
AN INVESTIGATION TO STUDY THE FEASIBILITY

QF

ON-LINE BIBLIOGRAPHIC INKRMATION

RETRIEVAL SYSTEM USING AN APP

by

RANA rATTAGUPTA

supervised by

R. M. LFA

A thesis submitted for the degree of Doctor of Philosophy at

Brunel University, Uxbridge.

July 1977

BEST COPY

AVAILABLE

Variable print quality

TEXT
CUT OFF IN THE

ORIGINAL

cx rER 1.
Pie

1 INrRcIXX TICN

CHAPTER 2.

ANFCBTIa RERIWVAL SYSTEM

2.0 7

2.1 Indexing 8

2.2. Query 15

2.3 Searching 16

2.3.1. Searching on Primary Keys 16

2.3.1.1. Sequential Search on Ordered File 18

2.3.2. Searching by comparison of Keys 20

2.3.2.1. Binary search 20

2.3.2.2. Multiway tree search 22

2.3.2.3. Indexed sequential search 23

2.3.3. Searching by Hash Tables 25

2.3.3.1. 34

2.4. Searching on Seconlary Keys 36

2.4.1. Inverted list 40

2.4.2. Chained List 42

2.4.3. Controlled multilist 44

2.4.4. Cellular partition 45

2.5. File up-date and Maintenance 47

2.6. Summary 52

2.7. Discussions 57

CHAPTER 3.

ASSOCIATIVE SOUJTICN OF WORM TI(11 RETRIEVAL P 1K AND AN
OVERVIEW OF ASSOCIATIVE PARMUL PRWESScR.

3.0 59

3.1 Associative solution of the information retrieval system 59

3.2. An Overview of Associative Parallel Processor 64

3.2.1. Associative Processor Architecture 65
3.2.1.1. Fixed Record I flgth 67
3.2.1.2. Variable Record Length 67
3.2.1.3. Word-oriented 69
3.2.1.4. Bit Serial 69
3.2.1.5. Word Serial 70
3.2.1.6. Associative File Store 70
3.2.1.7. Distributed Logic Memory 70
3.2.2. Basic Operations 72
3.2.2.1. Search 72
3.2.2.2. Read 73
3.2.2.3. Write 73
3.2.2.4. Arithmetic and Logical operations 73
3.2.3. The multiple response problem 74
3.2.4. Hardware Element 75
3.2.5. Software for APP 76
3.2.6. Applications 77
3.2.6.1. File maintenance and Data-base Management 77
3.2.6.2. Pattern Recognition 77
3.2.6.3. Information storage and retrieval 77

3.2.6.4. Translation 77
3.2.6.5. Military Applications 78
3.2.6.6. Miscellaneous Applications 78
3.3. Research at Brunel University 78
3.4. Discussion 80

CHAPM 4.

TUE CBJBCTIVFS ADD PROG w CF WQRK

4.1 82
4.2 Advantages of APP based retrieval system 83
4.2.1. Simple data-structure 83
4.2.2. Flexibility 84
4.2.3. Fa. 9t response 84
4.2.4. Cost 84
4.3. Qbjectives 85

4.4. Research Prcgranme 85

4.4.1. System Design 85

4.4.2. Searching Strategies 85

4.4.3. System Evaluation 86

4.4.4. System implementation 86

4.4.4.1. Algorithm Developrent 87

4.4.4.2. System Evaluation 87

4.4.4.3. Algorithm Improverient 87

4.5. The Programme of Present Work 88

CHAPTER 5.

AN DPERIME TIAL SET UP FOR THE SIMULATION OF A BYTE-ORIENTED
VARIABLE RBCCRD LENGTH ASSOCIATIVE PARALLEL PROCESSOR.

5.0 Introduction 91

5.1 Architecture of Associative Parallel Processor 92

5.1.1. The structural organisation of a Byte-oriented variable 94
record length associative parallel processor.

5.1.1.1. Memory array 94

5.1.1.2. Addressing Unit 95

5.1.1.3. Control Unit 98

5.2. Approach for system implementation and Objectives 98

5.3. The experimental BO-VRL APP set up. 100

5.3.1. Hardware descriptions of the experimental set up 101

5.3.1.1. Associative Memory Cell 101

5.3.1.2. Memory Array 103

5.3.1.3. Micro-order Registers 104
5.3.1.4. Data-Input Register 106

5.3.1.5. Bit-Control Logic 106

5.3.1.6. Tag registers 106

5.3.1.7. Word Control Logic 108

5.3.1. $. Read Register 111

5.3.2. Interface Control Logic 111

5.3.2.1. Data-Input 112

5.3.2.2. Data-Output 112

5.4. Associative Processing Instructions 11.5

5.4.1. Instruction Format 115
5.4.2. Instruction Cycle 117
5.5. Steps of the F cperiment 118
5.5.1. Timing diagraan generation 120
5.5.2. Memory map 120
5.6. Software Package 122
5.7. Results 125
5.8. Discussion 128

CHAPTER 6.

ON-LINE ASSOCIATIVE RETRIEVAL SYSTEM

6.0 Introduction 131
6.1. QN-`Iii FLY Technique of searching 134
6.2. Search criterion 136
6.2.1. Simple Equality Search 136
6.2.2. Cambination of Boolean terms 136
6.2.3. Threshold search 137
6.2.4. Interactive search 137
6.3. Data-format 137
6.3.1. Index File 139
6.3.2. Profile 142
6.4. Philosophy of Implementation of on-line IS&R System 143
6.5. Software and Control Structure 146
6.6. Algorithms 148
6.6.1. Algorithms for Search Operation 150
6.6.1.1. Initialization 150
6.6.1.2. Start of File 152
6.6.1.3. Start of Reccrd 154
6.6.1.4. End of Record 154
6.6.1.5. End of File 157
6.6.2. Details of the algorithms using Associative Processing 157

Instructions.

6.6.2.1. Clear (AM) 157
6.6.2.2. Load (AM) 158
6.6.2.3. Start of Record 161

6.6.2.4 Caipare Algorithm
161

6.6.2.5 Document Hit Algorithm 165

6.7 Inplen ntaticn
183

6.8 Discussion
186

CHAPTER 7.

OCVCLiSIONS

7.0 188

7.1 Criticism of work 193

7.2 Future Work 195

BIBLIOGRAPHY 197

APPENDIX A. Descriptirns of information transferred
through interface.

APPENDIX B. Specification of the Instruction set for

the BO-VRL-APP.

APPENDIX C. Flan Chart for using ßO-VRL-APP simulation

APPENDIX D. Field Aoquisitiai frcan INSPEC Data-base.

ABSTRACT

This thesis reports an investigation on the feasibility study of a

searching mechanism using an 1WP suitable for an on-line biblio-

graphic retrieval, operation, especially for retrospective searches.

Fran the study of the searching methods used in the conventional

systems it is seen that elaborate file- and data- structures are

intxoduced to improve the response time of the system. These

consequently lead to software and hardware redundancies. To mask

these complexities of the systan an expensive crnlputex with higher

capabilities and more powerful instruction set is cenmonly used.

't'hus the service of the systen becomes cost-ineffective.

On the other hand the primitive operations of a searching mechanism,

such as, association, dnnain selection, intersection and unions, are

the intrinsic features of an associative parallel processor. Therefore

it is important to establish the feasibility of an APP as a cost-

effective searching mechanise.

In this thesis a searching mechanism using an 'ON-THE-FLY' searching

technique has been proposed. The parallel search unit uses a Byte-

oriented VRL APP for efficient character string processing.

At the time of undertaking this work the specification for neither the

retrieval systans nor the BO-VRL APP's were well established; hence a

tvx)-phase investigation was originated. In the Phase I of the work a

bottan up approach was adopted to derive a formal and precise

specification for the BO-VRL-APP. Dur'irng the Phase II of the work

a top-down approach was opted for the 11Tpiementation of the searching

mechanism.

An experimental research vehicle has been developed to establish

the feasibility of an APP as a cost-effective searching mechanism.

Although rigorous proof of the feasibility has not been obtained,

the thesis establishes that the APP is well suited for on-line

bibligraphic information retrieval operations where substring searches

including boolean selection and threshold weights are efficiently

supported.

adz

INrovcrxatr

Information is collection of knowledge. This collection of knowledge is

used in directing the further advancement and organization of knowledge. The

rapid growth of science and technology has led naturally to a corresponding

growth of knowledge. The enormous size and complexity of information fron

various sources has reached the point where alarm is felt in regard to the

potential loss of knowledge due to increasing difficulties of retrieving it.

This may lead to unnecessary and expensive duplication of research and consequent

stultification of research and developnent. To the individual scientist, the

main problem is to find out the docLnnents which contain useful information and

to obtain copies of these. The growing importance of information accessibility

has recently drawn fresh attention to this problem. Thus the need for an

automated solution to this problem is now well appreciated.

In general, an information retrieval system
1-11

can be used for:

1. Data retrieval

2. Fact retrieval

3. Document retrieval

Data retrieval: - A set of data is retrieved in response to a query for helping

managers to produce reports, statistics and future projection for day to day

decision making problems.

Fact retrieval: - The'function Öf this `ig similar to an encyclopedia or engineerin

handbook which provides an är15 to a `sirVI question.

2,

Document retrieval; - This is generally a two-step operation. In the first

step a set of documents is located. In the subsequent operation the desired

documents are retrieved fron the storage.

The present discussion is mainly aimed at the library bibliographic information

retrieval syst n, the function of which is similar to the document retrieval op-

eration. The performance of such a retrieval system in regard to the total number

of da ents retrieved should be flexible enough to carry out specific and ex-

haustive searching. For example a user may intend to get only a few references

in response to his query - that is, he may be interested in the specific

retrieval. On the other hand a researcher would like to perform an exhaustive

search on the data-base to retrieve all doctmients related to his area of interest.

Such an exhaustive search may be of two types. These are; -

1. retrospective search

2. current awareness service

The retrospective search Bonns the user of all past works which are relevant to

his particular field of research.

The current awareness service allows a user to keep abreast with the currently

produced literature.

In the current awareness service an inmediate response is generally not required.

Hence a number of queries can be grouped together to form a batch of profiles.

A sequential search on the current collection of the data-base is then c `ied

out with the batch of profiles to generate respective outputs since this is a

regular service, the contents of the output of each user can be monitored and

there is an opportunity of ref ini r user's . query to get max nun relevance.

The retrospective search however is carried ait Qay Qr"

3.

retrieval operation is desirabbje fox. retrospective search. Since the response of

the system is innidiate and the profile can be interactively nodified, the best

result is obtained. Another feature of on-line retrieval system is 'browsing'.

This allcais a vaguely defined user's query to gain precision by interactive

ref insnent of the profile .

Camionly, in an information storage and retrieval system a user specifies his

need for saue facts by selecting a set of search keys. The collection of documentg1

which is stored in the data-base, is also assigned with similar keys. The

retrieval of infozination is then carried out by a single association of the users

and documents Keys, which is essentially an associative process. This primitive

operation of association is not an intrinsic feature of a conventional car uting

system. In such a system elaborate techniques are Employed to create an

artificial association. This increases the canplexities of'the data-structure

and ccaputation of the retrieval systan. Hence to provide an acceptable grade of

service, a ax gputing system of higher performance, which masks these cc lex

operations by faster and more expensive hardware, is used. Consequently the cost

of retrieval service becanes expensive enough to deter many potential users from

availing this facility.

To simplify the function of an information retrieval system, it can be divided

into three major phases of operations. These are:

1. Ir exing: - Assigning a set of Keywords, to a document and storing it in the

data-base, These keywords classify a docMent according to the subject

matter of its tont ts; s that in future the doc vents . can be accessed

by the subject index.

.2
Qu&y or, u er's profile. - A user wishing to retrieve a set (9 documents

should express his infaxmatinýi need by specifying a quexy, A user's qy

4.

or profile consists of a set of 1CeyWords describing a field of specializ-

ation.

3. Search; - In this phase of the c atloril the data-base is searched for the

selection criterion as specified in the user's profile. When all relevant

documents satisfying the search criterion are located, they can be physically

retrieved from the storage.

The first two operations (indexing and query formulation) are in the danain of

information science and still require a lot of human decision-making capabilities.

The scope of the present discussion is limited to the search phase of the

information retrieval systan.

The simplest method of the searching operation is to scan the entire document file

from the beginning to the end to find out the oecurrance of the search-key.

A noticeable improvement of the required number of cxmparisons ,
for a search

operation is obtained by simple ordering of the Keys of the document file. Further

improvenent can be achieved by a tree structure, such as, binaxy or mniltiway tree.

The number of key-oamparisms involved in a tree-structured file then depends on

the total n ber of entries. More improvement can be achieved with hash-coding,

where the number of vaq:)arison is irdepen4ent of the size of the data-base, baut

it may involve many ceiputations. As the cur lexity increases, -it may be

required to locate a document by more tan. one key or bycross-references. To

facilitate this, an inverted file is often employed. The perfou antes of an

inverted file system are functions of the datastructure unployed. Each of

these has its relative n wits and disadvantages. In general, for fast retrieval

operation the data-base of an formation retrieval system, using conventional

anputers, should be higil7, y, . txu tuned. Then It is likely that the updatim.

will be more difficult,.

5.

On the other hand ao puter. systam which orbodies association as a primitive

operation may be efficiently used for an information retrieval systen47-54
74-81,

151-159

In the simplest form of an associative retrieval system, the data-base is stored

in a content-addressable nary and a parallel search is then carried out to

locate the desired Keys. In practice a large associative memory array suitable

for storing a reasonable size of data-base is difficult to produce.

Alternatively two other techniques can be adopted, where:

1. A part of the data base is held in the associative memory.

2. The search data (user's profile) is held in the associative

m fliory (ON THE FLY)

The first organisation has the disadvantage of continued loading of the

associative memory, but it allows more canplex manipulations to be carried out.

Although the converse of these advantages and disadvantages is true for the

second method, it has the primary advantage of cost. As a keyword or record may

contain a variable number of characters, a provision for incorporating this

feature should also be included in the system. This type of data-organization

is well supported by a byte-orientated variable record length associative

parallel processor (BO-VRL-APP). Hence, for the current investigation 'oN THE

FLY' search technique using a BO-VBL APP is chosen. In the 'on the fly' technique,

records containing indices are passed over the top of a 'parrallel search' unit

to filter-out the relevant documents. This process is continued until the end-

of-the file is encountered.

The major advantages of an associative retrieval system151 are.

1. Minimal data-structuring

2. More efficient search g

3. More efficient updatl

4. InpraVed flexib
. pity

5. Minimal -storage redundancy

6.

The basic objective of the Fege investigation is to evaluate these

indications and prove that APP can support efficient and flexible keyword

searching.

Unfortunately, until now, research in neither information science nor associative

parallel processor is so established that it can provide an exact system

specification. However, a top-down design of information system and bottom up

development of APP system is considered to be the most sensible approach to

encounter the lack of information in these fields. Moreover to exploit the

full capabilities of the hardware, it is considered that the associative retrieval

system should be implemented with low level associative instructions. The

other constraint of the present research is the inadequacy of resources. At

the beginning of the work, except for a nand-gate it lerfented associative

nnory array, no hardware or software facilities to support the development of

an associative retrieval system was available at Brunel University. Hence, it

was essential to divide the present investigation into two different phases. It

was decided that in the first phase of work, an interactive experimental set UP

would be developed to specify the instruction set for a byte orientated VRL-APP.

In the next phase, the results obtained in the first phase would be utilized to

inclement a research vehicle for an associative retrieval system. The purpose of

experiments carried out in this phase would be to develop algorithms for

nfonnation retrieval operation to de)nstrate4the flexibility, efficiency and

s licity of a retriev4I system based on an associative parallel processor

and to xgrpare its perfonrances with its conventional counter parts.

This thesis discusses the problem related to the Jap1mientation of research

veY . cles for associative retrieval systaa. 2v proposed system uses as ̀ ON THE FLV

searching technique utilizing a
,
byte stated variable record length aasoctaUve

parallel processor. The purpose of the present investigation is to study and

demonstrate feasibility of such a system. The experience gained by this inVOSU14'

gation may be the basis of futtere deve t of associative retrieV4 Vt"

CHAPTER 2.

INFORMATION RETRIEVAL SYSTEM

2.

The user of an information retrieval system-" is concerned to get facts about

his query. It is expected that tie information centre is capable of catering to

the information needs of its users. That is, the collection of the information

centre should cover the set of doc cents required for a group of users. The

operation of retrieval of documents from an information center is basically

resolving the relevance of documents stored in it with the query. A document can

be retrieved by its author's name, title or contents. In the first two cases, it

is assumed that the user is informed of the existence of a docunent designated by

these keys. on the other hand, when a user does not have any'prior knowledge of

the author's name or the title of a document, he can locate the desired document

by its contents (subject index). The subject matter contained in a document is

indicated by an index terns. The index terms classify documents into different

subject categories. Indexing is the process of assigning an index terns to a

docun nt, and is generally carried out according to a predefined rule.

As the retrieval of domm eats involves matching index terms assigned to a document

with the index terms cited in the user's query, it is expected that the user would

express his query in a lie similar to that used for indexing.

When the user's quexy is presented to the infouwtion centre, the index tom.

referred to in the query are searched, either manually or by an nised,: oav: ice,

within the data-base. Orce a match betty the aij ex terns is fated, the relevant

documents are retrieved from their physjcal locations. =a eludes a retr ,_

apexati .

8.

Thus, it can be seen that three major operations are involved in an info ination

retrieval system. These are:

1. Indexing

2. Query fonmlation

3. Searching

Although these processes look trivial, there are many problems associated with

each of these operations. In the following sub-sections 2.1,2.2 and 2.3 sane

aspects of these operations are discussed.

2.1 INDEXING: -

The process of indexing1-10 is required to classify a docuuuent into a set of

subject categories which are contained in a document. Although mechanisation of

indexing is possible to a certain degree of success, it still involves to a large

extent human intellectual effort. Until now indexing is best done by human indexers,

Indexers are responsible for evaluating the relevance of a document to a class of

subject categories, to which it fits best. To express an indexer's cczirent about

a document, that is, to assign an index term to it, he needs the help of an

indexing language. The choice of an indexing language depends on two criteria;

these are:

1. expressiveness

2. unambiguity

There is no doubt that the selection of a natural language for indexing would

result in the best expressiveness of the index, but at the same tir- it would be

mast ambiguous. One approach to solve the problem of ambiguity is to use a

hierarchical indexingl8-20 procedure (see Fig.. 2.1(a), (b), (c))" In this approach

an authority list of all possible subject categories is produced. This conai

of- all generic teens at the first level of the hierarchy, and subeýi td

9.

a) Tree representation of a Hierarchical index.

600 Technology (applied science)

620 Engineering

629 Other branches of Engineering

629.13 Aeronautics

629.138 Uses of Aircraft

629.138 8 Space of flight.

b) The Authority list of Dewey's decimal language.

Annealing Mn Heat Treatment

See Also Black Annealing V mb Harriogenization

Bright Annealing Wd

c) An Authority list of a Facet Subject Classification

Fig. 2.1 Hierarchical Iz exir

10.

aspects of a generic term are expressed in lower levels of the hicvarchy. In

order to assign an irxlex term to a docu[tient a strict syntactic rule must generally

be followed.

One of the most ccaironly encountered problems in a library is that the majority

of its collections use only a few of the approved index tens. This often leads

to ccnplex subdivisions of these index terms. Sometimes, it becomes extremely

difficult to acciai date a new subject concept within the existing authority list.

This problem could be partially solved by a continuous updating of authority

list, that is, by including a new index term as soon as the subject is well

established. Another difficulty arises when a document under consideration, covers

a number of mutually unrelated subjects. In those cases, it is virtually impossible

to partition these documents under only one broad category. As a solution to this

problem, a number of index texms21 are attached to the document, each according to

corresponding subject concepts. The resulting index terms are then permutated22

to provide a full index (Fig. 42). This allows equal accessibility of a document

when this document is intended to be retrieved fron any subject's point of view.

In many cases it is observed that the ccMplete permutations of index terms are not

essential, even then, this increases the size of the index to a large extent. This

is particularly true when the number of index terms exceeds two.

The index thus obtained for a set of omits is co-ordinated23 during the time of

indexing. Hence this cannot be changed during the searching phase. This type of

indexing is called 'pre-oo-ordinated' system. In the other type of indexing, 'post

co-ordinated '24 systen, correlations of classes of documents are done during searching.

time. This leads to a flexible indexing system, as the entire mode of classification

could be modified by the user of the system. Here an indexer is allowed to assign

any number of index teens, called 'keyword's' to a document; which he thinks are

relevant to it. The final co-ordination of these keywords is ckm by logical inte "'

aýnnecticuýs anaong these keywords. A major difficulty arises here duo to free

11.

621.762 : 546 . 65

546.65 : 621 . 762

a) Colon Classification

Kgb Bgt Ac

Bqt Ac Kgb

Ac Kgb Bqt

Kgb Ac Bqt

Bqt Kgb Ac

Ac Bqt Kgb

b)

Fig. 2.2. Pernutated IndEE rg

12.

COMPUTERS
(Computers & Date Sys tens)
Includeel

Calculating machines
Generic tot

ANALOG COMPUTERS
ANALOG-DIGITAL COMPUTERS
DOMRING COMPUTERS
DIGITAL COMPUTERS
DIGITAL DIFFERENTIAL A14ALTZIERS
FIRE CONTROL COMPUTERS
GUIDED MISSILE COMPUTERS
IMPACT COMPUTERS
NAVIGATION COMPUTERS
PARALLAX COMPUTERS
RAUAR RANGE COMPUTERS
SPF. CIAI. PURPOSE COMPUTERS
TORPEDO DATA COMPUTERS

Also feel
DATA PROCESSING SYSTEMS
ELECTRONIC ACCOUNTING MACHINES
PROGRANMING(COMPUTEKS)
SIMULATION

Computing gun sights use GUN
SIGHTS

CONCRETE
(Strretvr. l Emglneerlnq)
Grner{e %DI

REINFORCED CONCRETE
Also feel

CEMENTS

Concrete Sufficing wee PAVENENTS

CONDENSATION
(Physical & Physicochemical

concepts)
(Change of state from pal or
Vapor to liquid or solid; also
meteorological phenomenon` ex-
cludes chemical reaction.)

Also sees
ATMOSPHERIC PRECIPITATION
CLOUDS

CONDENSATION REACTIONS
(CAewlcet Reootloes)
IecIrdolI

Refor. et. ky reactions
Specific tot

CHERICAL REACTIONS
Generic tot

FRIEDEL-CRAFTS REACTIONS
GRIGNARD REACTIONS

Alan sees
DIENE SYNTHESIS
GRIGNARD REACTIONS

CONDENSATION TRAILS
(Meteorology & Climatology)
Includes$

Cantrell*
Exhaust trails
vapor trout

Also goer
MAKE

Condeotere(Eleetrloel) use
CAPACITORS

CONDENSERS(LIQUEFIERS)
(Instrumentation)
Generic toi

REFRIGERANT CONDENSERS
STEAM CONDENSERS

CONDIMENTS
(Food)
laeludes:

Pepper
Sessonings
Spices

Specific tot
FOOD

CONDITIONED REFLEX
(PeycIolo01 & Psychometrics)
Ieke ludett

Conditioned response
Specific tot

BEHAVIOR
REFLEXES

Also teer
ADJUSTMENT(PSYCHOLOGY)
LEARNING
ROTOR REACTIONS

Ceeduetlrfty(Elaeirlee)} use
ELECTRICAL CONDUCTANCE

Ceeduetlrlty(TAerwn!) use THERMAL
CONDUCTIVITY

CONDUIT PLIERS
(Industrial Equipment & Tools)
Specific tot

PLIERS
SMALL TOOLS

Also $ees
MAINTENANCA TOOLS
SPLICING TOOLS

CIufer. uee. rte STIPOSIA

Ceufidents Halts use STATISTICAL
ANALYSIS

FIG. 2.3. Sample from thesaurus.

13.

selection of keywords vocabularies. A fi t, depending on time and mood of

indexers, may be indexed quite differently. This requires a dictionary to control

free selection of keywords. Even though a single document is indexed by Hare than

one synonym ,a cross reference within the dictionary is created to cover all

identical ideas, so that there would be little problem in retrieving the intended

documents. As no rigid syntax exists in the simple form of post-co-ordinated

indexing system, there is a likelihood of losing the relevance or semantic informa-

tion25 of the keywords. This is obvious especially in cases of barographs and

the words which have varied implications in different subject concepts. hence a

large number of false co-ordination is expected in this simple system. To

solve this probleni, links, and role indicators 26 (a syntactic device) are incorporate 1

within the system. This again leads to a different kind of authority list called

'thesaurus'27(Fig. 2.3). In a well designed information retrieval system a cathi natioo

of Loth pre- and post- co-ordinations are used to improve unanbiguity and expressi-

veness of the indexing language.

Several attmPts have been made to mechanise the process of indexing. In the

simplest form of a machine generated indexing process, the technique has been used

generally on the basis of the title of bibliographic items. The ocmputer initially

ignores all syntactical words from the title. The remaining words of the title

are selected as index teens. The result of machine manipulation is an index of

keywords printed in alphabetical sequence, together with text immediately surround

each term. This is called 'keywords In Context (KWIC) 28-31I ing' (see Fig. 2.4).

The success of this method of indexing is totally dependent on the descriptive

quality of the titles. Tb improve reliability of machine indexing, a variation on

the KWIC index is attempted. in this type of indexing,, KPW (Keywords out of

Context) index 32,33 index teens Are selected from the entire content of a document

and presented along with the title of the article. The selection of keywords

from the text depends oat the statistical fr'equery of ocairence of a ward or the

teott L$.]. relative frequency 6f co-oocwxence of sage words and on 1irquistic 04

14.

Pulse, Digital and Sw: Lt Waveform

Pulse, Digital, and switching wavefonns

Pulse, Digital and switching waveforms

Pulse, Digital and switchiM waveforms

Pulse, Digital and Switching waveforms

(a) Selection of Keywords.

Pulse, Digital and switching waveforms

Pulse, Digital and switching waveforms

Pulse, Digital and switching waveforms

Pulse, Digital and switching waveforms

(b) Final index

Fig. 2.4 Key Word In Context.

Header (ID, Priority, File Access Key)

Ccmnand (Retrieve, Update, Report ...)

Output Device (Typewriter, Display, Lireprinter)

Keys Processing (A function of Kl, K2 ...)

K1 (Key Nm e/Value) Logic functions of Key

JK2 Inter-record processing

output k1T

Titles

Print fornat

15.

At present, a suitable means for scanning text directly from printed docLtents does

not exist, and hence this method of indexing is expensive. Thus mechanisation

of indexing, until now, is only of theoretical interest. And this danain of the

problem is still left to the human intellect and decision-making capabilities.

2.2 . QUERY :

The user of an information retrieval system seeks some facts regarding his query.

He caruunicates his deniand for certain types of information with the information

centre through a-query.
'-11 It has been discussed earlier that the retrieval of

documents is a process of matching a user query with a document file. And the

formation of the document file is carried out by indexing. Hence to match the

vocabularies and the syntax of the user's query with the keywords of the document

file, every effort should be made so that the terms used in the query have a one-

to-one correspondence with the indexed record. A user generally does not have

any prior knowledge of the vocabularies and the syntax of the indexing language.

To expose him to the environment of the systan, there is a need'for a dictionary2'.

Consultations with such a dictionary allows a user not only to correct errors within

the query, but also to inform him whether or not the terms used in the query are

included in the indexed records. When a user discovers that a keyword used in

the query is not present in the documnt file, he could use other synonyms.

moreover, he could extend the coverage of the query by selecting a set of

synonyms and the relevant terms. These relevant terms could have teen selected on

a statistical analysis of the co-occwxence of a set of keywords.

The other aspect of the dictionary. hier rchiccll. relationships of index terms,

allows browsing for a vaguely defined query. This also enables users to modify

their query for searching ad ent file with a desired precision ranging from an

exhaustive to specific retrieval of doc ts.

, In addition to fornwlatinq -a searching strategy, a query may a, 190 L Orpo 'ate OPW

16.

control instructions 11. These c, ould include: user's name and priority,

allocations of output device, c zw nds (retrieve, update/delete) and instructions

for report generations. An example of such a query is shown in Fig. 2.5. The

generation of the report may involve sane inter-record processing within the

retrieved records. On the basis of the result of these operations a part of the

retrieved documents are selected for output. These selected docurr : nts are then

sequenced in a desired order and presented to the output device according to a

specified output format. It is expected that on-line updating and report-gen-

eration would receive more attention in future from both system designers and

users.

2.3 SEARCHING

2.3.1 Searching on primary keys:

The retrieval of information from a data-base is a process of locating 11-17

documents which are relevant to the query. In the simplest Toxin, it could be

considered that all documents are identified by a unique indicator, called a 'Key',

and no keys within the document file are duplicated. It is' also assumed that the

user's query is represented by a single key. In this case, the searching would

involve matching the keys in the query and the document file. This

process would begin at the beginning of the document file and continue until either

the key under search has been detected or the entire data file has been scanned.

In the first case, the result of the search is a success and in the other case, it

is a failure. The flow-chart for such a searching strategy is shown in Fig. 2.6 and

it is referred to as a sequential search on unordered fill? -14,34-36

Equations 12,13 2.1 and 2.2 give
.
the average nt*nber of oaqarisans i volved in

a successful and unsuccessful Key-searches respectively,

17.

FIG. 2.7. Binary search algorithm.

=Success

Failure

FI G. 2 6. Sequentid search on unordered file

18.

for success;

CS=N+1
2 2.1

for failure;

Cf =N.......... 2.2

where N= total number of keys in the data file.

2.3.1.1 Sequential search on Ordered File :

2-14,34,35
it is well understood that the problem of key searching becomes simpler

when the document file is orderec4 in a pre defined sequence - The simplest form of

ordering could be achieved by forting all Keys of the document file in ascending

order of their numerical values.

The matching of Keys starts at the beginning of the document file, but it tezminates

either when a Key has been four or when a currently carpared Key is numerically

greater than the search Key..

Following equations12,13 2.3,2.4 and 2.5 give the number of caparisons involved

during searching a Key on an ordered file.

For a successful search, the nw er of cc erisons perfonred depends on the position

of the key in the docurrent file. Therefore if Ki is to be located in an ordered

file, tai

C04 1 2.3

19.

number of oatgparisons is to be pefo=ed before locating the Key 'Ki' . Here

it is assen ed that none of these keys are duplicated in the data file.

On the average the number of comparisons performed per successful Key is:

Cs = N+1
2 2.4

Similarly the average number of the Keys to be ocxnpared during an unsuccessful

search is-.

Cf 2+1
.......... 2.5

where N= Total number of Keys in b ie data file.

One of the advantages of this nethod is quick termination of scanning for the

Keys which are not included in the document file. The other significant improvenynt

is achieved when more than one key are simultaneously searched. For example,

it is assumed that the total number of Keys in the data file are N; and the number

of Keys to be searched are in. Then in the case of sequential search on unordered

file the total number of ac qaarisons13 p' would be

P= MN 2.6

But when both the index and profile (query) are ordered in the same way the number

of conipariso*i13 l p, reduces to

P=N 2.7

An 'm' times itprovGT nt in searching speed is hence obtained.

There are some other alternative ways of =lering4,12,36 an index file, These are

based an special properties cif the irifannaticm need of the users, and are called

'self organizing' files. In sane cases fiere the frequency of access of all Keys

are kr in, the file could be organised in ach a way that the keys we h are more

likely to be referred to are placed near the beginning of the film. I the other

to be referred tOs- the We is
case, where t infoaýnation is e lily

20.

arranged in such a way that all new entries are inserted at the beginning of the

index file.

2.3.2. Searching By Cczi arison of Keys:

It has been seen in the case of sequential search on ordered file that, although

there is an improvenent in aborting a search for a non-existing Key, it does

not benefit a Key which is present in the document file. however, this problem

of sequential searching an ordered file could be rectified by cciiparing Keys

instead of matching. In this approach a Key from the documient file is cctnpared

with the search Key. If as a result of this ccurparison, it is mound that the

key on the document file is numerically greater than the search Key, all Keys beyond

that key on the document files are eliminated. The comparison is then continued

with the rest of the Keys. kepeating this process of elimination, either the

search Key would be located in the document file or it would be terminated when

further elimination is not possible.

2.3.2.1 BINARY SEN H

The binary search
12-14,37 is the simplest form of i lementation of the above

mentioned searching strategy. In this method, the ccxrparison of the keys starts at

the middle of the docent file. If this matches the search Key, the desired -record

is found. Otherwise, depending on the result of the ocaparison, one half of the

Keys in the document file are eliminated, and the next oanparison is made with

the Rey, which is situated at the middle of the remaining half of the document

file. This process is repeated ujitil the desired key is found.

The average number of vararisons 'Caiis given by the equation12,13 2.8

Ca a rlog2 N1 ""pIOýý"ý" 2.8

21.

FIG, 2, S. Binary decision tree,

FIG. 2.9. Mu ltiway t rle.

I

22.

The maximum ntunber of cc uparisons12,13 '(fin'. required to establish the non-

occurrence of a search key is

On = flogt N+I.......... 2.8(a)

Where N= total nuLADer of Keys in the data file.

Ex is the next higher integer when the value of x is a fraction.

The simplified flow-chart for the binary search method is shown in Fig. 2.7. It

does not explain how the probing is terminated during an unsuccessful search

operation. The structure of data organisation in a Linary search file is shown

in Fig 2.8. It looks like a binary decision tree. Each of the nodes and leaves

are represented in this figure by circles and squares respectively.

2.3.2.2 Naltiway Tree Search:

The binary search method is very useful Wb all index Keys are stored in a fast

randan access storage. But as the number of index Keys increases, it beocmes

impractical to store all of these Keys sinuxltaneously in the core marory. In

this situation index keys are stored in sane direct access devices such as a

disc cra drtun. Now if binary search technique is applied, it would require a

large number of probes - depending arg the nuaber of levels of the tree - into

the direct access devices. Dring each probe, it would have to it for

a long access time ä the device. This access time problem could. be solved by

reducing the number of levels in a tree, that is, by increasing the nvcnber of

branches at each node of the tree as sham in Fig. 2.9. This file structure is

called multiwartree11,12,38 structure. At each level of the tree the apprcc)riate

branching aou1d b®' selected by e1ther s uential or binary search technique "

23.

For an 'm' way tree, the maxJJn tt r über of levels of the tree 'n' is given by

n=(
log N)

0 0 ... 0
29

The number of caparisons2'
13 ' c' is given by

c=w c (' 1ogN) 2.10

Where N= total number of Keys

W= number of ccnarisons required to search each level of the

tree.

2.3.2.3 Indexed Sequential Search:

The advantages of both sequential and direct access to records in a file can be

achieved in an indexed sequential file organisation
35j36

. This file organisation

(see Fig 2.10) ccaprises of two files, index and record file, and these two

files are arranged in sequential order. Each index contains the address of a

record in the file. Thus a record can be directly accessed by locating its

index without reading the entire file. Oa the other hand it can also be accessed

by the sequential search on the record file.

This file organisation is well suited for storing in the direct access storage

device (disc) where a three-level tree 9 for index decoding can be adopted

(see Fig 2.10) . The first level of bramli determines the cyliryder ad ress of

the disc; the second level riete rtes the appropriate tracks within that cylinder;

and finally the third level contains the records.

Due to the sequential arrangan t of the files, scipe difficulties arise dur'iM

the update operation. During the insertion of a new record, i. t is rdquirad to

24.

ute

digita I empty space

1- ---------- --1

ý- ----------------a

FIG. 2.10. Indexed sequential file

Index

,s

see track n

sequential records

25.

maintain the order of the file wjich reeds to rearrange the entire file. To

restrict this rearrangement process within a locality, sufficient space is left

empty at the end of each track (bucket). However, when an overflow occurs, a

new track can be allocated. In this case, a link address is stared at the end

of the old track to point out the new track.

In general a sequential or tree-search technique requires the data base to be in

a strictly ordered sequence. A new entry cannot be made unless the correct

position for this item has been found. This can be a very,, time-consuning

operation. Thus, with aconventional oanputer, if the file is structured for

fast retrieval operation, it is likely that the updating will be more difficult.

2.3.3. Searching by Hash Tables:

The retrieval mechanism so far discussed relies on successive ccurparisons of

search-Keys with index Keys. The number of such comparisons depends on the

size of the index file. Thus it reveals that as the size of the data-base

increases, more search time would be necessary for retrieving a record fron

it. Alternatively, a different approach for the storage and retrieval of

keys should be adopted, which would make the searching time independent of the

size of the data-base. The underlying principle of this method is described

below. The problem of information storage and retrieval is to store keys within

a specified range of memory, This is then followed by subsequent retrieval of

a Key frag its storage location. In theory, it is possible to map all non-

duplicating Keys to unique locations of manbry within a specified range by a

suitable transformation rulell-12,40. Both sage and retrieval of keys would

equally benefit fron these transformations. The transformation of Ke, s to their

respective memory locations is called randomizing or hashing (Fig. 2,11) and the

carresponding transformation rule is referred to as hash-#unctlons; they generally

involve sane arithmetic processing and manipulations of Keys. These include

26.

Keys Transfont d Address

Ja s 4

SMITH 2

BLACK 1.

JOHNSON 9

Fig. 2.11 Hash Table

Keys Transformed Address

Jß1ES 4

SNITH 2

BLACK 1

BROWN 4

Jc iNSON 9

TAYLOR 4

BARONE 1

CHASE 4

(a) List of transferred addresses
with syNannms "

Address Item

1 BILAQC

2 SMITH

3

4 JAS

5

6

7

8

9 JOHNSON

Address Key Links

1 BLK -

2 SMITH -

3 - -

4 JONES -

5 - -

6 - -

7 - -

8 - -

9 JOQIlVSON -

(b) File after F4xst Stage.

27.

Address Key Links

1 BLACK
2 SKIM
3

4 JONES

5

6

7

8

9 JOHNSON

-w BARBQ

BROM

TAYI, 0 R

CHASE

(c) File after second stage separate chaining

Address Key Links

1 BLACK 6

2 SMITH -

3 BWWN 5

4 JONES 3

5 TAYLOR 7

6 BARBCNE -

7 CHASE -
8
L

9 JAI -

(d) coa]. esoed chaining.

' chainir " Fig. 2.12 Collisign resoluticnJU

28.

a) Squaring Keys and selecting the middle portion of data

b) Modulo - division

c) Selecting nearest prime-numbers and many others.

The requirements of an ideal hash-function are:

a) A minimum time for cariputing hash function.

b) Should produce the unique address for all Keys.

None of the known hash-function could guarantee the uniqueness of transformation

for a given set of Keys. Moreover, there is no formal method for selecting a

suitable hash-function. Consequently there is a possibility of more than one

Key transferred into one address. This is often called a synonym or collision.
12 13 40

There are many methods '' of resolving synonyms; these are:

1) Chaining method

2) Open addressing method

3) Bucketing method

The first two methods of collision resolution are suitable for internal searching

Where all keys are stored in the core memory, and the last method is suitable

for external searching using direct access storage.

1) Chaining method:

The simile method of collision resolution is that of chaining, where a link

field is maintained with each address locations as shown in'Fig 2,12. The

transformation of Keys are carried out in two stages. During the first stage

of operations all non-synonym keys are entered and then the synonyms are

entered in the available eapty places. Whenever a synonym is entered the

link field of the preceding entries are loaded with an appro riatO addres$

to point to their successors.

29.

At the search time, a key is first transfoxmed to its hash-address.

It is then campare3 with the content of that location. if a match is

found, the search terminates successfully. Otherwise successive links

are traced and the contents of each traced locations are compared until

a match is hit or the termination of the link is encountered.

2) Open Method:

In this method of collision resolution, a key is first transformed to its

normal hash-address. If this location is occupied, a probe to the next

location is made until an empty position is found. The new entry is

entered in this first enpty location. The sequences of these next addresses

could be derived in different ways. In the simple version, the next address

could be obtained by incrementing the hash-address linearly to form a cyclic

probe sequence (Fig 2.13). In the other method, a second hash-function could

be applied to resolve synonyms; this is known as open address with double

hashing.

At the time of file searching the probing is continued, following an identical

address generation rule, to canpare keys. This would result either in a

success or would end with an empty place, establishing a failure.

3) The Bucketing Method:

Wien a searching is carried out on Keys, stored in direct access devices, a

penalty in tune is associated at each re-access. To avoid such situations

a number of empty places are allocated to each address of the direct access

device to accamtiodate synonyms (Fig. 2.14). The selection of the size of

bucket depends on two criteria.

1) Conservation of storage media

2) Reduction of successive accesses

30.

Address xws

1 BLOC

2 MME

3 EAPI)OH E

4 JONES

5 BI 1N

6 TAYLOR

7 GASE

8 -

9 JOHIQSM

Fig. 2.13 Collision resolution Ly Linear open addressings.

Address 1 Keys

1

2

3

4 JCtýES BROM TAYLOR CHASE

5

6

7

ý J1

Fig. 2.14 Bucket Method

31.

In general a canprcmise figure for the size of bucket is accepted. In cases

of bucket-overflow a secondary or a tertiary bucket is used by establishing

proper link.

The performance of a hash-coded systan depends on:

1) Bucket Size

The size of the bucket '#' is defined as the r über of entries

(Synonyms) allowed to be transformed to an address.

2) Ind factor of the hash-table:

it is the defined as the ratio 'pc' of the number of records entered

'N' to the total number of possible entries 'M' in a hash-table, that

is

O(= N/M

Considering a chain-organised hash-table of bucket size of 1, the

average number of probes13 'Ca' is given by

Ca =1+ K_
..... 2.11

2

when the table is full, that is =1 the equation 2.11 reduces to

Ca = 1. *5 2.12

In the worst case, that is when the table is full, it is found that on the

average only 1.5 probes are required to locate any Key. The ccxtparisons of

collision resolution methods12 fQr both successful and unsuccessful keys

are shown in Fig. 2.15

32
,

cu
0
ß_ CL

0
I- a,
E2
Z c

Q
o,
Q

1

(a) Successful search

C

S

L =Linear probing
C =Coalesced chaining

S =Separate chaining

ch a,
ö3

a

d

c

rn
0

1

C

S

FIG. 2.15. Comparison of collision
resolution methods.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Lid factor.

0.1 0.2 0.3.0,4 0.5 0.6 0.7 0.8 0.9 1.0
Load factor oC

(bj Unsuccessful search

33,

It is also seen that the hash table requires less space to store all Keys

of the document file. Thus, from these points of view, hash-coding is the

most econanic method for searching, as well as being the fastest.

On the other hand there are sane problems associated with hashing. These

are discussed in the following paragraphs.

1) In the case of retrieval of Keys fran the hash-table, the search algeritr'n

for an unsuccessful Keyword search terminates when it encounters the first

empty place. Hence special care must be taken during deleting an entry

fran a hash-table. If an empty state is entered in place of a deleted

item, the Keys beyond that deleted entry get lost. This problem could be

solved by marking the deleted its by a different symbol. This leads to

difficulties in maintaining a file where the rate of deletion is high.

2) The searching operation in a hash-table is fast provided it. is carried on a

precisely defined key. On the other hand, it beanies impossible to retrieve

documents by searching Keys, which lie between sane limits.

3) It has been stated earlier that the performance of a hash-coded index degrades

with increased number of synonyms and load-factor. Hence to maintain the

grade of service, these two factors should be monitored. One method of

solution would be to allocate a large memory area to hold the hash-table.

This leads to an inefficient utilization of storage media. The other method

involves rehashing the entire index whenever the performance falls below same

acceptable value.

4) Although the average search time for a hash-table is minimum, in a particular

case the nunbex of probes required to locate a Key is unpredictabl% ard it

could be large in same cases. In real time application, v it iA

34.

essential to canplete a search within a guaranteed time, the perfonromce

of the hash-coding scheme becanes adversely affected.

2.3.3.1.

A content addressable memory using conventional memory elements has been

proposed by Bowden41. This is basically a hardware solution to the problem

of mapping an 'n' bit code onto 2n locations of a memory space. Where the

search keys are divided into smaller sections. Each of these sections is assoc-

iated with a three-field column. These three fields of a column are inverse

field, linkage field and data field (see Fig. 2.16). A section of a search

Key (K) directly points to the Kth location of the inverse field. The inverse

field points to the most recently entered data in the linkage field. The problem

of multiple occurrences of a Key is handled by the linkage field. The linkage

field has a one to one correspondence with the data field and contains the

addresses of previous occurrences of the Key. The data field contains data which

is arranged in any convenient format. In general a search Key consists of a

number of sections. In such a case, all linkage addresses are first obtained

from the inverse field of the individual sections. The least linkage value is

then evaluated by an external logic unit. The location, as indicated by the

'least value logic', is accessed and canpared with the search-key. If the match

fails, the next address is evaluated by traversing the links and the process is

continued. The main advantages of this method are that any part of the search

Rey can be masked and the same manory space can be used as both associative and

conventional me=y. The disadvantages of the method are that the search p=ocess

is sequential and may require a number of probes which are very much dependent

on the data base. Herne the primitive feature of parallelism of associative

msnary is lost.

35.

DAT A

.. _'º K

---1- K

K -- 0 1-

0

Three-field column.

INVERSE

LINKAGE

DATA

LEAST
VALUE
LOGIC

PAGE ADDRESS D

44
f KEY I

Serial unit.

FIG. 2.16. Associative memory using
conventional memory elements,

k

INVERSE FIELD LINKAGE

36.

2.4 Searching an Secondarx Keys

In the foregoing discussion a slaplified docunent file was considered. Where

it was assumed that all records are identified by a single Keyword and no

Keywords, within the file, are duplicated. But in practice, as it has been

shown in section 2.1, a number of Keywords could be assigned to a record. More-

over, many records could also be indexed by a Keyword. It is desirable that

a document should be equally accessible by any of the Keys assigned to it. And

it is also desirable that the searching should retrieve all documents which

are indexed by the same Keyword.

One method of solving these problems would be to copy each record as many times

as the number of Keywords assigned to it, and to order them under each of these

Keywords. This not only increases the size of the index, but also imposes problems

when a criterion for selecting a set of documents is the inclusion of a boolean

equation of Keywords. An alternative solution to these problems is to generate

another file called 'directory file'l-11,42-45 (see Fig. 2.17) in addition to the

usual document file. The information structure of the directory file is the inverse

of the original document file. That is, instead of listing a set of Keywords

contained in a record, the directory file (inverted file) contains Keywords, which

maintain a list to point all records associated with these Keywords.

The retrieval of information, from such a system, is acccmplisled in two stages,

In the first stage all Keywords, present in a aaery, are retrieved. This is

known as 'directory decoding'. The result of directory decoding wild provide

a list of the relevant docunents. The second stage of operations would be,

carried out to retrieve documents from the doc nervt file.

Fran the point of view of stcrage utilization it would appeaz that the directory

file is redundant, because it merely-. du alicaes the document file. But on the

other hand, the presence of the directory file improves the overall perfcmwwe.

37.

FIG_ 2.17. Inverted file.

W x y z
A6 A19 A3 A19 A9 A15 A27
A7 A 23 A7 A 20 A 14 A17 A37 ---
A9 A 35 A14 A 16 A22
A12 A15 A21 A25

"A3

. A6
lb A7

"A9

4 A12

Aý
Aw

ý" A15
". A17 e A19

" A22
A2j,

A270
" A25

A35
"

A37
"

FIG. 2.18. Inverted list.

38.

of the system. As the size of the inverted file is generally smaller than the

document file, more efficient searchir technique could be adopted for directory

decoding. This would equally benefit the non-existing Keywords, where absence

of those keywords would be quickly reported. The other advantage of the inverted

file is that boolean operations on Keyword could be more easily performed.

The decoding operation of a directory, stored in a Direct Access Storage

Device11, comprises two processes. These are:

1) Transfer of data fron DASD to the core memory

2) Processing of data in the core maanory.

The total time required for data transfer operation11 from DASD to the core memory

comprises

a) Time for head positioning (for movable head devices)

b) Latency delay

c) Data read time

d) Revolutions lost during the processing of data in

the care manary.

The processing of data in the core memory for determining appropriate branching

can be carried out according to any of Keyword searching techniques described

in section 2.3. This in-core data processing time is very small compared to the

time required for transferring data fran DASD to the care n nosy. Hence the

total average directory decoding time cap be derived, ignoring this data

processing time. In general the decoding time Tn for an n-level tree is given

by equation
11 2.13 to 2.16.

1) First level in core, successive levels in saar cyJlnder of a

mvyahle heal disc

n>
3...... 2,13 PT (i{" 2.5) it to

39.

2) First level in core, fixed heard disc.

Tn = (2n - 2.5) R, for n>1 2.14

3) First level in movable head disc, successive levels in same cylinder

7. h=P+ (2n-0.5)R, for n>0 2.15

4) First level in movable head disc and successive levels not in same

cylinder.

Tn =n (P + 1.5R) for n> 0 2.16

Where P= time required for positioning the head of a movable head disc

R= Rotational time of the DASD

L= R/2 = average latency delay.

The total average decoding time for a hash coded directory stored in DASD is

Th =P+1.5 R 2.17

The actual retrieval of the document, of course, depends on the structure of

the records of the inverted file.

A record of the inverted file consists essentially of two major parameters;

these are:

1) a number of documents associated with the Keyword

2) pointers to the relevant documents

There are four major data-structures 11,35,36 used in a record of an inverted file;

these are:

1) inverted list

2) chained list

3) controlled chained list

4) Cellular list

40.

some explanations of these data ptructures along with corresponding docunent

retrieval techniques are discussed briefly in the following sub-sections.

2.4.1 Inverted list:

In this type of data structure (shown in Fig. 2.18), a canplete list of the

document pointers is included ip the record of the directory file. These

pointers could be directly used to retrieve documents from the document file.

As a record on the document file could be pointed fron many Keywords, this

data-structure could use larger storage. On the other hand logical operations

could be more easily performed on the list of document pointers. Hence the pre-

search statistics, which indicate an upper bound on the ultimate retrieval is

much better for an inverted list.

The total time to retrieve the desired documents fron the storage is a function

of the data-structure employed in the inverted file. Ca manly, the total

retrieval time camprises

1) directory decoding time

2) List or cell intersection time

3) List or cell search and record transfer time

Each of these processes is again a function of parameters related to the character-

istics of file, query and stage devices. Hence a set of these parameters are

defined in table 2.1

For an inverted list file-structure the time required for above mentioned processes

are given by equation" 2.18 to 2.21.

1) Directory decoding time = Nt Tip 2.18

41.

T BLE 2.1

File related parameters

Symbol Definition

V number of Distinct Keys in vocabularies

Np number of Records in system

Nk Number of Keys/record (Average)

L Average list length NrNk
V

Cf Character/file (logical) Record (Average)

Rc record/cell (Average)

Ck Cells/Key (Average)

Query related parameters

Symbol Definition

Nt number of terms in a single query

Np number of. nonnegated terms in a single query
LS shortest list length in query (Average)
P Ratio of query response to Ls (Average)
OC Ratio. of query cell responses to Ck (Average)

Device related parameters

Symbol Definition

A runter of file record addresses per DASD physical record

m Randan access time of DASD (Average),

Rt Transfer rate of DASD (B/s)

R Rotation time of DASD (Sec)

42.

2) List intersection time rA Nt (tr + 1.5R) 2.19

here rÄ is next higher iiteer fog' a fraction

3) List search and record transfer time

=P Ls (T +1.5R) 2.20

4) 'ibtal retrieval time = NtTn + (1- L Nt +p Ls) (Trt 1.5R) 2.21
A

2.4.2 Chained List:

A chained list data-structure is shown in Fig. 2.19. This data-structure,

instead of listing pointers for individual documents, points to the head of the

document list. The subsequent meibers of the same list are chained by providing

a link address inside the doc annent file. Any record in the document file could

be simultaneously a mariber of more than one list. Thus a threaded nultilist
3

is formed. The main advantages of nultilist data-structure are;

1) requirement of storage space of the directory file is less because

each index contains only the address of the head of list.

2) progr iunir-q is simpler and updating is flexible because it uses

the list data-structure.

The disadvantage of the multi-list data-structure is that as any prior infoxýmatic t

about the meabership of a list i, not known. the boolean operations could not

be perfouned before retrieving all relevant documents fron the data-base. Sane

improvement could be made in the case of logical 'Arid' q ations of Keywords.

Here, a list with the least ship. JAS selected and is traced. During this

#qd ; poord is 9at,, ýd .t list sacinq opearat, c tie ýS Qn .ý AW4

is also whether or not the record ürýder eacaaninýt ion a manbe c'

43.

FIG. 2.19. Multilist.

W x y z
A6/4 A3/4 A9/4 A17/4
A19/3 A19/2 A25/2

3

A6
A9

- ^ý --I- . _-I ---

A17

-- --
124-

9-

A25

FIG. 2.20. Control led multi -list

Key/ Head of list/ List Iength

44.

lot of time is wasted during thi4 link-tracing operation, thus it degrades the

retrieval time of the system.

For a nultilist data structure, the corresponding equations for the retrieval

time of the desired doc. nents are given below.

1) Directory decoding time =N rn 2.22

2) List intersection - is not possible in a multilist data structure.

3) List search and record transfer time = Ls (Tr + 1.5R) 2.23

4) Total retrieval time = NrfPn+Ls (Tr + 1.5R) 2.24

2.4.3 Controlled nultilist:

To carbine the benefits of both inverted and chained lists, a new generalised

data-structure, as shown in Fig. 2.20 is suggested. As in the case of chained

lists, it starts with a pointer showing the head of a linked list. But in

this case the total number of msinberships of the chained list is controlled to

a specific number. Whenever the membership of a chained list exceeds this

number a new head of list is inserted in the record of the directory file. This

is a generalised data-structure, because When the control number is set to

infinity it produces a chained list. And when the chain length is restricted

to one, it produces an inverted list. Here the retrieval of documents are

done by the combination of techniques utilised by multilist and inverted list

data-struCtUres.

45.

2.4.4. Cellular partition:

It has been seen fron the above discussions, that no effort has been made to

order the data-structure of the records of the directory file so that optimal

retrieval speed could be achieved. In general a large docunent file is

stored on direct access devices such as discs. The main factor for the data-

transfer fron such a device is access time. Moreover, during each transfer

operation a block of data is loaded to the core memory. To reflect these

properties of storage device a cellular partition data-structure, as shown in

Fig 2.21, is suggested.

This data structure, instead of specifically pointing location of doc, . nts,

contains the addresses of the blocks of the storage device where the relevant

documents are present, thus pointing to a oe11 of data.

The logical operation could be carried out as easily as an inverted list data-

structure to access only relevant blocks of the storage device. Then the

final selection of docunents could be carried out, in high speed core, by

ccoparing each record. Although the final selection is done by sequential

searching, it saves many unnecessary accesses as in the case of multi list. And it

also saves storage space in the directory file as this would otherwise have been

required by the inverted list data-structure.

For a cellular serial file structure the

equation
11

retrieval time is given by the . follvwigg

1) Directory decoding tim = NF7ih 0.00.2.25

2) Cell intersection time = f-Ck Np (Tr + 1.5R)
A

where FCk is -next higher in case of a fraction
Ä

0 2.26

46.

FI G. 2.21. Cellular serial file.

47.

3) Cell searching and record retrieval ttie

X Ck (T + RcCf) 2.27
Rt

4) Total retrieval time

=NpTn+c Ck Np (T r+1.5R)
A

+ CC Ck (T
f+ RcCf) 2.28

Rt

2.5 File Update and Maintenance:

Apart fron the retrieval operation, an information retrieval system must be

capable of nerfozming file update and maintenance operations. The file-update

operations can be classified into five categories; these are:

1) whole record addition

2) Whole record deletion

3) Addition of Key

4) Deletion of Key

5) Addition/Deletion/tnodification of non-key data

The structure of the file has an immense effect on the flexibility and ease of

these update operations. This is demonstrated in table 2.2,2.3 and 2.4. Heroe

a system designer should take proper care to select a file structure.

Another important function of retrieval systems is maintenance a$ the file.: That

is, collection and re-usage of empty spaces of file. This operation isr- 'led

garbage collection. The system designer rust also consider a suitable rariaage

collection schege, especially when the c a1 a-bane is dynamic.

PAGE
NUMBERS
CUT OFF
IN THE

ORIGINAL

m

N r8
N 43

ýx
E ý H H

N

ý bU
H

ýý-
ý

N
A

4-4

+J w

8
En rs

4J

r-i

41 Ä

- tic ä
>1 Ui

+J +
0+

m

U)
a)

4J U)
., -l

44

4J

44

M ü

A
dl

a
c nes

rj3

N

Ö

44

9

L
r

S.
Ei
H

r

v
b

Ö

x

k
4)
O
r.

vÖý

ri

N

b

u

.ý

N

Ö

ro

4-I

., 1

4A

ýi

4

If
H

2.5

49.

50.

v

-1 Ga
I-I rt
ij

N

r-I H
4)

U

+-0
oxýý

4 -1 d

üýO

ý
x i v+
Ö

". -1

ý

r-1

M

ý

d "rýi Uýr

Z 4
M

2

t. ý

Ad)

ON

u
a)

ro

41

d1

51.

N

(1)
v

w
ýI

H

H +
H

+
H

+
H

+
H

+
H

f

+

+

f +

H

+

C-4

+

º H EM-i E+

f N N N

N r

.ý H E f + + +

. le ä
L".

.8
t8

52.

2.6 Summary:

The average searching time of a primary Key for various methods has been

given by the following equations;

1) for sequential search on unordered file

Cs =Nt1..... 2.1
2

2) for sequential search on ordered file

Cs =N+1..... 2.4
2

3) for binary search

Ca=r logt N-1..... 2.8

4) for a 'm' way tree

C=W(F 1ogm N)
..... 2.10

where N= total no. of records

W= No. of comparisons required to search each level of the tree

5) for a hash-table

Ca= 1 +D<
2

where 0(= N= Load fraction
M

From these equations it can be seen that, in the case of hash-coding method

the average number of canparison is mininium. But the number of probes required

to establish non-occurence of a Key is unpredictable and it may be quite large.

Although the average searching time for a sequential searching method is

highest, it offers flexibility of easy updating. In the binary search method

both average and maximum searching time of a Key are predictable. But this

requires all Keys to be simultaneously resident in the core netory" As the

53.

number of Keys grows, it becrnneý imp ; ac4cable to satisfy this criterion of

the binary search method, and Keys are generally stored in a DASD (Direct

Access Storage Device). Here, the total number of access-requests to the

DASD is more important than the number of Keys ccmpared. The main objective,

in such a situation, is to reduce the nunber of levels of decoding tree by

increasing the number of branches at each level. For an 'n' level tree, the

decoding time Tn is given by the equations

1) The first level of tree in the core n Cory, successive levels

in the same cylinder of a movable head disc.

Tn =P+ (2n - 2.5)R , for n>..... 2.13

2) The first level in core, fixed head disc

Tn = (2n - 2.5)R, for n71..... 2.14

3) The first level in movable head disc, successive levels

in the sane cylinder.

Tn=P+ (2n - 0.5)R fern>O. 2.15

4) The first level in movable head disc and successive levels

not in the same cylinder

Tn =n (P+1.5R) four' n>0 2.16

5) For hash-coded directory

tea{
=P+1.5R00f .02.17

where P= time required for had positioning

Ra RotatJOnä time of the t SD

.L= R/2 .- Average lot Wy .
delay

It has been can in equatima . 2.13 - 2.17 that fi total deOdirq tom-

° 'ect y is ca fwcti o the eqý* öf t3 QA$D , the

54.

of the data-processing time with4n t, core m ry is insignificant.

It has been also found in section 2.4 that the flexibility of a retrieval

system is enhanced by the use of an inverted file. In such a system, due to the

presence of a two-level hierarchy, the total retrieval and update time becines

a function of the data-structure employed within the inverted file. The total

retrieval time for various data-structures is given by the following

equations:

1) For an inverted list

Total retrieval time = NtTn + (r L Nt +e Ls) (Pr + 1.5R) 2.21
A

2) For a multilist

Total retrieval time = NJTn + Ls (Tr + 1.5R) 2.24

3) For a cellular serial file-structure

Total retrieval time = Nprlh Ck Np (Tr + 1.5R)
A

+ack Tr + RcCf
.....

2.28

Rt

where Ix indicates next higher integer in case of a fraction

and for legend see table 2.1

The total update time for various data-structures is shown in Table 2.5.

Tb summarise theniesi es of the Various file-structures the table 2.6 is

11
given Here the lower value of an entry indicates an optimal perfo nýoe"

Although the perfornnariae figures shown in this table are not Itrealt*O, these =9

indicative of making general assessment of the various file-structures. Fran

table 2.6 a nunber of plots (Fig, 2,22 - 2.25) can be drawn to show the relative

1T its of the irxdividual ¬t1o-struatigea, Her® an entry t arjqth

55.

TABLE 2.6

S'umtary of Performances of File-structures

Inverted cellular
List multilist serial

Total
retrieval
tame

1 4 1

No. of file

accessions
2 4 1

per query

Presearch
retrieval 1 3 4
statistics

Programming 3 1 1
canplexity

Update 3 1 1 time

Mencry 3/1* 3 1
rý

* With Keys in the inverted list file record/ without keys the inverted list
file records.

N. B. Wow value of the entries indicates more optimal property value.

56.

4

a3
E

Z
a
0
-ý
CL

0

a3

2
E
E!
91
it

0 123
Total retrieval time

FIG. 2.24.

4 OC
In, I

3 "I

2

1

0

I

E
a3

F2

E1

0

.4
in
L3 u

a
'2

'M at

40

af
M

C iccQl a.

1234
Toril retrieval time

FIG. 2.26.

M

ein

LEGEND

" UPDATE TIME

MEMORY RED
" PROG; COMPL.

PRE-SEARCH STAT
I INVERTED LIST
M MULTI LIST
C CELLULAR SERIAL

1234

Total retrieval time

FIG. 2.23.

1234

Total retrieval time

FIG. 2.22.

1236
Total retrieval t ime

FIG. 2.25.

57.

optimal performance. The Fig, 2.? 6 scS that, except for the presearch

statistics (see section 2.4.1.), the overall performance of the cellular

serial file structure is optimal.

2.7 DISCUSSIONS:

It has been seen that to improve speed of response, precision and flexibility

of retrieval system the data should be highly structured. It not only

increases the cxmplexity of data-base during its creation, but also makes the

update and maintenance of data-base more difficult. The complexity of data

structure is also reflected in the retrieval algorithm. Hence to cope with

these requirements of performances, use of the data-processing Unit of a

better and higher performance figure becomes essential. The other overhead

of canplex data-structure is requirement of larger storage media, basically to

store unne0essary links, pointers or tables. The overall effects of these are

increased investment and running cost. Thus the service of an information

retrieval system becomes expensive and generally rises beyond the capabilities

of many potential users such as research students and design engineers.

on the other hand it is interesting to observe that a human, wishing to select

documents with the help of a short list of related Keys, would recognise and

retrieve the appropriate information, regardless of their positions. This

farm of pattern-matching is the basis of the associative retrieval system. This

is perhaps the right way of handling the problems of retrieval operation which

is essentially nothing but the problem of association of Keys and doca: nents.

In the following chapter score aspects of using associative parallel proceseer

far info oration retrieval systems are reviewed. This also discusses the

58.

architecture and organization of cyst f based on content-addressable

menaries.

CHAP'T'ER 3.

Associative solution of the information retrieval problem

and an overview of associative parallel processor.

3.

In chapter 2, it has been seen that, the retrieval of information primarily

involves association of the Keys in the user's profile with those in the

document file. This basic property of association of Keys is not inherent

in a conventional computer
46. Instead, a lot of software effort and housekeeping

functions are incorporated to establish an artificial associative property

within a conventional conputing system. This obviously leads to increased

complexity and cost of the system. on the other hand, a system based on content-
47-55

addressable memory has an implied property of association. This eliminates

the need for any extra effort to create an artificial association. Nbreover, the

natural parallelism of the content-addressable marry yields a faster search

and retrieval operation.

3.1 Associative solution of the information retrieval systems:

The simplest approach of solving the problem of Keyword searching is to store

the entire docunent file in an associative utiozy array and presenting the Keys

of the profile to the 'search data' part of the data input register of the

msmry array (see Fig. 3.1). Then a parallel search is carried out over the

entire contents of the document file. An a result of this pgrAl

operation a number of documents Which satisfy the search-Key, aXV 0: e . 'te AW4 z

subsequently retrieved.

Althc h this provides a simple solution for the retrieval o ra Qn, .%

60,

memory input
query

Associative"*- -r- -- '- -------
memory i

data base control unit

i
output

FIG. 3.1. Associative retrieval system

' memory input
data-
base -}- ----------'

A. M. control

output -J

FIG. 3.2. Part of dpto-base inA. M.

switch ., switch
_.

'c
u

input

data-
base

A. M. 1 A. M. 2 LOADI LOAD 2 LOAD 1
SEAFCH1t SEARCH2

61.

difficulty arises when mare then one docuir nt matches the search-Key. Special

attention must be given, in this multiple response case, to resolve each of

these matching docunents so that they can be individually retrieved. As the size

of the data-base grows, it beanies difficult to store the entire data-base

simultaneously in an associative memory array. This is mainly because of hard-

ware problems; to-date, a cheaper solution to produce a large associative zmxxy

array is not available.

In an attempt to solve this problem, an alternative method of retrieval systeii151,1;

is suggested. In this method (see Fig. 3.2), a part of the data-base (an

integral number of records) is initially loaded in the associative nary array;

a search operation is carried out to locate the relevant records from this portion

of the data-base. This loading and search operation is continued for the rest

of the data-base, until the scanning operation is canplete. The loading of a

part of the data-base in the associative memory obviously introduces a delay in

the search operation. This is because the search operation should be in-operative

during the loading time of the associative memory, A multiple associative

memory system could be adopted to solve this problem. A system as shown in

Fig 3.3, using two separate associative memories, could be implemented so that

the searching operation is carried out in one of these associative memories while

the loading operation is continued in the other associative memory. A criterion

for the success of this method is that, the time required. by. the . algorithm for the

loading and the searching operation should be balanced. Otherwise score unnecessary

waiting time between successive operations would be encountered. The other

disadvantage of this system is the x uirement of two separate maw arrays,

thus it becxmes expensive.

In another obvious alternative system, the ' ON-'1 IE- 'LX 151
method, (See ý'ig, 3 4ý

the strategy for the searching 'atiak J*, ewsraed. In this system the 'a

profile is stored in the pa 0 14tiv0 mead and the K®ye Qt tI" 40CWIý.! t U

62.

input

data- A. M. `ý--ý
base r ----

profile control

buffer match --J

output

FIG. 3.4. ON-THE-FLY searching

FIG. 3.5. Tiro- level hierarchy of associative retrieval

63.

they appear on the read head of a rotating disc unit, are presented for

matching operation. At the end of scanning a record, its relevance to the

user's query is evaluated and the successful records are filtered out. The

scanning of the document file is continued until an end-of-file mark is detected.

In the present investigation, On-The-Fly searching technique is chosen mainly

because of its simplicity and inexpensiveness. It is realised that the serial

scanning of the document file could impose a problem for a large data-base. In

such cases a system similar to head-per-track content-addressable data-base or

content-addressable file storage system could be proposed. The block diagr&n

of such a system is shown in Fig 3.5. In this system, a two-level hierarchy of

associative addressing151 is adopted. In the first level of the hierarchy an

index file, the size of which is a small fraction of the entire data-base, is

scanned. This index file ccrnprises a short description of all records in

the data-base, and provides the information for selecting the best block(s) of

the data-base to be further scanned for retrieving the desired records. Thus

the burden of indexing is greatly reduced to that of pointing out the most

probable areas of data-base where the relevant documents are likely to occur.

In the second level of operation only those blocks of the data-base, as pointed

out by the index, are associatively scanned for final retrieval operation.

Both of these tasks can equally benefit from associative processing. Thus it

could be seen that the primary operation for all retrieval tasks is basically

the sane and On-The-Fly searching technique can be applied as a general solution.

As the content addressabi). ity and the natural parallelism of an Associative Parallel

Processor (APP) are exploited in an associative retrieval system, the search

operation would be more efficient and fast. 151,152 In such a system the

searching is not restricted to any predefined Keys, but instead the entire data-

base is scanned. Thus the system could support a more flexible keyword-searching

strategy. Finally due to the absence of any rigid file- and data- structure, it

64.

would be very easy to create, update and maintain the data base. These

indicate that an associative retrieval system would have better performance over

its conventional counter parts.

Before any further discussion on associative retrieval syst-a, sane aspects

of the associative parallel processor are reviewed in section 3,2

3.2 An Over-view of Associative Parallel Processor

The use of computers in modern society extends beyond the usual arithmetic and

logical operations of data to the area of non-nuneric applications. The

conventional computers
46

are especially designed for an efficient numerical

operation. On the other hand the non-numerical text processing applications

need efficient sub-string search and string manipulations. Thus when these

conventional systems are used in non-numerical applications, they beccztie cbvio usly

inefficient. As an alternative, associative manary, which could efficiently

support these primitive operations, could be used for non-numerical applications.

Use of content addressable memory in a computing system leads to the devel t

of the Associative Parallel processor47-67 Before proceeding further, same trenn
47

in this context are defined. The following definitions are due to Parhami..

: Associative Memory

An associative mem y is a storage device that stores data in a number of cells,

These cells can be accessed or loaded on the basis of their contents.

Associative Processoar;

An associative processor is an associative MOMMY in which zKre c 1sticai

data transformation can lay ýer% ned on the content of a tumbe ce

se1eotý& ýccoi if g to t 1r Xrit nt$,

65.

Associative Canputer;

An associative cc*r uter is a computer that uses an associative manory or

processor as an essential car anent for storage or processing respectively.

3.2.1 Associative Processor Architecture:

A generalised block diagrm of an associative processor51,52 is shaven in Fig.

3.6. Two distinct functional units, Arithmetic and m mory, of a conventional

canputer architecture and replaced here by a single associative mgnory array.

where data are processed in-situ. In addition, each word in the array is

. accessed by its contents, rather than by physical location.

The functions of the control and the input/output units are similar to that of

the conventional system. A brief description of the unfamiliar associative

memory array is included in the following paragraphs.

The organization of an associative memory unit51 is shown in Fig. 3.7. The

associative memory unit shown here is an array of identical one bit cells. Each

cell, in addition to its normal read/write operation, is capable of ca garing

its contents against an external ccupararxd. These cells are usually organised in

a group to form a word-row. Each word is generally partitioned into two.

Ore part of the word is reserved for data storage. The other, called activity

or control field, is used for staring flags. This control field is used as a

tanpcrary markers for processing, or as a pennanent marker foaming an extension

to the data in each word, in order to improve the flexibility of eoceas.

The u=askked pc stun of the C(m aI, which is stored in the data-input registc r,

under the ctrol of bit-select logic is applied to the mo=y ray as a search

Foy. The result of this parllgl soprch ativn is then sfi�a zed JANA taq

register. The match reply signs]. Is Nally gen ated to 1*oVid 4`

66.

program
store

control 1 /0

associative
memory data

instruction
---- control

FIG. 3.6. Block diagram of an A. P. P.

data input reg"

search-I write

bit control Jogi

r=- control

T
CORt

data bits
Q word
9 control
R logic
e
9

output reg II match reply.

FIG. 3.7 Associative memory unit.

67.

branching, which depends on the outcome of a search.

The word selection logic, in conjunction with the tag register and the mode

control, enables a number of words for spbsequent read/write operations. An

additional feature of inter-word ccmnunication is provided in sane systems.

This camiunication is generally limited between neighbouring words. This

facility can be utilized to provide a bit serial bi-directional shifting

capability.

Farther characteristics of a particular APP depends on the type of n ory

organization used in that system. These memory organizations fall in several

categories, which are discussed below.

3.2.1.1: Fixed Record Length:

In the fixed record length51,56 APP (See Fig 3.8) one word-row of the associative

memory is allocated to each record. In this mode of operation the cannunication

between words is not provided. The FRL organization is suitable for data which

has a fixed-length format, such that each word in the array can be processed

independently. A disadvantage of the fixed-record-length manory is that for

certain applications for which records are of dissimilar length, sane redundancy

can exist within the array.

'4ýc3 ß:: 1;. r,, . e¬... .. 'ý", .:.: -. *ýM ýXi ý-.:: --ý>u^. ýr-;: ". T. 'r1Y#eýý'. 2&ni°l4.. ". Aý*z: "''4'týiý' N. ýý , iý. i .. N. r. ý'? 's,: 4". slEýfý, °. n'r. N°

3.2.1.2. Variable record le ngth:

In the variable record length memory organization, one word-row of the

associative memory is allocated to each item of a record. In this organization

the carmunication between the neighbouring words is provided for an easier

extension of a logical record. The memory organization is suitable for non-numer

68.

Record

Record no. Key 1ý Key n

FIG. 3.8. Fixed Record Length

activityor control-bit

Field

Rec. no,
Delimiter

777

Byte

T
A Field delimiter

R
E Record delimiter

FIG. 3.9. Field-organized
VRL

tivity or control-bit

T
A
G

R
E
G

FIG, 3.10. Byte-organized
VRL

69.
ý ý_ ..

ca iputing . Variable record length fiery cg'ganisati, ons can be further

divided into two categories.

a) Field-Crientated Variable Record 'Length

In the FO-VRL memory organisation
151 (Fig. 3.9) a row of memory

word is allocated to store a field of record along with score

control bits.

b) Byte-Orientated Variable Record Length

In the BO-VRL manory organization51,52,151(See Fig. 3.10) each

ward in the associative mawry array has sufficient storage

for one character and a niter of control bits. In this

type of organization the data is stored as a one--dimensional

character-string.

3.2.1.3. Ward-Oriented

In the word oriented APP
47-49

each word in the mawry array can store more

than one character. The typical word length varies between 32 to 256 bits.

In this type of data organization, the mode of access is either bit-serial,

byte-serial or fully parallel depending on the particular hardware design.

3.2.1.9. Bit Serial

In the bit serial APP all wards in the associative Memory are accessed in

68-70
only one bit position at a time. The STARFAN system was. built u8Ig

conventional memory elQments to produce a s' rd-parallel bit-serial At?.

70.

Because sorting operations (max uni Mlniuw, between limits etc.) and

aritranet-ic both use bit-serial processing c%erations on an APP, no time

penalty is incurred for these tasks when this type of marry is used.

3.2.1.5. Word Serial

In the word serial APP, each ward is accessed by content, and operated upon

serially71 at very high speed. The relative merits of this type of organ-

ization are faster instruction decoding and use of high data-rate low-cost

circulating memories.

3.2.1.6. Associative file store

In the associative file store
153-156 the data is starred in a head-per-track

disc (See Fig. 3.11). Where individual head is provided with sufficient

logic to canpare the incaning data against the searching criterion. This

provides an effective means for high-speed searching on a large data-base.

3.2.1.7. Distributed logic m mxy:

In the distributed logic memory array, in addition to the content addtess-

ibility, sufficient logic is provided in each memory ward to enable logical

ccerat . on to be perfonued under a glcbal opntrol. The distributed logic
72-74 He proposed memory, as shown in Fig. 3.12 was first proposed by Lee

a linear array of inter-cunmtAcatirr calla for the purpose of iiýfornºation

retrieval. Each of the cells is capap1e of perfonning basic aperatiars

such as search, read and write. Ca mi c tiaý beteten 08116 is provided

71.

data
base

Search key

Comparator

Controlling
processor

Search evaluato

FIG. 3.11. Associative file-store.

Program r-- -ý

store cell 1 cell 12 -ý cell i cell n
äL

control
unit

FIG. 3.12. Distributed logic memory

72.

by the shifting left or right of an c' t', iyity bit. All controls mid data

lines are caimon to each of these cells. This helps the modular exYaandi-

bility of the menory array.

Extending Lee's idea of inter-ca =icating cell, strunan75^77 proposed a

general purpose canputer - where the prcgrM and the data share an uniform

memory array. Lipovski78-79 proposed a tree channel processor which solves

the]propagation delay problem of the DIM type array. Similar ideas are

reported also by Crane80, Kisylia81 and Savjt122.

3.2.2. Basic Operations:

The basic orations
47'48'51-55

performed in an associative processor are

1) Search

2) Read

3) Write

4) Arithmetic and Ic gical operations.

3.2.2.1. Search

The simplest search apeýratiýcros are eithm equality or inequality, In this

type of exact matching scheuer the ui narked portico of the ' search Key is

c artared with the content of the n vzy may. The result of the search

operation is usually stared in a tag register, associated with e call.

The other types Of possible -i ,
82,157

are;

1) ,. Less than

2) Greater than

3) Less than or equal to

4) Greater than or equal to

5) Between limits

6) Maxim= value

7) Minimum value

8) Next higher

9) Next lower

10) Most frequent

11) Least frequent

3.2.2.2. Read:

73,

The read operation is performed by either conventional or content, addressing.

In the latter case, if more than one word responds, the match resolves is

used to isolate the first matching word.

3.2.2.3. Write:

Two types of write operations are possible, The simple write operation is

similar to the react operation. In the multiple write operation, either the

entire mamry array or a number of selected words of the MMOry array are

written simultazleously under the control of the word-selection logic.

74.

2) Logical And/Gr, Not, Nand/Nor exclusive

- Or and shift operations.

3.2.3. The multiple response problem:

The result of a search operation is usually fed-back to the control unit

via the match reply line. Difficulties arise when a number of records

satisfy a search Key. Different types of match reply methods are suggested

to enable the control unit to take appropriate action. These include: -

1) Binary Rep1y51: - determines whether a memory array

contains a matching word.

2) Tertiary Reply85: - indicates that the memory array

contains no words, one, or more than one matching

WC rd.

3) Analogue estimate86: - provides an apprcaimate number of

matching words.

4) Exact count87: - gives the exact number of matching

words.

The problem of isolating a single matching word is solved by either hard-

ware or software method. In the hardware approach a parallel, logarithmic

or ripple match resolver is added to the memory array. Although this

provides fastest isolation of the first matching word, it is expensive

and the cost increases with the size of the merxry array.

In the simplest software approach the nanory array is sequentially scanned

in same direction until the first responder is encountered. Lewin88 developed

75.

an algorithm which requires two sense lines per bit column. This can

isolate m matching words in 2at-1 cycles.

3.2.4. Hardware. Element;

The basic characteristic of an associative memory is that it should be made

up of a device which permits Non-Destructive read out. The earlier associa-

tive memory was develcped using super conductivity
89-95. It was projected

that the cryogenic memary could be ecommically mass produced. But the

problem associated with the maintenance and high initial cost of refriger-

ation caused same apprehension.

Sane associative msnory-using magnetic elenents96
9pave been fabricated.

These include plated wire
9'100 thin fil101 and multi-aperture102 core.

the
With/advent of improved large-scale-Intexgrated circuit technology, same

content-addressable mammies using MOB device'03-113a are P=cposed. But

until to-day, an effective solution to this hardware problem has not been

obtained to produce a large scale associative memory at a reasonable cost.

Good-year Aerospace114 delivered a plated wire associative manory of 48

bit x 2K words to Rahe Air Develognent Centre in 1968. A semi-COrUctor

version of the associative-processor STARAN68-7° (256 bit x 256 words)

is now commercially available frag Good 'year.
.
It uses bit-serial node. of

i/o access*' The processing of data in this system is also done In bit Serial.

manner, $rARAN utilises a PDP-11 as its sequential oontrolla.

76.

3.2.5. Software for APP; -

Research in the area of software develcgnent for associative processors is

not significant. This is mainly flue to the lack of associative processing

hardware. The work so far done in the area can be broadly classified in

two categories.

In one of these categories, much effort has been given to program associative

processors at low level machine oriented languages, such as, assembly

languages in simple mnemonic form or at microprogram level. An exanple

of such machine oriented assembly language developed for STARAN, is APPLE

115-116 (Associative processor Programming Language). Attempts have been

made to extend sane higher level languages, embedding the APP instructions,

to support the operations of a specific APP hardware. Examples of such
117

extended languages are JOVIAL and PW1118.

In the other category, the Associative Processors are simulated either to

demonstrate the feasibility of an associative processing hardware or to

eliminate the expensive hardward altajethier. These include wFL119

(Associative manoYy Parallel Processor Language), APL120,121 (Associative

Programming Language), ASP122 (Association-storing Process), LEAP123,129

125
and TRAMP

As all of these sii ailations are itnplsnented on a caiventianal serial

c titer, the natpzal parallelism of the APP is lost -n reaver, the content, -

essabi4ty of these si]4ti s is a ieVed by hash-coding, hpme the

search caaabil ties of an associative processor is restricted to sib .

equality search. Thus it can be s that such software simulatioýua are

totally inferior to the envisioned hardware.

77.

3.2.6. Applications: -

Numerous lications137,138 ranging fron camiercial to military to

scientific are suggested for implementation using APP systems. Some of

these applications are;

3.2.6.1 File Maintenance and Data-base Management

This includes139-145 sorting, inventory control 176, table-lookup and tele-

phone-directory services.

3.2.6.2. Pattern Recognition:

This includes pattern and character recognition146 and image processing
147-150

3.2.6.3. Infonnatiarº Storage and Retrieval

This includes151-159 on-line data retrieval, cross-retrieval, catalogue

searching, technical information retrieval and current-awareness services.

3.2.6.4. Translation:

This includes language translation160, code oonversicn161, data ccrpression

and de-cagwession172 .

f

78.

3.2.6.5. Military Application;

This includes Radar-track correlation
162,1

ar-data pxocessing163, guidance
164

and control

3.2.6.6. Miscellaneous 1 1ications

Sane of these include Air Traffic Control 165,
weather forecasting166 and

control functions167-170 in ccmputer.

In addition to use of associative me wry as an associative processor,

it can also be connected with a general purpose computer. The various

possibilities of such configurations
47-49

are

1) a peripheral device

2) multi-processor

3) special I/O wkirch unit

3.3. Research at Brunel. University

Presently, research work of the APG Group at Brunel University is carried

out on two different experizi ntal
harfe

=dels5l. cne of mit

by GEC-Marconi, ccnprises a 32 bit x 128 words fixed record length

associate memory array. The other ocmprims a 12 bits x 128 Words

associative menýary array. This is structured as a Byte-oriented Variable

79.

record length organization. The B(-VRL-APP is implemented with financial

help fron S. R. C. The current research interests of the group are in the

fields of

1) APP Architecture

2) APP Hardware

3) APP Software

4) APP Applications

In the first two areas research is being carried out with two experimental

research vehicles to specify the architecture and the instruction set of

an associative parallel processor. Hardware implementation of associative

memory, using both MO$ t: echnology103-106 and nand gate structure173 has

been reported. Presently an ACI'P contract is being undertaken to implement

a Micro-APP 182 using Schottky i^i.

Research in the software for Associative parallel processor is continuing

to develop higher-level machine-independent languages. These include set
12

theoretic and Interm&iate Associative parallel processing languages. 7,129

Besides the application of APP. in the information storage and retrieval system,

the work is being carried out in the following areas.

1) Text compression and d essiori172 unit,

using both FRL and IRL maipry organisation

2) Stock ccntroh76

3) Local text editing01 terminal.

80.

3.4 Discussion

In the foregoing discussions it has been seen that the primitive operations,

such as, danain addressing, intersection and concatenation of sets are

the basic requirements, fcr an information retrieval system. It has also

been seen that these primitive operations are intrinsic to an associative

parallel processor. This reveals that the implementation of an information

retrieval system could be very well supported by an associative processor.

The other problem of the retrieval system is the unpredictability of length

of fields and records. The byte-oriented variable record length data

organisation of the APP could be efficiently employed to resolve this

particular problem of the retrieval system. Finally, considering the

simplicity and cost effectiveness the 'On-The-Fly I search technique, using

Bo-VRL APP is chosen for the implementation of the present investigation on

Keyword retrieval system.

The choice of the level of the programnir language for the implementation

of algorithms of the retrieval systan is to be considered next. it is

understood that the selection of a higher level language would lead to easy

program writing. on the other hard, although the task of writing a progran

at a low-level language would be difficult and prone to error, the selection

of a low-level prograning language would provide the maxinwn flexibility of

utilizing all features offered by the hardware system. Moreover, at the time

of undertaking this investigation, neither of these programming facilities

were available. Considering this to be the first attempt, a low-level

associative processing instruction set is chosen for the implementation of a

research vehicle for the retrieval system. it was decided that an appropriate

set of associative processing instructions for the BO-VRL-APP Would be first

81.

specified. These specifications could then be used as a basis for the

developnent of algorithms for the proposed retrieval systan.

CHAPTER ' 4.

The Objectives and Program-ne of Work

4.1

In an on-line information retrieval systtn the requirement of a simple,
47 flexible and fast searching mechanism has been long felt -67

. It is well

understood that the data-structure in an information retrieval system is
151 inherently associative in nature -159

. The association of data in an

information retrieval system, using conventional computer hardware, is

implemented by several links, pointers and tables. Which often lead to

excessive storage locations, unnecessary computations and slow response.

The performance of the system worsens when flexibilities in terns of cross-

reference, sub-string search and inexact corresponc3nce are introduced.

These inefficiencies are due to the fact that information processing needs

efficient searching and non-numeric string processing, where as conventional

computers are specifically designed for efficient arithmetic operations.
41,

These are strong irýdications151 that an APP-based information retrieval

system could achieve better performance when caapared to its conventional

counter part. But unfortunately, research in either infoxmaticn science or

associative parallel processing is not well established to provide exact

specification of an information retrieval system. Heroe to bridge these

gaps an inter-active experimental on-line retrieval system is proposed in

this report. This proposed system is ýmple[nented with a Byte-oiiented'

variable irecord I length associative parallel processer (Bc). Vpjg-APP) and'

utilises on-the-fly searching techniques.

4.2. Advantages of APP based retrieval systen;

The major advantages of an APP based retrieval systems41,151,152 are:

i) simple data-structure

ii) flexible search mechanian

iii) Faster response

iv). Doter system and develognent cost

4.2.1 Simple data-structure;

The content addressability of the proposed system does not impose any

constraints to adopt a strictly defined transformation relation between

logical and physical data. On the other hand this makes it Huch easier to

map logical data-structures into their physical representation within a

App based systsn151.

This eliminates any form of links and pointers. Since no extra storage

location is required for links, pointers and directories, the estimation of

requirements of storage is much simpler. And this also allows better

utilisation of storage media.

This simple data-structure does not it hide any hierarchical structure,

nested with links and pointer. Thus during lat ntatioi1 o the data-base

hardly any preprocessing is required to generate and maintain a sophisticated

addressing scheme. The same argument is also valid for file maintenance

operation, where no (4)licated pointer j dif ications are required Our xq

update operation. Thus, it is easier to enter a new record in the data-

base` and is equally simpler to delete any acisting record fron jt.

83.

84.

4.2.2. Flexibility:

Due to content addressing, the searching of data-base is not restricted any

predefined primary or secondary Keys. Thus all search-Keys benefit fron

equally efficient searching. Alternatively a sub-string search can be easily

performed on an entire data-base(KWIC) . This results in an extrenely flexible

retrieval system, particularly, in the case of cross-references. Moreover,

the data structure can be easily traversed and modified.

4.2.3. Fast response:

Content addressability leads to a simpler search mechanism. It does not

require any canplicated address canputation and also eliminates unnecessary

link-tracing. This reduces response time to a large extent. Moreover, the

hardware is specially designed for high data rate, fast searching and

efficient string manipulation. The facility is. further augmented by high

degree of parallelisn of operations.

to provide a faster response tithe.

4.2.4. Cost:

Hence the proposed system is expected

OOntent addressability and 'parallelism yields more powerful instructions.

+i ese can eliminate many connVentional. routines, mich are crniosed of loW-

level instructions. Moreover, the btudens of house-keeping programs are much

more reduced. It also leads to a simpler software to be developed for the

.j
ieval «ü.,

.1
WS tide: cost of software development is less expensive.

Apart fran this, it is expected that, aloW-cost micro APP would be avail*le

the near future. This indicates that, all features of the posed

system cai]d be implemented at a rýaaeanable cost.

85.

4.3 objectives:

The main objectives of the proposed work are to evaluate these indications.

Zb prove validity of the claims that APP can support efficient and

flexible text searching, a canparitive evaluation system would be con-

structed. This would furnish the necessary cost/performance statistics and

the experiences of this experiment could lead to a tentative specification

for associative information retrieval system.

4.4. Research Progra lime;

To fulfill the aims of the proposed work, research would be carried out

according to the following progranme.

4.4.1. System Design:

This would involve design and develcgnent of an on-line retrieval system

to establish a research memory array. The system would enable successive

records of selected fields of an Inspec data file to be transferred,

character by-character, to a search unit, which would store the search

profile. The search unit would incorporate suitable buffering to enable

matching records to be filtered out to an output file. Scanning of the

input file would continue until an end-of-record mark is detected.

4.4.2. Searching Strategies:

An associative information retrieval system could support a number of

diffewent types of searching criteria; these are: equality, greater than,

86.

less than, between limits, maximum, minunum, most or least frequent and

many other types. in this work a simple equality search is proposed, which

includes boolean selection, Quorun and threshold searches on both word

and text fragments.

4.4.3. System Evaluation:

Until now, sufficient information to substantiate any performance figure

of an associative retrieval system is not available. But there are

indications that the new system may have sane superior performances over

the conventional IS &R system. Hence the main aim of the present study

would be to isolate the domain of problem area where this new system is most

effective and also to locate its shortcomings. To evaluate these, performances

of the proposed system would be compared to its standard counter parts (such

as tree structures and inverted list etc.). The area of this canparative

study would include

1) data-structure

2) total storage requirem nt

3) software

4) Instruction counts

5) flexibility and error tolerance

6) speed of response

7) Cost effectiveness

4.4. -4. Wt t Tmple n tertian:

Time include prcgrai inir , coding, testing and d Jgin9 of software to

87.

1) implemnt control progr m to simulate

on-line retrieval system

2) Handle the input a. ' output files and the

transfer of records between them.

3) Monitor running programs to generate

evaluation statistics.

4) Display pertinent data (especially

associative memory maps) for debugging

and demonstration.

4.4.4.1. Algorithm Development

Design, coding, testing, debugging and modification of algorithms to

implement the chosen searching strategies.

4.4.4.2. System Evaluation:

Operation of the an-line retrieval system with inspec data file to generate

aanparative evaluation statistics.

4.4.4.3. lgaritfin Bn t:
.
MO

Interactive modification of algorithm to improve system perforname.

88.

4.5 The program of present work;

So far the advantages and flexibilities of an associative retrieval system

have been discussed. But unfortunately, at the present time, no established

specification of an APP is available. Hence, before designing an associative

retrieval system, it is required to specify an APP system with the help of

a research vehicle. To facilitate this, an inter-active experimental set-

up to simulate byte-oriented variable record length APP is to be implanented

first. This experiment would provide

a) Information responding data and instruction

format.

b) A specification of Associative processing

instruction set.

c) Micro-prograas for the control unit of APP

system.

Thus it was decided that the present work would be divided into two major

phases.

phase I: - At the time of undertaking the current investigation, the BO-

VRL PP in development within APG was not sufficiently well specified to

form the basis of the proposed system. Hence in this phase an interactive

experimental set-up would be developed far simulating a BO-VRL-APP system.

This would consist of hardware emulation of associative ui xy unit and

software sht ulation of the remains its of associative parallel

processor. The hazdware e aulatioe52'173 Of the associative m m=y unit

would _-"

ise

1) Alm, (assxiative miry array)

2) WCL (word c ntxol logic)

3) BCL (Bit control logic)

and 4) Data routing registers.

The software simulation52 would canprise

1) Micro-order generation logic

2) Control Unit

3) Program store

and 4) I/O facilities

Experiments would be carried out to generate micro-order sequences to

1) prove the logical operation of the

BO -VRL APP52

2) test the feasibility of the proposed

API 52 (Associative processing

Instructions)

3) Consider modification of the logical

structure and/or API before final

specification.

4) achieve a precise, unwnbigious

specification for the API.

5) estimate cost and performance

statistics of practical BO-VRL-APPS.

89.

Phase II: - On the basis of the Wilts obtained in the phase I of this Werk,

a research vehicle to simulate an associative izýforntiation retrieval N stem

90.

would be constructed in this phase. Piments would be carried out

to demonstrate the feasibility of an associative retrieval system. This

would also be employed as a useful tool to develop, varify, debug and

improve the algorithms to implement the chosen searching strategies.

1

ýI

C. HAPW R'S.

An Experimental Setup for the Simulation of a Byte-

Oriented Variable Record Length ? ssociatiVe Parallel Processor.

5.0 Introduction:

The advantages of using Associative Parallel Processors (APP), particularly

in symbol processing, have been indicated by many workers.
47-67

Fran these

works a remarkable similarity of the basic system structure of associative

parallel processors is observed. But unfortunately associative hardware

of any sophistication has been always difficult to obtain. Hence the lack of

first-hard experiences of using associative system has hindered further

progress in research. In attempting to solve this problem, a xunnber of

simulation systems have been devised 117-133.
In general, most of these

systems are very crude in caparison to the hardware structure of associative

parallel processors. The software solutions of APP are usually implemented

by either hash-coding processes or complex list structures on conventional

serial machines. These have restricted the potential searching capabilities

of associative parallelprooessors to a simple equality search and they do not

have hardware support for some very itiptant features such as parallel access

and multiple match resolution. Thus in teams of capability, the simulations

are totally inferior to the envisioned hardware. They do not provide anything

close to a realistic associative proaessing envircmient nor the means to

evaluate such an environment. I ea52,54 and Wight 57 indicated the urgent

need for hardware research vehic to cagy out further studied on experimental

evaluation of associative parallel processing systems. It is expected that the

role ofsuchexperinnta1research tools WoWA be, to all, t mystm ºiignor,

92.

application engineer, software er ineer ar4 user to collaborate in the

future progress in these fields.

5.1 Architecture of the Associative Parallel Processor: -

To assist the Associative Processing Group (APG) of Brunel University in

carrying out further investigations on associative processor architecture,

hardware, software and applications, lea52 proposed a generalised associative

parallel processing system. The schematic block-diagram of Lea's associative

parallel processing system is shown in Fig 5.1 This includes an associative

metrory, input/output unit and communication facilities which are under

stored program control. The major differences of this type of architecture

fron the conventional system are

i) The program instruction and data are stored

in physically seperate units.

ii) The data are accessed by content addressing rather

than by conventional location addressing.

iii) The arithmetic and Logic Unit and data store of

the conventional system are replaced by a single

associative memary, whexe data are processed in-situ

within the storage unit without transfer to an

irýdepeýäent processing unit.

In his praposal Lea52 suggested that the praQCSed system would be initially.

used for experimental evaluatýOns and U%rovenent of new systea design

93.

data
instruction

---- control

FIG. 5.1. Block diagram of a BO-VRL- APP .

data input reg"

search write

r-- control

bit control logic - ý- -J
i

T

canter ° word
symbol bits 9 control

",; R logic

""; e
"" 9

output reg II match reply

FIG. 5. Z Associative memory unit.

94.

concepts. it was also intended. that the practical investigations should be

restricted only to the exploratory phase of associative ccoputer system

design. Fran Fig. 5.1 it is seen that the functions of all consitituent

blocks of the proposed system, excepting associative memory, are similar

to conventional systems. Therefore no fresh attempt would be made to

implenent the whole system fron scratch, rather a general purpose ccnputer

system would be used to simulate these conventional elements. Hence the

proposed system would take the form of a prototype design, where a hard-

ware associative manory array would be emulated. This exmilation would

consist of hardware, software and dedicated miniccxnputer. A two way

interface unit would be included to facilitate ccnmunication between the

hardware arxi the controlling system.

To enable further discussion, a brief introduction to the associative nowry

unit is included in the following sub-sections.

5.1.1. The structural organisation of- an Byte-ariented variable record

length associative parallel ocessor BO-VRL-1PP.

The block diagram of the associative memcay Unit is shown in Fig 5.2. The

ma ory module consists of three basic units.

i) Me wry array

ii) Address Unit

iii) Control Unit

5.1.1.1. N1emoýy Array: -

The associative ra%W Xy 18. It b*"d tWAI MAY of jenti; al 40110 as

95.

shown in Fig. 5.3. Each cell, one bit of processing element, can perform

the functions of a read-write memory cell and in addition contains

sufficient logic to compare its content with the corresponding bit of

external data-input register. Each word-row of the byte-oriented VRL mem y

array comprises of twelve cells for stcring a byte of information and

forms a canplex symbol. These canplex symbols are partitioned into two

fields :

i) symbol field

ii) control bit field

The first eight bits (a byte) stores alpha-muneric symbols and the remaining

four bits store control bit informations. These control bits are used as

either temporary low-level markers or symbol delimiters to provide a means

for efficient symbol manipulation.

The memory array is word-organised,, that is, twelve--bit ocinplex symbol are

connected to parallel input/output highways. All ward-raves and bit-

columns of the memory array can be accessed in parallel. Particular

combinations of rows and colunms can be selected by the addressing unit.

A single tag bit is provided to indicate an exact match of the content of

each canplex symbol to the canparand. The tag bit contributes to the match

reply line, which is camwn to all canplex symbols and provides feed-back

information fran the memory unit to the control unit.

5.1 .1 .2. Addressing Unit: -

The addressing unit CCXc #Ses a¬ awry : ical y seperate units. 'T'hese care

96.

ý
cell

cell cell cell
i-1. j i. 1.1

ý
cell

ý

i, ,. 1 I

L -- -- -- -J

Symbol
[Control-bit

8-bits 4-bits

FIG. 5.3. Associative memory array,

FIG, 5.4. Experimental set-up

97.

i) Bit control logic

ii) Word control logic

Bit control logic:

A word within the mewry array is accessed by its content. The contents

of the data input register are owposed of two complex symbols. Orte of those is

the con parand, which is used for locating the pertinent words. The other is input

data, which replaces the old contents of the accessed words. The bit control

unit provides an automatic selection of desired bit-columns for both campare

and write operations. The function of the bit-control logic, which is local

to the memory unit, is to provide a proper set of data to the input high-

way of the manory array under command of the control unit.

Word control logic: -

The word-control logic includes a tag-register, which provides a link

between search and read/write operations. Each bit of tag register is

associated with a 'ward match' line. A successful search operation on a

word is marked by setting the ccrresponding bit of tag register. The read/

write operation can now be performed on those words which either matched or
0

mismatched on the preceding search operation. The provision for intexw rd

crnmunication between neighbouring words is also included. An additional

feature of isolating and resolving a grasp of wards is provided by run-

generation logic.

An asynchronous control system is used for high-speed matte, -z)if3 operation.

This match resolvers which Is local to the nay array, provid , fln autc=tic

facility for- self and eighbair addreeeing of cells.

98.

5.1.1.3. Control Unit;

The control unit consists of a synchrorous control system. This is a

mediuit speed indirect control. It consists of two sets of micro-orders,

which provide a local autonamus control. These are:

i) Static micro-orders

I ii) Dynamic micro-orders

i) Static micro-orders: -

The static micro-orders, as the name suggests, are a set of micro-

orders which do not change during execution of an instruction. These

specify the domain modification options of an Associative Processing

instruction.

ji) Dynanic micro-orders: -

These are sequences of a set of micro-orders which control-different

steps of an instruction. The ' inaticn of these control signals enables

the execution of search, read, write, propagate and run operations on

ocmplex symbols.

5_2. ich for System IL-lsnentation and Objectives

the byte-oriented variable record length iative parallel prccesacr'of

Brunei university has been described sanier. The proposed associative

awry unit consists of a 12 bits x 32 wprds. me aiy array. A provisional

specification was proposed h Iea52. As the architecture of the HC)-VRL-APP

was An em ryonic stage, same #t taxe recjuia ed before fit aliýtatýiaýn

of the specificattion. It Ww s e4 yz a xaýble to pro t. b ti

Ien tation to the p ac], cl i 71 1 on lwº Sa l

99.

sane inflexibilities in the system. Qp the other hand, an inter-active

experimental approach of system evolution was much more attractive because

the system configuration could be upgraded until full capability of the

hardware was exploited. On the basis of this argument it was decided that

an experimental set-up would be developed to derive a camplete and final

specification for a BO-VRL-APP system. This specification would then be

utilized as a basis for hardware design of the control unit of a BO-VRL-

APP system.

Before devising an experimental set-up for above purpose, it is worth

reviewing the state of development of hardware at Brunel University. Fran

the schematic diagram of Fig 5.2, it has been seen that the associative

memory unit eauprises

i) memory array

ii) Adressieg Unit

iii) Control Unit

Among these constituent elements, investigation on the design of associative

memory cells has been thoroughly done by Lea. An associative memory cell,

which is capable of perfonriing primitive search, read, and write operations,

has been implemented by utilising Nand gates173. There was also a fairly

good knowledge of the functions of bib-control and ward-control logics.

Taking these as a basic design guide-line, the hardware for bit and word

control logic circuits are made. In the design of bit and woad oont'rol

circuits emxgh oportunities for mix= modifications are left open. However

the major uncertainty was felt in the organisation of the control unit,

100.

to enable a controlling oanputer to spr4 proper li-level micro-orders.

The effects of these micro-orders on the memory array would be monitored

by suitable display unit. It was assumed that such an inter-active system

would be helpful in developing a full set of API. The basic steps of this

experiment would be to roughly define an API and then to derive an algorithm,

which are oonibinations of SM)'s and DiMf)'s on paper. This set of micro-

orders would be loaded in the buffer area of the controlling ccx Puter and sequ-

entially transferred to the experimental model. The norory would be

monitored to examine nether or not tike initial definition of API is

satisfied. Thus in this approach of design there is a possibility of

getting important feed-back informations from the experiment. 'These feed-

back informations could be utilized for modification of the hardware to

improve overall performance of the system. Once a full set of API is

specified, the set of control signals could also be precisely derived and

verified on the real hardware system. The entire set of micro-orders would

then give a basis for design of the micro-program of the control unit of the

APP system. This control unit would eventually be translated into a oorresp-

onding hardware version.

The scope of the present project is to build a set-up for above experiment

using existing hardware and omiputing facilities of Brunel University. The

objective of this experiment would be to provide a ornpletely specified API

set and derive the corresponding micro-orders. The description of the

experim ntal set-up built for this pxrpoee is given in the following ` section.

utilized as the main controlling element. This stores program sequences

of APP and also allocates two separate fifer areas to simulate I/O channel

of the model. The mini computer is also alloyed to control the model

explicitly by sending control signals down to micro-order level.

All man-machirre cainunications are performed by the console tele-typewriter.

The graphic tenninal178 (Gi'40) continuously displays the associative memory

map, that is, the current contents of associative memory array. The line

printer is eployed for high-speed hard copy of the information displayed

by the graphic term ina1. The details of the hardware aryl interface des-

criptions follow: -

5.3.1. Hardware descriptions of the Experimental set up

The block diagram of the associative memory unit of the experimental hard-

ware is shaven in Fig. 5.5. The descriptions and functions of different

hardware blocks are given below.

5.3.1.1. Associative memory cell:

A logic-circuit diagram far an associative memory cell is given in Fig 5.6.

These cells are imýlanentecl by using Na gates and reported by Lea.. This

r, x173 also includes all zeleYent design consideration for practical

isplementation of associative memory cells. Three basic operations that can

101.

102.

I
N DATA IN REG SMO
T
E
R
F
A BIT-CONTRO
C
E T

MEMORY A
G

L ARRAY E
0
G
I ATA OUT RE MATCH REPLY

C

FIG. 5.5. Memory module

WORD
CONTRA

DMO

1)
OB

"I

FIG. 5.6. Associative memory cell

103.

Search:

in this operation all cells individually compare the logical content of their

menary element with the oDrresponding information on lines D 1A and D1.,

When the result of comparison is successful, the match output 'W' goes to

a logical high.

During read operation data input lines D and DIB are held at stand-by

mode and word select line WI is enabled. Thus the information stored in

the cell is made available at DOA and D., lines.

Write:

In the write operation, input data are applied to DIA and DIB lines, the

information is written into the cell by enabling WI line. When the input data

is in the stand-by mode, that is, both DIA and DIB are held at logical zero,

the previous contents of the cell are not altered by the execution of write

operation.

5.3.1.2. Memory Array

The Fig 5.3 shows an associative memory array. The two-dimeni tonal memory

array consists of identical associative memory cell as described above.

Ctmron raw and cola connections are also shown in the Fig 5.3 Any

canbinations of row and coluam of the associative memory array oan be accessed

by the independent was- and bit- selectäcn unit respectively. The exact

match condition of selected coliuas in each word rows is indicated by the match

butput line.

104.

5.3.1.3. Micro-order Register; -

As discussed earlier, the experimental model is controlled by a conventional

oanVuter. All control signals (micro-orders) are transferred fran the oont-

rolling oatputer to the hardware. These micro-orders are needed to be

locally stored. Hence two buffer registers, called micro-order registers,

are incorporated in the hardware. These are

i) Static micro-order register

ii) Dynamic micro-order register

Static micro-order Register:

It contains a set of eight micro-orders which do not alter during execution

of an instruction. The contents of SMV Register are shown in. Fig. 5.7(a)

Dynamic Micro-order Register:

The contents of the dynamic micro-order register are shown in Fig 5.7(b).

The dy nic micro-orders are a collection of sixteen low-level control signals

issued to the hardware.

These I. YVIJ signals can be further partitioned into two categories

i) BC DM's (Sit-control Dyn uic micro-orders)

ii) , WC DU'S (Wörd-control Dynamic micro-orders)

Thefunction of the bitcontrol1)'s 1s to enable the bit oa*trrml logic,

and similarly the WC DWI Is ctivate8 the word control logic.

The execution of an instruction is aQOCýQýi. shed' by sequencing an a 'Priate

oonbination of micro-orders at different tine slots.

105.

JRU
BA RN ST LN

FIG. 5.7(a). Static micro-order register

bit- control DM0 ord control DM0

[_\STCXCýYC STS LXS OYS MEM RIW MW MM GR TG 02 101

FIG. 5.7 (b). Dynamic micro-order register

SYMBOL CONTROL"BIT

1 Hi1 3456761234

DA

FIG. 5. B. Data input register

106.

The descriptions of micro-orders could be four. in APPENDIX A.

5.3.1.4. Data Input Register; -

It (Fig. 5.8) holds a twelve-bit complex symbol, which consists of alpha-

numeric symbol and control bits. Corresponding to each bit position a

four-bit code, namely D», Dom, D and DBS' is allocated in the data input

register. The bits DAS and DBScontain the it ormation to be searched within

the associative memory and the bits D» and DBW contain the information to be

written into the associative memory array. The code catiLinations used

for write and search operations are given in Appendix A.

5.3.1.5. Bit control logic

The Figure 5.9 shows the logic diagram of the bt control unit, The bit-

control logic is a simple four to two ways multiplexer circuit. In response

to the micro-order signals 0x, 0fy and SI, the bit-control logic selects or

masks a set data fran the data input register. These selected data are

finally applied to DIA and AIB lines of the associative memory array. The

signals Ox and 0,
y are used to select search and write infonnations respectively.

The signal ST is used to inhibit 'write one' during the clear phase of instruct-

ion cycle. This enables it to write sera only on those bit cxlunns which were

selected to search 'one' during the search phase of the instruction cycle.

5.3.1.6. Tag Registers: -

These (Fig 5.10) provide a link between search and read/write operations.

Each bit of a tag register is associated With a word match line 'WO'" The

107.

L

1

1

FIG. 5.10. Tag register

ST
Ox
oY

MR

DIA DI"B

FIG. 5.9. Bit control logic

108.

result of a parallel search operatic* is 41taticized in either Tag Reg 1

or Tag Reg 2 according to the dynamic-micro-order control signals TG and GR

respectively. The match reply, which is the logical summation of all bits

of tag register l, indicates the presence of at least one tag bit.

5.3.1.7. Word Control Logic

The schematic diagram of the word-control logic is shown in Fig 5.11.

The word-control-logic, in conjunction with contents of tag registers,

static and dynamic micro-order, is used to activate a set of word-rows for

any specific read or write operation.

Multiwrite: -

The multiwrite line enables all word-rows in parallel. In this case all

word-rows can simultaneously take part in any write operation.

Node Control Logic:

The selection of a set of matched or mianatched word-rows is done by

comparing the contents of tag register 1 with the mode signal W. The

comparison of each bit of tag register 1 is performed by a set of exclusive-

or gates; the output of which is distributed throughout the word-control

logic. When the control signal Ol is en bled, those word-rows with a logical

'one' at the output of mode control gate are activated.

Prcpaga ion logLc;

The circuit diagram
of

px+opacati logic is shown in Fig. 5.11(b) where Fei

ST and LN (Right- night . striglit tbzxugh, and left neighbclir) denote the

109.

T/

A

E
F

T/

L

FIG. 5.11. Word control logic

MM

MO
TAG1

FIG. 5.11(a). Mode control logic

SR
02
RN

MO
Si

0
SL

FIG. 5.11(b), Propagation logic

LILA Cl Al f1 KAU/

110,

PT 01

T

I0

FIG. 5.11(c). Run generation logic

-14 -SYMBOL -CONTROL BIT

2 3ý 41516 718 12 ý3 4 i`ý-'R 11

1 DOA 1 DOB

FIG. 5.12. Read register

111.

direction of propagations. The infoxmatiop from self and/or adjacent neigh-

boors (SRN, SLN derived from made control logic) are finally strobed by 02

to select a set of word-rows.

Run Generator:

The schematic diagram of run-generation logic is shown in Fig 5.11(c). This

enables to select a group of word-rows for write operation, which depends on

the contents of tag registers. There are three different ways of run

generations, these are top, bottom and group run - (see Appexrlix B). Each

of these runs could be in either direction. - These bi-directional runs are

achieved by using is independent sets of parallel carry look-ahead generator

trees. The proper control is derived by a combination of run codes, propa-

gation specification and micro-order signals 02R and 0 2L.

5.3.1.8. Read Register: -

The figure 5.12 shows a schematic diagram of read register, which hold a

oanplex symbol (symbol + control bit). Each bit columns of the associative

memory array has two rails of sense output; DAO and D. Hence for each bit

cols of memory array two bits are allocated in the read register. During

the read cperation, the contents of line DAOi and DBOi are staticized in the

read register by enabling the control signal 'R'.

5.3.2. Interface Control lEgic

£o way oamcauiicaticns between the PDP 11/40 unibus and the associative

mm my hardware are pexfozd by the DR 11-C179. The DR 11-C, a general purpose

112.

interface, provides the logic and buffer registers necessary for the prograut-

controlled parallel transfer of 16 bit data between a PDP-11 system and an

external device. The schematic diagram of Fig 5.13 shows the interface

between the model and PDP 11/40.

5.3.2.1. Data Input:

The input highway (to the =del) is shaven in Sg. 5.13(a), where the low -

order eight bits'are reserved for data information and two other lines carry

control signals. These control signals provide interface initialisation and

data routing informations.

When the signal 'S' is asserted the SMO and DMO counters are reset to the

initial state. The signal PV enables output of either SM) or DI+) decoder,

depending on its logical valte. The output of these decoders finally selects

a portion of 'Data Input register' for loading input data. The counters

(SIND and rM) counters) are automaticially updated at the canpletion of each

data transfer.

5.3.2.2. Data Output:

During the output operation (frcm the model) contents of the read register along

with feed-back signal OVA, OVB and latch reply am transferred to PDP 11.

The Figure 5.13(b) desc ites the data autp t highway. Three transfer cycles

are required to transidt the entire q tput infwýnatioýsº, dis sequential

transfer is done by a nultiplexer and a module-tree counter. At the end of

each transfer the aoW*e is updatd d proper data routing .

113.

FIG. 5.13. Interface logic

114.

9lßA7161514I31211 lo

ICON TROLL----- DATA
N

FIG. 5.13(a). Data input highway

Transfer no.

1

SYMBOL

2 Ii 234

343 2ý 1 CONTROL BIT

FIG. 5.13(b). Data output

115.

For further descriptions of interface pigiials Appendix A may be ref eied

to.

5.4. Associative Processing Instruction

The experimental hardware model described earlier, can execute a single

Instruction on multiple data stream at a time. The API (Associative Processing

Instruction) format and instruction execution cycle are described in this

section.

5.4.1. Instruction Format: -

A generalised instruction format is shown in Fig 5.14. Each micro-instruction

consists of function, address and modifier fields.

Function; - This comprises of two sub-fields; these are. op-code and data :

Code: This indicates the nature of operation to be performed,

such as read or write.

Data: This sub-field of the Function is interpreted according to

the content of operation sub-field. During the read operatics it

indicates a 16 bit address within the buffer area of the program store,

where the iTt eriogated informatic* is to be stored. During write

cceration it holds the infor tion to be written in the selected

wards. During 'group run' (see Appendix B) it holds the data for

second search operation.

116.

<FUNCTION: ý<DOMAI N ADDRESS><DOMAIN MODIFIER>

<FUNCTIONX: COP CODE><DATA>

FIG. 5.14. Instruction format

117.

Address :- This field of the instruction contains the information, to be

searched in the initial dcir in search operation. This search operation is

always associated with every instruction, which explicitly selects a danain

of ward-rows. This resembles the address field of the instruction format

of a conventional system.

Modifier: - This field of the instruction mpdifies the entire addressing nrxde.

The final specifications for the instruction of the byte oriented variable

record length APP are included in Appendix B.

5.4.2. Instruction Cycle: -

Each micro-instructions (API) within the hardware model operates on a four

beat cycles. These are domain search; domain modification (clear option)

domain modification (propagate and/or run option); and function (read or

write) .

The function of the modifier field is to nndify the addressing schare and

finally to enable a set of word-xrgs for further processing.

During the domain search operation, the contents of the address field are

considered as the carparand, The result of the conparison is stored in tag

registers.

During the clear option, the control bit field and/or symbol bit field of the

selected wards can be reset (write V))

During the propagatian and nui ganeraticn, the addressing nEthanism is modified

to enable a proper operation.

118.

During the last phase, a read or write operation (as indicated by the opocx)

is performed.

5.5. Steps of the Fbcpesiment;

The objective of this experiment is to specify an instruction set for the

byte-oriented VRL-APP. This objective could be achieved by an interactive

experiment, as stated earlier. The steps which are to be followed during

this experimentation are shown in ftow-cbart of Fig. 5.15, and a brief ex-

planation is given below.

Step 1: API definition - an API is roughly defined.

Step 2: Algorithm develop Lent - an algorithm for execution of the

API, as defined in Step I, is developed.

Step 3. * Timing diagram generation; - A timing diagram for the

entire set of micro-orders are generated on the basis of

the algarit n develcped in Step 2.

Step 4: Derivation of micro-order sequences: - The micro-order

sequences are directly mapped fron the timing diagram.

These micro-order sequetces are fed to the controlling

ccuputer. These micro-orders, which are stored in

aP rc'priate buffers, are the sequentially transferred to the

hardware.

119.

start

API Definition

Timing generation

Micro-order spec.

Execution of API

Verification

correct

Accept the spec.

FIG. 5.15. Steps of the experimentation

bit-control DMO's

word-control DM 0's

time slot
4 time slot2+I time slot 3ý

FIG. 5.16. Timing diagram

120.

Step 5; Menory Map: - A memory map is produced to observe the effect

of micro-order sequenceS(result of Step 4) on the contents

of n iary array.

Step 6: The memory map produced at Step 5 is compared with expected

result. If some modifications are required, Step 1 to Step 6

are carried out with proper corrective measures. Otherwise

the definition of API (Step 1) and micro-arider sequences of

Step 4 are accepted.

5.5.1. Timing diagram generation: -

The main consideration during the timing diagram generation phase is that

all word-control dynamic-micro-orders should be covered by the bit-control [»10's.

That is, no bit-control dynanic-micro-orders should change during the presence

of a word-control DMO. Otherwise score criticalness of timing may. occur,

which may lead to an intermittent success of the operation. rie solution of

this prablen for a beat of instruction cycle is shown in Fig. 5.16. The figure

shows that three time slots are required for the transfer of every word-

control D1N4. Where the bit control roe's are maintained for the entire

sequences of T1, T2 and T3 ; the ward-control LY«O's are only enabled

during time slots T2. Fran this timing consideration it is derived that

twelve time slots would be required to execute fair beats of any P. PI cycle.

5.2. Ma y Map

All relevant feedback information from the hardware, which is required far

any interactive experiment, is available Fran the memory map. The m=W

121.

81 A PR -- 7 4)

TIME . 1;. i 13: 03: 40

(11''l:. W '! ()11.: 1.: 1.110 000() (ä XXXX 0000 0 000 N
STATIC MICRO"-C)RIIER

R CHARACTER cI:; MCCM C USI: I RR
UC. "DM 12

0C Oi1: 1 11: 10 0000 : FUNCT: [ON
0 XXXX 0000 0 000 00 : ADDRE-513

? IE"MORY MAI' 1'! YNt)t'I: [l:: M l:)

WORD 1 10000000 0000 0110011000000000
WORD 2 11000000 0000 0110011000000100
WORD 3 11100000 0000 011001.1000000000
WORD 4 11110000 0000 0101010100000000
WOR1! 5 11111000 0000 0101.010100000001.
6)0k1.1 6 : 1.1111100 0000 01.01010100000000
WORD 7 111.11.110 0000 0000000000000000
I, Jt.. 11'i0 !: I 1.1.001.000 1.000 0000O00000000000
W0f; I: l 9 1.1.00: 1.001. 01.00 0000000000000000
l.. ll. lV; 11 : 1.0 1.: 1.00101(! ()O. 1O 0000000000000000
W(1F; I: 1 1.: I. 1.1.001.01.1. : 1. 'I.: 10 0000000000000000
I. JHI'; H : I.;:. '. : I.: I. OO. I.: I. 00 UUUO 00000000000000t»)
W Ük Y1 1.:; : I. 1.001.101 1. I. :IO
W Cl I.: I: I : I. 4 : 1100 : 1.: 1.. 10 (>000
WORD 1 110011.11 1.100 READ Hmisru: ý
1110 1.1 1.6 11.01.000() 00: 1.0 10110110 0000
W 0f, * D 1.7 1 1010001 0000
IAO1-: L' 1ti 1101.0010 0000
4)C)I: ii 1.1? 110100: 1.1 0000 TA REPLY :::: 0
WORD 20 1101.0100 0000
41CF [I 21. : 1.1.0: 1.0101 0000 OVER-I: I_OW1. Q.
WORD 1.101.0110 000() OVER-"I:: LUU2 .::: 0

WORD 23 1.10101.1.1 0(>00
UCIRD 24 11011000 0000
I,, 1(:! F, 1: 1 2t'; : I.: 1.011001 000()
UUPP Li 2 11011010 0000
IJi: kLI ?.: 1.01.10001 0000
WClF; II : 'f : 1,0110010 0000
WORD 29 10110011 0000
I. jO PD 30 : 1.01.1.0100 0000
u l: ' 31 1.01.10101 0000
W or%1: 1 32 1.0110110 0000

FIG. 5.17. Memory map

122.

map, that is the current contents of memory array, is continuously displayed U

the graphic terminal. The general format of a memory map is given in Fig.

5.17. This consists of

1) current API description

2) current static micro-orders

3) current dynamic-micro-order descriptions »

4) Contents of read register

5) Condition code output (such as overflow

A and B; Match reply)

6) The current contents of the entire n icry

array.

This memory map enables to monitor the state of the associative mew zy

array and provides a valid basis for experimental verification.

5.6. Software Package: -

A software package is developed to intercont=t the model with the rest of

the system. This simulates ISO unit, program store and control unit of

VRL-APP system. This is also used to convert a micro-API instruction to

m chine code and to issue the low level control signals to the model. The

program is written in Macro 11180 and runs on the RT-11 F/B operating sy stem
180.

in addition to normal experimental requirements, some extra facility such as

initial clear, bulk loading and hard-COW prints-out of men=y map. are also

irycIWed. All functional are grouped into different modes - these

modes of operation are: -

123.

1) clear (AM)

2) load (AM)

3) Reload (AM)

4) specify (API and micro order)

5) Process (execute API)

6) Micro Instruction (specification followed

by execution).

7) output (hard copy of memory map of

console MY)

8) Fast output (hard copy of manoy Map

on line printer)

9) Exit (End of session)

When the program is running, it initially waits for a mode control signal.

Upon receipt of a mode control cannary1, it starts a particular set of sub-

routines which corresponds to the made ccmnarxd. At the canpleticn of a

mode of operation (except Exit) the control is transferred to the initial

state of the program. A brief description of different modes is given

below. The detailed operational steps are explained by the flow-chart in

Appendix C.

Clear: - This mode initilizes the system by clearing the associative nory

cells and the interface logic. The reset condition of the associative memory

is displayed on the graphic terminal.

I, oad: - This made requests the user to enter thirty two characters at the

ter iinal. These input characters are first stored in a Laid buffer area and

then dumped into the successive associative memory wards., The graphic

terminal displays the contents of the associative MGMCY after this lopd

operation.

124.

Reload: - The old contents of the I 84ffez ade reloaded in the associative

memory. The GT displays the contents of the associative memory after re-

load operation.

Specify: - During this mode of operation a new set of [NO's and API can

be specified and stored in the respective buffer areas. The GT displays

these new specifications along with the contents of the associative menory

at the time of entering these specifications.

Process: - This executes the API, stored in the API buffers, according

to the specified dynaanic-micro-orders on the data set contained within the

associative memory. The GT displays the API executed along with the dynamic

micro-order set and the current contents of the AM after execution of this

API.

Micro instruction: - This is a canbination of 4 'specify' fo11ci d by a'Process'

mode. The newly specified API is stored and executed on the data stored in

the associative menory. The contents of the graphic terminal are similar

to that of the process mode.

Output: - The current contents of the graphic terminal are printed on the

console tele-typewriter. At the top of this printed hard copy, the current

date and time are also logged.

Past Output: - The function of this mode is similar to that of the output

made. The gain in output speed is achieved by using a line printer Mead

of a TTY.

125.

Exit: - At the end of an experimental session this mode is entered. This

transfers the machine control to the Keyboard monitor of RT - 11 F/ß operating

system.

5.7. Results: -

The experiment is carried out according to procedure stated in section 5.6.

As an illustrative exanple the following API is chosen.

API: WB 0001 A 1000 0010 0 OOD N

Step 1. Definition of API: -

A symbol 'A' with control bit CBI would be searched;

the control bit CBI of all matching words would be cleared;

the propagaticn wculd be set for downward direction; finally

a symbol 'B' with control bit CB4 would written in the

selected words.

Step 2. The algorithm for the above definition of API is given in

Fig 5.18 (a)

Step 3. The timing diagram is generated fron the algorarithn of

Fig 5.18(a) and is shown in Fig 5.18(b).

Step 4. The micro-older specifications are directly obtained fr©m

the timing dia9rän of Fig 5.18(b). The sequence of L1W' $

required for execution of the API, as defined in step 1,

is given in Fig. 5.18(c).

126.

Search complex symbol; set tag

Clear control-bit field of tagged word

Enable propagation down

Write complex symbol

FIG_5.18(a). API definition

TIME SLOTS
123456789 19 11 12

DMO's
02R 0
STC

oxc

OYC

02L
0

STS

0X 5
0YS

TM 0

R 0
MW 0

MM 0
GR

TG I----1

02 (ý_
01 i

FT(; S 1A(h 1 Timinn tiinnrnm_

127.

Dm's

Time
Slots O2R STC o 9$yc 02L STS 0 0ys 92M R MI MM GR TG 02 01

1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0

2 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0

3 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0

4 0 0 1 0 0 0 0. 0 0 0 0 0 0 0 0 0

5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

6 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0

11 0 1 0 1 0 1 0 1 0 0 0 0 0 .0 1 0

12 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0

Fig 5.18(c). END se uerice.

DATE +* 8-APR-76

TIME IS 13: 29.49

API: WB 0001 A 1000 0010 0 OOII N
STATIC MICRO-ORDER

R CHARACTER CB MCCM C USD RR
WCBM 12

0B 0001 **FUNCTION
A 1000 0010 0 001 00 S AD DRESS

MEMORY MAP DYNAMIC M-0

WORD 1 11000001 1000 0110011000000000
WORD 2 10000000 0000 0110011000001100
WORD 3 10000000 0000 0110011000000000
WORD 4 10000000 0000 0010000000000000
WORD 5 10000000 0000 0010000000000001
WORD 6 10000000 0000 0010000000000000
WORD 7 10000000 0000 0000000000000000
WORD 8 10000000 0000 0000000000000000
WORD 9 10000000 0000 0000000000000000
WORD 10 10000000 0000 0101010100000000
WORD 11 10000000 0000 0101010100000010
WORD 12 10000000 0000 0101010100000000
WORD 13 10000000 0000
WORD 14 10000000 0000
WORD 15 10000000 0000 READ REGISTER
WORD 16 11000001 0000 00000000 0000
WORD 17 10000000 0000
WORD 18 10000000 0000
WORD 19 10000000 0000 TAG REPLY =0
WORD 20 10000000 0000
WORD 21 10000000 0000 OVER-FLOW1 =0
WORD 22 10000000 0000 OVER-FLOW2 =0
WORD 23 10000000 0000
WORD 24 10000000 0000
WORD 25 10000000 0000
WORD 26 10000000 0000
WORD 27 10000000 0000
WORD 28 10000000 0000
WORD 29 10000000 0000
WORD 30 10000000 0000
WORD 31 10000000 0000
WORD 32 10000000 0000

Memory map 1.

['ATE t 8-APR-76

TIME IS 13531: 53

API OWB 0001 A 1000 0010 0 00I1 N
STATIC MICRO-ORDER

R CHARACTER CB MCCM C USD RR
WCBM 12

0 B 0001 : FUNCTION
A 1000 0010 0 001 00 *ADDRESS

MEMORY MAP DYNAMIC M-0

WORD 1 11000001 0000 0110011000000000
WORD 2 11000010 0001 0110011000001100
WORD 3 10000000 0000 0110011000000000
WORD 4 10000000 0000 0010000000000000
WORD 5 10000000 0000 0010000000000001
WORD 6 10000000 0000 0010000000000000
WORD 7 10000000 0000 0000000000000000
WORD 8 10000000 0000 0000000000000000
WORD 9 10000000 0000 0000000000000000
WORD 10 10000000 0000 0101010100000000
WORD 11 10000000 0000 0101010100000010
WORD 12 10000000 0000 0101010100000000
WORD 13 10000000 0000
WORD 14 10000000 0000
WORD 15 10000000 0000 READ REGISTER
WORD 16 11000001 0000 00000000 0000
WORD 17 10000000 0000
WORD 18 10000000 0000
WORD 19 10000000 0000 TAG REPLY =1 WORD 20 10000000 0000
WORD 21 10000000 0000 OVER-FLOW1 =0 WORD 22 10000000 0000 OVER-FLOW2 -0 WORD 23 10000000 0000
WORD 24 10000000 0000
WORD 25 10000000 0000
WORD 26 10000000 0000
WORD 27 10000000 0000
WORD 28 10000000 0000
WORD 29 10000000 0000
WORD 30 10000000 0000
WORD 31 10000000 0000
WORD 32 10000000 0000

Memory map 2.

128.

Step 5. By using mode ' s'. of aof twax'e the new 1P spec if ica-

tions of Fig 5. '18(c) and API are entered. The manory map

1 shows the new specification of the DMo's and API along

with the contents of the associative memory array at the

time of entering them.

The mode 'P' of the software is entered to execute the

API; and the memory map 2 is produced as a result.

Step 6. Comparison of the result with the expected operation is

made. Once verified, it is accepted as a final

specification.

Repeating the above procedure other API's are defined and corresponding IM's

are derived. The canplete specification for the instruction set of the

Bo VRL APP, thus obtained, is irclii1 in APPENDIX B.

5.8. Discussion: -

An experiziental set up for hybrid cauputer emulation of the byte-oriented

variable record length associative parallel processor has been implemsnted.

This system Provides a research vehicle for user-oriented design of VRL APP

systems. The purpose of this investigation was to provide feed-back in-

formations for the varification and improveent of the VRL-APP system

design. The experimental investigations were mainly Pointed:

i) to achieve a high degree of symbol-processirng efficiency

over a wide range of appl cations.

129.

ii) to develop a well balanced and flexible instruction-set

compatible with the VRL-1 P systems and applications.

iii) to develop a basis for the design of the control unit

of the APP system.

As stated earlier, an interactive design approach had been adopted to

achieve these objectives. A modular software package has been included to

facilitate the experiment . The general instruction format (API) of a

VRL-APP system is given in section 5.4.1. These include function, address

and domain modifier fields. The primitive operations of an associative

memory are search, domain mDdification followed by read or write function.

Extensive studies on read/write operations, with all possible domain

modifications, on the data set stored in associative memory array have been

carried out. The verification of proper executions of these fundamental

operations are obtained from the sequence of memory maps of the associative

memaryo

The top, bottan and group runs are also verified in downward direction. It

is expected that by inclusion of similar hardware, runs in upward direction

could easily be implemented.

As an cutccme of this experiment, a ccplete specification for the APT set

of the BO-VRL-APP along with corresponding micro-program for the control

unit are produced.

This has also provided a basis for addition of an extra mode 'T' in t1e

software package. This mode of operation accepts an API frag the tele-type

130.

writer. The corresponding static- and dynamic- micro-orders are autcu atic-

ally generated by the software package to enable execution of the entered

instructions.

Further improvements of the software have been carried out to buffer a set

of up to sixteen API's. These buffered API's are then executed sequentially

taking one instruction at a time. At the end of the buffer (when all

instruction are executed) a switch register option is provided to repeat

execution of the set of instructions, stored in the buffer, as an endless

loop. An additional switch register option is included to provide hare-

copies of the manory maps at the canpletion of each of these instructions.

¶ao application studies, using the extended version of the software, have

recently been carried out. One of these, an implementation of on-line text

editor, is done by Reynold174. The other, as reported by Ofulue175, deals with the

conversion of Intermediate Associative Prograndng language to a macro of

low-level API.

These two application studies have demonstrated the flexibility and power

of API in symbol processing environment. The following chapter describes

another application of VRL-APE Where VRL APP system is used as a parallel

search unit of an on-line information retrieval system.

CHAPTER 6f

On-Line Associative Retrieval Systen

6.0 Introduction

The discussion of the problems of on-line infcamation retrieval, is

mainly restricted to the area of a bibliographical information service
l

of technical or national libraries -10
. As a general library deals with

large numbers of different types of documents such as printed books,

serials, maps, charts, paintings and musical records, it is not at all

possible to store its entire collection in a ccmputer system. Even if

only printed books and serials are considered, the size of the information

becanes so enormous that the storage of actual documents within a Damputer

system is not econanically feasible. Here the main purpose of the

mechanisation is to locate the physical position of the document. There-

after picking up of selected documents by an automatic system ör manual

intervention is a trivial mechanical aspect of the problem. Hence

considering the cost of the system, the scope of this work is only

limited to finding out the physical location of retrieved documents. Here,

in response to a query, aouplete bibliographical information of all

doQ, uaents, as provided by a conventional card-catalogue file, along with

information regarding physical location and current status (whether or not

on loan) are provided in a suitable format. A hard-copy printout along

with a visual display could also be obtained for future reference.

The Main advantages of caquter-based on-line catalogue searching systems

are flexibility and speed of response. Ain. interactive system cci jä provi4e

132.

extensive cross-references and it is desirable since it allows poorly

defined requests to gain precision from the results of subsequent searches.

Another attraction of ocmputer-based system is the possibility of SDI and

current-awareness services, virtually without any extra effort.

The ultimate success of a system depends on the two major factors:

1) The way data-base is created

2) The mechanise used for searching

Indexing 1-10
attenpts to bridge the camunication gap between the searcher

and the originator of a docunent. In fact the process of indexing is quite

ccmplex. This is because it is often difficult to describe a document

by a single index term; and same index terms require to be further divided

in sub-groups. Other difficulties arise due to variation in the values of

the context of a document in user environment. A simple solution such as

Keyword in context may usually lead to a large index, scare times larger than

the data28-33. Until now the process of indexing can be considered as

an intellectual exercise. Hence in the following discussions aspects of

indexing will be carefully avoided.

The other factor ca searching mechanism is highly dependent on the ccrplex
35 These Ilex structures are data structure of the file organisaticn,

36,42-45

required in a conventional system to establish an artificial link between

Keys and document. As a consequence of this the system beodmes inefficient

in tenns of use of storage media and unnecessaxy crnutation: The'

natural property of association of attribute/argowwt of at ASsociative

133.

parallel processor
151,152

can be, gainfully exploited in information

retrieval applications. The siitQlest solution would involve the storage

of an entire data-base in a large associative n*=ry158 with minimal

data-structure. A subsequent retrieval of docents could be done by a

ocarvarison of Keys with the data-base. Currently a large assoicative

nemry is not an ecrnomic proposition. Many people
153-157 have suggested

a hierarchy of associative nn ry organisation as used in a oxnventicz al

oDnputer system. According to these suggesticns, a reasonably large

data-base would be sotred in a system similar to Content Addressable File
153 Storage System (CAFS)-156.7he CAFS system is a conventional magnetic disc

unit with additional logic attached to it for rapid access of relevent data.

It is revealed that the initial selection of most likely regions of data

could be done by such a system. The final selection of documents would be

performed by an array of associative memory. The scope of this work is

limited to some investigations on retrieval of documents using an associative

nm ry array.

There are two alternative search organisatia s using APP, where

1) a part of data- base is held in the associative mswry
1521-

2) The search data (user profile) is held in the associative

mezmiy. (c - he-F1y)151

The first organisation has the disadvantage of continued loading of the

associative uaory but it allows npxe codex manipulations to be carried

out. Though the converse of these advantages and disadvantages are true

for the second nothod, it has a printaiy. adyantage of cost. Hen r_ for
.

siaplicity, and from an econa dc point of viewf the second: opp, 34;

134.

chosen in the current investigation.

6.1 ONE FLY Techniques of Searching;

In 'On-The-Fly' methods of searching technique, the records

containiryg indices are passed over the top of a 'parallel search' unit.

At the end of each record a test is carried out to examine whether or not

the record, just passed over the search unit satisfies the searching

criterion.

A simplified block diagram of the 'Az-The-Fly'searching system is given in

Fig. 6.1 The user of the on-line retrieval system enters his profile through

the terminal, which is subsequently stored in the associative memory of the

parallel search unit. A character of information from the search file

(index File), as appearing at the read head of rotating disc, is passed

over the parallel search unit and is also stored in a temporary buffer.

When an 'end-of-recore' mark is detected, a special routine examines whether

or not the current record satisfies the user requirement. If the result

is successful, the contents of the tan orary buffer are transferred to an

output file, otherwise, the temporary buffer is cleared. This process is

repeated until the 'end-of-file' mark is detected. Upon detection of an

end-of-file mark, further searching is stopped and the resulting statistics

an outputs are produced.

The parallel search unit mentioned here uses an associative parallel pr'ocesser.

As stated above, the user's profile is stored in associative ngnory for

ouipariscx against data-base. These profiles consist of a set of Keywords

or indices. It is implied that the associative marry should have efficient

135.

Data Phrallel search query
base unit

"I Match hit counter

Temporary
buffer

Out put

FIG. 6.1. ON-THE-FLY searching unit

1. (SCR) Docmnent identifier, ICY 1, KEY 2, KEY 3, KEY n, (FLOR)

2. (SOR) Document Identifier, Docwnpnt Name (BOR)

3. (Sc2) KEY i, Document identifier 1, ... Document Identifier N (EM)

4. (502) Document Name (EC1)

Fig. 6.2 Data Formats

136.

capabilities of string manipulations, And the other requirements52 of an

associative processer are that no restrictions on the length of Keys should

be imposed and it must incorporate a flexible serial search of input

character string. This implies that a byte-oriented variable-record

length APP is best suited for this application. In the following section

variations of search criteria are discussed.

6.2 Search Criterion:

The users of an on-line retrieval system are generally allowed to search on

the data-base with a user defined profile. These profiles consist of a
82,152,157

set of Keywords or indices. A number of different search types

are permitted in a profile: these could include equality, greater than,

less than, between limits, maximum, minimum and a number of others. In

this report a simple equality search is considered. The different varia-

tions of equality searches are described below:

6.2.1 Single Equality Search:

In its simplest form, the profile contains only one Key. The records %hhich

contain (or do not contain) this Key are retrieved. The profile can be

extended to specify more than one Key; but the identification of a record

is made by a simple match hit criterion of presence or absence) of either

all Keys or any of the Keys.

6.2.2. Canbination of Boolean Term-,

In this" type of search a nwbw of Keys are used. Each Key is ootsa ý'ci t!

137.

a Boolean variable or terms. A Search c 'iterion can then be formulated to
1-11,

specify any predefined Boolean expression using these Keys

6.2.3. Threshold Search:

In this case of search, all Keys in a profile are assigned to either equal

or different weights. The respective weights of Keys present in a record

are then stormed up. The record is selected if the addition of weights

exceeds a certain threshold value. In its simplest form, the threshold

search
1-11 can be used for 'm' out of 'n' search criterion. The refinement

can be made for a more amplicated Boolean search expression or to introduce

different emphasis among the Keys to reflect the user's view.

6.2.4. Interactive Search:

In this approach1-11 a number of profiles starting fran the general to the Hore

specific are defined to describe a set of documents. Here the user expects

to limit the number of retrieved documents within a user defined value.

initially the data-base is searched with the most generally defined profile.

If this search results in a large number of documents, the searching process

is then repeated with the next specific profile on the resultant data-base.

This process is continued until either the number of dements less than

the threshold value are retrievedror all defined search profiles are

exhausted.

6.3 Data Format

It has been stated earlier that the efficiency of an IS&R syatan dopw4p +

138.

the data -fcnmat3
5,36,152

of the it is fie. There are four important

types of data foxmat usually used in an ISR. These are shown in Fig. 6.2

and a brief description of this data foznat is given below.

i) The first format consists of a document identifier and a

number of Keywords. The basic retrieval operation is to perform

a Boolean search on a number of Keys, and to obtain those

docunent identifier numbers which satisfy the search request.

ii) This format may be used in conjunction with the one discussed

above. It consists of a document identifier and the full

document name, which contains the information required by the

user. Access is made by the identifier and the name is passed

to the user.

iii) This format represents an entry in an index. As shown, the index

is fully inverted. A Key is given together with a list of

documents identifier which are associated with that Key. Typical

identifiers would be disc addresses of records in format iv or a

mixture of this and other formats.

An alternative interpretation of this format is produced when the

document identifier list consists of a single item or a number of

items less than the total of relevant documents. A multilist11,35036

system is then produced where the records in the document file are

chained together after the first entry point has been given in the

index. These files may also be sectioned to produce a cellular

organisation" '35'36 . In this type of index, the basic ope at 'is

to access on the key and then cbtain records pointed to trau disc

139.

which are then processed as fc ' the other three formats.

iv) This foanat represents the absence of structuring within a

record. The data consists of a single character string. Search

will generally be based on a Boolean canbination of substrings

of the characters.

It could be seen that the search operations on records and indices are

bascially the same, both entailing Boolean operation between sequences of

character strings. The fonnativ. is chosen for index file of IS&R system of

the present work. This requires minimum data-structuring152, and at the

same time the searching process is not restricted to only specified Keys.

On the other hand full docunents could be stored as index (" IC)28-32 and

search criterion could be matched on entire contents of the document.

6.3.1. Index File:

The format of records in the index file is shoes in Fig. 6.3(a). Where

a record is a simple character string, pre-and de-limited by two special

symbols.

The structure of the index file (search file) which is stared in
,a

disc is

shown in Fig 6.3(b). The index file is a collection of records as shown

in the figure. TWo, special symbols are used to demote the start and end

of the file.

Before starting any exercise on the IS&R system a realistic data-base

(index-file) must be created ac oordizx to t hp chosen format. ' it is also

140.

[oR CHARACTER STRING ýEOR

Start Of Record End Of Record

FIG. 6.3(a) Index record format

record
rSOFF SOR - FOR ``- EOF

Start Of File End 0f File

FIG. 6.3(b) Index file format

% KEY1dE% KEY2I%KEY 3* %KEY N '(EOF)

FIG. 6.4. Profite format

FIG. 6.5. Schematic diagram of the proposed
associative searching unit

141.

stated earlier that the cost of the ppa es of creating an index file,

is signigicant; hence considering the expense, it was decided that in

this experiment an index file according to the chosen format would be

derived fron the data-base available from Inspec tape service.
181 The

current and back issues of inspec data-base are available in magnetic

tapes. The distribution format used for inspec tape services is based

on ISO-2709, the international standard format for bibliographic data

interchange.

The file and record layout of inspec systen can be found in Inspec tape

service manual. A brief description of the sane is included in APPENDIX D.

A file is a collection of bibliographic records. Each re(x)rd in a file is

sub-divided in a number of fileds. These fields are numeric and are arranged,

within the directory, in ascending numeric sequence.

The general categories of fields include

1) Control field

2) Subject delineation

3) Personal names

4) Identifying codes

5) Volume and issues

6) Location

7) Number of pages

8) Organisation

9) Dates

anal 10) File descriptions

142.

Each of these fields is further divided ii1 oa nwr ex of sub-fýelds.

And any sub-field may contain mare khan one attribute.

An algorithm to convert information fron an Inspec data-base to a data-base

of simple structure on a magnetic disc unit is developed. The detail

descriptions of this algorithm looks for the presence of a number of

selected Key-fields on each record, Opce the desired fields are located

the contents of those are extractedret the tape and stored in a disc-

base file. Two special symbols are attached in the front and end of

these character strings to separate individual records.

6.3.2. Profile:

It has been stated earlier that an information retrieval system requires
l

. The query conveys its users to make known their information needs to it -10

the statement of required infonnatioin to the retrieval system. It has also

been seen that the query should be expressed in a language similar to the

indexing language. Further various methods of changing the precision of the

retrieved documents are also dicusssed. Finally, once a user decides what

his intention is to be, he can formulate a search equation by selecting a

number of Keywords which are connected by a set of logical operators. On

the basis of this search equation a file called user's profile, can be

created. Zb retrieve doc=ents, this profile is matched against the

records of the index file.

As an illustrative example, a simple search equation, as given below ißt. ,

chosen.

ICY 1+ 'EY 2+..... + Key N

143.

The contents of the profile fox. thi@ search equation is shown in Fig, 6.4

In figure 6.4 it is shvc: in that each Key of the profile is both pre-an

de- limited by two special symbols,, and the delimiters of a negated Key

are preceded by a 'minus' sign. In this case, it could be observed that

one delimiting symbol would have been sufficient to delimit these Keys.

But in other cases (threshold search etc) the character following a Key-

delimiter may contain a, control character (such as weights or Boolean

operators) thus the end of a Key does not necessarily mean that the

character following this delimiter will be the beginning of a new Key.

Hence for generality, two special symbols, % and are used to both pre-

and de- limit a Key. Finally, the entire string of these keys, that is,

the profile is terminated by an end-of-file mark.

Same more examples of profiles could be found in 'sec 6.6.

In the following section score underlying philosophy for the itr1 entation

of an APP based on-line retrieval system is discussed.

6.4 Philosophy of Implementation of On-line IS &R system

There are two major alternatives to tWleuent the proposed IS &R $yatem.

In the first approach a special pitpose hardware
, could, be designed with

adequate software to achieve an efficient and dedicated is &R system.,

The advantage of this system would be its better performance as an IS &R

system,, because it was specifically intended to perfcem : this . special Work.

And the disadvantages of any-Special pose systems also apply in this

case, which are mainly oarwerned with the cost and tim c1 s valcpiz 'a

new system. Moreover, presently, au £ic it info nation about App based

144.

IS &R system is not available. Heroe, a first-time attempt to

implement a special purpose hardware may contribute to many undesirable

effects. On the other hand a modest approach of simulating the proposed

system, utilizing existing facilities at Brunel University, seems more

practicable. It was initially intended to examine the system requirements

and to evaluate the operation of APP in IS &R applications. Finally

with a well defined system specification, which is derived from the above

experiment, a dedicated stand-alone on-line information storage and

retrieval system could be implemented. In the light of the above discussions,

a hybrid computer simulation for the implementation of on-line retrieval

systems was chosen. This proposed simulation consists of associative

memory hardware with a specially developed software to accomplish other

functions.

The block diagrau of Fig 6.5 shows sane itrportant canponents of the proposed

system. Here a tele-type writer and graphic terminal are used. as interactive

terminals for on-line IS&R system. The tele-type accepts both control and

user data (profile). The set of disc units are used as a back up store for

both input index and output files. The associative memory array is used

as a parallel search unit. The line printer provides hard-copy printouts

for the output files. The PDP 11/40 processor177 and core merory are

utilised to simulate the control structure and input/output buffer of the

IS&R system. The allocation of core mengry of PDP 11/40 system is shoes in

Fig. 6.5. The RT11180 system and Keyboard monitor are permanently kept in

the memory to respond to any general RT11 system control. The IS&R control

program co-ordinates the simulated sys n. From tte.. deacript$on of to-the-

fly search technique it could be seen that a direct link between the disc

and APP is required to maintain a steady flaw of data between than. But

145.

RT11 System software
and Keyboard monitor
Control program for
associative searching

INXBUF1 INXBUF2

TEMBUF

OU TBUF

FIG. 6.6. Memory allocation

Retrievalsystem

control program

Control program
For API sequence
and interpreter

F I0.6.7. Hierarchy of control program

146.

presently at Brunel University hardWär'e facilities to enable such

direct transfer of data between the disc and the APP do not exist.

On the other hand, all data transfer operations are carried out through

an intermediate buffer area, mich is specially allocated in the core

memory. To reduce the waiting tine in between the transfer of two blocks

of data fron the disc unit a double buffer schene180 is adopted. In this

arrangement while data fron one buffer area are being transferred to the

APP; the other buffer area is simultaneously loaded fran the disc unit,

using data-break techniques. The buffer areas INXBU'1 and INXBUF2

are allocated for this purpose. Similarly, other buffers are set aside

for storing profile, output file and associative memory maps (See section

5.5.2.). The sequence of associative memory maps are dumped in a separate

output file to provide debugging and feed-back information, to improve

performance of the system. The function of 'TEMBUF' (temporary buffer) is

to provide an intermediate storage between index and output file transfer.

The character strings which are passed on to the search unit are simultaneously

starred in a first-in-first-out, type to porary buffer. When a record satisfies

the search-criterion the content of this temporary buffer is transferred to

the output file, otherwise it is cleared.

6.5 Software and Control Structure:

It has been seen from earlier descriptions that the operation of an an-line

retrieval system cax * isea of three major sequences.

During the initial sequence of operatiion the description of input files,

such as irx1 c and user lwofile, are Specified.

147.

In the next sequence of operation, t march operation is carried out on

the index file and the matching recxrdi are stored in an output file.

During the final sequence of the operation the output file is made

available to the user. The other output file containing the memory maps

could also be referred for debugging operation.

The input and output operations of the system involve conventional file

storage and transfer function. Hence, a control program, which includes

conventional file transfer operations as well, satisfies the requirements

of the proposed system.

The searching and match resolving operations of the system are carried out

in the associative parallel processer. Thus algorithms to perform these

operations, along with the initial loading of the associative nuiory,

involve associative processing. In the following paragraph, the underlying

philosophy for implanentation of the algcritYms, which uses associative

processing are discussed.

At Brunel University research is being currently carried out to develop a

suitable machine oriented to higher-level language, for the existing BO-VI

APP systen. Unfortunately any intermediated languages, excepting simple

API sets, are not yet available. Thus, at the time of writing this report

the only choice open was to use simple Associative Processing instructions,

as described in mix B. This simple instruction set does not include

any control structures, such as unconditional and cor4itional transfers of

control. Hence, all these necessary control structures, to liniment

al9crithans containing API's, Would be embodied in a special 'control

148

program. This control program would assist to maintain the sequential

flow of API. This stream of API's, as they occur, are individually

interpreted. The interpreter consists of a set of routines which are

used to execute an API by transferring proper sets of information across

the interface to enable the hardware to execute an API.

Fran the above discussions, it is realised that two sets of control

prams should be incorporated within the proposed simulation. The

hierarchy of these control programs are shown in Fig 6.7. These include:

1) System control: - This provides all input/output

and system control operations.

2) APP interpreter and API sequence control: -

The function of this control is to provide an

appropriate system control for the algorithm,

which uses API's and to interpret APIs so that they

could be executed by the APP simulator.

In section 6.6. algorithms for the praposed simulations are discussed.

6.6. Algorithns:

In the previous section the data structures used in an on-line retrieval

system are discussed. In Chapter 5a byte-oriented VRL-APP suitable for

the parallel search unit of a retrieval system is both specified and

described. In this section operational requirements of an on-line retrieval.

system together with their respective algorithms are discussed.

149.

In an on-line retrieval system, three majar operations are involved;

these are:

1) input

2) output

and 3) search

1) input operation: - During this operation a user specifies his profile

or he can enter his profile directly fran the console typewriter.

The user is also allowed to select a file fron the file-set of the

data base as an index file (Document file).

2) output operation: - At the completion of a search operation, two

output files are produced; these are:

a) output file

b) Associative nary maps

a) output file: - This file c fists of all documents which have '

been selected as an outcome of a successful search cpexation.

b) Associative memory maps: - Whenever an operation is carried out on

the associative manory, a mKolary map (see Sec. 5.5.2.) is i

produced. This file contains a sequence of such mcßoxy maps.

The contents of this file, thus provides a very useful feed-

back information to verify, debug and improve the search

algorithms.

During the output apexation the above mmtioaed files could k)Q,

transferred to any deg ct 4ev ce.

150.
II

1

Fran the foregoing discussion it has been peen that the input and output

are similar to conventional file-transfer operations. Hence no further

descriptions of these operations are given. In the following subsection

an algoritu for the search operation is described.

6.6.1. Algorithm for search operation:

The flow chart of Fig. 6.8 shows the basic sequence of operations during a

search mode of IS&R system. A brief description of these follows: -

6.6.1.1. Initialisation:

During this phase of the operation, the following initialisation steps

are carried out.

Step 1: - clear associative may array and match hit counter

and other buffer areas.

Step 2: - open user profile for loading it in associative

n nory.

Step 3: - load user profile in associative manory

step 4: - open index file for serial transfer to the parallel

search unit.

The transfer of a character string frcm an index file to a parallel search

unit is carried out serially; one character at a time. When ,s transfer

operation proceeds, a ht wad cc soft re trap looks for the occurrance

of four special symbols. These are;

151.

f-I G. b. 5 .- Algorithm for search phase

152.

i) SOF (start-'. 1e

ii) SOR (start-of-recc cd)

iii) E OR (End-of-record)

iv) EX (E d-of-file)

As they appear on the transfer line, the current routine is interrupted

according to a predefined priority. The control is then transferred to

the interrupting routine. After step 4 of the initialisation routine, the

program waits for the occurrence of a special symbol to transfer the control

to one of these four subroutines. Each of these sub-routines can operate

independently, and continues to do so until, either it campletes the job

assigned to it, or it is interrupted by other higher priority symbols.

The selection of a document in the proposed associative retrieval system

is carried out by a two part algorithm. During the first part of the

algorithm, the 'oanpare' subroutine (see Section 6.6.1.3.) is used to

mark the occurrences of a Key in the currently scanned record. The next

part of the algorithm, 'Dociiuent Hit' (see Section 6.6.1.4.) is called at

the end-of the scanning of a record. This verifies the validity of the

current record by evaluating the search criterion.

In the following sections the operational steps of the subroutines SCE ,

SOR, EXR and E OF are described.

6.6.1.2. Start of File s

During this operation, the id tüiCatica of the index file is transferred

to the output file. The flow-chart of the algorithm is *U : Pm in the gig.

6.9

153.

FIG. 6.9. Flowchart tor SOF algorithm

SOR

Initialize A. M

Read the next
incoming charac

Transfer it to TEM

on EOR/ EOF
interrupt

Transfer the char
to Parallel search U.

CALL
Compare algorit

FIG. 6.10. Flow chart for SOR algorithm

1 54.

6.6.1.3. Start of record;

The flow-chart for this subroutine is s hown in Fig. 6.10. In this

subroutine the search operation on the inouning docunent is carried out

by a 'ccuipare' routine. The function of the compare routine is to mark

the presence of any desired Keys in the current document. The marking

of the presence of a Key is cone by writing CB4 =1 in the corresponding

Key delimiter. This operation continues until an end-of-record or end-

of-file is detected, and the control is then transferred to appropriate

subroutine.

6.6.1.4. Er1-of-record

This routine is entered on detection of an end-of-record mark to verify the

validity of the record just compared. The flow-chart for this algorithm

is shown in Fig. 6.11. As described in section 6.6.1.3., at the completion

of the start of record subroutine, the presence of the Keys in a document

are marked. In the end-of-record subroutine a special routine, called

'Document Hit', is entered. The function of the document Hit routine is

to verify whether or not the search criterion is satisfied by the current

document. If a document satisfies the search criterion, a 'Document Hit'

flag is set.

The other functions of the end-of-record routine on a successful 'document

hit' operation, are to transfer the docent to the output file and to

incranent the match hit counter,

155.

FOR

Coll
Document Hit routine

<DHF 0

Inc. Match Hit counter

Transfer
(TEMBUF)-OUTBUF

Clear TEMBUF, DHF
Initialize pointer

A

FIG. 6.11. Flowchart for FOR algorithm

156.

LEOFD

(Matchhit CTR)-OUTBUF.

Close 1/0 files

Print message

(eturnM)C

FIG. 6.12. Flowchart for E OF algorithm

CLEAR

Search for all words

Write '0'

FIG. 6.13. Clear routine

6 .6 . 1.5 . End-of-file.

157.

Detection of End-of-file mark indicates that the ccupare operation on index

file has been canpleted. The End-of-file routine is called to terminate

the current search operation and it also provides sane important statistics

of the terminated search operation. Figure 6.12 represents the flow-chart

of the end-of-file routine,

6.6.2. Details of the Algorithm usirrj Associative Processing Instructions

In this section, the algorithms which include API are first described with

a flow-chart. Then the corresponding API's are listed. The algorithms,

which use API's, are 'clear AM' 'Load AM', 'ccnpare' character string and

'Document Hit'. These 'compare' character string and 'Document -Hit'

algorithms may vary with different search equations of the user profile.

Here, to illustrate these algorithms, a simple'example of Boolean 'OR'

operation of all Keys in the user profile is chosen.

6.6.2.1. Clear (Associative ! Lam)

The f low-chart of Fig 6.13, show the clear gceration.

Algorithm: -

Step 1: Gear all n pay -W=d.

Step 2: Return

158.

6.6.2.2. Load: (Associative Ii ory)

Fig. 6.14 shows the flow-chart fcr the Load associative ne=ry operatics.

The loading is terminated either when the user profile is exhausted or

an overflow of associative memory has occurred. In the last case an oVer-

flow message. is first printed and the present search request is aborted.

The Keys, which are specified for cc lament operation (NOT KEY 1=I1;),

are represented as % KEY 1-# in the user profile. And corresponding

Key delimiters are stared in the associative memory with their control
3

bit 3 (C83) set. to 1, for example the AM map is: % KEY 10'

Algorithm:

Step 1: Isolate the first word row. (By writing CB1=1 on

the first word row).

Step 2: Read the first character from the user profile.

Step 3: Load the first character and CB1 =1 in first

word raw.

Step 4: Read the next character from the user profile.

If end of profile is encountered go to Step 12.

Step 5: Check far cc np1ut nt sign. If cc nplenent sign

has occvxed go to Step 7.

Step 6: Get the last occupied s d-rcw in AM.

Clear all CB1 (wrj. ter Cal=O). Write the

character and CBl=1 r, the right neighbouring

wed crow. Go to Step 9.

159.

LOAD

Write CB1=1 in the first
word of A. M.

Read the first character
of profile

Load CH+CB1 in the
first word of the A. M.

Read the next character

ýý> E yes
rofile)

no

no CH_, _,
es

Return

Load theCH+CB1 in II Get the nex t character
the next location

Load the CH+CB1 +CB3 3
in the neA4 location

no A. M\
overflow

yes

Print error mess.
abort & retun

FIG. 6.14. Load Profile routine

160.

Step 7: Get the next character.

Step 8: Get the last occupied word-row in the AM.

Clear all CB1

Write the character, CB1=1 and CB3=1 on the

right neighbouring word row.

Step 9: Check for associative mmory over-flow.

If overflow is set; go to Step 11.

Step 10: Go to Step 4.

Step 11: Print associative memory over flow message.

Abort the present search request.

Step 12: Return.

The API's used for operation of the steps 1,3,6,8 of the load algorit t

are listed below.

Step 1: -

APIL1: -W* 1XXX * ? O, CX 0000 0 OSO N

; write CB1=1 to all word rows.

API L2: -W* O)OIX * 1XXX 0000 0 OOD N

; write CB1=0 to all but the first ward-row

161.

Step 3: -

API L3: - W ch 1XKXX * 13OCXX 1010 0 QS0 N

; write th + C81=1 in the' first word row.

Step 6: -

API L4: - W di 1X * 1XXX 1010 0 OOD N

; write ch + CB1=1 in the right neighbouring word raw

Step 8: -

API L5: - W th 1X1X * 1XXXX 1010 0 OOD N

; write ch + CBI & CB3 in the right neighbouring word row.

6.6.2.3 Start-of-record: -

The initialisation of the associative =mory, prior to the conpare

algorithm, is done by writing zero to the control bits Cß1, CB2 and

CB4 of all word rows. The API for this operation is given below.

APIS: W* 00X0 * IX 0000 0 OSO N; write 081,2,4 =0 in all word raA.

6.6.2.4 Ccaparn Algc>rittun: -

The main functicn of the ' ompare' algorithm is to find the presence

of a Key within the record currently crux exat tinaticn. This is

performed by anparing the. inoming character string with the Keys stored in

fey curýtt docýaeýt
.

the associative n czy. If a desi=4 ` is found in d* ,..,,

the presence of -this Key is masked by writing C84 =1 in the ogrrsspqndin9

162.

Key delimiter. This function of ixe algorithm is carried

out in three different steps. During the first step, the first

character of all keys in the associative ue. n iy are enabled by writing

CBI = 1. Then all characters, which are marked by ®1 =1 are cx pared

with incoming characters. At the end of this operation the information

on the control bit 1 of the matching 'characters is transferred to

the next character of the Keys. Otherwise the control bit i's of the

character sequence are cleared. Proceeding in this manner, when the

control bit 1 hits a key delimiter symbol, it indicates the occurrence

of that Key in the current record. This information is stored by writing

(B4 =1 in the matching Key delimiter. The flow-chart for the cmpare

algorithm is shown in Fig 6.15.

In this paragraph the compare algorithm is illustrated with an example. It is

assumed that a user wants to locate all documents containing either KEY 1 or

KEY 2. The contents of the associative memory corresponding to this user's

profile is shown in Fig 6.16. It is also assumd that a record containing

the character string of Fig 6.17 is under the read head of the disc taut.

It has been stated earlier that three instructions are required to process

a single character from input index file (record) . The contents of the

associative memory during each steps of the oorpare algorithms are shown in

Fig 6.18 and API's requited for this algorithm are listed below.

Step (a) W* 1X)IX % X70OC 0000 0 00D N

; search for Key preUmitsr (%) ; write C B1 =1 in right nai9hbQur$

of the matching word. This enables beginning of each Keywords

in the profile to be a to for taking part in the n tch

vperaticn with the' Uwc M,. xºg c tacler.

1

COMPARE

Write CRI in the first char.
of alI keys

Compare incoming CH+ C61
clear all CB 1
write C81 in the right neigh

Mark keys (write C94) ifO31
hits the key"dolimiters
clear CB1

FIG. 6,15. Flaw ehrt for Compare algorithm

164.

%K EY 1 °/QK EY 2A

FIG. 6.16 Contentsof A. M.

(SOR) KEY, 1, K EY5, -" -"""(EOR)

FIG. 6.17, Character string under read head.

%KEY 1#%KEY 2#

incoming
characters

a) 11

K b) 11

C) 11

E -- --- '-

Y ---... -

165.

(b) W* 1XXXX ch 1X OC 1010 Q QQP N

Search the , incc iirg character (ch) and C61=1; clear all CB1;

write CB1=1 in the right neighbour of the matching word-rows.

This permits a Key (string of characters) to compared

sequentially.

(c) W* OXX1 # 1QIX 0000 OSO N

; search for a Key delimiter # with CB1=1, Write CB1=0, CB4 =1

Write CBI=O, CB4=1 in the matched word. This establishes the

presence of a Keyword in the record.

At the end of the operation occurrence of 'KEY 1' in the current record

is marked by writing C, B4=1 in the ca Alex symbol of the delimiter of KEY 1.

Similar operations can be parallelly carried out on all Keys of the profile.

At the end of a record, the occurrence of relevent Keys are marked by CB4,

and Document Hit sub-routine is called.

6.6.2.5 Document Hit Algorithm

The function of the Document Hit algorithms are to varify the validity of

record under consideration. When the re=d satisfies the desired search

criterion the 'Document Hit' flag is set. There are various possible search

equations; and correspondingly many Document Hit algorithms. Some of these

Document Hit algaxitYms are described in this sub-section.

1. IAGICAL 'Ct' Operation: -

Let us considera profile c nta ing a number of Keyaf say Key 1,

Key 2" Key 3. Key 4. The State o the associative mex y 4t the

166,

%K EY 1'%K EY 2di%K EY 34 %KEY 4*
4 4

FIG. 6.19 Content of A. M. at the beginning of
document hit algorithm.

start

R* xxxxixxxl 000000SO N

R

1-+ DHF

FIG. 6.2o DOC. HIT Logical OR
("--Sta-rt--)

search for i+c84= Q

MR

0

i-+DHF

147,

beginning of the Doct not Hit "Ithm is shown in Fig. 6.19

In this particular case the search equation is

DFB'=KEY 1 +KEY 2+1cEy 3 +i 1 4.

Here the Document Hit algaritkn (Fig. 6.20) looks for any

occurrence of Key delimiter with CB4=1. This is done by

performing a' dummy 'Read' instruction as shown below.

R* XXXX # XXX1 0000 0 OSO N;

The execution of this instruction provides a match reply MR output,

indicating the presence of a Key in the document. As in this case,

mgt = 1; the document hit flag is set.

(2) Logical "AND' operation: -

Considering the previous example, the content of associative mnory

is shown in Fig. 6.21 Here the search equation is

DHF = KEY 1. KEY 2. KEY 3. KEY 4.

The corresponding algorithm is given in Fig. 6.21 Here the algorithm

looks for absence of any of the Keys. The steps of the algorithm are

explained below.

Step 1. Search with CB4 = 0; Read

Step 2. It match reply U; et Document Hit flag

Step 3. Return.

16 Q"

%K 1-A%K 2'
33
4

FIG. 6.22

start

search +CB 3+ CB4

write CB1=1 & CB4=0

search ß, Cß1=0 &CB3=1

write CBI=1

FIG. 6.23 Complement negated keys

o%oK 1 W%K 2 Al
-3 3

Initial state 4

API: -

Step 1. R* X{)QX ' XXXO 0000 0 OSO N;

To interrogate match reply.

Step 2. If MR = 0; set DHP

Step 3. Return

(3) Logical 'NCIP' Operation:

The Fiq. 6.22 shows the contents of the associative memory at the end

of compare operation. Here occurrences of the Keys Ki and K2 are to

be negated. The algorithm is shown in Fig 6.23 and corresponding

steps are explained.

Step 1. Search for occurrence of Key delimiter with negation.

Write CBI =1 and CB4 = 0, on the match word.

Step 2. Search for non-occurrence of negated Keys; mark then

by writing CB4 =1

The corresponding API's are given below

API1: - W* 1XX0 XX11 0000 0 OSO N

API2: - WX1' OX1X 0000 0 OSO N

169,

At the end of this algorithm occurrence of all negated Keys are

ca plamented, (Fig. 6.24) These could be. now treated as single Bolean

variables for further logical 'OR' or . 'AND' operations,

(%K 14%K 2) ' (%K 1�ß%K 2 E) (%K3#%K4#)
33

FIG. 6.25 Contents of A. M.

%K1 #%K 2#) -*'Yoi %K 3#%K 4,)
Initialf 3 3
state L .4

4 4

API 1 4
3 3

API ,2
3 3

4 4

API 3 3 3

4 4 44444 4

API. 4 MR =1

FIG. 6.26 Contents of A. M. during document hit (s-o-p)

Algorithm.

(4)Document Hit Algorithm for gereXai. ised 'Boolean equations-.

Two generalised Boolean equations of search Keys are considered here.

These are

a) Stan of product teens

b) Product of sun teams

In these Boolean equations restrictions on nu er of appearance of a Key

in either true of negated forms are not imposed.

a) Stun of Product terms:

A typical Document Hit equation for Keys is given below.

DHF = K1. R-2-. + K1. K2. + K3 M.

This search equation is stared in associative mawry as shown in Fig

6.25 In the Fig6.25 terms within the parentheses are product

terms and logical siimnaticn are to be carried out with the terms de-

limited by brackets. The Fig. 6.26 also shows the contents of the

associative memory at different phases of Document Hit algorithu.

The Document Hit algorithm for this logical equation is sham in the

flowchart of Fig. 6.27 and the co responding steps are explained

below.

171,

Algorithm: -

17x.

start

Complement the I
negated keys

search for W &CB4=0

" write CB4on near ')'

search for ')' &CB4=0

MR

1

1---9mD HF

FIG. 6.27 Flow chart for sum of product terms

Step 3. Check for the prei of any product term.

If none present go to Step 5.

Step 4. Success, set Document Hit flag.

Step 5. Return.

The API's used for this algorithm are given below.

Step 1: a) W* 1XXO i- XX11 0000 0 OSO N

b) W* XXX1 # OX1X 0000 0 OSO N

Step 2: W) XXXX # XXXO 0000 0 OOD G

Step 3: R* X00{) XIXO 0000 0 OSO N

If MR= 0, go to Step 5.

=1 Step 4: Set DHF

Step 5: Return

b) Product of sum; -

173'

A search equation involving product of sun terms is given Belo q.

EUF =(Kl+ R2) . (Kl + K2). (K3 t K4)

The corresponding profile is given in Fig 6.28 here the terns jxcludpd

tee in brackets are sum terms, and the product of t% sum. VZO

17 4.

K1 %K2-X) %K. 14#%K2a*) %K3A%K4
3.3

44444

FIG. 6.28

start

Complement the
negated keys

search for-40 & CB4
write CB4 onnear'i'

search for '1'&CB4=0

MR}

TO

DHF

FIG. 6.29 Flow 'short' for product of sum terms

175.

delimited by brackets.

The flow-chart of the algorithn is shown in Fig 6.29. The Fig. 6.30

shows the contents of the associat4ve memory at different steps of the

algorithm.

Algorithm: -

Step 1: Canplenent the negated Keys

Step 2: Mark the presence of sum terms.

Step 3: Check for the presence of all sum terms.

If not, go to Step 5.

Step 4: Success, set Docunent Hit flag

Step 5: Return

The API's used for this algorit1n are given below:

Step 1: a) W* 1Xx0 XXIl 0000 0 OSO N

b) W* XXXi 4 OXIX 0000 0 OSO N

Step 2: W) OOO((XXX1 0000 0 OOD G

Step 3: R* XXXX) 7IXX0 0000.0 OSO N

If iii =I go to Stoma 5.

(%K1; ß%K2 *) (%K144%K2) (%K3#°oK4)
Initial 3 3

state 4 4 4 4 4

1 1
API 1 3 3

4 4 4

1 1
API2 3 3

4 4 4

r11
API 333

L444444

API4 MR =p

44 44 44 44

FIG. 6.30 Contents of A. M. during document hit

product-of- sum terms) olgorithm

II I,

Step 4: Set DIS =1

Step 5: Return

(5) Threshold Searches: -

A generalised profile for threshold search is shown in Fig. 6.31 where

Ki's are the Keys and Wi's are their respective weights.

In the threshold search a threshold value is initially stored in the

threshold register. And the weight Wi, corresponding to occurrence of

177,

a Key Ki, is subtracted fron the contents of the threshold register when

thisprocess produces a zero or negative result in the threshold register, the

record is considered to be satisfied the search equation.

(a) M out of n: -

in this type of Doc n ent Hit algorith up equal weights are assigned to all

Key. It is generally normalised to 'Cne'; and hence Wi could be aaitted

fran the profile. The threshold value, that is, 'm' is stored in the threshold

register. And 'Cne' is subtracted from this register for occurrence of each

Key. The algorithm for this Document Hit operation is shown in flow-chart

of Fig 6.32 and explained bell :

Step 1: Transfer threshold value to threshold register

Step 2: Canplst ent the negated Keys

Step 3; Resolve the left-moot ray, if no match reply occurs

go to Step 8.

11
1

%K 1 4-1W1%K2*W2 ""-"%KN#Wn

FIG 6.31

start

Transfer threshold
value to threshold

Complement the
negated keys

Resolve leftmostmatched
key; disable it.

MR 0

1
[Substrocti'

from fhres. reg

no T=0?

1 1-ºDHF

FIG. 6.32 'm' auf Of `fl'

17ý,

ii
1

ý7ýf

Step 4: Subtract 11' fFgm @ told register

Step 5: Check if contents of threshold register is zero

or negative. If true to to Step 7.

Step 6: Repeat steps 3 to 5.

Step 7: Set 'Document Hit' flag to 1

Step 8: Return

The API's used in this algoritkun are given below:

Step 2: a) W* 1XX0 J[XX11 0000 0 OSO N) Complement the
Negated Keys. b) W* XXX1 3g OX1X 0000 0 OSO N)

Step 3: W* X1XX 4' XOX1 0010 0 OOD T; resolve the left

most matched Keys.

If MR = 0; go to Step 8,

Step 4: T= T-1

Step 5; T .0 1f the, to to Step 7.

Step 6: Go to Step 3.

step 7-. set tW 1

Step 8: Return

11
1

ýýý

(b) Threshold Function (variation of r4a is on Keys o Boolean function)

The algorithm for this Docun nt Hit operation is similar to previous

algorithm. However, in this case sate additional steps are to be included

to read the weight of a Key from the associative memory. Here, it is

assured that the weights of a Key are store in one word-raw. The algorithm

for this Document Hit operation is shown in Fig. 6.33 and explained below: -

Steps of algorithm: -

Step 1: Transfer the threshold value to the threshold register.

Step 2: Canplanent the negated Keys

Step 3: Shift the validity bit (CB4) of the Keys to the right

neighbour.

Step 4: Resolve the left most Wi. If no match reply; to to Step 10

Step 5: Read the resolved woad; and clear its validity bit (CB4)

Step 6: Substract Wi fran T

Step 7: If T is zero or negative go to Step 9.

Step 8: Repeat steps 4 to 7

Step 9: Set Docent at flag to 1

Step 10: Return.

The API's used for this algorithm are given below: -

Step 2 a) W* 1XQ O it XCI1 0000 0 OSO N; lawt negated
b) W*)QQC1 O=' 0000 0 OSO N) Keys

Step 3: W* QCX1 X MU 1010 0 OOD N; shift Validity bit

an to the wed containii the weights.

CStMýt
[Transfer

threshold val. tý'Theg"

Complement the negated
keys

Shift CB4 toright-neigh-
bours

(Resolve left most matched
Wi

M R0

1

Read resolved w, i
disable it.

T: T-Wi

no 0

yes

1--º DHFJ

FIG. 6.33 Threshold Search.

181.

}

Step 4: W X1XX * c9 0000 0 OOD T; resolve

the left most weights.

If NR = 0; go to Step 10.

Step 5: R* XQ0 * X1X1 0000 0 OSO N; Read the resolved

weight.

Step 6: T= T- (DQR) i (DOR) = Wi

Step 7: Test T0; if true go to Step 9

Step 8: Go to Step 4.

Step9: Set DIS'=1

Step 10; Return

(6) Interactive Approach: -

In an interactive approach the user wants to unit the number ofretrieyed

documents to a threshold value. iahen total nunber of documents retrieval

exceed this threshold value, he cap specify a new set of index and prgfile

to initiate a new search ope ration, This can be done by either , ma'lua

interruption or autcMati, a transfer of control. In the latter case, at the

detection of ' end-of-file' symbol match hit counter is compared With the

threshold value. When it_ is greater tb* #p aashold valua, the out, fies 9

is assumed to be the new ire f414,94 tthe. r xt more preciso1y cfn4 profile is

loaded in the ass iatiye m gpry. W44 raew -
is epeatad until q th . ale

than the desired. nuo er of dc
_ xi ed

processed.

Y

l$ýý

6.7. Implanentation: -

The on-line retrieval system was it lemented by using the APP anulation

as described in Chapter 5. The progrqtInirg of this enulation was carried

out using the assembler code of the PDP/1}/40. The control programs for the

on-line retrieval simulation were also developed using this assembler

language.

A top-down approach was adopted to develop the software for the system. In

this approach each part of the program is portioned into a number of

hierarchical levels. The first level of control programs are general.

And these controls only establish the flow of control. In the subsequent

levels, functions of various routines are carried out. Hence, the

canplexity of programs increases at each lei,, e1.

The flaw of controls, within an algorithm using API, are carried out by

a second level of control. This interpreter accepts an API, as pointed by

an API pointer, and executes this API. At the caipletion of an API, the

interpreter monitors the feed-beck s gnat run the hardware to enable .

further sequencing of APIs. In addition, the interpreter was used to arfad

the content of the associative memory to produce a memory map. This facility

is initially incorporated to var i the validity of algorithms, and cc A

be easily reeved if desired. The detail operation of the control it

simulator for the APP is given in Chapter 5,

In the following dismssion sca le CiArAt Cnal steps foir the OA-iix* 'R �eeva1

system is described. As stated ea Ue ,t on-line retrieval system

performs three basic operations: Input, output and search. Transfer of

control to a particular mode of a ratj. txi is dare by the M046 oontrQI

184,

command as shown in Fig 6.341 I . t. 341i' he system waits for a made

control camland frgm the console teletypewriter. When a control command

is entered at the console terminal, the control program is switched to the

corresponding routines. At the completion of a mode of operation the

control is transferred back to the initial waiting state. A brief des-

cription of each mode of operation is given below.

1. Input(I): - when the input mode (I) is entered the control is transferred

to the input specification program. In this mode of operation the user

is requested to define his index and profile.

2. output (0): - In this mode of operation the user can specify and

desired device, where the the output files are to be transferred.

3. Search (S): - During this mode of operation, On-the-Fly search of the

index file, against the user profile is carried out according to the

algorithm described in the sectian6'6This also provides a number of

different options, where the user can select a particular searching criterion.

on successful operation, the program terminates by showing the total number

of retrieved records and also produces two output files. one of these

output file contains the bibliographic information of the matched documents.

And the other provides a continuous record of associative memory maps. These

manory maps help to debug and improve a gorit1ins used in the system.

4. Exit (E): - This mode teaminates current session of the on-line retrieval

system simulation program and the control is transferred to the 'Key board

minitar program of the RT 11 cpwatlmg system.

1.8,

FIG. 6.34 Control program for the associative
retrieval system simulation.

ý.

186,

6.8 Discussions: -

The purpose of the present exercise was to carry-out a feasibility study

of using an APF in an on-line retrieval application. The first phase of

this work was to develop an on-line retrieval system, based on structure

free data-base, utilising current resources available in 'APG' at Brunel

University. This inter-active system was then used as a vehicle to develop

and improve algorithms for such a system. Finally it was assumed that

this application study would provide a basis for an evaluation of APP based

systems when canpared to its conventional counter part.

In this chapter underlying design philosophy and implementation of such a

system are described. The simulation performs on-the-fly search of Keys,

present in an user profile, against a bibliographic data-base. The current

investigation was restricted to the search-part of the problem. The

problem associated with creation of a new data-base and consequent maint-

enance of the data-base were beyond the scope of this work. The implemented

system was initially constructed as a one user terminal. But it could be

easily extended to accept many user terminals, working on either tome'

sharing or batch processing mode. The batch processing mode would be

particularly useful to provide SDI and current-awareness services. In this

simulation study a simple search equation (logical smm. ilätion of Keys) as

described in the section 6.6 is i len ted, he algorithms for other proposed

search criteria are also included. In the light of present

experience, it has been seen that APP can provide a very flexible on-line

retrieval system. The only difficulty of using an APP system is. the

unavailability of hardware. Hc»iever,, a project for imple[nentativý of micro -

APP 182
on a single chip has been currently undertaken by researchers at

187.

Brunel University. Whena 1c a stem ig readily available, t

can be used to replace a major portion of the software of the current

simulation. on the other hand a cupletely dedicated stand-alone, on-

line retrieval system, based on APP, can be devised. In such a APP based

system, score inconsistencies in the user Keyword can be easily absorbed.

Further increase in the softness of the system can be achieved by allowing

fora set of fuzzy matching algoritlms. Thus it is expected that an APP

based system may lead to a very efficient and flexible on-line retrieval

operation.

CHAPTER 7;

CCNCLUSICNS

In an attempt to propose a cost-effective searching mechanism suitable for

an on-line bibliographic retrieval system a survey of the conventional

searching techniques has been carried out. This survey shows that the

oc lexities of internal file - and data-structure are associated with

the improvement of the response time of the system. These a itp]. exities

lead to a degradation of the cost-effectiveness of the system. The usefulness

of the two-level hierarchy of data-base has been observed. It has been

shown that among all data-structures employed in an inverted file, the

performance of the cellular serial file-structure is optimal.

The various possible alternatives of associative retrieval systems are

studies. The 'CN-ME-FLY' seardzing techniques using a BO-VRL-APP

system has been selected as a cwt-effective searching mechanism.

A survey of associative parallel processor has been done. This includes

architecture, operations, harcIaare, software and applications of an APP

System.

It has been stated earlier that a formal specification for the BO -VEL-APP

system has to be derived before the itp] entation of an associative

retrieval system. A simulation of the BO-V -A00 system has bei diavelopedo-

This consists of a oocdýinatia of handwarm. associative nu ry array and

the software of a general paupoee -amputer.

189 9

The hardware emul atian of the y; it was inpleuer ted by l Natul

Gates' and was available at BrUMi Iniersity. This ocaprises

i) » (Associative Menory Array) ii) BCL (Bit Control Logic)

iii) WCZ (Word Oontrol Logic) iv) Data routing rmgiatera

A software system has been developed to Simulate

i) micro-order generation logic ii) Ccntrol Unit

iii) Program snore iv) I/O facilities

of the HO-VRLr-APP system.

A two-way cannnication link for transferring data and control signals

between the Associative menniy hardware and the PDP 11 system has been

established.

A provision for bulk initialization, loading and reading of the associative

memory has been included.

Zb monitor the status of the associative u nr ry hardwaxe them l: y map

has been designed. The contents of the entire associative menoxy array

along with the data and control signals transferred to and Exam the hardware

are displayed by the meppry mad.

The facilities for
. specifying arg muito8ng arg Associative $roomau g

InStructiaz and a asquenga of Dynawdc-- a&v-Orders have been inmsporat ä.

zhe API' a. are auf matt tally op vexted by a special softawaxe aU zu to

provide a desired a binaticn of data and static-Micro-oxdd.

190,

Execution of an API has been flt1i transferring the specified $14)'s

and W's to the hardware. The V . tf ice tfon of proper execution of the API

was dare by canparing suacesSive zn ry paps.

The above experimental steps have been repeated for the entire set of

proposed API's. Thus, this has not only tested the feasibility of the

proposed API set, but also proved the logical operation of the DO-VRL-

APP system. As the result of these experiments, a formal set of precise and

unanbigous API's has been specified.

The software facility has been extended to accept an API from the tele-type,

where upon the desired sequence of DMC)'s are generated and the instruction

is executed.

The software sinviation has been further i ved to accept a number of API's.

A buffer has been allocated to store up to sixteen API's which are then

executed sequentially. Two 'switch Register' options have been includ&"

these allow

1) A hard copy of mawry map to be printed out at the

cýnpletion of each API,

2) Repeating the execution of the set of API's starred. in the

instruction buffer.

A main achievement of this expert was the establishment of a well defined

logical structure and unambiguous specification of API net for a HO- G-APP

system. On the basis of this remil tA Micro-APP has been pcC c, C1 x lX:

191,

an ATOP contract has been undertaken to. i lammt the proposed Micro-FOPP.

This will be developed as a joint, venture between Brunel University and

Plessey and will enploy Schottky 12L technique.

The 'QN-'rHE-FLY' searching technique utilizing a BO-VRL APP as a 'parallel

search Unit' is chosen far the implementation of the proposed associative

retrieval system.

The simplicity of flexibility of the data-structure employed in the index and

profile have also been demonstrated.

A program to acquirethe desired fields fran the inspec magnetic tape service

has been developed. This enables the creation of a realistic data-base of

chosen format on a disc Unit.

The simulation of the associative retrieval systen has been develcced. This

has been done by adding two-control programs to the BO-VRL APP simulation,

these are

1) System control

2) API sequences and intexpreter

The systen control co-ordinates the input, /Putput and search operations of the

simulated retrieval system. The API's jntergreter has been used to implement

associative, algoritlms.

A two-part algorithm has been developed for the associative searching tt i t.

This allows the selection ' of the desired records. The two-parts of the search

algorithm are

192.

1) Canpare Algorit n

2) Docunent Hit Algcritlztl

The compare algorithm has been developed to mark the presence or absence

of a Keyword in a record.

The document-hit algcrithm has been developed to establish the validity of

a record by evaluating the search - criterion. A number of various search

criterion has been considered; these include

1) logical 'AND', 'OR' and NOT operation

2) Sum-of-product and product-of-sun terms.

3) Threshold search including 'm' out of 'n' and variation

of emphasis of individual Keyword.

4) Interactive searching strategy to control the mode

and precision of retrieval operation.

The facility to provide the statistics of the retrieval has also been

included. The output file containing the sequences of msnnry maps has been

made available to monitor the associative activities. This also provides

a facility to debug and improve the algorithms.

The algarithms for perfarming the proposed search-strategies have been

developed. Although the experimental vartfications to justify the claims

do not exist, the algoritlius have been extensively checked and are expected

to work satisfactorily.

193...; . R

The instruction counts involved .r tja .ce and docwYent hit 41gari , ns

indicate that for an average record of fifty characters lang, the time

required to perform document hit algoritku is insignificant compared to

the canpare algorithm. The canpare algorithm shows that three instructions

for each character will be required to perform an exact match operation.

These instructions include back-trac}cing, matching a selected substring and

markirre the presence of a Keyword. Assuming an average API cycle time of

100ns, this indicates that a data-rate up to. 3 M bytes/sec can be supported

by the system.

The present investigation establishes the feasibility and provides a

provisional specification of an associative retrieval system. It has been

also seen that an efficient and flexible retrieval system can be supported

by a simple and low-cost hardware. Thus it is envisaged that using the

results of this investigation as a basis, a stand alone associative retrieval

system can be developed. Alternatively a card containing the basic 'Parallel

Search unit' may be introduced between the main storage and a a% channel.

This would enable a sophisticated selection criterion to be evaluated for

filtering out the desired records. Sinai ar system could find applications

in content - Addressable-File-Storage (C'US) systems which are ncw non to tired,

by ICL. This could lead to more flexible aid cheaper solution to the C, AFS

systems.

7.1. Criticism of Work:

199,

is not rigorous, it provides a qualititiyp basis for assesanent of relative

merits of the file-structures. Fig2.2 6 Which suxiu w izes the perfarin c es,

clearly shows that the cellular serial file is better.

In order to select a provisional specification for a cost-effective

associative searching mechanism a survey of associative parallel processing

systems is carried out. Iots of publications by many workers on APP

systems and its applications in IS&R system have been reported. In Chapter

Three it was not attempted to cover these fields thoroughly. Instead the

scope of the discussions was purposefully limited only to point out the

basic idea of associative processing. Although the discussion was not

rigorous, it was sufficient enough to justify the choice of the proposed

associative searching mechanism.

Phase I: - This phase of work was essential to provide a basis for the

implementation of the proposed associative searching mechanise. The

experimental investigation was thoroughly carried out to derive a fonna]l,

specification of the BO VRL-APP Systan. The experimental 80-VRL-APP system

was used by Reynolds and Ofulue for carrying two specific application

studies. Finally on basis of this result an ACTA contract has been undertaken

to implement a L. S. I. version of Micro-APP.

Phase Ii: -. Unlike Phase I, the result of this phase of work was not obtained.

The experiments of Phase II could not be performed because the simulation of

the BO-VRL-APP suitable for practical application was not ready. The author

was also pressed far returning to India.

However, fron the experience gained ding the Phase I. best effort has been

made to justify and predict the resu1t4l of this phase of Work* men 4

195,

justify the indication that the y-AP? can easily support a

' cxt-ß-1E-FLY' searching technique, which cc, n be used as a cost-effective

associative searching mechanism.

7.2. Future Work: -

1. Fran the present investigation, it has been realised that the capab-

ilities of an associative retrieval system in terms of flexibility,

efficiency and speed cannot be fully appreciated unless a proto-type

system incorporating a hardware APP is developed. This would also

allow further improvement of an associative retrieval systan. Hence

in the opinion of the author further research should be carried out

in order to achieve these goals.

2) The present investigation has been primarily carried out on the exact

matching of the Keywords, but it is understood that for increasing

flexibility, the problem of differences and inconsistencies in the

context of the Keywords should be included. Hence it is suggested.

that further research should be carried out to incorporate. 'whole',

' fragment' , substring and universal character matching scheme within

the systan.

It is also envisaged that a set of fuzzy Keywords matching scheme, such'

as:

a) T 'anscripti ca error

b) Transpos1. tlcn error

c) QuissJ. cn 'or

d) Insertion er=r

1.96.

andthe combinations of tku tlc es11' supported by an associative

retrieval system. Whereas ina conventional information retrieval

systan these are extranely difficult to achieve. Hence further

research should be carried out to incorporate these flexibilities,

3) The present investigation has been limited to a feasibility study of

an associative retrieval system where the data-base has been restricted

to reasonable size. However, as the size of the data-base grows, it

becoms increasingly difficult to scan the entire data-base within an

acceptable time. In such cases, it is suggested that further research

should be carried out to investigate a two-level hierarchy of

associative addressing. This concept of two-level hierarchy is similar

to a cellular serial inverted file-structure. Hence this would

include the advantage of a cellular serial file-structure. Moreover,

the scanning at each level would be equally benef itted by the simplicity

and flexibility of the 'C -THE FLY' searching technique.

4) it is considered that on-line facilities of dictionary consultation for

the profile far«]. ation would be useful. Finally it is suggested

that the research should be carried out for developing a multi-terminal

on-line associative retrieval system which would include all above

mentioned facilities.

J'

BIBLIOGRAPHY

1. SHARP, J. R., "Same Fundamentals of Information Retrieval" Deutsch,
1975.

2. MEADOW, C. T., "The Analysis of information Systems -A Prograirmer
Introduction to information Retrieval" Wiley, 1967.

3. IANCASTER, F. W., "Information Retrieval Systems", Eiley 1968.

4. LYNCH, M. F., "Ccnputer-based Informational Services in Science
and-Technology; Principles and Techniques". Peter Peregrinus,
1974.

5. VICKERY, B. C., "On Retrieval system Theory", Butterworths 1965.

6. N HM, R., "Information Retrieval - the Essential Technology",
Aldus 1969.

7. KENT, A., "Infonnatiom Analysis and Retrieval". Wiley, 1971.

8. BX NO, L.,, arr3 HAYES, R. M., "Informativ Storage and Retrieval:
Tools, Element, Theories.

9. SALTCN, G., - "The SKIART Retrieval System - Experiment in
Autanatic Document processing". Prentice-Hall 1971.

10. HE1I 'Y, J. P., "Canputer-Based Library and Information Systems",
Macdonald, 1972.

11. iEFRWITZ, D., "File structures for an-line systems", Spartan

. Book, 1969.

12. MOTH, D. E. , "The Art of Ccazutex Ograrming" . Vol. 3. , Wesley
1973.

197P

13. H Lt
R?

N, H. j,
"Digital Ccs pit Syßtan Principles", McGr4W*-Hill

1967, pp. 114-159.

198.

14. GEAR, C. W.., "Ccmputer Organization cl Prcx rmning"
McGraw-Hill, 1976, pp X76-4O9

15. DIJKSTRA, E. W., "A discipline of ? 1cgraming" Prentic-Hall
1976.

16. NEWELL, A., et Al, :-A conmand structure for canplex
information processing, AFIPS, Vo. 13, p. 119,1958.

17. NEWELL, A. TCNGE, F. M., ;- An Introduction to information
processing language V, CALM, Vo1.3 p 205,1960.

18. DEWEY, MELVIL, "Deway Decimal Classification and Relative
Index", Forest Press, N. Y. 1959.,

19. MILLS, J., "Guide to the use of the VDC". British standard
institution, 1963.

20. VICK R, B. C., "Faceted Classification: a Guide to construction
and use of special schaues, ASLIB, 1960

21. RANGANATHAN, S. R., "Colon Classification", Rutgers, New
Brunswick, N. J. 1964.

22. RANG NAHM, S. R., "Classified Catalogue Code with Additional
Hiles for a Dictionary Catalogue Code" Asia Publishing
House, 1964.

23. JASTER, J. J. , N4JRMY, B. R. , TAUBE, M., "The state of the Art of
Co-ordinate indexing". Documentation Inc. Feb 1962.

24. V DING1tr , J. P. , "Unit concept co-ordinate Indexing", American
Documentation, 9, No. 2, pp 107-113.

25 FA'RRRABD1NE, J., AATTA, MRS. S., POJLTON, R. K. "Rep rt
m Research on Infra atic Retrieval by Relational
Ir exing" The City Univ "t', 1966.

26. LAW-ASTER, F. W., "On the Need for Role Indicators in Post-
CO1ZZ ina

.
ad systý p, , Ierj, c ý Q4 entaýtion, No.

pp 42-44,19.68.

199,

27. , "Thesaurus of AMT Re 'ipt. ors". Dec. 1962.

28. PAPIER, L., "Reliability of Scientist in supplying titles;
Implications for Permutation Indexing", ASLIB proc. 15.
No. 11, pp. 333-337 Nov. 1963.

29. RESNICK, A., "Relative effectiveness of Document Titles and
Abstracts for Determining Relevance of Documents",
Science, 134, No 3484, pp 1004-1005, OCT 1961.

30. I. B. M. - "General Information Manual, Keyword-in-context
Indexing", 1962.

31. LUHN, H. P. ', "Potentialities of Auto-Encoding of Scientific
Literature", Research Report IC-101, IBM, May 1959.

32. MAR ON, M. E., "Automatic Indexing: an Experimental Inquiry", Journal
of ACM, 8, No. 3. pp 404-417, Jul. 1961.

33. BAXE ALE, P. B., "Machine-made Irrlex for Technical Literature -
an Experiment", I. B. M. Journal of Res. and Dev. 2, No. 4,
pp 354-361, Oct., 1958.

34. STctI, H. S., "Introduction to computer Organization and Data
structures" pp. 263-292, McGraw-Hill 1972.

35. CLIlEISON, W. D., "File organization and search techniques. "
Annual Review of Into. sc. and tech. Vol 1, pp 107-135
Wiley, 1966.

36. DODD, G. G., "Elements of Data Management systems", Canputer Survey,
Vol. 1, No. 2, pp. 117-133, Jun 1969.

37. PATTER: cN, G. W., "Theoary and techniques for the design of
electronic digital cczn utexs". 1946.

38. I UER, W. I. , "Balanced tree ar4 its utilization in lxr formation
retrieval" IEw tears EC12, pp 863-871,1963.

39. . "Introduction to 1, /360 direct access storage devices
and organisation met x da". 4C -20 -1649. Imo! Cmp.. 1966'

It

209,

40. MAURER, W. D., LEWIS, T. G., "MASUi Table methods", Cgnputixg
Surveys Vol, '7, Nc. I., Piart 1 75.

41. BC DEN, K. F., JONES, D. M., STAN EVEN, J., FORTH, L., SKI N, M.
"A low-cost content Addressable Memory using conventional
Memory Elements", TEE Cont. on Canter Systems and Tech,
(IEE Pub. No. 121), pp 195-200,1974.

42. CAGAN, C., "Data Management Systems", Melville 1973.

43. BEZTISS, A. T., :- Data Structives, Theory and practice, Academic
press, London 1971,

44. WILKES, N. V., :- Lists and why they are useful, Cunputer
Journal 7, p 231,1964

45. JOHNSON, L. R., "An Indirect chaining Method for Addressing
Secondary Keys", Ccmm. ACK, pp 218-222, may 1961.

46. BURKS, A. W., GQtDSTINE, H. H., VCE NEFMAN, J., :- Preliminary
Discussion of the Logical Design of an Electronic
Canputing instrument, Collected works, Vol. 5., p 34.
Per=m=, 1961.

47. PARHAMI, B., - Associative Me wies and processor: An Overview
and selected Bibliography, Proc. IEEE, Vol. 61 p 722,
June 1973.

48. HENLAN, A. G., - Content Addressable and Associative Memory
Systems -A Survey. Trans. Vol. DC - 15, p. 505 1966.

49. WRBER, K. J. AND %AW, 'L. D., "Associative and Parallel processors"
Canputing survey, Vol. 7 No. 4, pp 214 - 255., Dec 1975,

50. FENGG, T., - An overview of parallel processing system, Wescan
Technical Paper., Vol. 16, Session 1'., 1972.

51. LEA, R. M., :- Inclination processing with an associative parallel
Process, IEEE Cc lit Vol. 8, No. 11, p 25j-' Nov 1975,

52. Imo, R. M. ,- An associRtive parallel processing system for the
memory structure of a symbol p ocýeaa1 ng 14601i w1 eI
University, Tech, Mz No,, C/ /O14,1972.

2QL,
53. LEA, R. M., Information Processing with an Associative Parallel

Processor, Brunel U 41V Mato No. C/SR/021, Feb j975,

54. LEA, R. M., WRIGUr, J. S., -A novel memory concept for information
processing, Datafair Research Papers, Vol. II, p. 413,1974

55. LLWIN, D. W. :- Highly parallel processing systems, theory
and design of digital systems, p. 306-334 Nelson & Sons
Ltd., London 1972.

56. HOBBS, L. C., et. al :- Parallel processing System technologies
and applications, Spartan Books, N. Y. 1970.

57. WRIGHT, J. S., - Design philosophy for a symbol processing Machine,
PhD. Thesis, University of Southampton 1972.

58. WRIGHT, J. S., :- System design of a Symbol Processing Machine,
Internal circulation, Brunel University, Dept of Elect.
Engg., Uxbridge, Oct 1969.

59. SWING, R. G., DAVIES, P. M., - An associative Processor, Proc.
AFIPS (FJCC), Vol. 26, p 147,1964.

60. DAVIES, P. M., :- Design for an Associative Canputer, Proc. IEEE
Pacific Canputer Conf. 1963.

61. LEIN, D. W. - Whither Data-processing, The Radio and Electronic
Engineer, Vol. 45, No. 10, p 627, Oct 1975.

62. RUDOLPH, J. A. , FUI. MER, L. C.; MEILANDER, W. C. ,- The caning of
Age of the associative pro ss, Electronics P 91.15. Feb 1971,

63. DWAN, J. A., GREEN, R. S., MINKER, J., SHINDLE, W. E., -A study
of the utility of associative maz y processors, Prot.
lia4 National Meetirq, P 347,1966.

64. UER, R. H., Associative parallel processing, Proc. AFIPS (S=)
Vol. 30,. p 471, , 1967,

65. NXJLt RY, A. P., et Al,; - ADM -A problan-oriented symbol Process,
AFIPS, Vol. 23, p 367,1963,

66. McKEEVER, B. T., s- The associative MMxvy structure, pr c. F. J, C, C,
Vol. 27, p 371,1965.

2029

67. RDGEPS, T. W. - Data Bases;. The t on Ccmputer Hardware,
IE Conf. Computer syst l technology (IEE publication
No 121), p 150,1974

68. RUDOLF, J. A., "A production inpl station of an associative
array processor - STARAN", AFTPS Conf Proc. Vol. 41
pp 229-241,1972.

69. BATHER, K. E., "STARAN/ ADCAP hardware architecture" Proc.
Sagamre Cauput. Conf. on Parallel Processing pp 147-152,
1973.

70. BATCHER, K. E., "STAB1N Parallel Processor System Hardware",
AFIPS Conf. Proc. Vol. 43, pp 405-410,1974.

71. WEINBERGER, A., "The hybrid associative memory concept",
Camputer Design, pp 77-85, Jan 1971.

72. LEE, C. Y.: - Inter-crnmunicating cells, basis for a distributed
Logic Computer, Proc. Fall Joint Computer Conf. AFIPS,
Vol. 22, p. 130,1962.

73. GAINS, R. S., LEE, C. Y.: - An inproved cell memxry, IEEE
trans., Vol. DC-14, p 72,1965.

74.1EE, C. Y., PAUL, M. C., ;-A content-addressable distributed
Logic nnºary with Applications to infoanation retrieval,
Proc. IEEE Vol. 51, P 924,1963.

7 5. S'IURMAN, J. N., :-A Iteratively structured Digital cczi Puter,
PhD Thesis, Cornell University, 1966

76.5IUPIIAN, J. N.: - An Iteratively structured General Purpose
Digital Ccr at r, IM E trW S on Ccmputers, Vol. C 17
p 2., 1968.

77. Si'UFMAN, J. N. ,: -A synch rorIaus operation of an iteratively
structured G. P. D. C., iE trans. on computer, VOL C 17
p 10,1968.

78. LIPWSKI, G. J.,: - The architecture of a large distributed logic
associative processor, Co-ardinated Science Lab, R-24
July 1969.

2G3, '

79. LIPWSKI, G. J., ;- An architecture aa large associative
processor, AFIPS Proc. 47 1 3+ß5l 1970.

80. CRANE, B. A., GITH 9S, J. S., ;- Bulk Processing in distributed
logic memory, IEEE trans , Vol. DC-14, p 186,1965.

81. KISYLIA, A. P., :- An associative processor for information
retrieval, Co-ordinated science Lab (Illinois University)
Report R-390 (AD 675310), Aug. 1968.

82. AGRAWAL, D. P., ;- Simultaneous canplex search in associative
memories, Proc. Computer System & Technology Conf. No. 121
180 - 181, London, 1974.

83. BFAVAN, P. A., LEWIN, D. W., - An associative parallel processing
system for non-numerical computation, The Computer Journal
Vol. 15., p343, No. 4 1973.

84. WRIGHT, J. S., LEWIN, D. W.: - A draft specification for a symbol
processor, IEE Conf. Computer Science & Technology (IEE
Publication No 55) p 282,1969.

85 SEEBER, R. R., LINDQUIST, A. B.: - Associative wry with ordered
retrieval, I. B. M. Jo anal of R&D, Vol. 6, p 126
1962.

86. KAPIAN, A., "A search MmO y subsystem fcr a general purpose
computer", FJCC, AFIPS Conf Prot. pp. 193-200,1963.

87. FCÖTER, C. C., STOCKTC , "Counting Responders in an associative
memory", IEE Trans on Ccinuter, Vol. C-20, pp 1580-
1583, Dec 1971.

88. IRIN, M. H. - Retrieval of ordered lists from a content addressed
mamory, 1ä, a1 Review, vol.. 23 p 215,1962.

89. SUADE, A. E. , Md4A Ia4, H. O. ,: -A ryotQ Catalog mEMOZf system.
Proc. E. J. C. C,. 10 p 115,1956.

90. CROWE, J. W., "Trapped-flux super conductive me nnry" , I. B. M. Re So,
and Dev. Vol. 1 pp 294-303, Oct. 1957.

204 ,

91. SIADE, A. E. , "A c; ryotron Cgwjl,. ' roa, IRE, Vol 50,
pp 81-82, Jan 1962. , '.

92. SIJDE, A. E., Ste, G. ß., "Thin-film cryotron catalog
menory system", Proc. FJCC, Vol. 10, pp 81-82 Jan 1962.

93. D VIES, P. M., "A super-conductive associative memory", Proc
SJCC (AFIPS), Vol. 21, pp. 79-88, May 1962.

94. ROSIN, R. F., An crganisation of an associative cryogenic
ccmputer, Proc SJCC, Vol. 21, P 203 1962.

95. NEWWSE, V. L., FRUIN, R. E., :-A cryogen. tc data addressed memory,
Proc. S. J. C. C., Vol. 21, p 89 1962

96. KISEDA, J. R., PETERSEN, H. E., SEELACK, W. C., TEIG, M. : -
A magnetic associative menory, I. B. M. Journal of R&D,
Vol. 5., p 106 1961

97. SHFAD, C. J. - The associative nwqxy -A versatile circuit element
G. E. C. Jorunal of Science and Technology, Vol. 40 p 119
No. 3.1973.

98. APIG'ELIA, A., FRANKS, J., "BILOC A high-speed N DRO One Core-per-
bit Associative, elenent". Int. Conf. on Magnetics. April
1965.

99. CHOW, W. F.: - Plated wire conten-addressable memories with bit-
steering technique, IFI Trans, EC - 101.16, p 642,1967

100. EWIt, R. C., D VIES, P. M., "An associative processor", Proc.
FJCC, Vol 25, pp 147 - 149,1964.

101. FULLER, R. H., "Content-addressable memory systems" Disser.
Absts. Vol. 24, p 1960,611 pp. Nav 1963.

102. TITITLE, G. T., "Haw to quiz a whole marry at once" Electronics,
Vol 36. pp 43 - 46, Nov. 1963.

103. I, R. M. - low-cost high-speed associative memory, Brunel University
Tech. Memo. No CE/ /023 1975 - TORM - TSSC, Vol SC-10
No. 3, p 179, June 1975.

104. LFA, R. M., -A Design for a 1c*-cx t High Speed MS Associative
muwxy, Brunel University Tech. Mew No. CE/R/022,1975.
- Radio and Electronic Epgineer, vol. 45, No. 4, p 177
April 1975.

105. LFA. R. M., Towards a Low-cost cell design for High-speed
M OS Associative Wu=ies, Aatafair Research Papers, Vol. 11,
p 418,1973.

106. LEA, R. M. -A Design for a High Speed MOS Associative Memory
Electronics Letters, Vol. 8, p 391,27th July 1972.

107 IGRARASHI, R., YAlTA, T., :- An integrated MOTS Transistor
Associative Memory with 100 nsec cycle time, Proc S, J, C, C,
Vol: 30, p 499,1967.

108. HERLEIN, R. F., THCNPSON, A. V., :- An integrated associative
manory element, I. S. S. C. C., Digest of Tech papers, p 42
Feb 1969.

109. BIDWEL, A. W., PRICER, W. D. :-A high speed associative -memory#,
I. S. C. C. Digest of Tech. Papers p 78, Feb 1967.

110. HOFF, M. E. ,: - Designing a L. S. 1. mt cry system that out performs
caves-econanically. Design Electronics, p 33, April/May 1971.

111. FREDKIN, E.,, ;- Tric Memory, Vann X24, Vol. 3, p 490,1960

112. BARTIL'1T, J. , NAGE, J. ,F SPRY, J.;. * - Associative memory chips:
fast voratile and here, Electronics, p 96, Aug 17, . 1970.

113. ASPINUL, D., KAP, D. J., kI R06, D. B. G.: - An integrated
associative memory matrix I. F. I. P. Congress (Edinburgh)
pD 86, Aug 1968.

205,

114. FEUD MN, J. D., FULM R, L. C. - RADC W- An operational parallel
processing facility, Proc. AFIPS (NCC), Vol 43, p 7,1974.

115. De FICKE, C. R., VITA, A. A., BAUER, L., - Toward the dewelapuent of
a higher order language for RADCAP, Proc of the 1972 Sage
Canputer Conf. p 99 1972.

11

116. DAVIS, E. W. - STAN Parallel processor syptem software, Proc
AFIPS (=) # Vol. 43, p 17 1974.

117. LINDE, R. R., GATE, R., PENG, T., - Associative processor application
to real-time data nw gemit Proc. A. F. I. P. S. (NCC) Vol. 42,
p. 187,1973.

118. PATrERSON, W. W., - Sane thoughts on associative processing languages
AFIPS Vol. 43, p. 23 1974.

119. FINDLER, N. V., "On a catputer language which simulates Associative menc y
and parallel processing", Cybexnetica, Vol. 10., No. 4
pp 229 - 254,1967.

120. DOW, G. G., - APL -A Lanugage for associative data handling in
PL/1, Proc AFIPS (FJCC), Vol. 29, p 677,1966.

121. THURBER, K. J., MYRNA, J. W.: - System Design of a cellular APL
computer, IEEE trans, Computers, Vol. C- 19, No. 4, p 291,1970.

122. SAVITP, D. A., IAVE, H. H., TRQQP, R. E. - ASP -A new concept in language
and machine organisation, Proc, AFIPS (SJOC) Vol. 30, p 87
1967.

123. FEI 1N, J. A., 1)VNER, P. D., - An Algol based associative language
Camun. A. C. M. Vol. 12, No. 8 p 439 Aug. 1969.

FEILMAN, J. A. - Aspects of associative prooessing MIT Lincoln Labs.
Tech note 1965 - 13 1965.

125. ASH, W. L., SIBLE'Y, F. M. - TRAMP: A relational menory with an
associative base, AD 672206

126. ABRAHAM, P. W., et al, The LISP2 Programing Language and systan
AFIPS, Vol. 29, p 661,1966.

127. DC ELLY, R. K. :- VAPP (Sinailation of a virtual associative parallel
processor) WR/2/75, internal circulation. Brunel University,
Elect. Erg. 1975.

128. DCtI ELLY, R. K., :- IFPL: An Inyenmediate level field processing
Language for associative parallel processors, Brunel. University
tech. mwo No. CAV028, July 1975.

207,

129. DONNELLY, R. K. ,: - SNAP; A simulatiO l of a variable record-lei th
parallel zocessor. Trat 2. circulation, Brunel University
Elect. Encjg. June 1975. "

130. FINDLER, N. V., - Cn a ccRxter language which simulates Associative
mend y and parallel processing, cybernetica, Vol. Xp 229 1967.

131. DONNELLY, R. K., :-A survey of string processing techniques, Internal
circulation, Brunel University, November 1972.

132. KODIN, Y. Y., :- Iºogical analysis of associative memory structures,
Cybernatics (U. S. A.), Vol. 6, No. 4, p 522, July/Aug 1970.

133. GREEN B. F., Computer languages for symbol manipulation, IEEE trans,
Vol. DC 10, p 729 1961.

134. BOBROW, D. G. RAPHAEL, B., :-A canparison of List Processing
languages, Camiunication ACM, Vol. 7., p 231.1964.

135. FARBER, D. J., et al., :- The SNCIBEL 3 Programming Language, Bell
System, tech. Journal p 895, July/Aug 1966.

136. FARBER, D. J., FRISWOED, R. E., POI 4SKY, I. P., - SNOBOL, string
manipulation Lamgage, JACM Vol. 11 p 21, Feb 1964,

137. THURBER, K. J., BEENG, R. O., - Applications, of Associative processors,
Canputer Design, p 103, NDv. 1971.

138. ELLIS, A. B. E. - The Associative Mßuszy and its applications,
Marconi Review, P 42, First Quarter 1972,

139 Mc7 DER; R.,, - An implementation of a data management system on an
associative processor, AFýPS Vol. 42, p 171.1973

140. De FIORE, C. R., BERRA, P. B., :-A Quantitative analysis of the utilisation,
of associative : nies in Data , Management, i"- trWw. on Cc ter
Vol. C- 23; p 121,. Feb 1974,

141. De FIORE, C. R., BEEBA, P. B.: - A Data manageent system utilis1 W
associative u pony, Natick

. agtputc Cone., p 187,97 . w,

X48,

142. De FIORE, C. R., - An ara1'sis of associative Processing meths
in data management AP 759 147

143. CRANE, B. A. - Path finding with associative moy, TES
Trans. Canp. Vol. C- 17 p 691 July 1968.

144. LIPOVSKI, G. J.: - On Data Structures in Associative memories,
SIGPLAN Notices, Vol. 6, No. 2, p 346, Feb 1971.

145. POPOVA, G. M., PRANGISHVILI: - Associative Parallel processor for
grouped processing of Data, Autcination & Remote Control (U, S. A.)
Vol. 33., No. I., Part 2, p 152, Jan 1972.

146. "Pattern recognition by using an associative memory"
Electronic Computer, Vol EC-15 pp 944-947, Dec 1966.

147. FINDLER, N. V., M KE ZIE, W. R., - On a new tool in articicial
intelligence research, an associative manory parallel
processing language AMPPL - II, Proc. Int. Joint. Conf.
on Artificial Intelligence p 259, may 1969.

148. FULLER, R. H., BIRD, "An associative parallel processor for picture
processing". Proc. FJ(C, pp 105 - 116 1965.

149. DUFF, M. J. B., WATSON, D. M., MM UN, T. J. AND SHARE, G. K. -
A cellular logic array for image processing, Patter Recognition
5p 229,1973.

150. EULt R, R. H., BIRD, R. M.: - An associative parallel Processor With
application to picture processing. Proc. F. J. C. C. -Vol. 27 p 105
1965.

151. LEA, R. M. "An associative parallel processor for efficient and flexible
file-searching", Proc T Int, symp. cn tech. for SOX
pp 73-78, Sept 1976.

152. DOILY, R. K., "Same thoughts on using an associative processor for
Information Retrieval", h. Mateo C/R/042 Brunel University
August 1976.

153. STOI! IQ , D. L., "Logic per tracts Devices" Advances In casters
Vol. 10, Aid tic Piss 291-196,1970.

209,

154. PARHAMI, Bk MOZ; -A highly parallel caq:)uting system for
information retriev l ý1 ' AUS Proc.. FJCC, p 13,1972.

155. COUIDURIS, G. F., EVANS, J. M., MITCHELL, R. W., "Towards
content- addressing in Data-Bases", Computer journal, 15
pp. 95 - 98 1973.

156. NOE, J. D. NC1E, "MIRF (multiple instantaneous response file)
"Electronics, Vol. 35 pp 31 - 36 May 1963.

157. FENG, T., - Large scale infcrnaticn processing systems, U. S. Dept,
of carmerce Repcrt (AD 708725), studies of associative
memory systems Vol. 5, May 1970.

158. GOLI]BEI3, J., AND M. W. GREEN, "Large files for information retrieval
based on simultaneous interrogation of all items", Large-
capacity memory technique for computing systems, Macmillan,
pp 63-67 1962.

159. PETERSON, H. E., Content addressing and information retrieval"
IFIPS, Aug 1962.

160. MINNICK, R. C., Magnetic ccmparaters and code converters",
Prcc. symp-application of s 4tchixq theory in space technology
pp 193 - 204 Feb 1962,

161. BROWN, J. R. "A semi perm nervt associative menory and code converter.
Conf. on Non-linear Magnetics, Xpv. 1961

162. EDDEY, E. E., "The use of associative processors in radar. tracking
and correlation", Nat. Aerospace Electronics Conf. Proc,
pp 39 - 42,1970.

163. GITHENS, J. A. "An associative, highly parallel Ccaputer for radar
data processing", Parallel processor systems, technologies and
applications, Ed. Hobbs at all, Spartan, pp 71-86 1970,

164. C06TANZO, A., GARRET=, J.,. "Application of an associative processor
to an interceptor radar system, " Nat. Aerospace Electxonics
Conf. Proc. pp 107-112 1969,

165. THURBER, K. J., "An associative processcr for air traffic adntxol",
S)0C, AFIPS Conf. Proc. pp 49-59 1971.

210,

166. NUJRENUFF, E., et al. "4-% ay Paxa11e1'Processor Partition of an
Atmospheric Primitive Egua 4. oa Predition model"., Proc.
AFIPS SO pp 39-48 1971..

167. LIND(? UIST, A. B., SEEBER, R. R., aC , AN, L. W., :-A time sharing
systen using an associative manoxy. Proc IEEE Vol. 54, p 1774,
1966.

168. WALD, L. D., ANDERSON, G. A., "Associative memory for multiple
processor control", Final Report NAS 12 - 2087, Sept 1971,

169. BERG, R. O., JOHNSON, M. D., "An assoicative memory for Executive
Control Functions in an advanced Avionics ccmputer system", Proc.
of IEEE int. cosh, group Cone. p 336 - 342, Jun 1970.

170. ERWIN, J. D., JENSEN, E. D., "Interrupt processing with queued
content addressable manories". Proc. AFIPS FJCC, pp 621-
627 1972.

171. DYKE, J. G., LEA, R. M., - An associative parallel processor for cost-
effective local editing applications, Brunel University Tech Marro
No C/R/025 1975.

172. DONNELLY, R. K., LEA, R. M., - The application of an associative
parallel processor to data-oanpression for conventional file
storage systems, Brunel University Tech no No C/N/025.
1975.

173. LEA, R. M., "Nand-gate Implementation for Associative memory", Digital
processes, 2, pp 83-88,1976,

174., REYNOLDS, W. T., "Local text editing", Masters Thesis, Brunel University,
Octther 1976.

175. CFUIJJE, J. N., "A survey of List and String Processing languages"
Brunet University Tech Memo No C/SB/049, Jan 1976.

176. NICOtJOU, N. P., LEA, R. M., "Implementation of an experimental research
vehicle for FRL APP investigation", Brunel University, Tech,
Maw. No. C/R/027, June 1975.

177. PDP - 11 Processor Ha 4 ook, Digital Equignent Corp, Mss setts
1975.

211,

178. VT - 11 Graphic Display ProaP R. E. C. 1974.

179. PDP - 11 Peripherals Hardbook, D. E. C. 1975.

180. RT - 11 F/B System Reference Manual, D. E. C. 1976.

181. INSPEC Tape Service Manual, Inst. of Elec. Engg. London.

182. LEA, R. M. "Micro-APP: a building block for law-cost high-speed
associative parallel processing" The Radio and Electronic Engr.
Vol. 47. No. 3, pp 91-99 March 1977.

APPENDIX A

Description of information transferred through interface.

The input data highway to the associative memory as described in Section

3.2. is redrawn.

control
signals

Input highway

The low-order eight bits (0-7) of DR11-C contain data information, and

two bits (8,9) carry control signals. The control signal 'S' resets the

interface logic and 'Pv' enables data to be stored in either S-40 or DW

register.

The ccnplete loading of SNXD register requires seven interface transfer

cycles. Two transfer cycles are required to load M) register at each

time slots. The contents of each transfer cycle along with. the transfer

sequence number is given below. The glossary of symbols describes

individual signals.

15 9876543210

A2.

A. 1 Input Transfer.

A. 1.1. STATIC MICRO-ORDER

Transfer
Sequence
Nunber

1.

2.

Contents of DR 11-C

symbol bit 8

00 Symbol bit 7 DAW DBIV7 DAS DBS

00 Symbol bit 5 symbol hit 6

3.0 0 Symbol bit 3 symbol bit 4

4.0 0 Symbol bit 1 Symbol bit 2

5.

6.

7.

00 Control bit 2 Control bit 1

100
Control bit 4 Control bit 3

01 RU BA RN ST LN

A3.

A. 1.2. Dynanic Micro-order

1.

2.

10 02R STC 0xc Oyc

__

STS O ýyS 02L
XS

L1 1HH
Hi

MM GR TG
102

10 l

A. 2. Out put transfer

1.

2.

3.

OVA OVB MR Symbol Symbol Symbol DCO, DC)B
bit 5 bit 6 bit 7

OVA OVB MR Symbol Symbol Symbol Symbol
bit 1 bit 2 bit 3 bit 4

OVA OVB MR Control Control Control Control
bit 4 bit 3 bit 2 bit 1

A. 3. Glossary of symbols/notations

A. 3.1. Signal name
Control signals

S

Pv

Function/Description

1; reset interface
0; inactive

1; Enable DMO register input to load
data from input highway.

0; Enable SMO register input to load
data fran input highway.

A4.

A. 3.2. Static Micro Order

A. 3.2.1. Data Search and write

DAS, DBS Search Data

DAS DBS

0 0 don't care

0 1 search zero

1 0 search one

1 1 illegal

Dom, D write data

D DBW

.0
0 stand by

0 1 write one

1 0 write zero

1 1 illegal

A. 3.2.2. Direction Specification

IN

RN

ST

1; enable left neighbour

1; enable right neighbour

1; enable straight through

A5.

A. 3.2.3. Run specification

A. 3.3. Dynamic micro-order signals

A. 3.3.1. Bit selection logic

STc

ST
S

OXC

OXS

oyc

oys

A. 3.3.2. Strobe tag

ZG

GR

l; Enable data DB Control bit

1; Enable data DB
5ynto1 bit

1; Enable time phase X control bit

1; Enable time phase X symbol bit

1; Enable time phase Y control bit

1; Enable time phase Y symbol bit

1; Strobe tag register 1

1; Strobe tag register 2

A6.

A. 3.3.3. Word logic signals

MW 1; Multiwrite

NIlvi 1; Canpare mismatch

01 1; Strobe 1

02 1; Strobe 2

02R 1; Enable Run (Right)

02L 1; Enable Run (Left)

ZM 1; Enable top of memory

1; Strobe read register

A. 3.4. Output signals

DCA, DCB data output

DOA DOB

0 0 multiple response

0 1 zero output

1 0 one output

1 1 no output

MR Match reply

(NA Overflow at A

OVB Overflow at B

B1.

APPENDIX B

Specification for the Instruction Set

of the BO-VRL-APP

B. 1.1. BO-VRL APP Input

The only input to the BO-VRL-APP comprises a 59-bit Associative Processing

Instruction (API) which is defined below in BNF notation.

(APIA :: = <FNý <DA) LEI)

Function <FN) <OP code data) =<117 ýCh. so-)ec. 2) (CB. spec. 2>

Domain Addresses <DA) .. = (Ch. spec. 1) <CB. spec. 1)

Domain Modifier < DM) = <CO) <0 <PR) < RN)

Clear options <CO) :: =<M> <CC) < CB) <MM)

Propagate tags <PR) :: = <U) < S) < D)

Run tags <RN) :: = <R1> < R2)

<Ch. spec. 1/2) :. _ (Ti (Ti <Ti CT% (Ti <T> (Ti <T)

<CB. spec. 1/2i :: _ <T)<Ti<Ti <Ti

<T> :: = 0/1/X

Read/Write NRW) :: = 0/1

Multi-Write <) :: = 0/1

Clear Character <CC> :: = 0/1

Clear Control-Bits <CB> :: = 0/1

Match/Misnatch <* > :: = 0/1

Canpleuent tags (C > :: = 0/1

Propagate Up

Straight-through

Propagate Down

Run bit R1

Run bit R2

(U>. 0/I

(S) ýý 0/1

<D> :: - 4/1

R1) :: = 0/1

<R2> :: = 0/1

B. 1.2. BO-VRL-APP Output

The only output from the BO-VRL-APP canprises a 15-bit output Word,

which is defined below in BNF notation.

<Qutput Word) 4, Ch. Field) /, CB. Field (ST

(Ch. Field (B). (B) <B) <B) <B) <B) <B)

<Cb. Field (B) ! 0B) (8) '8)

<B) 0/1

Status < ST) _ <MR> (WA, » - (08

Match Reply <MR) 0/1

overflow at A< OVA) 0/1

Overflow at B <OVB i;; = 0/1

B. 2. API Execution

(API > :: = (FN> <DA > <DM i

B2,

B3.

The APT is executed in an autcinatic sequence of three beats.

B. 2.1. Beat 1. Dcntain Address

B. 2.2. Beat 2.

Reset TRI and TR2

SEARCH (Ch. spec. l) <, CB. spec. l

For all matching word-rows set tags in TR1 and TR2

Set MR in the DOR

Danain Modification

If Group Run is specified

*Canplanent TRI tags

For all TM tags propagate Up and/or Down

Start Group Runs from TR1 tags

Reset TR2

SEARCH <Ch. spec. 2> <CB. Spec. 2)

For all matching word-rows set tags in TR2

Stop Group Runs at TR2 tags

Activate selected word-raw groups

If Group Run is not specified

WRITE 0 to perform the specified clear option

*Canplsnent TR1 tags

*For all TR1 tags propagate Up and/or Down

*Start Top or Bottan Run

Activate selected ward-row(s) or word-row group

Set OVA and OVB in the DOR

B. 2.3. Beat 3. Function Fact ition

If WRITE is specified

update all activated word-rows with <C4. spec. 2>

<CB. spec. 2) (O <xoocxxxx> (xxxl> if Group

Run is specified.

If READ is specified

Update the activated word-rave(s) with Qoooao x

<CB. spec .2> Transfer the contents of the activated

word row(s) to the DOR and then to the store/buffer

address specified by <Ch. spec. 2

* These operations are performed only if they are specified by the

Danain Modifier.

B. 3. API Description

(API) :: = <FN) <D) (tä4)

The constituent parts of the API are described in detail in the

following sub-sections.

B. 3.1. Function

44,

Function C FD1i :: 4RW? <. Ch. ssec. 2) <cB. .2i

Read/&ite (1v) :: 0/1

B5.

B. 3.1.1. WRITE: IN =0 causes all activated word-rows to be updated

by <Ch. spec. 2) K CB. spec. 2>

DID. (1) where T=x the corresponding bit-

column is masked.

(2). if Group Run is specified all activated

word-rows are updated by < xo ocx> < xxxi

B. 3.1.2. READ: RW =1 causes

(1) the <CB. Field > of the activated word-row(s)

to be updated by < CB. spec. 2

NB. Where T=x the corresponding bit-colunn is

masked.

followed. by

(2) the <Ch. Field) and (CB. Field) of the

activated word-row(s) are transferred to the

DOR and then to the host store location specified

by the 16-bit < Ch. spec. 2.)

NB. The READ function is not permitted when a Croup

Run is specified.

B. 3.2. Domain Address

l Danain Address (DA) :: =(Ch. spec. l> CH. Spec.

B6.

During Beat 1 the AMA is searched for (Ch. spec. 1) (CB. spec. 1)

and, for all matching word-rows, tags are set in TR1 and TR2.

NB. (1) Where T=x the corresponding bit-coliunns are

. masked.

(2) TR1 and TR2 are reset before the search operation

is performed.

(3) MR is set if at least one tag is set in TR1 after

the search operation.

B. 3.3. Danain Modifier

Danain Modifier 4 DM) :: = (C0'> (C) (PR) (RN)

The Domain Modifier provides programmer-control over the mapping

between the content of TM and TR2 and the word-rows which are

activated for function execution.

Four modification options are provided:

(1) 4. CO) Clear Options

(2) <C> Canplenent tags

(3) <PR > Propagate tags

(4) <RN) Run Tags

B. 3.3.1. Clear Options

Clear Options < CO >< 141 > <CC > <CB) < M4>

Multi-Write < NW > :: = 0/1 Clear Control-Bits <CB > :: = 0/1

Clear-character <CC > :: = 0/1 Match/Mismatch <'W > :: = 0/1

B7.

The clear options operate during Beat 2 (unless a Group Run is specified)

to reset selected bits in (Ch. Field i and CB. Field '> of activated

word-rows.

Bit-cols selection:.

The bit-colunn selected for the clear operation are those specified

by T=1 in < Ch. spec. 1> and/or (CB. spec. 1) as indicated in the

table below.

Fields enabled for the
clear operation

<CC> <CB> <Ch. Field> (CB. Field)

'0 0 --

0 1 -E

1 0 E-

1 1 EE

E= Enabled

Word-row activation:

The word-rows activated for the clear operation are those specified by the

logical content of TR1 as indicated in the table below.

B8.

I gtc l content of MU
c4u Ward-row activation

(MR) (M) 01

0 0 a

0 1 a-

1 0 aa

1 1 aa

a= activation

B. 3.3.2. Ccmplenent tags

Complement tags < C) :: = 0/1

<C) selects the true (C=O) or the amplement (C=1) outputs of TRl

B. 3.3.3. Propagate tags

Propagate tags (PR <U) <S> <D

<PRý allows a single tag (ar its ccmpleient if C=l) in TR1 to

activate adjacent word-rows.

Propagate Up (U) 0/1

Propagate Straigbt-thrcth <S> 0/1

Propagate Down <A > :: = 0/1

NB. All 8 propagate modes are allowable.

B9.

The following table indicates which word-rows will be activated

for each propagation mode when a tag is set (in TR1) in word-

raw n and C=0.

Propagation Mode

(U) (S) (D)

Activated Word-row

n-1 n n+l

0 0 0 ---

0 0 1 --a

0 1 0 -a-

0 1 1 -aa

1 0 0 a--

1 0 1 a-a

1 1 0 aa-

1 1 1 aaa

a= activation

N. B. (1) The selected propagation mode operates on all word-rows

in parallel and applies to true or canplemented tags

according to the value of

(2) The overflow bits <OVA>

(C

and <OVB > are set in

the DOR if the selected propagation mode causes propagation

out of the A and B ends of the WAL unit.

510.

B. 3.3.4. Run Tags

Run Tags <RN> <RI> <R2i

Iäin bit Rl (Ri>

Run bit R2 (R2> ;: = 0/1

<RN> allows a single tag in Tag Register 1 or 2 to activate

an adjacent group of vcrd-rows.

There-are three different types of run, which are selected

according to the values of <Ri > and (R2

Run Mode Run Type

< Ri> <R2i
0 0 No run

0 1 Top run

1 0 Bott[m run

1 1 Group rwi

The direction of the run, and hence the location of the 'Top'

and 'Bottan' is determined by the selected propagation mode, as

indicated below.

ward-r locations

in Direction, A--n----B

Up U1
gown D1

Bottgn Top
'1t9 Bottom

B11,

The run logic for Up and DOWN is implemented separately such

that a Up-run and a DOWN-run may proceed in parallel.

The overflow bits (OVA) and (OVB7 are set in the DOR

if the selected run type would cause word-rows to be activated

'beyond' the A and B ends of the WL unit.

(a) Top Run

The Top Run activated all word-rows fran (and including) the top

word-row to (and including) the first word-row which has been

tagged in TR2, as indicated below.

Activated nord Rows

Propagation Mode Contents of Tag Register TR2

A B
(U) (S) (D) 00000001000000010000001000001

0 0 0

0 0 1 taaaaaaa

0 1 0 ä '
aa

0 1 1 iaaaaaaa aa
i

1 0 0 aaaaaa,

1 0 1 , aaaaaaa aaaaaa,

1 1 0 iä a aaaaaa,

1 1 1 'aaaaaaä ä aaaaaa,

a= activation

B12.

NB. The canplemnt option is inhibited for micro-instructions

including a Top Run.

(b) Bottci Run

The Bottan Run activates all ward-rows fron (but not including)

the first, word-raw which has been tagged (or not tagged if C= 1)

in TR1 to (and 'beyond') the bottan word-row. If S=1 the first

word row is also activated, as indicated below.

Assuming C=0

Activated Word-Rows

Propagation Mode Contents of Tag Register TR. 1

AB
(U) (S) <D) 100000010000001000000100000,

0 0 0

0 0 1 aaaaaaaaaaaaaaaaaaa,

0 1 0 "äää
p

0 1 1 'aaaaaaäaaaaaaAaaaaai

1 0 0 ' aaaaaaaaaaaaäaaaaaa'

1 0 1 I aaaaaäaaaaaaäaaaaaaaaaaaaI

1 1 0 aaaaaäaaaaaaäaaaaaaä

1 1 1 aaaaaäaaaaaaäaaaaaaäaaaaa '

a= activation

B13.

NB. (1) For C=1, the above table ranains valid if the contents of TR1

are inverted.

(2) The overflow bit (OVA) will be set, in the above example,

for propagation modes <100) <101) < 110) and(111)

(3) The overflow bit <OVB > will be set, in the above example, for

propagation modes, <001> (011) (101) and(111)

(c) Group Run

when a Group Run is specifier, Beat 2 is modified such that

(1) Tag Register TR2 is reset

(2) Clear options are inhibited

(3) A second search operation is initiated in which the AMA

is searched for <Ch. spec. 2) (CB. spec. 2) and, for all

matching word-rows, tags are set in Tag Register TR2.

The group Run activates all word-rows fron those word-rows having a tag

set (or reset if C= 1) in Tag Register TR1 to (and including) the first

occurrences of word-rows which have been tagged in Tag Register TR2.

The following table indicates which word-rows will be activated when a

Group Run is specified

Assumirg C=0

X119,

APtivated %brd-Rows

Propag ation Male Ccntenta of Tag Rogisters TRI aad TR2
AB

(U) (S) (DP TR1 10000001000000100000001000000001
TR2 100000000001000000001OOOQO010001

0 0 0 I'

0 0 1 . aaaa aaaaa, iaaaaa

0 1 0 'ä. aa

0 1 1 aaaaa aaaaaa' aaaaaa

1 10 0 'aaaaaa äaa aai

1 0 1 Iaaaaaa'aaaäaaaaaaaaa'aaaaa

1 1 0 aaaaaaä äaaä aaa iý

1 1 1 aaaaaaäaaaaaaaaaaaaaaaaaaaa

a= activation

NB. (1) For C=1, the above table iunains valid if the contents of

the Tag Register Teil are invested.

(2) The overflow bit will be set, in the above example t

propagation modes <1000 (101) and (111

When a Group Ran is specified Beat 3 is modified such that the'function

execution is restricted to a WPXIE operation involving only CorA=Ql Bit

4. This the function is autcmaticaýly eacecuted as if it waW ooqwsa ,

as follows

<FN> <F«> (Ch. spec. 2) <CB. spec. 2)

<FN> :: (0 > (x oaoocx c> (, x=>

Cl.

APPENDIX C.

Flow Chart

check power and
DR 11-C connection

switch on graphic terminal

Run RT 11 F/B
operating system

Enter Date See RT 11 system
and time reference manual

o= Space

Gr ('F (CR> <CR) = Carriage return

if GT is On

R , APP (CR)

DATE: 1
cad-turin yy <CR> 1 the outputs of the

machine are under-
lined.

A

*a C, E, F, L, M, O, p, R, 8 ;
ENTER MME Any other character

v4--R> including default will
be ignored and a fresh
regiest will be is d.

any other
character

The program is transferred to the desired
mode. At the cctýletian o. q eration
(except 'E' the =0#01.4 transferred
back r4ft A,

c2.

C. 1. Clear

clears associative memory
and interface logic

GT displays cleared screen

C. 2. Load

ENTER 32 CHARACTER
CHI/RA= 1: CH1 1, CR7

CHARACTER i: CHi &CR)

I- ---- ,r---- -ý

CHARACTER 32: CH 32 £CR)

C. 3 Reload

Damps contents of the load buffer
into the associative menory

GT displays the current contents
of »i at the end of dumping operat

Stores currently
entered character CHi
in the ith location of
the Load buffer.
Where CH i= Any ASCII

character
except @

or =@ b8b7 ...
b2b1

; bi=1or0

For a default value of
Chi, old contents of
ith location is un-
altered.

C3.

C. 4. Dynamic micro-order and Micro instruction specification

DM0 & MI SPEC

RETAIN OLD 1fv(3 7*4, CR)

DMO TINE SLOT 1: DMO1 (CR)

TIME SLO r i: DW) <CR)

TIME SLOT 12: DMO 12 (CR)

RETAIN OLD MICRO-INSTRUCTION? * <CR)

yes Yno

ENTER NEW MICRO-INSTRUCTION

B
RQS2QCB2gS1 gCBIv aCoUSDgG

<CR)

T

*=Y; yes

=N or any other character
including default; modifi-
cation request.

DMOi = N16N15 ... N2N1

where Ni =1 or Q
for default DMOi is maintained

These DMO's are stored in
DMO buffer. For further
details of content of DM3
refer to C. 13

=N or any other character
including default; No

*=y; Yes

refer Appendix A
for explanation

converts micro-instruction
in machine code and stores

in the SMO Buffer

C4.

C. 5. Specify

DMO & MI Spec

GT displays New micro-instruction,
[14O and the content

of associative memory at
the time of specification entry

C. 6. Process

Transfers SMO & DMO ie. executes
current micro-instruction according

to the specified [MO on the
data stored in AM

Gr displays Micro-instruction
tt40, content of AM after

execution of micro-instruction

C5.

C. 7. Micro Instruction Specify & Execute

c. 8. Output (Hard copy on console 'rrY)

Current Date and Time are
first logged.

Then the contents of display
are printed on console Teletype

C6.

C. 9. Fast output (Hard copy on LP)

Same as Mode
'O' on Line printer

C. 10 Exit

Exit

RT 11 F/B
OPERATING SYSTEM

MONITOR RUNNING

c7.

C. 11 Translate APT and Execute

4
ENTER API: API * ýCRi

GELTE SMO' S

- - T

GENERATE DMO's

C. 12 Instruction buffer loading

L1 D API's IN THE INSTRUCTION BUFFER

API* =A New API

APIi:
<CR> Load 16 API's

APIn: "$ý<CR>

STORE API's in INSTRUCTION BUFFER

cs.

C. 13 J: Verify Contents of Instruction Buffer

Output contents
of the instruction

buffer

C. 14 Execute the instructions stored in BUFFER

INITThLISE INSTRUCTION PTR

Get the next instruction

SR15 1
yes

Is it the
ON

Refit iD
option

no
OFT

Execute API

int Option >-off
SR= ith bit of

nSR721
the switch reg.

Print Memory Map

C9,

C. 15 Any other character

*

A

C. 16 NOTE: -

(1) For explanation of RT-11 system command refer 'RT-11

system reference manual'.

(2) The following notes are applicable to all Key board

operations.

(a) The monitor echos all character typed; lower

case characters are converted to upper case.

(b) C'TRLU (U) and Rubout perform line deletion and

character deletion respectively.

(c) A carriage return, line feed, CTRLZ or CTRLC must be

struck before characters on the current line are to

be made available to the prograan. The users are

requested to use only carriage return CR as texminating

character.

(d) ALT M= (octal cafes 175 & 176) are converted to

escapes (octal 33)

CIO.

C. 17 The contents of DM i

N16 N15 N14 N13 N12 N11 N10, N9 N8 N7 N6 N5 N4 N3 N2 N1

02R I STc 10xc J 0yc 102L I STS 10xs I 0ys II IW J MW I lop* 170 102 101

For explanation of signals see glossary of signals in Appendix A. 2.2.

Dl.

APPENDIX D

Fie1dA uisition'fran on Ins et data-base

D. 1. The Database Structure

The INSPIDC data bases consist of abstracts of journal articles, technical

reports, patents, conference proceedings, books and theses, classified and

indexed, with bibliographic citations included.

The database used in the present investigation was INSPBC-1 on a 9-track,

800 b. p. i. magtape. The record format conforms broadly to the ISO standazdd

2709 for bibliographic information exchange on magtape and with ANSI-239.

Each record contains such data as the title, abstract, authors, full biblio-

graphic references, indexing and cross-references with all items carrying

hierarchial classification codes, subject headings and free-index terns. The

tape is an 8-bit EBCDIC, Iß4 code using the reduced character set for

computer line printer output, this character set allows only the upper-case

alphabet. See section D. 2.6.

D. 2.1. The File Layout

The file leader follows k ned 4tely on the beginning-of-tape marker Wit bout

intervening tapanark.. There is no ? og1zni7g of file mark and the file-, 18

terminated by two immediately consecutive tape marks.

Recards are unblocked and each logical record starts at a physical b 4r*

boundary and may extend aver more tc h4odc.. The mwjugm ##"ical blc

A2,

size is 200010 characters with cgtti t b. ocks of less than ßp10

characters being filled out to this. mi, nimun (2010) length. The fill
IA' 1

characters are indeterminate, however, these characters will not be

accessed by the acquisition pragrar and therefore cause no error,

The maximum logical record size is 6,20010 characters. In each Inspec

file the first record will be a leader record which describes the contents

of the file. Each subsequent logical record holds information for a differ-

ent bibliographic item. The items are sequenced in ascending accession

n ibex order but can be regarded as randomly ordered in any other respect.

D. 2.2. The Reccrd Layout

The layout of the records is based on the USA and British standards for

bibliographic cacmunication which in turn are based on the Library of

Congress MAW formt.

Each record is divided into three pits; -

a) Fixed length leader

b) Variable length directory

C) Variable length data fields

leader Directory I P1' Control NO, j FT Data I FT Data IT RT
Field ' Field

1: 1IN
1

E)3.

D. 2.2.1. The Leader

In accordance with bibliographic star4ar'ds the leader contains 24 bytes

of 6-bit characters (ASCII) or 8-bit (MC. DIC) in the following format; -

Record Status Type of Not Indicator Delimiter Base Not Entry
Length Record Used Count Count Address Used map

of Data

0-4 56 7-9 10 11 12-16 17-19 20-23

D. 2.2.2. The Directory

The directory is a variable ler9th field consisting of a field terminator

character and a variable nUnbex of fixed length entries. It cöntains one

entry only fai each data field present in the record, and these entries

are recorded in ascending numeric sequence according to the tag field. If

a record does not contain a specific data field, the entry is entirely

anitted.

D. 2.2.2.1. The layout of an entry.

Tag

Igmth
Of

Field

Address

of
Field

O The first three decimal characters in a
directory entry uniquely define the. type,
of field addressed by the entry.

2
3 The number of characters. in the data field

specified by this entry iz 1z ing -tire data
field indicator and tern . natter characters,

6
The position of the first character of' the
data field relative to the base addreea of
the dafia. See

,
section (2,2,1. (. a ende ="

11

D4.

The first three characters in a directa y entry constitute a data field

which uniquely defines the type of field addressed by character 7 to 11

of the directory entry. The data fields contained in a record are

specified by broad category and sub-category. The format of the tag field

in a directory is as follows: -

Main Category Sub-Category

ch. 0 ch. 1-2

Character 0 indicates the broad category of the data field as follows: -

0 Control fields

1 'subject delineation' : title, abstract, classification,

indexing.

2 Personal names

3 Identifying codes

4 Volume, issue, part

5 Locations

6 Nunber of pages etc.

7 Organisations

8 Dates

9 File description

Characters 1 and 2 identify the sub-category within in category.

D5.

All tags are numeric and are arranged, within the directory, in ascending

numeric sequence. The list of tags are given in the following table D. I.

TABLE D. 1

TAG LIST DESCRIPTIONS

TAG List

Main Category

001

010

Main Cate

100

110

120*
121*

130*

131*

132

150

151

160

170

00 (Control fields)

Control number

Record type

1 (Subject delineation)

Title of record

Text of abstract

Sectiona l classification codes

Unified classification codes

Subject index headings

Free-indexing terms

Treatment codes

Title of corresponding higher level publication

(2) fron which this item has been taken (if

relevant)

Title of cover-to-cover translation journal

Language

Title of conference

D6.

Main Categry 2 (Personal names)

200* Author(s)

210* Editor(s)

220* Translator (s)

Main Catoory 3 (Identifying codes)

300* Abstract number (s) (appearing in INSPEC

abstracts journals)

310 CODEN

311 CCDEN of cover-to-cover translation

320 Standard Book Number

330 Report number

340 U. S. Government Clearing House number

350 Contract nu ber

360 Patent number

370 Original patent application number

Main Category 4 (Volume and issue)

400 Volume and issue number

401 Volume and issue number of cover-to-cover

translation

450 Part number

Main Categcary 5 (Locations)

500 Location of conference

510 Place of publication

520 Country of patent

530 Country of original patent application

07.

Main Category 6 (Nw
.G

jogg- Ott "j

600 Number of pages of level 1** record

610 Nunber of pages of level 2** record

620 Inclusive page nuibers

621 Inclusive page nu ibexs of level 2** cover-

to-cover translation

630 Number of references

640 Description of unconventional mediiin

Main Category 7 (Organisations)

700* Author affiliation

710* Editor affiliation

730* Assignees

740 Publisher

750 Organisation issuing report

760 Sponsoring organisation

770 Availability

Main Category 8 (Dates)

800 Inclusive dates of conference

810 Date of publication

811 Date of publication of cover-to-cover translation

820 Date filed or sukmitted

830 Priority date

Main Category 9 (File description)

900 Identif icati)
These fields can

910 Destination)
only appear in the

920 Date written)

.
file header ;d

930. S4eCt j an czitmi
** See Ref. 1161

D8.

D. 2.2.3. The data fields

The data area of a record is made up of a variable number of variable

lergth fields, each field has the following format: -

Indicator 0 Version number of format in which
the data field is encoded.

Delimiter 1 Field delimiter.

Data
Sub-field

Delimiter

Data
Sub-field

Delimiter

Data Field

Field
Terminator Final character of a data field.

Indicator I Next data field

Delimiter

Data Field

p9.

The possible data fields are detaa U01e D. 1, with their cQ re$pppdjng

directory entry tags.

D. 2.3. The Inspec 1 character set and ccding

The database uses an abridged character-set for canputer line-printer out-

put. This character set allows only upper-case alphabetic characters and

does not include shift codes in the data fields. Certain common characters

are translated into other symbols and many rarely used mathematical symbols

are replaced by a delete code to indicaia their position.

Certain characters are modified in the translation program, to suit the

output devices available and for program requiranents, to various low frequency

printing cr non-printing characters unlikely to cause confusion by their

position. These characters correspond to the Inspec function codes.

INSPEC functicn code Ascii ccde used.

Record terminator

Field terminator

Subfield delimiter

Tapanark

Deleted character

(1178 BC DIC)

(3408E C DIC)

(133aEBC DIC)

� (1778EBC PIC)

/ (1568BC DIC)

3778 (ASCII)

176a(ASCII)

0448 (ASCII)

1008 (ASCII)

1368 (ASCII)

non-printing

i

The abridged The magtape character set is eraoded in 8-bit IHM BCDIC

INSP=C character set is translated to 7 --bit atai zi ASCII set. Translation

is done after removal of the parity bit.

TABLE D. 2

Record
Terminator
Subfield
Delimiter

Deleted
Character

'1}penark

Field
Terminator

INSPElC IBM code ASCII Code
Character in Octal in Octal

113 056
114 051
115 133
116 074
117 377 non-printing

+ 120 053
$ 133 044 $
* 134 052

135 135
136 073

- 140 055
/ 141 057

153 054
154 050
156 136 T

space 172 040
= 173 075

174 047
175 072
176 076
177 100 @

? 300 077
A 301 101
B 302 102
C 303 103
D 304 104
E 305 105
F 306 106
G 307 107
H 310 110
I 311 111

320 041
J 321 112
K 322 113
L 223 114
M 224 115
N 325 116
0 326 117
P 327 120
Q 330 121
R 331 122

340 176
S 342 123
T 343 124
U 344 125
V 345 126
W 346 127
X 347 130
Y 350 131
Z 351 132
0 360 060
1 361 061
2 362 062
3 363 063
4 364 064
5 365 065
6 366 066
7 367 067
8 370 070
9 371 071

D10.

DJ)e

In the field acquisition progrcll qjgV A litmrage or output of the

acquired fields in the original 8 bit: cpdin, All input data is translated

immediately on entry and subsequentlx handled, displayed and output in the

ASCII equivalents shown in Table D. 2.

D. 3. The Program Environment.

The field acquisition program is implemented in Macro-11 assembler under

the RT11 F/B operating system on a DIGITAL PDP 11/40. It farms part of

a suite of programs for the study of associative retrieval system using a

simulated associative processor applied to an Inspec-1 data base.

D. 4.10 Concepts

inglenented under the RT11 operating system the database block structure is

non-standard, As the block size is variable the input philosophy of the

progran is to attanpt a read of the mVc ntin flock size 2,000 characters

return is then achieved on recognition of a physical block boundary.

All records start at a physical block boundary aril overflow into continuation

blocks as necessary; therefore, the input of a record entails reading blocks

sequentially to a care buffer DS4BUF of maxinun possible block length. The

buffer is flushed to nulls previous to each input of a block fron the data-

set to overcame the Prcb1e n of, the buffer being only partially filled by a

short block.

X12,

Each block is translated and tratw£e g, ;, cter-serially, to the

next free location in the care buffer F JFASC, the length of which is

equal to the maximum possible record lerth (6,20010 characters). The

blocks are read, translated and loaded to BUFASC until a record terminator

character is recognised. BUE'ASC is flushed to nulls before starting the

load, to allow for the variable record size.

The minimum unit of data transfer under RT11 is the 25610 word block; there-

fore, the output datasets are buffered and characters loaded serially to the

buffers until a ccznplete block of data is available, when it is automatic-

ally output to the dataset. A partially filled buffer may be output by

direct access to the output routines whenever necessary as the unfilled

portion of the buffer will in all cases contain nulls.

D. 5. The Input and Translation of the Records

D. 5.1. Block Wading and record Translation

The flow-chart of the block loading and translation program is given in

Fig. D. 1

A block of record is read fron the magtape data-base and temporarily stored in

the . input buffer area. The block of data (characters) available in the input

buffer is accessed serially. The parity bit is stripped off fron the

characters and the character code is used to look up its 7 bit ASCII

translated ASCII characters are loaded sequentially at the next free

location of a buffer area
,

(J'ASC) .

DI 3.

i

Staý'ý ,
i

Initia. ize

Read a Block of
data frgn the magtape.

Store than in
input Buffer

Translate fron

EBCDIC to A`' II

no

Store ASCII c cWs
in B FASC

of a
record

Yes

tramfeor
control to
FA Prcgr

D14.

This procedure is to ninated on .txccn of , the 'record t+ mia '

character. The cadets translated x Is then available in F $CS

and the control is transferred to the field acquisition program.

D. 6. Data Field Acquisition and (utpit

D. 6.1. General record-data access

A translated record is available in the buffer BUFASC, the record length

and the base address of the data fields are acquired from the record's

leader and converted to binary values from 5-character ASCII strings

using the utility subroutine BYTES. See Section (D. 6.5.).

D. 6.2. Tag Matching

The start of the directory entries is found and the first tag key in the

desired tag list LSTIG accessed. Both the tags in the directory and the

list are 3 character ASCII decimal strings, these are converted to binary

values before canparison.

All tags in the directory and in the desired tag list are unique ar4 in

ascending numeric sequence. The entry 1 ASCII in the desired tag list

teiuir te4 the search list.

A desired tag fran ISTIG is checked sequentially against all the directary

tags in a record until matched or lees than the directory tag ocu Bred in

which case the desired field does too . in the record. The =

D15.

key in LSTLG iss then checked agai t. ; Feu irsder of the d1, rectaxy ptartiW,

from the tag entry that numerically exceeded the preceding, tag key. When

the tag list is exhausted the next recgrd is input fron the file.

On a match the data field length, a4 character ASCII decimal string and

the offset to the start address of the field, a5 character ASCII decimal

string, are read fron the directory entry, and converted to binary values

and used to access the data field.

D. 6.3. Data field output

The data is loaded into the output buffer DS6BUF with a start-of-record

mark at the beginning and into the hard copy buffer DS5BUF starting at the

next available location in each.

When either output buffer is filled its contents are written to the disc

Unit. The buffer is then flushed to nulls (0) to ensure correct output

when a buffer is only partially fil. led, as may occur upon the input record

being exhausted. The output buffers are 25610wwords in length, the

standard RT11 block size, the output is done block serially.

D. 6.4. Input record tennination.

When the input file is exhausted a flag is set and any rennainir untras-

ferred data in the output buffer 1s stared in the disc unit with an end-of-

record mark.

D16.

Start

Initilize

C

Get Tag fron the
Directory and convert

it into binary

yes Erna of

no Get a tag fron the
desired tag list and

convert it into binary

ye V
End of

Canpare Tags
(Directory tag - desired tag)

B

Negative ? Positive

Get next tag address) Ifor Get next tag address
in Directory 0 the desired tag list

Get start address
of Data field; convert to binary

Get length of data field
and convert it to binary

Get character fron data field
and load it output Buffer

A

B

No < of
file

init3, ate output A
wit1 start of rci mark A3.79

Jvre Directo y
and desired

tag addresses

Write
end of
record
in
output
Buffer

Write
end of
record
end of
file in
output
Buffer

C

Output
remaining
character
in output
file

To input
and
translation

Output
renaining
character
in output
Buffer

Stop

Fig. 'D. 2 F1ow-Chart for the 'field aocjuisitia and output grogram. 1I ýý III 11 'IA+ ýýýIIý ý

P 8.

D. 6.5. The a xjuisitionProgram

The flow chart for the field acquisition program is given in Fig. D. 2

On the entry a canplete translated recc*d is available in BUFASC.

NOTE. - 1) The subroutine BXTES advances the string pointer,

past the last digit of the ASCII decinal string.

2) All tags are arranged in ascending numeric order.

D.. 6.6. Block output

The desired data-fields are acquired by the field acquisition program.

The acquired data-fields are loaded in the output data file on the disc

unit.

This process is continued for the entire data-base. When a file

tenminatcr is encountered an end-of-file k is stored in the output

file.

SUPPLEMENT

DYNAMIC-MICRO-ORDER SPECIFICATIONS FOR THE BYTE-ORIENTED VARIABLE
RECORD LENGTH ASSOCIATIVE PARALLEL PROCESSOR.

This supplement is to be read in conJunction with the thesis entitled
AN INVESTIGATION TO STUDY THE FEASIBILITY OF ON-LINE BIBLIOGRAPHIC

INFORMATION RETRIEVAL SYSTEM USING AN APP'. The supplement Provides
a complete specification of dwnamic micro-order sequences for all
valid Associative Processing Instructions (API's -- refer APPENDIX B).

The sequences of thnamic micro-orders for all Propagation options are
identicali hence these are not repeated.

In WRITE instruction the dynamic micro-order sequences for all 'RUN'
options excepting the 'GROUP RUN' are also identical. Hence two sets
of dynamic micro-order sequences valid for

1) TOP, BOTTOM and NO RUN's
2) GROUP RUN

are Aiven.

In APPENDIX Br it has been mentioned that all sixteen clear options
is valid from the Point of view of API definition. However, in some
cases no meaningful operation takes Place. These are marked bw '*'.

LEGEND.

SMO = STATIC MICRO-ORDER
AM0 = DYNAMIC MICRO -ORDER

For detail d6tinitions of micro-orders APPENDIX A and B maw be
referred.

MOTE 2-

and. % are listed as 0x and 0
y

WRITE INSTRUCTIONS (R/W =0)
For TOPP BOTTOM and NO RUN options.
Sixteen CLEAR options for COMPLEMENT option C= 0

sR MCCM C
ri w WCBM
0

0 0000 0

D SOO SOOTRMMGT00
M TXY TXYMWWMR021
0 CCC SSS

Ti 0110011000000000
T2 0110011000001100
T3 0110011000000000
T4 0000000000000000
T5 0000000000000001
T6 0000000000000000
T7 0101010100000000
T8 0101010100000010
T9 0101010100000000

SR MCCM C
MW WCBM
0

0 1000 0

D S00 SOOTRMMGT00
M TXY TXYMWWMR021
0 CCC SSS

T!
T2
T3
T4
T5
T6
T7
T8
T9

0110011000000000
0110011000001100
0110011000000000
0000000000000000
0000000000100001
0000000000000000 0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WCBM

0 0010 0

SQO SOOTRMMGTOO
TXY TXYMWWMRG21
ccc sss

0110011000000000
0110011000001100
0110011000000000
0010000000000000
0010000000000001
0010000000000000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WCBM

0 1010 0

S00 SOOTRMMGT00
TXY TXYMWWMR021
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0010000000000000
0010000000100001
0010000000000000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WCBM

0 0011 0

Sao SOOTRMMGTOO
TXY TXYMWWMR021
ccc sss

0110011000000000
0110011000001100
0110011000000000
0010000000010000
0010000000010001
0010000000010000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WCBM

0 1011 0

s00 SOOTRMMGT©0
TXY TXYMWWMR021
ccc sss

0110011000000000
0110011000001100
0110011000000000
0010000000010000
0010000000110001
0010000000010000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WCBM

0 0001 0

SOO SOOTRMMGT00
TXY TXYMWWMR021
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0000000000010000
0000000000010001
0000000000010000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WCBM

0 1001 0

SOO SOOTRMMGT00
TXY TXYMWWMR021
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0000000000100000
0000000001100001
0000000000100000
0101010100000000
0101010100000010
0101010100000000

SR MCC: M C
MW WCBM
0

0 0100 0

D SOO SOOTRMMCTOO
M TXY 'rxYMWWMRGýi
0 CCC SSS

Ti 0110011000000000
T2 0110011000001100
T3 0110011000000000
T4 0000001000000000
T5 0000001000000001
T6 0000001000000000
T7 0101010100000000
18 0101010100000010
T9 0101010100000000

$R MCCM C

MW WCBM
0 0 1100 0

D SOO SOOTRMMGTOO
M TXY TXYMWWMR621
0 CCC 555

Ti 0110011000000000
T2 0110011000001100
T3 0110011000000000
T4 0000001000000000
T5 0000001000100001
T6 0000001000000000
T7 0101010100000000
T8 0101010100000010
T9 0101010100000000

R MCCM C
W WCBM

0 0110 0

Sao SOOTRMMGTOO
TXY TXYMWWMR621
ccc SsS

0110011000000000
0110011000001100
0110011000000000
0010001000000000
0010001000000001
0010001000000000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WCBM

0 1110 0

500 SOOTRMMGTOO
TXY TXYMWWMRG21
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0010001000000000
0010001000100001
0010001000000000
0101010100000000
0101010100000010
0101010100000000

R MC CM C
W WCBM

0 0111 0

SOO SQOTRMM(3r00
TXY TXYMWWMMf G21
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0010001000010000
0010001000010001
0010001000010000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WCBM

0 1111 0

SOO SOOTRMMGT00
TXY TXYMWWMRG21
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0010001000010000
0010001000110001
0010001000010000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WC BM

0 0101 0

SOO SOOTRMM(y'T 00
TXY TXYMWWMR62 i.
ccc 8SS

0110011000000000
0110011000001100
0110011000000000
0000001000010000
0000001000010001
0000001000010000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WCBM

0 1101 0

SOO SOQTRMMGTOO
TXY TXYMWWMR021
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0000001000100000
0000001001100001
0000001000100000
0101010100000000
0101010100000010
0101010100000000

Sixteen CLEAR options for COMPLEMENET option C= 1.

5R MCCM C
MW WCBM
0

0 0000 1

R MCCM C
W WCBM

0 0010 1

R MCCM C
w WCBM
0 0011 1

D SOO SOOTRMMGT00
II TXY TXYMWWMRG21
0 CCC SSS

Ti 0110011000000000
T2 0110011000001100
T3 0110011000000000
T4 0000000000000000
T5 0000000000000001
T6 0000000000000000
T7 0101010100010000
T8 0101010100010010
T9 0101010100010000

SR MCCM C
MW WCBM
0

0 1000 1

D 600 SOOTRMMGT00
M TXY TXYMWWMR021
0 CCC SSS

T1 0110011000000000
T2 0110011000001100
T3 0110011000000000
T4 0000000000000000
T5 0000000000100001
T6 0000000000000000
Tg 0101010100010000
18 0101010100010010
T9 0101010100010000

BOO SOOTRMMGTOO
TXY TXYMWWMRG21
ccc sss

0110011000000000
0110011000001100
0110011000000000
0010000000000000
0010000000000001
0010000000000000
0101010100010000
0101010100010010
0101010100010000

R MCCM C
W WCBM

0 1010 1

S00 SOOTRMMGT00
TXY TXYMWWMR021
CCC SSS

0110011000000000
0110011000001100
0110011000000000
0010000000000000
0010000000100001
0010000000000000
0101010100010000
0101010100010010
0101010100010000

SOO SOOTRMMGT©a
TXY TXYMWWMR021
ccc sss

0110011000000000
0110011000001100
0110011000000000
0010000000010000
0010000000010001
0010000000010000
0101010100010000
0101010100010010
0101010100010000

R MCCM C
W WCBM

0 1011 1

S00 SOOTRMMGT00
TXY TXYMWWMRG21
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0010000000010000
0010000000110001
0010000000010000
0101010100010000
0101010100010010
0101010100010000

R MCCM C
w WCBM
0 0001 1

SOO SOOTRMMGT00
TXY TXYMWWMR621
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0000000000010000
0000000000010001
0000000000010000
0101010100010000
0101010100010010
0101010100010000

R MCCM C
W WCBM

0 1001 1

S00 SOOTRMMGT00
TXY TXYMWWMR021
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0000000000100000
0000000001100001
0000000000100000
0101010100100000
0101010100100010
0101010100100000

gR MCCM C
11 W WCBM
0

0 0100 1

O S00 SOOTRMMGTOO
M TXY TXYMWWMR021
0 CCC S89

Ti 0110011000000000
T2 0110011000001100
T3 0110011000000000
T4 0000001000000000
T5 0000001000000001
T6 0000001000000000
T7 0101010100010000
18 0101010100010010
T9 0101010100010000

gR MCCM C
MW WCRM
0

0 1100 1

D S00 SOOTRMMGT00
M TXY TXYMWWMR021
0 CCC SSS

Ti 0110011000000000
T2 0110011000001100
T3 0110011000000000
T4 0000001000000000
T5 0000001000100001
T6 0000001000000000
T7 0101010100010000
T8 0101010100010010
T9 0101010100010000

R MCCM C
W WCBM

0 0110 1

SOO SOOTRMMGTOO
TXY TXYMWWMR621
ccc sss

0110011000000000
0110011000001100
0110011000000000
0010001000000000
0010001000000001
0010001000000000
0101010100010000
0101010100010010
0101010100010000

R MCCM C
W WCBM

0 1110 1

S00 SOOTRMMGT00
TXY TXYMWWMRG21
ccc sss

0110011000000000
0110011000001100
0110011000000000
0010001000000000
0010001000100001
0010001000000000
0101010100010000
0101010100010010
0101010100010000

R MCCM C
W WCBM

0 0111 1

S00 SOOTRMMGT00
TXY TXYMWWMR021
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0010001000010000
0010001000010001
0010001000010000
0101010100010000
0101010100010010
0101010100010000

R MCCM C
W WCBM

0 1111 1

S00 SOOTRMMGT00
TXY TXYMWWMRG21
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0010001000010000
0010001000110001
0010001000010000
0101010100010000
0101010100010010
0101010100010000

R MCCM C
w WCBM
0 0101 1

S00 SOOTRMMGTOO
TXY TXYMWWMR021
ccc sss

0110011000000000
0110011000001100
0110011000000000
0000001000010000
0000001000010001
0000001000010000
0101010100010000
0101010100010010
0101010100010000

R MCCM C
W WCBM

0 1101 1

S00 SOOTRMMGT00
TXY TXYMWWMR021
ccc sss

0110011000000000
0110011000001100
0110011000000000
0000001000100000
0000001001100001
0000001000100000
0101010100100000
0101010100100010
0101010100100000

GROUP RUN 2---

SR MCCM C
MW WCBM
0

0 0000 0

D Sao SOOTRMMGTOO
M TXY TXYMWWMRG21
0 CCC 559

Ti 0110011000000000
T2 0110011000001100
T3 0110011000000000
T4 0101010100000000
Ts 0101010100001000
To 0101010100000000 T7 0000000000000000
Ts 0000000000000010
T9 0000000000000000

R MCCM C
W WCBM

0 0000 1

S00 SOOTRMMGT00
TXY TXYMWWMRG21
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0101010100000000
0101010100001001
0101010100000000
0000000000010000
0000000000010010
0000000000010000

READ INSTRUCTION (R/W =1).
Sixteen CLEAR options for COMPLEMENT option C=0.

gR MCCM C
ti w WCBM
0

1 0000 0

D 800 SOOTRMMGT00
M TXY TXYMWWMRG21
0 CCC 988

T1 0110011000000000
T2 0110011000001100
T3 0110011000000000
T4 0000000000000000
T5 0000000000000001
T6 0000000000000000
T7 0101000000000010
T8 0101000001000010
T9 0101000000000010

R MCCM C
W WCBM

1 0010 0

S00 SOOTRMMGT00
TXY TXYMWWMRG21
ccc sss

0110011000000000
0110011000001100
0110011000000000
0010000000000000
0010000000000001
0010000000000000
0101000000000010
0101000001000010
0101000000000010

R MCCM C
W WCBM

1 0011 0

Soo SOOTRMMGTOO
TXY TXYMWWMRG21
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0010000000010000
0010000000010001
0010000000010000
0101000000000010
0101000001000010
0101000000000010

gR MCCM C
MW WCBM
0

1 1000 0

D SOO SOOTRMMOT00
M TXY TXYMWWMR021
0 CCC SSS

Ti 0110011000000000
T2 0110011000001100
T3 0110011000000000
T4 0000000000000000
T5 0000000000100001
to 0000000000000000
T7 0101000000000010
18 0101000001000010
T9 0101000000000010

R MCCM C
W WCPM

i 1010 0

s00 s00TRMMGT00
TXY TXYMWWMR821
ccc sss

0110011000000000
0110011000001100
0110011000000000
0010000000000000
0010000000100001
0010000000000000
0101000000000010
0101000001000010
0101000000000010

R MCCM C
W WCBM

1 1011 0

SOO SOOTRMMGT00
TXY TXYMWWMRG21
ccc SSS

0110011000000000
0110011000001.100
0110011000000000
0010000000010000
0010000000110001
0010000000010000
0101000000000010
0101000001000010
0101000000000010

R MCCM C
W WCBM

1 0001 0

800 SOOTRMMGT©O
TXY TXYMWWMR021
ccc sss

0110011000000000
0110011000001100
0110011000000000
0000000000010000
0000000000010001
0000000000010000
0101000000000010
0101000001000010
0101000000000010

R MCCM C
W WCBM

1 1001 0

SOO SOOTRMMIT00
TXY TXYMWWMR021
ccc sss

0110011000000000
0110011000001100
0110011000000000
0000000000100000
0000000001100001
0000000000100000
0101000000000010
0101000001000010
0101000000000010

gR MCCM C
MW WCBM
0

1 0100 0

ID S00 SOOTRMMGT00
M 7XY TXYMWWMRG21
0 CCC SSS

Ti 0110011000000000
T2 0110011000001100
T3 0110011000000000
T4 0000001000000000
T5 0000001000000001
T6 0000001000000000
77 0101000000000010
18 0101000001000010
T9 0101000000000010

gR MCCM C
Mw WCBM

0 1 1100 0

D S00 SOOTRMMGT00
M TXY TXYMWWMRG21
p CCC SSS

Ti 0110011000000000
T2 0110011000001100
T3 0110011000000000
14 0000001000000000
Tg 0000001000100001
T6 0000001000000000
T7 0101000000000010
to 0101000001000010
T9 0101000000000010

R MCCM C
W WCBM

1 0110 0

500 SOOTRMMGT00
TXY TXYMWWMR021
ccc sss

0110011000000000
0110011000001100
0110011000000000
0010001000000000
0010001000000001
0010001000000000
0101000000000010
0101000001000010
0101000000000010

R MCCM C
W WCBM

1 1110 0

S00 SO0TRMMGT00
TXY TXYMWWMR021
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0010001000000000
0010001000100001
0010001000000000
o101000000000010
0101000001000010
0101000000000010

I

R MCCM C
W WCBM

1 0111 0

SOO SOOTRMMGTOO
TXY TXYMWWMR021
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0010001000010000
0010001000010001
0010001000010000
0101000000000010
0101000001000010
0101000000000010

R MCCM C
W WCBM

1 iiil 0

S00 SOOTRMMGT00
TXY TXYMWWMRG21
ccc sss

0110011000000000
0110011000001100
0110011000000000
0010001000010000
0010001000110001
0010001000010000
0101000000000010
0101000001000010
0101000000000010

R MCCM C
W WCBM

1 0101 0

SOO SOOTRMMGT©O
TXY TXYMWWMRG21
ccc sss

0110011000000000
0110011000001100
0110011000000000
0000001000010000
0000001000010001
0000001000010000
0101000000000010
0101000001000010
0101000000000010

R MCCM C
W WCBM

1 1101 0

SOO SOOTRMMOT00
TXY TXYMWWMR021
ccc sss

0110011000000000
0110011000001100
0110011000000000
0000001000100000
0000001001100001
0000001000100000
0101000000000010
0101000001000010
0101000000000010

Sixteen CLEAR options for COMPLEMENT option C=1.

sR MCCM C
MW WCBM

0 1 0000 1

D SOO SOOTRMMGTOO
M TXY TXYMWWMRG21
0 CCC SSS

Ti 0110011000000000
T2 0110011000001100
T3 0110011000000000
T4 0000000000000000
T5 0000000000000001
T6 0000000000000000
T7 0101000000010010
T8 0101000001010010
T9 0101000000010010

R MCCM C
W WCBM

1 0010 1

S00 SOOTRMMGT00
TXY TXYMWWMRG21
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0010000000000000
0010000000000001
0010000000000000
0101000000010010
0101000001010010
0101000000010010

R MCCM C
W WCRM

1 0011 1

Soo SOQTRMMGTOO
TXY TXYMWWMR621
ccc sss

0110011000000000
0110011000001100
0110011000000000
0010000000010000
0010000000010001
0010000000010000 0101000000010010
0101000001010010
0101000000010010

R IICCM C
W WCBM

1 0001 1

SOO SOOTRMMGTOO
TXY TXYMWWMR0 1
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0000000000010000
0000000000010001
0000000000010000
0101000000010010
0101000001010010
0101000000010010

8 R MCCM C R MCCM C R MCCM C R MCCM C
M W WCBM W WCBM W WCBM W WCBM
0

1 1000 1 1 1010 1 1 1011 1 1 1001 1

D S00 SOOTRMMOTOO S00 SOOTRMMGT00 S00 SOOTRMMQ-TOO S00 S0OTRMMGTOQ
M TXY TXYMWWMRG21 TXY TXYMWWMRG21 TXY TXYMWWMRG21 TXY TXYMWWMR021
0 CCC SSS CCC SSS CCC SSS CCC SSS

T1 0110011000000000
T2 0110011000001100
T3 0110011000000000
T4 0000000000000000
TS 0000000000100001
16 0000000000000000
T7 0101000000010010
TS 0101000001010010
19 0101000000010010

0110011000000000
0110011000001100
0110011000000000
0010000000000000
0010000000100001
0010000000000000
0101000000010010
0101000001010010
0101000000010010

0110011000000000
0110011000001100
0110011000000000
0010000000010000
0010000000110001
0010000000010000
0101000000010010
0101000001010010
0101000000010010

0110011000000000
0110011000001100
0110011000400000
0000000000100000
0000000001100001
0000000000100000
0101000000i000lo 0101000010100010
0101000000100010

SR MCCM C
MW WCBM
0

1 0100 1

D S00 SOOTRMMGT00
M TXY TXYMWWMRG21
0 CCC SSS

Ti
T£ V

T3
T4
T5
T6
T7
T8
T9

0110011000000000
0110011000001100
0110011000000000
0000001000000000
0000001000000001
0000001000000000
0101000000010010
0101000001010010
0101000000010010

sR MCCM C
MW WCBM
0

1 1100 1

D S00 SOOTRMMOTOO
M TXY TXYMWWMR021
0 CCC SSS

T1 0110011000000000
T2 0110011000001100
T3 0110011000000000
T4 0000001000000000
TS 0000001000100001
T6 0000001000000000
T7 0101000000010010
TO 0101000001010010
T9 0101000000010010

R MCCM C
W WCBM

1 0110 1

SOO SOOTRMMGTOO
TXY TXYMWWMRG21
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0010001000000000
0010001000000001
0010001000000000
0101000000010010
0101000001010010
0101000000010010

R MCCM C
W WCBM

1 1110 1

SOO SOOTRMMGT00
TXY TXYMWWMR021
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0010001000000000
0010001000100001
0010001000000000
0101000000010010
0101000001010010
0101000000010010

R MCCM C
W WCBM

1 0111 1

SOO SOOTRMMGT00
TXY TXYMWWMRG21
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0010001000010000
0010001000010001
0010001000010000
0101000000010010
0101000001010010
0101000000010010

R MCCM C
W WCBM

1 1111 1

SOO SOOTRMMGT00
TXY TXYMWWMR021
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0010001000010000
0010001000110001
0010001000010000
0101000000010010
0101000001010010
0101000000010010

R MCCM C
W WCBM

1 0101 1

800 SOOTRMMGTOO
TXY TXYMWWMR021
ccc sss

0110011000000000
0110011000001100
0110011000000000
0000001000010000
0000001000010001
0000001000010000
0101000000010010
0101000001010010
0101000000010010

R MCCM C
W WCBM

1 1101 1

SOO SOOTRMMGT00
TXY TXYMWWMR021
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0000001000100000
0000001001100001
0000001000100000
0101000000100010
0101000010100010
0101000000100010

