_counter;

if (clk_sample = '0') then i
next_state <= sample_start_confirm;

else

. next_state <= sample_start;
end if;

adc channels 0001000100010001

when sample_start_confirm =>

adc_cal <= *‘0000000000000000° ;
adc_oe_0_op <= '1111°;
adc_oe_1_o0p <= ‘1111’;
adc_oe_2 _op <= ‘1111°;
adc_oe_3.0p <= '1111°;

bank_0_temp <= ‘111°;
bank_1_temp <= ‘111°;
bank_2_temp <= ‘111’;
bank_3_temp <= '111';
addr_a_temp <= mem_counter;
addr_b_temp <= mem_counter;

if (clk_sample = "1') then
\ next_state <= sample_setup;
else

X next_state <= sample_start_confirm;
end if;

when sample_setup =>

adc_cal <= ‘0000000000000000" ;
adc_oe.0_op <= adc._oe_0_temp;
adc_oe_1 op <= adc_oe_1_temp;
adc_oe_2_op <= adc_oe_2_temp;
ade_oe_3_op <= adc_oe_3_temp;

bank_0_temp <= ‘111';
bank_1_temp <= ‘111
bank_2_temp <= ‘111°;
bank_3_temp <= ‘111°;

dd T mem_counter;
mem_counter;

next_state <= sample_a;
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when sample_a =>

adc_cal <= ‘0000000000000000°;
adc_oe_0_op <= adc_oe_0_temp;
adc_oe_1 op <= adc_oe_1_ temp;
adc_oe_2_op <= adc_oe_2_temp;
adc_oe_3_op <= adc_oe_3_temp;

bank_0_temp <= ‘111’;
bank_1_temp <= ‘111’;
bank_2_temp <= ‘111’;
bank_3_temp <= ‘111';
addr_a_temp <= mem_counter;
addr_b_temp <= mem_counter;

next_state <= sample_b;

when sample_b =>

adc_cal <= ‘0000000000000000" ;
adc_oe_0_op <= adc_oe_0_temp;
adc_oe_1 op <= adc_oe_l_temp;
adc_oe_2_op <= adc_oe_2_temp;
adc_oe_3_op <= adc_oe_3_temp;

bank_0_temp <= ‘111’;
bank_1_temp <= ‘111';
bank_2_temp <= ‘111’;
bank_3_temp <= ‘111’;
addr_a_temp <= mem_counter;
addr_b_temp <= mem_counter;

next_state <= sample_c;

when sample_c =>

adc_cal <= ‘0000000000000000° ;
adc_oe_0_op <= adc_oe_0_temp;
adc_oe_1_op <= adc_oe_1_temp;
adc_oe_2_op <= adc_oe_2_temp;
adc_oe_3_op <= adc_oe_3_temp;

bank_0_temp <= ‘001';
EanLLtemp <= ‘001"
ank_2_temp <= ‘001°’;
bank_3_temp <= ‘001';

addr_a_temp <= mem_counter;
addr_b_temp <= mem_counter;

next_state <= sample_d;

when sample_d =>

adc_cal <= ‘0000000000000000°";
adc_oe_0_op <= adc.oe_0_temp;
adc_oe_1 op <= adc_oe_l _temp;
adc_ce_2_op <= adc_oe_2_temp;
adc_oe_3_op <= adc_oe_3_temp;

bank_0_temp <= ‘001’;
bank_1_temp <= ‘001’
bank_2_temp <= ‘001’;
bank_3_temp<= ‘001’;
addr_a_temp <= mem_counter;
addr. b_temp <= mem_counter;

next_state <= sample_e;

when sample_e =>

adc_cal <= ‘0000000000000000°;
adc_oe_0_op <= adc_oe_0._temp;
adc_oe_1 op <= adc_oe_1_temp;
adc_oe_2_op <= adc_oe_2_temp;
adc_oe_3_op <= adc_oe_3_temp;

bank_0_temp <= ‘001';
bank_1_temp <= ‘001’;
bank_2_temp <= '001’;
bank_3_temp <= ‘001';
addr_a_temp <= mem_counter;
addr_b_temp <= mem_counter;

next_state <= sample_f;

when sample_f => --wait

adc_cal <= ‘0000000000000000° ;
adc_oe_0_op <= adc_oe_0_temp;
adc_oe_1_op <= adc_oe_l1_temp;
adc_oe_2_op <= adc_oe_2_temp;
adc_oe_3_op <= adc_oe_3_temp;

bank_O_temp <= '001°;
bank_l_temp <= ‘001';
bank_2_temp <= ‘001';
bank_3_temp <= ‘001°;
addr_a_temp <= mem_counter;
addr_b_temp <= mem_counter;

next_state <= sample_g;

when sample_g =>
adc_cal <= ‘0000000000000000° ; '

adc_oe_0_op <= adc_oe_0_temp;
adc_oe_1 op <= adc_oe_l temp;
adc_oe_2_op <= adc_oe_2_temp;
adc_oe_3 op <= adc_oe_3_temp;

bank_Q_temp <= ‘111';
bank_1_temp <= ‘111';
bank_2_temp <= ‘111°;
bank_3_temp <= ‘111’;

~--send adc oe high

--wait for data on busses

--changed 50 cs and we go low at the same time

--take c¢s Tow on all banks

~-change to all ones

--take write channel low for 40ns

~-changed so cs and we go low at the same time
--on all banks

~--wait

--take write high, ending write cycle

--changed so cs and we go high togerthr

addr_a_temp <= ‘0000000000000000000" ;
addr_b_temp <= *0000000000000000000° ;

next_state <= sample_h;

when sample_h =>

adc_cal <= *0000000000000000° ;
adc.oe_Q_op <= ‘1111°;
adc_oe_1 op <= ‘1111’;
adc_oe_2_op <= ‘1111°;
adc_oe_3_op <= '1111';

~--disable outputs from adcs
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bank_0_temp <= ‘111’;
bank_1 temp <= ‘111°;
bank_2_temp <= ‘111°;
bank_3_temp <= ‘111°;

addr_a_temp <= ‘0000000000000000000° ;
addr_b_temp <= 0000000000000000000 " ;

if (sample_counter = sample_counter_stop and bank_count = ‘00') then
1 next_state <= clear_st;
else

if (bank_count = ‘00') then
next_state <= sample_start;

else

) next_state <= sample_setup;
end if;

end if;

when clear_st =>

adc_cal <= ‘0000000000000000'
adc_oe_0_op <= ‘1111’
adc_oe_1 op <= ‘1111°;
adc_oe_2_op <= '1111'-
adc_oe_3_op <= '1111'~

bank_0_temp <= ‘111°;
bank_1_temp <= ‘111°;
bank_2_temp <= ‘111°;
bank_3_temp <= ‘111';

addr_a_temp <= ‘0000000000000000000' ;
addr_b_temp <= ‘0000000000000000000"

next_state <= start_upload;

when start_upload =>

adc_cal <= ‘0000000000000000' H
adc_oe_0_op <=
adc_oe_1_op <=
adc_oe_2_op <=
adc_oe_3_op <=

bank_0_temp <=
bank_1_temp <=
bank_2_temp <=
bank_3_temp <=

addr_a_temp <= ‘0000000000000000000"
addr_b_temp <= *0000000000000000000° ;

next_state <= start_upload wait;

when start_upload_wait =»
adc_cal <= ‘0000000000000000"

adc_oe_1 op <= '1111';
adc_oe_2_op <= ‘1111';
adc_oe_3_op <= ‘1111°;

bank_0_temp <= ‘111°;
bank_1_temp <= ‘111°;
bank_2_temp <= ‘111°;
bank_3_temp <= ‘111°;

addr_a_temp <= ‘0000000000000000000" ;
addr_b_temp <= *0000000000000000000" ;

if (start_download = '1') then
n_lesttate <= start_upload_0;
else

if (cancel_download = '1') then
1 next_state <= init_st;
else

. next_state <= start_upload_wait;
end if;

end if;

when start_upload_0 =>

adc_cal <= '0000000000000000'
adc_oe_0_op <= ‘1111’

adc_oe_2_op <= ‘1111';
adc_oe_3_op <= ‘1111';

bank_Q_temp <= ‘111’;
bank_1_temp <= ‘111’;
bank_2_temp <= ‘111°;
bank_3_temp <= ‘111°;
addr_a_temp <= ‘0000600000000000000'
addr_b_temp <= ‘0000000000000000000" ;

next_state <= start_upload_l;

when start_upload_1 =>

adc_cal <= ‘0000000000000000"
adc_oe_Q_op < 111°;
adc_oe_l_op <- ‘1111';
adc_oe_2_op <= ‘1111°;
adc_oe_3_op <= ‘1111°;

bank_0_temp <= ‘111’
bank_1_temp <= ‘111’
bank _2_temp <= ‘111’
bank_3_temp <= 11’5
addr_a_temp <= 0000000000000000000' H
addr_b_temp <= ‘0000000000000000000’

next_state <= start_upload_2;

when start_upload_2 =>

adc_cal <= ‘0000000000000000'
adc_oe_0_op <= ‘111

adc_oe_l _op <= '1111';
adc_oe_2 op <= ‘1111';
adc_oe_3_op <= ‘1111’}

bank_0_temp <= ‘111’;

bank_1 temp <= ‘111';
bank_2_temp <= ‘111°;
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bank_3_temp <= ‘111';
addr_a_temp <= ‘0000000000000000000° ;
addr_b_temp <= ‘0000000000000000000" ;

next_state <= start_upload_go;

when start_upload_go =>

adc_cal <= *0000000000000000";
adc_oe_0_op <= ‘1111’;
adc_oe_1 op <= ‘1111’;
adc_oe_2_op <= ‘1111';
adc_oe_3_op <= ‘1111°;

bank_0_temp <= ‘111’;
bank_1 temp <= ‘111’;
bank_2_temp <= ‘111';
bank_3_temp <= ‘111*;

addr_a_temp <= upload_mem_counter;
addr_b_temp <= upload_mem_counter;

next_state <= upload_a;

when upload_a => ~--activate memory channels

adc_cal <= ‘0000000000000000° ;
adc_oe_0.op <= ‘1111°;
adc_oe_1 op <= ‘1111°;
adc_oe_2_op <= ‘1111°';
adc_oe_3_op <= ‘1111°;

bank_0_temp <= ‘111°;
bank_l_temp <= ‘111°;
bank_2_temp <= ‘111°;
bank_3_temp <= ‘111°';
addr_a_temp <= upload_mem_counter;
addr_b_temp <= upload_mem_counter;

next_state <= upload_b;

when upload_b => --delay for memory setup time (55ns)

ade_cal <= ‘0000000000000000° ;
adc_oce_0_op <= '1111';
adc_oe_1l op <= ‘1111°;
adc_oe_2_op <= ‘1111';
adc_oe_3_op <= ‘1111°;

bank_0_temp <= bank_0_read;
bank_1_temp <= bank_1_read;
bank_2_temp <= bank_2_read;
bank_3_temp <= bank_3_read;
addr_a_temp <= upload_mem_counter;
addr_b_temp <= upload_mem_counter;

next_state <= upload_c;

when upload_c =>

adc_cal <= ‘0000000000000000°;
adc_oe 0_op <= '1111°;
adc_oe_1 op <= ‘1111';
adc_oe_2_op <= ‘1111’;
adc_oe_3_op <= ‘1111°;

bank_0_temp <= bank_O_read;
bank_1_temp <= bank_1_read;
bank_2_temp <= bank_2_read;
bank_3_temp <= bank_3_read;
addr_a_temp <= upload_mem_counter;
addr_b_temp <= upload_mem counter;

next_state <= upload_d;

when upload_d =>

adc_cal <= *0000000000000000° ;
adc_oe_O_op <= *1111’;
adc_oe_1 op <= ‘1111°;
adc_oe_2_op <= ‘1111’;
adc_oe_3_op <= *1111°;

bank_0_temp <= bank_O_read;
bank_1_temp <= bank_1_read;
bank_2_temp <= bank_2_read;
bank_3_temp <= bank_3_read;
addr_a_temp <= upload_mem_counter;
addr_b_temp <= upload_mem_counter;

next_state <= upload._rd_bus;

when upload_rd_bus => --during this state data is loaded into data_out_a and data_out_b

adc_cal <= ‘0000000000000000° ;
adc_oe_0_op <= ‘1111°;
adc_oe_l op <= '1111';
adc_oe_2_op <= ‘1111';
adc_oe_3_op <= ‘1111’;

bank_0_temp <= bank_0_read;
bank_1_temp <= bank_1_read;
bank_2_temp <= bank_2_read;
bank_3_temp <= bank_3_read;
addr_a_temp <= upload _mem_counter;
addr_b_temp <= upload_mem_counter;

next_state <= upload_shake;

when upload_shake => --shake_out goes high (see processes) and waits
adc_cal <= ‘0000000000000000° ; --for shake_in to confirm);
adc_oe_0_op <= *1111°;

adc_oe 1 op <= ‘1111’;
adc_oe_2_op <= ‘1111°;
adc_oe_3_op <= ‘1111°;

bank_0_temp <= bank_0_read;
bank_1_temp <= bank_1 read;
bank_2_temp <= bank_2_read;
bank_3_temp <= bank_3_read;
addr_a_temp <= upload_mem_counter;
addr_b_temp <= upload_mem_counter;

if (shake_in = "1') then
1 next_state <= upload_shake_1;
else

next_state <= upload_shake;
end if;
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when upload_shake_1 =>

adc_cal <= ‘0000000000000000"
p <

adc_oe._{ 1111°

adc_oe l_op <= '1111’,

adc_oe_2_op <= ‘1111';

adc_oe_3_op <= ‘1111";

bank_0_temp <= bank_0_read;
bank_1_temp <= bank_Lread
bank_2_temp <= bank_2_read;
bank_3_temp <= bank_3_read;
addr_a_temp <= upload_mem_counter-
addr_b_temp <= upload_mem counter;
if (shake_in = '0') then

else
end if;

--waits for shake_in to go Tow before moving on

next_state <= upload_shake_done;

next_state <= upload_shake_1;

when upload_shake_done =>
adc_cal <= ‘0000({00000000000"

adc_oe_0.

_op <=

adc_oe_1_op <=
adc_oe_2_op <=

adc_oe_3.

3_op <=

bank_0_temp <=
bank_1.temp <=
bank.2_temp <=
bank_3_temp <=

addr_a_temp <=
addr_b_temp <=

upload_mem_counter;
upload_mem_counter;

if (upload_count = no_to_upload) then
next_state <= upload_inc_channel;

else

next_state <= upload_inc_location;

end if;

when upload_inc_location =>

~-increment memory location and number of samples returned

adc_cal <= ‘0000000000000000'

adc_oe_0_op <«

adc_oe_1_op <= '1111’;
adc_oe_2_op <= '1111°;
adc_oe_3 op <= ‘1111';

bank_0_temp ‘111
bank_1_temp ‘111,
bank_2_temp ‘111’;
bank_3_temp ‘111°;

addr_a_temp <= upload_mem_counter;
addr_b_temp <= upload_mem_counter;

next_state <= start_upload_2;

when upload_inc_channel =>

adc_cal <= '0000000000000000'

adc_oe_0_op <=

adc_oe 1l op <= '1111':
adc_oe_2_op <= ‘1111’;
adc_oe_3_op <= *1111°;

bank_0_temp <= ‘111’;
bank_1_temp <= ‘111’;
bank_2_temp <= ‘111°;
bank_3_temp <= ‘111’;

addr_a_temp <= upload_mem_counter;
addr_b_temp <= upload_mem_counter;

if (upload_channel_group = ‘11') th
next_state <= 1nc_up1oad_channe]_group.

else

next_state <= upload_inc_channel_1;

end if;

when upload_inc_channel_1 =>

adc_cal <= ‘0000000000000000"

adc_oe_0_op <= ‘1111°;
adc_oe_l op <= ‘1111°;
adc_oe 2 op <= ‘1111';
adc_oe_3_op <= ‘1111’;

bank_O_temp <= ‘111’;
bank_1_temp <= ‘l111°;
bank_2_temp <= ‘111°;
bank_3_temp <= °‘111°;

addr_a_temp <= ‘0000000000000000000" ;
addr_b_temp <= *0000000000000000000" ;

next_state <= start_upload_1;

when inc_upload_channel_group =>

adc_cal <= ‘0000(}00000000000"

adc_oe_0_op <

adc_oe_1_op <=
adc_oe_2_op <=
adc_oe_3 op <=

bank_0_temp <=
bank_1_temp <=
bank_2_temp <=
bank_3_temp <=

addr_a_temp <= ‘0000000000000000000" ;
addr_b_temp <= 0000000000000000000" }

if (read_bank_count_= '1') then
next_state <= all_done;

else

next_state <= inc_read_bank;

end if;

when inc_read_bank =>

adc_cal <= ‘0000000000000000' 5

adc_oe_0_op <=
adc_oe_1 _op <= ‘1111"

H
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adc_oe_2_op <= ‘1111°;
adc_oe_3_op <= ‘1111’;

bank _O_temp <= ‘111’;
bank_1_temp <= ‘111’;
bank_2_temp <= *111';
bank_3_temp <= ‘111';

addr_a_temp <= *‘0000000000000000000° ;
addr_b_temp <= ‘0000000000000000000° ;

next_state <= start_upload_0;

when all_done =>

adc_cal <= ‘0000000000000000"
adc_oe_0_op <«

adc_oe_1_op <= ‘1111';
adc_oe_2_op <= ‘1111°;
adc_oe_3 _op <= ‘1111°;

bank_0_temp <= ‘111’;
bank_1_temp <= ‘111';
bank_2_temp <= ‘111';
bank_3_temp <= ‘111°;

addr_a_temp <= '0000000000000000000" ;
addr_b_temp <= '0000000000000000000" ;

next_state <= init_st;

when others =>

adc_cal <= ‘0000000000000000'
adc_oe_0_op <= ‘1111’;
adc_oe_1l op <= ‘1111’;
adc_oe_2_op <= ‘1111’;
adc_oe_3_op <= ‘1111°;

bank_O_temp <= ‘111';
bank_1_temp <= ‘111';
bank_2_temp <= ‘111';
bank_3_temp <= ‘111';
addr_a_temp <= ‘0000000000000000000" ;
addr_b_temp <= ‘0000000000000000000" ;

next_state <= init_st;

end case;
end process;

-- busy status

PROCESS (current_state)
BEGIN
if (current_state /= read{ _st) then
adc_busy <= :
else

adc_busy <= '0";
end if;

end process;

-- upload data processes

PROCESS(current_state,clk)
BEGIN
if (clk = '1' and clk'event) then
if (current_state = upload_inc_location) then
upload_count <= upload_count + 1;

1f (current_state = starLu;ﬂoad 1) then
000000

ug Joad_count <= 00000000000 ;
up]oad_count <= upload_count;
end if;

end if;
end if;
end process;

PROCESS (current_state,clk,upload_channel_group)
BEGIN

if (clk = '1' and clk'event) then
if (current_: state = up1oad_1nc channel_1) then
upload_channel_ grouq <= upload_channel_group + 1;
elsif (current_state = start_upload_0 then
upload_channel_group <= ‘00°
e’l‘s’e £ upload_channel_group <= up]oud_channe]_group.
end if;
end if;
end process;

--process handshake to transfer data
PROCESS (current_state,clk)
BEGIn
if (current_state = up’|oad_shake) then
shake_out <= H
else

shake_out <= '0';
end if;

end process;

--put data on bus to higher level
PROCESS(current_state,clk,data_0,data_1,data_2,data_3,read_bank_count,data_out_a_temp,data_out_b_temp)
BEGIN if (current_state = upload_rd_bus or current_state = upload_shake or current_state = upload_shake_1) then
if(read_bank_count = '0') then

data_out_a_temp <= data_0;
data_out_b_temp <= data_l;

else
data_out_a_temp <= data_2;
data_out_b_temp <= data_3;
end if;
else
data_out_a_temp <= ‘00000000000000"
¢ data_out_b_temp <= ‘00000000000000
end if;
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end process;

process(clk, gp]oad_mel\_counter, upload_mem_counter_4,current_state)
if(clk = '1' and c¢lk'event) then
1f(curreantate = upload_rd_bus) then
1 upload_mem_counter_4 <= upload_mem_counter + ‘0000000000000000100°;
else

4 if upload_mem_counter_4 <= upload_mem _counter_4;
end if;

end if;

end process;
PROCESS (current_state,clk,upload_start_position_0,upload_start_position_1,upload_start_position_2,upload_start_position_3)
BEGIN

if (¢clk = '1" and clk'event) then

if (curreantute = upload_inc_ 1ocat1on and upload_mem_counter <= mem_max) then
(up’load_channe'l ?roup = '00') then
oad__nem_counter 4) > mem_max) then
upload_mem_counter <= *‘0000000000000000000" ;

upload_mem_counter <= upload_mem_counter + 4;

else

elsif (up'load channe'l roup = ‘01’) then
((uploa Lcounter 4) > mem_max) then
upload_mem_counter <= ‘0000000000000000001'

upload_mem_counter <a upload_mem_counter + 4,

else

if;
elsif (up'load_channel _group = ‘10') then
((upload_mem_counter 4) > mem_max) then
upload_mem_counter <= ‘0000000000000000010‘

upload_mem_counter <= upload_mem_counter + 4;

else

elsif (up]oad chunnel roup = '11’) then

((uploa em_counter 4) > mem_max) tl
1 up oati_mem_counter <= ‘0000000000000000011' H
else

a4 if upload_mem_counter <= upload_mem_counter + 4;
end if;

end if;

elsif (current_state = upload_inc_location and ug;oad_lmn_counter = mem_max) then
--upload_mem_counter <= ‘0000000000000000000";

1f (currenf_state = start_upload._1l) then
if (up1oad_channe1 .group = ‘00') t
oad_mem_counter <= upload._staeros1tlon_0,
elsif (uploud channe'l —group = ‘01') tl
counter <= upload_start_posniorLl;
elsif (upload chnnne‘l _group = *10') then
load._mem_counter <= up1oad_stanposwt1on_2
elsif (up'load channel_group = ‘11°) t
upload_mem_counter <= up1oad_stanpos1t1on_3.

end if;
end if;
end if;
else
upload_mem_counter <= upload_mem. counter;
end if;

end process;

PROCESS(current_state,clk) --get start positon of memory for start of upload
BEGIN
if (current_state = start_upload) then

upload_start_position_0 <= mem_counter
upload_start_position_1 <= mem_counter
upload_start_position_2 <= mem_counter
upload_start_position_3 <= mem_counter

2;

o+

else
upload_start_position 0 <= upload_start_position 0;
upload_start_position_l <= upload_start_position_1;
upload_start_position 2 <= up'load_start_pos’ltwn_Z’
upload_start_position_3 <= upload_start_position_3;

end if;
end process;

PROCESS (current_state,clk, read_bank_count)
BEGINn

if (current_state = inc_ read_bnnk) then
read_bank_count <= '1’;

else
if (current_state = start_upload or current_state = ready_st) then
read_bank_count <= '0';
else
read_bank_count <=read_bank_count;
end if;
end if;

end process;

PROCESS(c1k, read_bank_count)
begin

--for acquiring channels :0,4 1,5 2,6 3,7
if (read__bank_count '0°') then
ank_0_read <= ‘100';
ban k_1_read <= ‘100’;
bank_2_read <= ‘111';
bank_3_read <= ‘111°;
--8,12 9,13 10,14 11,15

else
bank_0_read <= ‘111°;
bank_1_read <= *111’';
bank_2_read <= *100°';
bank_3_read <= *100';
end if;

end process;

— write data processes
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PROCESS (adc_gL?_t emp,adc_oe_1_temp,adc_oe_2_temp,adc_oe_3_temp,clk,bank_count)
egin
CASE bank_count IS

when ‘00" =>
adc_oe_0_temp *1110°;
adc_oe_1_temp ‘1110°;
adc_oe_2_temp ‘1110’ ;
adc_oce_3_temp *1110°;
when ‘01" =
adc_oe_0_temp <= ‘1101’; ~~ch2
adc_oe_1_temp <= ‘1101°'; --ch6
adc_oe 2_temp <= ‘1101’ --chl0
adc_oe_3_temp <= ‘1101°; --chl4
when ‘10" =
adc_oe_0_temp <= '1011°; --ch3
adc_oe_l_temp <= ‘1011'; --ch7
adc_oe_2_temp <= ‘1011°; --chll
adc_oe_3_temp <= ‘1011'; --ch15
when ‘11’ =
adc_oe_0_temp <= ‘0111’; --ch4
adc_oe_1 temp <= ‘Q111’; ~-ch8
adc_oe_2_temp <= ‘Q111’; -~chl2
adc_oe_3_temp <= '0111°; --chl6

when others =>
adc_oe_0_temp <= ‘1111°;
adc_oce_l_temp <= ‘1111°;
adc_oe_2_temp <= '1111°;
adc_oe_3_temp <= '1111';

null;
end case;
end process;

- Memory Counter
PROCESS(current_state, bank_count,clk)

BEGII

if (clk = '1' and clk'event) then

if (current_state = sample_g and mem_counter < mem_max) then
bank_count <= bank_count + ‘01';
mem_counter <= mem_counter + 1;

elsif (current_state = init_st) then
bank_count <= ‘00'; --reset counters
mem_counter <= ‘0000000000000000000" ;

elsif (current_state = sang'le_g and mem_counter = mem_max) then
bank_count <= bank_count + ‘01’';
mem_counter <= ‘0000000000000000000° ;

mem_counter <= mem_counter;
bank_count <= bank_count;

else

end if;
end if;
end process;

—-wkwkawawnenRwpre. Trigger Calculation***sswswanans

--count_the number of samples
--calculate the number of samples from the pre-trigger

rocess(clk_sample)
n
9 if (clk_sample = '1' and clk_sample'event) then

~-sample_counter_stop <= ‘11111111111111111' - pre_trigger;
--modified 24/12/05

--Cycle to next bank if not at
--end of memory allocation
--and increase memory counter

--Initialisation state

--Maxium memory has been reached
--reset counter

sample_counter_stop <= no_to_upload - (‘11111111111111111' - pre_trigger);

end if;
end process;
A_tﬁitt't'tﬁ't'.'tksmp1e Counterv¥hwkrdakhhhhhkhnkn

rocess(clk, sample_counter)

egin

9 if (clk = '1'_fund clk'event) then
i

(current_state = sample_setup and thres_trig_op = ‘1" and bank_count =‘00’) then

sample_counter <= sample_counter + 1;

else
if (current_state = init_st or current_state = ready_st) then
1 sample_counter <= “00000000000000000° ;
else
sample_counter <= sample_counter;
end if;
end if;

end if;

end process;

CRRRNARRERRRRRERNRDALA 1O DATA_TEMPRRRARNRARKNENKARAR
rocess(clk,current_state, data_0,data_l, data_2,data_3)

egin
9 if (clk = '1’ and clk’'event) then
if (current_state = sample_e) then
data_0_temp <= data_0;
data_]_temp <= data_l;
data_2_temp <= data_2;
data_3_temp <= data_3;

end if;

end if;
end process;

—owkAkkaReRwRRARR R Threshold Trigger ®*aswasewsbassnnen

--process data until threshold is_located and then set thres_trig
--unset thres_trig when state = clear_st
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rocess(clk,data 0, data_l, data 2, data_3, bank_count, thres_trig, thres, current_state)

egin
if (clk = '1' and clk'event) then
if ((data_O_temp >= thres or datLLtﬁmp >= thres o]r: data_2_temp >= thres or data_3_temp >= thres) and lockout = '1’)then
thres_trig <=
else
if (current_state = init_: st or current_state = ready_st) then
thres_trig <= '0';
else
thres_trig <= thres_trig;
end if;
end if;
end if;

end process;

S RRARRRNRRERNRNEADrE-Trigger LOCK OUL******aassawaunnnens

rocess (clk, current_state, Tockout_count)
egin
if (clk = '1' and clk'event) then
if (current_state = ready_st) t
1 lockout_count <= ‘0000000000000000000000"
else
lockout_count <= lockout_count + 1;
end if;
end if;
end process;

rocess (clk, lockout. _count, Jockout)

egin
4 if (clk = "1’ and clk'event) then
--if ( lockout_count > ‘0000101011111100100000°') then --180,000
if ( Tockout_count > '0000010011100010110010 ) then --80050
Jockout <= '1'
else
lockout <= '0°;
end if;
end if;
end process;

~-wawawswawwwsaenThrashold Trigger

rmi:ess(current_stnte thres_trig,clk)
egin
if (thres_ triﬁ '1') then
res_trigop <= '1';
else
if (current_state = ready_st) then
thres _trig op <= '0°;

thres-tr\g_op <= thres_trig op;
end if;

end if;
end process;

__'t'ﬁ'tt'ttl.wl‘t'liol‘tput Stored va'lues'.w.t.t'.tl'ttiﬁt‘i.
PROCESS (clk, reset, next_state,addr_a_temp,addr_b_temp, data_out_a temp,data_out_b_temp)
BEG!

if (reset = '1’) then
adc_oe_0 <= '1111°;
adc_oe_1 <= ‘1111
adc_oe_2 <= 111';
adc_oe_3 <= ‘1111';

bank_0 <= ‘111';

bank_1 <= ‘111'}

bank_2 <= ‘111'}

bank_3 <= *111'}

addr_a <= addr_a_temp;

addr_b <= addr_b_temp;
data_out_a <= data_out_a temp;
data_out_b <= data_out_b_temp;

current_state <= init_st;

elsif (CLK = '1' and CLK'EVENT) then
current_state <= next_state;

adc_oe 0 <= adc_oe_0_op;
adc_oe_1 <= adc_oe_1 _op;
adc_oe_2 <= adc_oe.2.0p;
adc_oe_3 <= adc_oe_3_op;

bank_0 <= bank_0O_temp;
bank_1 <= bank_l temp;
bank_2 <= bank.z tenp
bank_3 <= ban temp;
addr_a <= addr_a_temp,
addr_b <= addr_b_temp;
data_out_a <= data_our_Ltemp,
data_out_b <= data_out_b_temp;

end if;

end process;

end Behavioral;
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