AN INVESTIGATION TO STUDY THE FEASIBILITY

OF

ON-LINE BIBLIOGRAPHIC INFORMATION

RETRIEVAL SYSTEM USING AN APP

RANA DATTAGUPTA

supervised by

R. M. LEA

A thesis suhnitteci for the degree of Doctor of Philosophy at
Brunel University, Uxbridge.

July 1977

'~ BEST COPY

. AVAILABLE

ﬁ

- V.a'.riable pﬁnt quality

TEXT
CUT OFF IN THE
ORIGINAL

CHAPTER 1.

INTRCDUCTION

CHAPTER 2.

INFORMATION RETRIEVAL SYSTEM

2.0

2.1 Indexing

2.2, Query

2.3 Searching

2.3.1. Searching on Primary Keys
2.3.1.1. Sequential Search on Qrdered File
2.3.2, Searching by camwparison of Keys

2.3.2.1. Binary search
2.3.2.2, Multiway tree search
2,3.2.3. Irdexed sequential search

2.3.3. Searching by Hash Tables
2.3.3.1,

2.4. Searching on Secondary Keys
2.4.1. Inverted list

2.4,2, Chained List

2.4.3. Controlled multilist

2.4.4. Cellular partition

2.5. File up-date and Maintenance
2,6. Summary

2.7. Discussions

CHAPTER 3.

ASS&IA'ITVESOIUHCN(I‘INFOIMATI(NRETRIEVALPRQBLEMNDAN

OVERVIEW CF ASSOCIATIVE PARALLEL PROCESSOR.
3.0 |

3.1 Associative solution of the information retrieval systems

3.2, An Overview of Associative Parallel Processor

15
16
16
18
20
20
22
23
25
34
36
40
42
44
45
47
52
57

59
59
64

3,2.1.
3.2.1.1.
3.2.1.2.
3.2.1.3.
3.2.1.4.
3.2.1.5.
3.2.1.6.
3.2.1.7.
3.2.2,
3.2.2.1.
3.2.2.2.
3.2.2.3.
3.2.2.4.
3.2.3.
3.2.4.
3.2,5.
3.2,6.
3.2.6.1.
3.2.6.2.
3.2.6.3.
3.2.6.4.
3.2.6.5,
3.2,6.6.
3.3,
3.4,

CHAPTER 4.

Associative Processor Architecture
Fixed Recard Length

Variable Recard Length
Word-Qriented

Bit Serial

Ward Serial

Associative File Stare
Distributed Logic Memory

Basic Operations

Search

Read

Write

Arithmetic and Logical operations
The multiple response prablem
Hardware Element

Software for APP

Applications

File maintenance and Data-base Management
Pattern Recognition

Information storage and retrieval
Translation

Military Applications
Miscellaneous Applications
Research at Brunel University
Discussion

THE GBJECTIVES AND PROGRAMME OF WORK

4.1
4.2
4.2.1.
4.2,2.
4.2.3.
4.2.4.
4,3.

Advantages of APP based retrieval system
Simple data-structure

Flexibility

Fast response

’ Cost

Objectives

65
67
67
69
69
70
70
70
72
72
73
73
73
74
75
76
77
77
77
77

77
78
78
78
80

82
83
83
84
84
84

. 85

4.4.
4.4.1,
4.4.2.
4.4.3.
4.4.4.
4.4.4.1,
4.4.4.2.
4.4.4.3,
4.5,

CHAPTER 5.

Research Programme

System Design

Searching Strategies

System Evaluation

System implementation
Algorithm Development

System Evaluation

Algarithm Improvement

The Programme of Present Work

AN EXPERIMENTAL SET UP FOR THE SIMULATION OF A BYTE-ORIENTED
VARIABLE RECORD LENGTH ASSOCTATIVE PARALLEL PROCESSOR.

5.0
5.1
5.1.1.

5.1.1.1.
5.1.1.2,
5.1.1.3.
5.2,
5.3.
5.3:.1.
5.3.1.1.
5.3.1.2.
5.3.1.3.
5.3.1.4.
5.3.1.5.
5.3.1.6.
5.3.1.7.
5.3.1.8.
5.3.2.
5.3.2.1.
5.3.2.2.
5.4.

Introduction
Architecture of Associative Parallel Processor

The structural aorganisation of a Byte-oriented variable
record length associative parallel processor.

Memory Array

Adressing Unit

Control Unit

Approach for system implementation and Objectives
The experimental BO-VRL-APP set up.

Hardware descriptions of the experimental set up
Associative Memory Cell

Memory Array

Micro-arder Registers

Data-Input Register

Bit-Control Logic

Tag registers

Word Control Logic

Read Register

Interface Control lLogic

Data-Input

Data-Output

Associative Processing Instructions

85
85
85
86
86
87
87
87
88

9
92
94

94
95
98
98
100
101
101
103
104
106
106
106
108
111
111
112
112
115

5.4.1,
5.4.2.
5.5,
5.5.1.
5.5.2.
5.6,
5.7,
5.8,

CHAPTER 6.

Instruction Foxmat
Instruction Cycle

Steps of the Experiment
Timing diagram generation
Memory Map

Software Package

Results

Discussion

ON-LINE ASSOCIATIVE RETRIEVAL SYSTEM

6.0
6.1.
6.2.
6.2.1.
6.2.2.
6.2.3.
6.2.4.
6.3.
6.3.1.
6.3.2.
6.4.
6.5.
6.6.
6.6.1.
6.6.1.1.
6.6.1.2.
6.6.1.3.
6.6.1.4.
6.6.1.5,
6.6.2,

6.6.2.1.
6. 6.2.2.
6.6.2.3,

Introduction

ON-THE-FLY Technique of searching
Search criterion

Simple Equality Search
Canbination of Boolean temms
Threshold search

Interactive search

Data-format

Index File

Profile

Philosophy of Implementation of on-line IS&R System
Software and Control Structure
Algarithms

Algorithms far Search Operation
Initialization '

Start of File

Start of Recard

End of Record

End of File

Details of the algorithms using Associative Processing
Instructions.

Clear (AM)
Load (AM)
Start of Record

115
117
118
120
120
122
125
128

131
134
136
136
136
137
137
137
139
142
143
146
148
150
150
152
154
154
157
157

157
158
l6l

6.6.2.4 Campare Algorithm
6.6.2.5 Document Hit Algorithm

6.7 Implementation
6.8 Discussion
CHAPTER 7.
QONCLUSIONS
7.0
7.1 Criticism of work
7.2 Future Work
BIBLIOGRAPHY
APPENDIX A. Descriptions of information transferred

through interface.

APPENDIX B. Specification of the Instruction set for
the BO-VRL~APP. -

APPENDIX C. Flow Chart for using BO-VRL-APP simulation

APPENDIX D. Field Acquisition from INSPEC Data-base.

161

165
183

186

188
193
195

197

- ABSTRACT

This thesis reports an investigation on the feasibility study of a
searching mechanism using an APP suitable for an on-line biblio-

graphic retrieval ,operation, especially for retrospective searches.

Fram the study of the searching methods used in the conventional
systems it is seen that elaborate file~ and data- structures are
introduced to improve the response time of the system. These
consecuent ly lead to software and hardware tedundancies. To mask
these canplexities of the system an expensive camputer with higher
capabilities and more powerful instruction set is conmonly used.

Thus the service of the system becanes cost-ineffective.

On the other hand the primitive operations of a searching mechanism,
such as, association, damain selection, intersection and unions,are
the intrinsic features of an associative parallel processor. Therefore
it is important to establish the feasibility of an APP as a cost-

effective searching mechanisu,

In this thesis a searching mechanism using an 'ON-THE-FLY' searching
technique has been proposed. The parallel search unit uses a Byte-

oriented VRL-APP far efficient character string processing.

At the time of undertaking this work the specification for neither the
retrieval systems nor the BO-VRL-APP's were well established; hence a

two-phase investigation was originated. In the Phase I of the work a -

bottam up approach was adopted to derive a farmal and precise
specification for the BO-VRL~APP. During the Phase II of the work

a top-down approach was opted for the implementation of the searching
mechanism.

An experimental research vehicle has been developed to establish

the feasibility of an APP as a cost-effective searching mechanism.
Although rigorous proof of the feasibility has not been cbtained,

the thesis establishes that the APP is well suited for on-line
bibligraphic iﬁmtim retrieval operations where substring searches
including boolean selection and threshold weights are efficiently

suppcarted.

CHAPTER I

INTRODUCTION

Information is collection of knowledge. This collection of knowledge is

used in directing the further advancement and organization of knowledge. The
rapid growth of science and technology has led naturally to a corresponding
growth of knowledge. The enormous size and camplexity of infommation fram
various sources has reached the point where alarm is felt in regard to the
potential loss of knowledge due to increasing difficulties of retrieving it.
This may lead to unnecessary and expensive duplication of research and consequent
stultification of research and develogment. To the individual scientist, the
main problem is to find out the documents which contain useful information and
to obtain copies of these. The growing importance of information accessibility
has recentiy drawn fresh attention to this problem. Thus the need for an
autamated solution to this problem is now well appreciated.

1-11

In general, an information retrieval system ~ can be used for:

1. Data retrieval
2. Fact retrieval

3. Document retrieval

Data retrieval:~ A set of data is retrieved in response to a query for helping

managers to produce reports, statistics and future projection for day to day

decision making problems.

Fact retrieval:~ The function 6f thiB il similar to an encyclopedia or engineerin
handbook which provides an answéf to a ‘sinplé'queétion.

Docutent retrieval:- This is generally a two-step operation. In the first

step a set of documents is located. In the subsequent operation the desired

documents are retrieved fram the storage.

The present discussion is mainly aimed at the library bibliographic information
retrieval system, the function of which is similar to the document retrievalop-
eration. The performance of such a retrieval system in regard to the total number
of documents retrieved should be flexible enough to carry out specific and ex-
haustive searching. For example a user may intend to get only a few references
in response to l.liS query - that is, he may be interested in the specific
‘retrieval. On the other hand a researcher would like to perform an exhaustive
search on the data-base to retrieve all documents related to his area of interest.
Such an exhaustive search may be of two types. These are:-

1. retrospective search

2. current awareness service

The retrospective search informs the user of all past works which are relevant to

his particular field of research.

The current awareness service allows a user to keep abreast with the currently

produced literature.

In the current awareness service an immediate response is generally not required.
Hence a number of queries can be grouped together to form a batch of profi.lés’.

A sequential search an the current collection of the data-base is then carried
out with the batch of profiles to generate respective outputs sihce this is a
regular service, the contents of the output of each user can be monitored and
there is an opportunity of refining user's query to get maximum relevance.

ENR AN

The retrospective search however, is carried out enly once, s Hence, -l Cnlm!"x

retrieval operation is desirable for -retrospective search. Since the response of
the system is inmediate and the profile can be interactively modified, the best
result is obtained. Another feature of on-line retrieval system is 'browsing'.
This allows a vaguely defined user's query to gain precision by interactive

refinement of the profile.

Camonly, in an information storage and retrieval system a user specifies his
need for same facts by selecting a set of search keys. The collection of documentgl
which is stored in the data-base, is also assigned with similar keys. The
retrieval of ir;fonnation is then carried out by a sinple association of the users

and documents Keys, which is essentially an associative process. This pr:i.ﬁ1itive
operation of association is not an intrinsic feature of a conventional camputing
system. In such a system elaborate techniques are employed to create an
artificial association. This increases the camplexities of the data-structure
and camputation of the retrieval system, Hence to provide an acceptable grade of
service, a ocomputing system of higher performance, which masks these camplex
operations by faster and more expensive hardware, is used. Consequently the cost
of retrieval service becames expensive enough to deter many potential users fram
availing this facility.

To simplify the function of an information retrieval system, it can be divided

into three major phases of operations, These are:

1. Indexing:- Assigning a set of Keywords to a document and storing it in the
database, These keywords classify a document according to the subject
matter of its contents; so that in future the documents can ke accessed
by the subject index.

. 2i Quexry oruser's profile:~ A user wishing to retrieve a set of documents ' |
should express his information need by specifying a quexy, Am'aw

or profile consists of a set of Keywords describing a field of specializ-
ation.

3. Search:- In this phase of the qm’at‘}.'(l)ﬁ” the data-base is searched for the
selection criterion as specified in the user's profile. When all relevant
documents satisfying the search criterion are located, they can be physically

retrieved fram the storage,

The first two operations (indexing and query formulation) are in the damain of
information science and still require a lot of human decision-making capabilities.
The scope of the present discussion is limited to the search phase of the

information retrieval system.

The simplest method of the searching operation is to scan the entire document file
fram the beginning to the end to find . out the occurrance of the search-key.

A noticeable improvement of the required number of camparisons for a search
operation is obtained by simple ordering of the Keys of the document file. Further
improvement can be achieved by a tree structure, such as, binary or multiway tree.
The number of key-camparisons involved in a tree-structured file then dépends on -
the total mumber of entries. Moye improvement can be achieved with hash-coding,
where the number of camparison is independent of the size of the data-~base, but
it may involve many computations. As the complexity increases, it may be
required to locate a document by more than one key or bycross-references. To
facilitate this, an inverted file is often emplbyed. The performances of an
inverted file system are functions of the datastructure emplqyed. Each of
these has its relative merits and disadvantages. In general, for fast retrieval
operation the data-base of an information retrieval system, using conventicnal
camputers, should be highly structured. Then it is likely that the updating

will be more difficult. |

On the other hand a camputer system which embodies association as a primitive

operation may be efficiently used for an information retrieval systen47-54i5']7_:§é'

In the simplest form of an associative retrieval system, the data~base is stored
in a content-addressable memory and a parallel search is then carried out to
locate the desired Keys. In practice a large associative mamory array suitable
for storing a reasonable size of data-base is difficult to produce.
Alternatively two other techniques can be adopted, where:

1. A part of the data base is held in the associative memory.

2. The search data (user's profile) is held in the associative

memory (ON THE FLY)

The first organisation has the disadvantage of continued loading of the
associative memory, but it allows more camplex manipulations to be carried out.
Although the converse of these advantages and disadvantages.is true for the
second method, it has the primary advantage of cost. As a keyword or record may
contain a variable number of characters, a provision for incorporating this
feature should also be included in the system. This type of data-organization
is well supported by a byte-orientated variable record length associative
parallel processor (BO-VRL~-APP). Hence, for the current investigation 'ON THE
FLY' search technique using a BO-VRL-APP is chosen. In the 'on the £ly' technique,
records containing indices are passed over the top of a 'parrallel search' unit
to filter-out the relevant documents. This process is continued until the end-
of-the file is encountered.

151 are;

The major advantages of an associative retrieval system
1. Minimal data-structuring -
2. More efficient searching
3, More efficient updating
4. Duproved flexibility ~

The basic cbjective of the pesent investigation is to evaluate these
indications and prove that APP can support efficient and flexible keyword
searching.

Unfortunately, until now, research in neither inforrtation science nor associative
parallel processor is so established that it can provide an exact system
specification. However, a top-down design of information system and bottom up
development of APP system is considered to be the most sensikle approach to
encounter the lack of information in these fields. Moreover to exploit the

full capabilities of the hardware, it is considered that the associative retrieval
system should be implemented with low level associative instructions. The

.other constraint of the present research is the inédequacy of resources. At

the beginning of the work, except for a nand-gate implemented associative

memory array, no hardware or software facilities to support the development of

an associative retrieval system was available at Brunel University. Hence, it
was essential to divide the present investigation into two different phases. It
was decided that in the first phase of work, an interactive experimental set up
would be developed to specify the instruction set for a byte orientated VRL~APP.
In the next phase, the results abtained in the first phase would ke utilized to
implement a research vehicle for anv associative retrieval system. The purpose of
experiments carried out in this phase would be to develop algorithms for
information retrieval operation to demcnstrate the flexibility, efficiency and -
simplicity of a retrieval éystem based on an associative parallel processor

and to compare its performances with its conventional counter parts.

This thesis discusses the problems related to the implementation of research
- vehicles for associative retrieval system.The proposed system uses an'ON THE FLY'.
‘searching technique utilizing a byte~orientated variable record length associative
- parallel processor. The purpose of the present investigation is to study and

demonstrate feasibility of such a system, The experience gai.ned by this :aneati.
gation may be the basis of future development of associative retrieval & Y pLens.

-~ CHAPTER 2.

G ———

2.

The user of an information retrieval system! ! is concerned to get facts about
his query. It is expected that the information centre is capable of catering to
the information needs of its users. That is ¢+ the collection of the information
centre should cover the set of documents required for a group of users. The
operation of retrieval of documents fram an information center is basically
resolving the relevance of documents stored in it with the query. A document can
bé retrieved by its author's name, title or contents. In the first two cases, it
is assumed that the user is informed of the existence of a docunent designated by
these keys. On the other hand, when a user does not have any prior knowledge of
the author's name or the title of a document, he can locate the desired document
by its contents (subject index). The subject natter contained in a document is
indicated by an index term. The index terms classify docxmxenﬁs into different
subject categories. Indexing is the process of assigning an index tem to a
document, and is generally carried out according to a predefined rule.

As the retrieval of documents involves matching index terms assigned to a document
w1ththeindextemscitedintheuse.rsquexy it is expected that the user would

express his query in a language similar to that used for indexing.

When the user's query is presented to the infommation centre, the index temms
referred to in the query are searched, edther manually or by a mechanised device,
within the data-base. Once a match between the index temms is faynd, the relevant
documents are retrieved from thelr physical locations. This concludes a retrieval
operaticn.

Thus, it can be seen that three major operations are involved in an information
retrieval system. These are:

l. Indexing

2. Query formulation

3. Searching
Although these processes look trivial, there are many problems associated with

each of these operations. In the following sub-sections 2.1, 2.2 and 2.3 same

aspects of these operations are discussed.

2.1 INDEXING:-

The process of inde:d.ngl-lo is required to classify a docunent into a set of

subject categories which are contained in a document. Althoﬁgh mechanisation of
indexing is possible to a certain degree of success, it still involves to a large
extent human intellectual effort. Until now indexing is best done by human indexers,
Indexers are responsible for evaluating the relevance of a document to a class of
subject categories, to which it fits best. To express an indexer's cament about
a document, that is, to assign an index term to it, he needs the help of an
indexing language. The choice of an indexing language depends 6n two criteria;
these are:

1. expressiveness

2. unambiguity

There is no doubt that the selection of a natural language for indexing would
result in the best expressiveness of the index, but at the same time it would be
most ambiguous. One approach to solve the problem of ambiguity is to use a
hierarchical indexing'® 20 procedure (see Fig.. 2.1(a), (b), ()). In this approach

an authority list of all possible subject categories is produced. This cansists
of all generic tems at the first level of the hierarchy, and subsequent detall

1 2| 1.3 |

11 {112 Tt 12a 0] 1220 Wa2a {{12e 1131 1132|1133

a) Tree representation of a Hierarchical index.

600 Technology (applied science)
620 Engineering

629 Other branches of Engineering
629.13 Aeronautics

629,138 . Uses of Aircraft

629,138 8 Space of flight.

b) The Autharity list of Dewey's decimal language.

Annealing Vm Heat Treatment
See Also Black Annealing Vmb Harriogenization
Bright Annealing vmd

c) An Autharity list of a Facet Subject Classification

Fig. 2.1 Hierarchical Indexing

10,

aspects of a generic temm are expressed in lower levels of the hieearchy. In
order to assign an index temm to a document a strict syntacticrule must generally
be followed.

One of the most camonly encountered problems in a library is that the majority
of its collections use only a few of the approved index terms. This often leads

to camplex subdivisions of these index terms. Sametines, it becomes extremely
_difficult to accamcdate a new subject concept within the existing authority list.
This problem could be partially solved by a continuous updating of authority

list, that is, b3; including a new index term as soon as the subject is well
established. Another difficulty arises when a document under consideration, covers
a nunber of mutually unrelated subjects. In those cases, it is virtually impossible
to partition these documents under only one kroad category. As a solution to this

proklem, a numnber of index te:cms21 are attached to the document, each according to

corresponding subject concepts. The resulting index temms are then permutated22
to provide a full index (Fig. 22). This allows equal accessibility of a document

when this document is intended to be retrieved fram any subject's point of view.

In many cases it is dbserved that the camplete permutations of index terms are not

essential, even then, this increases the size of the index to a large extent. This

is particularly trve when the mmber of index texrms exceeds two.

The index thus obtained for a set of documents is co--ordinated23

during the time of
indexing. Hence this cannot be changed during the searching phase. This type of
indexing is called 'pre-co-ordinated’ system. In the other type of indexing, 'post
oo-ordinated'24. system,correlations of classes of documents are done during searching.
time. This leads to a flexible indexing system, as the entire mode of classification
oould be modified by the user of the system. Here an indexer is allowed to assign
any mamber of index tems, called 'keyword's' to a document, which he thinks are
relevant to it. The final co-ordirationofthesekeymrdsisdombylogical inter-

mxect:l.cnsannngthesekeynprdé. A major difficulty arises hered\ntofree o

621.762 : 546 ., 65
- 546,65 ; 621 , 762

a) Colon Classification

Kgb Bgt Ac
Bqt Ac Kgb
Ac Kgb Bqt
Kgb Ac Bqgt
Bat Kgb Ac
Ac Bqt Kgb
b)

Fig. 2.2. Permutated Indexing

11,

COMPUTERS
(Computers & Dats Systems)
Includes
Calculating machines
Generic tos
ANALOG COMPUTERS
ANALOG-DIGITAL COMPUTERS
BOMRING COMPUTERS
DIGITAL COMPUTERS
DIGITAL DIFFERENTIAL ANALYZERS
FIRE CONTROL COMPUTERS
GUIDED MISSILE COMPUTERS
TMPACT COMPUTERS
NAVIGATION COMPUTERS
PARALLAX COMPUTERS
RADAR RANGE COMPUTERS
SPECIAL PURPOSE CONPUTERS
TORPEDO DATA COMPUTERS
Also see:
DATA PROCESSING SYSTEMS
ELECTRONIC ACCOUNTING MACHINES
PROGRAMMING (COMPUTERS)
SIMULATION

Computiag gun sights use GUN
SIGHTS

CONCRETE
(Structyrel Englneering)
Generis to1
REINFORCED CONCRETE
Also seey
CERENTS

Concrete surfacing use PAVERENTS

CONDENSATION
(Physical & Physicochemical
Concepts)

{(Change of state from gas or
vapar to liquid or solid; alse
meieorologicel phenomenon, ex~
cludes chemjcnl re.ctlon.s

Also see:

ATMOSPHERIC PRECIPITATION
cLOuDS

CONDENSATION REACT]IONS
(Chemicail Reactions)
Includesy

Reformetoky resctions
Speciflic tos

CHEMICAL REACTIONS
Generic tot

FRIEDEL-CRAFTS REACTIONS

GRIGNARD REACTIONS
Alse seces

DIENE SYNTHES1S

GAIGNARD REACTIONS

FIG. 2.3, Sample from

CONDENSATION TRAILS
Meteorology & Climstology)
Includest
Contrails
Exhaust trails
Vapor treils
Also see)
WAKE

Condensers (Electrical) use
CAPACITORS

CONDENSERS (LIQUEFIERS)
(Instrumentation)
Generic to:

REFRIGERANT CONDENSERS
STEAM CONDENSERS

CONDIMENTS
(Food)
Includes:
Pepper
Seasonings
Spices

Speciflic to:
FOOD

CONDITIONED AEFLEX
(Psychology & Paychometrics)
Includess

Conditioned response
Specific to)

BEHAVIONR

REFLEXES
Also seer

ADJUSTMENT (PSYCHOLOGY)

LEARNING

$OTOR REACTIONS

Conductivity(Electrical) use
ELECTRICAL CONDUCTANCE

Conductivity(Thermal) wse THERNAL
CONDUCTIVITY

CONDUIT PLIERS
(Industrial Equipment & Tools)
Specific toy
PLIERS
SMALL TOOLS
Alsoc sees
MAINTENANCE TOOLS
SPLICING TOOLS

Confarences uwae SYAPOSIA

Cenfidence Jimits wse STATISTICAL
ANALYSIS

thesaurus.

12.

13,

selection of keywords vocabularies. Aidocmnent, depending on time and mood of
indexers, may be indexed quite differently. This requires a dictionary to control
free selection of keywords. Even though a single document is indexed by more than
one synonym , a cross reference within the dictionary is created to cover all
identical ideas, so that there would be little problem in retrieving the intended
docunents. As no rigid syntax exists in the simple form of post-co-ordinated
indexing system, there is a likelihood of losing the relevance or semantic informa-
tion25 of the keywords. This is obvious especially in cases of homographs and

the words which have varied implications in different subject concepts. Hence a
large number of false co-ordination is expected in this simple system. To

solve this problen, links, and role i.r)dicatorszs(a syntactic device) are inoorporated
within the system. This again leads to a different kind of authority list called
'thesaurus'27(Fig.2.3) . In a well designed information retrieval system a cmnbinatiorl
of koth pre- and post- co-ordinations are used to improve unambiguity and expressi-

veness of the indexing language.

Several attampts have been made to mechanise the process of indéx:ing. In the
simplest form of a machine generated iidexing process, the technigque has been used
generally on the basis of the title of bibliographic items. The camputer initially"
ignores all syntactical words from the title. The remaining words of the title

are selected as index temms. The result of machine manipulation is an index of
keywords printed in alphabetical sequence, together with text immediately surromdini
28-311n3exing' (see Fig.2.4).
The success of this method of :Lrﬂexi.nq is totally dependent on the descriptive

each term. This is called 'keywords In Context (KWIC)

quality of the titles. To improve reliability of machine indexing, a variation on
the KWIC index is attempted. In this type of indexing, KWOC (Keywords Out of
Context) J'.nde:':32 33 index terms are selected fram the entire content of a document
and presented along with the title of the article, The selection of keywords
fram the text depends on the statistical frequency of occurrence of a word or the
relative frequency of co-oocumence of same words and on linguistic and W

14,

Pulse, Digital and Switching Waveforms

Pulse, Digital, and switching waveforms
Pulse, Digital and switching waveforms
Pulse, Digital and switching wavefomms
Pulse, Digital and Switching waveforms

(a) Selection of Keywords.

Pulse, Digital and switching waveforms
Pulse, Digital and switching waveforms
Pulse, Digital and switching waveforms
Pulse, Digital and switching waveforms

(b) Final Index
Fig. 2.4 Key Word In Context.

Header (ID, Priority, File Access Key)
Cammand (Retrieve, Update, Report ...)
Output Device (Typewriter, Display, Lineprinter)

Keys : Processing (A function of K1, K2 ...)

K1 (Key Name/Value) . logic functions of Key

K2 "’ Inter-record processing
Output FORMAT
. Titles

. Print format

15,

At present, a suitable means for scanning text directly fram printed documents does
not exist, and hence this method of indexing is expensive. Thus mechanisation

of indexing, until now, is only of theoretical interest. And this damain of the
problem is still left to the human intellect and decision-making capabilities.

2.2. QUERY:

The user of an information retrieval system seeks some facts regarding his query.
He camunicates his demand for certain types of information with the infarmation
centre through a-queary.l-'ll It has been discussed earlier that the retrieval of
documents is a process of matching a user query with a document file. And the
formation of the document file is carried out by indexing. Hence to match the
vocabularies and the syntax of the user's query with the keywords of the document
file, every eftfort should be made so that the temms used in the query have a one-
to-one correspondence with the indexed record. A user generally does not have
any prior knowledge of the vocabularies and the syntax of the indexing language.

To expose him to the environment of the system, there is a need for a dictiona:.yz'?'
Consultations with such a dictionary allows a user not only to correct errors within

the query, but also to inform him whether or not the terms used in the query are
included in the indexed records. When a user discovers that a keyword used in
the query is not present in the document file, he could use other synonyms.
Moreover, he could extend the coverage of the query by selecting a set of

synonyms and the relevant terms. These relevant terms could have been selected on
a statistical analysis of the co~occumenceof a set of keywords.

The other aspect of the dictionary, hierarchical relationships of index texms,
allows browsing for a vaguely defined query. This also enables users to modify
their query for searching a document file with a desired precision ranging fram an
exhaustive to specific retrieval of docuanents. L e

. In addition to formulating a searching strategy, a query may also incorporate acme

16,
control J'.nst.ructionsll. These could include: user's name and priority,
allocations of output device, camands (retrieve, update/delete) and instructions
for report generations. An example of such a query is shown in Fig.2.5, The
generation of the report may involve same inter-record processing within the
retrieved records. On the basis of the result of these operations a part of the
retrieved docunents are selected for output., - These selected documents are then
secuenced in a desired order and presented to the output device according to a
specified output format. It is expected that on-line updating and report-gen—
eration would receive more attention in future fram both system designers and

users.

2.3 SEARCHING

2.3.1 Searching on primary keys:

The retrieval of information fram a data-base is a process of chatingll-l7
documents which are relevant to the query. In the simplest form, it could be
oconsidered that all documents are identified by a unique indicator, called a 'Key',
and no keys within the document file are duplicated. It is also assumed that the
user's query is represented by a single key. In this case, the searching would
involve matching the keys in the query and the document file. This

process would begin at the beginning of the document file and continue until either
the key under search has been detected or the entire data file has been scanned.
In the first case, the result of the search is a success and in the other case, it
is a failure. The flow-chart for such a searching strategy is shown in Fig.2.6 and
it is referred to asa sequential search on unordered f11d2714s 34736
Bpations*?13 2.1 and 2.2 give the average number of cavparisons involved in
a successful and unsuccessful Key-searches respectively,

INITIALIZE
COMPARE KEYS — -Success
P

Y

NEXT KEY
!

yes
END OF FILE] ¥ Coilure
no

F1G.2 6. Sequentid search on unordered file

INITILIZE

A
N

T
GET MIDPOINT tailure
Y
COMPARE >
< :
3
ELIMI NATE ELIMINATE
UPPER HALF LOWER HALF

:F16.2.7. Binary search algorithm.

17-

18,

for success;

s 2 L BN N BN BE O BN BN Y) . 2.1

for failure:

Cf = N LI IR I BB B Y N Y 2.2

where N = total nmber of keys in the data file.

2.3.1.1 Sequential search on Ordered File :

) 2=
It is well unde.rstoo& 14’34’3‘51:hat the problem of key searchirg becames simpler
when the document file is ordered in apre defined sequence. fThe simplest form of
ordering could be achieved by sorting all Keys of the document file in ascending

order of their nuwerical values.

The matching of Keys starts at the beginning of the document file, but it texminates
either when a Key has been found or when a currently campared Key is numerically
greater than the search Key.

Following equations*?'!3 2.3, 2.4 and 2.5 give the number of camparisors involved
during searching a Key on an ordered file.

For a successful seaxch, the mynber of canpansons performed depends on the position
ofthekeymthedoctmmtfile. 'I'he.lrefore:LfK1 istobelocatedinanoxdered
file,then

‘1 . QOQ...---.. A 2.3

c

od

19,

nurber of camparisons is to be perfommed before locating the Key 'Ki' . Here
it is assumed that none of these keys are duplicated in the data file.

On the average the number of camparisons perfomied per successful Key is:

CS= N_;l. .oaocogco.214

Similarly the average number of the Keys to be campared during an unsuccessful

search is:

+1 0.00...".205

H
Nz

where N = Total number of Keys in the data file.

One of the advantages of this method is quick termination of scanning for the

Keys which are not included in the document file. The other significant improvement
is achieved when more than one keéy are simultaneously searched. For exanple,

it is assumed that the total number of Keys in the data file are N; and the number
of Keys to be searched are m. Then in the case of sequential search on unordered

13

file the total number of camparisons - 'P' would be

P= m LB N BN BRI BN B N 2 2.6

But when both the index and profile (query) are ordered in the same way the number

13 p!

of comparison reduces to

P=N s QOO P NRNS 2.7

An 'm' times improvement in searching speed is hence dbtained.

4,12,36 an index file, These are

There are same other alternative ways of ordering
based an special properties of the information need of the users, and are called
'self organizing' files. In some cases where the frequency of access of all Keys
are known, thefilecwldbeorganisedmwhavayﬂatﬂxe-kéys"whmuemré |
mcelytoberefenedtoaxeplacedmaxmebegummofunfm. mmmv*

case,wm'ednrextmfomatimiamewcelywherefemadw. theﬂ,hu

20,

arranged in such a way that all new entries are inserted at the beginning of the

index file.

2.3.2. Searching By Camparison of Keys:

It has been seen in the case of sequential search on ordered file that, although
there is an improvamnent in aborting a search for a non-existing Key, it does

not benefit a Key which is present in the document file. however, this problem

of sequential searching on ordered file oould be rectified by caumparing Keys

instead of matching. In this approach a Key fram the document file is campared
with the search Key. If as a result of this camparison, it is found that the

key on the document file is numerically greater than the search Key, all Keys beyond
that key on the document files are eliminated. The camparison is then continued
with the rest of the Keys. kepeating this process of elinu'naﬁion, either the
search Key would be located in the document file or it would be terminated when

further elimination is not possible.

2.3.2.1 BINARY SEARCH :

mentioned searching strategy. In this method, the comparison of the keys starts at

37 is the simplest form of implementation of the above

the middle of the document file, If this matches the search Key,fhe desired record
is found. Otherwise, depending on the result of the comparison, one half of the
Keys in the document file are eliminated, and the next camparison is made with
the Key, which is situated at the middle of the remaining half of the document
file. This process is repeated until the desired key is found. ‘

The average nutber of conparisons 'Ca'is given by the equatl 12,13 2.8

C = |'1092N-1 sessepenee 2.8

%
12
6 10 14
S 7 9 11 13 15
4 5 6 7 B 9 10 |11 12 1113 14 [{15
FIG. 28.Binary decision tree,
6 7 8 g 10 {11 |12 |13 [Jes . 15 ‘1116

FIG. 2.9. Multiway tree.

21,

22,

12,13 'Qn'

The maximun number of camparisans required to establish the non-

occurrence of a search key is
On'—- rl®2N+1 eeereerves 2.8(&)
Where N = total number of Keys in the data file.
(X is the next higher integer when the value of x is a fraction.
The simplified flow-chart for the binary search method is shown in Fig.2.7. It
does not explain how the probing is terminated during an unsuccessful search
operation. The structure of data organisation in a Linary search file is shown

in Fig 2.8. It looks like a binary decisian tree. Each of the nodes and leaves

are represented in this figure by circles and squares respectively.

2.3.2.2 Multiway Tree Search:

The binary search method is very useful when all index Keys are stored in a fast
random access storage. But as the number of index Keys increases, it becames
impractical to store all of these Keys simultaneously in the core memory. In
this situation index keys are stared in same direct access devices such as a

disc aradrum. Now if binary search technique is applied, it would require a
hrgerﬁxnberofpmbes—dependixgmthemmberoflevelsofthetree-i.nto .
the direct access devices. During each prabe, it would have to wait for
a long access time < the device, This access time problem could be solved by
reducing the number of levels in a tree, that is, by increasing the number of
branches at each node of .the tree as shown in Fig. 2.9. This file structure is

11,12,38

called muiltiway-tree structure. At each level of the tree the appropriate

branching could be selected by either sequential or binary search technique.. -

23,

For an 'm' way tree, the maximum nunber of levels of the tree 'n' is given by

n=r(lwrnN) C BN B BN BN BN B BRI] 29
. 12,13 , ., . .
The nunber of camparisons c'! is given by
C=W(I'logmN) cessensses 2.10

Where N = total number of Keys
W = nurber of camparisons required to search each level of the

tree.

2.3.2.3 Indexed Sequential Search:

The advantages of both sequential and direct access to records in a file can be

achieved in an indexed sequential file organisatian®>’3°

. This file organisation
(see Fig 2.10) camprises of two files, index and record file, and these two |
files are arranged in sequential order. Each index contains the address of a
record in the file. Thus a record can be directly accessed by locating its

index without reading the entire file., On the other hand it can also be accessed

by the sequential search on the record file.

This file organisation is well suited for storing in the direct access storage
device (disc) where a three-level tree39 for index decoding can be adopted

(see Fig 2.10) The first level of hbranchingdetexrmines the cylinder address of

the disc; the second level detexmines the appropriate tracks within that cylinder.
arnd finally the third level contains the recoxds.

Due to the sequential arrangement of the files, some difficultieg arise during

théupdateOperatimi. During the insertion of a new record, 1tipraquir'edh°

¢ylinder
address

track address

Index

i B
|
I

e e - - L o

sequential records

j—————Computer

«— digital

empty space ————f

see trackn

FIG.

2.10. Indexed sequential file

24,

25,

maintain the order of the file which needs to rearrarge the entire file, To
restrict this rearrangement process within a locality, sufficient space is left
anpty at the end of each track (bucket). However, when an overflow occurs, a
new track can be allocated. In this case, a link address is stored at the erd

of the old track to point out the new track.

In general a sequential ar tree-search technique requires the data base to be in
a strictly ordered sequence. A new entry cannot be made unless the correct
position for this item has been found. This can be a verv time-consuning
op;aration. Thus, with aconventional camputer, if the file is structured for

fast retrieval operation, it is likely that the updating will be more difficult.

2.3.3. Searching by Hash Tables:

The retrieval mechanism so far discussed relies on successive. camparisons of
search-Keys with index Keys. The number of such camparisons depends on the
size ofv the index file. Thus it reveals that as the size of the data-base
increases, more search time would be necessary for retrieving a record fram
it. Alternatively, a different approach for the storage and retrieval of
keys should be adopted, which would make the searching time independent of the
size of the data-base. The underlying principle of this method is described
below. The problem of information starage and retrieval is to store kéys within
a specified range of memory, This is then followed by subsequent retrieval of
a Key fram its storage location. In theary, it is possible to map all non- .
duplicating Keys to unique locations of memory within a specified range by a

suitable transformation rulell-12/40

. Both storage and rétriéva; of keys would
equally benefit fram these transformations, The transfarmation of Keys to their
respective memory locations is called randamizing or hashing (Fig. 2,11) and the
corresponding transformation rule is referred to as hash-functions; they gét!erally

involve same arithmetic processing and manipulations of Keys. These include

Keys | 'I'ransfomed Add:gss
JONES 4
SMITH 2
BLACK 1.
JOHNSON 9

Fig, 2.11 Hash Table

Keys Transformed Address
JONES 4
SMITH 2
BLACK 1
BROWN 4
JOHNSON 9
TAYLOR 4
BARCNE 1
CHASE 4

(a) List of transferred addresses

with synonyms.

Address Tean

1 BLACK

2 | SMITH

3

4 JONES

5

6

7

8

9 JOHNSON
Address | Key

1 BLACK

2 SMITH

3 -

4 JONES

5 -

6 -

7 -

8 -

9 JOIINSON

(b)

File after First Stage.

26,

Mdress | Key | Links
1 BLACK o——1> BARBONE
2 SMITH
3
4 JONES o] BROWN
s |
6 TAYLOR
: e
8
9 JOHNSON

(c) File after second stage separate chaining

Address Key Links
1 BLACK 6 o
2 SMITH -

3 BROWN 5 o
4 JONES 3 .
5 TAYLOR 7 =
6 BARBONE, - -
7 CHASE - -
8 - -

9 JOHNSQN -

(@) coalesced chaining.

Fig. 2,12 Collision resolution k : na ‘ .

27,

28.

a) Squaring Keys and selecting the middle portion of data
b) Modulo - division

c) Selecting nearest prime~-numbers and many others.,

The requirements of an ideal hash~function are:

a) A minimum time far camputing hash function.

b) Should produce the unique address for all Keys.

None of the known hash-function could guarantee the uniqueness of transformation
for a given set of Keys. Moreover, there is no formal method for selecting a
suitable hash-function. Consequently there is a possibility of more than one
Key transferred into one address. This is often called a synonym or collisicn.

12,13,40

There are many methods of resolving synonyms; these are:

1) Chaining methad
2) Open addressing method

3) Bucketing method
The first two methods of collision resolution are suitable for internal searching
where all keys are stored in the core memory, and the last method is suitable

for external searching using direct access storage.

1) Chaining method:

The simple method of collision resolution is that of chaining, where a link
field is maintained with each address locations as shown in Fig 2,12. The
transformation of Keys are carried out in two stages. During the first stage
of operations all non-synonym keys are entered and then the synonyms are
entered in the available empty places. Whenever a synonym is entered the
link field of the preceding entries are loaded with an appropriate akiress

. to point to their successors.

2)

3)

29,

At the search time, a key is first transformed to its hash-address.

It is then campared with the content of that location. If a match is
found, the search terminates successfully, Otherwise successive links
are traced and the contents of each traced locations are compared until

a match is hit or the termination of the link is encountered.

Open Methcd:
In this method of collision resolution, a key is first transformed to its

normal hash-address. If this location is occupied, a probe to the next
location is ;nade until an empty position is found. The new entry is
entered in this first empty location. The sequences of these next addresses
could be derived in different ways. In the simple version,the next address
could be obtained by incrementing the hash-address linearly to form a cyclic
probe sequence (Fig 2.13). In the other method,a second hash-function could
be applied to resolve synonyms; this is known as open address with double
hashing.

At the time of file searching the prabing is continued, following an identical
address generation rule, to campare keys. This would result either in a

success ar would end with an empty place, establishing a failure.

The Bucketing Method:

When a searching is carried out on Keys, stored in direct access devioes(, a
penalty in time is associated at each re-access, To avoid such situations
a mumber of empty places are allocated to each address of the direct access
device to accamcdate synonmyms (Fig. 2,14). The selection of the size of
bucket depends on two criteria. |

1) Consexvation of storage media |

2) Reduction of successive accesses

Address Keys
1 BLACK
2 SMITH

BARBONE

4 JONES
5 BROWN
6 TAYILOR
7 CHASE
8 -
9 JOHNSON

Fig. 2.13 Collision resolution by Linear open addressings.

Fig. 2.14 Bucket Method

Address Keys
1 BIACK
2 SMITH
3
4 JONES CHASE
5
6
7
8
9 JOHNSCN

30,

31.

In general a canpramise figure for the size of bucket is accepted, In cases
of bucket=overflow a secandary or a tertiary bucket is used by establishing

proper link .'
The performance of a hash-coded system depends on:

1) Bucket Size
The size of the bucket 'g' is defined as the number of entries
(Synonyms) allowed to be transformed to an address.

2) Load factor of the hash-table:

It is the defined as the ratio 'ix' of the nunber of records entered
'N' to the total number of possible entries 'M' in a hash-table, that
is

XK= NM

Considering a chain-organised hash-table of bucket size of 1, the

3

average number of probes1 'Ca' is given by

Ca=1+ & 2,11
2
when the table is full, that is = 1 the equation 2.11 reduces to
Ca = 1.'5 L IR BN) 2'12

In the warst case, that is when the table is full, it is found that on the
average only 1.5 probes are required to locate any Key. The comparisons of
collision resolution met:hods12 far both successful and unsuccessful keys
areshown in Fig. 2.15.

Average number of probes

0.2 0.3 0.4 05 06 0.7 08 09 10
Load tactor, x

(a) Successful search

Average number of probes

L =Linear pro'bing
C = Coalesced chaining

S =Separate chaining

02 03. 04 05 O

65 07 08 09 10

Load factor o<
(b} Unsuccessful search

FI1G. 2.15. Comparison of collision
. resolution methods. -

1)

2)

3)

4)

33.

It is also seen that the hash table requires less space to store all Keys
of the document file. Thus, fram these points of view, hash-coding is the

most econanic method for searching, as well as being the fastest.

On the other hand there are same problems associated with hashing. These

are discussed in the following paragraphs.

In the case of retrieval of Keys fram the hash-table, the search algerithm
for an unsuccessful Keyward search temminates when it encounters the first
empty place. Hence special care must be taken during deleting an entry
fram a hash-table. If an empty state is entered in place of a deleted
item, the Keys beyond that deleted entry get lost. This problem could be
solved by marking the deleted items by a different symbol. This leads to

difficulties in maintaining a file where the rate of delei:ion is high.

The searching operation in a hash-table is fast provided it is carried on a
precisely defined key. On the other hand, it becames impossible to retrieve
documents by searching Keys, which lie between same limits.

It has been stated earlier that the performance of a hash—cddéd index degrades
with increased number of synonyms and load-factar. Hence to mamtainthe
grade of service, these two factars should be monitared. One method of
solution would be to allocate a large memory area to hold the hash-tablef'
This leads to an inefficient utilization of storage media. The other method
involves rehashing the entire inde:; whenever the performance galls below scme

acceptable value.

Altlﬁugh the average search time for a hash-table is minimum, in a pa;ticular

“caseﬂxemmberofprobes:equdredtolocateaxeyisunpredictablaamu

. could be large in same cases. Inrealtmeapplica_tim,m;ltis

34.

essential to camplete a search within a guaranteed time, the performance

of the hash-cading scheme becames adversely affected.

2.3.3.1.

A content addressable memory using conventional memory elements has been

proposed by Bowden41. This is basically a hardware solution to the problem

of mapping an 'n' bit code onto 2" locations of a memory space. Where the

search keys are divided into smaller sections. Each of these sections is assoc-
iated with a three-field colunn. These three fields of a column are inverse
field, linkage field and data field (see Fig. 2.16). A section of a search

Key (K) directly points to the Kth location of the inverse field. The inverse
field points to the most recently entered data in the linkage field. The problem
of multiple occurrences of a Key is handled by the linkage field, The linkage
field has a one to one correspondence with the data field and contains the
addresses of previous occurrences of the Key. The data field contains data which
is arranged in any convenient fqrmat. In general a search-Key consists of a
nunber of sections. In such a case, all lixﬁcage addresses are first ocbtained
fram the inverse field of the individual sections. The least linkage value is
then evaluated by an external logic unit., The location, as indicated by the
'least value logic', is accessed and cavpared with the search-key. If the match
fails, the next address is evaluated by traversing the links and the process is
continued. The main advantages of this method are that any part of the search
Keycanbemaskedmﬂﬂlesawmamyspacecanbeusedasbothassociativeand
conventional memary. The disadvantages of the method are that the search process
is sequential and may require a mmber of probes whichare very much dependent

on the data base. Hence the primitive feature of parallelism of associative

memory is lost,

INVERSE FIELD LINKAGE DATA

o —E
i

b Q — K
K LT T X
d —
Three-field column,
INVERSE
LINKAGE
DATA
FM)
LEAST
L VALUE
LOGIC
[PAGE [ADDRESS | DATA -
* Lxey |
Serial unit.

FIG. 2.16. Associative memory using

conventional memory elements; -

35.

36.

2.4 Searching on Secordary Keys

In the faregoirng discussion a simplified document file was considered, Where

it was assumed that all recards are identified by a single Keyword and no
Keywords, within the file, are duplicated. But in practice, as it has been
shown in section 2,1, a number of Keywords could be assigned to a record., More-
over, many records could also be indexed by a Keyword. It is desirable that

a document should be equally accessible by any of the Keys assigned to it. And
it is also desirable that the searching should retrieve all documents which

are indexed by the same Keyward.

One method of solving these problems would be to copy each record as many times
as the number of Keywords assigned to it, and to order them under each of these
Keywords. This not only increases the size of the index, but also imposes problems
when a criterion for selecting a set of documents is the inclusion of a boolean
equation of Keywords. An alternative solution to these prdblems is to generate

another file called 'directary file' 1711, 42745

(see Fig.2.17) in addition to the
usual document file. The information structure of the directory file is the inverse
of the original document file. That is, instead of listing a set of Keywords
contained in a recard, the directary file (inverted file) contains Keywords, which

maintain a list to point all recards associated with these Keywords.

The retrieval of information, frc\m such a system, is accamplished in two stages,
In the first stage all Keywords, present in a guery, are retrieved. This is
known as 'directary decoding'. The result of directory decoding would provide
a list of the relevant documents. The second stage of operations would be

carried out to retrieve documents frcm the document file.

Fram the point of view of starage utilization it would appear that the directory
file is redundant, because it merely duplicates the document file. But on the

oﬂerhard,UEpresemeofﬂ;edirectoryfilempmvesmewérallperfmnance.
N _ .

Directory file Document file
Key 1 Record 1
Key 2 Record 2
[} [[] L3 L] L] [] .
Key i Record n
FIG. 2.17. Inverted file.
w X Y z
A6 A19 A3 A19 A9 A1S A27
A7 A23]A7 A A1d A17 A37 | — - —
A3 AN AL A 16 A22
A12 A15 A A?25
‘A3
eAb A7
- 9 _ _ _
AR
Al
AB ® eAIS
. e e A7 .A19
A21 T T T T T
® A2?2 A23® 2
e A ’
A27¢ 5
A35.
A37
{

FIG.2.18. Inverted list.

37.

38.

of the system. As the size of the inverted file is generally smaller than the
document file, more efficient searching technique could be adopted for directory
decading. This would equally be.nefit the non-existing Keywords, where absence

of those keywords would be quickly reparted. The other advantage of the inverted

file is that boolean operations on Keyword could be more easily performed.

The decoding operation of a directary, stored in a Direct Access Storage
Deviceu, canprises two processes. These are:
1) Transfer of data fram DASD to the core memory

2) Processing of data in the core mamory.

'I"he total time required for data transfer operation11 fram DASD to the core memory
canprises

a) Time for head positioning (for movable head devices)

b) Latency delay

c) Data read time

d) Revolutions lost during the processing of data in

the care mamory.

The processing of data in the core memory faor detemining appropriate branching
can be carried out according to any of Keyword searching techniques described

in section 2.3, This in—ca;e data processing time is very small campared to the
tjmé required for transferring data fram DASD to the core memory. Hence the
total average directary decoding time can be derived, ignoring this data
processing time. In general the decoding time Tn far an n-level tree is given
by equation'’ 2.13 to 2.16.

1) First level in core, successive levels in same cylinder of a

MmeP4 (=25 R ENDL eenr 23

39,

2) First level in core, fixed head disc.

Tn = (2n - 2,5)R, far n)1 2.14

3) First level in movable head disc, successive levels in same cylinder

Tn=P+ (2n - 0.5)R, far n)0 eeses 2.15

4) First level in movable head disc and successive levels not in same
cylirder.

Tm=n(P+1.5R) farnd0 2.16

Where P = time required for positioning the head of a movable head disc

o
]

Rotational time of the DASD

[
]

R/2 = average latency delay.

The total average decoding time for a hash coded directory stored in DASD is

T

h=P+l.5R L B 2.17

The actual retrieval of the document, of course, deperds on the structure of
the records of the inverted file.

A recard of the inverted file cansists essentially of two major parameters;
these are:
1) a number of documents associated with the Keyword

2) pointers to the relevant documents

There are four major cilata.—struct:\.v.res11’35’36 used in a record of an i{werted file;
these are:

1) inverted list

2) chained list |

3) controlled chained list
4) Cellular list

40,

Sane explanations of these data-gtructures along with corresponding document

retrieval techniques are discussed hriefly in the following sub-sections,

2.4.1 Inverted list:

In this type of data structure (shown in Fig. 2.18), a camplete list of the
document pointers is included in the record of the directory file. These
‘pointe.rs could be directly used to retrieve documents fram the document file.
As a record on the document file could be pointed fram many Keywords, this
data-structure could use larger storage. On the other hand logical operations
could be more easily performed on the list of document pointers. Hence the pre-
search statistics,which indicate an upper bound on the ultimate retrieval is

much better for an inverted list,

The total time to retrieve the desired documents fram the stérage is a function
of the data-structure employed in the inverted file. Cammonly, the total
retrieval time camprises

1) directory decoding time

2) List or cell intersection time

3) List or cell search ard recard transfer time

Each of these processes is again a function of parameters related to the character-
istics of file, query and storage devices. Hence a set of these parameters are
defined in table 2.1

Far an inverted list file-structure the time required for above mentioned processes

are given by equation11 2.18 to 2.21.

1) Directory decading time = Nt Tn ceses 2.18 3 .

File related parameters

Symbol
v
Np
Nk
L
(o
Rc

Ck

Query related parameters

Symbol

RV F F

Device related parameters

Symbol

A
Tr
Rt
R

41,

" TABLE 2.1

Definition
number of Distinct Keys in vocabularies
nunber of Records in system
Number of Keys/recard (Average)

‘Average list length NrNk

v
Character/file (logical) Record (Average)
record/cell (Average)
Cells/Key (Average)

Definition
number of temms in a single query
nunber of nonnegated terms in a single query
shartest list length in query (Avefage)
Ratio of query response to Ls (Average)
Ratio of query cell responses to Ck (Average)

Definition
nmber of file record addresses per DASD physical record
Randam access time of DASD (Average) .
Transfer rate of DASD (B/s)
Rotation time of DASD (Sec)

42.

2) List intersection time =f L
M ot (br + 1SR oo 209

here % is next higher integer far a fraction

3) List search and recaord transfer time
= pLs (T +1.5R) ceves 2,20

4) Total retrieval time = NtTn + ([_L_Nt +pLs)(Trt 1.58) 2.2l
A

2.4.2 Chained List:

A chained list data-structure is shown in Fig. 2.19. This data-structure,
instead of listing pointers for individual documents, points .to the head of the
docunent list. The subsequent mavbers of the same list are chained by providing
a link éddress inside the doament file.. Any recard in the document file could
be simultaneously a member of more than one list. Thus a threaded maltilist

is formed. The main a\dvamtages36

of multilist data-structure are:

1) requirement of storage space of the directory file is less beéause
each index contaips only the address of the head of list.

2) programning is simpler and updating is flexible because it uses

the list data-structure. .

The disadvantage of the multilist data-structure is that as any prior information
about the membership of a list ig not known. the boolean operations could mot

be performed before retrieving. ail' relevant docurments ‘fran the data-base. Same
improvement could be made i the case of logical 'And’ operationaofl(eywrds
Here, a list with the least membership is selected and is traced During thu
1list-tracing operatico the sqnteqs qf each record is, mtem:gated tqﬁ.nd
muexmmtﬂnrmundermmmmalsoawberdmr;m b

Key/Head of list/ List length

W/AB/7 | X/IA3/6 | Y/IAS /4 Z/A15/6) - . __
A3
A6
AlS

FIG. 2.19. Multilist.

w X Y Y4
A6/ 4 A3l A9/ 4 A1714 - - -

A19/3 A19/2 A25/2

FIG. 2.20. Controlled mul ti-list

43,

44.

lot of time is wasted during thig link-tracing operation, thus it degrades the

retrieval time of the systan;

For a multilist data structure, the corresponding equations for the retrieval

time of the desired documents are given below.
1) Directory decading time = NpI'n ceess 2,22
2) List intersection - is not possible in a multilist data structure. A
3) List search and record transfer time = Ls (T, + 1.5R) ceees 2.23

4) Total retrieval time = NpTn+ls (T, + 1.5R)

2.4.3 Controlled multilist:

To canbine the benefits of both inverted and chained lists, a new generalised
data-structure, as shown in Fig. 2,20 is suggested. As in the case of chained
lists, it starts with a pointer showing the head of a linked list. But in »
this case the total number of memberships of the chained list ié controlled to
a specific number. Whenever the membership of a chained list exceeds this
nunber a new head of list is inserted in the record of the‘directory file. This
is a generalised dat;a-strtlcmre, because when the control number is set to .
infinity it produces a chained list., And when the chain length is rest:rictedh
to one, it produces an inverted list. Here the retrieval of documents are

done by the cambination of techniques utilised by multilist and inverted list
daj:a-stnxcttxres.

45,

2.4.4. Cellular partition:

It has been seen fran the above discussions, that no effort has been made to
order the data-structure of the records of the directory file so that optimal
retrieval speed could be achieved. 1In genex"al a large document file is
stored on direct access devices such as discs. The main factor for the data-
transfer fram such a device is access time. Mareover, during each transfer
operation a block of data is loaded to the core meamory. To reflect these
properties of storage device a cellular partition data-structure, as shown in

Fig 2.21, is suggested.

This data structure, instead of specifically pointing location of documents,
contains the addresses of the blocks of the storage device where the relevant

documents are present, thus pointing to a cell of data.

The logical operation could be carried out as easily as an inverted list data-
structure to access only relevant blocks of the storage device. Then the

final selection of documents could be carried out, in high speed core, by
camparing each record. Although the final selection is done by sequential
searching, it saves many unnecessary accesses as inthe case of multilist. And it
also saves storage space in the directory file as this would otherwise have been

required by the inverted list data-structure.

For a cellular serial file structure the retrieval time isgiven by the following

equation11
1) Directory decoding time = NpIn esene 2,25

2) Cell intersection time = Ck Np - (T¢ +1.5R), 2,26 .
A

where ~Ck is-next higher in case of a fraction
A ‘

W= -3

[e]
N0 <
W - N

FI1G.2.21. Cellular serial file.

46,

47.

3) Cell searching and recard retrieval time

= Ck (T, +ReCf) 2.27
"Rt

4) Total retrieval time

=NpTn +7{Ck Np (T, + 1.5R)
A

+ RcCE) eeees 2.28
Rt

+ ck (T

2.5 File Update- and Maintenance:

Apart fram the retrieval operation, an information retrieval system must be
capable of verforming file update and maintenance operations. The file-update

operations can be classified into five categories; these are:

1) whole recard addition

2) Whole record deletion

3) Addition of Key

4) Deletion of Key

5) Addition/Deletion/modification of non-key data

The structure of the file has an immense effect on the flexibility and ease of
these update operations. This is demonstrated in table 2,2, 2.3 and 2.4, Hence

a systam designer should take proper care to select a file structure.

Another important function of retrieval systems is maintenance of the file, That
is, collection and re-usage of empty spaces of file. This operafion iacal‘led
garbage collection, The systam designer must also consider a sultable garbage
collection scheme, especially when the data-base is dynemic.

PAGE
NUMBERS
CUT OFF
IN THE
ORIGINAL

e S5 Y

RO

posn sT BuTupoIq soeds 3T ATuo pextnbex ST 3Tq 93972 °POSN ST 3Tq 239T9p 3T A[uo poxmbey Nw g

*POXTNDSI ST UOTILOTITISA 33TIM I93Je pedX IT ‘8 Pov (u Td% ¢ oy 2% & u
el S .ﬁmhm. m ‘
L YL YL _ WL B WL A ejep poepdn
ax03s
: i
1L u . IIN | IIa TIN [TN 3ISTT pPo3m™AUL
| . pda
€L U €L 3N _ €L U €L 3N €L 3N Kxonoextp
, sjepdn
YL, YL kA YL YL, prooy
€L €L €L €L €L Burpoosp
: &xnarrg
oy u 30 UOTIE0OTET PFTM Emwmuom%u skey u uoTISTSP uoTITPPR
: uoT3EeOTITPOU : Jo pIooox pPIoo9x SS3003q
uoT3tppe Aay uou co..mwww HW MWOE uotiaraa aToyM atoym

3ISTT pe3Ieaul ajepdn

[ANARCYi=\ AN

49,

"PoITNDOI ST UOTIROTITION SITIM I93Je peaX IT Y ppv "SoI3 [oAsT somp 03 swry Burpooeq = €1 mu

395 ST 31q

939T8p PIOOSI IO A9y uSyM peITnbex jou ST a3epdn KI0309ITP ‘eI0FoISU] ‘TeoTsAyd axe sypbuST 3ISTT AI030SITP IR SAUMSSY ,..Nu

poIMboI ST UOTIROTITISA 93TIM I93Je pes JT ‘N Pov

4T +2L =1
0

WL YL 1A YL YL | 1 YL pEooay
L . pejepdn axmg
EIU €N EIN Amoexrq sepdn
L YL L YL VL PI00DY Ssa0vy
€L &L &L €L € €L 9poosp Ax0309I1q -
(uoT3EDOTaI (UuotT3ED0T2x (uoT3EOO0Tax
N0 TM) @) IO shoy u ORSTIp uoTITDDR
skoy u UOT3EOTITPOW UoT3eOT FTPOW 30 pRooSx pIOOSI STOYM S89%01g
uwoT3ITPRR Koy uou Asy uou uo3sT=q (€] Stoum :

9IMONS ST ISTTIITW I0F Bupwry s3epdn

£°C TTdYL

30,

T[S0 943 UDI3 pRaTop Jou sAdg: ﬂ)
© 7180 UT jussexdex ApesITe aTe pInoel uy sASy [Te uﬂmvm&nmmﬂ ﬂ.,w o

VL I YT VL I L pIcosx
pejepdn a103g

| Amexrgeiesdn |

YL L g L L Spaooex ssaov |
€L €1 £, €L €L | opoosp Amnoexig |
Emwﬂmwwg Cam :owww%%y koM u UoT3IATIP uoratpre |
Koy u 30 UOT3EOTFTPOu UOT3ROTITROU oo PI0OSx proost | sssooxg
UOTITPPY [€] &Koy uou Koy uou [¢}wrastaa oTouM [f] aToum

ST7d (eraes xern((e0 oaepdn

[ARARC §12\A1

€

: .

51.

sfog.u |

WL + €L TN + Y¥LZ + €L (T + u) ¥ Z+ €L (T +u)
3O UWOTITPIY
¥VIZ + €L TN + ¥IZ + €L (T + 3N) YL T + €L (T + 3N) uor3eooRdI |
U3 TM UOT3EOTFTpOU
Aoy wou |
el + €1 YIZ + €I WL Z + €L uor3eooex |
NOYFTM UOTIROTFTpOu
Koy wonN
¥lZ + €L (IL + €L) U + Y¥IZ + €L VLZ+ &L sioy u
Jo wonetaa |
YIZ + €L (IL + €I) MN + YIZ + €L VL Z + €L : UoRatep W
- pIooax aTouM |
YL L N + Y@ + SN YL + €L 3N . UOTITPPY
PIO0BI aTOyM i
TeTISS TeTn[a0 3ISTT pogaeaul 3ISTT TATOW s3epdn

S9IMONIIS ST 99IYL bucuy suosTredin) s3epdn

G°C TIEVL

Da

2.6 Summary:

The average searching time of a primary Key for various methods has been
given by the following equations;

1) for sequential search on unordered file

Co & N LS Cac e SRy b fadh Se MR- gl L o ey 253
-
2) for sequential search on ordered file
Cs=N+1 . 2.4
2
3) for binary search
Ca = FAOTallar de e s g gy s 2.8
4) for a 'm' way tree
cC=Ww (r'logmN) 2.10

(0]
=
]

total no. of records

W = No. of comparisons required to search each level of the tree

5) for a hash-table

Ca= 1+K
2

where X = FI:_ = Load fraction
Fran these equations it can be seen that, in the case of hash-coding method
the average number of camparison is mininum. But the number of prabes required
to establish non-occurence of a Key is unpredictable and it may be quite large.
Although the average searching timg for a sequential searching method is :
highest, it offers flexibility of easy updating. In the binary search method
both average and maximum searching time of a Key are predictable, But this

requires all Keys to be simultaneously resident in the core memory. As the

33,

number of Keys grows, it beccmea impracticable tq satisfy this criterion of

the binary search method, and Keys are generally stared in a DASD (Direct

Access Storage Device). Here, the total number of access-requests to the

DASD is more important than the number of Keys campared. The main objective,

in such a situation, is to reduce the number of levels of decoding tree by

increasing the number of branches at each level. For an 'n' level tree, the

decoding time Tn is given by the equations

1)

2)

3)

4)

5)

The first level of tree in the core memory, successive levels
in the same cylinder of a movable head disc.
Th=P+ (20~ 2.5R, forn>| 2.13

The first level in core, fixed head disc

Tn=(2n - 2.5R, foarnyl ..., 2.14

The first level in movable head disc, successive levels
in the same cylinder, .
’Ih = P + (Zn - 0-5)R for n>0 s e o wae 2.15

The first level in movable head disc and successive levels

not in the same cylinder
Tn=n((P+1,5R) for n>0 2.16

For hash-coded directory |
'I'I":P"'loSR | \ xXYEX 2'17

where P = time required for head positioning

R = Rotational time of the DASD
L = R/2 = Average latency delay

xtnasbemaemmeqmmz.n-znthatﬂxeuotaldemdmgmo:#
dﬁmyh«ﬂvawxmm&ﬁ%m%%wm

1

54,

of the data-processing time within the core memory is insignificant,

It has been also found in section 2.4 that the flexibility of a retrieval
system is enhanced by the use of an inverted file, In such a system,due to the
presence of a two-level hierarchy,the total retrieval and update time becames
a function of the data-structure employed within the inverted file. The total
retrieval time far various data-structures is given by the following

equations:

1) For an inverted list

Total retrieval time

NtTn + (L Nt +Q Ls)(Tr + 1.5R) 2.21
A

2) For a multilist

Total retrieval time = NpTn + Ls (Tr + 1.58) 2.24

'3) Far a cellular serial file-structure

TPotal retrieval time = Nprn #Ck Np (Tr + 1.5R)
A

+WCk Tr + RcCE eseee 2,28
Rt .

where [x indicates next higher integer in case of a fraction
and for legend see table 2.1

The total update time for various data-structures is shown in Table 2,5.

To sumarise the performances of the various file-structures the table 2.6 is
giVéll% Here the lower value of an entry indicates an optimal perfarmance.

" Although the perfarmance figures shown in this table are not prec&ae,these are
indicative of making general assesament of the various file-structures. Fram _
table 2,6 a number of plots (Fig, 2,22 - 2.25) can be drawn to show the relative

merits of the individual file-structures, Here' an entry near the origin julicates

" TABLE 2.6

Sumary of Performances of File-structures

Inverted cellular
List miltilist serial
Total
retrieval 1 4 1
time
No. of file
Rarndam
accessions 2 4 1
per query
Presearch
retrieval 1 3 4
statistiqs
Programming 3 1 1
canplexity .
Update 3
1 1l
DASD memory *
requirement 1 3 !

* With Keys in the inverted list file record/ without keys the inverted list
file ;:ecords. '

N.B. Lower value of the entries indicates more optimal property value.

36.

Tol retrieval time

FIG. 2.26.

Ly
‘ g
o3 .] w3 Al AM
E E '
T2 g,
(o]
T "] IM 81 ‘C
> 2
0 1 2 3 4 0 1 2 3 A
Total retrieval time Total retrieval time
FIG.2.22. FIG. 2.23.
L o @C @M
5 b7
a3 o] 53
§ 5
(8] W
2 2
€ W
o a
1 oC oM ! @I
K .
0 1 2 3 4 1 2 3 4
Total retrieval time Total retrievalitime
FIG. 2.24. FIG. 2.25.
| L EGEND
b IQC ® pPDATE TIME
B Al A vemory R
3 .I
® PROG. COMPL.
2 @ PRE-SEARCH STAT
. I INVERTED UST
1 Ce iCQI M MULTI LIST
: ‘ € CELLULAR SERIAL
0 1 2 3

57.

optimal performance, The Fig, 2.¢6 shows that, except for the presearch
statistics (see section 2.4.1.), the ovyerall performance of the cellular

serial file structure is optimal,

2.7 DISCUSSIONS:

It has been seen that to improve speed of response, precision and flexibility
of retrieval system the data should be highly structured. It not only
increases the canplexity of data-base during its creation, but also makes the
update and maintenance of data-base more diffiéult. The camplexity of data
structure is also reflected in the retrieval algorithm. Hence to cope with
these requirements of performances, use of the data-processing Unit of a
better and higher perfarmance figure becames essential. The other overhead

of camplex data-structure is requirement of larger storage meaia, basically to
store unnecessary links, pointers ar tables. The overall effects of these are
increased investment ard running cost. Thus the service of an information
retrieval system becanes expensive ard generally rises beyond the capabilities

of many potential users such as research students and design engineers,

on the other hand it is interesting to cbserve that a human, wiéhi.ng to select
documents with the help of a shart list of related Keys, would recognise and
retrieve the appropriate infarmation, regardless of their positions. This

form of pattern-matching is the basis of the assoéiative retrieval system. ‘I't}is;
is perhaps the right way of handling the problems of retrieval operation which
is essentially nothing but the problen of association of Keys and documents.

In the following chapter same aspects of using associative parallel processer
for information retrieval systems are reviewed, This also discusaes the . :

architecturg and organization Qf systems, based on content-addregsable

memaories,

58,

| CHAPTER 3,

Associative solution of the infammation retrieval problem

ard an overview of associative parallel processor.

3.

In Chapter 2, it has been seen that, the retrieval of information primarily
involves association of the Keys in the user's profile with those in the
docunent file. This basic property of associétion of Keys is not inherent

in a conventional oanputer46. Instead, a lot of software effort and housekeeping
functions are incorporated to establish an artificial associative property
within a conventicnal computing system. This obviously leads to increased
canplexity and cost of the system. On theother hand, a system based on content-

addressable memory‘n“55 has an implied property of association. This eliminates

the need for any extra effort to create an artificial association. Moreover, the

natural parallelism of the content-addressable memory yields a faster search

and retrieval operation.

3.1 Associative solution of the information retrieval systems:

The simplest approach of solving the problem of Keyword searching is to store
the entire document file in an associative memory array and presenting the Keys
of the profile to the 'search data' part of the data input register of the
manory array (see Fig. 3.1). Then a parallel search is carried out over the
entire contents of the document file. As a result of this parallel search '
operation a number of documents which satisfy the search-Key, arg mmw
subsequently retrieved. ' ‘

Although this provides a simple solution far the retrieval oparation, the major

A

Associative
memory

data base

4

output

FIG.3.1. Associative retrieval system

L)

r
[
I
|
[
c
[

memory

L)

|
Ll KR BB
l

control unit

FIG. 3.2. qutof dota-base inA M.

switch ko

i

AM.1

—————— 1

I ' memory

! L3
e —f - ~ - 'T - -

|

AM, | control
|
) |
_ |
output l(--'

- { switch

-—

AM.2

» I __OUTPUT |

1623 T ey tn

input

query

- e em em em e — -

] e |

LOAD{ LOAD2 ,LOAD

60,

SEARCH! SEARCH2

61,

difficulty arises when mare than one document matcles the search-Key. Special
attention must be given, in this multiple response case, to resolve each of
these matching documents so that they can be individually retrieved., As the size
of the data-base grows, it becames difficult to store the entire data-base
simultaneously in an associative memary array. This is mainly because of hard-
ware problems;to-date, a cheaper solution to produce a large associative memory
array is not available.

In an attempt to solve this prcoblem, an alternative method of retrieval system1 1,18
is suggested. In this methad (see Fig. 3.2), a part of the data-base (an

integral number of records) is initially loaded in the associative memory array;

‘a search operation is carried out to locate the relevant records fram this portion -
of the data-base. This loading and search operation is continued for the rest

of the data-base, until the scanning opefation is camplete. The loading of a

part of the data-base in the associative memory cbviously introduces a delay in

the search operation. This is because the search operation should be in-operative
during the loading time of the associative memory, A multiple associative

memory system could be adopted to solve this problem, A system as shown in

Fig 3.3, using two separate associative memories, could be implemented so that

the searching operation is carried out in one of these associative memories while
the loading operation is continued in the other associative memary. A criterion
for the success of this method is that the time required by the algorithm for the
loading and the searching operation should be balanced. Otherwise same moessaxy
waiting time between successive operations would be encountered. The other
disadvantage of this system is the requirement of two separatenmmy arrays,

thus it becames expensive. ’

In another obvious alternmative systa'n, ‘the "w-'nm-m' method, (See Fig. 394)
ﬂmestrategyforﬂxeseardmgaparatimiﬂrmsed Inthissyatanﬂlew'!
profihustwedmﬂnmwuuwmqamwwof“w;

data-
base

AM,

62,

buffer

control

output

FIG. 3.4. ON-THE-FLY searching

index

A.P.P.

data -
base

A.P.P.

7 input ;

|

output

main control

F1G.3.5. Two- level hierarchy of associative retrieval

63,

they appear on the read head of a rotating disc unit, are presented for
matching operation., At the end of scanning a record, its relevance to the

user's query is evaluated and the successful records are filtered out. The

scanning of the document file is continued until an end-of-file mark is detected.

In the present investigation, On-The-Fly searching technicue is chosen mainly
because of its simplicity and inexpensiveness. It is realised that the serial
scanning of the document file could impose a problem for a large data-base. In
such cases a system similar to head-per-track content-addressable data-base or
content-addressable file storage system could be proposed. The block diagram
of such a system is shown in Fig 3.5. In this system, a two-level hierarchy of
éssociative addressinq151 is adopted. 1In the first level of the hierarchy an
index file, the size of which is a small fraction of the entire data-base, is
scanned. This index file camprises a short description of all records in
the data-base, and provides the information for selecting the best block(s) of
the data-base to be further scanned for retrieving the desired records. Thus
the burden of indexing is greatly reduced to that of pointing oﬁt the most
probable areas of data-base where the relevant documents are likely to occur.
In the second level of operation only those blocks of the data-base, as pointed

out by the index, are associatively scanned for final retrieval operation.

Both of these tasks can equally benefit fram associative processing., Thus it

could pe seen that the prinhry operation for all retrieval tasks is basically

the same and On-The-Fly searching technique can be applied as a general solution.

As the content addressability and the natural parallelism of an Associative Parallel

Processor (APP) are exploited in an associative retrieval system, the search

151,152

operation would be more efficient and fast. In such a system the

searching is not restricted to any predefined Keys, but instead the entire data-
base is scanned. Thus the system could support a more flexible keyward- searching
strategy. Finally due to the absence of any rigid file- and data- structure, it‘

64,

would be very easy to create, update and maintain the data base, These
indicate that an associative retrieval system would have better performance over

its conventional counter parts.

Before any further discussion on associative retrieval system, same aspects

of the associative parallel processor are reviewed in section 3,2

3.2 An Over-view of Associative Parallel Processor

The use of camputers in modern society extends beyond the usual arithmetic and
logical operations of data to the area of non-numeric applications. The
conventional ccmputers46 are especially designed for an efficient numerical
operation. On the other hand the non-numerical text-processing applications

need efficient sub-string search and string manipulations. Thus when these
conventional systené are used in non-numerical applications, they became cbviously
inefficient. As an alternative, associative memory, which could efficiently

support these primitive operatiops, could be used for non-numerical applications.

Use of content-addressable memory in a camputing system leads to the development

41-67 pofore proceeding further, same ‘teams

in this context are defined, The following definitions are due to Parhami“.

of the Associative Parallel processor

Associative Memory: | |
An associative memary is a storage device that stores data in a numnber of dellé.
These cells can be accessed or loaded on the basis of their contents.

Associative Processor:

An associative processar is an associative memary in which mere gophisticated
data transfomation can be perfomed on the content of a murber of cells

1

selected according €0 thel contwnts, ©

65,

Associative Camputer;

An associative camputer is a camputer that uses an associative memory or

processor as an essential camponent for starage or processing respectively,

3.2.1 Associative Processor Architecture:

A generalised block diagram of an associative processorSI'52

is shown in Fig.
3.6, Two distinct functional units, Arithmetic and memory, of a conventional
canputer architecture and replaced here by a single associative memory array.
where data are processed in-situ, In additionv, each word in the array is

accessed by its contents, rather than by physical location.

The functions of the control and the input/output units are similar to that of
the conventional system. A brief description of the unfamiliar associative
mamory array is included in the following paragraphs.

The organization of an associative memary unit’’ is shown in Fig. 3.7. The
associative memory unit shown here is an array of identical ane bit cells. Each
cell, in addition to its normal read/write operation, is capable of ccmparing
its contents against an external camparand. These cells are usually organised in
a group to farm a word-row. Each word is generally partitioned into two.

one part of the word is reserved for data storage. The other, called activity
ar control field, is used for staring flags. Tbis control field is used as a
temparary markérs for processing, or as a permanent marker foming an extensim |
to the data in each ward, in Qrder to improve the flexibility of access.

The ummasked partion of the comparand, which is stored in the data-input register,
under the control of bit-select logic is applied to the memory array as a search
Key. The result of this parallel saarch operation is then st:at:mized ina tag

register, The match mply signal is usually geneyated to prwidﬁ Q m"‘m”“

program

store
)
]
|
control 1/0
)
!
\ Y
associativel,
memory data
instruction
-- - - control

FIG.3.6. Block diagram of an A.P.P,

data input reg.

search | write . t
r = —| control
N ,
bit control logicf~ — -+ = i
| . ¥
T
control a word
data [|bits - 9 »| control
R logic
e
g
1 I
data output reg | | match repy.

FIG. 3.7 Associative memory uhit.

67.

branching, which depends on the outcame of a search.

The word selection logic, in conjunction with the tag register and the mode
control, enables a number of words far spbsequent read/write operations. An
additional feature of inter-word cammunication is provided in same systems,
This cammunication is generally limited between neighbouring words. This
facility can be utilized to provide a bit serial bi-directional shifting
capability.

Further characteristics of a particular APP depends on the type of memory

organization used in that system. These memory organizations fall in several

categories, which are discussed below.

32512 Fixed Record Length:

In the fixed recard length‘c"l’56

APP (See Fig 3.8) one word-row of the associative
memary is allocated to each record. In this mode of operation the cammunication
between words is not provided., The FRL arganization is suitable for data which
has a fixed-length format, such that each word in the array can be processed
independently. A disadvantage of the fixed-record-length memory is that for
certain applications for which records are of dissimilar length, sane redundancy

can exist within the array.

3.2.1.2. Variable record length:

In the variable recard length memory organization, one word-row of the
associative memory is allocated to each item of a record. 1In this organization

the camunication between the neighbouring words is provided for an easier

extension of a logical record. The memory organization is suitable for non-numer

Record
Record no. Key 1 : Key n
/W

T —e—— T N]

omo OXr -

FIG.38. Fixed Record Length

h/activitycr controtbit

68,

activity or controi-bit

P
Field | Byte
Rec.no, .
Delimiter T T
A . A
/_\/—/ G Field delimiter G
S U N N 17
R R
E Rec ord delimiter E
FIG. 38. Field-organized FIG,3.10.Byte-organized

VRL . VRL

69.

canputing. Variable record length memary arganisations can be further

divided into two categories,

a) Field-Qrientated Variable Record Length

In the FO-VRL memory c:rganisoau::i.on151 (Fig.3.9) a row of memory
word is allocated to store a field of record along with same

control bits.

b) Byte-Orientated Variable Recard Length
51,52,151

In thé BO-VRL memory organization (See Fig. 3.10) each
word in the associative memory array has sufficient storage
for one character and a number of control bits. In this

type of arganization the data is stored as a one-dimensional

character-string.

3.2.1.3. Word-Oriented

In the word oriented APP‘”-49

each ward in the memory array can store more
than one character. The typical word length varies between 32 to 256 hits.
In this type of data arganization, the mode of access is either bit-serial,

byte-serial or fully parallel depénding on the particular hardware design,

3.2.1’.4. Bitserj'al

Inthebit serialAPPallmw:ds mﬂxeassociativemamryare accessed in
only one bit position at a time. 'I'ne SI‘ARAN 68 70 was built uai-ng
corwentional menory elanents to pu:oduce a vprd-parallel bit-serial AP? '

70,

Because sorting operations (maximum, mi.ru.m)m, between limits etc,) and
arithmetic both use hit-serial processing operations on an APP, no time
penalty is incurred for these tasks when this type of memory is used.

3.2.1.5. Word Serial

In the word serial APP, each word is accessed by content, and operated upon
serially71 at very high speed. The relative merits of this type of organ-
ization are faster instruction decoding and use of high data-rate low-cost

circulating memaries.

3.2.1.6. Associative file stare

In the associative file starel 237136

the data is stared in a head-per-track
disc (See Fig. 3.11). Where individual head is provided with sufficient
logic to campare the incaming data against the searching criterion. This

provides an effective means for high-speed searching on a large data-base.

3.2.1,7. Distributed logic memory:

In the distributed logic memory array, in addition to the content address-
ibility, sufficient logic is provided in each memary ward to enable logical
operation to be perfomed under a global control, The distributed logic.
memory, as shown in Fig. 3.12 was first proposed by Lee72"74. He pro{:oaed

a linear array of inter-cammnicating cells for the purpose of infonnation
retrieval. Each of the cells is capable of performing basic operatims ,
such as search, read and write. Cammnication between ceug is provided

data
base
Search key
Comparator
Controlling
processor

Search evaluator

FIG. 311. Associative file-store.

Program :‘ -
store [cell1 o cell2l = cellik-4
' 1
& Lo
control I -
unit X

celln

FI1G.312. Distributed logic memory

71.

72,

by the shifting left or right of an actiyity bit. All controls and data
lines are camon to each of these oeilg. This helps the modular expandi-
bility of the memory array.

75-77

Extending Lee's idea of inter-cammnicating cell, struman proposed a

general purpose camputer - where the program and the data share an uniform

78-79

memory array. Lipovski proposed a tree channel processar which solves

the propagation delay problem of the DIM type array. Similar ideas are

reported also by Crane®®, Kisylia® and Savit}%?,

3.2.2. Basic Operations:

47,48,51-55

The basic operations perfarmed in an associative pmceSsor are

1) Search
2) Read
3) Write

4) Arithmetic and Logical operations,

3.2.2.1. Search

The simplest search operations are either equality or inequality, In this
type of exact matching scheme, the urgmasked portion of the search Key is
campared with the content of the memoxry arxay. The result of theseardl
operation is usually stared in a tag register, assoclated with each oell.}

The other types of possible searchi cpepations®~ > are:

= 1)« Less than

2) Greatex than - .
3) Less than or equal to |
4) Greater than ar equal to
5) Between limits
6) Maximum value
7) Minimum value
8) Next higher

9) Next lower

10) Most fréquent

11) Least frequent

3.2.2.2. Read:

The read operation is perfarmed by either conventional or content addressirg.,
In the latter case, if mare than one word responds, the match resolves is
used to isolate the first matching word,

3.2.2.3. Write:

Two types of write operations are possible, The simple write operatiaon 1s
s:.mllar totheread operation. In the multiple write operation, either the
entiremmzyarrayorammberof selected words of ﬂxemmryarrayare
'written simultanea.lsly under the cmtrol of the word-selecticn].ogic.

3.2.2.4. Arithmetic and Logical Operations:

1) Two's canplement addition

74.

2) Logical And/Qr, Not, Nand/Nor -exclusive
- Or and shift operations.

3.2.3. The multiple response problem:

The result of a search operation is usually fed-back to the control unit
via the match reply line. Difficulties arise when a number of records
satisfy a search Key. Different types of match reply methods are suggested

to enable the control unit to take appropriate action. These include:~-

1) Binary Reply51:- determines whether a memory array
contains a matching word.

2) Tertiary Reply85:— indicates that the memory array
contains no wards, one, or more than one matching
ward.

3) Analogue estimatese:- provides an approximate number of
matching words.

4) Exact count87:- gives the exact number of match:Lng
words,

The problem of isolating a single matching word is solved by either hard-
ware or software method., In the hardware approach a parallel, logarithmic
or ripple match resolver is added to the memory array. Although this
provides fastest isolation of the first matching word, it is expensive
and the cost increases with the size of the memory array. -

In the simplest software approach the memary array is sequentially scanned
in same direction until the first responder is encountered. Lewin88 developed

an algoritlmn which requires two sense lines per bit column., This can
isolate m matching words in 2n-1 cycles. |

3.2.4. Hardware Element:

The basic characteristic of an associative memary is that it should be made

up of a device which permits Non-Destructive read out. The earlier associa-

9-95

tive memory was developed using super «::onductivity8 . It was projected

that the cryogenic memory could be econamically mass produced. But the
problem associated with the maintenance ard high initial cost of refriger-

-ation caused same apprehension.

Same associative memary-using magnetic elements”° “Rave been fabricated.
These include plated wire ' !0 Ol 3 multi-aperturel®? care.

the
With/advent of improved large-scale-Intergrated circuit technology, same

content-addressable memories using MOS device103-n3are proposéd. But

, thin film!

until to-day, an effective solution to this hardware problem hag not been
obtained to produce a large scale associative memory at a reasonable cost,

Good-year Aerospace114 delivered a plated wire associative memory of 48

bit x 2K wards to Rame Alr Development Centre in 1968. A semi-conductor
version of the associative processar, S’I?\RANGS—”O (256 bit x 256 words)

 is now camercially available fram Good Year. It uses bit-serial mode of
I/0 access. The processing of data in this system is also done in bit serial

manner. STARAN utilises a PDP-11 as its sequential controller. .

i

3.2,5. Software for APP:-

Research in the area of software development far associative processors is
not significant. This is mainly que to the lack of associative processing
hardware., The work so far done in the area can be broadly classified in

-two categories.

In one of these categaries, much effart has been given to program associative
processors at low lewel machine ariented languages, such as, assembly
languages in simple mnemonic form or at microprogram level. An example

of such machine oriented assembly language developed for STARAN, is APPLE

.1 15_116(Associative processar Programming Language). Attempts have been

made to extend same higher level languages, embedding the APP instructions,

to suppart the operations of a specific APP hardware. Examples of such

7 118

extended languages are J(JVIAL11 and PL/177 .

In the other category, the Associative Processors are simulated either to
demonstrate the feasibility of an associative processing hardware or to
eliminate the expensive hardward altogether. These include M/IPPLH'9

120,121 (Associative

123,124

(Associative memory Parallel Processor Language), APL

Programming Language), ASP1

ard TRAMPIZS.

22 (Association-storing Process), LEAP

As all of these simulations are implemented on a conventicnal serial _
camputer, the natural paralleliam of the APP is lost - moreover, the content-
addressability of these simulations is achieved by hash-coding, hence tha ..
search capabilities of an associative processor is restricted to simple '
equality search. Thus it can be seen that.such software s:umalatiom are
totally inferior to the envisioned hardware. -

76,

3.2.6. " Applications:=-

Numerous applicationslB? 1138

rarging fram camercial to military to
scientific are suggested for implementation using APP systems. Same of

these applications are:

3.2.6.1 File Maintenance and Data-base Management

139-145

76

This includes sorting, inventory control1 , table-lookup and tele-

phone-directory services.

3.2.6.2. Pattern Recognition:

This includes pattern and character recognitn‘.on146 and image processing

147-150

3.2.6.3. Information Storage and Retrieval

151~-159

This includes on-line data retrieval, cross-retrieval, catalogue

searching, technical infarmation retrieval and current-awareness services.

3.2.6.4. Translation:

6

This includes language translationlao, code conve:rsxi.c:n1 1, data campression

and de-canpressionn‘z.

71.

3.2.6.5. Military Application;

162

This includes Radar-track carrelation 163

. Radar-data processing™ ~, guidance

and control164

3.2.6.6. Miscellaneous Applications

165 . 166

Samne of these include Air Traffic Control™ ~, weather forecasting and

control functions167 170 in canputer.

In addition to use of associative memory as an associative processor,
it can also be connected with a general purpose camputer. The various

possibilities of such con'n‘f:i.gurations‘”'49 are

1) a peripheral device
2) multi-processar
3) special I/0 search unit

3.3. Research at Brunel University

a—

Presently, research work of the APG Group at Brunel University is carried
out on two different exper:lnental hardware models One of which, built
by GEC-Marconi, Ccmprises a 32 bit x 128 words fixed record lengf.h
associate memory array. The other campriges a 12 bits x 128 words
associative memory array. This is structured as a Byte-oriented variable ‘_

79.

record length arganization. The BO-VRL-APP is implemented with financial
help fram S.R.C. The current research interests of the group are in the
fields of

1) APP Architecture
2) APP Hardware
3) APP Software

4) APP Applications

In the first two areas research is being carried.out with two experimental
research vehicles to specify the architecture and the instruction set of

an associative parallel processor. Hardware implementation of associative

103-106 13 nand gate structure} > has

memory, using both MOS technology
been reported. Presently an ACTP contract is being undertaken to implement

a Micro—APP182 using Schottky 121..

Research in the software for Associative parallel processor is continuing

to develop higher-level machine-independent languages. These include set
thearetic and Intermediate Associative parallel processing languages. 2/ +2°

Besides the application of APP in the information storage and retrieval »systan,
the work is being carried out in the following areas. |

1) Text campression and decampression!’? unit,

using both FRL and VRL memory organisation
'2) stock cantxol!’® o

'3) Local text editing'’® terminal.

80,

3.4 " Discussion

—r——

In the foregoing discussions it has been seen that the primitive operations,
such as, danain addressing, intersection and concatenation of sets are

the basic requirements far an information retrieval system. It has also
been seen that these primitive operations are intrinsic to an associative
parallel processor. This reveals that the implementation of an infarmation
retrieval system could be very well supported by an associative processor.
The other problem of the retrieval system is the unpredictability of length
of fields and recards. The byte-oriented variable record length data
organisation of the APP could be efficiently employed to resolve this
particular prablem of the retrieval system. Finally, considering the
simplicity and cost effectiveness the 'On-The-Fly' search technique, using
BO-VRL-APP is chosen for the implementation of the present investigation on
Keyword retrieval system,

The choice of the level of the programing language' for the implementation

of algaritims of the retrieval system is to be considered next. It is
urderstood that the selection of a higher level language would 1e$d to easy
program writing. On the other hand, although the task of writing a program
at a low-level language would be difficult and prone to error, the seJTection
of a low-level programing language would provide the maximum flexibility of
utilizing all features offered by the hardware system. Moreover, at the time
of undertaking this investigation, neither of these programing facilities
were ;wailable. Considering this to be the first attempt, a low-level
associative processing instruction set is chosen for the implementation of a
research vehiéle far the retrieval system., It was decided that an appropriate
set of associative processing instructions for the BO-VRL-APP would be first

specified, These specifications could then be used as a basis for the

develomment of algoritlms for the proposed retrieval system.

8l1.

CHAPTER 4.

The Objectives and Programme of Work

4.1

In an an-line information retrieval system the requirement of a simple,

4767

flexible ard fast searching mechanismhas been long felt It is well

understood that the data-structure in an information retrieval system is

inherently associative in nature!>17139,

The association of data in an
infarmation retrieval system, using conventional camputer hardware, is
implemented by several links, pointers and tables, Which often lead to
excessive storage locations, unnecessary camputations and slow response.

The performance of the system worsens when flexibilities in 'terms of cross-
reference, sub-string search and inexact correspondence are introduced.
These inefficiencies are due to the fact that infarmation processing needs
efficient searching and non-numeric string processing, where as conventional
canputers are specifically designed for efficient arithmetic opérations.

These are strong irﬁications4l' 151

that an APP-based information retrieval
system could achieve better perfommance when campared to its cdnventional
counter part. But unfartunately, research in either information science or
associative parallel processing is not well established to provide exact
specification of an informatiaon retrieval system, Hence to bu:idgé theae
gaps an inter-active experimental an-line retrieval system is proposed in
this repart. This proposed’ system is implemented with a Byte-oriented
variable record length associative parallel processer (BO-VRL-APP) and

utilises an-the-fly searching techniques,

4,2, Advantages of APP based retrieval system:

The major advantages of an APP based retrieval systems“’151’152 are:

i) simple data-structure
ii) flexible search mechanism
iii) Faster response

iv) . Lower system and development cost

4,2,1 Simple data-structure;

The content addressability of the proposed system does not impose any
constraints to adopt a strictly defined transformation relation between
logical and physical d;.ta. On the other hand this makes it much easier to
map logical data-structures into their physical representation within a

APP based syst:an1 2 .

This eliminates any form of links and pointers. Since no extra storage
location is required for links, pointers ard directories, the estimation of
requirements of starage is much simpler., And this also allows better

~ utilisation of storage media. -

This simple data-structuré does not include any hierarchical structure,
nested with links and pointér. 'lhus during implementation of the data-base
hardly any préprocessing is required to generate and maintaih a éoptxisticatéd
addressing scheme, The same argument is also valid for file maintenance
operation. where no canplicated pointer modifications are requireﬂ Auring
‘update operation. Thus, it is easier to enter a new recard in the data-
basearﬂisequanysmplertodeletewmmmdfmiﬁ

83,

4.2.2. Flexibility:

Due to content addressing, the searéhirxy of data-base is not restricted any
predefined primary or secondary Keys. Thus all search-Keys benefit f£ram
equally efficient searching. Alternatively a sub-string search can be easily
performed on an entire database(KWIC). This results in an extremely flexible
retrieval system, particularly, in the case of cross-references, Maoreover,

the data structure can be easily traversed and modified.

4,2.3. Fast response:

Content addressability leads to a simpler search mechanism. It does not
require any camplicated address camputation and also eliminates unnecessary
link-tracing. This reduces response time to a large extent. . Mareover, the
hardware is specially designed for high data rate, fast searching and
efficient string manipulation. The facility is further augmented by high
degree of parallelism of operations. Hence the proposed system is expected
£§ provide a faster response time.

4.2.4. Cost:

Content addressability and paralleliasm yields more powerful instructions,
These can eliminate many conventional routines, which are camposed of low-
level instructions. Moreover, the burdens of house-keeping programs are much
more reduced. It also leads to a simpler software to be developed for the
yetrieval systam. Thus the cost of software develognent is less expensive.
Apart fram this, it is ecpect.ed that, a 1ow-oost micro APP would be a.vailqble
,mthenear future. 'Ihis :Lndicat.as that, all features of theproposed

g system could be mplenented at a :aasmable cost.

84.

85,

4.3 (Objectives:

The main abjectives of the proposed work are to evaluate these indicatians.
To prove validity of the claims that APP can support efficient and

flexible text searching, a camparitive evaluation system would be con-
structed. This would fu.mish the necessary cost/performance statistics and
the experiences of this experiment could lead to a tentative specification

for associative information retrieval system.

4,4, Research Programme:

To fulfill the aims of the proposed work,research would be carried out

accarding to the following programme.

4.4.1. System Design:

This would involve design and develomment of an on-line retrieval system
to establish a research memory array. The system would enable suécessive
records of selected fields of an Inspec data file to be transferred,
character-by~-character, to a search unit, which would stare the search
profile. The search unit would incorporate suitable buffering to enable
matching records to be filtered out to an output file. Scanning of the
input file would continue until an end-of-record mark is detected.

4.4.2. Searching Strategies:

An associative infarmation retrieval system could support a numbex of
diffevent types of searching criteria; these are: equality, greater than,

86.

less than, between limits, maximum, minimum, most or least frequent and
many other types., In this wark a simple equality search is proposed, which
includes boolean selection, Quorum and threshold searches on both word

and text fragments.

4.4.3, System Evaluation:

Until now, sufficient information to substantiate any performance figure

of an associative retrieval system is not available. But there are

indications that the new system may have same superior performances over

the conventional IS & R system. Hence the main aim of the present study

would be to isolate the damain of problem area where this new system is most
effective and also to locate its shortcamings. To evaluate these, performances
of the proposed system would be campared to its standard counter parts (such
as tree structures and inverted list etc.). The area of this comparative
study would include

1) data-structure

2) total storage requirement

3) software

4) Instruction counts

5) flexibility and error tolerance
6) speed of response

7) Cost effectiveness

4,4.4, 'System gﬂgg;tat.iom

These include programming, coding, testing and debugging of software to

1)

2)

3)

4)

87.

implement control program to simulate

on-line retrieval system

Hardle the input and output files and the
transfer of records between them.

Monitor running programs to generate

evaluation statistics.

Display pertinent data (especially
associative memory maps) far debugging

and demonstration.

4,4.4.1. Algorithm Development

Design, coding, testing, debugging and modification of algorithms to

implement the chosen searching strategies.

4.4.4.2. System Evaluation:

. Operation of the on-line retrieval system with inspec data file to generate

camparative evaluation statistics.

4.4.4.3. Algarithm Drprovement:

Inter-active modification of algorithm to improve system perfarmance.

88,

4.5 The program of present wark;

So far the advantageé and flexibiliﬂes of an associative retrieval system
have been discussed. But unfortunately, at the present time, no established
specification of an APP is available. Hence, before designing an associative
retrieval system, it is required to specify an APP system with the help of
a research vehicle, To facilitate this, an inter-active experimental set-
up to simulate byte-ariented variable record length APP is to be implemented

first. This experiment wauld provide

a) Information responding data and instruction
fomat.

b) A specification of Associative processing
instruction set.

c) Micro-programs far the control Unit of APP

system,

Thus it was decided that the present work would be divided into two major
phases.

Phase I:- At the time of undertaking the current investigation, the BO-
VRL-APP in development within APG was not sufficiently well specified to
fomﬂnbasisofﬂxepmposedsystan Henceinthisphaseaninteractive
experimental set-up would be developed for simulating a BO-VRL~APP system., .
This would consist of haxdmre atulation of associative memory unit and

sof tware simulation of the remaining camponents of associative parallel

vprocessor. 'I‘he haxdwar:e etmlatimsz' 173

Oftheassociative_numymut -
wr.:uld ocmprise

1) | Am (assdciativg‘ memoxy array)

)

-
! t
|
!

i

2) WL (word conti_ol logic)
3) BCL (Bit control logic)

and 4) Data routing registers.,

The software s:imulatior152 would canprise

1) Micro-order generation logic
2) Control Unit |
3) Program store

ard 4) I/0 facilities
Experiments would be carried out to generate micro-order sequences to

1) prove the logical operation of the
BO-VRL-APP52

2) test the feasibility of the proposed
API52 (Associative processing
Instructians)

3) Consider modification of the logical
structure and/or API before final
specification.

4) achieve a precise, unambigious
specificatim,far the API.

5) estimate cost and performance

statistics of practical BO-VRL-APPs.

Phase II:~ On the basis of the results obtained in the Phase I of this work,
a research vehicle to simulate an associative information retrieval system

89.

90.

would be constructed in this phase. Experiments would be carried out
to demonstrate the feasibility of an associative retrieval system. This
would also be employed as a useful tool to develop, varify, debug and

improve the algorithms to implement the chosen searching strategies,

' CHAPTER 5.

An Experimental Setup for the Simulation of a Byte-

Oriented Variable Record Length Associative Parailel Processor.

5.0 Introduction:

The advantages of using Associative Parallel Processors (APP), particularly
in symbol processing, have been indicated by many workers.?7%7 Fram these
works a remarkable similarity of the basic system structure of associative
parallel processors is observed. But unfortunately associative hardware
"of any sophistication has been always difficult to obtain. Hence the lack of
first-hand experiences of using associative system has hindered further
progress in research. In attempting to solve this prablem, a number of
simulation systems have been devisedll7—l33. In general, most of these
systems are very crude in camparison to the hardware structure of associative
parallel processars. The software solutions of APP are usually implemented
by either hash-coding processes or camplex list structures on conventional
serial machines. These have restricted the potential searching capabilities
of associative parallelprocessors to a simple equality search and they do not
‘have hardware support far scme very impartant features such as parallel access
and multiple match res‘olution.‘ Thus in temms of capability, the similations
are totally inferior to the envisioned hardware. They do not provide anything
close to a realistic associative processing environment nar the means to
evaluate such an enviromment, Ieaszf 4 and Wright 7 indicated the urgent
need for hardware research vehicles to carry out further studies on experimental
 evaluation of associative parallel processing systems. It is expected that the
i"ole of such experinental research tools would be to allow the system designer,

92.

application engineer, software engineer ard user to collaborate in the

future progress in these fields.,

5.1 Architecture of the Associative Parallel Processor:-

To assist the Associative Processing Group (APG) of Brunel University in
carrying out further investigations on associative processor architecture,
hardware, software and applicatians, Le:;\52 proposed a generalised associative
parallel processing system. The schematic block-diagram of Lea's associative
parallel processing system is shown in Fig 5.1 This includes an associative
memory, input/output unit and communication facilities which are under
stored program control. The major differences of this type of architecture

fran the conventional system are

i) The program instruction and data are stored

in physically seperate units.

ii) The data are accessed by content addressing rather
than by conventional location addressing.

iii) The aritlmetic and Logic Unit and data store of
the conventional system are replaced by a single
associative memary,vhere data are processed in-gitu
within the storage unit without transfer to an
independent processing unit.,

In his proposal I.‘ea52 suggested that thepmposed system would be ini,;ially,

used for experimental evaluations amd improvement of new system design

93.

program
store
»
]
|
e = = = =D
control - I1/0
»
|
Y
associativel,
memory data
instruction
- - - = control

FIG.5.1. Block diagram of a BO-VRL-APP.

data input reg.

search | write

r — —| control
1 : .
bit control logic~ — -+ —* :
|
| — t Ll
b T
control Q word
symbol |bits - 9 ~ control
vt R ‘091C
1t : e
" 9
! i
“|data output reg | | match reply

FIG. 5. 2 Associctive memory unit.

concepts. It was also intended that the practical investigations should be
restricted only to the exploratory phase of associative camputer system
design. Fram Fig. 5.1 it is seen that the functions of all consitituent
blocks of the proposed system, excepting associative memory, are similar
to conventional systems. Therefore no fresh attempt would be made to
implement the whole system fram scratch, rather a general purpose camputer
system would be used to simulate these conventional elements. Hence the
proposed system would take the fomm of a prototype design, where a hard-
ware associative memory array would be emulated. This emlation would
consist of haréware, software and dedicated minicamputer. A two way
interface unit would be included to facilitate cammunication between the

hardware and the controlling system.

To enable further discussion, a brief introduction to the associative memory

unit is included in the following sub-sections.

5.1.1. 'The structural organisation of-an Byte-criented variable record

length associative parallel processor BO-VRL-APP,

The block diagram of the associative memary Unit is shown in Fig 5.2. The '

memory module consists of three basic units.
i) Memory array

ii) Address Unit
iii) Contxrol Unit

5,1.1.1. Memory Array:-

_‘The associative memory is a two-dimensional array of identical cells as

94,

shown in Fig. 5.3. Each cell, one bit of processing element, can perform
the functions of a read-write memory cell and in addition contains
sufficient logic to campare its cx_:ntent with the corresponding bit of
external data-input register. Each word-row of the byte-oriented VRL memory
array canprises of twelve cells for staring a byte of information and
forms a camplex symbol, These canplex symbols are partitioned into two
fields: |

i) symbol field

ii) control bit field

The first eight bits (a byte) stores alpha-numeric symbols and the remaining
four bits store oontrol bit infommations. These control bits are used as
either temporary low-level markers or symbol delimiters to provide a means

for efficient symbol manipulation.

The memory array is word-carganised, that is, twelve--bit comple)f symbol are
connected to parallel input/ocutput highways. All word-rows and bit-
colums of the memory array can be accessed in parallel. Particular
canbinations of rows and columns can be selected by the addressing unit.

A single tag bit is provided to indicate an exact match of the content of
each camplex symbol to the camparand. The tag bit contributes to the match
reply line, which is cammon to all camplex symbols and provides feed-back
information fran the memary unit to the control unit.

5.0 . .2. Addressing Unit:-

The addressing unit comprises of. two Jogically seperate units. These are

95,

- ="y --=- == 1
I I [
! ce B I
| — i, j-1H- :
1
(I |
|1 l i
cellf] cell[cell |
l -—i"1,i~;— b i,, e |¢1,J 4
| | |
' |
1
| cell [|
l 1 i,j¢1 a |
1
L__0--T--
Symbol Control-bit
fe—— 8- bits 4 -bits —|

FIG.5.3. Associative memory array,

FIG.5.4. Experimental set-up

PDP11/L0
Line printer Experimental Graphic
: model terminal -

%

96.

97.

i) Bit control logic

ii) Word control logic

Bit control logic:

A word within the memory array is accessed by its content. The contents

of the data input register are camposed of two camplex symbols. One of tlose is
the camparand,which is used for locating the pertinent words. The other is input
data,l which replaces the old contents of the accessed words. The bit control
unit provides an autamatic selection of desired bit-columns for both campare

and write operations. The function of the bit-control logic, which is local

to the memory unit, is to provide a proper set of data to the input high-

v;lay of the memary array under camand of the control Unit.

word control logic:-

The word-control logic includes a tag-register, which provides a link
between search and read/write operations. Each bit of tag register is
associated with a 'ward match' line. A $u;:cessful search opei:ai:ion on a
word is marked by setting the corresponding bit of tag register. The read/
write operation can now be performed an those words which either matched or
mismatched on the preceding search operation. The provision for intexwérd
cammunication between neighbouring words is also included. An additional
feature of isolating and resolving a group of words is provided by run=~

gerxération logic.

An asynchronous control system is used for high-speed match-resolving operation,
This match resolver)which is local to the memory array, provides an autamatic
facility for self and neighbour addressing of cells.

98.

5.1.1.3. Control Unit:

The control unit consists of a synchi:onous_contxol system. This is a
mediun speed indirect control. It consists of two sets of micro-orders,

which provide a local autonamous control. These are:

i) Static micro—orders

) ii) Dynamic micro-orders

i) Static micro-orders:-

The static micro-orders, as the name suggests, are a set of micro~
orders which do not change during execution of an instruction. These
specify the damain modification options of an Associative Processing

instruction.

ii) Dynamic micro-orders:-

These are sequences of a set of micro-orders which control different
steps of an instruction. The cambination of these control signals enables
the execution of search, read, write, propagate and run operations on

canplex symbols.

5.2, Approach for System Implementation and Objectives

The byte-oriented variable recard length associative parallel processer of
Brunel University has been described ea.rlier The proposed associative
memo:y unit oonsists of a 12 bits x 32 wrds menory array. A provisimal |
. specification was ‘proposed by Lea®. s the architecture of the BO-VRL-APP
ves in em'y'aac' stage, sane experinents were required befare finalization-
,‘of the specifwatim 3t vas considered wjeatzable to procesd vith the

e an

99,

same inflexibilities in the systen.v Qn the other hand, an inter-active
experimental approach of system evolution was much more attractive because
the system configuration could be upgraded until full capability of the
hardware was exploited. On the basis of this argument it was decided that
an experimental set-up would be developed to derive a canplete and final
specification for a BO-VRL-APP system, This specification would then be
utilized as a basis for hardware design of the control unit of a BO~VRL~
APP systanm.

Before devising an experimental set-up for above purpose, it is worth
reviewing the state of development of hardware at brunel University. Fram
i:he schematic diagram of Fig 5.2, it has been seen that the associative
memory unit ocauprises

i) memory array

ii) Adressing Unit

iii) Control Unit

Among these constituent eletxe:tlts, investigation on the design of associative
memory cells has been thoroughly done by Iea. An associative memory cell,
which is capable of pexrfoming primitive search, read, and write operations,
has been implemented by utilising Nand gates'’>. There was also a fairly
good knowledge of the functions of bit-control and word-control logics..
Taking these as a basic design guide-line, the hardwere for bit and vord

control logic circuits are wade, In the design of bit and word control

circuits enough oportunities for minor modifications are left open However
the major uncertainty was felt in the arganisation of the control unit,

Since medification of the Opossd APT set was possible, it was not timely
tospecifyasetof sequences ¢ low-level micro-orders. Atthis»poi.ntv ;.t
g wasrealisedﬂlat mmmmmwl‘wmmmwm

TR A

mumzy ;:ell, bit and word control ltmc. : Scm extra lcgib M be added

to enable a controlling camputer to send proper low-level micro-orders.

The effects of these micro-orders on the memory array would be monitored

by suitable display unit. It was assumed that such an inter-active system
would be helpful in developing a full set of API. The basic steps of this
experiment would be to roughly define an API and then to derive an algorithm,
which are cambinations of SMO's and DMO's an paper. This set of micro-
orders would be loaded in the buffer area of the controlling camputer and sequ~
entially transferred to the experimental model. The nemory would ke |
monitored to examine whether or not tle injtial definition of API is
satisfied. Thus. in this approach of design there is a possibility of

getting important feed-back informations fram the experinent. These feed-
back informations could be utilized for modification of tlie hardware to
improve overall performance of the system. Once a full set of API is
specified, the set of control signals could also be preciseiy derived and
verified on the real hardware system., The entire set of micro-orders would
then give a basis for design of the micro-program of the control unit of the
APP system. This control unit would eventually be translated into a corresp-
onding hardware versiaon.

The scope of the present moject is to build a set-up for akove écperiment
using existing hardware and camputing facilities of Brunel University. The
objective of this experiment would be to provide a campletely specified API
gset and derive the corresponding micro-orders. The description of the |
experimental set-up built for this pupose is given in the following section.

¥ o
rA s

100,

nxesdmematicdiagramofi‘ig 54mthemtermmmnofﬂuasmuuve f

© memory with othar mriphetal unita. 'nu tw 11/40 mm-cmg;to:n? 18

101 .

utilized as the main controlling element, This stores program sequences
of APP and also allocates two separate buffer areas to simulate I/0 channel
of the model. The mini camputer is also employed to control the model
explicitly by sending control signals down to micro—order level.

All man-machine cammnications are performed by the console tele-~typewriter.
The graphic term.in.a.l178 (Gr40) continuously displays the associative memory
map, that is, the current contents of associative memory array. 'I‘he line
printer is employed for high-speed hard copy of the information displayed
by the graphic temminal. The details of the hardware and interface des-

criptions follow:—

5.3.1. Hardware descriptions of the Experimental set up

The block diagram of the associative memory unit of the experm\éntal hard-
ware is shown in Fig. 5.5, The descriptions and functions of different
hardware blocks are given below.

5.3.1.1. Associative memory cell:

A logic-circuit diagram for an associative memory cell is given in Fig 5.6.
ThesecellsareinplanentedbyusmgNardgatesarﬂreportedbera This
eport 3 also includes all relevent design consideration for practical
'ircplanentatim of associative menory cells. Three basic operatims that can
be performed by each memory cell are
ii) Read
111);. @'&teﬁ

adi:

w

FIG.5.6. Associative memory cell

1

I Y
'; DATA INREG. SMO DMO
E
R
F
A BIT-CONTROU
C I ‘
E T
MEMORY g WORD
lé ™ ARRAY R " CONTROL
G ; G
I L ATA OUTREG |MATCH REPLY
¢]
FIG.5.5. Memory module
D D
Doa P1a 18 0B
"o

102 -

103,

Search:
In this operation all cells individually campare the logical content of their
memory element with the corresponding infarmation on lines D1 and DlB'

when the result of ocamparison is successful, the match output 'WO' goes to

a logical high.

Read:

During read operation data input lines DIA and Dip are held at stand-by

mode and word select line WI is enabled. Thus the information stored in

the cell is made available at Dy, and D lines.

Write:

In the write operation, input data are applied to Dra and Dy lines, the

information is written into the cell by enabling W, line. whenthe input data
is in the stand-by mode, that is, both DIA and DIB
the previous contents of the cell are not altered by the execution of write

are held at logical zero,

operation.

5.3.1.2. Memory Array

The Fig 5.3 shows an associativememory ai'ray. The two-dimersional memory
array oconsists of identical associative memory cell as described above.
Cammon row and column connections are also shown in the Fig 5.3 Any
cambinations of row and colum of the associative memory array can be accessed
by the independent word- and bit- selection unit respectively. The exact
match condition of selected'coluns in each word rows is irdicat,ted by the match

output line.

104,

5.3.1.3. Micro-order Register;-

As discussed earlier, the experimental model is controlled by a conventional
camputer. All control signals (micro-arders) are transferred fram the cont-
rolling camputer to the hardware. These micro-orders are needed to be
locally stored. Hence two buffer registers, called micro-order registers,

are incorporated in the hardware. These are

i) Static micro-order register

ii) Dynamic micro-order register

Static micro-order Register:

It contains a set of eight micro-orders which do not alter during execution

of an instruction. The contents of SMO Register are shown in Fig. 5.7 (a)

Dynamic Micro—-arder Register:

The contents of the dynamic micro-order register are shown in Fig 5.7 (b).
The dynamic micro-orders are a collection of sixteen low-level control signals
issued to the hardware.

These DMO signals can be further partitioned into two categories
i) BC DMD's (Bit-control Dynamic micro-orders)
ii) , WC DMD'S (Word-control Dynamic micro-orders)

The function of the bit control DMO's i8 to enable the bit control logic,
and similarly the WC DMO's activates the ward control logic,

The execution of an instruction is accamplished by sequenci.ng‘an app:ppriat,e
. canbination of micro-orders at different time slots.

RU

RN

ST

LN

FI1G.5.7(a), Static micro-order register

k—Dbit- control

DMO

word control DMO

Stc

)

XC wYC

St

XS

YS

ToP |RIW
MEM

MW IMM

G

R

S

FIG.5.7(b). Dynamic micro-order register

SYMBOL

4

S

%

| w Drs

FIG.5.8. Data input register

“—-CONTROL-BITJ

| 1

2

3

L

105.

106,

The descriptions of micro-orders could be found in APPENDIX A.

5.3.1.4. Data Input Regist

It (Fig. 5.8) holds a twelve-bit camplex symbol, which consists of alpha-
nuneric symbol and control bits. Corresponding to each bit position a
four-bit code, namely D, ., DBW’ Dag and DBS, is allocated in the data input
register, The bits DAS and DBscontain the information to ke searched within
the associative .memory and the bits D and DBW ocontain the information to be

written into the associative memory array. The code canl.inations used

for write and search operations are given in Appendix A.

5.3.1.5. Bit control logic

The Figure 5.9 shows the logic diagram of the bi: control unit, The bit-
control logic is a simple four to two ways multiplexer circuit. In response

to the micro-order signals ¢x' ¢y and SI, the bit-control logic selects or

masks a set data fram the data input register. These selected data are

finally applied to D, and D lines of the associative memory array. The
signals @, and ¢ are used to select search and write informations respectively,
'I‘he signal ST is used to inhibit 'write one' during the clear phase of instruct-

ion cycle. This enables it to write sero only on those bit colums which were

selected to search 'one' during the search phase of the instruction cycle.

5.3.1.6. Tag Registers:-

These (Fig 5.10) provide a link between search and read/write operations,
Each bit of a tag register is-associated with a wond match line 'W,'s The

107,

ST
> O
By
D1a Drg
FIG.5.9. Bit control logic
T
[T
RN) .
Wi, A l__
. ~_ M
\{,Vli 2, G ~-J4+ — "R
W—--- _._T---- é---a .
'.J:n ' G —
| 1
' G
A%
| T
| A
G
L_-.JdR
E
G |~
2

FIG.5.10. Tag register

result of a parallel search operation is staticized in either Tag Reg 1
or Tag Reg 2 according to the dynamic-micro-order control signals TG and GR
respectively. The match reply, which is the logical sumation of all bits

of tag register 1,indicates the presence of at leasi: one tag bit,

5.3.1.7. Word Cantrol Logic

The schematic diagram of the ward-control logic is shown in Fig 5.11.
The word-control .logic, in conjunction with contents of tag registers,
static and dynamic micro-order, is used to activate a set of word-rows for

any specific read or write operation.
Multiwrite:-
The multiwrite line enables all word-rows in parallel. In this case all

word-rows can simultaneously take part in any write operation.

Mode Control Logic:

The selection of a set of matched or mismatched word-rows is done by
camparing the contents of tag register 1 with the mode signal 'MM'. The
camparison of each bit of tag register 1 is performed by a set of exclusive-
or gates; the output of which is distributed throughout the word-control
logic., When the control signal o1 is enabled, those word-rows with a logical
'one' at the output of mode control gate are activated.

Propagation lodics ,
The circuit diagian of propacation logic is shown in Fig. 5.11(b) where RN
ST and IN (Right neighbour, stright through, and left neighbour) denote the

108,

109.

MM __.SLN 1o1 MW
TAG1 .
o MODE
RN N0, RN STLN "
111 J_LL‘ +
A'oe———RUN PROPG T
Bo —L0GIC LOGIC
RUg____
TAG 2— ~
,
— SRN 02

FIG.5.11. Word control logic

MM

MO
TAG1

F1G.5.11(a). Mode control logic

wo = »—_ >
ST ™
.LNO——-—--J}

SLN

FIG.S5.11(b). Propagation logic

RU o—
20 Em—
TAG TPI To2 N
STp— L
B o
A o/
RN ¢
TP
FIG.S5.11(c). Run generation logic
< SYMBOL ~—CONTROL BITH
1123|456 |78 1]12]|3]¢
Doa {OoB

FIG.5.12. Read register

110

111.

i

direction of propagations. The information fram self and/or adjacent neigh-
bours (SRN, SLN derived fram mode control logic) are finally strobed by O2

to select a set of word-rows.

Run Generator:

The schematic diagram of run-generation logic is shown in Fig 5.11(¢). This
enables to select a group of word-rows for write operation, which depends on
the contents of tag registers. There are three different ways of run
generations, these are top; bottam and group run - (see Appendix B). Each

of these runs ocould be in either direction. - These bi-directional runs are
achieved by using two independent sets of parallel carry look-ahead generator
trees. The proper control is derived by a cambination of run codes, propa-

gation specification and micro-order signals 02R and O2L'

5.3.1.8. Read Register:-

The figure 5.12 shows a schenatic diagram of read register, which hold a
canplex symbol (symbol + control bit). Each bit colums of the associative
memory array has two rails of sense output; DAD and DBO Henoe‘for eaéh bit
colums of memory array two bits-are allocated in the read register. During
the read operation, the contents of line D 201 and DBOi are staticized in the
read register by enabling the control sigmal '

5.3.2. Interface Control Logic

Two way camunicatims between the PDP 11/4,0 unibus and the associative

memory hardware are perfomed by the DR 11—c179. The DR 11—c, a general purpose

S

112,

interface, provides the logic and buffer registers necessary for the program-
controlled parallel transfer of 16 bit data between a PDP-11 system and an
external device. The schematic diagram of Fig 5.13 shows the interface
between the model and PDP 11/40.

5.3.2.1. Data Input:

The input highway (to the model) is shown in Hg. 5.13(a), where the low -
order eight-bits” are reserved for data information and two other lines carry
control signals. These oontrol signals provide interface initialisation and

data routing informations.

When the signal 'S' is asserted the SMO and DMO counters are reset to the
initial state. The signal PV enables output of either SMO ar DMO decoder,
depending on its logical valie. The output of these decoders finally selects
a portion of 'Data Input register' for loading input data. The counters

(SMO and DMO counters) are automaticially updated at the campletion of each

data transfer.

5.3.2.2. Data Output:

During the output operation (fram the model) contents of the read register aleng
with feed-back signal OVA, OVB and Match reply ae transferred to PDP 1l. '
The Figure 5.13(b) describes the data output highway. Three transfer cycles

are required to transmit the entire output informations. This sequential
transfer is done by a miltiplexer and a module-three counter. At the end of

each transfer the ocounter is updated for proper data routing.

O - = DO

F1G.5.13. Interface logic

Data in reg SMO reg DMO reg
SMO Enable DMO
decoder decoder
SMO Inc. counter DMO
counter counter
reset
Read reg
multiplexer 1« read counter
reset
increment

113,

114,

9 (8 (7 (65|43 121

~tCONTROL DATA

- FIG.5.13(a), Data input highway

Doa | Dos
Transfer no.
1 5 6 7 8
2 1 2 3 IR
3 4 3 2 1

FIG. 5.13(b). Data output

' SYMBOL

CONTROL BIT

115,

For further descriptions of interface gignals Appendix A may be refened

to.

5.4. Associative Processing Instruction

The experimental hardware model described earlier, can execute a single
Instruction on multiple data stream at a time. The API (Associative Processing
Instruction) format and instruction execution cycle are described in this

section.

5.4.1. Instruction Format:-

A generalised instruction format isshown in Fig 5.14. Each micro-instruction

consists of function, address and modifier fields.
Function:- This camprises of two sub-fields; these are: op-code and data:

Op—Code: This indicates the nature of operation to be performed,

such as read or write.

Data: This sub-field of the Function is interpreted according to

the content of operation sub-field. Duringthe read operatimn it
indicates a 16 bit address within .the buffer area of the program store,
where the intemrogated information is to be stored, During write |
operation it holds the infaommation to be written in the selected
words. During 'group run' (see Appendix B) itholdsthédata for
second search operation,

116.

{FUNCTION> <DOMAI N ADDRESS)> {DOMAIN MODIFIER)

{FUNCTIONDX 0P CODEN(DATA>

FIG.5.14. Instruction format

117,

Address:- This field of the instruction caontains the information to be
searched in the initial damain search operation. This search operation is
always associated with every instruction, which explicitly selects a danlain
of word-rows. This resembles the address field of the instruction format

of a conventional system. |

Modifier:- This field of the i.nstxuction modifies the entire addressing mode.
The final specifications for the instruction of the byte oriented variable
record length APP are irmclpded in Appendix B.

5.4.2. Instruction Cycle:-

Each micro-instructions (API) within the haxiware model operates on a four
beat cycles. These are damain search; damain modification (clear option)
damain modification (propagate and/or run option); and function (read or

write) .

The function of the modifier field is to modify the addressing scheme and
finally to enable a set of word-rows for further processing.

During the damain search operation, the contents of the address field are
considered as the carparand, The result of the comparison is stored in tag
registers. ‘

During the clear option, the control bit field and/or symbol bit field of the
selected words can be reset (write '0')

During the propagation and run generation, the addressing mechanism is modified
to enable a proper operation.

During the last phase, a read or write operation (as indicated by the opcode)

is performed.

5.5. Steps of the Experiment:

The objective of this experiment is to specify an instruction set for the
byte-oriented VRL-APP, This cbjective could be achieved by an interactive
experiment, as stated earlier. The steps which are to be followed during
this experimentation are shown in flow-chart of Fig. 5.15.and a brief ex-

planation is given below.
Step 1: API definition - an API is roughly defined.

Step 2: Algorithm develogment - an algorithm for execution of the
API, as defined in Step I, is developed.

Step 3: Timing diagram generation:- A timing diagram for the
entire set of micro-orders are generated on the basis of
the algarithm developed in Step 2.

Step 4: Derivation of mcro-order sequences:- The micro-order
sequences are directly mapped fram the timing diagram.
These micro-order sequences are fed to the controlling .
computer. These micro-orders, which are stored in
appropriate buffers, ave the sequentially transferred to the
hardware.

118,

119,

start

API Definition
—

Timing generation
Y
Micro-order spec.
Y
Execution of API
Y

Verification

no

correct

Accept the spec.

FIG.5.15. Steps of the experimentation

bit-control DMO ;s

word-control DMOQO's

b time siot 4 time siot2f time stota|

FIG. 5.16. Timing diagram

120.

Step 5: Memary Map:- A memory map is produced to cbserve the effect
of micro-order sequences(result of Step 4) on the contents

of memory array.

Step 6: The memory map produced at Step 5 is campared with expected
result. If same madifications are required, Step 1 to Step 6
are carried out with proper corrective measures. Otherwise
the definition of API (Step 1) and micro-arder sequences of

Step 4 are accepted.

5.5.1. Timing diagram generation:-

The main consideration during the timing diagram generation phase is that

all word-control dynamic-micro-orders should be covered by the ioit-control DMO's,
That is, no bit-control dynamic-micro-orders should change during the presence
of a word-control DMO. Otherwise same criticalness of timing may . occur,

which may lead to an intermittent success of the operation. The solution of
this problem for a beat of instruction cycle is shown in Fig. 5.16. The figure
shows that three time slots are required for the transfer of every word-

control DMO. IWhere the bit control DMO's are maintained far the éntire
sequernces of T1, T2 and T3 3 the ward-control DMO's are only enabled

during time slots T2. Fram this timing consideration it is derived that

twelve time slots would be required to execute four beats of any API cycle.

5.5.2. Memcry Map

All relevant feed-back information from the hatdware, which is required for
any interactive experiment, is available fram the memory map. The memory

aTE S

TIME

4150

WO
WU
L4 R T
WOk
WOk
RINTNT
WOR D
W R
W OF T
AINTIT
WO
RINTAY
Wk I
W
WOR D
NTRTERY
WOIE
WO
LICH L
WK
LD
WO
LIOFD
WORD
WORD
WO
LIOR
WORD
WORD
WORD
IO

WoORD 3

W

R

= SN D WS

—_

RS
o

LhD

o~ e
N

& ~ L

?.
-
fy

-y
s &
23
24

-
YL
aewd

1 &
~ N
27
28
29
20
Il

- A

G-ArR-26

IS4 13303840

(01111110 0000 G
STATIC
CHARACTER CR

XXXX 0000 O
MICRO-0ORDER

MCCM C USD RKR

WCEM 12
G01111110 0000
G XXXX 0000 0 000 00
MEMORY MAF
10000000 0000
11000000 0000
11100000 0000
11110000 0000
11111000 0000
11111100 0000
11111110 0000
11001000 1000
11001001 0100
11001010 0010
11001011 1110
11001100 0000
11001101 1110
11001110 Q000
11001111 1109
11010000 0010
11010001 0600
11010010 0000
11010011 0000
11010100 0000
11010101 0000
11010110 0GOO
11010111 0000
11011000 0000
11011001 O0G00
11011010 0000
10110001 0000
10110010 0000
10110011 0000
10110100 0000
10110101 0000
10110110 0000
FIG.5.17. Memory map

000 N

sFUNC
sALDR

TION
£S5
DYNAMIC ™M-0
0110011000000000
0110011000000100
0L1L0011000000000
0101010100000000
0101010100000001
0L01010100000000
000GGOONOGO00CGOGO
0000OGOGOCO0OL00N0
Q00QQ00G0OGONLGOHOO0O
QOGOONCOGRGOVIO0N0
GOGOGLUOGHOOHGHL0
0000GLGAROANOHO0

READ REGIGIER
LOTIGLLIO 0000
TAG REFLY =0

OVER-FLOWL =1
OVER-FLOW2 =0

121.

122'

map, that is the current contents of memory array, is continuocusly displayed an
the graphic terminal. The general fommat of a memory map is given in Fig.

5.17. This oconsists of

1) current API description
2) current static micro-orders
3) current dynamic-micro-order desqriptions "
4) Contents of ‘read register
5) Condition code output (such as overflow
1; and B; Match reply)
6) The curré_nt contents of the entire nenory

array.

This memory map enables to monitor the state of the associative memory

array and provides a valid basis for experimental verification.

5.6. Software Package:-

A software package is developed to interconnect the model with the rest of
the system. This simulates I,0 unit, program store and control unit of
VRL-APP system. This is also used to convert a micro-API instruction to

m%dﬁnecodeandtoissuethelowlevelcmtrolsignalstothemdel. The

program is written in Macro 11180 and runs on .the ‘RT-11 F/B operating system:mo.
In addition to nommal experimental requirements, same extra facility such as
initial clear, bulk load.ing and hard-copy print-ow; of memory map: are also
J.ncluded ALl functional operations are grouped into different modes these

modes of operatim are:=

1) clear (AM)

2) load (AM)

3) Reload (AM)

4) specify (API and micro order)

5) Process (execute API)

6) Micro Instruction (specification followed
by execution).

7) output (hard copy of memory map of
console TTY)

8) - Fast output (hard copy of memary Map
on line printer)

9) Exit (Emd of sessicn)

when the program is running, it initially waits for a mode control signal.
Upon receipt of a mode cantrol camand, it starts a particular set of sub-
routines which corresponds to the mode camand. At the campletion of a
mode of operation (except Exit) the cantrol is transferred to the initial
state of the program. A brief description of different modes is given
below. The detailed operational steps are explained by the flog-chart in
Appendix C. .

Clear:~ This mode initilizes the system by clearing the associative memory
cells and the interface logic. The reset condition of the associative memory
is displayed on the graphic terminal, | |

Load:~ This mode requests the user to enter thirtymoclwaems@t the
terminal. These input characters are first stored in a Load buffer area and
then dumped into the successive associative memory wards. ' The graphic
terminal displays the contents of the associative memory after this load

operation.

123.

124,

Reload:~ The old contents of the Load Buffer are reloaded in the associative
memory. The GT displays the contents of the associative memory after re-

load operation.

Specify:- During this mode of operation a new set of DMO's and API can
be specified ard stored in the respective buffer areas. The GT displays
these new specifications along with the contents of the associative memory
at the time of entering these specifications.

'Process:- This executes the API, stored in the API buffers, according

‘to the specified dynamic-micro-orders on the data set contained within the
associative memory. The GT displays the API executed along with the dynamic
micro-order set and the current contents of the AM after execution of this

API.

Micro instruction:- This is a canbination of a 'specify' followed by a'Process'

mode. The newly specified API is stored and executed on the data stored in
the associative memory. The contents of the graphic terminal are similar
to that of the process mode.

Output:~- The current contents of the graphic temminal are printed on the
console tele-typewriter. At the top of this printed hard copy, the current
date and time are also logged.

Fast Qutput:- The function of this mode is similar to that of the cutput
mode., 'Ihegaininwtputspeedisachievedbyusmgalineprinter :I.nstead
of a TTY.

125.

Exit:- At the erd of an experimental session this mode is entered. This

transfers the machine control to the Keyboard monitor of RT - 11 F/B operating

system,

5.7. Results:-

The experiment is carried out according to procedure stated in section 5,6.

As an illustrative example the following API is chosen.

API: W B 0001 A 1000 0010 O OOD N

Step 1.

Step 2.

Step 3.

Step 4.

Definition of API:~

A symbol 'A' with control bit CBI would be searched;

the control bit CBI of all matching words would be cleared;
the propagation would be set for downward direction; finally
a symbol 'B' with control bit CB4 would written in the
selected waords.

The algorithm for the above definition of API is given in
Fig 5.18(a)

The timing diagram is generated fram the algarithm of
Fig 5.18(a) and is shown in Fig 5.18(b).

The micro-oxrder specifications are directly cbtained from

‘the timing diagram of Fig 5.18(b). The sequence of DMQ's
 required for execution of the API, as defined in step 1,

is given in Fig. 5.18(c).

Search complex symbol,set tag

Clear control-bit field of tagged word
Enable propagation down

Write complex symbol

FIG.5.18(a). API definition

TIME SLOTS
1 2 3 4L 5 6 7 8

126.

9 10 11 12

o o O o

oF 1

FI1I6S18(h) Timina dinaram

127,

's

OZRSTC¢xc¢y002LSTS¢xs¢ySMRmmGRTG0201

Time
Slots

10

11

12

DMO sequence.

Fig 5.18(c).

DATE?

TIME

AFI?

WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORI
WORD
WORD

W

R

NONDOUDGINR

8-AFR-76

IS 13129349

R 0001 A 1000 0010 O OO N

CHARACTER

R
A

STATIC MICRO-ORDER
Cek MCCM € USD RR
WCEM 12

0001
1000 0010 0 001 00

MEMORY MAF

11000001
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
11000001
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000

1000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

Memory map 1.

$FUNCTION
tANDRESS

DYNAMIC MO0

0110011000000000
0110011000001100
0110011000000000
0010000000000000
0010000000000001
0010000000000000
0000000000000000
0000000000000000
0000000000000000
0101010100000000
0101010100000010
0101010100000000

READ REGISTER
00000000 0000
TAG REFLY =0

OVER-FL.OW1 =0
OVER-FLOW2 =0

DATE?

TIME

APIL?S

WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORI
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORT
WORD
WORD
WORD
WORD

8-AFR-76

IS 13131153

W E 0001 A 1000 0010 O 00D N

R

0

NVONOGCUD LI

STATIC MICRO-DRDER

CHARACTER CR MCCM C USD RR

E
A

WCEM 12
0001
1000 0010 O 001 00

MEMORY HAP

11000001
11000010
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000
11000001
10000000
10000000
10000000
10000000
10000000
10000000
10000000
10000000

10000000

10000000
10000000
10000000
10000000
10000000
10000000
10000000

0000
0001
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

Memory map 2.

$FUNCTION
tADDRESS

DYNAMIC M-0

0110011000000000
0110011000001100
0110011000000000
0010000000000000
0010000000000001
0010000000000000
0000000000000000
0000000000000000
0000000000000000
0101010100000000
0101010100000010
0101010100000000

READ' REGISTER
00000000 0000
TAG REPLY =1

OVER~FLOW1L =0
OVER-FLOW2 =

128,

Step 5. By using mode 's' of the software the new DMO specifica-
| tions of Fig 5.18(c) and API are entered. The mamory map

1 shows the new specification of the DMO's and API along

with the contents of the associative memory array at the

time of entering them,

The mode 'P' of the software is entered to execute the

APT; and the memory map 2 is produced as a result.

Step 6. Camparisan of the result with the expected operation is
made. Once verified, it is accepted as a final

specification.

Repeating the above procedure other API's are defined and corresponding DMD's
are derived. The camnplete specification for the instruction set of the

BO VRL APP, thus obtained, is included in APPENDIX B.

5.8. Discussion:-

An experimental set up for hybrid camputer emulation of the byte-oriented
variable recard length associative parallel processor has been implemented.
This systan provides a research vehicle for user-oriented design of VRL-APP
systems. ‘The purpose of this investigation was to provxde feed-back in-
farmations for the varification and improvement of the VRL-APP system
design. The experimental investigations were mainly pointed:

1) to achieve a high degree of symbol-processing efficiency
over a wide range of applications,

ii) to develop a well balanced and flexible instruction-set

canpatible with the VRL-APP systems and applications,

iii) to develop a basis far the design of the control unit

of the APP system.

As stated earlier, an interactive design approach had been adopted to
achieve these objectives. A modular software package has been included to
facilitate the experiment . The general instruction format (API) of a
VRL-APP system is given in section 5.4.1. These include function, address
and damain modifier fields. The primitive operations of an associative
memory are search, damain modification followed by read or write function.
Extensive studies on read/write operations, with all possible damain
modifications, on the data set stared in associative memory array have been
carried out. The verification of proper executions of these fundamental
operations are obtained fram the sequence of memory maps of the aésociative

memary.

The top, bottam and group runs are also verified in downward direction. It
is expected that by inclusion of similar hardware, runs in upward direction
could easily be implemented.

As an outcane of this experiment, a camplete specification for the API set
of the BO-VRL-APP along with corresponding micro-program for the contrel
unit are produced.

This has also provided a basis far addition of an extra mode 'T' in the
software package. This mode of operation accepts an API fram the tele-type

129,

130,

writer. The corresponding static~ and dynamic- micro-orders are autamatic-
ally generated by the software package to enable execution of the entered

instructions.

Further improvements of the software have been carried out to buffer a set
of up to sixteen API's, These buffered API's are then executed sequentially
taking one instruction at a time. At the end of the buffer (when all
instruction are executed) a switch register option is provided to repeat
executiaon of the set of instructions, stared in the buffer, as an endless
loop. An additional switch register option is included to provide hare-

copies of the memory maps at the campletion of each of these instructions.

Two application studies, using the extended version of the software, have
recently been carried out. One of these, an implementation of on-line text

74. The other,as reported by Ofuluens,deals with the

editor, is done by Reynoldl
conversion of Intermediate Associative Programming language to a macro of

low-level API.

These two application studies have demonstrated the flexibility and power
of API in symbol processing enviromment. The following chapter.describ&s
another application of VRL-APR Where VRL APP system is used as a parallel

search unit of an on~line information retrieval system.

WGQ

On-Line Associative Retrieval System

6.0 Introduction

The discussiaon of the praoblems of an-line infammation retrieval, is

mainly restricted to the area of a bibliographical information service

of technical or national librariesl-lo. As a general library deals with
large numbers of different types of documents such as printed books,
serials, maps, charts, paintings and musical records, it is not at all
‘possible to store its entire collection in a camputer system. Even if
only printed books and serials are considered, the size of the infarmation
becames so enarmous that the storage of actual documenté within a camputer
systam is not econamically feasible. Here the main purpose of the
mechanisation is to locate the physical position of the document. There-
after picking up of selected documents by an automatic system or manual
intervention is a trivial mechanical aspect of the problem. Hence
considering the cost of the ‘systan, the scope of this work is only

limited to finding out the physical location of retrieved documents. Here,
in response to a query, camplete bibliographical information of all
documents, as provided by a cdwentional card-catalogue file, along_with
information regarding physical location and current status (whether or not
on loan) are provided in a suitable format. A hard~copy printout along
with a visual display could also be cbtained for future reference.

The main advantages of campliter-based on-1ine catalogué searching systems
are flexibility and speed of response nse. An interactive systén ooﬁidprov T :l.de

extensive cross-references and it is desirable since it allows poorly
defined requests to gain precision fram the results of subsequent searches.
Another attraction of camputer-based systam is the possibility of SDI and

current-awareness services, virtually without any extra effort.
The ultimate success of a system depends on the two major factors:

1) The way data-base is created
2) The mechanism used for searching

. Indexj.rgl—lo

attempts to bridge the cammunication gap between the searcher
and the originator of a document. In fact the process of indexing is quite
canplex. This is because it is often difficult to describe a document

by a single index term; and sane index terms require to be further divided
in sub-graups. Other difficulties arise due to variation in the values of
the context of a document in user enviromment. A simple solution such as
Keyword in context may usually lead to a large index, same times larger than
the data28'33. Until now the process of indexing can be considered as

an intellectual exercise. Hence in the following discussions aspects .of

indexing will be carefully avoided.

The other factor of a searching mechanism is highly dependent on the camplex

data structure of the file organisatim?s' 36'42-_4&.5

reqhired in a convéntional system to establish an artificial link between
Keys and document. As a consequence of this the system becames inefficient
in terms of .usa\ge of starage media and unnecessary canputation, The’
natural property of association of attribute/argument of an'Adsociative

132,

These complex structures are

151,152

parallel processor can be gainfully exploited in information

retrieval applications, The simplest solution would involve the storage
of an entire data-base in a large associative mem::ry158 with minimal
data-structure. A subsequent retrieval of docurents could be done by a
camparison of Keys with the data-base. Currently a large assoicative

memory is not an ecanamic proposition. Many people®> 1>’

have suggested
a hierarchy of associative memory organisation as used in a conventional
computer system. According to these suggestions, a reasonably large

data-base would be sotred in a system similar to Content Addressable File
153-156

133,

Storage System (CAFS) . The CAFS system is a conventional magnetic disc

unit with additional logic attached to it for rapid access of relevent data.

It is revealed that the initial selection of most likely regions of data
oould be done by such a system. The final selection of documents would be

performed by an array of associative memory. The scope of this work is

limited to same inwestigations on retrieval of documents using an associative

memory array.

There are two altermative search organisations using APP, where
1) a part of data- base is held in the associative‘nemxy 152.
2) The search data (user profile) is held in the associative

merory. (On-The-Fly) 151,

The first organisation has the disadvantage of continued loading of the
associative memory but it allows more ocnplex manipulations to be carried
out., 'nmoughﬁxecmverseofttwaeadvmtagesanddisadvantagesaretm
for the seoond nothod, it has a primary advantage of cost. Henoe, for
sinplicity, and frcm an eccnam.c poi.nt of vied, the second orgmiaatiog i

134,

chosen in the current investigation.

6.1 ON-THE-FLY Techniques of Searching:

In 'On-The-Fly' methods of searching technique, the records
containing indices are passed over the top of a 'parallel search' unit.
At the end of each record a test is carried out to examine whether ar not
the record, just passed over the search unit satisfies the searching

criterion.

‘A simplified block diagram of the 'On~-The-Fly'searching system is given in
Fig.6.1 The user of the on-line retrieval system enters his profile through
the terminal, which is subsequently stored in the associative memory of the
parallel search unit. A character of information fram the search file
(Index File), as appearing at the read head of rotating disc, is passed
over the parallel search unit and is also stored in a temporary buffer.
when an 'end-of-recore' mark is detected, a ‘special routine examines whether
or not the current recard satisfies the user requirement. If the result
is successful, the contents of .the tamporary buffer are transferred to an
output file, otherwise, the temparary buffer is cleared. This process is
repeated until the 'end-of-file' mark is detected. Upon detection of an
end-of-file mark, further searching is stopped and the resulting statistics
ard outputs are produced.

The parallel search unit mentioned here uses an associative parallel processer.
As stated above, theuser'sprofile is stored in associative memory for

: c}cvx}tparism,.ajainSt data-base. These profiles consist of a set of Keywwds

or indices. It is iinplied that the associative memory should have ‘efficieﬂt

135.

Data Parallel search 7 query
base unit

DHF

™ Match hit counter

Temporary . Output
buff er

FIG. 6.1. ON-THE-FLY searching unit

1. (SOR) Document Identifier, KEY 1, KEY 2, KEY 3, KEY n, (EOR)

2. (SOR) Document Iderrtifier,A Document Name (EDR)

3. (SOR) KEY i, Document Identifier 1, ... Document Identifier N (EOR)
4. (SOR) Document Name (ECR)

Fig. 6.2 Data Fomats

capabilities of string manipulations, And the other requirenentssz of an
associative processer are that no restrictions on the length of Keys should
be imposed and it must incarporate a flexible serial search'of input
character string. This implies that a byte—orienfed variable-record
length APP is best suited far this application. In the following section

variations of search criteria are discussed.

6.2 Search Criterion:

The users of an on-line retrieval system are generally allowed to search on
"the data-base with a user defined profile. These profiles consist of a

set of Keywords or indices. A mumber of different search type582'152’157
are permitted in a profile: these could include equality, greater than,
less than, between limits, maximum, minimum and a number of others. 1In
this report a simple equality search is considered. The different varia-

tions of equality searches are described below:

6.2.1 Simple Equality Search:

In its simplest form, the profile contains only one Key. The records which
contain (or do not contain) this Key are retrieved. The profile can be
exterded to specify more than one Key; but the identification of a record .
{s made by a simple match hit criterion of presence (or absence) of either
all Keys or any of the Keys.

6.2.2. Canbination of Boolean Terms;

In this type of search a mumber of Keys are used., Each Key is o

136.

137,

a Boolean variable or terms. A search criterion can then be forimilated t.o'

specify any predefined Boolean expressiaon using these Keysl-ll,

6.2.3. Threshold Search:

In this case of search, all Keys in a profile are assigned to either equal
or different weights. The respective weights of Keys present in a record
are then summed up. The record is selected if the addition of weights
exceeds a certain threshold value. In its simplest form, the threshold
searchl_11 can be used for 'm' out of 'n' search criterion. The refinement

-can be made for a more camplicated Boolean search expression or to introduce

different emphasis among the Keys to reflect the user's view.

6.2.4. Interactive Search:

In this approach!™! a mumber of profiles starting framthe general to the more
specific are defined to describe a set of documents. Here the user expects

to limit the number of retrieved documents within a user defined value.
Initially the data-base is searched with the most generally defined profile,

If this search results in a large number of documents, the searching process
is then repeated with the next specific profile on the resultant data-base.
'I'hls process is continued until either the number of documents less than
the threshold value are retrieved,or all defined search profiles are
exhausted.

6.3 Data Format

It has been stated earlier that the efficiency of an ISeR system depends an

138.
35,36,152 |
the data-farmat -of the index file. There are four important
types of data fommat usually used in an IS&R. These are shown in Fig.6.2

and a brief description of this data fammat is given below.

i) The first format consists of a document identifier and a
number of Keywords. The basic retrieval operation is to perform
a Boolean search an a number of Keys, and to obtain those

document identifier numbers which satisfy the search request.

ii) This format may be used in conjunction with the one discussed
above., It consistsof a document identifier and the full
document name, which contains the infarmation required by the
user. Access is made by the identifier and the name is passed

to the user.

iii) This format represents an entry in an m:lex As shown, the index
is fully inverted. A Key is given together with a list of
documents identifier which are associated with that Key. Typical
identifiers would be disc addresses of records in format iv or a

mixture of this and other formats.

An alternative interpretation of this format is produced when the

document identifier list consists of a single item oar a nunber of

items less than the total of relevant documents. A maltilige}ds 35,36

system is then produced where the records in the docunent file are
chained together after the first entry point has been given in the
index. These files may also be sectioned to produce a cellular
11,3536 . this typeof index, the basic operation’is

to access on the key and then dbtain records pointed to fram disc

organisat

139,
which are then processed as for the other three formats.

iv) This fommat represents the absence of structuring within a
record. The data consists of a single character string. Search
will generally be based on a Boolean caunbination of substrings
of the characters.

It could be seen that the search operatians on records and indices are
bascially the same, both entailing Boolean operation between sequences of
character strings. The formativ. is chosen for index file of IS&R system of

152

the present work. This requires minimum data-structuring ™", and at the

same time the searching process is not restricted to only specified Keys.
On the other hand full documents could be stored as index (KWIC) 28-32 and

search criterion could be matched on entire contents of the-document,

6.3.1. Index File:

The format of records in the index file is shown in Fig. 6.3(a). Where
a recard is a simple character string, pre-and de-limited by two special

symbols.

The structure of the index file (search file) which is stored in a disc is
shown in Fig 6.3(b). The indexfile is a collection of records as shom
in the figure. Two special symbols areusedtodemtethestarta}ﬁend
of the file,

Before starting any acercise on the ISR system a realistic data-base
(index~-file) must be m:eated acoo:djng to the duosen fomnt. ‘It is also

SOR

——CHARACTER STRING

Start Of Record

EOR

End Of Record

FIG.6.3(a) Index record format

k-record-

SOF

Start Of Fil

SOR [EOR [

e

- - -

End Of File

FIG.6.3(b), Index file format

%o KEY 1% KEY 24 %KEY 3%

FIG.6.4. Profile format

EOF

140,

%KEY N#(EOQOF)

TTY

PDP1140

DR11-C

LINE PTR.

BO-VRL APP

Y

DISC

FIG. 6.5. Schematic diagram of the proposed
associative searching unit

'
'

stated earlier that the cost of the process of creating an index file,
is signigicant; hence considering the éxpense, it was decided that in
this experiment an index file according to the chosen format would ke
derived fram the data-base available fram Inspec tape sexv:i.ce.181 The
current ard back issues of inspec data-base are available in magnetic
tapes. The distribution format used for inspec tape services is based
on ISO-2709, the international standard format for bibliographic data
interchange.

The file and recard layout of inspec system can be found in Inspec tape
service manual. A brief description of the same is included in APPENDIX D.

A file is a collection of bibliographic records. Each record in a file is

141,

sub-divided in a number of fileds. These fields are numeric and are arranged,

within the directory, in ascending numeric sequence.
The general categaries of fields include

1) Control field

2) Subject delineation
3) Personal names

4) Identifying codes
5) Volume and issues
6 Location

7) Number of pages

8) Organisation

9) Dates

and 10) File descriptions

142,

Each of these fields is further divided into a number of sub~fields.
And any sub-field may contain more than one attribute,

An algarithm to convert information fram an Inspec data-base to a data-base
of simple structure on a magnetic disc unit is developed. The detail
descriptions of this algorithm looks for the presence of a number of
selected Key-fields on each record, Once the desired fields are located
the contents of those are extracted fram the tape and stored in a disc-
base file. Two special symbols are attached in the front and end of

these character strings to separate individual records.

6.3.2. Profile:

It has been stated earlier that an infarmation retrieval syébem requires

its users to make known their infarmation needs to it'™0, The query conveys
the si:atanent of required information to the retrieval system. It lhas also
been seen that the query should be expressed in a language similar to the
indexing language. Further various methods of changing the precision of the
retrieved documents are also dicusssed. Finally, once a user decides ﬁlat
his intention is to be, he can formulate a search equation by'selecting a’
nunber of Keywords which are connected by a set of logiéai operatars, On
the basis of this search equation a file called user's profile, can be
created, - To retrieve documents, this profile is matched against the -

reoords of the index file,

As an jllustrative example, a simple search equation, as-given below is: -
chosen. |

1<E¥1+m2+'.....+xéyN

143,

The contents of the profile for thig seard’x equation is shown in Fig,6.4
In figure 6.4 it is shoim that each Key of the profile is both pre-and
de- limited by two special symbols,and the delimiters of a negated Key
are preceded by a 'minus' sign. In this case, it could be cbserved that
one delimiting symbol would have been sufficient to delimit these Keys.
But in other cases (threshold search etc) the character following a Key-
delimiter may contain a control character (such as weights or Boolean
operatars) thus the end of a Key does not necessarily mean that the
character following this delimiter will be the beginning of a new Key.

Hence for generality, two special symbols, % and #££ are used to both pre-
and de- limit a Key. Finally, the entire string of these keys, that is,

" the profile is temminated by an end-of-file mark.
Same more examples of profiles could be fourd in sec 6.¢.

In the following section same underlying philosophy far the implementation

of an APP based on-line retrieval system is discussed.

6.4 Philosophy of Implementation of On-line IS & R system

There are two major alternatives to implement the proposed IS & R system.
In the first approach a special purpose hardware could be designed wit_:h
adequate software to achieve an efficient and dedicated IS & R system,

The advantage of this system would be its better perfarmance as an IS & R
system, because it was specifically intended to perform this special wark.
And the disadvantages of any special purpose systems aleo apply in this |
case, which are mainly concerned with the cost and time ofdeveloping-a
new system. Mareover, presently, sufficient infarmation about APP based

144,

IS & R systems is not available, Hence, a first-time attempt to

implement a special purpose handware may cantribute to many undesirable
effects. On the other hand a modest approach of simulating the proposed
system, utilizing existing facilities at Brunel University, seems more
practicable. It was initially intended to examlne the system requirements
and to evaluate the operation of APP in IS & R applications, Finally
with a well defined system specification, which is derived fram the above
experiment, a dedicated stand-alone on-line information storage and
retrieval system could be implemented. In the light of the above discussions,
a hybrid ccmpute.r simulation for the ixnplanentation of on-line retrieval
systems was chosen. This proposed simulation consists of associative
memary hardware with a specially developed software to accomplish other

functions.

The block diagram of Fig 6.5 shows same important camponents of the proposed
systemn. Here a tele-type writer and graphic terminal are used as interactive
terminals for on-line IS&R system. 'Ihe tele-type accepts both control and
user data (profile). The sét of disc units are used as a back up store for
both input index ard output files. The associative memory array.is used

as a parallel search unit. The line printer provides haxd-oopy printouts
for the output files. The PDP 11/40 processor177 and core memory are
utilised to simulate the control structure and input/output buffer of the
ISER system. The allocation of core memory of PDP 11/40 systemisshown in
Fig.6.5. The R‘I‘lll"30 system and Keyboard monitor are permanently kept in
the memary to respond to any general RT1l system control. The IS&R control
program co~crdinates the simulated system, Fram the dascripti.on of on-the-"
fly search technique it could be seen that a_di.rect link between the disc
and APP is required to maintain a steady f£low of data between them. But

145,

RT11 System software
and Keyboard monitor

Control program for
assoc iative searching

INXBUF1 INXBUF 2

TEMBUF
OUTBUF

FIG.6.6. Memory allocation

Retrieval system

control program

Control program

for AP sequence
and interpreter

.F1G.6.7. Hierarchy of control program

146,

presently at Brunel University hardware facilities to enable such
direct transfer of data between the disc and the APP do not exist.
On the other hand, all data transfer operations are carried out through
an intermediate buffer area, which is specially allocated in the core
memory. To reduce the waiting time in bebneeh the transfer of two blocks
of data fram the disc unit a double buffer scheme'®? is adopted. In this
arrangement while data fram one buffer area are being transferred to the
APP; the other buffer area is simultaneocusly loaded fram the disc unit,
using data-break techniques. The buffer areas INXBUF1 and INXBUF2
are allocated for this purpose. Similarly, other buffers are set aside

for storing profile,output file and associative memory maps (See section
5.5.2.). The sequence of associative memory maps are dumped in a separate
output file to provide debugging and feed-back information, to improve
perfarmance of the system. The function of 'TEMBUF' (temporary buffer) is
to provide an intemmediate storage between index and output file transfer.
The character strings which are passed on to the search unit are smmly
stored in a first-in-first-out type temporary buffer. Wwhen a record satisfies
the search-criterion the content of this temparary buffer is transferred to
the output file, otherwise it is cleared. '

6.5 Software and Control Structure:

it has been seen fram earlier descriptions that the Qperation of an on~line
retrieval system cdnprises of three major sequences.

During the initial sequence of operation the description of input’,:fiiles,
such as index and user profile, are specified.

147,

In the next sequence of operation, the sgarch operation is carried out on

the index file and the matching records are stored in an output file,

During the final sequence of the operation the output file is made
available to the user. The other output file containing the memory maps

could also be referred for debugging operation.

The input and output operations of the system inwvolve conventional file
storage and transfer function. Hence, a control program, which includes
conventional file transfer operations as well, satisfies the requirements

of the proposed system.

The searching and match resolving operations of the system are carried out
in the associative parallel processer. Thus algarithms to perform these
operations, along with the initial loading of the associative memory,
involve associative processng In the following paragraph, the underlying
philosophy for implementation of the algaritims, which uses assoclative

processing are discussed.

At Brunel University research is being currently carried out to develop a
suitable machine ariented to higher-level language, for the existing BO-VRL
APP system. Unfortunately any intermediated languages, excepting simple
API sets, are not yet available. Thus, at the time of writing this repart
the only choice open was to use simple Associative Processing Instructions,
as described in Appendix B. This simple instruction set does not include
any control structures, such as uncanditional and conditional transfers of
control. Hence, all these necessary control structures, to implement
algarithms containing API's, ~Would be embodied in a special ‘control

program. This control program would assist to maintain the sequential
flow of API. This stream of API's, as they occur, are individually
interpreted. The interpreter consists of a set of routines which are
used to execute an API by transferring proper sets of information across

the interface to enable the hardware to execute an API.

Fran the above discussions, it is realised that two sets of control
programs should be incorporated within the proposed simulation. The

hierarchy of these control programs are shown in Fig 6.7. These include:

1) System control:- This provides all input/output
and system control operations.

2) APP interpreter and API sequence control:-
The function of this control is to provide an
appropriate system control for the algorithm,
which uses API's and to interpret APIs so that they

could be executed by the APP simulator.

In section 6.6. algorithms for the proposed simulations are discussed.

6.6. Algorithms:

In the previaus section the data structures used in an on-line retrieval
system are discussed. In Chapter 5 a byte-oriented VRL-APP suitable for
the parallel search unit of a retrieval system is both specified and

described. In this section operational requirements of an on-line rgtrieval,

system together with their respective algorithms are discussed.

148

In an on-line retrieval system, three majar operations are involved;

these are:

1)

2)

1) input
2) output
ard 3) search

input operation:- During this operation a user specifies his profile
or he can enter his profile directly fram the console typewriter.
The user is also allowed to select a file fram the file-set of the

data base as an index file (Document file).

output operation:- At the campletion of a search operation, two
output files are produced; these are:
a) Output file

b) Associative memory maps

a) output file:- This file consists of all documents which have
been selected as an outcane of a successful search operation.

b) Associative memory maps:- Whenever an operation is carried out on
the associative memory, a memory map (see Sec. 5.5.2.) is
produwced. This file contains a sequenoe of such mamory maps.

The contents of tilis file, thus provides a very useful feed-
back infarmation to verify, debug and improve the search
algarithms,

During the output opegation the above mentioned files could be. .
transferred to any desired device. |

149,

150,

Fran the faregoing discussion it has been seen that theinput and output
are similar to conventional file-transfer operations., Hence no further
descriptions of these operations are given. In the following subsection

an algorithm for the search operation is described.

6.6.1. Algorithm for search operation:

The flow chart of Fig. 6.8 shows the basic sequence of operations during a

search mode of IS8R system. A brief description of these follows:-

6.6.1.1., Initialisation:

During this phase of the operation, the following initialisation steps

are carried out.

Step 1: - clear associative memory array and match hit counter
and other buffer areas.

Step 2: - open user profile far loading it in associative
mamary. |

.Step 3: - load user profile in associative memory

Step 4: - open index file for serial transfer to the parallel
search unit.

The transfer of a character string fram an index file to a paréllel search
unit is carried mtéerially: one character at a time. ‘When ﬂﬁ@_ transfer
operation proceeds, a hardware ar software trap locks far the occm:ence

- of four special symbols. These are; |

Start

Clear

\

Open profile

Loadprofile in

Openindex file

s Initialization

Wait for an interrupt

SOF

SOR

EOR

EOR

EOF

EOF

FIG.6.8. Algorithm for search phase

151,

152,
1) SOF (start-of=-file)
ii) SOR (start-of-recard)
iii) EOR (End-of~-recard)
iv) ECF (End-of-file)

As they appear on the transfer line, the current routine is interrupted
accarding to a predefined priarity. The control is then transferred to

the interrupting routine. After step 4 of the initialisation routine, the
program waits for the occurrence of a special symbol to transfer the control
to one of these four subroutines. Each of these sub-routines can operate
independently, and continues to do so until, either it campletes the job

assigned to it, or it is interrupted by other higher priority symbols.

The selection of a document in the proposed associative retrieval system
is carried out by a two part algorithm. During the first part of the
algorithm, the ‘campare' subroutine (See Section 6.6.1.3,) is used to
mark the occurrences of a Key in the currently scanned reoofd. The next
part of the algorithm, 'Document Hit' (see Section 6.6.1.4.) is called at
the end-of the scanning of a record, This verifies the validity of the
current record by evaluating the search criterion.

In the following sections the operational steps of the subroutines SCOF,
SOR, EOR and ECOF are described.

6.6.1.2, Start of File:

During this operation, the identification of the index file is transferred
to the output file, The flow~chart of the algarithm is shown in the Fig.
6.9 o

153,

SOF

Read the nextcharc

Transfer it to out buf.

>

no Completion>es @

FIG.6.9 Flowchart tor SOF algorithm

<

SOR

Initialize A M.

on EOR/EOF
Read the next interrupt
incoming character| -

¥
Transfer it to TEMBUR

]

Transfer the char.
to Parallel search U.

T

CALL
Compare algorithm

™ A

FIG.6.10. Flow chart for SOR algorithm

154,

6.6.1.3. Start of recard;

The flow-chart for this subroutine is shown in Fig.6.10. In this
subroutine the search operation on the incaming document is carried out
by a 'cawpare' routine. The function of the campare routine is to mark
the presence of any desired Keys in the current document. The marking
of the presence of a Key is done by writing CB4 = 1 in the corresponding
Key delimiter. This operation continues until an end-of-record or end-
of-file is detected, and the control is then transferred to appropriate

subroutine,

6.6.1.4. End-~of-record

This routine is entered on detection of an end-of-record mark to verify the
validity of the recard just campared. The flow-chart far this algorithm
is shown in Fig. 6.11. As described in section 6.6.1.3,, at the campletion
of the start of record subroutine, the presence of the Keys in a document
are marked. In the end-of-recard subroutine a special routine, called
'Document Hit', is entered. The function of the document Hit routine is
to verify whether or not the search criterion is satisfied by the current
document. If a document satisfies the search criterion, a 'Document Hit'

flag is set.

The other functions of the end-of-recard routine'on a successful ‘document
hit' operation, are to transfer the document to the output file arnd to
increment the match hit counter, l

155,

. (EOR)

Call
Document Hit routine

0
DHF
1

Inc.Match Hit counter

Transfer
(TEMBUF)= QUTBUF

9

Clear TEMBUF DHF
Initialize pointer

¢

FIG.6.11. Flow chart for EOR algorithm

156.

EOF

-
(Matchhit CTR)= QUTBUF.

Close I/0 tiles

Print message

(Return MC)

FIG.6.12.Flow chart for EOF algorithm

< CLEAR)

Search for all words

A

Write ‘0’

O

FIG.6.13 Clear routine

157,

6.6.1.5. End-of-file.

Detection of Erd-of-file mark ijndicates that the campare operation an index |
file has been canpleted. The End-of-file routine is called to terminate

the current search operation ard it also providés same important statistics
of the terminated search operation. Figure 612 represents the flow-chart

of the end-of-file routine,

6.6.2. Details of the Algorithm using Associative Processing Instructions

-In this section, the algorithms which include API are first described with
a flow-chart. Then the correspording API's are listed. The algorithms,
which use API's, are 'clear AM' 'Load AM', ‘campare’ character string and
'Document Hit'. These 'campare' character-string and 'Document-Hit'
algoritlms may vary with different search equations of the user profile.
Here, to illustrate these algaritlms, a simple example of Boolean 'OR'

operation of all Keys in the user profile is chosen.

6.6.2.1. Clear (Associative Memory)
The flow-chart of Fig 6.13' shows the clear operation.

Algorithm:~
-~ Step 1: Clear all memory word-
Step 2; Ret\mn :

The API used for perfaming this operation is given below:
oot
A

API CLi W €00000000 000D , XXX 0000 0 08O N

1580

6.6.2.2. Load: (Associative Mejory)

Fig. 6.14 shows the flow-chart for the Load associative memory operatio.
The loading is terminated either when the user profile is exhausted or

an overflow of associative memory has occurred. In the last case an over-
flow message is first printed and the present search request is aborted.
The Keys, which are specified for camplement operation (NOT KEY 1 = KEY 1;),
are represented as % KEY 1 -# in the user profile. And corresponding

Key delimiters are stored in the associative memory with their control

3
bit 3 (CB3) set.to 1, for example the AM map is: § KEY 1#
Algorithm:
Step 1: Isolate the first word row. (By writing CBl=1 on

the first word row).
Step 2: Read the first character fram the user profile.

Step 3: Load the first character and CB1 = 1 in first -

word Yow.

Step 4: Read the next character fram the user profile.
If erd of profile is encountered go to Step 12.

Step 5: Check for camplement sign, If camplement sign -
has occured go to Step 7,

Step 6: Get the last occupied word-row in AM.

© Clear all Bl (writer CB1=0). Write the
character and CBl=l cn the right neighbouring
word row. Go to Step 9.

Write CB1=1 in the first
word of AM.

!

Read the first character
of profile

A

Load CH+CB1inthe
first word of the AM.

Read thenext character

Return

Load theCH+CB1 in
the next location

Get the nex!{ character

r

Load the CH+CB1+CB3
in the nef§ location

X]

AM.
overflow

no

Print error Eness.
abort & retun

FIG.6.14.Load Profile routine

159,

160.

Step 7: Get the next character.

Step 8: Get the last occupied word-row in the AM.
Clear all CBl
Write the character, CBl=l and CB3=1 on the

right neighbouring word row.

Step 9: Check for associative memory over-flow.

If overflow is set; go to Step 11.
Step 10: Go to Step 4.

Step 11l: Print associative memory over flow message.

Abort the present search request.
Step 12: Return.

The API's used for operation of the steps 1,3,6,8 of the load algorithm

are listed below.

Step 1l:-
APILl:- W * 1XXX * XxxX 0000 O 0SO N

| iwrite CBl=1 to all word rows.

API L2:- W * OXXX * 1XxXX 0000 0 OOD N

;write CB1=0 to all but the first word-row

161,

Step 3:-
APT L3:- WQIXXXX * 1XXXX 1010 Q QSO N
;jwrite ch + CBl=1 in the first word row.

Step 6:-
APT I4:- Wch 1XXX * 1XXX 1010 0 Q0D N

iwrite ch + (Bl=1 in the right neighbouring word row
Step 8:-

APT IS:- W ch IXIX * 1XXXX 1010 O 00D N

; write ch + (Bl & (B3 in the right neighbouring word row.

6.6.2.3 Start-of-record:=-

The initialisation of the associative memory, prior to the compare
algorithm, is done by writing zero to the control bits CB1, 82 and
(B4 of all word rows. The API for this operation is given below.

APIS: W * 00XD * XXXX 0000 O 0SO N; write CB1,2,4 = 0 in all word rows.

6.6.2.4 Canpare Algorithm:-

The main function of the 'campare' algorithm is to find the presence.

of a Key within the record currently under examination. This is
performed by camparing the incoming character string with the Keys stored in
the associative memory. If a daauadmu fond in the current documen t. |
the presence ofﬁxi’sl(eyisnarkedbywﬂting@*l = 1 in the correapmdmg

162,

Key delimiter. This function of the cqrpane algorithm is carried

out in three different steps. During the first step, the first
character of all keys in the associative memory are enabled by writing
(81 = 1. Then all characters, which are marked by (Bl = 1 are campared
with incaming characters. At the end of this operation the informmation
on the control bit 1 of the matching characters is transferred to

the next character of the Keys. Otherwise the control bit 1's of the
character sequence are cleared. Proceeding in this manner, when the‘
control bit 1 hits a key delimiter symbol, it indicates the occurrence
of that Key in the current record. This information is stored by writing
(B4 = 1 in the matching Key delimiter. The flow-chart for the campare
algorithm is shown in Fig 6.15.

In this paragraph the campare algorithm is illustrated with an example. It is
assumed that a user wants to locate all documents containing either KEY 1 or
KEY 2. The contents of the associative memory correspanding to this user's
profile is shown in Fig 6.16. It is also assumed that a record containing
the character string of Fig 6.17 is under the read head of the disc unit.

It has been stated earlier that three instructions are required to process

a single character fram input index file (record). The oonterit.s of the
associative memory during each steps of the compare algorithme are shown in
Fig 6.18 and API's required for this algorithm are listed below.

Step (a) W * 1XXX % 00X 0000 O 00D N
;search for Key prelimiter (8); write (Bl = 1 in right neighbours
of the matching word, 'misenables beghmkxgofe@Keymrds
in the profile to be a candidate for taking part in the matching
operation with the incaming character. B

(COMPARE)

o

Write CB1 inthe tirst char.
of all keys

!

Compare incoming CH+ CB1
clearall CB1 - -
write CB1 in the right neighr

{ .
Mark keys (write CB4) ifCB1

hits the key-delimiters g
clear CB1

oy

FIG.6.15. Flow chart for Compare algorithm

164.

%KEY 1#%KEY 24

F1G.6.16 Contentsof A.M.

(SOR) -+ KEY1,KEYS, - (EOR)
FI1G.6.17. Character string under read head. |

YNKEY 1#%KEY 2#

Incoming

characters
a) 1 1

K {b) 1 1
- c) 1 1

E - - - - - -

| FIG.'-‘-e.xaCOntmtsgf AM. during Compare operation.

165,

1

(b) W * 1XXXch 1XXX1010 0 QDN
iSeafch the incaming ctlaracter'(;d_}) ard CB1=1; clear all CBl;
write CBl1=1 in the right neighbour of the matching word-rows.
This permits a Key (string of characters) to campared
sequentially. |

() W *O0xXXl # 1XXX 0000 0SO N
; search for a Key delimiter # with CBl=1, Write CB1=0, CB4 =l
Write CB1=0, CB4=1 in the matched word. This establishes the

preser;ce of a Keyword in the record.

At the end of the operation occurrence of 'KEY 1' in the current record

is marked by writing CB4=1 in the camplex symbol of the delimiter of KEY 1.
Similar operations can be parallelly carried out on all Keys of the profile,
At the end of a record, the occurrence of relevent Keys are marked by CB4,

and Document Hit sub-routine is called.

6.6.2.5 Document Hit Algorithm

The function of the Document Hit algoritlms are to varify the validity of
recard under consideration., When the recard satisfies the desired search
criterion the 'Document Hit' flag is set. There are various possible search
equatiéns; ‘and correspordingly many Document Hit algorithms. Same of these .

Document Hit algaritlms are described in this sub-section.

1. LOGICAL 'OR' Operation:=-

Let us consider a profile containing a.mmberofxeya, say Key 1,
Key 2, Key 3, Key 4. The state of the associative memary at the

166,

%KEY14%KEY 24 %KEY 3#%KEY 4#
4 | A

FIG. 6.19 Content of AM. at the beginning of
document hit algorithm.

(start)

R % xxxx!xxﬂ 0000 00SO N

FI1G.6.20 DOC. HIT Logical OR

(start)

¥
search for #+CB4=0

FIGs.21 Logical AND

(2)

i , | ' 167-

beginning of the Document Hit algoritlm is shown in Fig. 6.19
In this particular case the search equation is

DIF = KEY 1 + KEY 2 + KEY 3 + KEY 4.

Here the Document Hit algaritlm (Fig, 6.20) looks for any
occurrence of Key delimiter with CB4=1. This is done by
performing a dummy 'Read' instruction as shown below.

R * XXX #ZXxX1 0000 0 0SO N;
The execution of this instruction provides a match reply MR output,

indicating the presence of a Key in the document. As in this case,

MR = 1; the document hit flag is set.

Logical "AND' operation:-

Considering the previous example, the content of associative memory
is shown in Fig. 6.21 Here the search equation is

DHF = KEY 1. KEY 2. KEY 3. KEY 4,

The carresponding algoritim is given in Fig.6.21 Here the algorithm -
locks for absence of any of the Keys. The steps of the algoritlm are
explained below,

Step 1. Search with CB4 = 0; Read
Step 2. If match reply MR=0; set Document Hit flag
Step 3. Retummn.

% K 1#%K 2#
3 3
A

FIG. 6.22

(start >

\

search #+CB3+CB4

write (B1=1 & CB4=0

search ##,CB81=0 &4CB3=1
write CBé&=1

O

F1G.6.23 Complement negated keys

%K1 #£%K?2#
-3 3

Initial state L
1

step1. 3 3
step 2. 3

W

Flsts.é4fF

168.

(3)

' : : 169 "

Step 1. R * XXXX #XXX0 0000 0 0SO N;
To interrogate match reply.
Step 2. If MR = 0; set DHF

Step 3. Return

Logical 'NOT' Operation:

The Fiq6.22 shows the contents of the associative memory at the end
of compare operation. Here occurrences of the Keys Kl and K2 are to
be negated. The algorithm is shown in Fig 6.23and carresponding

steps are explained.

Step 1. Search for occurrence of Key delimiter with negation.

Write CB1 =1 and CB4 = 0, on the match word.

Step 2. Search for non-occurrence of negated Keys; mark them
by writing CB4 =1

The correspording API's are given below

APIl:~ W * 1XX0 # xx11 0000 O 0SO N
API2;: - W *xxx1 ¥ O0xX1Xx 0000 O 0S0O N

At the erd of this algorithm occurrence of all negated Keys are
carplemented, (Fig.6.24) These could be now treated as simple Bolean
variables for further logical 'OR' or .'AND' operations,

1790

(%K 1#4%K 2#4£) (% K 1 4£%K 2 #) (% K 3£%K 44)
3 3 ~ |

FIG.6.25 Contents of AM.

(%K1 #%K2#) (°/0K1#°/0K 2%) [%K 3#%K 4#)

Initiol£ 3 -3
state 4 IA L
3 3
API 1
R N
1
API 2 3 3
4 A 4
| 1
AWS{ 3 3 |
— L A o b
APL 4 MR = 1

FIG.6.26 .Contents of AM. during document hit (s-0-p)
algorithm,

in,

(4) Document Hit Algoritl'm. for generalised Boolean equations:

Two generalised Boolean equations of search Keys are considered here,

These are

a) Sum of product temms

b) Product of sum temms

In these Boolean equations restrictions on number of appearance of a Key

in either true of negated farms are not imposed.

a)

Sum of Product temrms:

A typical Document Hit equation for Keys is given below.
DHF = K1. K 2, + KI. K2. + K3 K4.

This search equation is stored in associative memory as shown in Fig
6.25 1In the Fig6.25 temms within the parentheses are product
terms and logical summation are to be carried ocut with the tems de-
limited by brackets. The Fig.6.26 - also shows the contents of the -
associative memory at different phases of Document Hit algoritim.

' The Document Hit algarithm for this logical equation is shown in the

flow-chart of Fig. 6.27 and the correspanding steps are explained

 below.

Algorithm: -

Step 1. Camplement the negated Keys

 Step 2, Marktheproducttemsmichamnotpresentinthe'repud.

172,

(start)

4

Complement the
negated keys

search for # 8CB4=0
write CB4on near ')’

search for ') &CB4=0

'F IG. 6.27Flow chart for sum of product terms

b)

Step 3.

Step 4.

Step 5.

!
{
i

Check for the presence of any product term,
If none present go to Step 5.

Success, set Document Hit flag.

Return.

The API's used for this algaritlm are given below.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

a) W * 1xX0 # XXI11 0000 0 0SO N

b) W * XxXX1 # O0X1X 0000 O 0SO N

W) XXXX # XXX0 0000 0 00D G

R * XXX) XXX0 0000 0 OSO N

If MR= 0, go to Step 5.

Set DHF = 1

Return

Product of sum;=-

A search equation involving product of sum tems is given below. |

»

DHF = (K1 + K2), (K1 +K2), (K3 -i-le)

The corresponding profile is given in Fig 6.28 here the temms Wluded
in brackets are sun tems, and the product of these sun temé are

173,

174,

1
t

(%K1 A#%K2) | °/oK.1ag£°/oK_2£é) (%K 3 Z%K b4 %)
L L Jz. A 4

FI1G.6.28

(start)

Complement the
negated keys

J—

search for # & CB4
write CB4 onnear ')

search for 'Y&CB&=0|

FIG. 6.29 Flow chart for product of sum terms

"‘. t . 1750

b

delimited by brackets.
The flow-chart of the algarithm is shown in Fig 6.29., The Fig, 6,30

shows the contents of the associative memory at different steps of the
algaritim, |

Step 1: Canplement the negated Keys
Step 2: Mark the presence of sum temms.

Step 3: Check for the presence of all sum tems.

If not, go to Step 5.
Step 4: Success, set Document Hit flag
Step 5: Return
The API's used for this algorithm are given below:

Step 1: a) W * 1XX0 #XX11 0000 0 0S0 N-
b) W * XXXI #0X1X 0000 0 OSO N

Step 2: W) XoX #XXx1 0000 0 00D G

Step 3: R * XXX) XXX0O 00000 0 0SO N
If MR =1 go to Step 5.

176,

(%K 1#%K2#) (% KIE%BK2#) (%K3 #° K4 #)

Initial 3 3 _
state A 4 b b

1 1
APL1 3 3
4 4 4
: 1 1
APIZ{ 3 3
L 4 4
1 1 |
APIB{ 3 3
Lbbb &b 4 4 Lt bh 4b

API4 MR

"
)

FIG 6.3 Contents of AM. during document hit

[product-of- sum terms)algorithm

i | : 177q
Step 4: Set DHF = 1

Step 5: Return

(5) Threshold Searches:-

A generalised profile for threshold search is shown in Fig. 6.31 where

Ki's are the Keys and Wi's are their respective weights.

In the threshold search a threshold value is initially stored in the
threshold register. And the weight Wi, corresponding to occurrence of

a Key Ki, is subtracted fram the contents of the threshold register when
thisprocess produces a zero or negative result in the threshold register, the

record is considered to be satisfied the search equation.

(a) M out of n:-

In this type of Document Hit algoritlm, equal weights are assigned to all

Key. It is generally normalised to 'One'; and hence Wi could be amitted

fram the profile. The threshold value, that is, 'm' is stared in the threshold
register. And 'One' is subtracted fram this register far occurrénce of each
Key. The algorithm for this Document Hit operation is shown in flow-chart
of Fig6.32 and explained below:

Step 1: Transfer threshold value to threshold register
Step 2: Camplement the negated Keys

Step 3: Resolve the left-most Key, If no match reply occurs
' gotoStep8, | |

178,

%K 1 W% K 24 Wy -+ - %K N #W),
FIG. 6.31

start

Trdnsfer threshold
value to threshold reg:

Complement the
- negated keys

Resolve leftmostmatched|
key; disable it.

Mg >0

1

it

Substract’1’ from thres.reg

no

{yes
1—DHF

FIG. 6.32 'm’ out of 'n' o

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

"‘. a -,
subtract '1' frqQu the Hyeshold register

Check if contents of threshold register is zero

ar negative. If true to to Step 7.
Repeat steps 3 to 5,

Set 'Document Hit' flag to 1

Retum

The API's used in this algorithm are given below:

Step 2:

Step 3:

Step 4:
Step 5:
Step 6:
Step 7:

Step 8:

a) W * 1XXO XXl 0000 0 050 N) ooterent the
)

b) W * XXX % O0XIX 0000 0 0so n) Nedated Keys,

W * XXX #X0X1 0010 0 00D T; resolve the left
most matched Keys.
If MR = 0; go to Step 8,

T=T-1

T 0 - if true, to to Step 7.
Go to Step 3, |

Set DHF= 1

Return

\! ‘ 180,

(b) Threshold Function (variation of emphagis on Keys ar Boolean function)

The algorithm for this Document Hit operation is similar to previous
algorithm. However, in this case same additional steps are to be included
to read the weight of a Key fram the associative memory. Here, it is
assumed that the weights of a Key are storaiin one word-row. The algoritim

for this Document Hit operation is shown in Fig.6.33 and explained below:-

Steps of algoritlm:-

Step 1: Transfer the threshold value to the threshold register.

Step 2: Canplement the negated Keys

Step 3: Shift the validity bit (CB4) of the Keys to the right
neighbaur,

Step 4: Resolve the left most Wi. If no match reply; to to Step 10

Step 5: Read the resolved ward; and clear its validity bit (CB4)
Step 6: Substract Wi fram T
Step 7: If T is zero or negative go to Step 9.

Step 8: Repeat steps 4 to 7
Step 9: Set Document Hit flag to 1

Step 10: Return.
The API's used for this algoritlm are giyen below:-

Step 2 a) W * 1XX0 # XX11 0000 0 0SO N ; Camplement negated

b) W * X0 #OXIX 0000 0 0sON) Fe¥®

Step 3: W XK #xxxl | 1010 0 000 N; shift validity bit
on to the ward containing the weights. |

' }"(start .)

X

Transfer thresheld val.to T-teg

¥

Complement the negated

keys

bours

Shift CB4 torightnegh-

Resolve left most matched
" wi

'FIG. 6.33 Threshold search.

181,

‘. -\ . : R L

\

Step4: W ¥ XIXX % ¥9%¥} 0000 0 00D T; resolve
the left most weights.
If MR = 0; go to Step 10,

Step 5: R * XXX0 * X1X1 0000 O 0SO N; Read the resolved

weight.,
Step 6: T = T-(DOR);. (DOR) = Wi
Step 7: Test T 0 ; if true go to Step 9
Step 8: Go to Step 4.
Step 9: Set DHF =1
Step 10; Return

(6) Interactive Approach:=-

In an interactive approach the user wants to limit the number of retrieved
documents to a threshold value. When total number of documents retrieved

exceed this threshold value, he can specify a new set of irdex and profile

to initiate a new search operation, This can be done by either mamual .
interruption or autamatic transfer of control. In the latter case, at the
detection of 'end-of-file' symbol match hit counter is compared with the
threshold value. When it is greater thap the thyeshold valta.r’the output, £ile.
is assumed to be the new index filg and the next more precisely defined profile is
loaded in the assoriative memery. This process is repeated mm‘.;mm e
than the desired nusber of documents Are. Fefrieved ox all. user profiles. have bean
processed. - | o L

| o | 153

6.7. Implementation: -

The on-line retrieval system was implemented by using the APP emulation

as described in Chapter 5. The prograyming of this emulation was carried
out using the assembler cade of the PDP/1Y40. The cantrol programs for the
on-line retrieval simulation were also developed using this assembler

language.

A top-down approach was adopted to develop the software for the system, In
this approach each part of the program is portioned into a number of
hierarchical levels. The first level of control programs are general.

And these controls only establish the flow of control. In the subsequent
levels, functions of various routines are carried out. Hence, the

canplexity of programs increases at each level,

The flow of controls, within an algaritlm using API, are carried out 'by

a second level of cantrol. This interpreter acéepts an API, as pointeél by
an APT pointer, and executes this API, At the cawpletion of an API, the
interpreter monitors the feed-back signal fram the hardware to enable

further sequencing of APIs. In addition, the interpreter was used to‘ read
the content of the associative memory to produce a memory map. This fability
is initially incarporated to varify the validity of algorithms, and could

be easily removed if desired. The detail operation of the control wnit
similator for the APP is given in Chapter 5,

In the following discussion simple cperational steps far the on-lina retrieval
system is described. As stated earlier, the an-line retrieval systau |
perfarms &n:ee basic operations: Input, output and search. 'l‘ramfe.r of
control to a particular mode of qperatj.mg is done by the mode control

184,

camand as shown in Fig 6,34, Initmlly the system waits for g mode
control cammand fram the cansole teletypewriter. When a control cammand
is entered at the console terminal, the control program is switched to the
corresponding routines. At the campletion of a mode of operation the
control is transferred back to the initial waiting state. A brief des-

cription of each mode of operation is given below.

1. Input(I):- when the input mode (I) is entered the control is transferred
to the input specification program. In this mode of operation the user
is requested to define his index and profile.

2. Output (0):- In this mode of operation the user can specify and

desired device, where the the output files are to be transferred.

3. Search (S):- During this mode of operation, On-the-Fly search of the
index file, against the user profile is carried out accordmg to the
algarithm described in the section. This also provides a mxrber of
different options, where the user can select a particular searching criterion,
On successful operation, the program terminates by showing the total number
of retrieved recards and also produces two output files. One of these

output file contains the bibliographic information of the matched documents.
And the other provides a continuous record of associative memory maps. These
ménory maps help to debug and improve algarithms used in the sgstan.

4. Exit (E):- This mode teminates current session of the on-line retrieval
system simulation program and the control is transferred to the Key board
minitor program of the RT 11 operating system.

MC

Wait for mode input

JRRE NG

SEARCH

CINPUT QUTPUT EXLT
Return
to RT11

FIG.6.34 Control program for the associative

retrieval system simulation.

183,

186,

6.8 Discussions;:~

The purpose of the present exercise‘wa‘_s to carry-out a feasibility study

of using an APF in an on-line retrieval application. The first phase of
this work was to develop an on-line retrieval system, based on structure
free data-base, utilising current resources available in 'APG' at Brunel
University. This inter-active system was then used as a vehicle to develop
and 'inprc‘rve algorithms for such a system, Finally it was assumed that
this application study would provide a basis for an evaluation of APP based

systems when campared to its canventional counter part.

In this chapter underlying design philosophy and implementation of such a
system are described. The simulation performs on-the-fly search of Keys,
present in an user profile, against a bibliographic data-base. The current
investigation was restricted to the search-part of the problem. The

problem associated with creation of a new data-base and consequent maint-
enance of the data-base were beyond the scope of this work. The implemented
system was initially constructed as a one user terminal. But it could be
easily extended to accept many user terminals, working on either time- ‘
sharing or batch processing mode, The batch processing mode would be
particularly useful to provide SDI and current-awareness services. In this
simulation study a simple search equation (logical simmulation of Keys) as
described in the seCtion6.6 is implemented, The algorithms for other proposed
search criteria are also included. In the light of present

experience, it has been seen that APP can provide a very flexible on-line
retrieval system. The only difficulty of using an APP system is the
unavailabilit} of hardware. However, a project for implementation of micro -

app'82 o a single chip has been currently undertaken by researchers at

i

.
i

Brunel University. When a low-cost }\@P gystem i5 readily availablg, it
can be used to replace a major portior‘l of the software of the current
simulation, On the other hand a campletely dedicated stand-alone, on=
line retrieval system, based on APP, can be devisea. In such a APP based
system, same inconsistencies in the user Keyword can be easily absarbed.
Further increase in the softness of the system can be achieved by allowing
for a set of fuzzy matching algarithms. Thus it is expected that an APP

based system may lead to a very efficient and flexible on-line retrieval

operation.

187,

CHAPTER 7,

OONCLUSICNS

In an attempt to propose a cost-effective searching mechanism suitable for

an on-line bibliographic retrieval system a survey of the conventicnal
searching tedhniques has been carried out. This survey shows that the
carplexities of intemal file - and data-structure are associated with

the improvement of the response time of the system. These complexities

lead to a degradation of the cost-effectiveness of the system. The usefulness
"of the two-lewvel hierarchy of data-base has been adbserved. It has been

shown that among all data-structures employed in an inverted file, the

performance of the cellular serial file-structure is optimal.

The various possible alternatives of assoclative retrieval systems are
studies. The 'ON-THE-FLY' searching techniques using a BO-VRL-APP
syétem has been selected as a cost-effective searching mechanism,

A survey of associative parallel processor has been dane. This includes
architecture, operations, hardware, software and applications of an APP
system, |

It has been stated earlier that a fommal specification for the BO-VRL~APP
system has to be derived before the implementation of an associative
retrieval system. A simulation of the BO—VRL-ADO systan hu been thveloped;
This consists of a canbination of hardware. associativa memxy array and

the sofuware of a gleral puxpme mlni-omp:ter.

189,

The hardware emulation of the gssacighiye Wit was implemented by 'Napd
Gates' and was available at Brunel University. This camprises

i) AMA (Associative Memory Array) "ii) BCL (Bit Control _Logic)
iii) WCL (Word Control Logic) iv) Data routing registers

A software system has been developed to simulate

i) Micro-order generation logic ii) Control Unit

iii) Program store iv) 1/0 facilities

of the BO-VRL-APP system,

A two-way commnication link for transferring data and control signals
between the Associative memory hardware and the POP 11 system has been
established.

A provision for bulk initialization, loading and reading of the associative
memory has been included.

To monitor the status of the associative memory hardware the niexfoxy map

has been designed. The contents of the entire associative memory array .
along with the data and control signals transferred to and fram the hardware
are displayed by the memory map.

The facilities for specifying and monitoring an Associative Processing
Instruction and a sequenca of Dynamic-Micyo-Orders have been incorporated.
The API's are autcmatically converted by a special software subroutinge to
provide a desired corbination of data and static-Micro-orders,

190,

Execution of an API has been facilitated by transferring the specified sMO's
and IMO's to the hardware. The verification of proper execution of the API
was done by camparing successive memary maps.

The above experimental steps have been repeated for the entire set of
proposed API's. Thus, this has not only tested the feasibility of the
proposed API set, but also proved the logical operation of the BO~VRL~

APP system. As the result of these experiments, a farmal set of precise and
unambigous API's has been specified.

The software facility has been extended to accept an API from the tele-type,

where upon the desired sequence of DMO's are generated and the instruction

is executed.

The software simulation has been further improved to accept a number of API's.
A buffer has been allocated to store up to sixteen API's which are then
executed sequentially. Two 'switch Register' options have been included;
these allow

1) _Aha.rdcopyofmamrymaptobeprintedoutatthé.
canpletion of each API,

2) Repeating the execution of the set of API's stored in the
instruction buffer,

A main achievement of this experiment was the establishment of a well defined
logical structure and unambiguous specification of API set for a BO~VRD-APP
system, On the basis of this reault a Micro-APP has been proposed, Cwxently. .

191,

an ATCP contract has been undertaken to implement the proposed Micra-APP,
This will be developed as a joint venture between Brunel University ard
Plessey and will employ Schottky I2L technique.

The 'ON-THE-FLY' searching technique utilizing a BO-VRL-APP as a 'parallel
search Unit' 1is chosen far the implementation of the proposed associative

retrieval system.

The simplicity of flexibility of the data-structure employed in the index and
profile have also been demonstrated. |

A program to aoquirethe desired fields fram the inspec magnetic tape service
has been developed. This enables the creation of a realistic data-base of

chosen farmat on a disc Unit.

The simulation of the associative retrieval system has been developed. This

has been done by adding two-control programs to the BO-VRL-APP simulation,

these are
1) System control
2) API sequences and interpreter

The system control co-ordinates the input/output and search operations of the
simulated retrieval system, The API's interpreter has been used to implement
associative algorithms,

A two-part algorithm has been developed for'the associative searching mechanism,
This allows the selection of the desired recards. The two-parts of the search
algoritim are .’ '

192,

1) Campare AlQorithm

2) Document Hit Algarithm

The campare algarithm has been developed to mark the presence or absence

of a Keyward in a record.

The document-hit algarithm has been developed to establish the validity of
a recard by evaluating the search - criterion. A nunber of various search

criterion has been cgnsidered; these include

1) logical 'AND', 'OR' and NOT operation
2) Sum-of -product and product-of-sum terms.
3) Threshold search including 'm' out of 'n' and variation

of emphasis of individual Keyword.
4) Interactive searching strategy to control the mode

and pi'ecision of retrieval operation. -

The facility to provide the statistics of the retrieval has also been
included. The output file containing the secuences of memory maps has been
made available to monitar the associative activities. This also provides

a facility to debug and improve the algarithms,

The algarithms for performing the proposed search-strategies have been
developed. Although the experimental varjfications to justify the claims
do not exist, the algaritims have been extensively checked and are expected

to work satisfactorily.

193, "

The instruction counts involved in the cqnpes

indicate that for an average record of fifty characters long, the time
required to perfarm document hit algorithm is insignificant campared to .
the canpare algarjtim, The campare algaritim showé that three instructions
for each character will be required to perform an exact match operatian,
These instructions include back-tracking, matching a selected substring and
marking the presence of a Keyword. Assuming an average API cycle time of
100ns, this indicates that a data-rate up to 3 M bytes/sec can be supparted
by the system.

The present investigation establishes the feasibility and provides a
provisional specification of an associative retrieval system. It has been
also seen that an efficient and flexible retrieval system can be supported \

by a simple and low-cost hardware. Thus it is envisaged that'using the
results of this investigation as a basis, a stand alone associative retrieval
system can be developed. Alternatively a card containing the basic 'Parallel
Search Unit' may be introduced between the main storage and a DMA channel.
Thiswould enable a sophisticated selection criterion to be evaluated for -
filtering out the desired recards. Similar system could find applicatiohs |
in Content - Mdressable-File—Storage (CAFS) systems which are now mamafacmred
by ICL. ‘I‘his could lead to more flexible and cheaper solution totheCAFS

systems.,

7.1 Criticigm of Work:

Athorough survey of most catmon.ly anployed conventional file-searching
technique ia done 'Ihis alao includes inve;cted files The 'rable 2 6)
campares the perfcmances of the various data-strwmres used in an 1nwttad
file. AltkmxghthecqnparismofthamfmnamesasahommﬂuGWk

194,

is not rigarous, it provides a qualititive basis far assessment of relative
merits of thefile-structures. Fig2.2 6 which summarizes the performances,

clearly shows that the cellular serial file is better.

In order to select a provisional specification for a cost-effective
associative searching mechanism a survey of associative parallel processing
systems is carried out. Lots of publications by many workers on APP
systems and its applications in IS&R system have been reported, 1In Chapter
Three it was not attempted to cover these fields thoroughly. Instead the
scope of the disc;ussions was purposefully limited only to point out the
pasic idea of associative processing. Although the discussion was not
rigdrous, it was sufficient enough to justify the choice of the proposed

associative searching mechanism,

Phase I:- This phase of work was essential to provide a basis for the
implementation of the proposed associative searching mechanism. The
experimental investigation was thoroughly carried out to derive a formal
specification of the BO-VRL-APP system. The experimental BO-VRL-APP system
was used by Reynolds and Ofulue far carrying two specific applic_ation

studies. Finally on basis of this result an ACTP contract has been undertaken
to implement a L.S.I. version of Micro-AFP.

Phase II:~ Unlike Phase I, the result of this phase of workwas not chtained,
The experiments of Phase II could not be perfonned because 'che sixmlation of
the BO~VRL-APP suitable for practical application was not ready. The authar
was also pressed for returning to India. |

However, fram the experience gained during the Phase I best effart has been
made to justify and predict the results of this phase of work. ‘Ihesemay o

justify the indication that the . RO~VRL-AFF can easily support an
'ON-THE-FLY' searching technique, which can be used as a cost-effective
associative searching mechanigm. |

7.2.

Future Wark:-

2)

Fraﬁ the present investigation, it has been realised that the capab~-
ilities of an associative retrieval system in temms of flexibility,
efficiency and speed cannot be fully appreciated unless a proto-type
system incorparating a hardware APP is developed. This would also
allow further improvement of an associative retrieval system. Hence

in the opinion of the author further research should be carried out

in order to achieve these goals.

The present investigation has been primarily carried out on the exact
matching of the Keywords, but it is understood that far increasing
flexibility, the problem of differences and inconsistencies in the
ocontext of the Keywords should be included. Hence it is suggested }‘
that further research should be carried ocut to incorporate. 'whole!,
'fragment', substring and universal character matching scheme within
the system, |

It is also envisaged that a set of fuzzy Keywords matching scheme, such’
ass: |

a) Transcription error

b) Transposition exrror

c) Omission error

d) Insertion error

3)

4)

196,

ard the canbinations of them cﬁﬂ Pﬁ easily supparted by an assoclative
retrieval system. Whereas ina conventional infarmation retrieval
system these are extremely difficult to achieve. Hence further

research should be carried out to in_corporate' these flexibilities,

The present investigation has been limited to a feasibility study of

an associative retrieval system where the data-base has been restricted
to reascnable size, However, as the size of the data-base grows, it
becames increasingly difficult to scan the entire data-base within an
acceptable .t:ime. In such cases, it is suggested that further resedrch
should be carried ocut to investigate a two-level hierarchy of
associative addressing. This concept of two-level hierarchy is similar
to a cellular serial inverted file-structure. Hence this would

include the advantage of a cellular serial file-structure. Moreover,
the scanning at.each level would be equally benefitted by the sim}‘)licity '
and flexibility of the 'ON-THE-FLY' searching technique.

It is considered that on-line facilities of dictionary consultation for
the profile farmulation would be useful. Finally it is suggested
that the research should be carried out for developing a multi-terminal
on-line associative retrie\rctl sfstan which would include all above
mentioned facilities, .

10,

11.

12.

13.

SHARP, J.R., "Same Fundamentals of Information Retrieval" Deutsch,

1975,

MEADOW, C.T., "The Analysis of Information Systems - A Programmer
Introduction to infarmation Retrieval” Wiley, 1967.

LANCASTER, F.W., "Information Retrieval Systems", Eiley 1968.

LYNCH, M.F., "Computer-based Informational Services in Science

ard “Technology; Principles ard Techniques". Peter Peregrinus,

1974.
VICKERY, B.C., "On Retrieval system Theory", Butterworths 1965.

MEETHAM, R., "Infomation Retrieval - the Essential lechnology"
Aldus 1969,

KENT, A., "Information Analysis and Retrieval". Wiley, 1971.

BECKER, L., and HAYES, R.M., "Infomatim Storage ard Retrieval:
Tools, Elament, Theories.

SALTON, G., - "The SMART Retrieval System - Experiment in
Autamatic Document processing". Prentice-Hall 1971.

HENLEY, J.P., “"Camputer-Based Library and Infarmation Systems",
Macdonald, 1972.

LEFKOVITZ, D., "File structures for on-line systems", Spartan
Book, 1969.

KNUTH, D.E., “ﬁhe Art of Canputer Prograwning”. Vol. 3., Wesley
1973.

tm.IERMAN, H., "Digital Camputexr System Prmciplea“ McGtaw-HLll
1967, mo 114"1590

197,

14,

15,

16,

17,

18,

19.

20,

21,

22.

23.

24,

25

26.

198,

GEAR, C.W.., "Camputer Qrg anization ax;d Programming"
McGraw-Hill, 1976, pp 376-409

DIJKSTRA, E.W., "A discipline of Programming” Prentic-Hall
1976.

NEWELL, A., et Al, :- A camand structure for camplex
infomation processing, AFIPS, Vo. 13, p.119, 1958,

NEWELL, A. TONGE, F.M., :- An Introduction to information
processing language V, CAQM, Vol.3 p 205, 1960.

DEWEY, MELVIL, "Deway Decimal Classification and Relative
Index", Forest Press, N.Y. 1959.

MILLS, J., "Guide to the use of the VDC"., British standard
institution, 1963.

VICKER, B.C., "Faceted Classification: a Guide to construction
and use of special schemesj] ASLIB, 1960

RANGANATHAN, S.R., "Colon Classification", Rutgers, New
Brunswick, N.J. 1964,

RANGANATHAN, S.R., "Classified Catalogue Code with Additional
Rules for a Dictionary Catalogue Code" Asia Publishing
ste' 1964.) {

JASTER, J.J., MURRAY, B.R., TAUBE, M., "The state of the Art of
Co~ardinate indexing". Documentation Inc. Feb 1962,

WADINGION, J.P., "Unit concept co—ordinate Indexing", American
Documentation, 9, No.2, pp 107-113.

FARRARDANE, J,, DATTA, MRS, S., POULTON, R.K. "Repart

on Research on Infarmation Retrieval by Relational
Indexing" The City Univexaity, 1966, .

IANCASTER, F.W., "On the Need for Role Indicators in Post-
colordinated systems", Amerj.can Doa.mentation, ;9, No.l i
pp 42-46, 1968.

27.

28.

29,

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

, "Thesaurus Of ASTIA Descriptions”. Dec. 1962,

PAPTER, L., "Reliability of Scientist in supplying titles:
Implications for Permutation Indexing", ASLIB proc.15.
No.11l, pp. 333-337 Now. 1963.

RESNICK, A., "Relative effectiveness of Document Titles and
Abstracts for Determining Relevance of Documents",
Science, 134, No 3484, pp 1004-1005, OCT 1961.

I.B.M. - "General Infarmation Manual, Keyword-in-context
Indexing", 1962.

LUHN, H.P., "Potentialities of Auto~Encoding of Scientific
Literature", Research Report RC-101, IBM, May 1959.

MARON, M.E., "Autamatic Indexing: an Experimental Inquiry", Journal
of ACM, 8, No. 3. pp 404-417, Jul. 1961.

BAXENDALE, P.B., "Machine-made Index far Technical Literature -
an Experiment", I.B.M. Journal of Res. and Dev. 2, No.4,
pp 354-361' mt., 19580

STONE, H.S., "Introduction to camputer Organization and Data
structures" pp. 263-292, McGraw-Hill 1972.

CLIMENSON, W.D., "File arganization and search techniques."
Annual Review of Info. sc. amd tech. Vol 1, pp 107-135
 Wiley, 1966.

DODD, G.G., "Elements of Data Management systems", Camputer Suxvey,
Vol. 1, No.2, pp. 117-133, Jun 1969,

7/

PATTERSON, G.W., "Theary and techniques far the design of
: electronic digit_al cauputers". 1946.

IANDAUER, W.I., "Balanced tree and its utilization in infomation
retrieval" IEEE 'Irans nclz, PR 863-871, 1963,

. "Intraduction to IB4/360 direct access storage devices
- and arganisation methods®, 20-1649 TEM Camp.- 1966

199,

40,

41.

42,

43,

44,

45,

46,

47.

48,

49.

50.

51.

52.

ey

MAURER, W.D., LEWIS, T.G., "HASH Table methods", Cqmputing
Surveys Vol, 7, No.1., pg§-19 Mar, 1?75.

BOWDEN, K.F., JONES, D.M., STANDEVEN, J., FORTH, L., SLOMAN, M.
"A low-cost content Addressable Memory using conventional
Memory Elements", IEE Conf. on Camputer Systems and Tech,
(IEE Pub. No. 121), pp 195-200, 1974.

CAGAN, C., "Data Management Systems", Melville 1973,

BEZTISS, A.T., :- Data Structives, Theory and practice, Academic
press, Lordon 1971,

WILKES, M.V., :~ Lists and why they are useful, Camputer
Jourmal 7, p 231, 1964

JOHNSON, L.R., "An Indirect chaining Method for Addressing
Secardary Keys", Camm. ACM, pp 218-222, May 1961,

BURKS, A.W., GOLDSTINE, H.H., VON NEWMAN, J., :- Preliminary
Discussion of the Logical Design of an Electronic
Canputing instrument, Collected works, Vol. 5., p 34.
Pergamon, 1961. ‘

PARHAMI, B., - Associative 'Menories and 'processor: An Overview
and selected Bibliography, Proc, IEEE, Vol.6l p 722,
June 1973,

HENLAN, A.G., - Content Addressable and Associative Memory
- Systems - A Survey. IEEE Trans., Vol. EC - 15, p.505 1966.

THURBER, K.J. AND WALD, L.D., "Associative and Parallel processors"
Canputing survey, Vol. 7 No.4, pp 214 - 255,, Dec 1975,

 FENG, T., - An overview of parallel processing systems, Wescan

Technical Paper,, Vol. 16, Session 1., 1972,

LEA, R.M., ;= Infamation processing with an associative parallel
~ Processor, IEEE Computer Vol. 8, No.1l, p 25, Nov 1975, ¢

LEA, R.M., - An associative parallei processing system for the
- memory structure of a symbol processing machine, Brunel

209,

53.

54,

55.

56.

57.

58,

59.

60.

6l.

62.

63.

64.

65.

66.

' ‘-. ‘ ' Q@ ,
LEA, R.M., Infamation Processing with an Associative Parallel ’
Processor, Brupel Univera;tx 'pach Memo No. C/SR/021, Fep *975. '

LEA, R.M., WRIGHT, S.S., ~ A novel memory concept for infarmation
processing, Datafair Research Papers, Vol. II, p.413, 1973

LEWIN, D.W. :- Highly parallel processing sfystens, theory
and design of digital systems, p.306-334 Nelson & Sons
Ltd., London 1972,

HOBBS, L.C., et. al :~ Parallel processing Systems technologies
ard applications, Spartan Books, N.¥Y. 1970.

WRIGHT, J.S., - Design philosophy for a sympbol processing:Machine,
PhD. Thesis, University of Southampton 1972.

WRIGHT, J.S., :- System design of a Symbol Processing Machine,
Internal circulation, Brunel University, Dept of Elect.
Engg., Uxbridge, Oct 1969.

EWING, R.G., DAVIES, P.M., - An associative Processar, Proc.

DAVIES, P.M., :- Design for an Associative Computer, Proc, IEEE
Pacific Camputer Conf. 1963,

LEWIN, D.W. - Whither Data-processing, The Radio and Electronic
Engineer, Vol. 45, No. 10, P 627, Oct 1975, '

R[DOLPH, J.Ao, FUIMER, LoCo' MEIIANDER, W.C., - 'Ihe Oalling Of
. Age of the associative provess, Electronics P 91. 15 Feb 1971,

DUGAN, J.A., GREEN, R.S., MINKER, J., SHINDLE, W.E., - A study
of the utility of associative memory processors, Proc.
ACM National Meeting, P 347, 1966.

FULLER, R.H., Associative parallel processing, Proc. AFIPS (SJCC)

vol. 30, p 471, 1967,

MULLERY, A.P., et Al,;- ADAM -A problem-criented symbol Processar,
AFIPS, Vol. 23, p 367, 19.63.

McKEEVER, B. '1‘.,:- The associative xrmcry structure, Proc. F J C.C.
Vvol. 27, p 371, 1965,

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

17.

78.

ROGERS, T.W. - Data Bases; . impact on Canputer Hardware,

IEE Conf. Computer sys tqng technology (IEE publicatian
No 121), p 150, 1974 -

RUDOLF, J.A., "A praduction inplementation of an associative

array processor — STARAN", AFIPS Conf Proc. Vol. 41

BATCHER, K.E., "“STARAN/RADCAP hardware architecture" Proc.
Sagamore Camput. Conf. on Parallel Processing pp 147-152,
1973,

BATCHER, K.E., "STARAN Parallel Processor System Hardware",

WEINBERGER, A., "The hybrid associative memory concept",
Canputer Design, pp 77-85, Jan 1971.

LEE, C.Y.:- Inter-camunicating cells, basis for a distributed
Logic Camputer, Proc. Fall Joint Camputer Conf. AFIPS,
vol. 22, p.130, 1962. .

GAINES, R.S., LEE, C.Y.:- An inproved cell memory, IEEE
tra.ns.,VOl. m-14' p 72’ 19650

LEE, C.Y., PAUL, M.C., ;- A content-addressable distributed
Logic memory with Applications to infommation retrieval,
PrOC. IEEE VOl. 51(P 924(1963.

STURMAN, J.N., :- A Iteratively structured Digital camputer,
PhD Thesis, Carnell University, 1966

STURMAN, J.N.:~- An Iteratively structured General Purpose

Digitalganp.\tqr, IEEE trans on Camputers, Vol. C 17
p 2., 196

STURMAN, J.N., i~ A symhtow.ls operation of an Iteratively
s{:mcun':ed G.P, D.C,, IEEE trans. on camputer, Vol, C 17
p 10' 1968.

LIPOVSKI, G.J.,:~- The architecture of a large distributed lcxg:l.c
associat;.ve processcr, Co-ardinated Science Lab, R-24
July 196

79.

80.

81'

82,

83.

84.

85

86.

87.

88.

89.

90.

LIPOVSKI, G.J., := An architecmre of a large associative
processar, AFIPS Proc. SJCI'.‘, p 385, 1970,

CRANE, B.A., GITHENS, J.S., := Bulk Processing in distributed
logic memory, IEEE trans, Vol, EC-14, p 186, 1965.

KISYLIA, A.P., :- An associative processor for information
retrieval, Co-ordinated science Lab (Illinois University)
Repart R-390 (AD 675310), Aug. 1968.

AGRAWAL, D.P., ;- Simultaneous camplex search in associative
memories, Proc. Canputer System & Technology Conf. No,121
180 - 181, Lordon, 1974.

BEAVAN, P.A., LEWIN, D.W., - An associative parallel processing
system for non-numerical camputation, The Camputer Journal
Vol. 15., p343, No.4 1973.

WRIGHT, J.S., LEWIN, D.W.:- A draft specification for a symbol
processor, IEE Conf. Camputer Science & Technology (IEE
Publication No 55) p 282, 1969.

SEEBER, R.R., LINDQUIST, A.B.:- Associative memory with ordered
retrieval, I.B.M, Jarunal of R & D, Vol. 6, p 126
1962. . .

KAPIAN, A., "A search memory subsystem for a general
canputer"”, FJCC, AFIPS Conf Proc. pp. 193-200, 1963.

FOSTER, C.C., STOCKTON, "Counting Responders in an associative
memory”, IEE Trans on Camputer, Vol., C-20, pp 1580~
1583, Dec 1971,

.

LEWIN, M.H., - Retrieval of ordered lists fram a content addressed

menory, RCA Review, vol, 23 p 215,~_1962.

SILADE, A.E,, M'IAH(N, H.0., := A cryaton Catalog memory system,
Proc. E,J.C 10 p 115, 1956,

CROWE, J.W., "Trapped-flux super conductive memory", T. B.M. Rea.

ard Dev. Vol. 1 pp 294-303, Oct., 1957.

23,

91.
92.
93.
94,
95.

96.

97.

98.

99.

100.

101, -

102,

103.

SIADE, A.E., "A m:yotronxtﬁtmy 1.1." Proc, IRE, Yol 50
"bp 81-82, Jan 1962. i T '

SIADE, A.E., SMALIMAN, G.B., "Thin-film cryotron catalog
memary system", Proc. EJCC, Vol. 10, pp 81-82 Jan 1962.

DAVIES, P.M., "A super-conductive associative memory", Proc
S]CC (AFIPS)' VOlc 21' wo 79'88, my 1962.

ROSIN, R.F., An organisation of an associative cryogenic
camputer, Proc SJCC, Vol, 21, P 203 1962.

NEWHOUSE, V.L., FRUIN, R.E., :- A cryogenic data addressed memory,
Proc. S.J.C.C., Vol. 21, p 89 1962

KISEDA, J.R., PETERSEN, H.E., SEEIBACK, W.C., TEIG, M. :-

A magnetic associative memory, I.B.M. Journal of R & D,
Vol. 5., p 106 1961

SHEAD, C.J. - The associative memory - A versatile circuit element
G.E.C. Jorunal of Science and Technology, Vol. 40 p 119
No. 3. 1973,

APICELIA, A., FRANKS, J., "BIIOC _ A high-speed NDRO One Core-per-
bit Associative element". Int., Conf. on Magnetics. April
1965,

CHOW, W.F.:- Plated wire conten-addressable memories with bit-
steering technique, IEEE Trans, EC - 101, 16, p 642, 1967

EWING, R.C., DAVIES, P.M., "An associative processor", Proc,

FULLER, R.H., "Content-addfessable memory sys " Disser.

Absts, Vol. 24, p 1960,611 pp. Nov 1963.

TUTTLE, G.T., "How to quiz a whole memcry at once® Electronics,
Vol 36. pp 43 - 45, I‘bVo 1963.

LFA, R.M. - Low-cost high-speed associative menory, Brunel University
Tech. Memo. No CE/R/023 1975 - IEEEE - TSSC, Vol SC-10 .
No. 3, p 179, June 1975. :

104,

105,

106.

107

108.

109.

110,

111.

112,

113.

114,

115,

LFA, R.M., - A Design far g low-cost High gpeed MOS Associative
memary, Brunel University Tech. Memo No. CE/R/022, 1975,
- Radio and Electxanic Engineer, Vol, 45, No.4, p 177
April 1975,

LEA. R.M., Towards a Low-cost cell design for High-speed
MOS Associative Memories, Datafair Research Papers, Vyol., 11,
p 418, 1973,

LEA, R.M. - A Design far a High Speed MOS Associative Memory
Electronics letters, vol, 8' P 391, 27th Ju1y 1972,

IGRARASHI, R., YAITA, T., :- An integrated MOS Transistor
Associative Memory with 100 nsec cycle time, Proc S,J,C, C
Vol. 30, p 499, 1967.

HERLEIN, R.F., THOMPSON, A.V., :- An integrated associative

memory element, I.S.S.C.C., Digest of Tech papers, p 42
Feb 1969,

BIDWEL, A.W., PRICER, W.D. :- A high speed associative.memory,
I.S.C.C. Digest of Tech, Papers p 78, Feb 1967.

HOFF, M.E., :- Designing a L.S.I. memory system that out-performs
coves—-econanically. Design Electronics, p 33, AprilMay 1971,

FREDKIN, E., :- Tric Memory, Vam AQM, Vol. 3, p 490, 1960

BARTLETT, J., MUDGE, J., SPRINGER, J.,:- Associative memory chips:
fast voratile ard here, Electronics, p 96, Aug 17, 1970,

ASPINALL, D., KINNEMENT, D.J., EDWARDS, D.B.G.:- An integrated
associative memory matrix I.F.I.P. Congress (Edinburgh)
p D 86, Aug 1968,

FELDMAN, J.D,, FULMER, L.C, - RADCAP - An operational parallel
processing facility. Proc. AFIPS (NOC), Vol 43, p 7, 1974,

De FIORE, C.R., VITO, A.A., BAUER, L., - Toward the develogment of
a higher arder language for RADCAP, Proc of the 1972 Sagamore
meter Conf. p 99 1972,

205,

116,

117.

118.

119'

120,
121.

122,

123.

206,

DaviS, E.W. - STARAN Parallel processor sygtem software, Prcx:
AFIPS (NCC), Vol. 43, P 17 1974. !

LINDE, R.R., GATE, R., PENG, T., - Associative processar application
to real-time data management Proc. A.F.I.P.S, (NCC) Vol. 42,
p. 187, 1973, . ‘

PATTERSON, W.W., - Sane thoughts on associative processing languages
AFIPS Vol. 43, p. 23 1974,

FINDLER, N.V., "On a camputer language which simulates Associative memory
and parallel processing", Cybernetica, vol. 10., No, 4
pp 229 - 254, 1967,

poDD, G.G., = APL - A Lanugage for associative data handling in
PL/1, Proc AFIPS (FJCC), Vol. 29, p 677, 1966.

THURBER, K.J., MYRNA, J.W.:— System Design of a cellular APL
camputer, IEEE trans, Camputers, Vol. C - 19, No.4, p 291, 1970,

SAVITT, D.A., LOVE, H.H., TROOP, R.E. - ASP - A new concept in language
ard machine organisatian, Proc, AFIPS (SJCC) Vol. 30, p 87
1967.

FELDMAN, J.A., ROVNER, P.D., - An Algol-based associative language
Cammn. A.C.M. Vol. 12, No,8 p 439 Aug. 1969.

FELDMAN, J.A. - Aspects of associative processing MIT Lincoln Labs.

125,

126.

127.

128,

Tech note 1965 - 13 1965,

ASH, W.L., SIBLEY, F.H. - TRAMP: A relational memory with an
associative base, AD 672206

'ABRAHAM, P.W., et al; The LISP2 Programming Lénguage and system

AFIPS, Vol. 29, p 661, 1966.

DOMNELLY, R.K. : = VAPP (Simulation of a virtual associative parallel
processor) WR/2/75, Internal circulation. Brunel University,

DONNELLY, R.K,, 3= IFPL An Inyemediate level field pu:ocessirq
Language for associative parallel processars, Brunel University
tech, memo No, C/R/028, July 1975.

\ | 207,

129. DONNELLY, R.K., :— SNAPP; A simulation of a variable record-length
parallel processor. Internal circulation, Brunel University
Elect. Engg. June 1975, _

130, FINDLER, N.V., - On a camputer language which simulates Associative
memary and parallel processing, cybernetica, Vol. X p 229 1967,

131, DONNELLY, R.K., := A survey of string processing techniques, Internal
circulation, Brunel University, Novewber 1972.

132, KODIN, Y.Y., :- Logical analysis of associative memory structures,
Cybernatics (U.S.A.), Vol. 6, No. 4, p 522, July/Aug 1970,

133. GREEN B.F., Canputer languages for symbol manipulation, IEEE trans,
Vol. EC 10, p 729 1961.

134. BOBROW, D.G. RAPHAEL, B., :—- A cauparison of List Processing
languages, Cammunication ACM, Vol. 7., p 231. 1964.

135. FARBER, D.J., et al., :- The SNOBEL 3 Programming Language, Bell
System, tech. Journal p 895, July/Aug 1966.

136. FARBER, D.J., FRISWOLD, R.E., POLONSKY, I.P., - SNOBOL, string
manipulation Lamigage, JACM Vol. 11 p 21, Feb 1964,

137. THURBER, K.J., BERG, R.O., - Applications, of Associative processors,
Camputer Design, p 103, Nov, 1971,

138. EILIS, A.B.E. - The Associative Memary and its applications,
Marconi Review, P 42, First Quarter 1972,

139 MOULDER, R., - An implementation of a data management system on qn'
associative processar, AFIPS Vol, 42, p 171. 1973

140. De FIORE, C.R., BERRA, P.B., :- A Quantitative analysis of the utilisation
of associative memories in Data Management, IEEE trans. on Ccmputer

141. De FIORE, C.R., BERRA, P.B.:~ A Data management system utilising
‘associative menarn Natioml oguputer Conf., p 187, 1973. .

142,

143.

144,

145,

146,

147.

148.

149,

150.

151.

152,

153.

208,

De FIORE, C. R., - An analysis af aasociative Procesaing methods
in data management AD 750 147

CRANE, B.A. - Path finding with associative memory, IEEE
Trans. Canp, Vol. C = 17 p 691 July 1968.

LIPOVSKI, G.J.:- On Data Structures in Associative memories,
SIGPLAN Notices, Vol. 6, No. 2, p 346, Feb 1971,

POPOVA, G.M., PRANGISHVILI:- Associative Parallel processor for
grouped processing of Data, Autgnation & Remote Control (U,S.A.)
vol, 33., No. 1., Part 2, p 152, Jan 1972,

"Pattern recognition by using an associative memory"
Electronic Camputer, Vol EC-15 pp 944-947, Dec 1966,

FINDLER, N.V., McKENZIE, W.R., - On a new tool in articicial
intelligence research, an associative memory parallel
processing language AMPPL - II, Proc. Int. Joint. Conf.
on Artificial Intelligence p 259, May 1969.

FULLER, R.H., BIRD, "An associative parallel processor for picture
processing”. Proc. FJOC, pp 105 - 116 1965.

DUFF, M.J.B., WATSON, D.M., FOUNTAIN, T.J. AND SHARE, G.K. -
A cellular logic array for image processing, Patter Recognition
5 p 229, 1973,

FULIER, R.H., BIRD, R.M.:- An associative parallel Processor with

application to picture processing. Proc. F.J.C.C, Vol. 27 p 105
1965,

LEA, R.M. "An associative parallel processar for efficient and flexible
file-searching", Proc IEEE Int, Symp.en tech. for SRI ‘

DONNELLY, R.K., "Samne thm;hts on us:l.ng an associative prccessor for
Infommation Retrieval" Tech, Memo C/R/042 Brunel University
August 1976, :. R e

STOINICK, D.L., "Logic per track Devices" Advances in Ccmp.atets
| Vol, 10, Academic Pmss ;p 291-196, 1970, :

209,

154, PARHAMI, BEHROOZ:~ A highly parallel canputing system for
information retrieval ~FPIP AE‘IPS Proc. FJCC, p 13, 1972,

155. COUIOURIS, G.F., EVANS, J.M., MITCHELL, R.W., "Towards
content- addressing in Data-Bases", Camputer Journal, 15
pp. 95 - 98 1973. t

156. NOE, J.D. NCE, "MIRF (multiple instantaneous response file)
"Electronics, Vol. 35 pp 31 - 36 May 1963.

157. FENG, T., - lLarge scale infarmation processing systems, U.S. Dept,
of camerce Repart (AD 708725), studies of associative
memory systems Vol, 5, May 1970.

158, GOLDBERG, J., AND M. W. GREEN, "Large files for information retrieval
based on simultaneous interrogation of all items", Large-
capacity memory technique for camputing systems, MacdMillan,
pp 63-67 1962.

159. PETERSON, H.E., Content addressing and information retrieval"
IFIPS, Aug 1962. .

160. MINNICK, R.C., Magnetic camparaters and code converters",

Proc. symp-application of sw1.tching theory in sgace technology
pe 193 - 204 Feb 1962,

161. BROWN, J.R. "A semi permanent associative memory and code converter.
Conf. on Non-linear Magnetics, Nov. 1961

162. [EDDEY, E.E., "The use of associative processors in radar tracking
and correlation", Nat. Aerospace Electronics Conf. Proc,
pp 39 - 42, 1970,

163. GITHENS, J.A. "An associative, highly parallel Camputer for radar
' data processing", Parallel processar systems, technologies and
. applications, Ed. Hobbs et all, Spartan, PP 71-86 1970

164, COSTANZO, A., W. J., "Application of an associative processar
to an interceptor radar system," Nat. Aerospace Electronics
Conf. Proc. pp 107-112 1969,

165. THURBER, K.J., "An associative processcr for air traffic control,

166.

167.

168.

169.

170.

171.

172.

173.

174..

175. :

176.

177.

210,

MORENCFF, E., et al. "4-Jay Parallel Processor Partition of an
Atmospheric Primitive Equation Predltion model"., Proc.
AFIPS SJCC pp 39-48 1971,

LINDXUIST, A. B., SEEBER, R.R., CCMEAN, L.W., :- A time sharing

system using an associative memory . Proc IEEE Vol. 54, p 1774,
1966.

WALD, L.D., ANDERSON, G.A., "Associative memory for multiple
processor control", Final Repart NAS 12 - 2087, Sept 1971,

BERG, R.O., JOHNSON, M.D., "An assoicative memory far Executive
Control Functions in an advanced Avionics camputer systam", Proc,
of IEEE int. camp, group Caonf. p 336 - 342, Jun 1970,

ERWIN, J.D., JENSEN, E.D., "Interrupt processing with queued
content addressable memories". Proc. AFIPS FJCC, pp 621~
627 1972,

L]

DYKE, J.G., LEA, R.M., - An associative parallel processor for cost-

effective local editing applications, Brunel University Tech Memo
No C/R/025 1975,

DONNELLY, R.K., LEA, R.M., - The application of an associative
' parallel processar to data-campression for conventional file
storage systems, Brunel University Tech Memo No C/N/025.
1975,

LEA, R.M., "Nand-gate Implementation for Associative memory", Digital
processes, 2, pp 83-88, 1976,

REYNOLDS, W.T., "Local text editing", Masters Thesis, Brunel University,
October 1976,

COFULUE, J.N.,"A survey of List and String Processing languages"
~ Brunel University Tech Mawo No C/SR/049, Jan 1976,

NICOLAOU, N.P., LEA, R.M., "Implementation of an experimental research
vehicle for FRL APP investigation", Brunel University, Tech.
Memo., No. C/R/027, June 1975, :

PDP - 11 Processar Handbook, Digital Equipment Corp, Massachusetts
1975,

178.

179 L]

180.

181.

182,

211,

VI - 11 Graphic Display]?:oce,aag;, R.E.C. 1974.

PDP - 11 Perigmeralsvﬁaxﬂbook., D.E.C, 1975,

RT - 11 F/B System Reference Manual, D.E_.C.} 1976.
INSPEC Tape Service Manual, Inst, of Elec. Engg. Lordon,

LEA, R.M. "Micro-APP: a building block for low-cost high-speed
associative parallel processing" The Radio and Electronic Engr.
Vol. 47. No. 3, pp 91-99 March 1977.

Appmbix 'A '

Description of infarmation transferred through interface,

The input data highway to the associative memory as described in Section
3.2. is redrawn.

15 9 8 7 6 5 4 3 2 1 0

unused Pv S
<— control data
signals

Input highway

The low-order eight bits (0-7) of DR11-C contain data informmation, and
two bits (8,9) carry control signals. The control signal 'S' resets the
interface logic and 'Pv' enables data to be Stored in either SMO or DMO

register.

The camplete loading of SMO register requires seven interface transfer
cycles. Two transfer cycles afe required to load DMO register at each
time slots. The contents of each transfer cycle along with the transfer
- sequence number is given below. The glossary of symbols describes |
individual signals,

A.l

Input Transfer,

A.l.1. STATIC MICRO-ORDER

Transfer
Sequence
Nunber

l'

Contents of DR 11-C

symbol bit 8

Symbol bit 7 DAW DBW DAS DBS
Symbol bit 5 symbol bit 6
Symbol bit 3 symbol bit 4
Symbol bit 1 Symbol bit 2
Control bit 2 Control bit 1
Control bit 4 Control bit 3

RU B A RN | ST| IN

A.l.2. Dynamic Micro-order

1. 1 o2R STb ¢xc ¢yc O2L STS ¢xs ¢ys
2. 1 ™ RW MW MM GR TG O2 Ol
A.2. Qut put transfer
1. ova ovB MR Symbol Symbol Symbol DOA DOB
bit 5 bit 6 bit 7
2. OVA OVB | MR Symbol Symbol Symbol Symbol
bit 1 bit 2 bit 3 bit 4
3. OVA OVB | MR Control Control Control Control
bit 4 bit 3 bit 2 bit 1
A.3. Glossary of symbols/notations
A.3.1. Signal name Function/Description

Control signals

]

Pv

1; reset interface
0; inactive

1; Enable DIMO register input to load
data from input highway.

0; Enable SMO register input to load
data fram input highway.

Ad.

A.3.2. Static Micro Qrder
A.3.2.1. Data Search and write

DAS' DBS Search Data

Dag | DPps
0 0 dor’t care
0 1 search zero
1 0 search aone
1 1 illegal
DAW' DBW write data
Paw| Paw
0 0 stand by
0 1 write one
1 0 write zero
1 1 :Lllggal
A.3.2.2. Direction Specification
IN 1; enable left neighbour

enable fight neighbour
ST 1; enable straight through

2

1

-e

AS.

A.3.2.3, Run specification
Type of Run Code R1 R2 A B RV
No run N 0 0 0 0 1
Top run T 0 1 1 0 1
Bottam run B 1 0 0 1 1
Group run G 1 1 X X 0
A.3.3. Dynamic micro-order signals
A.3.3.1. Bit selection logic
STe 1; Enable data Dy oonero] bit
STS 1; Enable data DB symbol bit
0] e 1; Enable time phase X control bit
Q’xs 1; Enable time phase X symbol bit
¢yc 1; Enable time phase Y control bit
)} s 1; Enable time phase Y symbol bit
A.3.3.2. Strcbe tag
TG 1; Strobe tag register 1

GR ' 1; Strobe tag register 2

A.3O 3.3.

Word logic signals

A.3. 4.

g g

o O

Output 'signals

P’ P
MR

OVA

OVB

1; Multiwrite

1; Campare mismatch

1; Strobe 1

1; Strobe 2
1; Enable Run (Right)
1; Enable Run (Left)
1; Enable top of memory
1; Strobe read register
data output
DOA DOB
0 0 multiple response
0 1 zero output
1 0 one output
1 1 no output
Match reply

Overflow at A

Overflow at B

AG.

APPENDIX B

- Specification for the Instruction Set

of the BO-VRL-APP

B.1.1. BO-VRL-APP Input

The only input to the BO-VRL~APP comprises a 59-bit Associative Processing

Instruction (API) which is defined below in BNF notation.

(APT) :: = (FNY CDRY <D

Function (FNYy :: =(OP codéxdata)=(RW (Ch.swec.2) (CB.spec.2?
Danain Addresses (DAY :: = (Ch.spec.l) (CB.spec.l?
Danain Modifier <DM> :: ={CO> <C» (PR {RNY

Clear Options <COY :: =¢(MAY <CC> (CBY <{MM»

Propagate tags {PRY :: =KUY (s {D)

Run tags (RN) :: =<¢RL {R2)
{Ch.spec.1/2) = (TYCTOCTHICTICTICTY KTH T
{CB.spec.1/2) = (TO(TY(TOLD

{TY :: = 0/1/X

Read/MWrite RWY 2= 0/1

Multi-Write <My = 0/1

Clear Character {Cccy = 01

Clear Control-Bits <CB) :: = 0/1

Match/Mismatch <MY :: = 0/1

Camplement tags € 11 =01

wy

s =01

Propagate Up

Straight-through (S> 1 = 0/1
Propagate Down (D> ;i =0/1
Run bit R1 (R1> 33 =0/1
Run bit R2 (R2> 13 =0/1

B.1.2., BO-VRL-APP Output

The only output fram the BO-VRL-APP camprises a 15-bit Output Word,

which is defined below in BNF notation.

{Output Word = {Ch.Field) (CB.Field) (STY
{Ch. Field 7 i3 = KBY (B2 (BY (BY (BY (BY (BY <B)
{Cb. Field > is= BY{BY (BY (B
(B> 3:=0/1
= (MR> COVA) (OVB)

status <ST? Y]

Match Reply {MRY :

L 1)
L]
o
~
-

overflow at A (OVA) :

0
R

o
o

overflow at B (OVBY?

£ 1]
]
(=)

D

B.2. API Execution

CAPI> :: = (FN) <DA) (DM)

B2|

B3.

The API is executed in an autamatic sequence of three beats.

SEARCH <{Ch.spec.l> <(CB.spec.l)

For all matching word-rows set tags in TRl and TR2

B.2.1, Beat 1. Domain Address
Reset TR1 and TR2
Set MR in the DOR

B.2.2. Beat 2. Damain Modification

If Group Run is specified
*Canplement TR1 tags
For all TRl tags propagate Up and/or Down
Start Group Runs from TRl tags
Reset TR2
SEARCH <{Ch.spec.2) (CB.Spec.2>
For all matching word-rows set tags in TR2
Stop Group Runs at TR2 tags
Activate selected word-row groups

If Group Run is not specified
WRITE O to perform the specified clear option
*Canplement TRl tags
*For all TRl tags propagate Up and/or Down
*Start Top ar Bottam Run
Activate selected word-row(s) or word-row group
Set OVA and OVB in the DOR

B4.

If WRITE is specified
Update all activated word-rows with ¢ Ch.spec.2)
(CB.spec.2) (O poRv—— 3y <oxld if Group
Run is specified.

If READ is specified
Update the activated ward-row(s) wit;h {30000
&{CB.spec.2) Transfer the contents of the activated
word row(s) to the DOR and then to the store/buffer

address specified by <(Ch.spec.2’

* These operations are performed only if they are specified by the
Damain Modifier.

B. 3. API Description

(API) 3= (FNY (DA (MY

The constituent parts of the API are described in detail in the
following sub-sections,

B.3.1. Function

Function (N> i1 = (RWY <Ch.spec.2) (CB.spec.2)
Read/Mrite (RAY 1= 0/}

BS.

B.3.1.1. TE RW = 0 causes all activated word-rows to be updated

by {Ch.spec.2) {(CB.spec.2)

NB. (1) where T = x the corresponding bit-
colunn is masked.
(2) if Group Run is specified all activated

word-rows are updated by { xooooxx) { XXX1)

B.3.1.2. READ: RW = 1 causes

(1) the <CB.Field) of the activated word-row(s)
to be updated by <({CB.spec.2)

NB. Where T = x the corresponding bit-column is

masked.

followed by

(2) the <(Ch.Field) and (CB.Field) of the
activated word-row(s) are transferred to the
DOR and then to the host store location specified
by the 16-bit {Ch.spec.2.)

NB. The READ function is not permitted when a Group

Run is specified.

B.3.2. Damain Address

Domain Address (DAY :: = {Ch.spec.l) £ CB.spec.1l)

B6.

During Beat 1 the AMA is searched for (Ch.spec.l?) (CB.spec.l)

and, for all matching word-rows, tags are set in TRl and TR2.

NB. (1) Where T = x the corresponding bit-columns are
Jasked.
(2) TRl and TR2 are reset before the search operation
is performed.
(3) MR is set if at least one tag is set in TRl after

the search operation.

B.3.3. Damain Modifier

Damain Modifier (DM) :: = (Q0) (C) {(PR) (RN)
The Damain Modifier provides programmer-control over the mapping
between the content of TRl and TR2 and the word-rows which are

activated for function execution.

Four modification options are provided:
(1) 4CO) Clear Options

(2) <C> Canplement tags

(3) <PR> Propagate tags

(4) <(RN) Run Tags

B.3.3.1. Clear Options

Clear Options {CO> (MW) (CC) (CBY <MD

0/1 Clear Control-Bits <{CB) :: = 0/1

Multi-write (MR =

Clear-character <CC)

0/1 Match/Mismatch <(MM):: = 0/1

B7.

The clear options operate during Beat 2 (unless a Group Run is specified)
to reset selected bits in (Ch.Field ? and (CB.Field) of activated

word-rows.
Bit-column selection: -
The bit-column selected for the clear operation are those specified

by T=1in <{Ch.spec.1> and/or <{CB.spec.1> as indicated in the

table below.

Fields enabled for the
clear operation

{cc> <cB> {Ch.Field) ¢CB.Field)
0 0 - -
0 1 - E
1 0 E -
1 1 B E

E = Enabled

ward-row activation:

The word-rows activated for the clear operation are those specified by the

logical content of TRl as indicated in the table below.

B.3.3.2.

B8,

f ‘Logical contenﬁ of TRl
causing ward-row activation
WY (M 0 1
Q 0 - a
0 1 a -
1 0 a a
1 1 a a

a = activation

Canplement tags

B.3.3.3.

Canplement tags (C> :: =0/1

{C) selects the true (C<0) or the camplement (C=1) outputs of TRl

Propagate tags

Propagate tags (PRY 33 = <(UD>(S>(D) »
(PR) allows a single tag (or its cawplement if C=1) in TR1 to\'
activate adjacent m-rm.

Propagate Up : Uy 3::=0/1

~ Propagate Straight-thxough (8> :: =0/1

Propagate Down <{P) ::=0/1

NB. All 8 propagate modes are allowable.

B9,

The following table indicates which word-rows will be activated
far each propagation mode when a tag is set (in TR1) in word-

rownad C = 0,

Propagation Mode Activated Word-row
(U) (S) (D> n~l n ntl

0 0 0 - - -

0 0 1 - - a

0 1 0 - a -

0 1 1 - a a

1 0 0 a - -

1 0 1 a - a

1 1 0 a a -

1 1 1 a a a

a = activation

N.B. (1) The selected propagation mode operates on all word-rows

in parallel and applies to true or camplemented tags
according to the value of (C>

(2) The overflow bits (OVA> and <(OVB) are set in
the DOR if the selected propagation mode causes propagation
out of the A and B ends of the WCL unit.

B.3.3.4.‘

Run ‘Tags

Run Tags
Run bit Rl

Run bit R2

(RND 3
(R1Y 3
{R2> ::

Bl1O,

{R1> (R2)
0/1
0/1°

{RV) allows a single tag in Tag Register 1 ar 2 to activate

an adjacent group of ward-rows.

There -are three different types of run, which are selected

according to the values of

(RL> amd (R2)

Run Mode Run Type
{RL> <R2)

0 0 No run

0 1 Top run

1 0 Bottan run

1 1 Group run

The direction of the run, and hence the location of the 'Top'
and 'Bottan’ is determined by the selected propagation mode, as

indicated below.

ward-row locations

Run Direction Avmmwnem—eceeed
Up U=1 Bottam Top
Pom D=1 Top Bottam

Bll,

The run logic for Up and DOWN is implemented separately such

that a Up-xrun and a DOWN-run may proceed in parallel.

The overflow bits (OVAY and (OVB7} are set in the DOR
if the selected run type would cause word-rows to be activated

'beyond' the A and B ends of the WCL unit.

(a) Top Run

The Top Run activated all word-rows fram (and including) the top
word-row to (and including) the first word-row which has been

tagged in TR2, as indicated below.

Activated Viord Rows
Propagation Mode Contents of Tag Register TR2
A B
U (8 (DY 0000000100000001000000}00000»
! ' t)
0 0 0 ' |
] | !
]
0 0 1 | aaaaaaa] \)
| ' .
0 1 0 ' a a a '
!]
0 1 1 uaaaaaa.'a a a
| '
1 0 0 , é\aaaaa.
! i
1 0 1 .aaaaaaé éaaaaan
’ |
|
1 1 0 : é a aaaaaal
1 1 1l ',aaaaaaé 'a éaaaaa'
i ' ! 1 |

a = activation

Bl2.

NB. The camplement option is inhibited for micro-instructions

including a Top Run.

(b) Bottan Run -

The Bottan Run activates all ward-rows fram (but not including)
the first, word-row which has been tagged (or not tagged if C = 1)
in TRl to (and 'beyond') the bottom word-row. If S = 1 the first

word row is also activated, as indicated below.

Assuming C = 0

Activated Word-Rows
Propagation Mode Contents of Tag Register TR1
A -B
(UY (SY (DY ' 00000010000001000000100000:
. 3 '. —
o 0 O ' : : | '
0 0 1 ‘: : aaaaaa%aaaaaaz'?aaaaa‘.
o v o | E
0 1 1 ‘I ' aaaaaaa%taaaaaaéaaaaa t
1 0 o0 : aaaaa%laaaaaa%\aaaaaa: :
1 0 1 : aaaaaa:taaaaaaé.laaaaaa%laaaaa'.
1 1 0 ! aaaaaa:taaaaaaa:taaaaaa:%\ "
1 1 1 " aaaaaéaaaaaaé'laaaaaae:laaaaa :
. ;

a = activation

B13.

(1) For C =1, the above table remains valid if the contents of TRl
are inverted.

(2) The overflow bit (OVAY will be set, in the above example,
for propagation modes (100> (101) <110) and(11ll)

(3) The overflow bit (OVB) will be set, in the above example, for

propagation modes, (001> (011 {101} and(111l)

Group Run

when a Group Run is specified, Beat 2 is modified such that

(1) Tag Register TR2 is reset

(2) Clear options are inhibited

(3) A second search operation is initiated in which the AMA
is searched for <(Ch.spec.2) (CB.spec.2) ard, for all

matching word-rows, tags are set in Tag Register TR2.

The group Run activates all word-rows fram those word-rows having a tag
set (or reset if C = 1) in Tag Register TRl to (and including) the first
occurrences of word-rows which have been tagged in Tag Register TR2.

The following table indicates which word-rows will be activated when a

Group Run is specified

Assuming C = 0

! 3
S

" hetivated Word-Rows

T Y

‘Contents of Tag Registers TRl apd TR2

A B
1000000100000010000000100000000
;0000000000%0000000010?00001000'

Propagation Made
U7 sy oy
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

|
|
!
aaaa |aaaaan |aaaaa |
)

' aaaaa aaaaaa' aaaaaa |
' ' ' ' | |
:aaaaaa' éaa' aal by
]
' |
' . . |
laaaaaa aaadaa aaaaaaa'aaaaa
' !] } [}
)] 4 ') !
aaaaaad aaaa aaa o
]] []
: ' , | . | | I
aaaaaadaaaaaaaaaaaaaaaaaaaa
]

a = activation

NB. (1) For C =1, the above table remains valid if the contents of

the Tag Register TRl are inverted.

B14.

(2) The overflow bit (CNA) will be set, in the above a;énple for

propagation modes <100 (101> and (111> .

When a Group Rup is specified Beat 3 is modified such that the function
execution is restricted to a WRTTE operation involving only Control B.u:
4. Thus the function is autgmatically executed as if itwareexpvesaed

as follows, -

(FN) 3= CRA) (Chispec.2) (CB.spec.2)
(PN i m (Q) {A00a00000) - (kL) '

" APPENDIX C,

- Flow' Chart

check power and
DR 11-C connection
switch on graphic terminal

"Run RT 11 F/B
operating system

Enter Date
and time

GT LFF (CR)
if GT is On

R yAPP (CR)

X

-

DATE:l dd-mmm-yy {CR>

ENTER MODE

* oLR>
1

mode.

HHfH e

The program is transferred to the desired
At the canpletion of operation
(except 'E') the caontxal. 1.3 transferred
badc to the nade A, - -

Cl.

See RT 11 system
reference manual

9= Space
{CR) = Carriage return

1t:he outputs of the
machine are under=
lm. ’

¥z C,E,F,L,M;O,P,R'S

Any other characters

including default will
be ignored and a fresh
request will be issued.

l

c2.

C.1. Clear
clears associative memory
and interface logic
GT displays cleared screen
C.2. Load
ENTER 32 CHARACTER Stores currently
CHARACTER 1: CH1 (CR} entered character CHi
in the ith location of
L the Load buffer.
r- - - - - - - Where
| CHARACTER i: CHi {CR) , i = Any ASCII
o _ 3 character
1 - except @
CHARACTER 32: CH 32 (CR) or = @ bgb, ...
PPy
CRg sbi=1lord
For a default value of
Chi, o0ld contents of
ith location is un-
altered.
C.3 Reload

?

Dumps contents of the load buffer
into the associative memory

GT displays the current contents
of AM at the end of dumping operation

@

C3.

C.4. Dynamic micro-order and Micro instruction specification
(DMO & MI SPEII)
RETAIN OLD DMO 7 * (CRy * = y; yes
= N or any other character
including default; modifi-
cation request.
DMO TIME SLOT 1: DMOl (CR)
DMOi = N16N15 N2Nl
J' where Ni = 1 or ¢
FemT T TTTTTTET T T T 7 for default DMOi is maintained
| SLOT i .]
! IDME 1: DMOL (CR) : These DMO's are stored in
e — 4 DMO buffer. For further
details of content of DMO
refer to C.13
TIME SIOT 12: DMO 12 (CR)
\
* =y; Yes
RETAIN OLD MICRO-INSTRUCTION? * (CR)
= N or any other character
including default; No
ENTER NEW MICRO-INSTRUCTION
B refer Appendix A
R VSZ qCB2 vSl 9CBL G MCM L C ,USD oG {(CR) for explanation
W WBM N
T

converts micro-instruction
in machine code and stores
in the SMO Buffer

b

C.5.

Specify

C.6.

Process

DMO & MI Spec

GT displays New micro-instruction,
DMO and the content
of associative memory at
the time of specification entry

Transfers SMO & DMO ie. executes
current micro-instruction according
to the specified DMO on the
data stored in AM

GT displays Micro-instruction
DMO, content of AM after
execution of micro~instruction

C4,

C.7. Micro Instruction Specify & Execute

DMO & Mi Spec

C.8. Output (Hard copy on console TTY)

Current Date and Time are
first logged.

Then the contents of display
are printed on console Teletype

C5.

C.9.

Fast output (Hard copy on LP)

c.lo

Same as Mcode
'0' on Line printer

Exit

Exit

RT 11 F/B
OPERATING SYSTEM
MONITOR RUNNING

Cé.

C.11

Translate APTI and Execute

C.12

?

ENTER API: API * (CR)

GENERATE SMO's

GENERATE DMO's

Process

Instruction buffer loading

LOAD API's IN THE INSTRUCTION BUFFER

STORE API's in INSTRUCTION BUFFER

b

APT* = A New API

load 16 API's

C7.

C.13 J: Verify Contents of Instruction Buffer

Output contents
of the instruction
buffer

C.14 Execute the instructions stored in BUFFER

®

=

Y

INITTIALISE INSTRUCTIONM PTR

el

4

Get the next instruction

yes

no

Execute API

Print Option

on SRy=1

Print Memory Map

C8.

sr, = 1™ bit of
the switch reg.

For explanation of RT-11 system command refer 'RT-11

system reference manual'.

C.15 Any other character
C.16 NOTE; -

(1)

(2)

The following notes are applicable to all Key board

operations.

(a) The monitor echos all character typed; lower

case characters are converted to upper case.

(b) CTRLU (U) and Rubout perform line deletion and

character deletion respectively.

(c) A carriage return, line feed, CTRLZ or CTRIC must be
struck before characters on the current line are to
be made available to the program. The users are

requested to use only carriage return CR as temminating
character.

(d) ALTMODE (octal codes 175 & 176) are converted to

escapes (octal 33)

Co.

c10.

C.17 The contents of DMOi

i

For explanation of signals see glossary of signals in Appendix A.2.2,

Dl.

APPENDIX D

‘FieldAgp_i_sition fram ‘on Insg_e_c‘ data—basé

D.1. The Database Structure

The INSPEC data bases consist of abstracts of journal articles, technical

reports, patents, conference proceedings, books and theses, classified and
irdexed, with bibliographic citations included.

The database used in the present investigation was INSPEC-1 on a 9-track,
800 b.p.i. magtape. The recard farmat conforms broadly to the ISO standard

2709 for bibliographic infommation exchange an magtape and with ANSI-239,

Each record contains such data as the title, abstract, authors, full biblio-
graphic references, indexing and cross-references with all items carrying
hierarchial classification codes, subject headings and free-index temms. The
tape is an 8-bit EBC DIC, IBM code using the reduced character set for
canputer line printer output, this cm;acter set allows only the upper-case
alphabet. See section D.2.6. o |

D.2.1. The File Layout

The file leader follows immediately on the begmmng-of-tape marker without
intervening tapamark, There is no beginning of file mark and the file'is
texminated by two inmediately consecutive tape marks.

Recards are unblocked and each logical record starts at a physical block
boundary and may extend over mare than one block. The maximm physical black

1
i -

size is 2000, characters with continugtion blocks of less than 20,

characters being filled out to this minimum (2010) length, The £ill
H '

characters are indeterminate, however, these characters will not be

accessed by the acquisition program and therefore cause no error,

The maximum logical recard size is 6,20010 characters. In each Inspec

file the first record will be a leader record which describes the contents

02,

of the file. Each subsequent logical recard holds information for a differ-

ent bibliographic item. The items are sequenced in ascending accession
number order but can be regarded as randamly ordered in any other respect,

D.2.2. The Recard Layout

The layout of the records is based on the USA and British standards for
bibliographic camunication which in turn are based on the Library of
Congress MARC farmat,

Each record is divided into three parts:-
- a) Fixed length leader

b) Variable length directary
¢) Variable length data fields

o
N

Control ‘No. Fr | Data

o - e e - - -

|

|

K {1
S

i

i

. o2 -

Leader Directory ! FT e FT Data ! FT
‘ .

D.2.2.1, The Leader

B3.

In accordarnce with bibliographic stérdards the leader contains 24 bytes
of 6-bit characters (ASCII) ar 8-bit (EBC.DIC) in the following format;-

Record {Status | Type of | Not Indicator | Delimiter | Base Not Entry
Length Record | Used | Count Count Address | Used | map
of Data
0-4 6 7-9 10 11 12-16

D.2.2.2. The Directory

17-19 20-23

The directary is a variable length field consisting of a field terminatar
character and a variable number of fixed length entries.

It contains one

entry only far each data field present in the record, and these entries

are recorded in ascending mmeric sequence according to the tag field. If

a record does not contain a specific data field, the entry is entirely

anitted.
D.2.2.2.1. The layout of an entry.
0
Tag .
—_—12
Length 3
of
Address |7
of

Field

"

The first three decimal characters in a
directary entry uniquely define the type
of field addressed by the entry,

The number of characters.in the data field
specified by this entry including. the data
field indicator and temminator characte:s. ‘

Mpositionofﬂxefirstctaracterotﬁn*
data field relative to the base addreas of

~ the data, See gection (2,21,)(leader m:).

D4,

The first three characters in a directary entry constitute a data field
which uniquely defines the type of field addressed by character 7 to 11

of the directary entry. The data fields contained in a record are
specified by broad category and sub-category. The fommat of the tag field

in a directory is as follows:-

' Main Category Sub-Category

ch.0 ch.1-2

Character 0 indicates the broad category of the data field as follows:-

0 Control fields

1 'subje‘ct delineation' : title, abstract, classification,
indexing.

2 Personal names

3 Identifying caodes

4 Volume, issue, part

5 Locations

6 Number of pages etc.

7 Organisations

8 Dates

9 File description

Characters 1 and 2 identify the sub-category within main category.

All tags are rumeric and are arrarged, within the directory, in ascending

numeric sequence.

TAG List

Main Categary

001

010

Main Category

100
110
120%*
121*
130%
131*
132

150

151
160
170

The list of tags are given in the following table D.1.

00

1

TABLE D.1

TAG LIST DESCRIPTIONS

Data Field

(Control fields)
Control number

Record type

(Subject delineation)

Title of recard

Text of abstract

Sectional classification codes

Unified classification codes

Subject index headings

Free-indexing texrms

Treatment codes

Title of corresponding higher level publication
(2) fram which this item has been taken (if
relevant)

Title of cover-to-cover translation journal
Language

Title of conference

D5.

Main Category

200%
210*

220*

Main Category
300*

310
311
320
330
340
350
360

370

Main Category
400

401

450

Main Category
500

510
520
530

2

D6.

(Personal names)
Author (s)
Editor(s)

Translator (s)

(Identifying codes)

Abstract number (s) (appearing in INSPEC
abstracts journals)

CODEN

CODEN of cover-to-cover translation
Standard Book Number

Report number

U.S. Govermment Clearing House number
Contract number

Patent number

Original patent application number

(Volume and issue)

Volume and issue number

Volume ard issue number of cover-to-cover
translation

Part number

(Locations)

Location of conference
Place of publication
Countxy of patent

Country of criginal patent application

Main Categary

600

- 610
620

621

630
640

Main Category

700%*
7104
730%
740
750
760
770

Main Category

800
810
811
820
830

Main Cat.egcrx
900 .

- 910
920

930 .
LA SBB Re£o10‘

~ (Number of pageg stc.)

Number of pages of level 1** record
Nunber of pages of level 2** record
Inclusive page numbers |

Inclusive page numbers éf level 2** cover-
to-cover translation

Number of references

Description of unconventional medium

(arganisations)

Author affiliation

Editar affiliation
Assignees

Publisher

Organisation issuing report
Sponsoring crganisation
Availability

(Dates)

Inclusive dates of conference

Date of publicatiaon |
Date of publication of cover-to-cover translation
Daté filed ar sulmitted

Priarity date

(File description)

Date written

Identification) .
) These fields can
Destination) c
; ~ only appear in the
)
)

file header pecord

D7,

D.2.2.3. The data fields

The data area of a record is made up of a variable number of variable

length fields, each field has the following format:-

Delimiter 1

Data
- Sub-field

Delimiter

Data
Sub-field

T TN

~— | e M

Delimiter

Data Field

Field
Terminator

Indicator

Delimiter

"Data Field

Indicator %)

Version number of format in which
the data field is encoded.

Field delimiter.

Final character of a data field.

Next data field

D8.

03,

The possible data fields are detalled {n Taple D.1, with their correspopding
directory entry tags. | |

D.2.3. The Inspec 1 character set and cading

The database uses an abridged character-set for camputer line-printer out-
put. This character set allows only upper-case alphabetic characters and
does not include shift codes in the data fields. Certain camon characters
are translated into other symbols and many rarely used mathematical symbols
are replaced by a delete code to indicate their position.

Certain characters are modified in the translation program, to suit the

output devices available and for program requirements, to various low frequency
printing ar non-printing characters unlikely to cause confusion by their
position, These characters correspord to the Inspec function codes.

INSPEC function code Ascii code used.

Record temminatar % (117gEBC DIC) 3774 (ASCII) non-printing

Field terminator ¥ (340gEBCDIC) 176g(ASCII) . ~
Subfield delimiter & (1338536 DIC) 044 (ASCII) ¢

Tapemark V' (177EBCDIC) 1004 (ASCII) @
Deleted character / (1564EBCDIC) 1364 (ASCII) A

The magtape character set is encoded in 8-bit IBM EBCDIC The abridged
‘INSPEC character set is translated to 7-bit standard ASCII set. mlatim
is done after removal of the parity bit.

TABLE D.2

Record
Terminator
Subfield
Delimiter

Deleted
Character

Typeamark

Field
Termminator

INSPEC IBM code ASCITI Code
Character in Octal in Octal
. 113 056
) 114 051
115 133
116 074
117 377 non-printing

+ 120 053

$ 133 044 ¢
* 134 052
135 135
; 136 073
- 140 055
/ 14 057
' 153 054
(154 050

156 136 4
space 172 040
= 173 075
! 174 047
175 072
176 076

177 100 @
? 300 077
A 301 101
B 302 102
C 303 103
D 304 104
E 305 105
F 306 106
G 307 107
H 310 110
I 311 111
: 320 041
Jd 321 112
K 322 113
L 223 114
M 224 115
N 325 116
0 326 117
P 327 120
Q 330 121
R 331 122

340 176 ~
S 342 123
T 343 124
8] 344 125
\Y% 345 126
W 346 127
X 347 130
Y 350 131
Z 351 132
@ 360 060
1 361 061
2 362 062
3 363 063
"4 364 064
5 365 065
6 366 066
7 367 067
8 370 070
9 371 071

D10,

P,
In the field acquisition program there ig ne storage or output of the
acquired fields in the ariginal 8-bit-coding, All input data is translated
immediately on entry and subsequently handled, displayed ard output in the
ASCII equivalents shown in Table D.2, | |

D.3. The Program Enviromment.

The field acquisition program is implemented in Macro-11 assembler urder
the RT11 F/B operating system on a DIGITAL PPP 11/40. It forms part of
a suite of programs for the study of associative retrieval system using a

simulated associative processor applied to an Inspec-1 data base.

D.4. I0 Concepts

Implemented under the RT11 operating system the database block structure is
non-standard, As the block size is varjable the input philosophy of the
progran is to attempt a read of the maximugn block size 2,000 characters
return is then achieved on recognition of a physical block bourdary.

ALl records start at a physical block boundary and overflow into contimuation
blocks as necessary; thereforg, the input of a record entails reading blocks
sequentially to a core buffer DS4BUF of maximm possible block length, The
buffer is flushed to mulls previous to each input of a block fram the data-
get. to overcame the prdbian of -the uffer being only partially filled by a
chort block. N o

Each block is translated ard transferr@, character-serially, to the |

next free location in the care uffer RUFASC, the length of which is

equal to the maximum possible recard length (6,20010 characters). The
blocks are read, translated and loaded to BUFASC until a record terminator
character is recognised. BUFASC is flushed to nulls befare starting the
load, to allow for the variable record size.

The minimum unit of data transfer under RT1l is the 256,) word block; there-
fore, the autput datasets are buffered ard characters loaded serially to the
buffers until a camplete block of data is avallable, when it is autamatice
:ally output to the dataset. A partially filled buffer may be output by
direct access to the output routines whenever necessary as the unfilled

portion of the buffer will in all cases contain nulls.

D.5. The Input and Translation of the Records

D.5.1. Block Ioading and recard Translation

The flow-chart of the block loading and translation program is given in

Fig.D.1

iz,

A block of recard is read fram the magtape data-base and tempararily stored in

the input buffer area., The block of data (characters) available in the input -

buffer is accessed serially. The parity bii‘- is stripped off fram the
charactersandthecharacteroodeisusedtolookupits7bitASCII

translated ASCTI characters are loaded sequentislly at the next free
location of a buffer area (BUFASC”) .

D13,

Initilize

Read a Block of
data fragm the magtape.

Store them in
input Buffer

%

Translate fram
EBCDIC to ASCII

!

Stare ASCIT characters
in BUFASC

transfer
control to :
FA Progrem: |

" Pig.D.1. ‘Flow-Chart for the Input |
~ and Translation program,

This procedure is teminated an- thg rs;ognit:l.on of the 'record temi.nator‘
character. 'I‘he camplete translated repqrd is then available in BUFASC.
and the control is transferred to the field acquisition program.

D.6. Data Field Acquisition and Output

D.6.1. General recard-data access

A translated recard is available in the buffer BUFASC, the record length
and the base address of the data fields are acquired fram the record's
leader ard converted to binary values fram S-character ASCII strings

using the utility subroutine BYTES. See Section (D.6.5.).

D.6.2. Tag Matching

The start of the directary emrles is fourxi and the first tag key in the
desired tag list LSTIG accessed. Both the tags in the directory and the
list are 3 character ASCII decimal strings, these are converted to binary

values before camparison.

All‘tags in the directory and in the desired tag list are unique and in
'ascending numeric sequence. The entry @@ ASCII in the desired tag list
teminates the search list.

A desired tag fram LSTTG is checked sequentially against all the directory
tags-inarecorduntilnatchedorlessthanthedirectorytagcmparedin
which case the desired field does not occuz - in the recard, The next tog

D14,

key in LSTTG is then checked against the remalnder of the directary gtarting.

fram the tag entry that numerically exceeded the preceding. tag key. When
the tag list is exhausted the next recard is input fram the file.

On a match the data field lerngth, a 4 character ASCII decimal string and
the offset to the start address of the field, a 5 character ASCII decimal ..
string, are read fram the directory entry, and converted to binary values
ard used to access the data field, |

D.6.3. Data field output

The data is loaded into the ocutput buffer DS6BUF with a start-of-record
mark at the beginning and into the hard copy buffer DSSBUF starting at the
next available location in each,

when either output buffer is filled its contents are written to the disc
Unit. The buffer is then flushed to nulls (¢)' to ensure correct output
when a buffer is only partially filled,as may occur upon the input record

being exhausted. The output buffers are 2561°words in length, the
standard RT11 block size; the autput is done block serially,

D.6.4. Input recard temination.

when the input file is exhausted a flag is set and any remaining untrans-
ferred data in the output buffer is stored in the disc unit with an end-of-
recard mark.

D15,

Initilize

e

Get Tag fram the
Directory and convert
it into binary

[}

yes End of

Directory

no

A 4

Get a tag fram the
desired tag list ard
convert it into binary

— e

D16,

‘e

—q,

Canpare Tags
(Directory tag - desired tag)

Negative ? Positive
Get next tag address Get next tacj address
in Directory 0 for the desired tag list

Get start address
of Data field; convert to binary

Y

Get length of data field
ard convert it to binary

N

Get character fram data field
and load it output Buffer

®

|

Initiate output

with start of yecord mark |

Advance Directory
and desired -
tag addresses

Write Write
erd of end of
record recard
in end of
output file in
Buffer output
Buffer
Output
remaining Output
character remaining
in output character
file in output
Buffer
To input
and : Stop
translation
programe

Fig, D.2 Flow-Chart for the fieldacguisition and output program.

D17,

1

D.6.5. The acquisitionProgram

The flow chart for the field acquisition program is given in Fig.D,2
On the entry a canplete translated recard is available in BUFASC.
NOTE:= 1) The subroutine BYTES advances the string pointer,

past the last digit of the ASCII decimal string.
2) All tags are arranged in ascending numeric order.

D.6.6. Block output

The desired data-fields are acquired by the field acquisition program.
The acquired data~fields are loaded in the ocutput data file on the disc

unit,

This process is continued far the entire data-base. When a file
temminatar is encountered an end-of-file mark is stored in the output
file.

Di8,

SUFPPFPLEMENT

oose sase sese seve sese sese Sbes Gees beme Sees Sess Seve sees Sers ese Shes Sers Seve beve

DYNAMIC-MICRO~-ORDER SFECIFICATIONS FOR THE RYTE-~-ORIENTED VARIABLE
RECORD LENGTH ASSOCIATIVE PARALLEL FROCESSOR.

=090 $ein Fes S00 S6L GEee G400 CR0s 4ol Teld Sesk SRs S06e SIS SSee G006 GG0H SN S000 Se0s Soed S4U4 024 Sase HO%A $0SE OB SU0e GI00 S004 SO S04 440U GIO B0t G4 G40E SEUE S60E RGN SeIe SSR S04 SHR SItC SESS Sese Gese POSI B0 PESE SHOU SOPS A0ST URS S00E $USH SEEe Ser EENE HUSE SIS S40e S0 S000 S0e

This surrlement is to be read in condunction with the thesis entitled
AN INVESTIGATION TO STURY THE FEASIBILITY OF ON-LINE RIBLIOGRAFHIC
INFORMATION RETRIEVAL SYSTEM USING AN APF*. The suprlement rrovides

a8 comrlete srecification of dymnamic micro—-order secuences for all
valid Associative Frocessing Instructions (API’s —-- refer APFENDIX R).

The secuences of duenamic micro-orders for 23l]l proradation ortions are
identicals hence these are not rereated,

In WRITE instruction the dunamic micro-order seauences for all ‘RUN‘
ortions excerting the ‘GROUP RUN’ are azlso 1dentical. Herce two sets
of dunamic micro-order seauences valid for

1) TOFy ROTTOM and NO RUN’s

2) GROUF RUN

are diven.

In APFENDRIX By it has beern mentioned that all sixteen clear ortions
ig valid from the roint of view of API defimition. Howevers in some
cases no meanindful oreration takes rlace. These are marked by %7,

LEGEND.

SM0O = STATIC MICRO-ORDER
DMO = DYNAHIC MICRO -ORDER

For detail dtfinxtions of micro~orders APPENDIX A and B maw be
referred.

"""""" g '
.p; an ﬂ; are 1§§§ed as 0x ahq 97

WRITE INSTRUCTIONS (R/W =

0

For TOFy BOTTOM arnd NOD RUN ortions.
Sisteen CLEAR ortions for COMPLEMENT ostion C= 0

o33!

oXXW®

T1
T2
T3
T4
TS
Té
T7
T8
T9

R MCCM C
W WCEM

0 0000 O

S00 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 8S8S

0110011000000000
0110011000001100
0110011000000000
0000000000000000
0000000000000001
00000000000060000
0101010100000000
0101010100000010
0101010100000000

R MCCM C %
- W WCBM

0 1000 0O

800 SOOTRMMGTOO
TXY TXYMWWMRG21
cCC 888

0110011000000000
0110011000001100
0110011000000000
0000000000000000
0000000000100001
0000000000000000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WCEM

0 0010 O

§00 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC $88

0110011000000000
0110011000001100
0110011000000000
0010000000000000
0010000000000001
0010000000000000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WCBM

0 1010 ©

800 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 888 -

0110011000000000
0110011000001100
0110011000000000
0010000000000000
0010000000100001
0010000000000000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WCRM

0 0011 O
800

XY
ccc

SOOTRMMGTOO
TXYMWWMRG21
888

0110011000000000
0110011000001100
0110011000000000
0010000000010000
0010000000010001
0010000000010000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WCBM

0 1011 O

S00 SOOTRMMGTOO
TXY TXYMWWMRG21
ECC 888

0110011000000000
0110011000001100
0110011000000000
0010000000010000
0010000000110001
0010000000010000
0101010100000000
0101010100000010
0101010100000000

R MCCM C X%
W WCEM

0 0001 O

S00 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 888

0110011000000000
0110011000001100
0110011000000000
0000000000010000
0000000000010001
0000000000010000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WCBM

0 1001 ©

S00 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 888

0110011000000000
0110011000001100
0110011000000000
0000000000100000
0000000001100001
0000000000100000
0101010100000000
0101010100000010
0101010100000000

O3X®m

o o 8 2]

T1
T2
T3
T4
TS5
Té
T?
T8
T9

R MCCM C
W WCEM

0 0100 O

S00 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC S88

0110011000000000
0110011000001100
0110011000000000
0000001000000000
0000001000000001
0000001000000000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WCBM

0 1100 0O

S00 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 8SS

0110011000000000
0110011000001100
0110011000000000
0000001000000000
0000001000100001
0000001000000000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WOEBM

0 0110 0

500 SOOTRMMGTOO
TXY TXYMWWMRGZ21
CCC 888

0110011000000000
0110011000001100
0110011000000000
0010001000000000
0010001000000001
0010001000000000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WCEM

0 1110 0

S00 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC S8S

0110011000000000
0110011000001100
0110011000000000
0010001000000000
0010001000100001
0010001000000000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WCEM

0 0111 O

800 SOO0TRMMGTOO
TXY TXYMWWMRG21
CCC 888

0110011000000000
0110011000001100
0110011000000000
0010001000010000
0010001000010001
0010001000010000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WCEM

0 1111 O

S00 SOOTRMMGTOO
TXY TXYMWWMRGZ1
CCC S86

0110011000000000
0110011000001100
0110011000000000
0010001000010000
0010001000110001
0010001000010000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WCEM

0 0101 O

S00 SOOTRMMGTOOD
TXY TXYMWWMRG21
CCC 8885

0110011000000000
0110011000001100
0110011000000000
0000001000010000
0000001000010001
0000001000010000
0101010100000000
0101010100000010
0101010100000000

R MCCM C
W WCEM

0 1101 O

800 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 588

0110011000000000
0110011000001100
0110011000000000
0000001000100000
0000001001100001
0000001000100000
0101010100000000
0101010100000010
0101010100000000

Sixteen CLEAR ortions for

o3x®

Tl
T2
T3
T4
T5
Té6
T7
T8
T9

oxXwm

T1
T2
T3
TA

Té
T7

T?

R MCCM C
W WCBM

0 0000 1

S00 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 88§

0110011000000000
0110011000001100
0110011000000000
0000000000000000
0000000000000001
0000000000000000
0101010100010000
0101010100010010
0101010100010000

R MCCM C %
W WCEM

0 1000 1
§00 SOOTRMMGTOO
TXY TXYMWWMRG21
cce §88 -

0110011000000000

0110011000001100°

0110011000000000
0000000000000000
0000000000100001
0000000000000000
0101010100010000
0101010100010010
0101010100010000

R MCCM C
W WCEM

0 0010 1
800

TXY
cce

SOOTRMMGTOO
TXYMWWMRG21
855

0110011000000000
0110011000001100
0110011000000000
0010000000000000
0010000000000001
0010000000000000
0101010100010000
0101010100010010
0101010100010000

R MCCM C
W WCEBM

0 1010 1

S00 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 888

0110011000000000
0110011000001100
0110011000000000
0010000000000000
0010000000100001
0010000000000000
0101010100010000
0101010100010010
0101010100010000

COMFPLEMENET ortion C= 1.

R MCCHM C
W WCEM

0 0011 1

500 SOOTRMMGTOO
TXY TXYMWWMRGZ1
CCC s88

0110011000000000
0110011000001100
0110011000000000
0010000000010000
0010000000010001
0010000000010000
0101010100010000
0101010100010010
0101010100010000

R MCCM C
W WCBM

0 1011 1

S00 SOOTRMMGTOO
TXY TXYMWWMRG21
~€CC 888

0110011000000000
0110011000001100
0110011000000000
0010000000010000
0010000000110001
0010000000010000
0101010100010000
0101010100010010
0101010100010000

R MCCM C %
W WCEBM

0 0001 1

S00 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 888

0110011000000000
0110011000001100
0110011000000000
0000000000010000
0000000000010001
0000000000010000
0101010100010000
0101010100010010
0101010100010000

R MCCM C
W WCBM

0 1001 1

800 SOOTRMMGTOO
TXY TXYMWWMRG2
CcCC 888§ :

0110011000000000
0110011000001100
0110011000000000
0000000000100000
0000000001100001
0000000000100000
0101010100100000
0101010100100010
0101010100100000

oxXv

T1
T2
T3

TS
Té6

T8
T9

o i 1]

R MCCM C
W WCEM

0 0100 1

800 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 888

0110011000000000
0110011000001100
0110011000000000
0000001000000000
0000001000000001
0000001000000000
0101010100010000
0101010100010010
0101010100010000

R MCCM C
W WCEM

0 1100 1

800 SOOTRMMGTOO
TXY TXYMWWMRG21
CcCC sSss

0110011000000000
0110011000001100
0110011000000000
0000001000000000
0000001000100001
0000001000000000
0101010100010000
0101010100010010
0101010100010000

R MCCM C
W WCEM

0 0110 1

800 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 888

0110011000000000
0110011000001100
0110011000000000
0010001000000000
0010001000000001
0010001000000000
0101010100010000
0101010100010010
0101010100010000

R MCCM C
W WCBM

0 1110 1

800 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 88S

0110011000000000
0110011000001100
0110011000000000
0010001000000000
0010001000100001
0010001000000000
0101010100010000
0101010100010010
0101010100010000

R MCCM C
W WCEM

0 0111 1

8500 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 888

0110011000000000
0110011000001100
0110011000000000
0010001000010000
0010001000010001
0010001000010000
0101010100010000
0101010100010010
0101010100010000

R MCCM C
W WCBM

0 1111 1

800 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 888

0110011000000000
0110011000001100
0110011000000000
0010001000010000
0010001000110001
0010001000010000
0101010100010000
0101010100010010
0101010100010000

R MCCM C
W WCEM

0 0101 1

500 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 888

0110011000000000
0110011000001100
0110011000000000
0000001000010000
0000001000010001
0000001000010000
0101010100010000
0101010100010010
0101010100010000

R MCCM C
W WCEM

0 1101 1

500 SOOTRMMGTOO
TXY TXYMWWMRG21
ccc s8s

0110011000000000
0110011000001100
0110011000000000
0000001000100000
0000001001100001
0000001000100000
0101010100100000
0101010100100010
0101010100100000

GROUF RUN

oM

T1
T2
T3
T4
75

T7
T8
T9

*e

R MCCM C
W WCRM

0 0000 0O

800 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC s88

0110011000000000
0110011000001100
0110011000000000
0101010100000000
0101010100001000
0101010100000000
0000000000000000
0000000000000010
0000000000000000

R MCCM C
W WCEM

0 0000 1

800 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC s88

0110011000000000
0110011000001100
0110011000000000
0101010100000000
0101010100001001
0101010100000000
0000000000010000
0000000000010010
0000000000010000

READ INSTRUCTION (R/W =
Sixteen CLEAR ortions for COMPLEMENT ortion C

i)]

0

T1
T2
T3
T4
TS
Té
T7
T8
T9

;X M

R MCCM C
W WCBM

i 0000 O

800 SOOTRMMGTOO
TXY TXYMWWMRG21

CCC 888

0110011000000000
0110011000001100
0110011000000000
0000000000000000
0000000000000001
0000000000000000
0101000000000010
0101000001000010
0101000000000010

R MCCM C X
W WCBM

1 1000 O -

800 SO00TRMMGTOO
XY TXYMNUMRG21
ccc SSS :

0110011000000000
0110011000001100
0110011000000000
0000000000000000
0000000000100001
0000000000000000
0101000000000010
0101000001000010
0101000000000010

1.

R MCCM C
W WCBM

i 0010 O

S00 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 888

0110011000000000
0110011000001100
0110011000000000
0010000000000000
0010000000000001
0010000000000000
0101000000000010
0101000001000010
0101000000000010

R MCCM C
W WCEM

1 1010 O

800 SOOTRMMGTOO
XY TXYMUUNRBZI
ccc SSS

0110011000000000
0110011000001100
0110011000000000
0010000000000000
0010000000100001
0010000000000000
0101000000000010
0101000001000010
0101000000000010

i

Q.

MCCM C
WCEM

3

[y

0011 O

S00
TXY
ccc

SOOTRMMGTOOD
TXYMWWMRG21
888

0110011000000000
0110011000001100
0110011000000000
0010000000010000
0010000000010001
0010000000010000
0101000000000010
0101000001000010
0101000000000010

R MCCM C
W WCEM

1 1011 0

S00 SOOTRMMGTOO
TXY TXYMWWMRG21
cCC $88

0110011000000000
0110011000001100
0110011000000000
0010000000010000
0010000000110001
0010000000010000
0101000000000010
0101000001000010
0101000000000010

R MCCM C %
W WCEM

1 0001 O

800 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 868

0110011000000000
0110011000001100
0110011000000000
0000000000010000
0000000000010001
0000000000010000
0101000000000010
0101000001000010
0101000000000010

R MCCM C
W WCBM

1 1001 0

800 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 888

0110011000000000
0110011000001100
0110011000000000
0000000000100000
0000000001100001
0000000000100000
0101000000000010
0101000001000010
0101000000000010

m R iz}

o

T1
T2
T3
T4
TS
Té
T7
T8
T9

oxX®

R MCCM C
W WCEM

1 0100 0O

00 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 8SS

0110011000000000
0110011000001100
0110011000000000
0000001000000000
0000001000000001
0000001000000000
0101000000000010
0101000001000010
0101000000000010

R MCCM C
W WCBM

1 1100 0

800 SOOTRMMGTOO
TXY TXYMWWMRG21
CcCC 888

0110011000000000
0110011000001100
0110011000000000
0000001000000000
0000001000100001
0000001000000000
0101000000000010
0101000001000010
0101000000000010

R MCCM C
W WCEM

i1 0110 0O

800 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 88Ss

0110011000000000
0110011000001100
0110011000000000
0010001000000000
0010001000000001
0010001000000000
0101000000000010
0101000001000010
0101000000000010

R MCCM C
W WCBRM

111100

S00 SO00TRMMGTOO
TXY TXYMWWMRG21
CCC 885

0110011000000000
0110011000001100
0110011000000000
0010001000000000
0010001000100001
0010001000000000
0101000000000010
0101000001000010
0101000000000010

R MCCM C
W WCEM

1 0111 0

500 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 888

0110011000000000
0110011000001100
0110011000000000
0010001000010000
0010001000010001
0010001000010000
0101000000000010
0101000001000010
0101000000000010

R MCCM C
W WCBM

11111 0

S00 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 88§ -

0110011000000000
0110011000001100
0110011000000000
0010001000010000
0010001000110001
0010001000010000
0101000000000010
0101000001000010
0101000000000010

R MCCM C
W WCEM

1 0101 0O

500 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC &88

0110011000000000
0110011000001100
0110011000000000
0000001000010000
0000001000010001
0000001000010000
0101000000000010
0101000001000010
0101000000000010

R MCCM C
W WCEBM

111010

S00 SOOTRMMGTOO
TXY TXYMWWMRG21
ccc s8s

0110011000000000
0110011000001100
0110011000000000
0000001000100000
0000001001100001
0000001000100000
0101000000000010
0101000001000010
0101000000000010

Bis

o3 W

T1
T2
T3
T4
TS
Té

T8
T9

oxX®m

heen

R MCCM C
W WCBM

1 0000 1
s00

TXY
ccc

SOOTRMMGTOO
TXYMWWMRG21
8686

0110011000000000
0110011000001100
0110011000000000
0000000000000000
0000000000000001
0000000000000000
0101000000010010
0101000001010010
0101000000010010

R MCCM C X
W WCBM

1 1000 1

800 SOOTRMMGTOO
TXY TXYMWWMRGZ21
CCC 888

0110011000000000
0110011000001100
0110011000000000
0000000000000000
0000000000100001
0000000000000000
0101000000010010
0101000001010010
0101000000010010

CLEAR ortions for COMFLEMENT ortion C

R MCCM C
W WCEM

1 0010 1

500 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 888

0110011000000000
0110011000001100
0110011000000000
0010000000000000
0010000000000001
0010000000000000
0101000000010010
0101000001010010
0101000000010010

R MCCM C
W WCEM

1 1010 1

800 SOOTRMMGTOO
TXY TXYMUWMRG21
CCC 88§

0110011000000000
0110011000001100
0110011000000000
0010000000000000
0010000000100001
0010000000000000
0101000000010010
0101000001010010
0101000000010010

1.

R MCCM C
W WCEM

1 0011 1

500 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC ©88

0110011000000000
0110011000001100
0110011000000000
0010000000010000
0010000000010001
0010000000010000
0101000000010010
0101000001010010
0101000000010010

R MCCM C
W WCEM

1 1011 1

800 SOOTRMMGTOO
TXY TXYMWWMRG21
coe 888

0110011000000000
0110011000001100
0110011000000000
0010000000010000
0010000000110001
0010000000010000
0101000000010010
0101000001010010
0101000000010010

R MCCM C %
W WCEM

1 0001 1

800 SOO0TRMMGTOO
TXY TXYMWWMRG21
ccc S88

0110011000000000
0110011000001100
0110011000000000
0000000000010000
0000000000010001
0000000000010000
0101000000010010
0101000001010010
0101000000010010

R MCCM C
W WCEM

1 1001 1

S00 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 888

0110011000000000
0110011000001100
0110011000000000
0000000000100000
0000000001100001
0000000000100000
0101000000100010
0101000010100010
0101000000100010

cxx!

o3XxXWmn

R MCCM C
W WCEM

1 0100 1

S00 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC S88

0110011000000000
0110011000001100
0110011000000000
0000001000000000
0000001000000001
0000001000000000
0101000000010010
0101000001010010
0101000000010010

R MCCM C
W WCEM

1 1100 1

S00 SOOTRMMGTOO
TXY TXYMWWMRG21
ccC SSS

0110011000000000
0110011000001100
0110011000000000
0000001000000000
0000001000100001
0000001000000000
0101000000010010
0101000001010010
0101000000010010

R MCCM C
W WCEM

1 0110 1

800 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 888

0110011000000000
0110011000001100
0110011000000000
0010001000000000
0010001000000001
0010001000000000
0101000000010010
0101000001010010
0101000000010010

R MCCM C
W WCBM

11110 1

800 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 58S

0110011000000000
0110011000001100
0110011000000000
0010001000000000
0010001000100001
0010001000000000
0101000000010010
0101000001010010
0101000000010010

R MCCM C
W WCEM

1 0111 1

800 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 88S

0110011000000000
0110011000001100
0110011000000000
0010001000010000
0010001000010001
0010001000010000
0101000000010010
0101000001010010
0101000000010010

R MCCM C
W WCEM

1 1111 1

500 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC 888

0110011000000000
0110011000001100
0110011000000000
0010001000010000
0010001000110001
0010001000010000
0101000000010010
0101000001010010
0101000000010010

R MCCM C
W WCRM

1 0101 1

S00 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC SS8S8

0110011000000000
0110011000001100
0110011000000000
0000001000010000
0000001000010001
0000001000010000
0101000000010010
0101000001010010
0101000000010010

R MCCM C
W WCEBM

1 1101 1

800 SOOTRMMGTOO
TXY TXYMWWMRG21
CCC S88

0110011000000000
0110011000001100
0110011000000000
0000001000100000
0000001001100001
0000001000100000
0101000000100010
0101000010100010
0101000000100010

