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ABSTRACT

In this thesis some problems in mathematical programming have been
studied. Chapter 1 contains a brief review of the problems studied
and the motivation for choosing these problems for further investigation.

The development of two algorithms for finding all the vertices of a
convex polyhedron and their applications are reported in Chapter 2.

The linear complementary problem is studied in Chapter 3 and an
-algorithm to solve this problem is outlined.

Chapter 4 contains a description of the plant location problem
(uncapacited). This problem has been studied in some depth and an
algorithm to solve this problem is presented.

By using the Chinese representation of integers a new algorithm
has been developed for transforming a nonsingular integer matrix
into its Smith Normal Form; this work is discussed in Chapter 5.

A hybrid algorithm involving the gradient method and the simplex
method has also been developed to solve the linear programming problem.
Chapter 6 contains a description of this method.

The computer programs written in FORTRAN IV for these algorithms
are set out in Appendices R1 to R5. A report on study of the group
theory and its application in mathematical programming is presented
as supplementary material.

The algorithms in Chapter 2 are new. Part one of Chapter 3 is a
collection of published material on the solution of the linear
complementary problem; however the algorithm in Part two of this
Chapter is original.

The formulation of the plant location problem {uncapacited) together
with some simplifications are claimed to be original, The use of
Chinese representation of integers to transform an integer matrix into
its Smith Normal Form is a new technique.

The algorithm in Chapter 6 illustrates a new approach to solve the

Tinear programming problem by a mixture of gradiest and simplex method.
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CHAPTER ONE

An Introduction to the Problems Investigated in This Thesis
1.1  General

The role of mathematics as an aid to the processes of scientific
probiem so]vihg has been established for a long time. The rapid
development of the digital computer over the last twenty-five
years has greatly extended the appticability of mathematics, and
it has become increasingly possible to obtain numerical solution
to the mathematical models, and even to add to the refinement or
‘the complexity of the models which can be solved.

From a theoretical point of view building a mathematical model

is a process of writing a set of relations which connects the
variables in the model. An algorithm is a set of rules for
computation which must be followed to obtain a numerical solution
to a problem or a class of problems. In this thesis the author
is mainly concerned with developing algorithms (and the theory
where appropriate) for the solution of a few well known problems
in mathematical programming.

1.2  The general mathematical programming problem

The general mathematical programming problem may be defined as
that of finding a vector xeR" which maximizes or minimizes the
function f(x) commonly known as the "objective function", subject
to xeS, where S is a subset of R",

The real impetus for the growth of interest in and the practical
applications of programming problems came in 1947, when

George Dantzig devised the simplex algorithm [1.1] for solving
the general linear programming problem, which is a special case



of the problem mentioned above where f(x) takes the form

n
f(x) = jZ]ijj_’ (M

and S is defined by a set of inequalities
'} Ax < b , :
{ x20, (2)

where A and b are two given matrices of order mxn and mx]
respectively; and cj (j=1,...,n) are known constants.

If f(x) is in the form

f(x) = éx + xTDx . : (3)

where D is an nxn matrix, and T denotes the transpose of X,
and set S is the same as defined in (2); then the problem is
a quadratic ‘programming problem [1.31.

If f(x) is not linear or some of the relations used to define S
are nonlinear, then such a problem is commonly known as a
non-linear programming problem.

The function f(x) and the set S may be classified from the point
of convexity [1.2], and non-convexity. This classification also
defines two categories of problems, called convex programming
and non-convex programming.

An integer linear programming problem is a non-linear and non-convex
problem which would be linear if it were not for the fact that
some or all variables are restricted to integral values.

Therefore, the nature of f(x) and S define different problems.
In this thesis the author has considered some well known problems



of this type. In developing the theory and algorithms for their
“solution, the author has concerned himself mainly with the
constraint set , and the methods of exploring these. In the
following sections, 1.3 to 1.6, these problems are cons1dered
briefly.

1.3 Convex-polyhedron and its vertices

A convex polyhedron is a convex set, S, which is defined by
(2) see [1.2]. A vertex of this set is a point corresponding
to a vector, not having more than m non-negative components
different from zero. These points are specially important in
the study of the classes of problems which are set out below.

(i) The fixed charge problem.

Consider a non-linear programming problem of the form

Min f(x Z (c NERE ) (4)
subject to
Ax < b
{ x20, ()
0 if xj,= 0,
i ¢ . (5a)
1 if x, >0,
J
and fj >0 .

This is a concave objective function which is minimized over a
linear constraint set. It can be shown [1.3] that the local
Optima of this function takes place at vertices of S. Therefore
the Yocal optima as also the global optimum is a basic solution
of (5). .



(ii) Alternative optimal solutions for linear programming problem.

It is well known that the simplex method [1.1] provides a solution
to a Tinear programming problem, or it shows that no solution
exists.

For problems which are. dual degenerate the optimum solution is not
unique and the alternative optima takes place at more than one
vertex of the constraint set. In this situation one may be
interested in finding all such alternative optimum (basic) solutions.
One may note that these are vertices of the polyhedron in which

in addition to the original constraints the objective function is
constrained to be exactly equal to the optimal value.

(i11) Game theory.

Two person zero-sum games can be related to linear programming
problems [1.2]1. When mixed strategies are admitted, these take
place at the vertices of the linear constraint set.

These are a few examples in which the vertices of S play an -
important role.

In chapter 2 the algorithms (two) for finding all the vertices
of such a set, S, is described in detail.

1.4 Fundamental problem

Given the square matrix M of order NXN and the vector q of order N
it is required to find the two non-negative vectors w,z each
of order N such that they solve the system

w=gq+ Mz,
Z, w20 (6)

sz =0 .



This problem plays an important role in mathematical programming
/ inasmuch as the special cases of this problem are linear
programming problem, quadratic programming problem, and finding
equilibrium points in bimatrix games which are stated as follows:

(i) Linear programming
Consider the linear programming problem
Max f(x) = cx (7)
subject to Ax <b x=20,
and its dua1”[1.2]
Min f(v) = bv (8)
subject to ATv 2¢c, v20,

where A, b, x are defined as earlier and v is a vector of order m.
Introducing a vector y of slack variables of order m, and a vector u
of surplus variables of order n these problems may be re-expressed as

Max f(x) = cx (9)
subject to Ax + Iy =b; x,y =20,
and
Min f'(v) = bv (10)
subject to ATv -lu=¢; u,vz20.

From duality theory [1.2]1 of linear programming it follows that
for the optimum feasible solution to this problem pair the
following relationships must hold,

MENERNIN
= + 3 Xy Yo Uy, v20 . (1)
Yy b -A 0 v X.u, y.v=20



| 0 A
R u -C X
By substituting w = [ ) q = [ ] z= { ) M= :
y bJ’ v A 0

(11) becomes equivalent to the Fundamental problem;
where N = n + m.

(i1) Quadratic programming problem
Consider the quadratic programming problem stated as:

Min z = cx + ngDx (12)

subject to Ax 2b , x 20, (D is symmetric)

and for this-quadratic programming problem define u, v as:

u=Dx - ATy +c, v=Ax=-b (13)

A vector x0 yields minimum Z only if there exists a vector y?
and vector u?, v0 given by (13) satisfying

X020, wW=20, y9o20, u =20,
(14)

x0u =0, yov0 =0 .

See [3.5]1. Thus the problem of solving a quadratic programming
problem leads to a search for the solution of the system

Dx - ATy +¢c, x20, y=20,

=
]

v=Ax-b, u20, vz20, (15)

xu+yu=0.

Again by substituting _
I _
D -A
u C X
W=[ ]Q'-'[ ]M= Z=[ ) ’ 16
\' ~b A 0 y ()

the problem becomes the Fundamental Problem.



(iii) Bimatrix Game

Consider the bimatrix game defined by two pay-off matrices A, B [1.4]
each of order mxn such that m + n = N. It follows from the
necessary condition for an equilibrium point that,

n

y = Ax - en Yy, x=20

gl

u X-e = U, V2 0 (17)

xu+yv=20.

This is once again in the form of the Fundamental Problem, where

o) e (o [0

In chapter 3, the work done to date for solving the Fundamental
Problem is reviewed, in addition an algorithm developed by the
author is described. This method is particularly powerful since
no assumption concerning the nature of the matrix M is made.

1.5 Integer programming and related problems.

Formulation of certain classes of combinatorial problems, and
problems of other types as integer or mixed integer linear
programming,is well known in literature and adequately dealt with
in text books. The two prominent methods cutting plane and branch
and bound are the most commonly used methods for the solution of
these problems. However, for certain problems the methods seem
to require unusually large computing effort;. this despite a
formal proof for their convergence. In trying to visualize the
solutions in which such difficulties arise, and, if posSib]e to
counter these, it is desirable to take advantage of the structure
of these problems. Equally another approach may be to transform
these problems into equivalent problems which may be handled by
more efficient algorithms.
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The following two types of problems have been handled in this way
in the present investigation.

a) Group knapsack problem
Mathematically knapsack problem may be stated as:

n
Max z = }

LIS

subject to

n
J.E]ajxj <b,
xj 2 0, and integer for j = 1,...,n,

where aj, cj for (j = 1,...,n) are given integers.
There exist a number of special algorithms which solve this
problem efficiently [5.41]. '

Application of group theory to integer programming problem
makes it possible to transform a given problem into its

group knapsack problem (see G.R. Jahanshahlou & G. Mitra [5.3
which can be solved very efficiently (as a knapsack problem).
Under certain conditions the solution to the corresponding
group knapsack problem provides the desired solution to the
given problem,

Let B be the optimal basis of the linear programming problem
corresponding to the given integer program, which is obtained
by relaxation of integrality condition on the variables.

(20)

1)

Transforming B into its Smith Normal Form a = (6,1, (see [5.41)

where 8, divides §; + 1 for all i (i =1,...,m-1) is one of
the major steps in re-expressing the problem into its
corresponding group knapsack form. It is proven that 8 in
the ith step of the procedure of the transforming B into A

is the greatest common factor of the elements of the matrix
which is of order (m - 1 + 1)(m - i + 1).



b)

The chinese représentation of integers seems to be an
efficient method of finding the greatest common factor of
a set of elements of the matrix in the above mentioned
transformation.

This idea is exploited in the algorithm developed by the
author whereby the matrix B is transformed to its Smith
Normal Form 4. This work is fully described in chapter 5.

Plant location problem,

Given m plants with unlimited capacity and handling cost
functioﬁs which are concave, it is required to find an
optimum subset of the plants to supply the demand centres
in the system. '

In this simple form, plant Tocation can be posed as a
transportation problem with no constraint on the amount
shipped from any source. However, there is a cost associated
with each source (plant). This cost (called a fixed cost or
a fixed charge) is zero if nothing is shipped from the plant,
j.e. plant is 'closed'. It is positive and independent of
the amount shipped if any shipment from the plants takes
place, i.e. the plant is 'open'. Because the fixed charge
associated with each plant does not vary linearly with the
amount shipped from the plant (there is discontinuity at zero
shipment) this problem cannot be handled using standard linear
programming method. Balinski [4.3] has formulated this
problem as a mixed-integer program.

In practical problems this approach leads to, say five to
twenty thousand rows and about the same number of columns [4.13.
From the practical standpoint therefore a standard solution

| technique for mixed integer program cannot be applied directly



unless particularly efficient ways can be found to solve

the associated linear programming subproblems generated

by such a technique. Because of the assumption of unlimited
capacity of the plants, S, the region in which the objective
function is minimized has got a special structure.

The associated linear programs obtained by relaxing the
integer condition on the fixed charge variables assume
minima at some vertices of S. It is proven [4.1] that such
vertices of S are generated directly without recourse to the
simplex method.

In chapter 4 this problem is discussed in some depth.
1.6 Hybrid gradient and simplex method.

To date the simplex method is the most attractive method for
solving linear programming problems. This is an iterative method
which converges to an optimal solution in a finite number of steps,
or alternatively shows that there is no solution to the given
problem.

In the final step of the simplex method the information concerning

the optimal solution and the dual solution values can be obtained

from an inverse of the optimal basis matrix, viz B-1.

A%

4\

~
X, 5 )
9 Optimal
g \boluti C1X¥CX%,
X
3
(S)

direckion of

object\ve functio
L Xy / !
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The ability to obtain this final basis matrix rapidly, therefore
constitutes the foundation of any accelerated method for solving
the linear programming problem. The hybrid gradient method
developed by the author is set out to achieve exactly this.
Consider the problem illustrated in Fig(1). The region S is a
convex set which is defined by the set of inequalities

X; 2 0 (i +1,...,9). The objective function ¢ x;+ c,x, is

to be maximized over this region. Starting from the origin

and moving in the direction perpendicular to the objective

function one exits from the region S at the point F, which is

a feasible point (but not basic). Then at this point the values

of eight variables (in general more than m variables) are

positive. In the proposed method some of these variables may

be reduced to zero without recourse to pivotal transformation, and a
basic feasible solution with improved objective function value is
obtained. If tne basic feasible solution so obtained is not the
optima]'solution then the whole procedure may be applied repeatedly
until an optimum solution is obtained. It seems plausible that
such an algorithm which starts from F instead of 0 (as in the

usual simplex method) might reduce some intermediate steps in
arriving at the optimal solution.

This investigation is fully described in chapter 6.
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CHAPTER TWO

Two Algorithms for Finding All the Vertices of

a Convex Polyhedron.

2.0 Summary

In this chapter the problem of finding all the vertices of a
convex polyhedron

S = {x]Ax < b,x 2 0} (1)

defined by a set of linear inequalities, and non-negativity
condition on the variables is considered. Two algorithms for

its solution are presented. The first employs a tree construgtion
scheme, and in the second the convex set S is partitioned into
two mutually exclusive sets SNH,SNMH such that spuYsUrg = s

By finding extreme points lying in each of these sets, and to

do this further separating one such set into mutually exclusive

subsets, all the feasible extreme points of. S are obtained.

2.1 Introduction

In this introductory section the work of the other authors in
solving this problem and the contexts in which the problem

erises have been briefly reviewed. In the next section the notation
and the representation of the tableau are explained. In Section 2.3
first the theory underlying the tree development algorithm :
ALGORITHM I is presented, the algorithm is then described.

Another algorithm, "Branch and Exclude", and labelled as ALGORITHM II
is developed in section?2.5. Two worked examples solved by the
application of each of these algorithms are set out in section 2.4

and section 2.6 respectively. In section 2.7 the comﬁutational results
are discussed. '

The following problems may be cited as possible areas of application
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of the algorithms discussed in this chapter

- In a two-person zero sum game [2.6] if there exists more than
one optimal mixed strategy then the problem of finding all such
optimal strategies may be investigated by these algorithms.

= If the problem of post optimal analysis [2.7] is posed as that
of finding all the basic feasible solutions within a given
percentage of the optimum solution, then this can be clearly
investigated by the proposed methods. The limiting case of the
above problem viz: all the optimal solutions must be within

zero percent 1i.e. find all the basic optimal solutions of a

dual degenerate problem can therefore be investigated in the

same way.

= The plant locafion or the fixed charge problem involves
minimisation of a cbncave function subject to linear constraints.
A local optimum solution and hence the global optimum of this
problem is an extreme point [2.3] hence for this problem vertices

may be investigated for local and global optimality.

- Kirby et al [2.4] have considered a nonlinear programming problem
vhich requires an algorithm like that proposed here for its

computational solution.

For the solution of this problem Van—-de-Panne f2.7] employs a method
- which he calls the 'Reverse Simplex' method. In this a linear

form is first maximized over the linear constreint set. Starting
from this basic feasible solution variables are introduced

into the basis and the value of the objective function is decreased;
by continuing this procedure all the extreme points are generated.
Charnes [2.2] has discussed a method based on the simplex algorithm
and‘Tary's solution to the labyrinth problem of the theory

of graphs , Manas and Nedoma [2.5] have developed an aigorithm which
involves exploring the graph I'(V,U) adjoined to the polyhedron S;
where V denotes the vertices and U the edges of the graph. This
method is similar to the ALGORITHM I considered here. Motzkin, et
al [2.6] provide a method based directly on the Fourier-Motzkin

scheme for linear inequalities whereby the convex polyhedron is
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built up progressively introducing li.néar inequalities/half-spaces
one at a time. Balinski's approach for solving this problem

has somewhat motivated the second algorithm : ALGORITHM II
considered in this paper. His method is further discussed

in Section 2.5.

2.2.Notation and Tableau Representation.

Let A be an mxn matrix, b an m-vector, and x an n-vector

of n unknowns, and S be the convex polyhedron defined by
the inequelities

Ax Sb,x20. (2)

This may.be written out in full as

a.ll(-xl) + a.lz(—xz) + .. + aln(-xn) + bl= X, 41
321("’51) +oaylx,) + ... oy (x ) +b, =x L,
aml(-xl) + amz(-xz) + ... + am(—xn) +o o=x
xl,xa, , an o,

xn:ﬂ’ xn+2,..., xn-i-mz 0,

where x* = (

In this chapter the condensed form of the simplex tableau due
to Tucker, has been used, the initial tableau has the form set out
in Tableau O. Basic variables appear in the left hand column,

and non basic variables in the top row. A basic feasible solution
corresponds to a vertex of S.

(3)

Xoe12Xpe2* 0o xnﬂn) is a vector of the slack variables.
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(x) (=) oo (=) 1

n
X a a ea’e a8 b
n+l 11 12 1n 1
X 42 81 85 e+ 8y b
xn +m 8 ml 8 2 coe a'mn bm
Tableau O.

2.3. Tree Development Algorithm : ALGORITHM I.

The algorithm described in this section and alse that in section 2.5
use an essential simp%ex step to go from one vertex to another.
Consider the vertex X gefined by the intersection of n _hyperplanes
xr1= 0, xr2= Oy ooe xrqs 0, «.. xrn= o, t.a.nd the vertex X‘J where g.ll
the hyperplanes are the same as that of x* except x, = 0, is replaced

‘ q
by x, = 0. The vertices are contained in Tableau 3.1 and Tableau 3.2,
n+p . .
and the pivotal transformation on E.pq generates XY from ¥* 3 for the

feasibility of %9 the following' identity must hold,

B % | -
—-&B—' = Min {.—t- Et >0 } | (W)
Pa - 1stsm(Bgq | ™4 ‘

X"i, X'i are called 'adjacent basic feasible' solutions or
'edjacent vertices'. During a typical. simplex step the unboumdeq
condition may be detected i.e., for a given column q, th Y
for all t. In this case an auxiliary bounded problem may be

proposed : this is discussed later on in the present section,

‘e
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Tableau 3.1

-X -X s =X ees 1 -X “X . =X vee 1
1 2 rq | T2 n+p
- —i -
a b X b
rn+1 lq 1 n+l 1
. 3 5 %
- -y —=j
a b X b
n+m mq m o +m m

Tableau 3.2

The steps of the algorithm are now stated and are accompanied by

explanatory notes to outline both the abstract idea of the graphical

representation of the process and the practical implementation.

In the following algorithmic steps a basis and the corresponding

solution is said to be 'marked' if it is already generated and the

indices of the variables in the basis are stored in a table.

Step 1.

Step 2.

Step 3.

Step 4.

Choose X°, Tableau O (it may be chosen arbitrarily
from any of the vertices) and call this the node

zero of the tree to be constructed. Set the counters

N =0, K=0, "mark' X° as being generated.

Take the tableau N associated with the vertex XN;
from this generate all the adjacent solutionms

+ + + .
& } X % ...,XK ky which were not 'marked'. Now

'mark' these solutions as being gemerated. The

vertex XN in S corresponds to the node N in the

_tree, and (N,K+l), (N,K+2) ... (N,K+kN) are edges

connecting node N to the nodes corresponding to

the kN vertices generated in this step.
Set K = K+kN

"Set N = N+1, if N K go to step 2.

All feasible vertices of S are obtained.
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The procedure conscructs a tree to the polyhedron S

with the following properties.

a) There is a one-to-one correspondence between the nodes of the
tree and the vertices of S i.e., for each vertex,

say X* we have a node i in the tree and vice versa.

b) The above mentioned tree is a spanning tree for the graph

formed by the edges and the vertices of the polyhedral set §S.

To confirm the property (a) stated above the following theorem _
is stated and proved.

Theorem : The algorithm above generates all the vertices of Si-

Proof : Let Xi be an arbitrary vertex of S ; it is required fo
prove that there exists a node in the tree corresponding
to X*. The graph formed by the edges and vertices of §
is connected, hence, there exists a path n that connects
X to X, Let (X°;x1) , (x1,x12). . (dr,xd) ve a1l the
edges of n in order. Xil is an adjacent vertex of x°
since all the adjacent vertices of Xoare generated so XiI

must be generated,. and corresponds to g node in the tree.

Repeating this argument it follows that i2, i3 etc., are nodes
: in the tree hence i must be a node in the tree,

The number of vertlces of the polyhedral set is finite:

a ready bound is Cmf iﬁ;ﬁlﬁ » but there are stronger bounds [2,5].

Hence the above algorithm terminates in a finite number of steps since a

vertex once generated is never revisited,

If S is unbounded, a condition that may be detected at the simplex step
when there is no positive pivot cf.p.16, then the following procedure is
suggested. Introduce the closed half space
Hi = am+l.l (-xl) * cecene * am*l'n ("Xn) +bm+l =0 (s)
and H.» 0.

such that all the vertices of S lie on the feasible side of H..



A
o

Define the polyhedron S.: Ax

H, 20 (6)

such that Sl is bounded. The algorithm can now be applied to find
all the vertices of Sl and if out of these the vertices for which
Hi = 0 are dropped all the vertices of S are obtained.

2.4.A worked example by ALGORITHM I.

An example due to Balinski [2.1] is solved by this algorithm.
The polyhedron and also the tree constructed in the process of

solutlon are illustrated in Figure 1 and Flgure 2. Table 1 1llustrates the

steps of the ALGOPITHA_l as related to ‘this. ‘problem.

Find all the vertices of a conVex polyhedron defined by
x) = 3(-xl) + 2(-x2) -1(—x3) +620
Xg = 3(-x1) + 2G-x2) + h(—x3) +16 20
xg = 3(-x)) + 0(-x,) - b(-x3) +3 20 : ' 1)
xp = 2-x) + blxy) + 3(-xg) +17 2 0 |

xg = (-xl ) + 2(-x2) +1(—x3) +1020

xl, x2, x3, .....£x8 Z20 .

The starting tableau is as follows

I L R G N
x), 3 2 -1 6
x5 3 2 b 16
x¢ 3 0 -4 3
x| 4 317
Xg 1 2 1 10

Tableau 4,0
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So X° = (0,0,0) is the starting node

(-xg) (x,) (-x) 1

xu -1
x5 ' -1'
1

X, %
*1 B
21

;) 3

o

2

3

wi= N wl»
O #"\\3 =

3

13

Xl =(1,0,0)

Tableau 4.1

) (=x) (=) 1

(—xl) (-xh) (-x3) 1
3 1 1
2 2 2 3
0 -1 5 10
3 0 -4 3
15

-2 -2
5 5 5

-2 -1 2 N

Tableau L.2

= (0,3,0)

% 3 7 1
SRS S
6 2 1 19

Tableau L.3

= (0,0,4)
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C(xg)  Cxp) (xp) 1
! 1 3 3
) 7 2 ) 7
X 0 -1 5 10
- 1 4
* 3 0 3 LR
5 - 35
%5 A 2 0 A
2 2
Tableau 4.4
X4 = (1,'3‘,0)
Cxp) o xp) (-x4) 1
X 2 3 1 7
2 8 10 10 2
15 _
x, 3 1 1 5
8 4 '
*6 0 "3 3 7
3 -2 1
%3 “ % 5 5 1
1 1 _2 ,
8 |72 "3 5 2
Tableau 4.6
7
x® = ©s> D)
(-xl) (-x7) (-xs) 1
15
x, = -1 1 5
3 1 2
*3 7 "3 3 3
4 8
%6 ¢ -3 3 15
2 3
2| 5 o 2
1 3 1
N 5 3
Tableau 4.8
8 = (0,2,3)

(‘X6) ("Xz) ("'X4)
21 2 1
X3 3 3 3
5 10 8
%5 3 =3 3
X -1 8 4
1 9 ) 9
5 ' 3
Xy Z 0 -2 ¢
x 4 4 -1 2
8 9 9 9
Tableau 4.5
X = %,0,1)
(—XA) (_xz) (—xs)
4 2 1
X 15 3 5
_ 1 1
%5 5 0 3
24 -9 3
% |”15 15
5 _3
321 0 3 7
< | -1 4 _ 4 ]
8 | 15 3 15
Tableau 4.7
7
x" = &,0,2)
(-x,) (-x,) (=x5)
x 4 4 _A
1] 15 15 15
1 1
31735 5 0
.8 4
'3 5 0 3
_3 2
) 0 10 5
x, | -4 -2 _8
8 | 715 15 15

Tableau 4.9
9 4,
X" = 65,2,2)
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ITERATION VERTICES N| K
NO GENERATED IN THE
NTH TTERATION
2 3
1 1 %, x ol 3
L .5
2 X, X 115
3 ¥ 2| 6
X7, B 3 {8
5 No vertex generated I 8
6 " " " 5 8
X9 6 9
8 No vertex generated| T 9
. 9 1] " 1" 8 9
10 n .. . 1 ” 9 9
Table 1

2.5. Branch and Exclude Algorithm: ALGORITHM II,

The algorithm developed in this section has been motivated by Balinski's
approach towards solving this problem. A summary of his method is set out
below. Let Hi corresponding to xn+i=°‘ i=1,2,...,m, be one of the m

constraint hyperplanes of the system of inequalities defining the convex
set S. ' '

Step 1 Pick a hyperplane Hi'
Step 2 Find all the vertices of S which lie on Hi‘
Step 3 Drop the inequality or half space requirement xn+.} 0

where xn+i=0 defines Hi‘
Step L Pick some other Hyper-plane H not slready dealt with

and continue as in Step 2.
The process terminates in a finite number of steps when m of the m+n half
spaces are dropped. Note that because the consiraints are relaxed (Step 3)
it is possible to generate the extreme points on Hj vwhich may not be extreme

points of S, This implies that in order to find all the extreme points of S
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some infeasible intermediate bases are generated.
The algorithm developed by the author is based on the following property

(assuming primal degeneracy does not occur) of the convex polyhedron:

all the vertices of S are contined in

(a) all the vertices of SnHi, . (8)
and ‘
(b) all the vertices of SAFH,. ' ‘ (9)

In the tableau representation of the feasible bases i.e. vertices of S
note that all the tableaus for which X ;=0 (non basic) represent vertices

on SnHi (8) and the tableaus in which X, is basic represent the rest of

+1i
the vertices corresponding to SATH. (9).

In the statement of the algorithm which follows,the condensed tableau due
to Tucker is used. As in the ALGORITHM 1 one starts from the Tableau O and

then constructs a tree of subproblems in the following way. Let X, be a

Q
variable that is chosen to enter the basis and let x be & varisble

n+p
in the pth row that is chosen to go out. The rule for finding the pivot
element qu is set out later under the heading of 'PIVOT RULE'. However,
carrying out the corresponding pivotal operation leads to two subproblems

Pl and P, emanating from Py

2
o¢ Find all the extreme poins of S

P .
Pl: Find all the extreme points of S in which x is non basic

q
i.e. these vertices belong to SMH (10)
Q
P2: Find all the extreme points of S in which X, is basic
q
i.e., these vertices belong to snrHr

q

x nonbasic P
r

Figure 3
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This therefore conhects Pl’ P2 to PO by the two branches of a bifurcating
tree. Out of P2 one may propose two further subproblems P3, P) by pivoting

~on a variable x_ .
re ‘
P3: Find all the extreme points of S in which X is non basic (xr. is

. t
forced to be hasic) i.e. these vertices belong to Snrurh Hr . 1
q t
Py: Find all the extreme points of § in which x, is basic (xr| is forced

t q
to be basic) i.e. these vertices belong to SnI‘Hr nTH

e Tt
The process is illustrated in Figure 3 and may be continued until no further
branchingis possible on any of the subproblems in the tree, at which stage

ell the vertices are generated.

'PIVOT RULE' Before stating the rule the following needs to be defined.
In a tableau a"variable that has already been chosen f&r branching is
called a'starred variable. Similarly a row in which a 'starred' variable
is pivoted iﬂ one branching step is called a 'flagged' row.

- Column Choice |

Choose out of the variasbles not 'starred' in a tableau a variable which
admits a row(out of the rows not 'flagged' in the tablea.u)with a positive
entry. Let this be column g and variable X,

= Row Choice q

Out of the rows not 'flagged' in the tableau find & row D such that

®p (B
“— % min —

F
g tF 8

tq

vhere F denotes the set of row indices which are flagged.

Having chosen this rov p x, 1is 'starred' and one branch of the tree is

q
generated and the other branch is obtained by a pivotal transformation and

the row p is 'flagged’.

The steps of the branch and exclude algorithm may now be stated,

Step 1  Start from Tableau O of section 2.2 as the first basic feasible
solution of the set of constraints. Set N=0, K=0,

Step 2.  Pick Tableau N from the stack of tableaus, go to Auxiliary step.
If a pivotal transformation is carried out set K=K+l Label new
Tableau K, add it to the stack of tableaus and g0 to Step 3. If
no pivotal transformation takes place go to Step k.,
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Step 3 Pick Tﬁbleau aumber K out of the stack and go to Auxiliary Step.
' If a pivotal transformation has taken place put K=K+1, label
new tableau K add to stack and go to Step 3. If no pivotal
transformation has taken place go to Step 2.
Step 4 Set N = N+1 if N> K go to Exit, otherwise go to Step 2.

Exit All the vertices of the polyhedron are contained in all the
basic solutions so far generated. Some of the basic solutions may

not be feasibie.

Auxiliary Step
Choose the column with the smallest index number q for which a
pivot & pa may be found by the 'PIVOT RULE' stated earlier.
Carry out a pivotal transformation and return to the calling step.
If no such column q and veriable x, cen be found no pivotal
transformation can be carried out. 'Return to the calling step.

In this section no formal proof of the finiteness of the steps of the

algorithm is supplied. However, ignoring the case where the polyhédral

set S is unbounded, the finiteness of the algorithm simply follows from the

exclusivity properties of (8).(9) and the adjacency property discussed in
Section 2.3.

2.6. A Worked Exampled by ALGORITHM I1

The problem due to Balinski [2.1]1is again solved in this section this time
by ALGORITHM I1I. The steps of the algorithm as related to this problem are
illustrated in TABLE 2. The tree developed by this method is illustrated
in Figure L, and the sequence of tableaus which are generated are set out
in Tableau 6.0 until Tableau 6.22.
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Figure k4
it indicates variable pivoted in basis and row 'flagged'
I X,

;¢ 1nd1¢ates varieble 'starred' and forced to remain non basic

T6-i y
stands for Tableau 6.1 corresponding to node i of the tree
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beration No,

The feasibility of the
Tableau

Row number that
is flagged in

Variable that is

starred in

. F=feasible iteration K iteration X N K
N=infeasible '

0 F No row flagged No variable sterred 0 0

, lf F Row 3 in Tableau 6.1 Xy in Tableau 6.0 O 1l
2 F. "o " 6.2 x, " 6.1 0 2
3 N "2 " 6.3 Xq " 6.2 0 3
[t N "5 " 6.4 Xg " 6.3 0 L
5 N "oy " 6.5 Xg " 6.4 0 5
6 F L | " 6.6 X, " 6.0 © 6
7 F "y " 6.7 Xg " 6.6 © T
8 F "2 " 6.8 x), " 6.7 © 8
9 N "3 " 6.9 Xg " 6.8 0 9
10 F "2 " 6.10 x, " 6.0 © 10
1 N "3 " 6Lx, Y 611 0 1
12 N "o " 6a2x, " 6.11 0 12
13 N " " 6.13 X " 6.12 0 13
14 N " g " 6.1k x), " 6.13‘ 0 1k
15 F "o " 6.15 x, " 6.1 1 15
16 F "2 " 6.16 X¢ " 6.15 1 16
17 N "oy " 6.17 x¢ " 6.2 2 17
18 N LI " 6.18 x,, " 6.17 2 18
19 N "2 " 6.19xg " 6,18 2 19
20 F "oy " 6.20 Xg " 6.3 3 20
21 - No pivotal No pivotal L 20
22 - transformation transformation 5 20
a3 - carried out carried out 6 - 20
24 N ' row 3 in Tableau6.2l x, in Tableau 6.7 1T 21
25 N "2 " 6.22 x, " 6.21 T 22

After iteration 25 N increases and K remains fixed
until N=22 when the search is complete.
—_ ;

Table 2
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(xp)  (R) G 1 (X  (x)  xp 1
x, [3.0 2.0 -1.0 6.0 x, | 1.0 -1.75  2.25  15.0
xg  |[3.0 2.0 4.0 16.0 ;S -1.0 1.5 -1.5 -9.0
x. 3.0 0.0 -4.0 3.0 x, [-1.0 2.0 -2.0 ~-l1.
x, [2.25 4.0 3.0 17.0 x; | 1.25 -2.0 0.0 8.7
xg |1.0 2.0 1.0 10.0 X5 | 5.00 -8.5 7.5 55.0
Tableéu 6.0 Tableau 6.4 }
x° = (0,0,0) x* = (-11.0,15.0,-9.0)
* * ’
(xg)  (x)  Cxy) 1 (x) Cx) Cx) 1
x, [|-1.0 2.0 3.0 3.0 %, | -8 -.15 2.25 8.0
X, 1-1.0 'ﬁ.o 8.0 13.0 E% 0.8 =10 =l.5 =2.0
x, {033 0.0 -133 L0 % | 0.8 0.4 2.0 ~4.0
x, | =75 4.0 6.0 14.75 x | 0.8 ~1.6 0.0 7.0
xg | -.33 2.0 2.33 9.0 x5 [-4.0 -.5 7.5  20.0
Tableau 6.1 Tableau 6.5 B
x! = (1.0,0.0,0.0) X° = (~4.0,8.0,-2.0) .
ety emy ok I KGR AN
x, |-0.5 0.5 1.5 1.5 x, | 1.5 -C.5 0.5 3.0
x. [ 0.0 -1.0 5.0 10.0 x5 | 0.0 5.0 -1.0  10.0
x | 033 0.0 -1.33 1.0 xs | 3.0 -4.0 0.0 3.0
x, | 125 -2.0 0.0 8.75 x, |-3.75 5.0 -2.0 5.0
- X% | 067 -1.0 -.67 6.0 xg [-2.0  -l.0 2.0 4.0
Tableau 6.2 Tableau 6.6 )
X% = (1,1.5,0) x® = (0.0,3.0,0.0)
Gy exp exp %) (x) Xy 1
% | -.30 0.8 0.5 ~=1.5 % | 112 0.3 0.1 3.5
%, [ 020 -2 0.0 20 x| 375 1.0 -l.0 5.0
%, | 0.27 ~0.27 0.33 3.67 X | 0.0 -1.6 0.8 7.0
%, | 0.0 -2.0 1.25 8.75 X3 075 -0.4 0.2 1.0
— %o | 0.67 -1.13 013 7.33 xg | =5 -0.2 -0.4 2.0

Tableau 6.3

x3 = (3.67,-1.5,2.0)

Tableau 6.7

% = (0.0,3.5,1.0)
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% * % % *
e ex) xp) 2 Cx (%) (x) 1
35 0.0 -.3 0.4 2.0 x,| 3.75  3.33 0.33 11.67
'§4 3.75 1.0 -1.0 5.0 '§3 0.75  1.33 0.33  5.67
x. | 6.0 1.6 -.8 15.0 x| 0.0 -3.33  -1.33  -6.67
%3 ] 0.75 0.4 -.2 3.0 x| 6.0 5.33 1.33  25.67
xg | 0.25 0.2 -6 3.0 xg| 0.25  0.67 -.33  4.33
Tableau 6.8 Tableau 6.12
x% = (0.0,2.0,3.0) x? = (0.0,0.0,5.67)
* ‘ _* % %

—_ (_x].) (—x6) ("'X7) 1 ( xl) -(-xz) (‘X4) 1 v
x, | 1.12 0.19 0.25 4.81 % 111,25 10.0 3.0  35.0
x, | 0.0 -.63 -5 =437  x[-3.0 2.0 -1.0 -6.0
x5 | 3.75 0.63 -5 9.37 %5 [ 15.0 10.0 4.0  40.0
%Xy [ =75 -25 0.0 -.75 % |=9.0  -8.0  -4.0 =-21.0

Cxg [ =50 -a12 -0.5  1.13 xg | 4.0 4.0 1.0 16.0
Tableau 6.9 Tableau 6.13
% = (0.0,4.81,-.75) x!3 = (0.0,0.0,-6.0)
* * * % *

: . (-xl) (—xz) (-xs) 1 (-xl) (—xz) (—XS) 1
X, | 3.75 2.5 0.25 10.0 x| =75 2.0 -3.0 -13.0 |
x| 075  o0.50  0.25 4.0 x| L0 2.0 1.0  10.0
x| 6.0 2.0 1.0 19.0 x5 | -1.0 -6.0 -4.0  =24.0
x, | 0.0 2.5 -0.75 5.0 x| 7.0 8.0 4.0 43,0
x, | 0.25 1.5 -.25 6.0 x, | 4.0 4.0 1.0  16.0

S : 4

Tableau 6.10 Tableau 6.14
x1° = (0.0,0.0,4.0) x* = (0.0,0.0,10.0)
* x * % x

— (_xl) (—xz) ("'x6) 1 ("x6) (-xz) (-X4) 1
% | 2-25 2.0 -.25  5.25 x5 1-0.33 .67 0.33 1.0
x3 .'0.75 0.0 -025 b 75 x5 1067 -'3. 33 _2-67 500
%5 | 6,00 2.0 1.0 190 xf -1l .8 0.44  2.33
X, | 4.5 4.0 0.75 19.25 x,| 1.25 0.0 -2.0  8.75

% 175 2.0 0.25 10.75  xg| .44  0.44 -.78  6.67

Tableau 6.11

Tableau 6.15
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Cx)  x)  Cxp 1 Cx) x) (x) 1
X3 | 0.20 0.0 -0.2 2.0 g3 0.40 0.0 -.30 2.0 |
% [ 0.60 -2.0 “1.60 3.0 x5 | 0.0 -.20 0.20 2.0
%, | 0.07 0.67 0.27 2.67 % -.27 0.27 0.27 1.33
x, [ =75 2.5 0.0 5.0 X 0.80  ~1.60 0.0 7.0
xg | -.27 1.33  -0.07 5.33 xg -~.53 -.07 0.13  2.67
—_“ Tableau 6.16 i Tableau 6.20
x'® = (2.66,0.0,2.0) %0 = (1.33),2.0,2.0)
(x) (%) (k) 1 L (x) Ry R 1
35 0.40 -.30 1.5 5.0 %, 1.12 0.5 -.13  2.62
x; | 0.00 -1.0 5.0 10.0 Xg 3.75 ~1.0 1.25 13.75
x [ -.27 +0.53 =-1,33 -1.33 %, 0.0 -2.0 1.25 8.75
%, | 0.80 -1.60 0.0 7.0 Xy -.75 0.0 -.25 -.75
_Xg | =.53 0.07 -.67 1.33 Xg -.50 -1.0 0.50  5.50
Tableau 6.17 Tableau 6.21
xt7 = (-1.33,5.0,0.0) ¥l = (0.0,2.62,-.75)

] xRy Ry 1 %) (%) @ 1
x| -2.0 4,50 -1.5  1L.0| %, 1.5 0.40 0.1 4.0
X | -8.0 15.0 =5.0 30.0 Eg 3.0 -.80 0.8 11.0
x| 4.0 -8.0 4.0 -12.0] “§7l -3.75 -1.0  -1.0 -5.0
X |-12.0 240 -16.0 39.0] X, | 0.0 -.20 0.2 2,0

_%| -8.0 15.0 -10.0 ‘20;0 38 -2.0 -.60 -.4 0.0

' Tableau 6.18 Tableau 6.22
%8 = (-12.0,11.0,0.0) x*2 = (0.0,4.0,2.0)

G G S I G S |
%] 0.40 -3 0.0 2.0
%] =53 0.07 -.33 2.0 ‘

R -2 053 133 4.0
%| o0.80 -1.60 -8.00 -9.0
--.E§ﬂ 0.0  -1.00 -5.0 =-10.0

Tableau 6.19
xt° = (4.0,2.0,0.0)
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2.7. Discussion

Both these algorithms have been programmed by the author in
FORTRAN IV; the programs have been run to solve small
problems using the ICL 1903A computer at the University.‘
The times taken to solve the test problems depend on the
core partition used and are not quoted here. However, one
pertinent comparison between the two élgorithms should be
mentioned. Two of the problems solved by these algorithms
may be quoted; these are of dimension 15 x 11 and 30 x 25.
For the smaller problem the ALGORITHM I is faster than
ALGORITHM II and vice versa. Finally it should be mentioned
that thesé.algorithms have been developed to use them as tools
in investigating other Mathematical Programming problems.
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CHAPTER THREE

The Linear Complementarity Problem

3.0 Summary

This chapter contains & brief review of the work done to solve
the problemw = q + Mz, w 2 0, z 2 0, and sz = 0. An algorithm
developed by the author to solve this problem is also described
in this chapter. Unlike any other known algorithm this
algorithm makes no assumption concerning the nature of the
matrix M and finds all the solutions of the problem if these
exist. If no solution exists to the problem then this can also

be established by this method.

3.1  Introduction

Consider the linear complementarity problem,

w=gq + Mz (1)
w, 220 (2)
2w = 0 (3)

W and z are vectors of n variables, q is a given n‘element
vector, M is a given nxn matrix, and the superscript T denotes
tranSpositi_on. The above problem involves 2n variables,
restricted to be non-negative, where (wi, zi), is= 1yeee,n,
18 a complementary pair; and Wi and zi are complement of one
another,

The special cases of linear complementarity problem are liﬁear

~ &nd quadratic programming problems, the problem of finding
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equilibrium points in bimatrix gemes and some engineering problems;

for these and other applications see [3.6].

The two prominent methods of solution for the problem (1), (2), (3)
are the principal pivoting method and Lemke's method. The method
proposed by Lemke can be considered to be & generalization of
Dantzig's self-dual parametric method (see [3.7], and its
generalization for convex quadratic programming. This motivated
S.R. McCammon [3.15] to develop his parametric pivoting method.
Lemke has proven that his method finds a solution to the problem
or else the solution comes to an unbounded ray and there is no

solution to the given problem if M belongs to a class of matrices

called copositive plus.

The principal pivoting method was developed by Cottle and
Dentzig [3.6]. This method is applicable to the matrices,
which have positive principal minors (in particular to positive
definite matrices). The modified form of principal pivoting

method cen be applied to positive semi-definite matrices.

The method of solution of the problem (1), (2), (3) is

generally dependent on the matrix M. In section 3.2, therefore,
after introducing the relevant notation, some properties of
Pivotal transformation and different types of M matrices are
considered. Section 3.3 contains brief descriptions of Lemke's

method, principal pivoting algorithm, and some remarks on other

DProposals based on Lemke's method.

Lemke's method and the principal pivoting method mey not
produce the solution to the problem (1), (2), (3) even if
8uch a solution exists; section 3.4 illustrates such a situation.



The method proposed by the author is then put forward in this

section. Section 3.5 contains some remarks on the computational

experiences of the author .

3.2  Some Preliminary Notation and Mathematical Background
3.2.1 Notation

Let R™ genote the set of nxn matrices with real coefficients,
let M ¢ R, M.. and M., denote the ith row and the ith colum
i

of M and ms s @enote the elemen# of M in row iTand column j.
Further, let e denote the sum vector (1,...1)" ¢ R™X! gng e
denote the unit vector whose ith component is unity and the
other components asre zero. The bar above a variable (say Eﬁ or w.)

. J
denotes the explicit value of the variable.

3.2.2 Tableau Representation and Pivotal Transformation

In (1), the components of z are nonbasic variables, while the
elements of w comprise the basic .variasbles. A solution of

problem (1) is any pair (W,Z) satisfying (1).

If for some Z 2 0, w = q + Mz 2 0, then the pair (¥,Z) provides
a feasible solution to the problem (1), i.e., a solution which
satisfies (1) and (2). A solution of (1) satisfying (3) is a

Complementary solution.

If every solution (W,z) of the problem (1) contains not more
than n zero components among the 2n variasbles (w,z), then the
problem (1) is nondegenerate. In the present discussion only
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such nondegenerate problems are considered.

Assume that the element

mijxo :

then using the element m; 5 20 a "pivotal transformation"

may be carried out on the form

w=gq+Mz . (ll)

This transformation consists of

(a) solving the ith equation of (4) for the variable 25’
this requires dividing by the pivot element mij .
(b) replacing z4 by the resulting expression in each of the

remaining (n-1) equations.

Upon completion of a pivotal transformation, zj becomes basic,
while w. becomes nonbasic. (wi,zj) is the pivot pair, and by
specifying that this pair must be exchanged, the pivot is
completely determined. The result of a sequence of pivotal

transformations after t steps may be expressed as
t t t t
w =49 + Mz ’ (5)

where wt denotes the set of basic variables, while zt denotes

the set of nonbasic variables.

For completeness of notation the result of carrying out one

pivotal transformation is summarized below. Given the tableau -0



1 —zt —zt -zt
1 2 °* n
t t b _t .t
wt b -mt —mt -mt
2 9 21 22 *°* T2n Tableau -0
b & -mﬁ -mt ~m
Vol %4 nl n2 nn

The next tableau is constructed by the following relationship:

it

1) (af ) = (D))

B4y, _ byt .
ot t t ,
“m,. ) =-(-m, .)/(-m;.) 1< S
3) " (-mps ') = =(-my;)/(mg) n g
' 41y by _ byt oyt P
o t+1 . .
5) Replace the variables such that W; 18 the variasble in the

. . +1 . . .
ith row (z? is rensmed) and zg 1s the variable in the Jjth

column, (wg is renamed).

3.2.3 Some Different Typesof M Matrix [3.1,3.11.3.15]

Definition: A positive matrix M is a matrix, such that:

mij > OfOI‘ i. = 1’ soey n and j = 1, sesgy n. Simil&rly non"negative

and negative matrices can be defined.
Matrix M is said to be 'skew-symmetric' if

M= M.
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Lemma: A necessary and sufficient condition that a n x n

matrix M be skew-symmetric is that xTMx = 0, for all values

of the vector x e Rn.

Definition: A n x n matrix M is positive”definite (pésitive
semi-definite) 11‘.‘ and only if, for all vector x e R xzo

the relation xMx >O(xMx >O) holds.

Lemma: Let M be a n x n positive semi-definite matrix, then m.. 20

for all i»(i = 1, cae, 1)} ;f m,. = 0, then mij =‘-mi.j for all

j’(j=1, ooo,vn)
From the above mentioned Lemma it is deduced that, if M is

positive definite matrix; then m,. > 0 for all i(i=1, ..., n).
It is well known that a matrix M can be written as:
= 3+ M) + (D) = B+ C,

where B = %(M + M ), = %(M—MT), in which B is symmetric and C

is skew-symmetric. Now consider

MxT = x(B + C)xT = xBx® + xCx = xBxT,

since xCx = 0, therefore a matrix M is positive definite (positive
semi-definite), if and only if its symmetric part is positive

definite (positive semi-definite).

Definition: A square matrix M is sa.ld to be a co-pos:n.tlve matrix

if and only if x 2 0 1mp11es that xMx 2 0,

Definition: Co-positive plus matrices are co-positive matrices

such that:

x 2 0, and xMx™ = 0, implies that (M + MT)x = 0.
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" It is obvious that the class of co-positive matrices’ includes the
class of positive semi-definite matrices, and the class of
strictly co-—pos:.tlve matrices 1ncludes the class of positive
matrices. If M is co-positive plus and S is any skew—symmetnc

matrix of the same order, then (M + 8) is co-positive plus. Block

matrlces

A. M2

- J

are co-positive plus if and only if M, and M, are co-positive plus.

Definition: A P-matrix is a matrix M having the property that;

each of its principal minor is positive.

. When M is a square matrix, say n x n and Ic{1, 2, ..., n},
then M . is called a principal submatrix of M, and its determinant

is called a principal minor of M.

Definition: The n x n matrix M is said to be adequate if

(i) det (M) 2 0 for all Icit, 2, ..., n};

(ii) ir det(MiI) = 0 for some Ic{1, ..., n},

then the columns of M. 7 are llnearly dependent ;

(iii) if det(MII) = 0 for some Ic{1, 2, ..., n}, then the rows

of M, are linearly dependent.

Theorem: if M = NBNT, and B is positive definite
then M is adequate. |

Theorem: A non—singula\r matrix M is adequate if and

“only if, it has positive principal minore.
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Definition: The diagonal Matrix E, of order n, is a sign-changing
matrix, if e =+t for each i = 1, 2, ..., D,
It therefore follows that if E is a.sign-changing matrix E2 is an

identity matrix.
Theorem. If M is adequate, and E is a sign-changing matrix of

the same order, then. EME is an adequate matrix.

3.3. A Brief Review of Lemke's Algorithm and Principal Pivoting

Algorithm

3.3.1 Lemke's Method [3.11]

Consider the Fundamental Problem (1), (2), (3) and let L denote
the set of solutions, K the set of feasible solutions, and C
the set of complementary feasible solutions. It is clear that
CcKcL (5)is a basic form which is unique once the basic
“set w' is specified. A pivot on (5) yields an adjacent basic
form; i.e. a basic form whose basic set differs only by a

single varisble. These basic sets are said to be adjacent. The

basic point associated with (5) is the unique point ("'t t)‘(qt,o)
" which has exactly n zeroes, since L is assumed to be nondegenerate.

Any solution of (1) containing exactly n zero components is a

basic solution. Two basic solutions are adjacept if their basic

sets are adjacent.

A 'basic line' through the basic point associated with (L) is the

set of solutions to
t t )

for some fixed j. Points on a basic line have either n or (n-1)
t
‘zero components. If in (6) some value of zJ m:kes & component
of‘wt zero, the corresponding solution has exactly n zero components

and hence is & basic solution and in fact en aijacent solution to
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the basic solution (ﬁx,ix) = (qt,Q).(6) can be written as

t t
N B LN (1)
2 0 ej

via[Fl+g]?

z Z .
In order that the resulting solution should satisfy (5) for all 6,
the following relation must hold

=M, . . (8)

and- (V,U) has at least (n-1) zero values.

If qt > 0 in (5), then (5) is a basic form having a basic feasible
point. If in one pivot step it is possible to move from one basic
feasible point (where 2% = 0) to an adjacent basic feasible point

vhere z§‘= E# then the solutions to (6) are feasible on the

interval. 0 < z? < E?, and this set of solutions forms a bounded edge
of X, such a pivot step is called a 'feasible pivot'. The end

points of this interval are adjacent extreme points. If no

feasible pivot is possible from a feasible basic form (5) for z?,

then -M ¥ < 0 and the set of solutions to (6) for zg > 0 forms ’

an unbounded edge of K.

A 'feasible pivot algorithm' is a succession of 'feasible pivots',
which defines an adjacent extreme point path in K. A'proper pivot
algorithm'is a pivot algorithm for which no basic set{appears
twice and hence must terminate in a finite numver of pivots; the
- corresponding basic forms are called 'proper feasible forms'.

Complementary pivot schemes

Two of the three possible pivotal schemes are zonsidered under this

heading.
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Scheme I Let z; be a scalar variable, and €' > 0 a column with

positive components, and let L' be the set of solutions to
=q + zge' + Mz = q + Az , o (9)

' z o ,
vhere A = (e',M), and z = [ zo J. Therefore, nonbasic sets in

(9) have (n+1) components.
Let K' be the set of feasible solutionsto (9) and C, De the subset

of XK', such that if (w,z) € Cys then

sz =0 .

The algorithm creates a succession of a proper feasible basic forms

contained in Cos whose basic points consequently satisfy (3).

If g > 0, then the solution to the Fundamental Problem is trivial,

therefore assume that some components of q are negative.

Consider the problem (9) on the first pivot Z, is increased until

for the first time w = g + zpe' 2 0, and

v, =minfey +zpef , i=1, ...}, (%)
becomes zero. The first pivot is defined by the pivot pair

(wr9zo) ’ (]0)

this leads to the basic form

t_ t, bttt . '
=q +tAz q >0, (1)

for ¢t = 1, a single nonbasic complementary palr»(wr,z ),
and the basic feasible points satisfies (3). 1If z,, the
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complement of #r is increased in (11), the condition (3) continues
to be satisfied. If a pivot step which makes 2., basic can be made
this becomes the second step and leads to the feasible form (11),
for t = 2. If such a pivot step cennot be made, the seqnencé is
terminated. In general suppose for t 2 1 pivot steps have led to
the feasible form (11), and suppose that (3) is satisfied for all
the basic feasible points generated. If z;, is nonbasic, a
complementary solution has been found and the sequence terminates.
If z; is still basic, suppose that the variable that has become
nonbasic on the t'B pivot is one of the complementary pair (ws,zs),
further condition (3) holds, therefore both components of this
peir asre nonbasic. The complement of the variable which has become
nonbasic needs to be increased. .Either a uhique (t+1)St pivot
step is thus specified, or the sequence is terminated. This

completes & description of the scheme I.

It can bé easily shown that the scheme generates a sequence of proper

basic feasible solutions, that is no basic set occurs twice.

Scheme II. In this case it is assumed that M has a positive column,
and as before some components of q are negative. For convenience,
let the first column of M be positive. Then increasing z, defines
& unique first pivot determined by the pivot pair (wr,zl) for

some r, leading to the basic form:
wt = qt +.Mtzt, qt >0, (12)

vhere t = 1. This has'g Basic solution in which the relation

v T i | o)

s 1]

i=1

holds. Now let C. be the set of points of K satisfying (13)

1
and known &s 'almost complementary points'.

~ Entirely analégous to scheme I, scheme II involves, pivot steps
in which condition (13) is satisfied. This defines a proper



- b5 -

sequence of pivots. In a way similar to scheme I it can be shown [3.11]
that, the sequenée terminates either in a complementary solution or ‘
in an unbounded edge distinct from EO, where E0 is an:unbounded edge
generated by increasing z; in schemg I and z, in scheme II. For a

a discussion of third possible scheme see [3.11].

Theorem. Let M be co-positive plus, then Lemke's method terminrates
either in a complementary basic feasible solution or leading to the
conclusion that for ﬁhe given q no feasible solution exists.
Theorem. If M is strictly copositive, Lemke's method terminates in

a complementary feasible solution for any gq.

Theorem. If M is a P-matrix, Lemke's method terminates in a

complementary feasible solution fpr'any a.
B.C. Eaves in [3.9lhas shown that Lemke's method processes (*)
linear complementarity problems for M € £ where £ is & class of

matrices which properly includes

(i) . co-positive plus,
(ii) - adequate matrices,

(iii) vimatrix game matrices.

He also has shown that-

1) IfMe £, and the systemw = Mz + q, w,z 20 is feasible and
| nondegenerate, then the correspohding linear complementarity
problem has an odd number of solutions besides; if M e £

end q > O then the solution is unique.
2) If for some M and every q > O, the linear complementarity
problem has a unique solution, then M € £ and the problem

with M and every g has a solution.
3) If M has non-negative principal minors, and if the linear com-

plementarity problem with M and q has a non-degenerate

'complementary solution, then the solution is unique.
L) 1f oMz + qu is bounded from below on the set z 2 0, then

'Lemke's method leads to a solution to the linear complementarity
problem with M and q. If, in addition, tks problem is non- |

degenerate, then it has an odd number of solutions.

(*) solves or shows no solution exists.
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' 5) By using Lemke's method it is possible to find the saddle
point for general quddratic programming or to demonstrate
that the objective function is bound from below in the
feasible region. ‘

6) 1If a quadratic program has an optimal solution and if a
certain nondegeneracy condition holds, then a quadratic

program has an odd number of saddle points.

K.G. Murty in[3.12]has shown that, the number of solutions to the
linear complementarity problem is finite for all q e R® if

and only if all the principal minors of M are non-zero. The
necessary and sufficient condition for this solution to be

unique for each q € R® is that all the principal minors of M

- are strictly positive. When M 2 O, there is at least one
complementary feasible solution for each q € R® if and only if

all the diagonal elements of M are strictly positive,‘and in

this Ease, the number of these solutions is an odd number whenever
q is nondegenerate. If all the principal minors of M are non-zero,
then the number of complementary feasible solutions has the same
parity (*) for all q € R° which are nondegenerate. Also if the
number of complementary feasible solutions is constant for each

a € R, ‘then the constant is equal to one and M is a P-matrix.

: : »%
3.2 Principal Pivoting Mbthod(- £3.5]

To describe the method it is first necessary to introduce the
concept of an almost complementary path and that of a blocking

variable.

(*) If r is any integer, its parity is said to be odd if r is an odd
integer or even if r is an even integer. A set of integers is said
to befof constant parity if all the numbers in tae set havé the same
perity.

(¥*) Tnis method is applicable to matrices, M, *hat have positive
‘Principal minors, and after modification to posizive semi-definite

matrices.



The former is defined as any sequence of solutions through 'almost
complementary points' (see (13) page 4l ). ‘In & tebleau & basic
variasble is said to be a blocking variable for a nonbasic variable
vhich is being increased to a positive:value and the former,

"~ i.e. the blocking variable, happens to be the first varisble to

become zero.

In principal pivoting only varisbles of the original problem are
used, but these can take on initially negative as well as non-

negative values.

A mejor cycie of the aléorithm is initiated with the complementary
basic solution (w,z) = (q,0). If q 2 O the procedure is immediately
terminated. If q $ O, it can be assumed that v, =g, <0. An
-almost complementary path is generated by increasing Zys the

complement of the selected negative basic variable.
For points along the path w.z, = o, for i = 1 .

Step I. 1Increase Z4s until it is blocked by a positive basic
varisble decreasing to zero or by the negative v increasing to

zero.,

Step II. Make the blocking varieble nonbasic by pivoting its
complement into the basic set. The major cycle is terminated

ir w, drops out of the basic set of variables, otherwise return

to step I.

It can be shown[3.11lthat during a major cycle v, increases to
zero. At this point, a new complementary basic solution is
obtained. However, the number of basic variables with negative
- value is at least one less than at the beginning of the major
cycle., Since there are at most n negative basic variables, no
more than n major cycles are'required to obtain a complementary

feasible solution.
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3.3.3 Some other Methods which are Equivalent to Lemke's Method

MacCemmon's Parameteric Method [3.15]

In Lemke's method, z;, is introduced as a new variable. In the
complementary terminal solutions (original and final) it is an
independent varisble i.e., nonbasic, which in the intermediate
tableau it is a dependent basic variable. Associated with z,

is the vector e'. This column is associated with a parameter
which in Lemke's method determines the path of the solution.

In this method zy is replaced by a scalar parameter 0. Consider

the system

v =g +ee! +MZ, S (1k)

- where e{ 201if 4 > 0 and e, >0 if q; < 0 for i=1, «u0y 0.
A pivot algorithm is now described which is dependent upon the

parameter 9.

Let B0 = min {6]q + 6&' 20, 6 2 0}, If B = 0, then q > O

end the basic point w = q + T'e associated with basic form (1k4)
Pprovides a solution to the Fundamental.Problem. If 8% > 0, then
Q. + 90 e; = 0 for some f, 1 £ r < n., Assuming nondegeneracy,
this value of r is unique. If m.. * 0, then V. is made nonbasic
and z, becomes basic by one pivotal transformation in which o
is the pivotal element. If m, . = 0, the first pivot is given

by the pair (ws,zr), where -m. > 0 and
Bla? - = i B0a: - - . s .
(g + 8%!)/(-n_ ) pln{(qi+ 8%})/(-m, )| m >0 ,1sis<n};

however, for m..= 0if -m, <0 for all i, then the algorithm

terminates.
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In the general step consider a basic form
g ettt sy

then either (15) satisfies complementary condition, or it is
not complementary. In the former case, consider the set

{o | qt +0e?
terminate the procedure. If this set is non-empty, then 6
has a minimum and a maximum in this set, call these I{t) and S(t),
respectively, and it follows that 0 < I(t) <S(t). If I(t) =
egain terminate this procedure. The basic point corresponding

>0, 620}, and if this set is empty, then

to (15) then provides a solution to the fundamental problem.
Assuming‘that this is not the case, then if S(t) = =, the
variable which leaves the basis is the unique basic variable
which is zero in (15) and 0 = 'k = I(t), and the variable athich
is ;ts complement is made to enter the basis. In either case

t

suppose wrt is the variable which leaves the basis, and 2z~ is

the variable which enters the ba51s. If (-m ) # 0, it is the

pivot element and the palr (wr 32 ) spec1f1es the exchange.
If (—m ) = 0 and (-M t) <0, termlnate the procedure. If (—m )
and (-m ) > 0 for some 1 < i < n, the pivot element is (-m.p )

vhere (-m.p ) > 0 and

(qp+ [} e't)/( n %) = min{q, +§ e't)/( -m, )l >0 1sis<n} .
This completes a brief description of the algorithm.
Complementary Variant of Lemke's Method [3.16]

In this algorithm proposed by Van de Panne [3.16]

2y (the artificial varisble is introduced in lemke's

method) and certain nonbasic variables are varied as parameters.
This results in a method which is equivalent %o Lemke's method.
This method has complementary tableaux and uses principal (single
or block) pivots and therefore is called compismentary variant
of Lemke's method. In contrast to Lemke's meihod, this method



=50 ~

explains, in certain sense, the veriation of z, and the other
veriables. Furthermore, since complementary tableaux are used
throughout, a better insight is gained by this method end the

various possibilities of termination.

The main advantage of this veriant is thought to be in infeasibility
test, which mey be performed on each row. A particular instance
of such a test is shown to be the 'plus' condition of the

co-positive plus matrices.

3.4 Branching Procedure For Solving the Linear Complementarity Problem

It has been pointed out earlier principal pivoting algoritﬁm can
be applied to solve the Fundamental Problem only if M is positive
definite, or more_geherally when M is a P-matrix. Further a

nmodified form of this method can be used to obtain a solution to

the Fundamental Problem if #he'gystem
w=gq + Mz ,
z20,w=20 s

has & solution and M is positive sémi—definite.

If Lemke's method is applied to solve the Fundamsntal Problem,.

and the procedure terminates in an unbounded ray snd M.does

not belong to the class of &£ matrices, in this case the method
does not provide any information concerning the solvebility of

the problem. For an illustration consider the problem, stated

‘below:
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Example 1.

+ 3z2 - 2

=
(]

10‘— 2z1 3

w2 -1+ z1 - 2z2 + z3-

fl

¥y 3z 2z, + 3,

‘ w1,w2,w3,z],z2,z3 20

wizi =0 (i=1,2,3) :

\

Note that in this case the matrix

-2 3 -
M= 1 -2 1 .
-1 2 3

'is'not a P-matrix, therefore principal pivoting method cennot
be applied to solve this problem.. '

Now Lemke's method is applied as follows:

- i : i i
| v, = 10 + 2y ~ 2z, + 3z, 23

J Wy = =1 + z5 + 24 ~ 222 + zg
wa = 3+2z) - z1 + 222 - 3z3

In tableau representation this can be set out in Tableau 4-1,
in this tsbleau z; is set to 1 following the ratio test of (9a).

1 ~Z -z1 —22 -z3
W 11} -1 2 -3 T
?é 0 -1 -1 -2 -1 Tebleau L-1
w3 k ~1 1 -2 -3




~'.—S2—

1 fwz =2, ~Z, -z3
v, 11] -1 3 | -5 P ' Tableau 4-2
z, 1 | -1 1 | -2 1
Vs b -1 2 -4 -2

In Tableau L4-2 z,

and cannot be made & basic variable taking non-
negative value. Therefore the procedure terminates in an

is the complement of varisble wg,'

unbounded ray. This means neither Lemke's method nor principal

pivoting method can be used to establish the solvability of the
problem.

It is shown later on that this problem has the following feasible

solutions. '
4 3 . 3 W
‘ ( 17 [ 0 ré% ( 0
z' = 8 w'=1|0 and z" = 0 w"' = é%
I
.0 2 ' r— 0
. J L J ‘ ’ ' 3 7 J . \ J

N

In Lemke's method.the components of the artificial vector do not
necessarily have to be unity. Therefore by suitable choice of
these components different paths of domplementaiy solution may
be followed, this idea is illustrated later on in this section
by means of two examples. One mey then naturally ask if by
following such possible paths a complementary feasible solution
mey be obtained to the problem if it exists, By means of the

following examples it is shown that this assumption is invalid

in the general case.

Consider the problem in the following example
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Example 2
| = + 4
LT 2v+ 2z1 2y = 3z3 z),
v, = -4 + 10.z1 * 2, - 2g +z)
w3 =_3 - z1 - 222 + zj - 2zh

+ v), =-6 + 20z1 +.322‘- zy = 32h

Wi 2 0, z; 20 (i=1, ..., W)

By introducing z, as an artificial variable where o' = (1,1,1,1)

the problem becomes:

( » . .
w] = 2+ Z, + 2z1 -z, - 3z + hzh

2 3

L
]
|
=
+
N
=)

+ 10z1 + 22 - z3 + zh
v, = 3+32, -2, - 2z2'+ z3 - 2zh
+ 2Oz1 + 322 - z3 - 3zh

w; 20,12, 20, énd z;w, =0 i=1,2,3,h4

1 ~Zy -z1 -z2 -z3 -zh
v, 8| -1 -2 1 3 -4
o| -1 | -10] -1 1 | -
Y2 , ! Tableau 4-3
-1 1 2 | -
w3 9 1 2
v, o] -1 | -20| -3 1 3

- In tebleau 4-3 z; is set to 6 to make a5 + eéz9 = 0 (see 9a).



N TR N Y
Wy 8| -1 -7
v, | 2| -1 -h
V3 91 -1 | not | up |dated -1
z, 61 -1 -3

Tebleau L-U4

In tebleau 4-k, z), cannot be made basic variable, therefore

the procedure terminates in an unbounded rsay.

Now chodse e'" = (1,3,1,2), the correspondi-ng representation

tebleau is shown in Tableau L-5:

1 ~Z, ~%Z4 -22 —23 —zh

v, 0] -1 | -2 1 3 | -4

' v, o | -2 | -10] -1 1] -1

w3' 11 | -1 1 2 | -1 2

wh 10 -2 -20 -3 1 3

The value of Zg in tableau 4-5 is 8

1 ~w2 -z1 —22 -z3 -zh

w1 10 -2 18 3 1 -2

z, 8 | -2 20 2 -2 2

w 1 -2 21 4 -3 L

3
1 -3 7

V), 10 -4 20

Tableau 4-5

Tableau 4-6



z, is the complement of the variable Voo which is made basic

in this step. The procedure is then followed until Tableau L4-9.

1 —w2 -z1 -w_3 --z3 ~zh
T -3 91 .3} 1371 .
Vil ¥ 21 ¥ 3| T >
: 10 38 2 1
/ -5 -1 = -7l -5 0 ,
0 4 4 4 e Tableau 4-T
11 _r 21 1 _3 1
2l T} 2| ¥ | ¥ N
2 S - - R S -
Zy "% 2| % I 1
1 vy | —24 —w3 -w1 -2,
23 -’-1%- not % not‘ 113; not
| B 28w | -2
0 13 13 e Tableau 4-8
22 -lL% dated| % dated] -% dated
110 212 _9
YW1 13 13 N
1 Wy | % -w3 -, -z),
n
23| 32
2
z, 32 not | up | dated
' Tableau U4-9
|
23| 32
w | 12
h 32




So the solution is

4 9 ' r )
9
0 32
kg
0 el
w o= zZ = 32
N 1]
0 32
124
| = 1° :

In another Example (see below) it is shown that all the possible
paths lead to unbounded rays.

Exemple 3

R T A S h?h

v, = -b -z, * 2z, - 23+ gy

+ Z3 - 221!

w3 =.3 + ?2 - 22

1 2

), = -6 + bz, + 3z, - 23 = 3z,
. wizo’ ZiZ_O, wizi=0f0r 5.11 (i=1, LI "").

First Z, is introduced with corresponding column e'T = (1,1,1,1),

80 the problem can be written as:

r

P
"

2+ 3z +22, -z, - 3z3 + hzh

w, = -b + 2

2 0 " % + 2z2-— 23 + Z,

+ L = 3+ z, + 2z1 - 222.+ Z3 - 22h

'Vh .—.-.' -6 + -ZO + ’-l.z‘l + 322 - 23 - 3zh

w, 20,z 20, vz =0 (i=13, ..., 04)




5T =

1 -zb ~z, ~Z, —z3 =z

L 8 -1 | =2 1 3 -4

w2 2 -1 1 -2 1.1 -1

w3 9 -1 -2 2 -1 2

vh 0 "‘1 "ll- "'3 1 3

In tableau (4-10) 20 is set to 6.

My TR TP TR TRy

v, 8 -1 0 L 2 -7

w2 2 -1 3 2 ¢} -k

vl 9 | -1 0 5 | -2 | -1

‘ z, 6 -1 _h 3 -1 -3

Tableau 4-10

Tableau 4-11

Z), is the complement of the variable W), and cannot be made basic

variable, therefore the procedure terminates in unbounded ray.

Now if the column associated with the artificial variable is

- introduced as e'? = (1,3,1,2), and Lemke's method is applied,

the following tableaux are obtained

1 ~Z, -z, -22~ —z3 ~Zh
v, | 10 -1 -2 1 3 ~h
v,| © -3 1§ -1 1 -1
w3 11 -1 -2 2 -1 2
wh 10 -2 ""4 "3 1 3

Tebleau 4-12
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In tablegu h=12. the yalue of Zq is 8. ¢
1 —w2 -z] —22 -23 -zh

v 10 -2 | -4 3 1 -2

Z 8 -2 -2 2 -2 2
0 . Tebleau 4-13
V3 11 -2 -} L -3 Y
wl‘ - 10 "h ""8 1 -3 7
3 -w2 —-z1 -w3 --z3 -zh
_ 3] 13
V‘I 1 N T not
2 2
2 not up 0 - - up
, 0 g J Tableau h-1k
22 © datled -1 ' )} -1-3: dated
- L
i T Y Y
1 W, | -2 T B B
_ ¥ ¥
23 13 13
z, [ not up -1-§- ‘not | up 1%
~ Tebleau 4-15
- 19 3
22 datled 13 d%ted 13
TN 9
i1 13 13"

. 21, the complemenf of the varisble w1 cannot be mad'é & basic
varisble. Again the procedure terminates in unbounded
rey. It can be seen that this problem has a complementary
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feasible solution and it is «

( b 3
o | (1}
19
0 T
w = z =
; 3
0 7
Eg- 0 [ ]
|7 )

Since these two well-known methods and their variants may fail

to provide a solution to the lirear complementarity problem in the
‘general case an alternative algorithm is suggested. This algorithm
is based on an algorithm proposed by the author for finding all

" the vertices of a convex polyhedron (see 3.11 G.R. Jahanshahlou

and G. Mitra). This aslgorithm generates only a small subset of

all the vertices of the problem defined by (1), (2) and further
this subset contains all the solutions of the linear complementarity
problem. The generality of the procedure is attractive in as much

&s it makes no assumption about the problem matrix M.

Before stating the algorithﬁ the following terms are defined.’

"Kilter number", K, is the number of complementary pairs of
variables which are in the basis. '

A variasble is said to be "starred" if in all the subsequent
tableaux it is forced to remain non-basic, similarly a variable
end its associated row is said to be "flagged" if in all the

subsequent tablesux the variable is forced to stay in the basis.

The steps of the algbrithm may be stated as follows:

- Step 1." Apply the phase I of the simplex method to the system

w=q+M,220,w20, (16)
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to find a basic feasible solution. If there is no basic feasible
solution to (16), then there is no solution to the Fundamental
Problem, and go to step 5, otherwise number the tableau associated
with the basic feasible solution Tableau -0, set N =0, L = 0,

KL = K (KL is the kilter number inlthe current tableau).

Step 2. Pick tableau N from the stack of the tableaux, go to
auxiliary sequence. If a pivotal transformation is carried out
set L = L+1, number the new tableau as tableau L, and add it to
the stack of the tableaux and go to step 3. If the auxiliary

sequence ends in the terminal step, i.e., step f, go to step L.

Step 3. Pick tableau L, out of the stack, go to suxiliary
sequence. If a pivotal transformetion has taken place put L = L+1,
number the new tableau as tableau L, and add it to the stack of
the tableaux, go to step 3. If the auxiliary sequence ends in the

terminal step, i.e. step f, go to step 2.

Step 4. Set N = N+#1, if N > L go to step 5. If N S L and the
tableau N is marked, go to step 4, end if the tableau N is not
marked go to step 2.

Step 5. Tree search is completed.

Auxiliary sequence

In this sequence if possible a pivotal transformation is carried out

on the given tableau.
The first three steps are for column choice.

Initial step. If the kilter number of the tablesu is zero goto step a,

othervise goto step b.

Step a. Out of the "nonstarred" nombasic variatles choose & column q

Wwith variable z, or w_vhich admits a row i (i ¢ F where F ig the set
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of row indices which are flagged) with a positive coefficient,

i.e. Mg > 0. Go to step c, otherwise no pivotal transformation
can be carried out and go to terminal step f.

Step b. If in the given tableau there exists & pair of nonbasic
complementary variables, which are starred no column should be
chosen and go to terminal step f. If this is not the case define

two sets of column indices

Q, = {1,2 with one unstarred variable z_ or w_ and z_,w
1 r r r’'r
both nonbasic}
Q, = {2|% with unstarred varisbles z.,%, and both nonbasic}

i) choose q ¢ Q1 such that the associated variable z, or v

can be made basic, i.e. it admits a row i, i ¢ F and

—miq > 0, and go to step c. else,

ii) choose q € Q2, such that the associated variable Z, 0T W,

can be made basic as in (i) above. If such a q does not

exist go to step a.
Step ¢. (Row choice). Out of the rows not "flagged" find a

row index p such that

Step d. Pivotal Transformation and flagging and starring. -
There may be four possible cases in each of which pivotal

transformation is carried out on the element -m.pq > 0.
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Case (i) , K

Let z, be the basic variable in row p,p ¢ F and v, be the nonbasic
variable in column q. [See Tableau .&-1 , Tableau a-2 and
Tebleau &-3 ]. In this caéé in the original tableau z., and

fow p are "flagged" and V., is starred wr*, tableau a~2, and

in the new tableau L, z, is starred zr* and V.. is flagged ﬁ;

and the row p is also flagged, tableau a-3.

‘W
I‘ .."r
2 | e ]
r R |
|
Tableau a-1
*
wr / 2*
]
‘5‘ -—
r —— wr e
———— !
Tableau a-2 Tableau .a-3
Case (ii)

In this case let w, be. the nonbasic variable which is in column q

(zr is also nonbasic) and zg is the varieble in row p [See Tableau a-i ]
then in the original tableau w, is starred wr*, tableau &-5 ,and in
the nev tableau I, L and row p are "flagged"; and 2., is starred if

it has not been already "starred" (tableau a-6).



Tableau .a-k
* . *
~— wr Zr zS Zr
| ‘ ]
' 'v —
- — :
|
|
Tableau a-5 Tableau .a-6
Case '(iii) ' |
In this case let L in column q be the nonbasic variable, whereas
2z is basic. Let z, be the variable in row p (tableau a-T). Then
in the '
W
r
z, L
zr | S (U
Tebleau a-T
* z
~—— Y. 8
L N A Yr
-
r Zr l
—_— |

Tableau a-8 Teblesu a-9
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original Tableau v is starred and z, and the associated row

are "flagged" (tableau a~8), and in the new tableau L, W end

row p, are flagged (Tableau a-9).

Case (iv)
In this case let wi~in column g be the nonbasic variable,

vhereas Zg in row p and w, are both basic, further LA and the

associated row are "flagged" [see Tableau (a-10)].

W
r
f
W
8= doe— .
z
s ——
2
r-
Tableau (a-10)
*
. g
wB wS S o
Zs . — e Yr
N Zy
Tableau (a-11) Tableau (a~-12)

Then in the original Tableau z,, and the associated row are flagged
and wr is sterred wr* (tableau a-11). In the new tableau L, zs is

starred zs* and w and row p are flagged, (tableau a~12).

Step e. If in a tableau its kilter number is zero and the values
Oof the basic variables are non-negative, this tableau represents a

feasible complementary solution. Return to the calling step.
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Step f. (Terminal) No pivotal transformstion is carried out, mark

the tableau and return to the calling step.

A set description is now introduced to explain the applicability of
the algorithm and the theorem which follows. Let
Sp be the set of all the possible bases of (1) and (2),

Sp be the set of all the bases generated by the algorithm in [3.101,

SF be the set of all feasible bases (i.e. vertices) of (1) and (2),

Sy be the set of all complementary bases of (1) and (2),

Spp be the set of all complementary feasible bases of (1) and (2).

‘These are illustrated in Fig(3)

Figure 3

The double shaded areas represent those subsets of ST vhich are not
generated by the present algorithm. Later on in the theorem it is

Shown that these must be subsets of the set (ST - SC).
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Theorem The above mentioned algorithi generates all the complementary
feasible bases of the set defined by (1) and (2) provided such vertices
exist i.e. the set (SFnSC) is non empty.

Proof: To prove this theorem, it is first noted that the algoriihm in
[3.10] generates the sgt ST’ which contains the set SF
i.e. all the feasible bases of (1) and (2). The modification
introduced in the present algorithm leaves out certain subsets
of ST' It is now shown that these subsets are not contained in

S The possible cases are considered in turn:

C.
Case a. In the tableau (a-13) A is a potential variable
to become a basic variable and to generate some bases of (1)
and‘'(2). The kilter number of this and all the subsequent

z¥® w w¥
r q r

.Tableau a~13.

tableaux which follow are at least one, because z, and v,
are forced to remeain nonbasic. Therefore no complementary
vertices are lost, if this tableau is marked, and the

associated branch is terminated in the tree search.

Case b. Consider the possible cases mentioned in step d
of the auxiliary sequence. Starring the variables and
flagging the rows and their corresponding variables exclude
some possible enumerations. In the féllowing it is shown °
that by these actions no complementary vertices are lost.

These are considered in turn:
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(%) complementary feasible solution

In Case (i), z. and row p are flagged; this is not done in the
algorithm in [3.10].If this variable and the row p are not flagged,
it might become a nonbasic variable in a'subsequént step, and as

L is forced to remain nonbasic (Wf ig a starred variasble), therefore
in 8ll the subsequent tableaux which might be obtained from this
tableau, the kilter number must be at least one. Similarly if z,,

is not starred in the new tableau L, and if it could be pivoted

into the basis, as w_ is forced to be the basic varieble, so in all
the subsequent tableaux obtained from this tableau, their kilter
humber must be one or more. Therefore no complementary vertices

are lost in this case [see tableau (a-2) and tebleau (a-3)1.

By Similaf‘argument it can Be shown thatbno complementary vertices
are lost as a result of additional starring of nonbasic variables

or flagging of basic variables and their associated rows in the
other cases, Since all other possible bases which mey be generated
by the algorithm in [3.10] are considered the bases excluded by this
algorithm belong to the set (ST - SC). Therefore the set of bases
&enerated by this algorithm conteins the subset S nSF if this is

nonempty.

- Exemple 4,

Here the Exasmple 1 is solved by the proposed algorithm. It has been
shown that Lemke's metho as well as the principel plvotlng method

failed to produce a CFS solutlon to the problem.

The problem is restated here

2z1 - 3z2 + Zq + W, 10

z, -2z, +z,-w, =1
2
1 2 3 (17)

n
w

Z) = 2z, - 3z, + W4

e ———— N
. / N
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By introducing an artificial variable corresponaing to the second.
equation of the systém (17), and applying the Phase I of the
‘Bimpiex method the fableau 4-16 containixig the basic feésible
solution is obtained. In this tableau kilter.number is 1. The
rest of the steps of the algorithm as relaf.ed 1_'.0 'l;his problem are

illustrated beow

1 -z, ~Z, —w,
\ 2\ 8 1 -1 . 2 (pivot element is circled)
. zl 1 _ -2 1 -1
LA 2 0 -4 1
Tebleau 4-16
' -
*® | _ *
1] 2 |~z | %y 1w Zg| W,
il 81 t | -1 2 ] 8 1| -1 2
21 1 -2 1 -1 .Zl 17 2 ."‘1 3
V3 2 0 - 1 VB 2 0 ,—’4 1

Tableau L-16a

Tableau L4-17

The new position of the original tableau 4-16 is shown in
Tebleau L4~16a . In this tableau z_, is starred. In the tableaus L-17

2

¥hich has been obtained by pivotal transformation z, and row 1
are flagged and W, is starred, which contains a feasible complementary

8olution.



1 -w; =2z, -w; 1 -z ~z3 | —w,

2, 8] 1| -1 2 P I I I I !
Ll e 3] e 4] 2
w 2] o0 | -4 1 W 2 0 | -k t

Tableau L-1Ta Teblesu U-18
Tableau 4~17a is the new position of the tableau U-17 in
which 2) and row 2 are flagged and v, is starred. By carrying
out & pivotal transformation on the tableau L4-17 , tableau L4-18
is obtained, in which W, and row 2 are flagged and z, is starred.

Tebleau L4-18 is marked, because no column can be chosen. Now
tableau 4-16a is picked up, W, the complement of z,, which is
& starred variable is chosen to become a basic varieble and a .

pivot step is carried out as shown below. .

)

1 -z; -z, | w3 1 ~Z, | -2z53 | W,
ol 81 1| =1 2 v, | B 1 T | -2
2, 1| -2 1| -1 z, | 3{-2 | -3 | 1
vy 2 0 -} 1 v, 2] o -4 1
_—

Tableau L4-16b .Tablean 4-19
Tableau L4-16b is {.he new position of the tableau h—lGa.' in

. Which v, is starred; Tableau 4-19 is obtained by carrying out
& pivotal transformation from tableau U-16a . In Tableau 4-19
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¥, and row 3 are flagged. It should be noted that all three
tableaux 4-16, 4-16a and 4-16b are associated with N = 0, i.e. these
ﬁhree tableaux have been considered as one tableau, but for the,

Purpose of illustration they have been considered separately.

Now pick tebleau 4-19 and carry out a pivotal transformation on

the pivot element 7. Having done this operation the following

tableaux is obtained.

1 -z; —zg =Wy 1 -z; -w; | V3

-— 4 1 1 2

LU AL I O Ll 7| 7| 7|7

331 11| 3 1

Il 31 -2 | -3 1 2| 7|-"T7) 7 7

. = | 30 s & [ 1

Y21 2] o | -b 1 v, | 7 7] 7|~ 7
Tableau 4-19a ' Tableau 4-20

. In tebleay 4-19a which is the new position of the tsbleau 4-19
%3 is starred and in tableau 4-20 which is obtained from
tebleau 4-19 z, and row 1 are flagged, this tablesu also contains

& complementary feasible solution.

From tableau 4-20 the following ere obtained:

¥ i 1 -z¥ ] -z -w
1 Zy | =Wy LA 2 3
h.__.
z 4 1 1 ). 2 7 | -1 2 |_1|_1
3 7 7 5 7 3 3 3
z. | 33(_ 1 3 1 - _u 7 1
2051351 7| 7 i 3 3 3
\.
= — 8 y 1
v, X 4 L P | %, | -2 z |-3 |-3
21 77 7 7 7 2 3 3 3
—

Tableau 4-20a Tableau 4-21
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Tableau 4-20s is the new position of tableau 4Y-20. In this
tableay z) and row 2 are flagged and w, is starred. In tableau k-21

¥, and row 2 are flagged and 2, is starred.

;
No Pivotal transformation can be carried out on tableau 4-21,
therefore it is marked. Both w, and z, are starred in tebleau k-16b,
80 this tableau is also marked. No column can be chosen from
tableaux 4-17a and U-18, therefore they are also marked. The
tableau 4-19a is picked up, and the following tableau obtained

from this tableau:

L B e ! 22| 23| T2
it 4 o T | -2 w [ 10 | -3 1 2
2] 3] -2 | -3 | 1 vl 3 -2]-3[ 1
\-
Yol 2 o -k 1 Sl -1 ] 2 -1 -1
e

Tableau 4-19b - Tableau 4-22

In the new position of tableau i-19a, i.e. in tableau 4-19b vy

18 starred, and in tableau 4-22 which is obtained from tableau 4-19a
V3 &nd row 2 are flagged. The tableaux 4-20a, %-21 and 4-19b are
marked, since no pivotal transformation can be carried out. The
tableau 4-22 is chosen. In this tableau z, is chosen to pivot

8gainst W,. Carrying out a pivot on the pivot element leads to 2

the following two tableaux.
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1 "z, | "Z, —z: 1 -z; —z§ ‘ -w;
Vit 3| 1] 2 | s| -3 3| 1
Wl -1 2 | -1 | -1 i v 3| -3] 3

Tableau k-22a Tableau 4-23

-

As no pivotal transformation can be carried out on the tableau 4-22a
and 4-23 they are marked, so the search is complete. Tableau L-2k
shows & summary of the steps of the algorithm as related to this
problem.

\
ll‘ter&tion The feasibility |{ Complementarity
, Wbe F = feasible C=complementary Tableaux generated L} N
\ N = not feasible | NC=nct complementary

o F NC 1 u-16 o | o
\ . . .

1 F | c 4-16a , k=17 1 0
N—_ :

2. N | c 4-1Ta , 4-18 2 | o
N— -

3 F NC L-16b , L-19 3 1
\_
L F » c k-19a , b-20 y | o9
‘S\ - N . c 4-20a , b-21 = - 5 1
6\ N c 4-19b , L-22 6 2
7\ N c 4-228 , 4-23 7 2
Mte,
wation T N increases and L remains fixed until N="7 when the search is complete

s Tatloasr |, odd
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Tshleau 4-16b rwz Tebleau 4-16a Fzz Tableau 4-16
v, z,
T
r22 V2
. Tableau 4-19a . _
I‘23 . rzs Tableau h-17a Tableau L4-17
"~ - iy
Tableau 4-19 % Wy
Tableau 4-19b
z
3 Wl
Pws rzl
! Tableau 4-20a
Tableau 4-22a Ty 2 Tables
. 1 1 Tableau 4-20 Lo 18
vy Ta Tableau 4-22
h61
v rzl
’ Tebleau 4-21
Tebleau L4-23 :
Figure(1)

The tree deyeloped by this method is shown in Fig(1), and the
sequence of tableaux which are generated are set out in tableau L4-16 -

up to tableau 4-23.

In Fig(1) Pzi, Pwi indicates that the corresponding variable is not
in the basis, and 2, OF W, indicate that the corresponding variable

is in the basis.



3.5 Discussion and Some Remarks on the Computational Experience

Application of the phase I of the simplex method to the problem,
leads té the conclusion that either there is a basic feasible
solution to the problem or otherwise. If theré is a basic feasible
solution, then the branching starts from the node associated with
this solution. It is interesting that in each iteration the size
of the problem in the branch is reduced at least by one row and
one column or two columns and one row. In the case of principal
pivoting or the case of the step e in the auxiliary sequence

one row and one column are flagged and starred, i.e. the size

of the problem is reduced by one row and one column in each branch.
While studying Lemke's method another problem suggested itself,
namely, what other vectors associated with the artificial variable
z, may be introduced instead of a vector e' with all non-negative
components as considered in this paper. The motivation for finding
such a vector is that one may be able to follow n different paths
stérting from the initial basic solution. The author's ideas are
described in Appendix 1.

-Both Lemke's method, and the algorithm proposed by the author have
been programmed in FORTRAN IV. These programs have been used to

solve ten'problems. The results are set out in table 3.
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llzgoblem Orde; of | N(sp) | N(sp) | N(Sp) ﬁiﬁiiés W(s,) | MSgp) 1
< F=failed
S=succeed
! 3 20 1 T F g ,
: b 0 | 7 ! r . )
3 4 T0 36 12 F 13 )
4 4 70 31 12 F 13 X
5 5 252 106 ‘25 F .26 ”
6 5 252 103 o6 . o X
T 5 252 129 31 . 25 X
8 6 ook | 26w | 21 . o |
9 6 924 | 2u8 21" e ko 1
10 6 o2k | 312 | 3k F \a 3%
Table 3
S, the set of all bases generated by the present algorithm

A

N(S) = Cardinality of the set S.
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Appendix 3.1

It has heen shown in Example 3, that two possible paths followed

by Lemke's method ended in unbounded re&ys. Another two paths can

be followed from the initial basic point.

This can be achieved

by introducing some negative components of e'. The procedure is

explained as follows:

First e'" is introduced by the vector

(-2,8,8,8) .

so the problem in Example 3 may be written

- ¢

f Wy =2- 2z, + 2z, - 2, = 324 * hz“
4 v, = ~h+ 820 -7y + 22, - 25 + 37
Wy = 3+ 8z0 + 2zl - 2z2 +z, - 224
; v, = -6 + 820 + hgl + 3z2 -z, - 324
or in tableau form
)| -z0 —z1 —22 ~Z —z“
ﬁl 0 2 -2 1 3 -4
Tableau A-1
vyl )-8 1] -2 | 1 |-
wa 11 -8 -2 2 -1 2
v, 2] -8 -k -3 1 3

The value of in in the tableau A-1 is 1.
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Wy | -2y | -z, | —z25 | -z
3
2q 1 3 -1 3 5 | -2
v, L L -7 not | up |dated
Tableau A-2
vy | 11 4 -10 | not | up |dated
v, 2 it -12 | not | up |[dated

In Tableau A-2, z,

cannot be made basic variable therefore Tableau A-2 represents

is the complement of Vs 88 this variable
an unbounded ray.

Now.e'T is introduced as:

(1,6’—3,8)
and the problem is written

.
w,=2+2 + 221 - 2, -3z

) o + hz“

2 3

&
n

-4 + 620 -z, *+ 2z, = 2, * 3

<
n

3 - 3z0 + 2z1 - 2z, + Z3 = 2z“

2

=
u

3 4

6 + 8z0'+ hzl + 3z2 -z, - 3z

or
3 —zo vzl nzz “23 =2,
v, 2| -6 1 -1 1 -1
Tableau A-3
wa’ 0 3 -2 2 -1 2
L 2| -8 -4 -3 1 3
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The value of zy in Tableau A-3 is

-Z

1 2 3| TP
1 8 8
Wy 3 3 -3 not_: 3 not
v, 2 2 | -3 up -1 up
1 2 1
zo 1 3 -3 dated} - 3 dated
8 | 28 5
vl 2 3 | 3 -3
1 Wy —Z, —Z, -, =
z -1 not 3 not
3 ‘ 8
t -4 3
w, | no up up 5 up
z, | dated -1 | dated % dated
5
wu -1 3

Tableau A-L

Tebleau A-5

As in the Tableau A-5 2 cannot be made basic varisble, the procedure

terminates in the unbounded ray.

From the above discussion it is deduced that all possible enumerations

of the paths (exactly n paths) does not always guarantee to produce
a solution to the fundamental problem.
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CHAPTER FOUR
Plant Location Problem

4.0 Summary

In this note plants are considered to have unlimited capacity
and concave handling cost functions. This problem is formulated
mathematically and some useful simplifications for computational
purposes are given. '

4.1 Introduction

In [4.1]1 the uncapacitated plant location problem with m plants
and n customers, has been formulated as a mixed integer
programming problem in the form

Minimize z = } ciox:o+ ) fays s

g WY
subject to
X;. =1 j=1,...,n
1)
Tl (M
0< J X.,sny:,, 1=1,...,m
jepi ij i’q
¥; =0orl (i=1,...,m),
where, Cij = Djtij
tij = the unit transportation cost from plant i to customer j ,
Dj = the demand at customer j ,
Xij = the portion of Dj supplied from plant i ,

y; = 0 if plant i is not opened
1 if plant i is opened
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fi = the fixed cost associated with the plant if‘and fi >0,

Nj = the set of plants which can supply customer j ,

Py = phe set of those customers, that can be supplied by plant i ,
n. =

the number of elements in Py -

The main difficulty in this problem is in choosing plants which are to
be opened in an optimum solution. ‘

Effroyson amd Ray [4.1] suggested using a branch and bound method to
find an optimal solution to the problem. Khumawala [4.2] has given
some useful simplifications which reduce the computational effort.

In section 4.2 the branch and bound method with Khumawala's
simplifications is summarized. Section 4.3 describes the formulation
of the problems in the general case. Some useful simplifications
suggested by the author are put forward in this section. Section 4.4
contains some concluding remarks and computational experience;

4.2 A Branch and Bound Algorithm

Problem (1) is first solved as an LP (linear program) (replacing
Y; = Oor1byoOcx Y; S 1) giving an optimal value z,. If all the
y's are integer then the problem is solved. Is som yj are
fractional, then one such is chosen and first fixed at zero, and
the linear program again solved producing Z,» and then fixed at
one and the linear program solved producing z,. it is clear that

7 =min (z,.2,) (2)
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~is a new lower bound on z. This procedure if carried out iteratively
will result in the construction of a tree whose nodes are represented
by the z's and the corresponding value of the fixed y's. If a node
is reached where all the y's are integer in the LP solution then

the z value at this node gives an upper'bound on z. A node where all
the y's are integer will be called a terminal node, as opposed to a
non-terminal node, where at least one y is fractional. The LP
solution at a terminal node will be referred to as a terminal solution.
Branching continues from any nonterminal node, whose optimal LP
objective value is less than the current upper bound. The algorithm
stops when there are no nonterminal nodes whose LP solution are less
than the current upper bound. The current upper bound is then the
optimal solution.

If, at some node Kl, K0 are the set of indices of y's that are fixed
at one and zero respectively, and K, are the indices of the remaining
y's, then because of the assumption of unlimited plant capacity, the
optimal solutions to the LP at this node is

S
1 ifc,. + '/ = Min (cp; + =) ,
L R 7 AT
ij ,
0 otherwise ,

0 if ieKo .
(3)

i - 1Af ek,

) xij/ni if ieK, 3

jEPi

where, f if kek,

(7=}
~
|1

0 if keK1 .

The use of certain simplifications, which reduce the number of branches

are given in [4,1,4.27. As their modified forms are mentioned in
section 4.3, they are not discussed here.
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4.3 Formulation of the Prob]em‘in the General Case

In this case the function used to describe the p]ant cost is a
piecewise linear concave function as shown in Fig(1)

A

-

PLANT i

FR)

S

(8]

Fx)

[ =

© -

';_ /'/f"

'/'—-_/ lksi+ 'ik

>

LikTotal shipped
;

-

b
"
—to
L]
—

“Fig(1)

This case is of particular importance because it is often encountered
in real-life problems. The concave cost function shown in Fig(1) can
be represented by ki separate linear cost functions as shown in Fig(2).

plant cost

Total shiéped
Fig(2)
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Note that, the lower envelope of the ki cost functionsis the original cost func-
tion. Replacing the variable Xi;
allows the concave cost function to be replaced by ki linear

functions, each having a different associated fixed cost fi]’fiZ""’fik.‘ :

Thus the problem has been expanded to have !

with ki variables xij]’xiJZ""’xijki’

nk, + nk, + ... 4 0k ' (4)

non-integer variables, and ky +k, + .00 # km fixed charge variables

yllﬁylzi"°’y1k1$y21"'"yzkzﬁ"',yml""Qymkm'

The objective is to formulate the problem in such a way that a formula
Tike (3) can be used to solve the LP's associated with the problem at
each node.

Let A, ;x. s.+ssh;, be the slope of the Tines in the Fig(2),
i, ! ‘ki

Aj A ez g 2 0, as the original cost function was concave.

1 2 i
Define
: ieNj s (3 =1,...,n)
cijk,= (tij + Aik)Dj for all (5)
| keM,
i
where
Mi =‘{1,2,...,ki}, (i=1,2,...,m) . (6)

Now the problem can be formulated as:

Minimize z= [} C..oXx.. + g f. Y-
ieNj ijkT ik ie i ik’ ik
jePi keM,

1
kEMi



subject to ;'Z xijk =1, (3 =1,...,n)
T (7)
keMi 7
) Yig = T, (1=1,...,m)
keM,i
i=1 m
0§ Xiqp €N:Yip s (0 srecly
jePi ijk i1k keMi
yik =0orl

If at a particular node Ki = {(i,j)lyij is fixed at 1} and

Ké = {(i,j)lyij is fixed at 0} and Ké be the set of ordered pairs (i,j)
corresponding to free variables yij' The optimal solution to
programming problem at this node is given by

. %k - o Shy
1 if Cijk + -]: = Min [Chjz + _ﬁ;.]
%igk = (h,2)e(KIUK)) (8)
0 otherwise
0 if (i,k)eKa
Vi = 1 Af (1,k)ek! (9)
1 e fs
(—) ;. if (i,k)eK!
ns j€§. ijk ’ | 2
f., if (i,k)eK!
g = ik 2 (10)

0 if (i.k)eK]

Some useful simplifications, which significantly reduce computational
effort are mentioned below: '

]. Let Liz’Lia,....,Lik.
of discontinuity of gradiéhts for cost function of the plant i (see Fig(1))

(i = 1,...,m) be the abscissi of the points

and Li =0 (i =1,...,m) then if, for some integers hi
1



) Dy 2 Ly, » and

y (11)
Y D, <L,
jepy 9 it
Then, .
yik'= 0 k= hi+]""’ki (1 =1,2,...,n) ,

in all the solutions, i.e. if the total demand of the potential
customers, which can be supplied by the plant i is less than Lih.+1
and is equal or greater than Lih. then the integer variable

i

Yik can be kept fixed at zero for k = hi+1,...,ki .

N.B. This simplification and the next one are carried out before
any calculation.

2. If
Min(Dl,DZ,...,Dn);> Max(Llh’Lzh""’th) (12)

for some h, and there exists some i1 for which

Min(Dy,DpseesD) < Lipyy » (13)

then

y_ik=0 'i"-],...,m, -k=]9---sh'] )

in all the solutions.

Some simplifications, which have been mentioned in [1,2] can be used
here, with some modifications. The modified form of those
simplifications are listed below:

3. This simplification determines a minimum bound for opening a
plant. If this bound is positive the plant is fixed open.
Mathematically this can be stated as:

If (i,z)eké R jEPi s



- 88 -

Vijz = Min [Max (Chjk --Cijz’o)]
' (h,k)e(KJUK)) & heNj & (h,k) = (i,%) (14)
b, = )} V.. -f.

12 jepi 1J% 12

It is clear fhat if Asy 220, then Yig = 1, and Yik = 0 (Exz 1,...,ki)

for all the branches emanating from this node.

4. This simplification provides a means of reducing ng. If for
some plant i and customer j jePi_

Max | Min (Coo = Cisy) | <0, (15)
geM, | (h,k)eK' & heN, ™ J

1 1 J .
then ni'is reduced by one. If the inequality holds for all jePi, then
Pi = ¢ N, = 0 and Yip =V¥jp = «v0 = yiki = 0 for all the branches
emanating from the node. Clearly if an already open plant can supply
a customer j cheaper than any of free plants, then such a customer
should not be considered as a potential customer of the free plants at

the node.

5. This simplification determines a maximum bound on the cost reduction
for opening a plant. If this bound is negative the plant will be fixed
closed. For (i,k)eKé, jePi define

-

0y = Min [Max (chjz - cijk’ 0)] (16)
(h,z)eK; & heNj & (h,2)=(1,k)
Q:;p =) wig o= fo- (17)
ik jEPi ijk ik
If . Qik < 0, then

Yig = 0 for all the branches ehénating from the nod:.
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By considering the last three modified simplifications the author
suggests another simplification as:

6.' It was mentioned earlier that if for some plant io and jOGPi s

the inequality 0

Min  (C..,-Ci ., )
Max [: hjgk Todo%o ] <0 (18)

Lek (h,k)eK! & hel;
0

then n; is reduced by one. Therefore the total demand which can

0 .
be supplied from plant io is reduced by Dj . Now compute
0
T, = 1 b,
Yo jep, I, (19)
j=i,
if Linet > Tiy 2 Lin

then set Yig = 0, k = h+1,...,ki s

for all the branches emanating from the node.
7. An Efficient Method for Solving the LP Problems at Nodes

If for some j, and (iy.ky)e(K{UK;) with igeN; either (i;,ky)eK]

Jo
and v, . >0 or (i,,k,)eK) and v, . > f, ., /n, then
i9dokg 0*"0/%"2 19d0Ke 1Ky i,
X: s =1, and x,., = 0 otherwise (20)
1°J°ko ik |

Proof: First supposg (1gsKgleK; & ioest and

v >0,

Tgdoke
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simply this means that

Min [Max(ChJ.Qk - Cioj0 .’ 0)1>0 (21)
(h,k)eM
where
M =-{(i |(1 oK (K UK! )&ileNjo&(il,E )z(io,ko)} .
From (21) it is deduced that:
Max(ChJo Ciojoko’ 0) >0, - (22)

SO

chjok > C i,3oko for all (h,k)eM .

As  (igskg)eKy, therefore gioko =0, so (22{ may be expressed as:

9 « g
00 hk
C. . + <C .,k +— (23)
1oJok0 nio hj k " _

for all (h,k)eM, since I 2 0 -
(23) is equivalent to

93k g

Co .o +—22 = Min (Cos ¢ * ), (24)

Todokg i L L
0 (h,k)eKIUK)

therefore from (24) and (8) it is deduced that

X: - =1 and x.., =0 .otherwise .
1°Jok0 haok
Now let (io,ko)eK' s ioeNjo, and
) 00 (25)
Ve . >
Todoke 1 ’

Q
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From (14) it is deduced that,

Max (C C. ik

hjk ~ “igote? 0) >

For all (h,k)eM.

" In a similar manner to the above it can be deduced that:

9 k
C. 0™ 0

4
T5doko

= Min (C. . +-hk (26)
ny L hjok ny ’ .

J (h,k)eKlUK2
therefore X, . K = 1, and th K = 0 otherwise.

ToJo%o 0

As the Vijk are calculated as part of previous simiplification,
little extra computational cost is required in applying the above
theorem. '

The following po%nt is worthwhile mentioning. Suppose for plant i

the original handling cost is piecewise linear but not concave.

Then as above this plant can be decomposed into several plants with
'linear' costs and different fixed charges. However, if during
computation it is desired to fix Yik = 1 then the following constraint
must also be imposed

Lig S jgs Dj < Lika (27)

“where S = {j| customer j is supplied by plant i}. else the solution
generated to the problem will be invalid. In the case of a concave
cost function this constraint (27) will hold in an optimal solution
anyway as any solution where (27) does not hold there always will be
another better solution in which (27) does hold.

Branching Decision Rules

The branch and bound method requires that a plant is selected from the
set of free plants at the node from which further branching is to be
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done. The selected plant is conétrained to be closed and open respectively
to yield two additional nodes. The selection of such a plant is called
a 'branching decision', and the rule used for this selection is called

. the branching decision. Delta-rules, omega-rules, y-rules, and demand-

"~ rules can be applied to the problem in hand,for further details see [4.2].

Example: Consider the following prob1ém with five plants and seven
customers. Details plant and delivery costs are given the following
table:

NI | 2| 3| 4| 5| 6| 7

v | - 3| 4| -] a4 -] 3

2 | 4| -| 6] 5| -| 5|

3 | 3] -] - -] & 6] - Y3
a | 4| - 5| 4| -] 4| -

5 | - 4| - 6| -] -1 5

D; |30 | 25| 40| 20| 50| 30 | 60

Table 3-1

NG| 1| 2 3| 4| 5 |6

1 [3.0 | 25| 21| 2.0 1.8 | 1.5

2 | 3.0 2.8 | 2.3 21| 2.0 |1.8

3 {3.022] 2.0/ 1.8/ 1.5 1.4 M3
4 |3.0[23] 2.0] 1.9 1.5 1.3

5 |3.5]3.0] 2.5( 2.0] 1.5 |1.4

Table 3-2
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In this problem k; = k, = ... = kg = 6,

K .
i 1 2| 3 |[a] 5] s
1 60 [140 | 220 {300 | 500 | M

70 |150 | 210 {320 | 510 | M

80 [130 | 200 |340 | 450 | M Lik

70 1140 | 240 300 | 550 M

gl ] wiN

50 |[150 | 200 |[310 | 600 M

Table 3-3

where M is an arbitrary large number.
Given f;, = 20, f,, = 25, fqy = 18, f,, = 20 and ., = 28.
As it is being assumed that

Akl * ik = Mkaabt Tika o

all other f's can be calculated from the formula

i=1,2,...,M
fiker = Wy teen) +Fi ke

k=1
This is shown in Table 3-4
k. 3
i ] 2 3 4 5 6
1 20 | 50 |106 |128 |188 {338
25 | 39 [114 |15 |188 {290

18 | 82 |[108 |148 |250 §295 Fip

20 | 69 |11 |135 |255 365

]l ol wl N

28 | 53 |128 |228 |383 1443

Table 3-4
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The first simplification is then applied

Let .

Ay= I D =175 A = } D =180 = I 0, =10

1 JeP J 2 JeP JeP
A,= ] D=120 A= ] b =105
JeP

Ly, = 140 <A <220 = L}, L,, = 150 < A, < L, = 210
L31 = 80 < A3 < 130 = L32 Lul = 70 < Aq < qu = 140
L51‘= 50 < A5 < 150 = L52 , therefore
Yiy =¥15 = Y36 =0 Yo =¥25 = ¥p6 =0 Y33 = Y34 = Y35 =¥y =
Yuz = Yuy = Yus = Yug = 0 Y53 = Y54 = Y55 = Ys6 = 0

Having applied the first simplification, out of 18 of the 30 variables
yij become zero.

The C..k are now calculated, and are shown in Table 3-5

'/

« /

Lw'/@/

i
1 2 3 4 5 6 7
C,5,5150 [C,,,=280 C,5,=350 C,7,=360
- | €15,7137.5 | C,;,=260 - C)52=325 - |Cy72=330
C,,35127.5 | C,44=244 C,55=305 C,73=306
€,1,=210 C,4,=360 | C,,,=160 €240 |C,,,=420
C,q,=204 - C,,,=352 |C,, =156 - |C,.,=234 |C,.,=408
C2142189 C,45=332 | C,,,=146 C,63=219 |C,,4=378
2311—180 ) ) ) Chg,=350 |C,;,=270 )
©31,156 C45,=310 |C . ,=246
C,1,5210 ) C, ;=320 |C,,,=140 il )
Cq12-189 Cy327292 |Cyy,=126 C.q,=189
. |C,,=187.5 o |Cg,,=190 . . |csyy =510
C.,,=175 Ce,,=180 Cy,=480

Table 3-5
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Bipy =0 8y,,=0 4,,,=10,
13y =0 815, =0 A, =06 A, =0 A, =0 AL
Bizp =0 85, =0 A,y =24,
so
4,, =0-20=-20
4,, = 0 -50=-50
Ayz = (10 + 16 + 24 + 5) - 106 = -51
Similarly it can be shown that
a,, = =25 Byy = -18 b, = ~20 Ay = -28
A,, = -39 by, = 42 A,, = =34 Ag, = -53
a,, = -114
The optimal solution to the linear program at this node is
Xg2 =1 Xypp =1 Xpg = 1 Xy =1 X3 =1 Xy =1 Xp55 = 1,
. 1
and all Xijk = 0 otherwise, and Yig =3 ¥ = 4 Y32 =5 Yo = %
and all the other y's are zero. Therefore
K, = {(5,1), (5,2), (4,1), (3,1), (2,1), (2,2), (2,3), (1,1)}
K, = {(3,2), (4,2), (1,3), (1,2)) |
K, = ¢ |
Z, = 1617.80
NP . . . . _ 69
Note in finding optimal solution to LP at this node 4 ., =21 > =,

is being used to set X,

62 = 1-

Now by applying y-rules y,, is set to 1 and y;; = y,, = 0. Applying

the 4th simplification to plant 3 for which customer 5 can be supplied
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more cheaply from plant 1 which is already fixed open n, = 3 - 1
and the optimal solution to the linear program at this node is

]
~N
L J

X312 = Xyyz = X)p3 = X123 = Xy33 = X153 = X393 = 1, and ail X5k

1]
o

otherwise, and

Yig=1 Yyp=% Y3p=3% , S0

Ky, = {(1,3)}
K, = {(4,2), (3,2)}
Ko = {(5,1), (5,2), (4,1), (3,1), (2,1}, (2,2), (2,3), (1,1), (1,2)}

Following the procedure, the optimal solution is z, = 1661.5,y13 = 1,¥,, = 1.

The related branch and bound tree is shown in Fig(3).

z,= 1661.5
infeasible z.= 16755 o

infeasible optimal solution
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4.4 Concluding Remarks and Computational Experience

The algorithm mentioned in section 3 has been programmed by the
author in FORTRAN IV. In writing this: program the following features
have been introduced.

In a real life problem a customer cannot be supplied by all the plants.
Therefore in the tableau containing Cijk many of the blocks are kept
blank. By using the graph related to this problem these blank blocks
are not stored. Therefore problems of considerable size can be
handled by this program.

A major limitation of the branch and bound algorithm is the amount of
computer storage required to store all the eligible nonterminal nodes
and associated information. However, it is found that these storage
requirements can be reduced by deleting nodes which are no longer
processed by the algorithm. The storage used for these deleted nodes
is effectively used over and over again for thé new nodes that are
generated as the algorithm proceeeds.

This program is flexible in its design and it is possible to use any
of the eight branching decision rules mentioned in [4.2]

5 test problems with the following characteristics have been solved
by this program.

Problem 1. 5 plants, 7 customers, and the cost function of each
plant contains 6 segments (30 integer variables).
Problem 2. 10 plants, 20 customers(( 36 integer variables) . The
cost functions of the plants have altogether 36 segments.
Problem 3. 14 plants, 30 customers, cost function for each plaht
contains 2 segments{ 28 integer variab]eg for each plant.
Problem 4. 15 plants, 25 customers, cost function of each plant
contains 3 segments(_75 integer variab]ei).
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Problem 5. 15 plants, 40 customers, with 80 integer variables.
. . (*)
The following results are obtained

The number of iterations required to obtain the optimal solution
is less than the number of integer variables in the problems.
The number of integer variables which are fixed at zero or one
in the first iteration is very high in proportion.

In spite of the 1imited computational experience the characteristics

of algorithm lead us to believe that it can be equally effective for
large scale problems.

S

(*) y-Rules in [4.2] have been used for the solution in all these problems.
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CHAPTER FIVE

Chinese Representation of Integers and its Application in an
Algorithm to Find the Smith Normal Form for an

Integer Matrix

5.0 Summary

An algorithm which transforms a nonsingular integer matrix to its
Smith Normal Form has been proposed. The algorithm is based on the
chinese representation for integers, and is considered to be more

efficient than any other known algorithms used for this purpose.
5.1 Introduction

To analyse a pure integer programming problem as a group knapsack
problem over a cyclic group [5.1, 5.2, 5.3, 5.4] it is necessary to
consider an auxiliary problem well known in the literature as ILPC
i.e. Integer Linear Programming over Cone. If the solution to the
ILPC associated with the given problem is also a solution of this
problem then the ILPC is called an asymptotic integer linear program.
For a given ILP the corresponding ILPC can be easily analysed by con-
Sidering its equivalent representations. There exist two classical
canonical representations [5.7] called Hermite Normal Form and Smith
Normal Form which may be used to obtain the desired equivalent repre-
sentations of the problem. Obtaining the Smith Normal Form corres-
ponding to the optimal basis matrix of the ILPC is the crucial step
of this analysis. In this study an efficient algorithm to find the

Smith Normal Form for a nonsingular integer matrix has been proposed.

In section 5.2 the definition and existence of these normal forms
are discussed and a general algorithm [5.2] for obtaining the Smith

Normal Form is stated. The chinese (modular) representation of an integer
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is considered in section 5.3. Section 5.4 contains a description
of the proposed algorithm and an example. The computational
implications of the proposed algorithm set against other known
algorithms are discussed in section 5.5. The appendix 5.1 contains
a short note on finding the gef (greatest common factor) of a

set of integers represented in the chinese form. Appendix 5.2

contains a proof of a theorem stated in section 5.3.

5.2 Canonical Representations, [5.31,[5.71].
Two canonical representations are known from the middle of
last century and these are stated without proof in the two

following theorems.

Theorem 1. Hermite Normal Form: Given an mth order nonsingular
integer matrix B there exists an mth order, unimodular, integer

metrix K such that

ij”
vhere
(i) fij=0, for all j > i ,
(ii) £.,>0, for all i , (1)
(iii) £, <0 and |fij| <f,;, foralli,andj<i.

The matrix F is known as the Hermite Normal Forﬁ of B and is

unique for a given B.

Theoren 2. Smith Normal Form: Given an mth order nonsingular
integer matrix B, there exist mth order, unimodular, integer

matrices R and C such that

[56..]1 =4 = RBC ,
l,] .

where
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(i) A is a diagonal matrix (Gij =0,i#j5), .

(ii) ~ the diagonal elements denoted for convenience as

5ii =_Gi » 1= 1,2,.m, are all positive, (2)

(iii) Gi is & divisor of 6i+1 , i=1,2,..m1.
The matrix A is called the Smith Normal Form of B; for a given
B the corresponding A is unique but the unimodular metrices R

and C corresponding to the row and column operations are not unique.

Starting from the relationship,

detA=|detRBC|=|DetR|x |DetB|x|DetC|=|DetB|=D ,

it cen be deduced that - (3)

In the following algorithm which transforms an integer matrix B
into its Smith Normal Form, a column and a row of B are referred

to as bS and bg respectively and the elements as bij’ i, j = 1,2...m.

Step. 0. Set the cycle number t = 1.

Step. 1. In the matrix of order (m-t+1) interchange the columns
and rows such that the leading diagonal element btt

has the least absolute value of all the nonzero '

elements of the matrix.

Step. 2. If btt divides b, . exactly, for all j = t+1,...m,

goto step. 3. Otherwise for some j, say j =k, b

tJ
tt

does not divide bt In this case let,

kc

b, =1b, +a, (%)
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vhere n is an integer and 0 < q < ®

tt °
Construct a column such that '

e - 1,¢ _ c. :

b = b - nb, (5)
whege the element btk = g 18 strictly less than btt'
Replace the column b§ by Eﬁ and goto step 1.

Step 3. If b, divides b, exactly for i = t+1,...m,
goto step 4. Otherwise for some i, say i = k,
- « . . S
btt does not divide bkt‘ In this case let,
b, =nb., *+aq, (6)
where n is an integer and 0 < q < btt .
Construct a row such that
r_.,r_ .T
bk = bk nbt , | (1)

vhere the element b, = q is strictly less than d

kt
r wr
Replace the row bk by bk and go to step 1.

tt’

Step 4. Reduction Operation. At this stage if btt %+ 0 then

negate the tth row of the matrix. The element btt

divides all the elements in the.tth rov and the tth

column of the matrix such that

btj njbtt , nj integer , J = t+l,...m,

(8)

and b L., ., zi integer , i = t+1,...m."

it ittt
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Construct the columns,

. =0, J=t+1,...n,

e - ¢ _ c
b = b. njbt’ vwhereby PtJ

J J
and replace bg by Sg for j = t+1,...,m, further
set bit =0, i=t+1,...m.

For the cycle t

1 this transformation leads to

the matrix shown in Tableau 1.

(Tableau 1)
If by, divides exactly bij(l,J = t+1,...m), then

set t = t+1. If t = m then goto Exit, otherwise
goto step 1. On the other hand if for some i,J
the following relationship holds,

i) = n'btt * qlJ i
vhere O < qij < btt .
then find ?13 {qij} = Q. S .
]

{0 < 95 < btt}

(9)

(10)
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By a combination of row and column operation similar
to those set out in step 2 and step 3, it isfpossible

see Hu[5.2]to make Qpx the leading diagonal element

of the remaining matrix of order m - t + 1. Thus

new value of btt = q Now goto step 1.

2k
Exit. CIf YD < 0 then set b = -b .
mm mm mm

The matrix is now transformed to its Smith Normal Form.

- T.C. Hu[5.2] provides an upper bound on the number of times the
loop, step 1 through step 5 should be obeyed, he has also proposed
an improved algorithm for obtaining the Smith Normal Form for a

given matrix.

5.3 Some Relevant Theoretical Results and the Chinese
Representation of Integer. [5.5],[5.6].
Given a set of integers LT PURRS W and their gef d this may be
expressed as

(m1, m2, e s mn)=do ’ (11)

The following theorems connecting Mys Dy oee m and d are
well known [5.5].

Theorem 3. There existsa set of integer multipliers k1, k2 ...kn
such that
d=km +km..kmn . X (12)

Theorem 4. If & divides m, m, ... m the & also divides d.

The proof of this theorem follows directly from

Theorem 3.
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 Theorem 5. If A is the Smith Normal Form of the Matrix B,

i.e. RBC = A as in (2) then 8, is the gef of the

set of integer elements bij’ i,j = 1,2 ...nm, of

the B matrix. The author's proof of this theorem

as set in [5.4] is presented in Appendix 5.2.
Given a positive integer n, and the set of the first k prime
numbers Pys Py «+ P> the following k congruences may be
stated

=}
o

= r(md p), p =2 \
n = r2(mod p2) > Py =3 (13)
n = rk(mod pk) » P = kth prime

vhere 0 < T <P; s i=1,2 ...k. From these congruences a

1

representation of the integer n is given as

n -~ (r1, Ty ees rk) s B (14)

n=aw

and for n lying in the range 0 < n < P; the representation

1.

in (14) is unique. This is well known in the literature [5.6] as the

i

chinese or the modular representation. The attraction of this
representation from the computational point of view is that given
the chinese representations of two numbers their sum, difference
end product may be'obtained by sum, difference and product
operations carried out modulo the prime numbers used to obtain
.the components (remainders) in the representation. This is

1llustrated below.
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An Exemple.

Consider the number 678 which may be expressed as

0 (mod é)
0 (mod 3)
3 (mod 5)
6 (mod T) (15)
7 (mod 11)
= 2 (mod 13)
15 (mod 17)
or . 678 ~ (0, 0, 3, 6, 7, 2, 15) ;

similarly 143 may be expressed as

678

mom Meoomwoowmoom

143 ~(1,2,3,3,0,0,7)

Thus (678 + 143) ~ (1, 2, 1, 2, T, 2, 5) ~ 821 ,
(678 - 143) ~ (1, 1, 0, 3, 7, 2, 8) ~ 535, (16)
and (678 x 143) ~ (0, 0, 4, 4, 0, 0, 3) ~ 9695k .

An important implication of the sbove operations is that these
may be carried out in parallel in a computer with parallel
processing facility. However, in the present study our immediate
concern is to exploit this representation to ottain the gef of

a set of numbers with a minimum number of division operations
between integers. Note that the division operstion in a computer
is an order of magnitude longer in time than tke multiplication
and the addition operation, also note that the representation
cannot be extended to the division operation wrich yields a
dividend and a remainder. However, when the division is exact
i.e. the remainder is zero and the divisor is a prime, the
chinese representation may be exploited again, see appendix 5.l.
Refereﬁce[Bfilmay be consulted to find an algorithm for converting
" & chinese representetion into its decimal form; note that the

proposed algorithm does not reguire this conve:sion.
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An important corollary arising.out of this representation is
that the gef 1 for a set of relatively prime integer numbers
may be éstablished at a glance i.e. a direct search in the

context of automatic computation. In Appendix 5.1 the theory

underlying this approach is more formally set out.
An Example.

Consider the numbers,

64 ~ (0, 1, 4, 1)
25 ~ (1, 1, 0, k) (17)
. 33~ (1, 0, 3, 5)

these are relatively prime as none of the columns formed by

the corresponding components is a null vector. Note that in

all the other known algorithms it requires a lot more computational
effort to establish this unit gef. In Appendix 5.1 an algorithm
for finding the gef of a set of integers presented in their

chinese form is outlined, where these numbers are not relatively

prime, i.e. they have one or more primes as common factor.

5.4 An Algorithm for Finding the Smith Normal Form Based on

the Chinese Representation of Integers.

Given the integer matrix,

the matrix R i1s defined as

[(r1, ST rk) =R (19)

ij
vhere bij ~ (rl, Ths eeo rk)ij for all i,j ;s the chinese

representation of bij



- 109 -

Step 0. Obtain the matrix R from the given integer matrix B.

Set cycle number t = 1 and 60 =1,

Step 1. Obtain the gef 4 for all bij , 1, =t, t+1, ... m,

and set Gt = 6t-1 X &, where 4 is obtained by applying

the algorithm given in appendix 1. Note that by the
end of this step the gef d is taken out of the remaining

matrix.

Step 2. Either (a) there exists one element of magnitude unity

t

in the remainihg metrix. In this case goto step 3.
Or (b) there is no element of unit magnitude in this
metrix therefore carry out the'Auxiliary Sequence'
vwhich makes one of the elements of the matrix unit

in magnitude.

Step 3. Let lbzpl = 1 be the unit element of the matrix, then

by at most two operations (one row, and one column)

this element is made the leading element btt of the

matrix B. Corresponding permutation operations are

carried out on the matrix R as well.

Step 4. The leading element btt = 1 divides all the elements

in the remaining (m - t + 1) x (m - t + 1) matrix.
The Reduction Operation as stated in step 4, section 5.2
is now carried out on the matrix B and also on matrix R.
At the eni of this step in the tth cycle the matrix B
-...and R are cf the form displayed in Tableau 2 and Tableau 3.
" Set t = £+T, if t < m goto step 1.
Exit Ifd < O then set b = -bmm' Now set Gm = 6m—1'bmm

Smith Normal Form for B is now obtained.
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Not updated

'Auxiliary Sequence'

In this sequence in a series of steps one of the elements of the

remaining (m -t + 1) x {(m - t + 1) matrix is made equal to one.

Step 1.

Step 2.

Step 3.

Search for a set S of minimum cardinality such that
its elements are relatively prime. If all the elements
of S are in the same row or same column then goto step 2.

Otherwise goto step 3.

By integer linear combinations of the elements in §
(a1l in one row, or in one column) an element of

megnitude one is generated. Goto ctep k.

Construct a square submatrix of minimum order in

vhich the elements of the chosen s:i appear. Applying
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to this submatrix the relevant steps of the general
algorithm (section 5.2) make the leading element unity.
Note that the transformaticn in this step must be
applied to the full rows and columns of the remaining
matrix, the elements of the submatrix being used only

to generate the transformation matrix.
Step 4. Return to the calling step.

An Example.

Consider the integer matrix

2 0 2
B =

2 0 -4

-12 12 12

s | A (20)

the corresponding R is

(0,2,2) (0,0,0) (0,2,2)
(0,2,2) (0,0,0) (0,2,1)

(0,0,3) (0,0,2) (o

Set § =1, t = 1.
(o]

All the first components of the chirese representation are zero;
therefore 2 is a common factor. Taking this out of B, and R

matrix (for the latter operation see appendix 1) it follows,

1 0 1 [ (1,1,1)  (0,0,0) (1,1,1)
B = | L R=1 | (21)
1 0 -2 (1,1,1)  (0,0,0) (0,1,2)

-6 6 6 (0,0,4) (0,0,1) (o,o,i)
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~ From the entries of the matrix R it is obvious that the

corresponding elements in B are relatively prime, hence

d=1x2=2,
and (22)
§, =6 d=1x2=2 - :
1 o) .
The metrix B is reduced to
( \
61 0 0
B = .
. 0 0 -3
0 6 12
, § J
and the corresponding R becomes (23)

not updated
3

/

R= 77 00,00 (1,0,2)

| (0,0,1) (0,0,2)J

Set t = 2.
From R in (23) it is again deduced that 3 is a common factor
for the entries in the remaining matrix B. Teking out this

common factcr the remaining matrix in B and R become

0o -1 (0,0,0) (1,2,4) }
s , (24)
2 L ' (0,2,2) (0,1,4) { . .

The elements of this matrix are relatively prime, therefore
d =3x1 =3,

and 62 61.d = 2x3 =.6 .

(25)

Reducing B esain, R is not considered further,
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the matrix

2 0 0]
B = .
0 6 0 _ (26)
0 0 2
H
is obtained.
Set t = 3 ; since b33 =25>0, 63 is computed as,

. 3 2

2 0 0
A= _
) 6 o (a7)
0 0 12

is obtained.

5.5 Some Comments on the Computational Implications.

The algorithm stated in section 5.4 transforms an integer matrix
to its Smith Normal Form, exactly in (m-1) iterations. The
diagonal element Gi is known at the beginning of the ith iteration,
therefore the reduction operation is carried out only once in this
iteration. This is in contrast with the repe:ted appliéation

of the reduction step in the general algorith: stated in

section 5.2. For integers set out in the chine:e representation,
formal addition (subtraction), multiplication operations are
replaced by their corresponding look up table:, see appendix 5.1.
The reduction operation of the matrix R is tkL refore carried

out only by look up of these operation tables.
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At the reduction step of any algorithm used to obtain the
Smith Normal Form it is necessary to compute the gef of
the set of elements of a matrix. The chinese representation

used by the authors prove to be of advantage in that:

(i) whenever the gef is unity this is established immediately
from the representation,
(ii) otherwise the common factors which multiply to produce

the gcf are obtained immediately from the representation.

The number of operations by which the leading element is
generated has an upper-bound of ¢(D) where ¢ is a monotone
increasing function of D the determinant of the matrix, see
T.C. Hul5.2],p379. Since the gef 4 is taken out at the
reduction step the determinant D reduces to D/d(mft+1)
thérefore the number of operations are expected to reduce

in relation to this upperbound.

The algorithm has been programmed by the author in Fortan IV
and has been used to put the optimal bases of all the problems
in Haldi [5.8] to their Smith Normal Form.
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Appendix 5.1.

An algorithm which exploits-the chinese representation of integers
to obtain the gef of a set of positive integers (not relatively
prime) is described in this appendix.

Consider a set of positive integers n,, n, ... np expressed in their

1 "2
chinese form as:’

(r1,r2,...rk)1 R (r1,r2,...rh)2 ces (r1,r2,...rk)p respectively.
The steps of the algorithm to obtain the gef d are set out below.

Step O. Set a =1,
Step 1. If the ith components (1 < i < k) of the representations

~

of’integers are zero for all the integers i.e.
(ri)j =0, forj=1,2, «e. P , ‘ (28)

then goto step 5. .

Step 2. Let s = min{n1,n2...np}. Find s gnd gecompgse s into
its prime factors such that s = pll'P22"'Pkk"'pll s

~ where some a, may be zero. If s is discovered to be

a prime go to step k.

Step 3. If the integer part of /s is less than Py then the set

| of integers are relatively prime goto exit. _
Step 4. For i = k+1,k+2,...1 and @, 21 determine if P; is a

common fector of the set of integers {n1,n

2...np}.

If yes goto step 5 else goto exit. »
Step 5. The prime b, is a common factor of the set of integers

n,,n....n_ . Divide to obtain n! ,
1 P J

2

n! = (n,/p.
; ( J/pl)
and update the corresponding chinese J=1,2,...p (29)

representation (r;, rh .. rl'{)j :

The updating of the chinese representation is described

in the Note which follows.
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Set a' =4 x P;

Update nj'= né 3 =1,2...p (30)

= (p! p! '
(r1,r2,...rk)'j (r],re,...rk)'j

and d = 4' ,

and goto step 1.
Exit d is now the gef of the original set of p integers.
Note: Given an integer nj, one of its factors 1 and the

chinese representations of n'j and p; »

nj ~ (r1’ rz, LR rk) 9
. (31)
p; ~ (H1, H2, .o Hk) 5

the chinese representation of né

n'! = (n./p.
; J/pl)
(32)
t ~ 1 ] ]
n} (r1, Ths +ee rk)j R
can be obtained in a minimum number of divisions by
the following method. It is assumed that a set of

k multiplication tables T1, T T , of dimensions

2’.'l. k
Py X Pys Py X Py eee Py X Py corresponding to the
prime numbers Pys Pys ++:D, &Ye available for this

method. Obtain the ith component ri the remainder of

the division operation of né by p; (one division).

From the multiplicative relations

ri x 1, = rz(mod pz) , L=1,2,...p, 221, (33)
obtain ri by looking up table Tz. Thus the conversion

involves only one division operation.

The following example illustrates the method.

Let Y 21 ~ (1,0,1)

P2 3 ~ (1soa3)
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') to be obtained.

: | - = ~ ' t
Therefore n: nj/p2 7 (r1,r2,r3

ryx1=1 mod(2) ; from Ty, =13
ré x 3 =1mod(5) ; from T3 ré =2,

Further ré = remainder of (7/3) = 1

Therefore nj =7+~ (1,1,2) .

Multiplicatioh Tables

p1 = 2 0 1 Py = 3 0 1 2

0 0 0 0 0 0 0

1 0 1 1 0 1 2

Table T1 2 0 2 1
Table T2

p3"5 0 1 2 3 i
0 0 0 0 0 0
1 0 1 2 3 L
2 0 2 4 1 3
3 0 3 1 L 2
4 0 4 3 2 1

Table T3
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Appendix 5.2.

The Theorem 5 stated in the text of this paper has been proposed
by Garfinkel and Nemhauser([4.4]. This Theorenm is proVed in this
appendix and forms the basis of the algorithm proposed by the

author .

52 i,jg=1,2 ,..m,

it is required to prove that §

Proof: Let 4 be the gef of bi

1 = d. As d is the

gef it must divide any ‘'integer linear combination'

of the elements of B. It follgws from the operations

by which 61 is obtained there exists a set of integer
multipliers (hence the term 'integer linear combination')

kij (i,j =1, 2 ...m) such that 61 is expressed as

m m
8= 1 1 ky 5Dy - (3k4)
| i=1 j=1
Therefore d divides 8, which implies,
ds<s, . . (35)

1
By back substitution it can be proved that 61 divides
all bij , therefore §, divides their gef 4. This implies

that

1

§, <d. (36)

From (35) and (36) it is deduced that
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CHAPTER SIX

Hybrid Gradient and Simplex Method for the Solution of Linear Program
6.0 Summary

A mixture of gradient and simplex method is used to obtain an
optimal solution to a linear programming problem. It seems
that for some problems this method in contrast to the simplex
method might arrive at the optimal solution with a fewer number
of iterative simplex steps.

6.1 Introduction

The simplex method is the most attractive and powerful method
for solving a linear programming problem, and was developed

by G.B. Dantzig. This is an iterative method which converges

. to an optimal solution in a finite number of iterations. The
number of iterations depends on the number of constraints and
on the number of variables. |

To illustrate the idea underlying the present approach consider
the linear programming problem shown graphically in Fig(1) and
defined mathematically as:

Max z = CiX; + CyX,

, - (1)
Subject to v - Ax =<b

x 20 , where x = (xl,xz)
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Fy
optimal solution
objective function
()
F
1
L}
S Xl
Fig(1)
For simplicity assume that the vector € = (c,,c,) 20 . The
vector Ac”(where A is a scalar) is perpendicular to the hyperplane
C,X, + C,X, . Suppose for some Atxo,xé,‘the vectorsxog,xéc cut the

region S (region S is defined by the set of inequalities

Ax < b, x 2 0) at the points F, and F, . If F, is chosen as a
starting point (note that the solutions corresponding to the
point F, and F, are feasible but not necessarily basic) at most
in two iterations the optimal solution is obtained.

In section 2 of this chapter the algorithm based on the above
mentioned idea is described, and in section 3 an example is
worked out by this algorithm. Section 4 contains a discussion
on the possible ways of extending this algorithm.
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6.2 Algorithms
Consider the general linear programming problem:

Max z = ¢ x, + c, X + ...+ C X,

171 2 nn
subject to
. + a; + ... + a; . i=1,...
35,%, + 35,%, 350 %n g{b] (i=1, ,pl)
. + a, + ...+ a, . i = +1,...
PR T PUPSIES 3in*n P P (1=p +T5e.00p)) (2)
a5,%, k3 3;,X, + s F Ay X = bi i=p,+ 1,...,m

xj 20 (3 =1,...4n) , and

it is assumed that all the b's are non-negative.

After introducing slack, surplus, and artificial variables (2)
can be written as:

Max z = [ c.x.
j='|JJ

‘subject to

¢

Ay X FaLX, toees t Ay X H X = b, i-= LPPRRN N

171 i2”2 in“n 1 1
. + a. + ... + a. - . =b. i = + ..
1 aux1 a;,%, 3 Xn = Xn4i b1 i=p, 1, P, (3)
. . + ... + a, + v, = b. i = .o
aux1 + 3;,%, a0 %n v1_p2 b1 1=p,+ 1, Jm

xl,xz,...,xn+p2 >0, and Vi=Py = 0, 1i-= p2+1,...,m .
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Consider two cases:

CASE 1. P, =m i.e., there is no equality constraint.
Define
P={J |cj'> 0} (4)
and set :
cjt if jebP
X, = (5)

J 0  otherwise, (j = 1,...,n)

Substitution of these x's in (3) leads to the relation

n

Xn+i = bi - (jZ]cjaij)t i = ]’---,pl :
(6)
n
Xopi = (jZ]CJaij)t - b, i=p+l,...,m
Let E )
a; = (] .. i=1,.0m , (7)
17 1670

Xn+i = bi - Git i = ],n-‘,pl
(8)
Xn+i = ait - bi 1-= p1+], ..,m
Let
Q= {i | o5 * 0} , (9)
set Xnei = 0 for all i ¢ Q , this leads to

by
t. =— forallieQ

1 G.i
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Suppose
ty = Min {t; >0 [1e(Q (1,2,...,p,3)} |
(10)
ty = Max {t; > 0 | i e (Q {p1+1.,. LMY,
then obtain
X* b, - a,t* 20 i=1
i i % S =l e Py
(M)
XL4=‘Ht§'b12° T=p+l,...,m

If t? > t; > 0 it can
are

x1

CLIPPCEICIES SN

be immediately deduced that the constraints
consistent and two feasible solutions may be constructed as

.,amt;-bm)

- * *.
1 l,-- pl apltl’apf']tl bp1+]’.-
2 = (2 2 h on % - * *_ *_
Xé = (Xl,...,xn,b1 altz,...,bp1 apltz,apl+]t2 bp1+],...,amt2 bm)
where (12)
cjt; if jebP cjt; if jeP
x1 = x§ =
0 otherwise 0 otherwise
and
2 s Yo
C.X} 2 C. X% (13)
j=1 JJ j=1 JJ

It follows from these relations

from this solution e«

that x! is a feasible solution.
Later on it is shown how a basic feasible solution may be obtained
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If t; > t; , it cannot be deduced that the constraints are not consiStent.

objective function~

3) \ . .
LETIRITIY _ Wit optimal solution

AN

Fig(2)

This is shown in Fig(2). Under these circumstances the problem
is considered as CASE 2.

Example 1.
Max z = 2x1 + 3x2 s

subject to _
=X, + 3xzs 28 , . (14)
3x1 + X, < 54
X, + 3x22 6
2X1+X224 s

xl,x2 20

Graphically this problem is shown in Fig(3).
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Feasibl
optimal solution
1
objective function
(S) <«
/2
- X

Fig(3)

After introducing slack and surplus variables the problem may be
written as:

Max z = 2x1 + 3x2 .

subject to

( (
X+ 3+ X, = 28 X, = 28 - (-x1 + 3x2)
3x, + x, +x, = 54 X, = 54 - (3x, + x,)

! 1 2 4 or I 1 2 (15)
X, + 3%, - X, =6 Xg = (x; + 3x,) - 6

\ 2%, + X, = X, = 4 k X = (2xl +x,) -4

X 20 1=1,...,6 x; 20 1=1,...,6

By setting X, 2t x_ =3t p = {1,2}, and substituting these
in (15) qgives
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Xy = 28 - 7t |
x, = 54 - 9t '
* Xg = 11t - 6
\ Xg = 7t - 4
Putting X = 0 for i = 3,4,5,6 gives

t. = 28/7 =4 t,= 54/9 =6 t3 = 6/11 , tq = 4/7
t* = Min {4,6) = 4
t;"= Max (6/11,4/7} = 4/7

so_t; > t; 2 0 , and the feasible solution which {s chosen as the
starting point is

x! = (8,12,0,18,38,24) , -~ (16)
which is a feasible, but not basic solution. Later on it is shown
how a basic feasible solution can be obtained from this feasible

solution.

CASE 2. p, <m i.e., there are some equality constraints.
In this case an infeasibility form is introduced as:

x
]

Vy v, Lo+ Y - X - X - - =
1 2 - LB ]
m-p, n+p1+1 n+p,+2 n+p,

m-p,  P,-p, m P,
= vi - 1 x L= ov.-p, - X .=
is1 1 g MR T 72 1=p§+] n
m P,

. ) [bi-(ailx1 oot ainxn)]+. ) [b"(a11x1+"'+ainxn)]
1-p2+1 =



where

W =

B =

J

By
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(17) can be written as:

Let

introduce a parameter t, and set

-5Q

-

- (g% + * a1nxn)] =

[ ? ] [ ) ]
- .. X, = .. = a X o, SO

111 n n
P+l N i=p,+1
- lel - 82X2 S e ™ Ban N

Z (3 = 0,1,...,n)
i=p,+1 "3 ’
W B Xy T BX, e Bk
{J |BJ>0 s j=]s---sn} ’

Bjt if jeR 4

s (j = ],...,n) ’

| 0 otherwise

substituting these in (3) and solving the equations for
(i = 1,.,.,p2), and Vs

xn+.1’

is obtained

,

.

X

X

n+1i

n+i

V.

1—p2

- ( Z a1JsJ)t
( E 3 583 )t - b,

(i

1,...

sm—pz)

P1

prN.

the following

s --spl)

+1,...5P,)

. sMm)

(17)

(18)

(19)

(20)

(21)
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or (21) may be written as:

f
Xn+i = bi - Sit (i = ],-oo,pl) ’
ﬁxn""i =Git- bi (.i =p1+],ono’p2) 9 » (22)
v, =b, -6t (i =p,+1,....m)
\ 1-p, 1 1. 2
ere s (o) s (= e
i L 'ijJ ’ = lyeeey
j=1
Let
T={1] 8§; 0, i=1,...,m} _ (23)
set X_,., V. equal zero for those i e T and solve the equations
“n+i? Ti-p,
for t, which gives
bi -
t. =— forallieT" - (24)
i sy

t* is chosen as:

t*=min {t; | t; >0 and i ¢ T}

substituting t* in (22) gives

4

= . = . - . * i =
Xn4i = Ynai = Pj - Byt i=Ti.0p;
Xn+.i = Yn+.i = B.it* - bi 1= p.l+]"'.’p2
4 (25)
= ‘= - * - .
Vi-pz' Yoei = bi B;t i p2+1,...,m
c.t* if ieT
i
xi = Yi = .
§ 0 otherwise s

and
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W= M= 8y - ByYg By, T ByYy t el - By
(26)
Z= M2 =0y, F Oy, t e oy B }

/
/

In tableau representation this is shown in (Tableau -0).

Note. The elements of the fth tableau are denoted with superscript 2 .

F-rule
Initial step set 2 =1
Step 0. ) Choose a co]umn, say jo s such that yj:> 0 and -sji >0
and x, 1is not a basic variable and go to step 4. If no such
co]umnoexists go to step 1.
Step 1. Choose a column, say j0 , such that
(-85)) = min (-85 | (-85} <0} (27)
go to step 2. If no such column exists go to step 6.
Step 2. For finding pivot row carry out ratio test as
L
er‘io | - er ) Yr: ) )
T = minimin 7 ,yr_zo ,min — ,yr.so,aij <0 . (28)
idp aij0>0 i . aijo i 0

Choose the ioth row as a pivot row, do pivotal transformation,

Y.
"i
set Yﬁfl = Yj: + 'I-g » update all the entries of the (z+1)th
K aiojo |

tableau, set 2 = 2+1, go to step 3.

Step 3. If w=0 go to step 7, otherwise go to step O. '
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Y Yn
! X1 *n Xn+1 N+pyf “n+p, +1 ,x:+v~ m-p,
W M, -8, -8, o [ ... ] o o |...] o 0
z zN -C, -C, 0 0 0 0
Xn+1 Y+l M 4n ! 0 0 0 0
. . . . 0 .
oy | Totpy | Pnapy 1 Yo, | O 1 0 0 0
*n+p, 41 Tn+p,+1 Phep 411 %hep,+1 n R 0
x:éN <=+um mziuN 1 m:+um n -1 0
i <:+vm+~ m:+u~+d~ m:+v~+d nf O 0 0 0
<=Tn5 Ymen an 4 0 0 0 0 1

(Tableau -0)
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'Step 4, As (-3j2)> 0, therefore by decreasing xJ. »~W can be
increased. Let e 0,

L |
’ 'y 2 3 1 !
r = min {min { s 84y < o, Ty, 2 0} 25 } _— (29)
i EN 0 i 0
iJ :
Q
LR
If r=x%, set
Jo
y%+] = 0, and y£+] = yl + ra¥, (i =1 m)
< do i rs rs 1d, et

T ot T < s e

all the other entries of the (2,+])th tableau are the same as
2th tableau, set 2 = 2+1, go to step O.

If r =-———1g— for some i = 10, then set
a. .
| ido

L 2 B A L .
jor and Yri = Yri + raij0 (i=1,...,m) ,

Yz+1 -
Jo

th

all the other entries of the (241)" tableau are the same as gth

tableau, set £ = 241, go to step 5.

Step 5. It follows from the above operation that for i = i,
Y o 0 and a.z. < 0, choose a.. as the pivot element, carry
r, i i
ig ave 0va
out a pivotal transformation, set y¢+] = yg , update all the
i ]

‘ 0
element of the (z+1)th tableau, set 2 = 2+1, go to step O.

Step 6. If w=0, problem has no feasible solution,
go to step 8.

Step 7. The present representation contains a feasible solution.

Step 8. Stop.
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B-rule which can be applied to get a basic feasible solution from a
given feasible solution is discussed now. B-rule in some way is
similar to F-rule.

B-rule

Initial step. Set £ =1 go to step O.

~ Step 0. Choose a column, say jo , such that, sz > 0 and (-cjz) >0
Q Q
and xj is a nonbasic variable, go to step 4. If no such column exists

go to gtep 1.

Step 1. Choose a column, say jo, such that sz > 0 and
0

(-cjl) = min {(-c§) | (—c?) <0, y§ > 0} » go to step 2. If no
0 J

such column exists go to step 6.

Step 2. Do ratio test for finding the pivot row as usual, i.e.
1
YY‘. Y .
i 4 rs N
=min{ — , a;: >0 s (30)
2 2 1]
0vo 0

if all ai§ < 0 then the problem is unbounded, go to step 7, otherwise
0

choose idth row as a pivot row, carry-out pivotal transformation update
all the entries of the (2+1)th tableau, '

set Yi+] =yt 4 er /a12. » set 2 = 2+1, go to step 3.
i Jo i todo |
0 0
Step 3. If all the nonbasic variables are zero, go to step 6,

otherwise go to step O.

Step 4. As (-c}) > 0, therefore, by decreasing xj » the objective

function can be increased, let a

S Yr%
r = min {min {.-—?L— , A <0 } )yt } . (31)
. L 1Jo J )
i Mags | 0
id,
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' 2 2+ 2 L 241
If r= on , then set, MJ7' = M; + r(—cijo), on =0,
yﬁ+] = vyt rai§ s 1 =1,2,...,m and all the other entries
i i Q :
of the (2+1)th tableau are the same as the 2th tableau, set
L = 241, gozto step 0.
Yri
If r-= - s for some 1 = 1 , set y%+1 = Y% -r,and
a.t, 0 Jo o
i
241 L L . 241 2 2
= + ra; . i=1,.0.5m, M =M + r(-c.’
Yr'i Yr'i ra]OJO > ’ oM s M, 2 Y‘( c-lJo) ’
and all the other entries of the (z+])th tableau is the same as &th

tableau, set & = 2+1, go to step 5.

Step 5. It follows from the above operation that for i = io’er = 0,
_ i
‘ 0
choose ailj < 0 as a pivotal element, carry out the pivotal transformation,
, ovo
update all the element of the (z+1)th tableau, set yr% = y-z

J
'Io 0

, and

% = 2+1, go to step 0.

Step 6. The solution is a basic feasible solution moving from
a feasible vertex in the steepest direction to increase the objective
function.

In the tableau containing a basic feasible solution. Let

L=4{j]| c§ >0 forsomej 1< j < mn}
K=1{j| X; is nonbasic variable}
set . :
cjt if JelnK
X, =
J

0 otherwise

where t is a parameter as in (20). Substitute these x's into the
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equations obtained from the corresponding tableau, carry out the
operations as defined in (22), (23), (24) and (25). This gives a
solution to the equations obtained from tableau.

Now the steps of the algorithm may be stated as follows:

Step 0. If p, = m, use CASE 1 to obtain a solution, if the
solution is basic feasible go to step 4. If it is feasible but not
basic go to step 1. If the solution is not feasible go to step 2.

Step 1. Apply B-rule, if a basic feasible solution can be
obtained go to step 4; otherwise corresponding to the unbounded
exist of the B-rule go to step 6.

Step 2. Use CASE 2 if a basic feasible solution is obtained
go to step 3. If the solution is feasible, but not basic, go to
step 1. If solution is not feasible go to step 3.

Step 3. Apply F-rule, if a feasible solution is obtained go
to step 4; otherwise go to step 8.

Step 4. If -c§ >0 for j = 1,...,mn, go to step 7, otherwise
go to step 5.

Step 5. Move from the given feasible vertex in the steepest
direction to increase the objective_function,‘whereby you get an
improved solution and go to step 1.

Step 6. Problem is unbounded go to step 9.

Step 7. The corresponding tableau contains an optimal solution
go to step 9.

Step 8. The problem has no feasible solution go to step 9.

Step 9. Stop.
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6.3 Example

Max z = 5x1 + 16x2

subject to
2xl tx, < 10
X, + 2x2 <10
Gy, - 2%, 2 1

—2x1 + 4x2 > 1

By introducing negative slack, and slack variables, the problem
may be rewritten as:

Max z = 5x1 + 16x2 s

subject to
’ 2x1 X, t X, o= 10 r Xy =10 - (2x1 + x2)
X, +2x, +x. =10 X, =10~ (x; + 2x,)
1 4x; - 2x, = x5 =1 1 xg = -1+ (8x; - 2x,) (a)
=2x) + 8x, - x. =1 Xg = =1+ (~2x, + 4x,)
L xl,xz,...,x6 >0 ‘ xl,...,xs‘z 0

It.can be easily seen that CASE 1 cannot be applied, therefore the
infeasibility form is introduced as:

W= =X = X = 1 - (4x1 - 2x2) +1- (--2x1 + 4x3) =2 - 2x1 - 2Xx

5 2

or -2 = -y - 2x1 - 2x2 .

By substituting X, = 2t, x

= 2t in (a) the following equations
are obtained. '

2
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Xg = 10 - 6t
X, = 10 - 6t _
S (b)
b X, = -1+ at
X = =1 +4t
setting X; = 0, i=23,...,6 , gives
t,=t, = 5/3 , t =1t f 1/4

t* = mm {1/4,5/3} = 1/4 .
Substituting t* = 1/4 gives the following values for x's
X =% =1/2 , x;=x,=17/2 , X, =% = 0o , (c)

3 5

in the tableau form this may be written as

1 Xp | X, [ X5 | X, | X5 | % zZ | w
-w 0 of -2 | -2 0 0 0 0|1 X =%, =3
z |21/2| -5]-16 0 0 0 0 1 0
X3 | 17/2 2 1 1 0 0 0 01]0
x, [17/2 1 2 0 1 0 0ojo0o}jo
Xg 0 -4 2 0 0 1 0 0] 0
Xg 0 2| -4 0| O 0 1 0 0

Tableau (6-0)

The tableau (6-0) contains a feasible solution, which is not basic.
Now B-rule is applied to get a basic feasible solution. The related
steps of this rule are carried out in tableau (6-1), and tableau (6-2).
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1 X | % | x x, | x5 % | 2

z {2172 |-37 0 0 8 0|1 x, =%
xg {1772 4| 0] 1 0 |-1/2 {0 ] o0
x, | 1/2 5 ] 0 0 | -1 010
X, 1/2 -2 1 0 0 1/2 0 0
Xg 0 -6 0 0 0 2 1 0

Tableau (6-1)

1 Xy X, X X, Xg Xe z

z | 21/2 0 0 0| ~-13/3-37/6 {1
x; | 17/2 0 0 1 0 5/6 | +5/6|0
X, 1/2 0 1 0 0 2/3| 5/6 |0
X, 1/2 0 1 0 0|-1/6]-2/6 |0
X, 1/2 1 0 0 0 }|-1/3]-1/6 {0

Tableau (6%2)

Tableau (6-2) contains a basic feasible solution, which is not optimum.

_ 13 _ 37
Now put X = —§-t X = 3 t

By substituting these into the equations

r X, = 17/2 - (5/6x5 + 4/6x6)
x =17/2 - (2/3x_ + 5/6x )
[ 5 6 (c)
X, =12+ (1/6x5 + 2/6x6)
‘ x; = 1/2 + (1/3x, + 1/6x.)

which are obtained from tableau (6-2),the following are deduced.
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X, = 17/2 - (5/6.13/3 + 4/6.37/6)t
X, = 17/2 - (2/3.13/3 + 5/6.37/6)t
X, = 1/2 + (-/6.13/3 + 2/6.31/6)t
x, = 1/2 + (1/3.13/3 + 1/6.37/6)t

(d)

\

By putting x; = 0 for i = 1,2,3,4 in (d) one gets

t

1.1007 t, = 1.0588

substituting t* in (d) gives the following solution
X, = 3.1177, X, = 3.4411, Xq = 0.3235, X, = 0, Xe = 4.5882, Xg = 6.5294,

which is a feasible solution to the problem. This solution in tableau
form is represented as:

] X, X, Xq X, X Xg z
z 70.646| O 0 0 0 =13/3 | -37/6 1
X, 0.3235| 0 0 1 0 5/6 4/6 0 Xg = 4.5882
X, 0.0 0 0 0 1 2/3 5/6 0 X, = 6.5294
X, |3.4411] 0 1 0 0 -1/6 -2/6 0
X 3.1177 | 1 0 0 0 -1/3 -1/6 0

Tableau (6-3)

A11 the entries of the tableau (6-3) are the same as the tableau (6-2)
except the values for x's. Now a pivotal trans formation is carried
out on the tableau (6-3) to make Xe basic variable. This is shown in
tableau (6-4). ‘ "
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’ 1 X, X, X, X, X Xe z

z 70.6461 1 O 0 0 37/5 3/5 0 1
Xg = 4,5882

Xq 0.3235|1 O 0 1 -4/5 1 3/10 0 0

Xe 6.5294 | O 0 0 |. 6/5 4/5 1 0

Xy 3.44111 O 1 0 +2/5 1/10 0 0

X 3.1177 | 1 0 0 2/5 -1/5 0 0

Tableau (6-4)
By decreasing Xg the objective function is increased. Consider
r = min{15.5885,4.5882} = 4.5882 ,

therefore set Xy = 0 and the optimal solution is

x, = 0.3235 + (4.5882)(0.3) = 1.7

X, = 6.5294 + (4.5882)(0.8) = 10.2

x, = 3.4411 + (4.5882)(0.1) = 3.9

x, = 3.1177 - (4.5882)(0.2) = 2.200 = 2.2

z =73.4
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6.4 Discussion

The ideas put forward by Hadley [1.3] and Zoutendijk [6.4] in
applying gradient method to solve the mathematical programming
problem, takes a simple form by mixing that idea with simplex
method, and taking advantage of the structure of Linear programming
problem. The preliminary investigation reported in this chapter
leads to the following question

Is it possible to carry out the algorithm mentioned in this
chapter in the context of product form, rather than tableau,
which is used throughout?

A similar method may be developed to solve the quadratic programming
problem or in general a convex programming problem.
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Appendix R1

This Appendix contains a FORTRAN program for finding all the vertices
of a convex polyhedron S, using algorithm 1 in chapter 2. The set
S is defined by the set of inequalities,

Ax-<b ,
x20,

and it is assumed that all the components of b are non-negative.

The Data Deck

To use the program, a data deck should be prepared as follows:

First Card. This card contains 3 values. These may be punched

in whatever fashion the user desires, but FORMAT statement number 100
must be changed accordingly. The variable names into which these

3 data are read, and their purposes are as follows:

I The number of rows of constraint equations

IZ The number of columns in (e) including the column of constants
in the constraint ;

IY The number of real variable + 1; a real variable meaning variables
in the set of inequalities Ax < b, i.e., other than slack
variables which are introduced to convert Ax < b into the set
of equation _

Ax+ IU = b . (e)

Second and Subsequent Cards: Onto the next set of cards the
coefficient of the matrices including the constants defining the
set of equations AX + IU = b are punched, and if necessary the
FORMAT statement number 102 is changed in such a fashion that these
data are read into the array.

‘D(M,N) M=1to IW and N = 1 to IZ as follows:

D(1,N) Holds the coefficient (elements) in the first row(thus the
first constraint equation)

D(IW,N) Holds the coefficient (elements) in the Mth

row (thus the final constraint equation).

row and final
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Example problem.

It is required to find all the vertices defined by the set of inequalities

o

5x1 + 3x2 + x3 < 1050

4, + 3x, + 2x35 1000 | (a)

x1 + 2x2 + 2xss 400

o >
Xps X,s Xy 2 Q .

Adding slack variables X,» Xg and x. (a) may be written as:

r

5x1 + 3x2 + X + X, = 1050

3 .
1 fx, +3x, + 2x + X = 1000 (b)
400 .

+ + +
x1 2x2 2x3 x6

The data deck is prepared as follows:

! 'ir?ﬂ 2.00 2.00 0.00 0.00 1.00  400.00

L 41‘?0 3.00 2,00 0. IJU 1.00 0.00 1000.00
- itefe] )

I SP?D 2.00 1.00 1.00 .00 0.090 1050.00

v-¢_miﬁ = 4

FORTRAN STATEMENT

MnmnﬂfnaauuunanoooouaunhnnunonnuJunonnunuuuoacu:auusnuncaunu??ifiiﬁ??if
LI B I } 51! HEE I TR B TR IR TR LI SRR IR s BN IR LI IR L I I IR At I TR N R HID LI I Y T M B VI T T HIE BT I RHEE MY SO LT B I W S TR T S PRI B I
HERRRI R REEREREEER R R R AR R R R AR RN R R R R R R R R R R R R R R R R R R AR AR R R RN E R EE]
202220222222222222222222222222222222222222222222022222222222222222222212
3.3333°13333333333333333333333333333333333333333333333334333333333333:231)

44!44444(4444‘444’444(44‘444444444‘444‘444‘4444(444444464‘4(4‘4‘44(4‘3!

§5555/5555535595553539955955355555955855583955585¢ 1555‘555555555555555555

6.6656/6566665366666665666665566666R6666666656666°¢ 35555585555566550656645

A scratch file is used in the jprogram to write the generated tableaux
for further reference.
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DEFINE ‘leﬁlucezu,buu,?,Ksygz)
INTEGER SMALL (200, 30) zg“) N
DIMENbIUND(JU’bU)’Id;éqg);éﬁLL,N,dm,I/;IY;KI:IHV:AR,X,
NSVESLS ER VR
| + COMMONZ /K S VR, ,
f:80~ FOKMA'TC316)
2 FurMat (1 FR.2) il EALY
oy FUnMAA(lhl,aux:leINI‘IAL ‘A?%$§?12f8-139
04 EMAT (X 12F 6017 TR 12F &0 1) b CERICES)
‘lus FUhWAl(IHl;&U/:ddHLU)hU]NAIi;
106 FURMAT (1%, 2HX Cr 18,20 =5 F 10
REBDRC2, 100) T4, 175 1Y :

"1X=]7-)
' by 1 M=1,T4
! READC2,102) (DM, NI »N=1,17)
NKTTECS, 103) -
Df. P M=1,1d
2 wi11£<3,IUA)(U(M:N);N=1:IZ)
oy 3 N=1Y,1IX .
DU 4 L:],pl'.'«' .
C U IFCDCLNYLEULT) Ga 10 &
4 CONt INUE
é Tovey )=
3 CUNTINUE
WRTTECS,109)
DY 7 I=1,14
A XCIBVC)=0¢1517)
8 Y] & J= I:II i ) )
NKITEC3,106)JsX(J
DQIIE( ,;37 I=1YsIX .
07 SMALL(l,1-1Y+1)=1
Kl=| _ : :
LSVE,KSVE=1
CALL  1G1aB.
NSVE=1 . L N
N=i} . A
}U Nz=N+1
W0 Lsvzas g
K2sKkyyE
CALL  17ias
L KSVESKR |
SO TN O L 114015 ]
1y NSYE=NSVE+]
N= ' )
_ TF NS yE-wSVEISU &1
'2“ Gy 10 10
R TR .
llq, " g I=1» I
;4 IFCN=-TBYCI»)9,1U,9

CilNTINUE
MU0 ALY poiECeld)
Gy T 1
SN ENTY
BNy
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@
19?9
3]

. . ;‘.u“-'f‘ y"‘ )
SUBRUUT I NE P‘XS{EﬁZuu:JU> S ARC30
INTEGEK 51

)
0),XC50
DIMLNbIUND(JU:bU) IBvC4ld,

) II F ] '} .
L VE’U,b LL,‘ ’I", .
\/ 2L

-bNALL 999999 0 ’

Iw
Di) 30 1= aa
IF(D(I:N))JUJJU:Q -
GuaLL = u<1,1/>/ucga.JU
IFCouaLL=-5SNALL)Y 60, 30

SNALL= UUALL
Kk=]

LUNIINUE

IF(KN)99;99:999
IBV(KK)

31 J=1,1U

'AK(J)=IBV(J)

' ORIBY |
SSL 34 \ K=1,K1=-1" v
Lg 32 g=1,14

34
)34:38:
TFsmaLL ¢k, g)- bMALL(Kl:J)

CDV!INUt
10 33
CONTINUE
10 40 |
Klz=g) )
NEIUAV]
BM=1 (K, N )
37  M=1,1Y |
LNAVK DevyN) : Uz
] 36 J= 1 |
IR Mekiy 135,37, 135 N
. M) *! B
B?WtS?VZ(W,J)-(U(Kh:J)/ﬁ
CuNT Tnge ,
iy 35 I=1,1

NITECY, 107)%)

DGR, 1y =K, 1) /1Y,
TKOVE=Ky yE+]

LSvE=p ; .
by 702 1=1,
X(I) =0.

X 700 I=1,1%

ACIBYCE Y y=1(,17)

“EX N 13)
HE VERIEA !
FURMAT Clmy, 224 (RIS IS IRE

Uu 8U3 1=1;1;:;) )
NI]L(J:]IU ) {ﬁ)=,klu.4
r'hvgl(dh:dnf(xld)d

LALL UllAab

CHVTrvus

BETuaN

Exy

R
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SUBKUUTINE ~ TUIAB | '
INTEGER SMALLCZ00,30)  »ARC3D)

DIMENSTONDC30, 502, IBYC4H ) XC50)

. CQMMUN//KbVE:NbVE:LbVL:U:bMALLJN:IW:IZ:IYJKI:IUV:AK;X:IX

b0

[
X

by 204 I=1,1W

IF(Lth'2)6“)6U)62 .
WRITECIU"KOVEI CCCDML 1) 15151205 18vIEMIdaM=1,T1W)
KOSVE=KSVE-1 ' ’

KETUKN
KSVE=NSVE . ’
READ C1O'KOVEX (UMM, II51=1517Z)5 IBVIMIIM=],10)

KOVE=KHVE-]

RETUIRN "
END

SUBJUTINE OrIBvV

INTEGEK SMALL (20U, 3U0)  »ARC30)
DIMENSTONDC(SY» SU) IBV4U)» X(S50)

COMMINZ/ZKSVE sNOVESLSVE»Ds SMALL SN, T 175 IYs K1 I1BV,ARS XS IX
Kl=Kl+1 o )
SMALL(K]1,1)=100.

bi) 200 1=1, 1w

[V §] 202 M=l,1W

IF(AN(M)—b%ALL(Kl:I)) 203,202,202

SMALL (K, T)=An(M)

K3=™

- CONTINUE
AR(K3)=999

CONTINUE, . ,

T RETURN

ENU
FInISH
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Appendix R2

In this Appendix two FORTRAN programs are presented. Program 1
solves the problem of finding all the vertices of a convex polyhedron
S as defined in Appendix R1, via algorithm II in chapter 2. The data
deck for this program is prepared exactly in the same way as that
described in Appendix R1.

Program II is used to find all the vertices of a convex polyhedron
S defined by

{Br=? (a)

v2>20 -,

~.via algorithm II in chapter 2.

The data deck for this program contains the following cards

First Card. This card contains 4 data values. These may be punchad
in whatever fashion one desires, but FORMAT statement number 104

in the SUBROUTINE SIMPLEX must be changed accordingly. The variable
names into which these 4 values are read, and their purposes are as

IN  The number of rows in the set of equations (a)

IZ The number of columns, including the columns corresponding to
the artificial variables, which one introduced to get a feasible
solution and the column associated with the constant in the
right-hand side of (a)

IY ~ The number of components of v, plus one. After introducing
artificial variable (a) may be written in the form

Dv, + Iv, = b (d)

I30 The number of artificial variables express

Second card. This card contains only one datum : al or O in the
first column. If one wishes to have the successive tableaux
printed out as the iterative process progresses to get a
basic feasible solution, 1 should be punched in the first column.
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Third Card. In the third card the user punches the coefficients of
‘ the infeasibility form used to.get a basic feasible
solution to a FORMAT statement number 102 in the
SUBROUTINE SIMPLEX may be modified accordingly for
reading this into the array P(J), J = 1 to IZ-1.

Fourth and subsequent Cards. Onto these cards the coefficient of the
equations (d) are punched as explained in Appendix R1.

Example Problem

Find all the vertices of a conVex polyhedron defined by

.

i
N

ZxI + 3x2 Xt Xy

3x1 - 2x2 + X, 3

3x1 + 4x2 + 5x3 * Xg = 4

xl,xz,...,xs 2'0 .

By introducing Xg @S an artificial variable, the starting basic
feasible solution is the optimum solution of the linear program

-999X6

Max z

subject to

2x. + 3x2 + Xy + X, = 2

1

3x, - 2x, + Xy + X = 3
3x, +4x, + Bxy + Xg = 4

X 2 0 i=1,....6 .

The data deck are punched as

| :"iFD S 4.c0 s.CC c.cc 1.cC C.CTC 4.CC
| HfE -acc 1fE C.cc c.ct  1.co RN -
| ZEFO 2.0C t.c¢c  1.cc 0.CC Q.o 2.c0
I g . T 3
| &EFQ . CC c.cc C.CC €. GG C.00 -SS%, 00
I
fl 7 i
Cioeay
FORTRAN STATEMENT

STATEVL L
t e
M I {2

00000’3003033000030'.H)!lﬂﬂﬂﬂﬂlﬂﬂﬂﬂﬂﬂﬂbﬂﬂﬂﬂ“ﬁ“"’nﬁnunﬂnuuunoqgnn

| .

I)l'i LB R R |
" R LI M I I IN IR LI I (7 St I I JRCN SR DI 1 Bt IFE I HIE MR MR LY AR [N T IR U VIS IR VIR T S ISV IR T O T YO L 1
A |

IIHHIIIIHHHHHlllllllllllllHlllllllllllllllllllllllllll
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PROGRAM I | R

DEFINE FILETGC(20U0,500,U>KOVED .
DIMENSTIUN L(2U»,27),1BVZ27), Il.ix\'(/é’“:d/):lbl(( 20,27),X(27)
COMMIINZZDs IBVs IBR IBNXs IR, 17, [YsNsNSVESLOVESKSVES K KB NTL, TWHKY )

- N

FitkMa'l1(316)
FUrMAT (I UrS.2)

FURMATCIHT 20X 22HCIKDINATE idF VEKT ILt.b)

READZ2,1U0)T N 1751Y
1X=17-1 |
b 1 M=1,14

00 3 N=1Y,1IX

DO 4 L=1,1%
IFCUCLIND) eEWal) G

CUNTINuE ‘
IBV(L)=N
CONTINUVE

WRITECS,105)

Dy 9 I=1,100"

DU 10 J=1,17

IBNCI,Jd=J

b 11 K=l,1WU
IBRCILKI=K

CONTINUE

KS5=U
NSVESKSVE,LoVE=1
CaLtlL I0lAw

N=1)

LsviE=3

N=Kb

N=N+1

B=NSVE

Ke=XavE

CaLL  101AB

KSVE=KzZ

DO 9b JEKSVE+1,200

AREAD(E:IU&)(U(M:N);N—]sIZ)

T

4

Ll 25 - I=1s1X

IBNC J 2II)=IBNINSVEST)

CIINTINUE
IF(N=TA)1451 4515
NSVE=NSVE+]
KE=ND VL
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NZ(
. IF(NSVE-KSVEX17,17,18
7 e0 10 19
Sild TFCIBNIKE,NYI19,20,20 | N
#2000 pnp 21 =1, 14

}} IF(N=-IBV(1ID))21,19,521
’Fl CONTINUE

KS=N

. KR=0 ' ) >
‘ SNALL=99999. 0 : :
DO 50 I=1,1W

s IFCIBR(K&, I))50, 50,31
w8l pFCDCI,NY ) S0, 50, 33
A3 QuUALL=LCT, 17701, )
E IF COUALL=SNALL) 605 SU, 50
4160 snaLL=wuaLL '
dlyg  Kn=l
£'30  CONTINUE
' IF(KIK)19,19,70
0 caLL PIVITIECE12)
8 K1p=kSVE

LSVE=3
| . NSVE=0 .

f D - 30 I=1,K1U
| NSVE=NSVE+1

I ceLL 101AB

. SRTTE (3, 391

19 FORMAT (30X, 224 1HIS IS THE TABLEAU Nib13)

‘ D HRTTECS, 49) CIBNCI»J) 5 J=1,1X)

P9 FaaMAT (KX, 13TH)

i 3l 4l M=1, [t

O WRTTECY, 41 IBRCT 55 IBVIM) 5 (LY KI»K=1,17)

DAL ERMAT CIHU S 1K T35 2HA G 125 TR 3 13F K2/ (9K 1 3F2eE)/ C9Xs 1 3F542))

, i) 48 L=1,1X
% xa=0.0
| Br 38 L=1, I3

T8 X CIsVCL)II=D(L,17)

‘ IYe=1Y-1

ol o2 L=1,1Y2
Qe TR, 4300, KCL)

¥

U RMAT (A 2HAC T2, 2R TR e &)
A8 GaVITNUE

T K

{ FNU
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SUBKROUTINE FPIVUTEC*)

DIMENSTON D(2U>27),I8Y(27),18N(220,27)5 IBR(22U,27),X(27)

L CUMMIUNZZD> 1BV IThbis IBNs Ao IX5 175 IYsNaNSVESLSVEKSVE, KIsKE8, N1, I%,K1Q
A - NI=U . : .

0 KK=0 . .
: K9=NSVE

%44  SNALL=999999.U

I B 1Y 30 I=1, 10 : .

o IR CIBc (K9, 123U, 30,31 ) .

SRS TFCLCILND 305 30,33 |

251383 wUALL=DCT-1Z)/7LCTsN)

IFCuUALL-SNALL)Y&US 305 3U

4,60 sneLL=wUALL

s Ki=]
w300 CONTINUE
gl IF(KRYF9Y599, 51

199 IFONI-1X)89, 50,50
w150 RETURNI

UL BM=D (K, N

' IBV{KK)I=N

N1=0
 KSVESKSLVE+]

i K10=KSVE

o obpd. 10 1=1, 14
T IBRCKOVE, 1) =IBR(K9, 1)

| IBR(KSVE »XK)=-KK -
o IBN(K9,NY=-N
sl py ' 37 =1, 1%

CRANK=UCT N
5 by 36 J=1,17

'\l IFCI-KKI11,37511
- 1M RS =CxANK
- N6 pe1, = u(I:J)-(U(Km,J)/bW)*hb
37 CONTINUE
. DUl 32 I=1,17
92 PUKKL, 1)=D(KR, 1)/ 1M
WRTTEC3, 120 KSVE,NSVE, KT U5 K9
120 Fioxvat 20X, 418)
Kik={
"} LSvE=1
Call  IUTAG .
L) 71 I=1,1u
| II'(IH:\(K\\JL:I))7l:?5'l:‘ﬁl1
] CNGINUE
! _\.'- ToeeNd




i N st ‘ |

B0 LyyE=3
BB Ny =Np+l
K3=NSVE
NSVE=KSVE : .

| Ka=KSVE L ' ‘ :
. CALL 10148

i  NSVE=K3 ,

! KSVE=K 4 ' . Lo
IFINTI-IA)E 484,85
KETURNI
IFCIBNCKIUSNL)IE9, 90590
D - 91 I=1,1U
IFCNTI-IBVCIIY]ISE9,591
9 conTINuE
N=N1
KY=KSVE
GO T 44 o
KETURN . . .
END :
SUBROIUT INE 1TAR
DIMENSTUN DC20,27), IBV(2T), IBNC22Us2T)s IBR(220527) X (27)
CIOMMINZZUs 1BV Ions IBNsXs 11X, 17.!IY:N:NbVE.:L.J\/t.:Kb\/L)K9:Kb:l\”:I":Kl“

FFCLOSVE=-2)6Us 605 62
1160 HRITECTU ' KSVED) (CCUEM, 15 T=15 1705 TBVOD o M=1, 1)

KSVE=KSVE-1
3 ke RETURN
W% kS yESNSVE
P83 RERD (10 TRSVE) (DM, T)sI=1517)5 IBVAM) ) sM=1, It)

: KSVE=YSYE-]
KETURN
END
FINISH

o X og
-

s




105

10

12

19

25
55

15

17
14
20

21

31
33

60
50

70
18

Doy m e e ey o
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MAS TER CUNVEX SET
DEFINE FILE10¢2205500,U,K200),12¢220,500,UsK100)
DIMENSIUN  DC10,202,1BUC20), IBNCA00,20), IBRCA00,10),XC20)
CO%MON/ /D5 1BV, IBR> IBN»X» IX>1751Y5N> NSUE>LSVEs KSUE>K95> K8, N1, I W, K10
1/AREA111/X100,K200

CALL  SIMPLEX

WRITEC3,105)

FORMATC 1H1, 20%, 22HCOORDINATE OF VERTICES)

DU 9 1=1,100

DI 10 J=1,17

IBNCI»J)=J

DO 11 K=1,1W

IBRC15K)=K

CUNTINUE

K5=0

NSVE, KSVE, LSVE=1

CaLL I[O0TAB

N=0

LSVE=3

N=KS

N=N+1

KB8=NSVE

K2=KSVE

CALL I0TAB

- KSVE=K2 ;

DO 55 J=KSVE+1,400
DO 25 I=1,1IX
IBNC J >1)=IBN(NSVE,1)
CONTINUE
IFCN-IX)14,14515
NSVE=NSVE+1

K8=NSVE

N=0

IFC(NSVE=KSVE) 17517, 18

GO TO 19
IFCIBNCKR>NY)19,20,20

DO 21 I=1,1V
IFCN-IBUCIN)21519,21
CONTINUE

KS=N

KR=0

SNALL=99999.0

DO 50 1=1,1W
IFCIBRCKSB,1))50550,31
IFCDCILN))IS05 50,33
QUALL=DCI,17)/DCIsN)
IF¢OUALL-SNALL) 605505 50
SNALL=QUALL

KR=1

CONTINUE

IFCKR) 19519570

CALL PIVOTEC&12)
K10=KSVE

LSVE=3

NSUE=0

- gy T T e ¢ 7YY



39

49

40

41
48
38
42

43
30

44
31
33
60
30
99

50
51

70

72

11
36

2 P J e IR

=155«

DO 30 1=1,K10

NSVE=NSVE+1
CALL 10TAR

WRITEC(3,39)1

FOURMAT(30X522HTHIS 1S THE TARLEAU NO,I3)
WRITEC(35,49)CIBNCIS»d)sd=151X)

FORMAT(8X, 1315%)

DU 40 A=1,1W

WRITEC3,41)IRBR(I sMILIBUMMIL(DIMLKI)»K=15127)

FURMATCIHO5 1XsI13,2HX(,1251H)» 13F82/(9%» 13FK«2) /(9% 13F8.2))

DO 48 L=1,1IX
X(L)>=0-0

DO 3R L=1,1IW
X(IBUV(L))=DCL,1Z)
Iy2=1y-1

by 42 L=1,1Y2

WRITEC 35 43)L>X (L)
FURMATC2X» 2HX (12, 2H)=,F8« 4)

CONTINUE

STOP

END

SURROUTINE PIVOTEC*)

DIMENSI OUN DC10,20),IBUC20),IBNC400,20)5>IRBRC400510),%XC20)
COMMON//DsIRBV> IBRs IBN>X>IXs 125175 N> NSUE,LSVE> KSVE> K95, KB, N1, TW, K10

" 1/AREA111/K100sK200

Ni=g
KR=0
9=NSVE oy

- SNALL=999999.0

DA 30 I=1,1VW
IFCIBR(K951)330,30,31
IF(DCI-N)>)30,305,33
QUALL=D(I>IZ)/DC(IsN)
IF(QUALL~-SNALL)>606,305 30
SNALL=QUALL

KR=1

CONTINUE
IF(KRY99,99,51
IF(N1-1X)89,50,50
RETURN1

BM=D(KR, N)

IBUCKR) =N

N1=0

KSVE=KSVE+1

K10=KSVE

bOd 70 I=1,1IW
IBR(KSVE,>I)>=1I1BR(K9,1)
IBR(KSVE »KR)==-KR
IBNCK9s NI ==N

Dad 37 I=1,1W
CRANK=D(I,N)

DO 36 J=1,1Z
IFCI-KR)>11,37511
RS=CRANK

DCI,Jd= D(I:J) (D(KR:J)/BM)*RS

e e v m g P e ey - R e e Lo e e e



37
32

120

71

B0
89

85
84
90

91

60
100

101

62

200

202

-156=-

CUNTINUE

DO 32 [=1,17
D(KR,I1)=D(KR»1)/BM
WRITEC(3, 120)KSVEs NSUE, K105 K9
FURMATC20X, 41 8)

KR=10

LSVE=1

CaLl. I1UTAB

DO 71 I=1,1W
IFCIRR(KSVE»IDX)715,80,80
CONTINUE

RETURN1

LSVE=3

N1=N1+1

K3=NSVE

NSVE=KSVE

K4=KSVE

CALL 10TAR

NSVEZK3

KSVE=K4
IF(N1-IX)84,84,85
RETURN1
IFCIBNCK1I05N1))89,90,90

- DU 91 I=1,1W

IF(N}I~-IBUCI))91,89,91
CONTINUE

N=N1

K9=KSVE

GO TO 44
RETURN

END

SUBRIUJUTINE I0TAB

DIMENSI ON DC10,20),IBUC20),IBNC400,20),IBRC400510),XC20)

S NI

CUMMON//D> 1BV, IBRsIBNsXsIX5>1Z51YsNs NSVE,LSVEs KSVE> K9»KB> N1, IWsK10

1/AREAT11/K1005sK200
IFC(LSVE-2)60,60,62
IF(KSVE-220)100,100,101
K20 0=K5VE
WRITECI1Q® K200)(((D(M,I):I‘I:IZ) IBUMI)»M=1,1IW)
RETURN
K100=KSVE=-220
WRITECI2'K100)C((D(Ms1)51=1,1Z)5I1BU(MIIsM=1,1W)
RETURN
KSUVE=NSVE
IF(KSVE-2203200,200,202
K200=KSVE
READ (10°'K2002CC(DCMsI),I=151Z)>IBUC(MIIsM=11W)
RETURN
K1N0h=KSVE-2210
READ (12'K100)(((D(M:I):I—l:I?):IBV(M)):M-l:IW)
RETURN
END



101
104
to2
103

106

108
109

110

111

112

113
300

301

302

305
789

15

16

30

40
20

210

13

32

33

-157=

SURRUUTIWNE SI “PLEX ' N - T T e
DIMENSION DC10,20)05,IRBUC20),IBNC400,20),IBRC400,10),%XC20) .
1,5CC40),PC40)
CUQMUN//D:IEV:IRR:IPV:X:IX:17:IY:V)VSVF:LSVE:KSVL:K9:K8:N1:IW:KIO
17/AREA111/K1005,%200

FURMAT (I 1D

FORMATC 4l 4)

FURMATC(20F4.0)

FURMATC(20F 4+ 0)

FURMAT (1HO0s 1 1HTABLEAU NU+«516)

FURMAT C1H1,94 SULUTIOND

FURMATC1H0, SHUARI ABLE, 4%, SHVALUE)

FORMAT (1Xs2HX(513,4H) = »F12.2)

FURMAT (1H0,2~4 ALL OTHER VARIABLES = ZERUO.)

FURMAT (1H1,21H THE INITIAL TABLEAUe)

FORMAT (11X, 10F10e4/ C11%Xs 10F10e4))

FORMATC 11X, 10110/7C11X5»10110))

FURMAT C1HDs2X5, 24X (5125 1HY)5»3%X>10F10+37 (11X, 10F103))
FORMATCIHD, 12H SIMPLEX CR,10F1037 C11X510F10+3))

FURMAT C1H0>9HORJ FNCTN» 1X» 10F10.37 (11X510F10.3))

FORMATC1H0, 10%,28HORJECTIVE FUNCTION VALUE IS »F15.5)

READC2, 104)IW,17Z2,1Y>130

IX=17-1

-READ(2,101)ITAB

READC2, 102)(P(J)»J=1,1I%) ¢
DO 15M=1,1W

READ(2,103) (D(MsNI5>N=1,12Z)
WRITE(3,112)
WRITEC(35305)(P(M)sM=1,1%)

DU 16 M=1,1IW

WRITE(35113) (D(MsN)LN=1,17)
DO 20 N=IY,IX

DO 30 L=1,1W
IFCDC(L,N)«EQs1+) GO TO 40
CONTINUE

GO TO 2o

ITRUCL) =N

" CONTINUE

2.=0e

DO 210 M=1,1YW

IBUM=1BU(M)
7.=7+D(M>17)% PCIRBUM)
NOPIUS=0

IFCITAR.NE.1)GO TO 13
SCHUAX =0

DU 31 N=1,1IX

DO 32 I=1,1VW
IF(N.EQ.IBVCI)) GO TO 31
CONTINUE

SUM=0.

DU 33 I=1,1V

J=IBVCI)

SUM=SUM+PCJ)* DCI,N)
SCC(NY=P(N)=-SUM

IF(SC(N) «LE.SCMAX)GO TO 31
SCMAX=SCC(N)

IPIVCO=N



31

200

12

10

14

21

2777

~158=

CUNTINUE

DU 200 M=1,1V

I BUM=1 BV

SCCIBUMI=0.
IF(SCMaX.LE«0> GO TD 14
NOPIVUS=NUPIVYS+1
SMLUAL=999999.

DO 4 M=1,1W

IFCD(M, IPIVCUY) 4, 4, S5
QUUNT=D(M>172)/D(>1PIVCD)
IFCQUUNT~SMLVAL)Y 654,54
IP1VRU=M

SMLVAL=QUONT

CONTINUE
IBUCIPIVROY=1IPIVCO
DIV=DCIPIVROU,IPIVCO)

DU 7 N=1,1Z
CRANK=DCIPIVRO,ND
DCIPIVRU,N)=CRANK/DIV
IFCITABeNE. 1) GO TO 12
WRITE(6,302) (SCC(J)»d=151%X)
N100=NOPIVS +]
WRITEC(3,789) Z

"WRITEC(3,106)N100

WRITEC(3,300)(N,N=1,1IX)
DO 10 “M=1,1VW
IF(M-1PIVRUY9,8,9
R¥=-D(M, IPIVCD)

DO 11 N=1,12
Bi4=DCIPIVR0,N)*RM
SINK=D(M,N)+B#
D(M,» NI =SINK

CONTINUE

IFCITARNE«1) GO TO 10
WRITEC(3,301)IBUCM)» (D(MsN)H»N=1,12)
CONTINUE
Z=7Z+SMLVAL*SCMAX

GO TO 13
WRITE(3,108)

WRITE(3,109)

PG 21 M=1,1VW :
WRITE(2,110)IBU(M)»D(M,IZ)
WRITEC(35111)
WRITEC(3,789) Z
131=1Z-130
IX=1X-130

Dy 27717 I=1>1IW
DCILI31)=D(1,17Z)
1Z=1Z-130

RETURN

END

N e - %r-‘-E‘r":‘r\‘Jwg‘:{-“‘T'
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Appendix R3

Two FORTRAN programs are described in this Appendix. In the first
program Lemke's method is applied to the Fundamental Problem

-Mz + IH = q
W,z 20 ' (f)
sz =0

A data deck for this program is prepared as follows:

First Card. This contains two values. These may be punched in
whatever fashion the user desires, but FORMAT statement number 100
must be changed accordingly. The variable names corresponding to
these Values are as follows:

IM  The number of rows in the set of equations -Mz + IW = q.

IN The number of column of the matrix [M,I] plus two.

Second and subsequent cards. Onto the next set of cards the user
punches the coefficient of the equation

T,

MZ+IW+e'z =q , - (9)

where e' = (-1,-1,...,-1). These should be in conformance with
the FORMAT statement number 101, in such fashion these data are read into
the array D(I,Jd), I =1 to IM, and J = 1 to IN, as follows:

D(1,IN) Holdsthe coefficient (elements) in the first row (thus the
first equation in (g)).

th and final

D(IM,J) Holds the coefficient (elements) in the IM
row (thus final equation in (g)).
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Example

w. =2+ Zz1 + 3z2 + 423

1
=20 -z - + 14z
W, 20 z1 Zz2 1 -
Wy =-+3 +z + 4z2 -z,

‘ 2:0
. wl,uz,wa,zl,zz,zs

Wiz; = 0 1i=1,2,3

* The data deck is shown in Fig(1).

C COMMINT

aro 4.0 -1.0 0.0 0.0 1.0 -1.0 3.0 |
—Fro -2.0 14,0 0.0 1.0 0.0 -1.0 -20:0 l
eand - X Y y :»
i e 3.0 4.0 .6 00 0.0 -1.0 2.0 | .
8 . - P C e e e . PR . d _—— ) . ._.‘_4 e e amem e s m e ]

e FOR

TATEMENT
NUMEEH |

FORTRAN  STATEMENT | | 5

- iolooo0
1‘:”15
Lttt

1

3:331333}33333333333333333333333133333]33333333333333333333331333333333333?

0000000000000000C000000000000000000000090800000000000006000000003¢

toe
DU N IS 6 IS I M I IS B 2N 102 03 1030 0 35 36 10 30040 40 A2 0544 U5 6 47 4848 SR 5D 52 53 50 55 56 $F S0 59 B 6L G2 63 64 88 66 %i a2 6y oy n n{ny
111

R R R R AR R R R R R R R R R R NN NN RN R RN
22222272222222222222222222_22222222222222‘222222222222222122222222222:

— e | OETRYATY

-~

2122

l'llll,lll,n.a.-.-.l-'.l.-v"‘v""vv'v'rtrir'lvv.'rvrvt!lllll)'ll"'ll'llll‘l'f”""”f”i

Fyl)
Program II solves the Fundamental Problem via the algorithm proposed
by the author in chapter 3.

‘The Fundamental Problem may be written in full as

- - - 3 s = L3 .= oo-nc h
m,ilzl ees mmzn+w1 q.l s 1 .]s ) ()

WisZg 2 0, ZWy = 0 i=1,...5n

Define
Q ={i gy 201, and Q, ={i [q; <0} .

Then (h).is written in the form

- - see Tillg +w0 = - if i €
J i1 MinZn ¥ ¥ = 94 Q (f)
s - . + V., = -(Q; .if .i €
l mi 2, * vee B ML T - Wy i 95 Q,
. .z, = 0 i=1,...5m
wi’z] 2 0 w1zl ] 3
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To use the program one must prepare a data deck as described below

1. Read in conformance with FORMAT statement 104 in the
SUBROUTINE SIMPLEX, value for the following variables

IH = number of rows in the set of equations (h).

number of the columns of matrix [M,I] + the cardinality of the
set Q2 + 1.

1Z

130 = the cardinality of the set Qz‘

If the set of equatioh is expressed in the form

Mv =My +1v, = q' | (q' = 0) (k)

then

- IY = number of components of the vector vy plus one.

2. Read the coefficient of the artificial variable in the infeasibility
form introduced to get a basic feasible solution to (k), into

the array P(J),d = 1 to 1Z-1.

Where, ‘

0o ifJth

P(J) =
M if gth

component of v is not artificial

component of v is artificial

where M is very large positive number.

3. Read the coefficients of the equation in (f) into the array
D(M,N), M=1 to IW and N = 1 to IZ, in conformance with the
FORMAT statement number 103.
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Example
W1'='|0+221+222-23+z“
W, =-2 +3z - 3z, + 4z, - éu
Wy =3~z +..4z2 + 10z, + 2z,
W, = -4+ z, - Sz2 -z, 4 3Zq e
wizi 20 wiii =0 |

may be expressed as
-221%222+23«2u+ul_-_]0
3z, - 3z, + 4z, -~ z, - W, +v, =2
z, - 4z2 - 1023 - 22“ tuw, = 3

zZ, =52, -2 +32 -w

1 2~ %3 y "W, v, =4

The data cards are as:

l.f -1, % € 0 C -1. C 1. 4,
, 1. -E —1c. -2, 0. 0. 1. 6. 0 0.3

- —— . . . [+ ] - | oL . -

2 _ln U. -1. O_- 0- 1- 0. 2. .
I a.lt ). A T. A e
l-‘z.'lr. . -1, € . C C. C 0 1C, |

.“. c. o, 0. 0. O0.-9¢,-¢o.
| | c. 0. o ¢ s :

"Jl

LAN]

4 l11 €
ek

hswevx.‘
0m0R3109M00MHMMH(IMMMDMMMMHMHM OMIMMUMMMMMUMM

1) S‘l R EEEEMAL L REL R R R R R R R R I N Y R St R TR R TR R R T T I A R N S R I
L] ot

HIII-‘IIIHIIIHIIllllllllll!llIHHI]HIH tirrrrrrnertrsnrnneng

FORTRAN STATEMENT

N
l
|22222222222222 f22222222222222127 201222k 12112221122120 021 2
I

3'3343'33JJ333333333333333133333]33333333333333‘333334311333333313333333.

l 404888484488 40804 884844848088 38384880588880300q000 08888800
|

v.l.,..u.n.-------.....--.---~-~----.-'-rr:t:ttc:(sQQ‘i{ﬂ‘Kﬁﬁ‘oﬂ“aSSSSSSSSSS
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PROGRAN I

MASTER LEMKE
DIVMENSIUN DC405,100), IRBUVC40)
CUMMON Ds IRV KRs LR IMsIwsK2 »ICUOLUM M1
100 FURMATC2I D )
101 FURYMATC10F8.1)
READ(2,100) I4,IN
" LX=In-1
DO 102 1I=1,14
102 READ(2,101)CD(I>J)sJd=1,1IN)
Mi=0
RC=0.0
b0 150 1I=1,1IM
ITF(DCI,IN))>151,150,150
151 IF(DCIL,IND-RCHI152,152,150
152 RC=L0(I,IN)
150 CUNTIWUE
DU 104 1I=1,14
DCTsIN)=DCI>IN)+ABSCRC)
IRVCI)=1IM+]
104 CONTINUE
WREITEC(3,111) ) v
111 FURMAT(30X,234THIS IS INITIAL TABLEAU)
WRITEC(3,201)0CI-1=1,IM)»(CJdsJd=1,1M+1)
201 FURMATC(I1X,6C(2HY(,1251H)53X ), 7(2HW(,1251H)Y»3X))
PO 108 I=1,1IM
IF(DCI>IN)D) 105,109,108
109 KR=1
M10=1RVCKR)
: GU TO 160
108 CUNTINUE
160 DO 106 1I=1,1IM
' I20=IBVCI)-IM
IFCI20)400, 4005401
400 WRITLEC3,107)CIRUCI)SDCILJ)sd=1-1IN)’
GU TU 106
ANl WRITF(3,402)I20,C(DCI5>J)»Jd=1,1IN)
106 CONTINUE :
107 FURMATC1X52HX(513,2H)=515F8.1)
402 FORMATCIX,2HW(,I1352H)=,15F8.1)
ICOLUM=M10~-1IV
DCKR, IN)=ABS(RC)
LR=IN=-1
IBUVC(KRY=LR
200 CALL PIVOT
141 CaLL CHECX
IF(K2)114,140,114
114 Lr=1COLUM
SMALL=999999.
DU 115 1I=1,14
IFCCCTI>ICULUM))1155,1155199
199 SIMA=NDCI, I\ /DCIL1COLUMD



196

115

118
172

600
173

601
602
171
174

116

120
121
140

202
300

16
17

-1 5lm

SIA1=8Iv-S4ALL

IFCSIM1)196,115,115

SAALL=SI ¥

Kr=1

CUANTINUE

I3=1BV(KR) -LX:

M12=1IBU(KR)

IBVCKR)=1CULUN

CaLL PIVUT

IFCI3)116511R,116
WRITEC3,172)

FURMATC 10X5 8HSOLUTI UN)

b0 171 1I=1,1¥

I30=IBVCI)-1¥

IFCI302600,600,601
WRITEC3,173)IBVCIIH>DCI,IN)

FORMAT( 5%, 2% (5, 13,2H)=,F84+ 1)

GO TO 171

WRITEU3,602)130,DCI,IN)

FORMATCSX, 2HW(, 13, 2H) =, F&+ 1)

CUNTINUE

WRITE(3, 174

FURMATC 10X, 19HALL OTHER VARIABL=0)

GO TO 300
T14=M12~1M
IBUCKR) =1 CUL U
IFCI4Y121,120,120

ICOLUM=14

GO TO 141
ICOLUM=M12+1IM
GO TO 141

WRITEC35202)
FORMATC 1X, 23HPROBLEM HAS NO SOLUTION)
STOP

END

SUBROUTINE PIVOT

DIMENSION  DC40,100),1BUC40)

COMMON D, IBUs>KRsLR» 1M, IN» K2, 1COLUM, M1
K6=1N

IFCMI) 17516517

IN=IN-1

DIV=D(KR» LR)

DIV IS PIVOT ELEMENT

Do 7 N=1,IN

CRANK=D(KRs N) /DI V

DCKRs N> =CRANK

DO 10 M=1,1M

IFCM-KR)9,10,9

RM==D(M, LR)

DO 11  N=1,IN

BM=D( KR, N) *RM

SINK=DC M, N) +RBM



11
10

200
113

201
202
112

3oe

300
310

~165=

D{(M,N)=SINK

CONTINUE

CUNTINUE

IN=K6

Ml1=M1+1

WRITE(3,1100M1

FORMAATC1¥, 1BHTHIS IS TABLEAU NU:I3)
DO 112 I=1,14

120=1IBVCIY~-1i

IFCI20)>200,200,201
WRITEC(3,113XIRVCIIHS(DCI»J)sJd=151I0N)
FUBRMATCIX»2HY (5 1352H) =5 15F8+1)

GO TO 112
WRITEC(3,2022120,C(DCI5J)5Jd=15IN)
FORMATCIX> 2HW(,13,2H)=5, 15F8+1)
CONTINUE

RETURN

END

SUBRDUTINE CHECK

DIMENSION DC405, 1007, 1IBUVC40)
COMMUON D:IBV:KR:LR:IM:IN:KQ » I1COLUM
K2=0

pO 300 I=1,1IM
IFCDCILICOLU4YY>300,300,302

K2=1

GO0 TO 310

CONTINUE

RETURN '

END

FINISH

»M1
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PROGRAL! IT -

MOSTER LINEAR CUYPLEMENTAEY PIUOT

DEFINE FILE 10¢200,500,0,K12,11¢200,120,U,%2) .
DIAENSTUN D20, 400, IRVC20), VC40),4C20),M1C2N)5N1C40) >, KC200)
CUAMUN//Ds IRV, 15 17, 1X»7Z/AREAL /45 Vo1, N1s K1s K25 L1sLKs LW/AREN2/KRS
ILRs ICOLUA> ICY K> 130 510

Ki=1

CALL SIMPLEX

DU 102 1=1,1W

NCIBUCI)) =1

DU 126 I=1,1V

ACT) =]

KCK1Y=0

131=17-130

D0 177 I=1,1W

DCI,131)=BC1,17)

17=17-130

L1=1 .

I1X=I%-130

DO 103 J=1,IX

IFCNCII=19110,103,110

IFCNCII=2)104,103,104

110=J-1V

IFCI10)105,105,106

I11=J+IW

DD 107 I=1,1W

IFCI11-1BUCINI107,109,107

CUNTINUE

NCJI>NCI11)=2

KCK1D=KCK1) +1

GO TO 103

DU 108 I=1,1u

IFCIIN=-IBYCIIN108,103,108

CUNTINUE

NCJI>NCT10)=2

KCK1)=KCK1) +1

CONTINUE

UP T YERE WE HAVE CALCULATED KILTER NUMBER
WRITEC35 111)K15KCK1)

FORMAT(3X, 244XILTER NUMPER IN TARLEAU,13,241S,13)

UP T HERE WE HYAVE CHECKED FISIBILITY&RCONSISTENTLY OF TARLEAU
LK, LW=0

ICOLUM=1

caLt, 10TaB

buU 112 u=1,1X
N1CI)=NCD)

DO 113 1I=1,1W
M1CId)=MCI)

ICOLUM=1 .

IFCKCKL1)) 114,114,266
M10=10

GO TO 333

M10=0 ‘

CALL RRULE

IF CICY 317651765117
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116 LK=1
caLL 10TAR
DO 122 I=1,1W
122 MICID)=+C1)
DO 130 J=1,1IX
130 N1CJIY=NCT)
IF(K(KI))310,¢10:JII
310 M10=0
- CALL BRULE
IFCICY)>312,312,117
312 CALL OuUTPUT
Kl=Kl+1
320 IF(K1-L1>116,116,128
311 M10=0
CaLL BRULE
IFCICY)314,3145117
314 CaALL UUTPUT
Kl=Ki+1
GO TUO 320
117 Li=L{+]
KFIX=KI1
Ki=L1 - : ¢
LK=1
~CALL 10TAB
PO 138 1=1,1W
138 M1CIY=MCI)
DO 139 J=1,1IX
139 NI1CJY=NCD)
K1=KFIX
300 IFCKCLIDDII131,131,132
131 M10=1
CALL BRULE
. IFCICY»133,133,134
133 GU TU 116
134 o0 TO 117
132 M10=1
333 CALL RRULE
IFCICY)>1355135,136
135 GU . 1O 116
136 GO 10 117
100 WRITEC3,140)
140 FURMATC10X,23HPROBLEM HAS NO SOLUTIOND
176 CaLL JuTPUT
128 STUP
END
SURRUUTINE 10TaB
DIMENSTON DC20,40)5IBVC20),MC20)5NC40)5,N1C40)5,M1€20) »K(200)
CDWMUN/(D;IBV:IU,IZ:IX:Z/AREAI/M,N,MI N1,Kl,K2,L1,LKsLWU/AREA2/KR,
ILR,ICULUM>ICY» K
IF(LK)203,203,205
203 IF(LWY2nNn, 2005201
200 WRITECIO'KIXCCIBUCIIH(DCILU)sJ=15122)51=151WD
Kl=Kl-1
201 Ke=Ki



205

204

11
10

500

351

200
113

201
202
504
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WRITECII'K2)(HiCIdI=11TW)s(NCU)H»J=15,12),1CULUM
KP=K2-1
GO TU 2n4

READCIO*KIICCIBUCI) L (DCI»J)5»Jd=151Z30,1=1,1W)
Kl=Kl-1

K2=Kl1
READCII'K2)(MCID b I=1,TW)Ho(NCJY>J=1,12Z),1COLUM
Ke=K2-1
RETURN

END

SUBRUOUTINE PIVOT

DIMENSIUON DC20540), IRVC20)
CUﬂWUN//DJIFVJIW:I7/AREQ?/KR:LR

DIy=DC(KR»LR) , :

DO 7 N=1,12Z «
CRANK=D(KR»N)/DIV

DCKR>N)=CRANK

PO 10 M=1,1W

IF(M KRY9,10,9

A=-D(M, LR)

DU 11 N=1,17

BM=D(KR» N) ¥RM

SINK=D(vs N)+BM
DCMLNI=SINK

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE DUTPUT

DIMENSIUN DC(20,40),IBUC20),MC20),NC40)5N1€C40),M1C20) »K(200)
COMMON//D>IRULTIUL17Z,1IXsZ/7AREAL1 /M5 NsMLI> N1, KIK2,L1,LKsLW/AREA2/KRS
1ILR, ICOLUM» ICY» Ky 130 »M10
WRITEC(3,500)K1,K(KL1)

FURMATC1X, 18HTHIS IS TABLEAU NO0,I3,20HAND KILTER NUMBER I1S,13)
WRITEC(35,351)XC(NCIY»Jd=151%D)

FORMATC10%X,1518)

DO 504 1=1,1W

120=IRBVCTI)-1W

IFCI20) 200,200,201

WRITEC(C3,113)MCI),IBVUCI) (D(I:J) J=1,17
FURMATC(1X,13,2HX(,13,2H)=5,15F8.1)
GO TO 504
WRITEC(3,202YM(I),120,CDCI,J)>Jd=1,12)
FURMATC1X5>13,2HW(,13,2H)=515F8%+1)

CONTINUE

RETURN

END

SURROUTINE BRULE

DIMENSION DC205,40),IRUC20)>MC20),NC40),N1C40),M1C20) »KC(200)
1,ICHC200)

CUMMON/ /D> 1RV, W, 1Z,IX5Z/AREAL /M5 Na 1, N1, K1 K2,L1,LK, LW/AREA2 /KR>
ILR, ICOLUM, ICY» K, 130 5> M10 /AREANEW/ICH, JIM
SMALL=999999.)

IROW=0



~169=-

TICY=0 _
IFC41029000,9000,9001
9000 IFCKC(K1))9003,9003,9004
9004 CALL CHECK
IFCI30)9003,9003,%88
9001 IFCKC(L1))9003,9003,9004
9003 CcALL CHOOSE
. " IFCI30)9950,9950,9951
9951 J=JIM
GO TO 803
9950 J=0
802 J=J+1 o
IFCJ.GT«IX)GU TO 888
IFCNCJ)=1)2000,802,2000
2000 IFC(NCJIIR02,1802,803
1802 DO 604 I=1,1W
IF(MCINI60456045605
605 IFCDCI,J)I604,604,606
606 RM=D(Is1Z>/DC1,J) .
IFC(RM=-SMALLY 607,604,604
607 SMALL=RM
IROW=1
604 CONTINUE :
IFCIROWY802,8025 1609
1609 122=J-1V
IFC122)610,6105 1699
610 122=J+1V
1699 IFCIRVCIROWI~122)6R81,680,681
c THIS 1S THE CASE IN WHICH CUMPLEMENTARY PIVOTE 1S POSSIBLE
680 N1C¢JY=~3
NC(122)=-3
MICIROW) ==-MC IRUW)
MCIROWY ==-MCIROW)
NCJ) =1
IBUCIROWY=J
GO TO 699
: IN THIS CASE PRINCIPAL PIVOTING NUT POSSIBLE
681 1221=IRVCIROW) ‘
1231=1221-1W
IF(1231)650,650, 651
650 1231=1221+1W
651 DO 69% 1=1,1W
' IFCIBUCIN-1231)698,6605 698
660 IFCMCINIG6156975697
698 CUNTINUE
GO TO 503
THE VARIARBLE 1S IN BASIC AND FLAGGED
661 N1¢J>)=-3
NCJII=1
NCIRUCIPOWY)Y=-3
MCIROW) ==-MCIRUW)
555 DO 500 I2=1,1W
. IFCIRUCI2>-1231)5005510,500
500 CONTINUE
S10 IF(MC12))1509,15105,1510
1510 M1c12)=-4C12)
1509 1RUCIROW =J

’
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GU TOU 699
€697 N1C(J)=-3
NCJ) =1

NCIRVCIRUW) =0
MCIROW) =-AC IRUW)
GO TU 555
503 DO S04 I2=1,1Y
IFCIRVCIR)-122)504,1505,504
504 CUNTINUE
GO TO 1506
1505 TF(MCI2))150651507,1507
1507 M1C12)=~M(I2)
1506 N1¢J)=-3
NCJII =1
IF(NCI231)+3)506, 505,506
506 NC1231),NCIBUCIROW))=2
IRVCIROW) =J
GU TD 507
505 NCIBUCIROW))=2
507 MCIRUW)==-MCIROW)
IBVCIROW) =J
IFCM10)1681,1681,1680
1681 KC(L1+1)=K(K]1)+1.
GO TO 4000
1680 K(L1+1)=K(L1)+1
GO TU 4000
699 I1F(M10)6915691,692
691 K(L1+1)=K(K1)
GO TU 4000
692 K(L1+1)=K(L1)
GO TO 4000
803 IROW=0
DO 804 I=1,1W
IFCMCINIR04,8045805
805 IFCDCI>J))R04:R04,806
806 RM=D(1,17)/DC1,J)
IFC(RM-SUALLIS 07,804,804
807 SMALL=RM
IROW=1
804 CONTINUE
IFCIROVIRNS, 802, 1809
1809 122=J-1V
IFC122)%10,8105899
B10 122=1W+J
299 1221=1RVCIROW)
1231=1221-1y
IFC(1231)850,850,851
850 1231=1221+1V -
851 DO 852  I=1,1wW '
IFCIBUCID-12315852,853,852
852 CUONTINUE
IFCNCI231)+3)351, 350,351
350 N(I221)=2
GO TJ 855



351

RS3
700

701

702
910

855
222

223
815

4000
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NCI221),NC1231 =2
GO TOU 855
IF(ACIIIT00,7005701
NC(I221)=-3

GO TU 702
NCI221)=0
IF(M103910,919,911
KCLI+1)=K(K1)~1

GO TU 815
KCL1+1)=KC(L1)~1

GO TO 815
IF(M10) 222,222,223
KCLI+1)=K(K1)

. GO TO R15

N

KCL1+1)=KC(L1)
1COLUM=y
IBVCIROWY =1 COLUM
MCIROW) ==MC IROW)
N1CICOLUM) =-3
NCICOLUM) =1
N(I22)=-3
KR=1ROW

LR=J

- CALL PIVOT

321

Bg8

Li=L1+]
LK>LW=0

IFIX=K1

Kl=L1

CALL 10TaB
Kl=IFIX
Li=L1~-1

ICY=1

Dd 820 I1=1,1W
MCIDY=M1CD)

DO 822 J=1,1IX
NCJIY=N1CJ)
IF(M10)320,320,321
LK=0

LWw=1

caLL I0TARB
GO TO 838
IFIX=K1

Kl=L1

LK=0

"LW=1

CALL 10TAB
K1=1FIX
RETURN

END
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SUPRUUTINE CHOUSE S
DIMENSIUON DC20s 402, IBUC20),MC20),NC40),N1C407,M1C20) K200
1, ICHC200)
COMMON//D, IRV 1W,175,1X»Z/AREAL /M5 NsM15 N1 K15 K2, L1, LKs LW/AREA2/KR>
ILR>ICOLUM, ICY>X»130 »M10 /AREANEW/ICH,JIM
I3)I3D:JI:JIM=U
K3=1%/2
IFC410>100,100,101
100 IFCICHC(K1)Y102,102,5103
101 IFCICHCL1I)Y102,102,104
103 JI=ICHC(KI)+1IW
GO TO 105
104 J1=ICH(LI)+IVW
105 DO 106 I=1,1W
IFCMCIND 10651065107 «
107 IFC(DCISJ1))106,1065108
106 CONTINUE
IFCI3>114,1145102
114 130=0
GO TO 120
108 130=100
JiM=J1
IFCI3)130,130,121
121 IFCMI0Y122,122,123
‘122 ICH(K1)=J1
ga TO 130
123 ICH(L1)>=J1 )
130 GO TO 120
102 Ji=J1+1
13=0 _
Jo=J1+1y
IFCJ1.GT+K3) GO TO 120
IFCENCJIL) eEQe2) « AND(N(J2)+EQe2))GO TO 116
' G0 TO 102 ‘
116 13=1

GO TO 165
120 RETURN
END
SUBROUTINE SIMPLEX
DIMENSION DC(20,40),P(39),IBV(20),SC(39) »KC(200)

COYMMUN//D> IBU»1IWs17,1XsZ/AREA2/KR» LRLICOLUMLICY»K »130

101 FORMAT (I D) ‘
104 FORMATC4I 4)

102 FUORMATC(20F4.0)

103 FURMATC(20F4.0)
106 FORMAT C(1H0, 1 IHTABLEAU NU«516)
108 FORMAT C1H1,94 SOLUTION)

109 FORMATC1H0,8HUARI ABLE» 4X, SHVALUE)

110, FUORMAT C1X,2H¥(,13,44) = ,F12.2)
111 FURMAT (140,28H ALL OTHER VARIARLES = ZERUO.)
- 112  FORMAT C1H1,21H THE INITIAL TABLEAU.)

113 FORMAT C11X510F10e4/7 C11Xs 10F1044))

300 FORMATC11%,10110/C11%X510110)) :

301  FURMAT C1HO0,2X,2HX(,12,1H)»3X5,10F1037 (11X, 10F10+3))
302 FORMATC1H0, 124 SIMPLEX CR,10F1037 (11X51C0F10.3))

305 FURMAT C1HO0,9HOBJ FNCTNs 1¥s 10F1037 C(11X,10F10.3))
789 FURMATC 1HO0, 10%,28HURJECTIVE FUNCTIUN VALUE IS 5F15¢5)



15

16

30

40
20

‘210

13

32

33

31

200

3=

READC2, 104)I1Ws125,1Ys130

IX=1Z-1
READC(2, 101)ITAB

READ(2, 102)X(P(J)>J=1,1%)

DO 15M=1,1V

READC2,103) (D(M,NI,N=1,12)
WRITEC3,112)
WRITEC35305)CP(M),¥=1,1X)
DO 16 M=1,1W

WRITEC3,113) (D(M>N)s>N=1512)
DO 20 N=IY,IX

DO 30 L=1,1VW
IFCDCL,N)+EQ+1+) GO TO 40
CONTINUE

GO TO =20

IRUCL) =N

CUONTINUE

Z=0.

DO 210 M=1s1V

I BUM=] BU(M)

7=7+DCM, 1Z)* P(IBVM)
NOPIVS=0

IFCITAB.NE.1)GO TO 13
SCMAX=0+

-DO 31 N=1,1IX

DO 32 I=1,1W
IF(NSEQ«IRV(IDY) GO TD 31
CUNTINUE
SUM=0.

DO 33 I=1,1Ww
J=IBVUCI)
SUM=SUM+P(JY* DC(I,N)
SCCNY=P(N)-SUM
IF(SC(N)LE.SCMAX)GO TO 31
SCMAY = SC(N)

IPIVCU=

CUNTINUE

DU 200 M=1,1W

IBUM=IBU(M)

SCCIBUMI=0.

IF(SCMAX«LE«0) GU TO 14
NOPIVS=N0OPIVUS+1]
SMLVAL=999999 .

DO 4 M=1,1VW :
IF(DCM, IPIVCOY))Y 4, 4, S
QUONT=D(M,I1Z)/D(M, IPIVCD)
IFCQUUNT=-SMLVAL) 65454
IPIVRU=M

SMLVAL=QUUNT

CUNTINUE
IBV(IPIVRD)=IPIVCU
DIV=DCIPIVRO, IPIVCD)

DO 7 N=1,17Z
CRANK=DC(IPIVRU, N)
DCIPIVRU,N)=CRANK/DIV

°
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CIFCITABSNE.1) GO TO 12
WRITEC(6,302) (SCCJ)sJ=1,1X)
N100=NOPIVS +1
WRITEC3,789) Z
WRITEC3, 10628100
WRITEC3,300)CN>N=1,1X)

12 DO 10 M=1,1W
IFC(M=-IPIVRUY9,8,9
9  RM=~DC¥4, IPIVUCY)
DO 11 N=1,17
B¥=DCIPI VRO, N) %R
S1NK=D(M, N) tBH
DM, NY=SINK
11 CONTINUE
8 IFCITABSNE.1) GO TO 10 .
WRITEC3,301)IRBVCA)» (DCaNI»N=1,12)
10 CONTINUE
7Z=7+SULVAL*SCMAX
GO TO 13
14 WRITEC3,108)
WRITEC3, 109)
DO 21 M=1,1V
21 WRITEC3,110)1BVC¥),D(M,12)
" WRITEC3,111)
WRITE(3,789) 2
RETURN
END o
SUBROUTINE CHECK
DIMENSION DC20540),IBUC20),MC20),NC402,N1€40),M1¢20) ,KC200)
COMMON/ /D> 1BY IW»1Z>1X»7Z/AREAL/M5N>M15N15,K15K25L1, LK, LW/AREA2/KR>

ILR> ICOLUM»> ICY»Ks 130 5110
J1,130=0
K3=1x/2
110=-3

400 Jl=J1+1 ’
IFCJ1.GT-K3) GO TO 200
IFCNCJIID)-110240054015 400
401 TFCCNCJI1) «EQeT10)+ANDsC(NCJI+IWI.EQ.110)) GO TO 202
GO TO 400
202 130=100
200 RETURN
END
FINISH
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‘Appendix R4

The FORTRAN program in this Appendix solves the plant location problem

with unlimited capacity, and concave cost function using the algorithm

discussed in chapter 4.

To use the program one must prepare a data deck as described below.

1.

Read in, in conformance with FORMAT statement number 100, values
for the following variables:

LAST = number of arcs of the graph related to the given problem.

IM

IN

(This is a directed graph.)

number of p]énts.

number of customers.

Read the nodes of the grabh from which arcs start, into the
array M1(I),I = 1 to LAST, in conformance with FORMAT statement
number 101.

Read the nodes of the graph to which arcs end,into the array
N1(I),I = 1 to LAST, in conformance with FORMAT statement
number 101.

Read the number of customers that can be supplied from each
plant, into the array N2(I),I = 1 to IM, in conformance with
the FORMAT statement number 109.

. Read the number of segment of each cost function of the plants,

into the array, IK(I),I =1 to IM, in conformance with the
FORMAT statement number 109. ‘

Read the points of discontinuity of gradient of the cost function
of the plants, into the array L(I,J),I =1 to IM and J = 1,IK(I),
in conformance with the FORMAT statement number 105.



10.
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Read the slope of the lines, into the array ALAM(I,J),I =1 to IM,
J =1 to IK(I), in conformance with the FORMAT statement number 107.

Read, the demand of each customer, into the array D(J),J =1 to IN,
in conformance with the FORMAT statement number 108.

Read the transportation cost of a unit from plants to the
customers,into the array T (I,J),I =1 to IMand J =1 to N2(I),
in conformance with the FORMAT statement number 104.

Read the least fixed charge at each plant, into the array
F(I,1),I =1 to IM, in conformance with the FORMAT statement
number 112. '



100
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102
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104
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MASTER PLANT LUCATION
THIS PRUGRAM SULVES PLANT LUCATIUN PROBLEM WHEN |
PLANTCUST ARE CUNCAUVE FUNCTIUN*

DEFINE FILEIOC100,60,UsKSVE)D
DIMENSION CC1552055),XC15,2055),
1 ZCRO0)sY(1555)5FC1555),ALAM(C1556)

INTEGER M1C€C200)sN1¢200),N2C15)5N4(99),LC15,6),DC20), N3¢C15),
11XC15),SUMC15) >TC15,20)
1> NUDEC200)

CUMMON//IMs INsLINKsIBsI15J15L1I,LKsANS/AREAL/Y > IK/AREA3/
1M1, N1/AREA4/KSVE, NSVE, LSUE/AREA2/C>F>N2,X/AREAY/
2L, SUM /AREA11/D/AREA12/KRs KR1s KR2 /AREA10/LASTs>N3
3/AREA20/J557,»NODE>M115,410>N4
READING NUMBER UF ARCS NUMBER UF PLANT», NUMBER OF
CUSTOMERS
FORMATC316)

READING NUDES FOR NETWORK

FORMATC40I2)

FORMATC10X> 29HTHESE ARE THE ARCS UF NETWORK)
FURMATC15X5 1HC, 165 1H=51651H))

READING THE TRANSPORTATIUN COST

FURMATC20T &)

READING THE POINT UOF DISCUNTINUITY

FURMATC10I8)

READING NUMBER OF SEGMENTS

FURMATCIR) :
READING THE SLOPS OF THE LINES

FURMATC 10F8+ 1)

READING DEMAND

FURMATC20T 4

READING NU“BER UF CUSTOMER THAT CAN BE SUPPLIED
FORMATC 20T 4)

FURMATC 20X, 32HPRUBLEM HAS NO FEASIBLE SOLUTION)
READING INITIAL FIXED COST

FURMATC10F8+1)

READC2, 100)LASTs IM»IN
READC2,101)2C¢CM1CI)»1=1,LAST )
READC2, 101)C(NICI)»I=1,LAST)
WRITEC3,102)

DO 113 I=1,LAST
WRITEC351030M1CIdH>N1CI)

READC25109)CN2CJI)sJ=1,1IM)
READC25 109)CIKCId»I=1,1M)
READING THE PUINTS UOF DISCUNTINUITY

DO 5 I=1,1™
READC25 105X CLCI>J)sd=1,1KCID)

READING SLOPES OUF THE LINES
DO 8 I=1,1IM ‘
READC2, 107) CALAMCT > J) s J=15TKCI))
READING DEMAND
READC25108)¢(DCJYs>J=151IN)

O 3 I=1,IM
READC2, 104)CTCI>J)»J=1,N2CI))
v3<1> vpcr)
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3 CUNTIWUE :
READING INITIAL FIYED COST
READC2, 112)YCFCI»1)5I=11M)
**xkSIMPLICATIFICATIUN UNE*%*
THIS CALCULATIUN MUST RE DUNE BEFURE ANY UTHER
IT SHUOWS HOW JoayY SEGMENTS CaN BE USED FOR EACH PLANT
pC 200 I=1,14
200 SUMCId=0
DO 9 11=1,1™
D 10 Jl=1,1IN
IB=I1
CALL NETFLW
IFCLINKI1IO, 10,511
11 SUMCTT DJ)=SUM(I1)+DCJ1) "
10 CUNTINUE
9 CUNTINUE
DO 13 I=1,1IM
IF(SUMCT)«LTeLCI5 1)) GO TU 15
DO 14 J=1>1KC(I)
IFCCSUMCI) o GEeLCI>J)) e ANDeCSUMCI) s LTLCI»J+123)G0 TO 77
14 COUNTINUE
15 IKC(I)=1
GcadTd 13
77 TKC(IDd=d +1]
13 CUONTINUE
END UF THE SIMPLIFICATION UNE
oKk
*
WRITEC(3,1002IM,INLAST
Do 224 I=1,1IM
224 WRITEC3,105)CLCI»JY)»Jd=1,1IK(ID))
DO 223 I=1,1IM
223 WRITEC(3,109)XCTC(I»J)»J=15>N2CI))
DO 222 I=1,1IM
P22 WRITE(3,106)SUM(I)
WRITEC3, 105 CIKCIDdHsI=11IM)
**%*THIS PART UOF THE PROGRAM CALCULATES PLANCUS TH**
K6=10
DO 16 I1=1,1IM
DO 17 Ji1=1,IN
I1B=11
CALL NETFLW
IFCLINK) 175175117
117 Ké=K6+1
PO 18 K=1,IK(I1)
18 CCI1,K6,KI)=C(TC(I1>KA)+ALAMCI1,K)I*D(J1)
17 CONTINUE '
K6=0
16 CONTINUE
*¥% THIS PART CALCULATES FIXED CHARGE CUOST**x
DO 19 I=1,IM
DO 20 K=2,IK(I)
20 FCI»K)=ALAMCI»K=1)*%LCIK=1)+FC(I,K=-1)2-ALAMCI,KY*LCI,K=1)
19 CUNZ;NUF‘._WW*M~
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231
230

31
30

34

32

33
36

38

37
35

226
225

228

21
23

2799
2999

2780

fpoca

pu
Dpo
WRIT

479~

230 [=1al
231 K=1,IKCI)
EC35112)XCCCIsJsKIsJd=1N2CTD))

YC(I>K)I=2.0

CONT
X%k %G
THIS

INUE
IMPLIFICATION TWO *x*
SIMPLIFICATION REDUCES THE NUMBER OF Y'S

SNALL=9999999%.0

pgd 3
I1FCD

0 J=15IN
C(J)-SNALLY31,31,30

SNALL=DCJ)

CONT

INUE

SMALL IS MINIvMUM OF THE DEMAND

IH=0

IH=IH+1
DO 32 I=1,1IM

IFCL
CONT

(I,IH>-SNALL)Y32,32,33
INUE

GO TO 34
IFC(IH-1)35,35,36
bd 37 I=1,1IM

DO 38 K=1,1H-1
Y(I»K)=0.0

CONT
DO

"WRIT

DO

INUE

225 I=1,1M
EC3,112XCFC(IsKIsK=1,1K(I))
226 K=1,1K(I)

CONTINUE

CONT
pd

WRIT
CALL

INUE
228 I=1,1IM
EC3,112YC(Y(I-KI»K=1,IK(ID)
SIMFIC

110=99

DO

N4CI
J5=1
KSVE

280 I=1,M10
)=

=1

LSVE=1
NODECJS)=1 -

CALL
CALL

SIMPLX
10TAB

IF(KRY21,21,23
WRITE(3,110)

GO
CALL

TO 80
CHECK

IFCANS=1+0)27805279952780

WRIT

GO

E(3,2999)

FORMATC(38HUPTIMAL SOLUTIUN OCCURED AT FIRST NUDE)

T0O 8¢

UPB=99939999 «(

% k%

BRANCHING STRATS FROM HERE**%*
K oK A ok K

Ak 2k sk ok ok o
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8000
8899
BRI 1
Bs92
1024

1023

1292

12910
1400
1350

24

2501

2500
2524
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PART ~UNE

**xx CHUUSING THE NODE FOR FURTHER

WRITE(3,3399)UPB
SYALL=9999999.(

FORMAT(3X» 13HTSIS IS UPER=,F12¢2)
DO BB} I=1,J5
WRITEC(3,R892)I,ZC1 )

FORMATC 11X, 4H*¥ %%, [5,F122)
DO 1023 =1,J5
IF(7ZC(I)-SMALLY1024,10245,1023
SMALL=Z(C(I)

Ml1=1

CONTINUE

%k %k k k END % Xk %k k %k k
READING THE RECORD
LSVE=2

M4=KSVE

NSVE=NODE(M11)

caLL I0TAB

KSVE=M4

CAaLL YRULE

CcaLL SIMFIC

b0 1290 =1,M10
IF(N4CI)) 1290,129051292
KSVE=N4(I)

"N4ac1y=0

GO TO 1350
CONTINUE
KSUVE=KSVE+1
LSVE=1
caLL 10TAB
J5=Jd5+1
NODECJS)=KSVE
CALL SIMPLX
* k% END OF THE FIRST

KR1=KR
IFCKR1)24,24,25
DO 2500 I=1,M10

IF(N4CI))2501,250152500
N4CI)=NODECJS)
2¢J5)=9999999.0

GO0 TO 2524
CONTINUE

LSVE=2

*kxkkREADING THE AGAIN  *%%

NSVE=NODE(M11)

M4=KSVE

CALL 10TAB
KSVE=M4 .

YCLILLK)=0.0

DO 1390 I=1,M10

CIF(N4CI))1390,139051392

1392

KSVE=N4(1)

L NacIy=n

BRANCH

BRANCHING **%

* kK
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. 1390
2400
2509

1064

2061

2600

2664

25

1066

133,

1065

2067

2066
3065

3066

3069

1067

1068

1442

la44

1071

107¢
1069

RRRA

-
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GU TO 2509

CONTINUE

KSVE=KSUE+1

LSVE=1

CALL 10TAB

CALL SIMFIC

J5=J5+1

NODE( JS) =KSVE

CALL SIMPLX

KR2=KR

IFCKR2) 10645 1064, 1065

DO 2600  I=1,M410
IF(N4CI)) 20615206152600
N4¢1)=NUDEC J5)
Z¢J5)=9999999 .0

GO TO 2664

CONTINUE
IFC(CKR]«EQ+0+0)+ANDe (KR2.EQ+0+0)) GO
GO _ TO 1065

CALL CHECK :
IFCANS=1+0)133,1066513
IF(Z¢J5) «GE+ UPB) G0 TU 2524
UPB=Z(JS)

M12=J5

GO T0O 2524

DO 2066 I=1,M10
IF(N4CI)I2067,2067,2066
N4CI)=NODEC(M11)
Z(¥117=9999999.0

GO TO 3065

CUNTINUE
IFCKR2)3069,3069,3066

CALL CHECK

IFCANS«EQe140) GO 0 1067
K8=J5-1
IFC(ZCK8)=UPB) 1068, 1068, 1230
IF(Z(JS)«LT+UPB)  UPB=Z(J5)
M12=J5

MB=0

DO 1069 . I=1,J5
IF(Z(1)+EQ+9999999.0) GO TO 1069
IFCZCI)~UPB) 1442, 1444, 1444

ME=M8+1

GO TO 1069
ZC(1)=9999999.0

Do 1670 J=1,M10

IFON4CJII10715107151070
N4CJ)=NUDECI)

GO TO 1069

CONTINUE

CONTINUE

IF(M8.EQ«0) GO TO B888
GO TO 8000

WRITE(3,2800) M12

R ——

TO

21



2501
1230

1232

3000
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FURMATC3X,404THIS IS UPTIMAL SOLUTIUN OCCURED AT ~ODE>I6)
WRITE(3,2301)UPB

FORMAT(RHUPTI MAL=»F12.3)

GO 10 80

b0 1231 I=1,M10

IF(N4C(I)D1232,12325,.1231

N4CI1)=NUDE(KR&)

Z(K8)>=9999999 .0

Go TO 1068
CONTINUE

GO TO 1068
STOP

END

**%*x THIS SUBROUTINE CHOOSES FREE PLANT***
SUBROUTINE YRULE

DIMENSION YC1555),IK(15)

COMMON//IMs INSLINKsIBsI15J15LI>,LK/AREAL/YSIK
ALARGE=0+0

DO 1000 I=1-1IM

DO 2000 K=1,IKC(I)
IFCCYCILK)eEQeleN)eORe(Y(IsK)+EQ«0+))G0 TO 2000
IF(Y(I,K)-ALARGE) 2000,2000-3000
ALARGE=Y (I, K)

LI=1

LK=K .

2000
1000

4000

1
1

1

CONTINUE

CONTINUE

YC(LIsLK)=1.0

DO 4000 K=1,TIKC(LI)

IFC(K«EQ+LK) GO TO 4000

YCLIsKY=0.0

CONTINUE

RETURN : o

END

#xk% END OF THE SUBROUTINE YRULES k%%

* THIS SUBRUOUTINE SULES LINEAR PROGRAM AT NODE x*
SUBROUTINE SIMPLX

DIMENSION IKC15)5YC15,5)5FC155,5)5C€1552055)5G¢15,5),L1€15),
XC1552055)sN2¢15),7C300)

>NODEC200) »N4¢99)

COMMON//IM> INsLINK»IBsI1sJ! Z/AREA1/Ys1K/AREA2/C>FsN25X
/ARFA4/KSUE>NSVE, LSUVE/AREA12/KR,» KR15 KR2

3/AREA20/J5,Z>NUDE>M115M10 N4

1778
7779
1777

v

WRITE(3, 1240)0M11

FORMAT(2X» I1THTHE LAST NODE WAS,15)
WRITE(3,1220)J5 |
FORMAT(2X, 16HTHIS 1S THE NODE»I5)
DO 7777 1=1,1M

DO 7778  K=1,1KC(I)
WRITE(3,7779)YC1,K)

FURMAT(F124+6)

CONTINUE
K10=J5
ZCKINd =00 _

B L, TR T e s g, v ot ot AT s s AN



40

216

48
46
49

73
717
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DU 40 I=1,14

L1CIY=0

SMALL=999999.(

DO 4 Ji=1,1IN
SMALL=999999.0

KR=0 .

DU 5 11=1,1IM

IB=I1

CALL NETFLW

IFCLINK)S» 5,7
LICI1)=L1CI1)+1

DU 6 K=1,IXCI1)
IFCYC(T1,K)) 48,216, 48
XCI1oL1CI1)H»KY=0.0

GO TO 6
IFCYCI1,K)=10)51,46,551
IF(XCIN1L,LICTI1)SK)) 45,45, 49
XCI1LoLICI1)sKI=1e0
IFCKsGEIK(I 1)) GO 71O 717
|3]8] 73 K2=K+1,IK(I1)
XCI1LLI1CI1I)SK2)=0+0
IFCI1eGE«IM) GO T3 595

K20=1I1
- b0 70 T1=K20+1,1IM
IB=11

71
72
70

45
51
52

4009

4008

4001

5000
4000

59

CALL NETFLW
IFCLINK)70570571

LI1CI1)=L1CI1)+1

DO 72 K2=1,IKC(I1)
XCI1,L1CI1)5>K2)=040

CONTINUE

11=K20

GO TO 55

GO0 TO 59

IFC XCI1 LLI1CI1ILKI=FCI15K)/N2CI1))59559,52
XCI1,L1CI1)»KI=1e0

IFCKeGECIKCI1)) GO T0 4008
DO 4009 K2=K+1,IK(I1)
XCI1,L1CI1)sKE)=0.0

K20=11

DO 4000 I1=K20+1,1IM
IB=11

CALL NETFLW

IFCLINKYA4000,4000,4001
L1CI1)=L1CI1)+1

Do 5000 - K2=1,IK(I1)
XCI1,L1CI1)>K2)=0.0
CONTINUE -

1 1=K20

GO TO 55

X(I1,L1CI1),K)=0+0
IFCY(I1,K)=1)9,8,9

G(11,%)=0-0_



11
12

60
1222
61
55
63
41

1005
1100

23
8133
8134
22
220
21

24
145

144
20
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GCI1KI=F(I1,K)
IFCCCTIILLICIILKI+GCTI 1L, KY/ZN2C(T 1) -SHMALLY 125656
SMALL = CCI1,LICI1ILKI+GCILl,KI/ZNQCI L)
KH=I1

KM=L1C(I 1)

KR=K

CUNTINUE

CONTINUE

IFCKR)Y60,60,61

Z(K10)=99999999.0

WRITE(3,1222) ‘
FORMAT(36HPRUBLEN HAS NO SOLUTION AT THIS NODE
GO TO 20

X(KH,KMsKRY=1+0

G0 TO 63

KH=I1

KM=L1CI 1)

KR=K

WRITEC35 41)KHs» KMs KR» X CKH» KM»s» KR)
FORMAT(2X, 2HX(C5 125 1H» 5125 1H»51252H)=,F542)
ZCK10)=ZCK10)+CC(KH,»KM» KR)

CONTINUE

DO 1100 I=1,IM
WRITEC(3>,1009)L1CI)D

FURMAT(I20)

CONTINUE

DO 21 I1=1,1IM

DO 22 K=1,IKC(I1)

IF(YCI1,K)«EQe1+0)2GO TO 220
SUM=0+.0

DO 23 J=1» N2(C(I1)

SUM=SUM+X(CI 1, J,»K)
IF(N2C(I1>>8133,8133,-8134

YCI1,K)=0.0

G0 TO 22

YC(I1,K)=SUM/N2(I 1)
ZCKI10)=Z(KI0)+Y(I 1, KI*XFC(I1,K)

GO TO 22

CONTINUE

ZCK10)=ZC(K10X)+FCI 1,K)

CONTINUE

DO 24 I=1,1IM
WRITEC(35145)CYCI-KI)»K=1>TK(I ) )
FORMATC1X, 10FS«2)

WRITEC(3,144) 7ZC(K10)

FORMATC 1X» 21HOBJECTIVE FUNCTION IS »F14.2)
RETURN ) ,

‘END -

*¥%x END OF THE SUBROUTINE SIMPLX *%x*
*%*% SUBRUUTINE FOR CHECKING FEASIBILITY *%x*
SUBROUTINE CHECK

DIMENSION Y(15:,5),1IKC15)

COMMUN//IMLIN,LINKsIB»It»J1,LIsLKsANS/AREAL/YS1K
ANS=1.0
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DO 1 I=1,1I
DU 2 K=1, IKC(D)
IFCCYCISK)eEQele)«URe (Y(I;K) EQ.0+)) GO TO 2
ANS=0
G4 TO 3
2 CONTINUE
CUNTINUE
3 RETURN
END
C %% END OF THE SUBRUOUTINE CHECK k%%
C * THIS SURRUOUTINE CHECKS THE NETFLUW *
SURRUUTINE NETFLW
DIMENSION M1€C200)5,N1€200) » N3C15)
COMMON//IMs INLLINKSIB»I 1S Jl/AREAB/Wl;Nl:I9/AREA10/LAST
19=0
LINK=0
M3=3
K11=1B
DO ) J=K11,LAST»M3
IF(MIC(J)-IB)S5S»6:6
S CONTINUE
6 IF(MICI)-IBY11,10511
10 J=Jd-1
IFCJ) 6,511,6
. GO TO 6
11 IB=J+1
Dy 1 I=IB,IB+N3CIl1)-1
IF(NICID)-JdI) 1,451
1 CONTINUE
GO TO 7
4 LINK=1
19=1
7 RETURN
, END
C * THIS SUBROUTINE IS ONLY FOR READ AND WRI TING
C IN SCRATCH FILE
SUBRUUTINE 1dTaB
DIMENSION YC1555),1K(15)
CDN%UN//IM:IN/AREAI/Y,IK/AREA&/KSVE,NSVE,LSVE
IF(LSVE-2)60,62,62
60 WRITECIO'KSVEXC(CYCI»K)»K=1,IKC(ID))»I=1,1IM)
KSVE=KSVE-1
RETURN
62 KSUVE=NSVE
READCI0'KSVEXC(C(Y(I»K) s K=1,TKC(I))sI=1,1IM)
KSVE=KSVE-1
RETURN
END
**%* END UF THE SURT FUR DISC FILE *x*
dkkkk MAIN SUBRUOUTINE skkkkok
* SUBROUTINE FOR SIMPLIFICATION
SUBRUOUTINE SIMFIC
DIMENSIDN XC1552055),YC15,5),L1C15),N2C15),

- w_;C(lS:EQ:S) ‘.‘:L(15:6):IK(1531

—

Qa0
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1240
240
230
201

203
1023
800

290

202

1234

2040

2072
2071

206

209

~186~

IDUAC15,2055) 5TC15:,2005FC15,5) ,N1C200) »M1¢200)

INTEGER D(20),SUM(15) 2 I113C1S
CUﬂMUN//IW:IN;FINK:IB:II:JI
IAREAE/C:F:N2:¥/ARFA9/L:SUM/AREA1I/D
SMALL=9999999.9

I1=0

DO 230 I=1,1IM

DU 240 K=1,1IK(I1)

TCI »KIY=0.0

bo 12490 J=1,N2¢1 )
XCI »JsK)=0.0

CONTINUE

CONTINUE

Ti=I1+]

IFCI1«GT«IMYGO TO 250
DO 203 K=1,IK(I1)

IFCYCI15K)eEQela0) Il=11+1
IFCI1«GT«IM) @GO TO 250
CONTINUE

K3=1-

DO 800 K=K3,IKC(I1) '
IFCYCI1,K))800,800,290
CONTINUE

GOTOD 201

LK=K

LR=I1

DO 202 1=1,IM

L1CI>=p

DO 204 J1=1,1IN

I1=LR

SMALL=99999999.(

IB=LR

CALL NETFLW

WRITE(3, 1234)LR>»J1,LINK

FORMAT( 30X, SHGRAPH,» 31 5)
IFCLINK)2040,2040,206

K20=I1

DO 2071 Il= 1,IM
IB=11

CALL NETFLW

IFCLINKYI2NT71,207152072
LICI1)=L1CI1)+]
CONTINUE

11=K20

GO TO 204
RH=CC(LR,LI1CLR)+1,LK)
DO 207 I1=1,1IM

IB=11

CALL NETFLW
IFCLINK)207,2075209
LICII)=LICI1)+1

DU 210 Ki=1,1K(I1)
IFCI1+EQ+LR«AND«K1+EQ.LK)GO TO 210

IF(Y(II;KI))?99:?10:999

2t e g e

/AREAL/YS 1K/

/AREA3/M1, N1

»1I9
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299 DELTA=CC(I1,L1¢11),K1)-RH
. WRITEC3,1222) DELTA
1222 FORMATC11¥, SHLELTA,F1243)
IFC(DELTAY 219,519,212
212 X3=DELTA
GO TO 300
219 X3=0+0
300 R1=X3
IF(R1-SMALL)Y 220,220,210
220 SMALL=R]
210 CUNTINUE
207 CONTINUE
IF(SMALL+.EQ«99999999+0)  SMALL=0+
X(LRsL1C¢LR)>LK)=SMALL
WRITEC3,55554)X(LR>L1C¢LRY 5 LK)
55554 FURMAT(11Xs SHSYMALL,F12+3)
WRITEC352345)LR,J1,LK>SMALL
2345 FURMAT(3Xs3HRUW, 12, 3HCOL, 13, 3HSEG> I35 SHSMALL, F8«2)
204 CUNTINUE
DO -231  J=1,N2(LR)
231 T(LRs»LK)=T(LRsLK)+X(LR»JsLK)
TCLRsLK)=T(LR,LK)-F(LRsLK)
WRI TEC3,9999)LR,LKs» TCLR> LK)
9999 FURMAT(2X» 1 0HIMPURTANT=»215,F13+3)
- IFCTCLRsLK)) 260,260,262
262 YC(LRsLK)=1.0
260 K=LK+1
K3=K
I1=LR
WRITE(3,6677)LRsL1C(LR)
6677 FURWAT(10HVALUEUFL 1R, 2120)
IFCK3-TK(I1))1023,1023,201
250 WRITE(3,5555)
5555 FURMAT( 12X, THSIMFICX)
*END UF THE DELTA SIMPLIFICATION
* THIS PART UF SUBRUUTINE REDUCES N2'S; THAT IS
THE SUM UF CUSTUMERS THAT CAN BE SUPPLIED
FRUM EACH PLANT. IF N2'S BECUMES ZERO
THAT PLANT WILL BE FIXED CLOUSED.
I1=0 '
WRITEC351777)
1777 FORMATC19H*THIS IS PART 2 *¥%)
400 T1=I1+1
IFCI1.GT-IM)GO TO 450
DO 403 K=1,1KC(I1)
IFCYCI15K)=1402403,4005403
403 CONTINUE
DU S14 K=1,IKCI1)
IFCYCI1,K))514551454016
514 CONTINUE
GO TO 400
4016 LR=I1
IB=11
~ DO 420 I=1,1M

S g o vy

QOO




' 420

1400

1402
1401
406
11113

480

482

481
9000

9001

1112
4091

409
4086

4089
4099

4000

411
470
407

o U
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L1CID=0

DO 404 Ji=1,51IN

IB=LR

S¥ALL=9999999.0

CALL NETFLW
IFCLINK) 1400, 1400406

K20=11
DO 1401 I1=1,1M
IB=11

CAaLL NETFLW
IFCLINK)1401,140151402
LICI1I)=L1CI1)+1
CUNTINUE

11=K20 v

GO TO 404

K=0

ba 11113 =1,IM
113¢1)=0

RH=0.0

K=K+

SMALL=9999999.0
IFCK.GT-IK(LRY)GU TO 490
IFCYC(LR,KI) 4B 1, 4R 2,48 ]
TC(LRsK)==-100.0

"GU TU 480

IFCRH>9000,9000,9001
RH=C(LR>L1C(LRY+1,K)

GO TO 11112
RH=C(LR>L1(LR)>»K)
WRITEC(35 4091)RH
FORMAT(25% > 3HRH=5F15.4)
DO 407 I1=1,1IM™

IB=1I1

LK=K

CALL NETFLW

IFCLINKY 407,407, 409
I13CI1)=T13CI1)+]
IFCI13CI1)-1)>4086,540865 4099
LI1CIIO=L1CI1)+1

WRITEC3,4089) Ti1,LI1CI1)

FORMATC 11X, 3HI1=515,7HL1CI1)=515)
DO 470 K2=1,1K(I1)
IFCYCI15K2)NEels ) GO TO 470
DEF=CCI1,L1CI1)5K2)-RH
WRITEC3,40000I15L1C¢CI1)5K2,CCI1-5L1CIT)5K2)
FORMATC 1X5 1 1THTHE CUEFFE=,313,F12«4)
IFCDEF=-SMALL) 41154115470

SMALL=DEF

CONTI NUE

CONTINUE

IF(SMALL«EQ«9999999.0) SMALL=0+.0
T(LRsLK)=SMALL

GO TO 4890

ALARGE=~1000000.
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492
491

1779
1778

4004
1493
497
498
493
5000
3000
S001

4278

9977

8001

8000

1555

494

500

501
404

450

7003

ey .

e g S et
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DO 491 Ke=1,1K(LEF)

IFCTC(LR, K2) = ALARGEY 491,491,492
ALARGE=T(LR»> K2)

CONTINUE

DO 1779 I=1,1K(LR)
WRITEC3,1778)T(LR,1)
FORMAT(BHNEGATIVE, F12«4)
IFCALARGE)> 1493, 400454004
I1=LR

GO TO 404
IF(N2CLRY)Y4975,497, 493

DO 498 J3=1,1X(LR)
YC(LR»J3)=0+0 ~
GO TO 400
N2(LR)Y=N2(LR)~}
IF(N2CLR))>5000,500055001
DO 3000I=1,IK(LR)
YC(LR»I)=0+0

I1=LR

WRITEC(3,4278)11,J1
FORMAT(20X» 1 1HARC OF THE=,216)
IB=LR

CALL NETFLW

"WRITE(3,9977)19

FURMATC 11X, 14HTHIS HOUSE 1S=,19)

N1¢(19)=0
DO 8000 K=1,1K(LR)
DO 8001 J=L1(LR) s N2(LR)

C(LR»J»K)=C(LRsJ+1,K)
C(LR>sN2(LR)+15K)=0+0

CONTINUE

LI1CLR)=L1C¢CLR)~1

WRITEC(3,1555) Na(LR)
FORMATC17HTHE REDUCEDN2+IS=,15)
SUMCLR)=SUMCLR)=DC(J1)

LH=10

DO 494 K=151K(LR)

IFCCSUMCLR) «GE«LC(LR5sK)) «ANDe (SUMCLR) e LTeLCLR>K+1)))
CONTINUE ' .
LH=K+1

LH=LH+1

IFCLH«GT+IK(LR)) GO TO 404
DO 501 K=LH,»IK(LR)

Y(LRs>K)=0.0

CONTINUE

I1=LR

GOTO 400 _

DU 7001 Ji=1,1IN

WANS=0+0

bg - 7002 I11=1,1IM

Do 7003 K=1,1IK(I1)
IF(Y(I1,K)-1.0)7003,7100,7003
CONTINUE

GOTd 7002

GO

TOS500



7100

7600

7700

7002

7300
7001

QOO

9666
3400
3200
600
621

9210
601

603
3023
808

690

602

1604

3072
..3071
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IB=I1

CALL NETFLW

IFCLINK)T7600,7600,7700

GuU TO 7002

WANS=1.10

GO TO 7001

CONTINUE

IFC(WANS)>7300,7300,7001

GO TU 650

CONTINUE

IF(WANS) 6505, 650,9666

x%% END OF THIS PART *%%

* THIS SIMPLIFICATION DETERMINES A MAXIMUM
BOUND ON THE COST REDUCTION FOR OUPENING

A PLANTe. IF THIS BOUND IS NEGATIVE THE PLANT
WILL BE FIXED CLOSED**x%.

DO 3200 [=1,1IM

DO 3400 K=1,1K(I)
IF(YCISKI)eEQele0) - GO TO 600
CUNTINUE '

CONTINUE

GO TO 650

I1=0

~DO 920 I=1,1IM

DO 621 K=1,1K(I)
TCI>K)=0+0

CONTINUE

I[1=11+1

IFCI1«GT«IMY GO TO 650
DO 603 K=1,IK(I1)
IFCYCI1,K)«EQe140) GO TO 601
CONTINUE

K3=1

DO 808 K=K3,IK(I1)
IFCYC(I1,K))808,808,690
CONTINUE

GO TO 601

LK=K

LR=I1

DO 602 I=1,1IM

LiCId=0

DO 604 Jl=1,1IN
SMALL=99999999 .

I1=LR

IB=11

CALL NETFLW

IFCLINK) 1604516045606

K20=1I1
DO 3071 I1=1,IM
IB=11

CALL, NETFLW
IFCLINK)3071,3071,3072
L1CI1)=L1CI1)+1

CONTINUE__
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11=Kao
. GO TO 604

606 RH=C(LR,LIC(LE>+1,LK)
LH=L1C(LR)+1
DO 607 It=1,14
IB=1I1
CALL NETFLW
IFCLINKYB0756075609

609 LICIDI=L1CI1)+1
DU 610 Kl=1,IK(I1)
IFCI1+EQ+LR+ANDeK1+EQ.LKIGO TO
IFCY(T1,K1)-1+0)26105699,6110

699 AMEGA=C(I1,L1(I1)sK1)-RH
IF(AMEGA)619,€19,612 ‘

612 X3=AMEGA
GO TO 700

619 X3=0.0

700 R2=¥%X3
IF(R2-SMALLY 620,620,610

620 SMALL=R2

610 CUONTINUE

607 CONTINUE
IF(SMALL+ER«99999999.0) SMALL=0»

- DOM(LR»L1C(LR),»LK)=SMALL

604 CUNTINUE
DO 622 J=1,N2(LR)

622 TC(LR,LK)=T(LRsLK)+DOMC(LRs JsLK)
T(LR>LK)=T(LRsLK)-F(LR>LK)
IFCTCLR,LK)) 652,651,651

652 Y(LR,LK)=0.0

651 K=LK+1
K3=K
I1=LR
IF(K3-IK(11)>3023,3023,601
b0 3340 I=1,IM

3340 WRITE(353339)C(TC(I-,K)»K=1,IK(I))
3339 FORMAT(B8HNEGATIVE, 13F10.2)
650 RETURN
END

FINISH
e wmtrerree i < s st i
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Appendix R5

- The program in this Appendix' transforms an integer matrix B into its
Smith Normal Form via the algorithm deve]oped by the author in the
chapter 5.

To use the program one must prepare a data deck as described below:

1. Read in value for the following in conformance with the FORMAT
statement number 600

IM=IN= number of rows or column of B.
IK = number of the prime numbers for converting the given
integer to its chinese representation.

2. Read the prime numbers which are used in converting the given
integers to their chinese representation, into subscripted
variable , B(I),I = 1 to IK, in conformance with FORMAT statement
number 601.

3. Read the element of the matrix B, into the subscripted variable
D(I,J),I =1 to IM, J =1 to IN, in conformance with the FORMAT

statement number 603.

An example will illustrate the use of program.

12 30 20
B= | 2 40 12
33 14 50
s
12
20
s 7 —
q

FORTRAN STATEMEN

00003’Jﬂﬂﬂ000000OOHEﬂﬂﬂﬂOBOOUUBUDOOWﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ"'
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5000200G0500C00¢600¢7°

[
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YMASTER SUITH
INTEGER DCA0,20),CC40,4055%), R(R):K?(QU)JKI(QG) s DETER
1,5(8,19519),P(%,19,19),D2¢C40) '
25 DELTA
CUMWUN//D’C:IU:IV’KM:DELTA:DFLER /AREAL/IR, I1C>K2N/AREAD
IV’I?U/QDPA?/J[4,ﬂFl’KIM/QPEAPI/F:IK/QPEAQO/S:
1/AREALQ/D2
K= 1
READING NO RUW CUOLUMN PRIME NUMBER
DETER=164
READC2,600)IMsINSIK
600 FUORMATC3I4)
READC2, 6013 (PRI 1=1,1K)
601 FURMATC2014)
DO 6n2 1=1,14
602 READ(2,6032C(DCI,U)sd=1>IN)
603 FURMATC(2014)
CALL CHINESE
Ki=KM=~-1
CALL TABLEAU
WRITE(3,604)
604 FURMATC1X,23HTHIS IS INITIAL TABLEAU)
DU 605 I=1,1H4
605 WRITEC(3,606)C(DCIsI)sd=1,1N)
606 FURMATC(1X,2814)
Do e6n7 I=1,1IM
607 WRITEC3,608)CC(CCI»JsK)sK= l)IK):J 1,IN)
608 FURMATCINCRIZ, 1X))
KM=
IYy=1M=1
699 KM=KM+]
IF(KM~1Y)6105,6105611
610 CALL GPRETCD
CaLlL. CHECK
IF(K20)612,612,7717
777 IFCIR-KM)A13,6%0,613
680 IF(IC-KM)61356%2,613
613 CaLL prOsI|
682 CALL SURTRACT
GO 1O 699
612 CALL PRINROW
IF(KIMIA14,6145615
615 CaLL OBTAINROW
IFC(IR-KMIR0O0,801,%00
BNl TFCIC-KMIBN0,802,800
B00 CaLL POSIT
802 CALL SUBTRACT
GO TO 699 )
614 CALL PRINCOL
' IF(KIMIB16,6165617
617 CaLlL 0OBTAINCUL
IFCIR-KMYA400, 401, 400
401 IFCIC-KMY4005 402,400
4N cALL POSIT
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402 CALL SURBTRACT
GO Tu 699
616 WRITEC(3,900)
90N FURMATC1X,25H40RE SUBRUUTINE IS NEEDED)
611 IF(DC(K1,K1M))>693,692,692
693 DCKMs KM) ==DCKMs KM)
692 D2C(KM)=D2C(KM-1)*DCKM» KM)
DCKMs KM) =D2C K) '
WRITEC3,640)
640 FURMATC20X,> 17HSMITH NURMAL FOURMD
DU 641 1=1,14
641 WRITEC3,606)CLCI,J)»Jd=1,1IN)
STOP
END
SUBRUUTINE CHECK
INTEGER DC40,40),CC40, 40,8),DELTA
COMMUNZ/D>CsINMsINs KM DELTAZ/AREAL/IRS1Cs» K20
K20=0
DU 400 I=KM,IM
DO 401 J=KM¥,IN
IFCIABS(D(I>J))=-DELTAY401,402,401
402 IR=1
IC=J
K20=1
GO TO 403
401 CONTINUE
400 CUNTINUE
403 RETURN
END
SUBRUUTINE GRETCD
INTEGER DC40,40)>,CC40,40,8),B(8),N(8),DELTA ,D2 €40 )
CUMMUN//DsC> 104, INs KMs» DELTA/AREA2/N> 120 /AREA21/R,1IK
1/AREAI0/D2
DELTA=1
.222 DO 2n0 K=1,1K
DO 2n1 I=K¥,IM
DO 202 J=KM,IN
IFCCCT»JsKII2005202,200
202 CUNTINUE
201 CUNTINUE
DELTA=DELTA*B(K)
DO 211 I=KuM,IM
Dy 210 J=KM, IN
210 DCI,J)=DC1,J)/E(K)
211 CUNTINUE
CALL CHINESE
GO TO 222
200 CONTINUE
MI=CIM=KM)+]
WRITEC3,204>M1, DELTA
204 FORMATC2X, 18HMATRIX IS OF URDER»1353Xs 10HAND GeCeF=513)
IFCKM=1)240,241,240 v
241 D2C¢1)=DELTA
DELTA=1
~——.... G0 TO___ 260



wt G5

240 DPIKYI=DP(KM-1)*DELTA
DELTA=1]

260 RETURN
END
SUBRUUTINE CHINESE
INTEGER DC40,40),CC40,40,8),B(8)
COMMON//DsCs T4, IN>KM/7AREA21I /B> I K
DO 100 I=¥9, 1M
DO 161 J=aKY9 IN
DO 102 K=1,1K
IR=IABRS(D(I»J))/B(XK)
CCIL>JdsKI=TIARSIDILI)I)-IRB*R(K)
IFCDCILJIIN1LIB,1025102

110 ITFCCCIL»JdKININ2, 1025112

112 C(I5d-K)=B(KI-C(I,sJrK)

102 CONTINUE

101 CUNTINUE

100 CONTINUE
RETURN
END
SURRUUTINE TABLEAU ]
INTEGER S(8519519)5P(8,19,19),B(8)
COMMUN/ARENSN/S5,P/AREAZ)Y/By 1K
DO 660 K=1,IK .
S{Ks1,13=0
-PCKsy 1o 1) =10
INI=1
pg 661 1=2,BCK)
11=I-1
INI=INL#+]
SCK»>I»1)=85C(K»T1s1)+1
S{Ks1,1)2=5(K,1,1)
P(KsI»1)sP(Kse121)=0
DO 662 J=2,1IN1
Ji=d=1
PC(Ks I J)=11%J1
IF(P(K»1,J)-BCK))6T70,6705671

671 IX=P(K»1,5J2/B(K)
P(K>I5sJ)=P(Ks1sJ)-1IX*B(K)

670 P(Ks»Js1)=P(Ky1sJ)
S{K»I5J)=5C(Ks15J1)+1
SAM=S(K»1,5J)-B(K)
IF(SAM) 664, 6651666

665 S(K»1,J)>»S(KyJrI)=0
GO TO 662

664 SC(Ky»JsrI)=S(KsI>J)

GO TY 662

666 S(Ks,I,J)=5SAM
S(K»Jr»I)=S5(Ks15J)

662 CUNTINUE '

661 CUONTINUE

660 CONTINUE
DO 688 K=1,IK
DO 681 I1=1,B(K)

681 WRITEC(35683)(S(Ks15J),J=21B(KIIS(P(KsI5>J1)5J1=1,B(K))

690 CONTINUE

e s
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643 FURMAT(5X,3513)
RETURN
END
SUBRRUUTINE SUBTRACT
INTEGER DCAN, 405 CC40,4058) o MULTC(R)» SINK» SINKLI» S(85,19519),P(8519
119X, R(8), DELTA, DETER, D20 40)
COUMMON//D>C» 1%, 10,Kvs DELTA> DETER/AREA2]1 /B> IK»MULT>MULT15J605 ICAL>.
1CAL/AREA20/S>»P/AREALIN/D2
I17=KM+1 :
IFCDCKM,KM)Y)Y 510,510,511
510 DU 512 1=KMv,1IdM
DU 00 K=1,1K
IF(CCI>KMKIIRAD,800,801
801 C(I»KM»KI=B(K)-CCI,»KMs»K)
800 CUNTINUE
512 DCI>KM)==D(I, KM)
Sil DO 500 J=I(7Z,IN
IFCD(KMs J)) 514,500,515
514 DO 516 I1=KM,IM
D4 700 K=1,1K
IF(CQI}J:K))7“0:700:702
762 CCI»JsKI=RB(K)-C(I,»JsK)
700 CONTINUE
516 DCI»J)==-DC(I,J)
515 MULT1=D(KM»J)/DCKMs» KM)
-J60=1
ColLL CONVERT
DO 501 I=KMsIM
DCI>J)=DCI, D-MULTI*DCI » KM
520 DO 502 K=1,IK
SINK=P(K>»MULT(KY+1,CCI»KM»KI+1)
IF(SINK)YS503,503,504
503 CCI»JsKI=S(K»C(I,JsK)+1,SINK+1)
GO TO 502
SN4 SINKI=B(K)-SINK
CCIsJrKI=SC(KsCCI»JrKI)+1,SINKI+]1)
S02 CUNTINUE
501 CONTINUE
S00 CUNTINUE
Do S50 I=KM+1,1IM
550 DCI.KM)=0
D(KMs KM)=D2(KM)
Dd 530 I=1,IM
530 WRITE(3,532X(D(1,dY>Jd=1,10N
532 FORMAT(1X,201I3)
Do 663 K=1,1K
Dy 6610 I=1Z>1IM
660 WRITE(3,661)C(CCI>JsKIsK=1s1KI)sJ=IZ>1ND
661 FURMAT(30I3)
663 CUNTINUE
RETURN
END.
SUBROUTINE POSIT
INTEGER DC40,40),CC40,4058),RB(R),K1040),K2040)
CDMMQN[!p;ngﬂ{LN:KM:DELTA;KI:K?/ARFA]/IR:IC:KQH/AREQQI/B;IK_“M”

e T e R LI
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Do 700 I1=XM,1IM
K1CTH)=DCT-IC)
DCILICIY=DCI M)
DCILKM)=K1CI)
DO 701 K=1,1K
K2C¢I)=C(I,»IC,K)
CCI,IC>KY=CCI,»KMyK)
701 CCI,»KMKI=K2(])
700 CONTINUE
Dd 702 J=KM,s IN
K1C(J)Y=DCIR, )
DCIR> J)=DCKNM, J)
DKM, J)=K1(J)
DO 703 K=1,IK
K2(JY=C(IR»JsK)
C(IR»JsKI)=C(KM» Js K)
703 C(KMs JsKI)=K2(J)
702 CONTINUE
RETURN
END
SURROUTINE PRINROW
INTEGER DC40,40),CC4054058)5,B(8),N(8)
COMMON//D>Cs IM» IN>KM/AREA2/N »,I120/AREA3/JIM»MF1,KIM/AREA21/B, 1K
Iy=1IM
KIM=0
. MF=KM=-1
920 - MF=MF+1
IF(MF-1Y5991,991,910
991 IF(D(MF,KM))911,920,911
911 INI=IN
KMl =K+ |
DO 930 J=KM1,IN1
I15=0
DU 940 K=1,1K
904 IF(C(MFsKMs»K))922,923,922
923 Ji=J
IFCCI(MF>J1,K))922,930,922
922 Jl=J
IFCCIMF, KM, K)-C(MF,»J15K))2940,925,940
925 15=15+1
940 CUNTINUE
I16=15
IFCI6~1K)9415,930,941
941 MF1=MF
JIM=J1
KIM=1
WRITE(3,966)JIM,MF1,KIM
966 FURMATC3X, 4HJIM=,15,4HMF1=515, 4HKIM=516)
GU TO 9190
930 CONTINUE
' GO TO 9210
910 RETURN
END
SUBROUTINE PRINCUL
INTEGER DC40,40),CC40,40,8),R(8),N(8)
Yo CQJﬂUﬂ//nggﬁﬂ,PN:KM/AREAQ/N »120/AREA3/JIMMF 1L, KIM/AREA2I/B, 1K
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IY=IN
KIA4=0 )
MF=KM=1
920 MF=MF+1
IF(MF-1Y)991,991,910
991 IF(D(KM»"F)>911,920,911
911 IMl=IM
KM1=KM+1
DU 930 I=XMi,IM]
15=0
DO 940 K=1,IK
904 IFC(C{(KM»MFsK)IQ22,923,922
923 11=1
IFCCCI1,MF»K))922,930,922
922 11=1
TFCCCKMOMF»KI-C(I1,MF»K))940,9255,940
925 15=I5+1
940 CUNTINUE
16=15
IF(I6-1K)941,9305,941
941 MF1l=MF
JiM=11
KIv=1
GO TO 919
930, CONTINUE
G0 TO 920 )
910 RETURN
END
SUBRUOUTINE CONVERT
INTEGER DC405,40),CC40, 40,8)5R(8), MULT(8)
COMMUN//D>C/AREA21 /B, IK, MULT>»MULT15J60,1CAL, JCAL
IFCJ603101,1015102 '
101 IFCDCICAL, JCALYY1055,1065106
105 DCICALS,JCAL)Y=-DC(ICAL, JCAL)
“106 Du) 100 K=1,1IK
Ing CCICAL,JCAL>KI=DCICAL,JCAL)=-C(DCICAL> JCAL) /B(K)>*B(K)
GO TO 104
1n2 DU 103 K=1,IK
103 MULTC(KI)=MULT!-(MULTI1/B(K))*BCK)
104 RETURN :
END
SURRUUTINE OBTAINROW
INTEGFR DC40,40),CC4054028),8B(8)
1>MULTCR) s SINK,SINK] 25(85,19,19),P(8,19,19)
2> DETER, DELTA ’
CUMMUN//D>C»>1IM» IN> KMy DELTA DETER/AREA3/JIMIMF 1/
2AREA1/IR,ICrK20/AREA21 /B> 1K
1>, MULT>MULT1s J60,1CALS JCAL/AREA20/SHSP
IF(D(MFI,KMI)I11,112,5112
111 DU 100 I=KM,IM
Da 300 K=1,IK
IFCCCI»KMsKID300,3005,301
301 CCILKM»KIY=RBC(KI=-CC(I,KMsK)
300 CUNTINUE
100 DCI KA =-DCI, KM
e 112, LFCDCAR 15 010 ) 1135 1145 114

»

IR
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113 by 101 [ =K1
DU 400 K=1,1K
IFCCCILJIMeKIIAN0, 400, 401
401 CCI»JIMsKI=RCKI=-CCI,JIMsK)
400 CUNTINUE
101 DCILJIM)==-DCI,JIM)
114 TF(DCMF 1K) =D(MFLI,JIMIDd1ILA5119,5117
116 1A=D("F1,J1 1) /DCMF 1, KM
IDIV=DCMFl»JI ) -1 NnkDCMF 1, K1)
IFCIDIUX118,1195118
119 IR=MF1
[C=KM
G0 TO 200
118 DO 120 I=KM>1IM
J60=1
MULTI=1IA
CALL CUNVERT
DO 220 K=1,1IK
SINK=P(Ks MULTC(KI+1,CC(I,KM,K)+1)
IF(SINK)221,221,222
221 CCI»JIMKI)=S(K,CC(I»JdIMsK)+1,SINK+1)
GO TU 220
202 SINKI=R(K)-SINK
CCI,JlMsKI=SCKsCCI»JIMaKI+1,SINKLI+1)
220 CONTINUE
DCI>JIMI=DCI»JIM)-1A%DCI s KM)
120 CUNTINUE
GO TO 114
117 1A=D(MF1sKM)/D(MF1,JIM)
IDIV=D(MF1,KM)-TA%D(MF1,JIM)
IFCIDIV>13051315130
131 IR=uvF1
IC=JI¥
G0 TO 200
130 DO 140 I=KM,IM
J60=1
MULT1=IA
CALL CONVERT
Dt 202 K=1,1IK
SINK=P(K>MULTC(K)+1,CCI,JIM»K)+1)
IFC(SINKY20352035204
203 CCIlsKMsKI=SC(KsCCI»KMsKI+15sSINK+1)
GO TO 202
204 SINKI=B(K)=-SINK
CCI>KMsKI=SC(KCCI»KMs KI+1SINKI+1)
202 CONTINUE
DCI-KM)=DCI,KM)-TA¥DCT»JIM)
140 CUNTINUE
GO TO 114
200 RETURN
END.
SUBRUOUTINE OBTAInNCOL
INTEGER DC40,40),CC40,40,8),B(8)
1, MULTCH) » SINK, SINKL »S5C(8519,19),P(8519,19)
2, DELTA, DETER
e GUMMUN//Dy Cy 1,1 Ny Kifls DFLTA, DETER/AREAS /J1 M, MF 1/

T

TR
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2AREALI/IP,IC,KAN/AREA2]L /By 1K
1>MUOLT> MULT 12 J505 ICALS JCALZ/AREA2Q/S, P
[FCDCKM,MFId YL L,1125112
110 DU 100 J=KA, IN
DO 300 K=121K
IFCCCKY, JsK)XB0053005,301
301 CUKMsJsKI=E(K:=CC(KMs»JsK)
300 CUNTINUE
100 DOKM, J)=~D(KM,J)
112 IF(DCJIMIMF1)Y11351145114
113 DO 101 J=KMs I N
pd 400 K=1,1K
IFC(CCJIT M Js KO ¥400, 4005401
401 CCJIMy JsKI=BCRI=CCJIMs Js KD
400 CUNTINUE
101 DCJIIM JI=-DCJIMyJ)
114 TFCDOKM MFI)-DCJIMMFL)I11651195117
116 TA=DCJIMIMF 1) /DCKMsMF 1)
IDIV=DCJIMsMF 1) =T AXDCKM, MF 1)
IFCIDIVY118,119,118
119 TR=KM
I1C=MF]
GO TO =200
118 0O 120 J=KM> I N
J60=1
MULTI=1A
CaLL CUONVERT
3]s} 202 K=1,1K
- SINK=PC(KsMULTC(KI+1,CCKM »JsKY+1)
IF(SINKY203,203,204
203 CCJIMsJsKI=SCKsCCJIIMsJsKI+15SINK+1)
GO TU 202
204 SINKI=B(K)-SINK
ClJIIMsJsKI)= S(K)C(JIM)J:K)+I:SINK1+1)
202 CIONTINUE
DCJIMs J)=DCJIIMs J)-10%DC(KM» J)
120 CUNTINUE
' Gu TO 114
117 TA=D(KMMFI)/DCJIM,MF )
IDlv=DFKM9MF1)‘IA*D(JIM:MFI)
IFCIDIVI130,1315130
131 IR=JIM
IC=MF1
GO TO 200
130 D4 140 J=KM>IN
Jeo=1
MULT1=IA
CaLlL. CONVERT
pd 220 K=1,I¥K
SINK=P(K,MULT(KI+1,CCJIIMs JaKI+1)
IF(SINK)I221,221,222 .
221 CC(KM»JsKI=SC(KsCC(KMs» JsKI+1,SINK+1)
GO T4 220 .
222 SINK1=B(K)~SINK
C(KMs» JsKI)=SCKsCC(KMaJs K)+1>SINKL+1)
220 CUONTINUE
DCKMs JY=DCKM» J) =1 A%DCJI M, J)
140 CONTINUE
GO TO 114
200 RETURN
END
FINISH

B e
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SUPPLEMENTARY MATERIAL

Group Theory and its Application in Mathematical Programming
INTRODUCTION

Recently considerable work has been done towards applying group theory

~ to integer programming problems. While studying the Titerature £2,3,5]
it became evident that theoretical background of the relevant aspects of
group theory and that of integer programming are not available in one
source document. In the present study we have, therefore, set out to
provide some of the pertinent theoretical results which may form the
basis of further study of this topic.

In the first part the concept of binary operation in a set, group,
subgroup, normal subgroup of a group, quotient group, homomorphism,
kernel of homomorphism, isomorphism, isomorphic, and direct sum group
are briefly studied. In the second part the group minimization problem,
and solving integer programming problems by means of the knapsack
problem are discussed.

PART ONE

Definition. A "mapping" f, from S to T is a subset of ordered pairs

of Sx T (by S x T, we mean the Cartesian product of S and T) such that
for seS, there is a unique teT, such that the ordered pair (s,t)ef;
this is shown as f : S+ Tor S L T. If t is the image of s under f
-we shall represent this fact by t = f(s). Indeed this notation is

used instead of writing (s,t)ef.

Definition. A binary operation in S is a mapping of S x S to T, denoted
in this note by @, therefore, ‘

@
@ : SxS>TorSxS->T

If teT.is the image of ordered pair (s ,s,) under binary operation,
we denote this by t =s, @ s, instead of t = @ (s,,s,)

Example: Addition is a binary operation in the set of real numbers, R, i.e.,

+
+ ¢: RxR+R,orRxR~=R

which is defined +(a,b) = ¢, and is expressed in the form (a+b) = c.
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1.1 Groug

A nonempty set of elements G is said to form a group, if in G there is
defined a binary operation such that the following hdlds:

(1) a,beG, implies that a @ beG, i.e., the set G is closed under

this operation.
(2) a,b,ceG implies that,
(a®ObL)®c=a®bOo.
(3) There exists an element eeG whereby
a@e ze@®a = a for all at
(e is called the identity element in G).

(4)  For every acG there exists an element (-a)eG, such that
(ra) @a=a@(-a) =e,
(the existence of inverse in G).

[e.riition. A group G is said to be 'abelian' if for every a,beG,
a@b:=>1»@®a.

Example 1. The set of all square nonsingular matrices of order two under
the multiplication defined for matrices, forms a group. This group of course
is not abelian, since (1)

- 5
c d

a' b"

c! d'

c' 4 W

does not hold for all a,b,c,d,a',b',c',ds

Example 2. The set of all integers under the addition forms an abelian group.

Example 3. Let p be a real number, § , a positive integer, and x the
remainder when p is divided by é; that is p = mé+x, where m is an integer,
and O g x < §. We say that x is congrueat p modulo & and write this relation

x & p(mods)
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For example 7=43(mod 12). We will prove that the set S={0,1,2,3,...,6-1}
under the addition with modulo § forms an abelian group. For this purpose
we should verify that all the conditions (1) to (4) hold, and if p,qeS,
then we have (p+q)(mods) = (q+p) (mods). ‘

(1) Let p,qes; therefore Osp<$§, and 0gq<$
if p+q<§, then p+qeS, but
if ptg>8,.we can write p+q=é+r, or rs"f(p+q) (mods)(Osr3< 82
i.e., rgeS or (p+q) (modé)eS.

By similar argumentsthe other statements can be verified, therefore, the
set S under the binary operation defined in it forms an abelian group.

Example 4, This example proves very useful in applying group theory to
integer programming. Let S {818 s+ ..g:_l} and binary operation in S be
defined as : )

& ® & F2(i43) (moas) -
From Lxample 3 it follows that the set S unGer the binary

operation defined as above forms an abelian group and let this be denoted
by G(§). ' '

Definition. A subset H of a group G is said to be a subgroup of G if
under the binary operation defined in G, H itself forms a group.

Theorem 1. A nonempty subset H of the group G is a subgroup of G if
and cnly if, :

(1) a,beH implies that a & beH.

(2) aeH implies that (-a)eH.
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Theorem 2. If H is nonempty finite subset of a group G and H is closed
urider the binary operation defined in G, then H is a subgroup of G.

A natural characteristic of a group is the number of elements it contains.
known as tne order of G, and denoted by |G|. This rumber is of "

course most interesting when it is fmlte, in that case 6
is a finite group.

~ Definition. If G is a group, and aeG define -

a ®’a @ ... BQas=

m times
and also define e = oa

TFe order of aeG is the least positives
integ.s m such that ma = e, and will be denoted by |a].. It can be
easily shown that if G is a finite group, and acG, then EL|
i.e., |a| divides|g]|.

Definition. A group G is said to be 'cyclic' if there exists an element
in G, say a, such that : : ' '

| - lal = e, |
For the group G(§),
" Egmapleh, 98 = g&» therefore |81| = §, i.e., G(8) is a cyclic group.
Definition. If H is a subgroup of group G, and aeG, then
H © a=1{h @ alheH} is called a 'right coset' of H in G.

Similarly the left coset of H in G can be defined.

Norma} subgroup of a group. A subgroup N of G is said to be a normal

subgroup of G if, every left coset of N in G is also a right coset of
N in G; i.e., forevery acG,N @ a=a @ N. Of course when G is
an abelian group each subgroup of G is a normal subgroup of it; but
the converse is not always true. Note it can be shown that for '
a,beG, and a # beitherN ©® a=N @ bor (N @ an(N @ b) = ¢,

end further'more v(N @ a) =
aeG
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Let G/N (N is a normal subgroup of G) denote the collection of right covet:
of N in G (that is the element of G/N are certain subsets of G) and we use
the binary operation of set G to yield for us a binary operation in
" G/N. Fortis binary operation we claim that '

X,YeG/N implies that X ®YeG/N; for X=N@ a,Y=N @b
for some a,beG, and X@®Y=(NDa) @ (NobL) = (1)
N @ (a ®b)=N @ ceG/N, where c=a @ b,

" The other three conditions can be verilied as above; therefore the set
G/N under binary operaticn € , forms a group, which is called "quotient
group" or factor group of G by N. - ' '

N.B. If G is abelian, then G/N is abelian as well.

Example. Let G be the group of integers under addition, and N be the set
of all multiples of 3. We shall write the coset of Nin G as N + a
rather than as N @) a, since the binary operation in G is addition.
Consider three cosets N, N+1, N+2. We claim that these are all the cosets
of N in G. For aeG)a=3b+C where beG and C=0,1, or 2 (C is remainder of

a on division by 3). Thus N+a = N+3b+C = (N+3b)+C = N+C, since 3beN.
Thus every coset is, as we stated one of N, N+1 or N+2, and

G/N = {N,N+1,N+2}

How do we add elements in G/N? Our formula (N@a) @ (N ©@b) = N@ (a @ b)
translates into: . '

" (N+1) + (N+2) = N+(142) = N+3 = N since 3eN; _
(N+2) + (N+2) = N+{242) = N+4 = (N+3)+1 = N+1, and so on.
Clearly what we did for 3 we could emulate for &y integer n.

"
1
H

1.2 Homomorphism

A mapping ¢ from a group G into a group G is saié to bea "homorphism" if
for all a,beG c

- _¢la@b) = §a) @ (1), _ . (b)
G G '

by @, and © we mean the binary operation defined in G, and G respectively,

Fig. 1 is an illustration of the relationship in (b).
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- Fg)

Example: let G be the group of all real numbers under addition, and let
G be the group of nonzero real numbers with the binary operation multiplication
of real numbers. Define the mapping, '

$:G » G by ¢(a) =
In order to verify that this mapping is a homomorphism we must check if
 ¢la + b) = 4(a).4(b) |

i.e., we must check if 2a+b 28, 2b, which is indeed tre. Since 22 is always

positive the image of ¢ is not all of G, so ¢ is a homormrphlsm of G into G,

but not onto G; of p. 12 (].

Example: If G is a group, N a normal subgroup of G deﬁne the mapping ¢ from i

G into ©N by |
¢(x) =N @O x ' : : .

for all xeG. Then ¢ is a homorphism of G onto G/N.

Kernel of a homomorphism.

If ¢ is a homomorphism of G into G, the "kernel" of ¢, K s is defined by
'x¢ = {x|xeG and: $(x) = e, where € is th: identity element of G}
It can be easily shown that if ¢ is a homomorphism of G into G with kernel

K'¢, K¢ is a normal subgroup of G.
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Definition: A homomorphism ¢ of G into G is said to be an "isomorphism" if

¢ is one-to-one.

Definition: Two groups G, G* are said to be isorrbr'phic, if there is an

isomrphism of 6 onto C*,  In this case we write G I G%,.

T are different.

Ly

- lema,  Let ¢ be a homomorphism of G onto G with kernel K, then

g

G/K < 5, see 1, p. 50.

This resull is frequently used in the present study.

1.3 Direct Sum Groups

let S = {ai,bk)|i=0,l,2,...,6 -1,k=0,1,2,...,8,-1} and

1

(ai,bk) — D) (aj,bz) =z (a(_i+j)(mod61)’ b(k+2)(mod62)) then it can be shown that S

under this operation forms an abelian group of order §1°85s this is defined as

G(Gl,éz), where G(Gl,&z) is said to be the direct sum group of G(Gl) and
G(62) and expressed as G(Gl,éz) = G(Gl) (O] G(Gz). In exactly the same way a

. m _
direct sum group G(61,62,...,6m) of order I 6, can be.defined

i=1

G(8) 4855 -28) = GL8) @ G(Sy)ee. © G5,

Tor example consider G(2,3). The elements of G(?,é) are the ordered pairs
,O < (a ,bo), gl’o = (al,bo) ,go’l = (ao’bl) ,gl,l = (al,bl) ,go’z = (ao,bz),

&

and g, ° (a ,bz). Note in G(2,3),

gk D 850 7 B(i435)(mod2) , (k+2) (mod3).

Example: The groupsG(6) and G(2,3) are isomorphic.Tre correspondence between

the elements, are set out graphically in Fig. (2).

as

Tem T e
s i e e e

il
wo isomorphic pgroups are the same mathcematical object, only their representation:
' ‘ i
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For exumple choose two elements in G(8), say 81487> which correspond to
Biags P . respectively. .

8,08, = £,

£,08, ° &0 |
as it is shown g3 corresponds to g, ,0° Similarly it can be checked
that, the mappmg‘\’ is a homomorphlsm of G onto G(2, 3) and is one-to-one,
therefore G(6) and G(2,3) are isomorphic. '
"Note. The group G(6) is cyclic, therefore G(2,3) is also cyclic,

I_etmm, Zm be the sets of colum vectors with m components of real and
integer entries respectively. These sets under the usual operation of
addl'thl'l form abelian groups Clearly the group zm is a subgroup of the

group R

Let A = [ be an mxn matrix expressed as a set of column vectors
A= [ a)58y5e- ,an] where any vector aj is made of integer components.

Defi‘n‘e the set

(A} = {x|x = !f pjaj,pj integeryj = 1,2,...,n} ,
| =1 |

" then this set {A} under addition forms an abelian group. If the matrix A

contains an mxn identity matmx, then Z = {A}. In general the group {A} is

a subgroup of the group Z' Assume that A is of rank m, and

B= [bl’bZ" .o ,bm] is an mxm submatrix of A, also of rank m. We can consider

the abelian group formed by the set {B} defined as follows:

integer, j=1,2,...,m} »

{B} = {yly = Z P4P3 P

j=1

tnen {B} forms a group under addition. In general group {B} is a subgroup

of group {A}. Let

= lag ]-BlA,and

{a)= {zlz = ): P3% 5P integer j=1,2,...,1}
j=1

The set {a} under the usual binary operation of additicn forms an abelian group,

~t
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let o be the set made up of the fractional part of a such that

‘@ =a + L.

,p:-l integer, 3=1,2,...50, and W = w mod (i},

Then the set {u} = {W|w = Z p:j 3

3=1

forms a group which is generated by the ffactional par*té of colunn vectors ol -
a under addition (mod 1). Thus given a group {A} , gL is used to map {A}
into the group {a}, and let ¢ be the mapping from gxoup {a} to the group {«a}.
This can be indicated as follows:

p~L ) _
{A} > {a} > {a}

The composite mapping f defined as f = ¢B'_'l may be proved to be a homomorphisr
from {A} into {a}. Let ay,a,e{A}, and 5'1,322{'&'}, such that,

¢B” (a ) = ) and 487N (a))

= 02.
- From earlier definition it follows
-1 T -
B (al) =L+a,B ,(az) =L +a,,
or | al=$L+Bal,a2=BL+Ba2,

a, +a, = BL + B(al + 02),
50 B (a,+a,) = L + (3,43,)
172 1727
-.2d 3pdlying the mapping ¢,
-1 S =) -1
¢B (al+a2) = a; + 0, = ¢B (al) + ¢B (a2).

~1

so the composite mapping f = ¢B ~ is a homomorphism of group {A} onto group

{a), see balow.

Theorem. The quotient group {A}/K is isomorpric with the group {a}, i.e.,
{A}/K ¢B' : {a} The proof is str‘alghtforward because ¢B is a homomorphism
{A} onto {a}. '
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. 2 . |
Theorem. The kernel of ¢B = = {B}. To see this suppose aeK -1 <{Al};

- 4B
therefore ¢B Yay = 0*, we know that o
‘n . -
2 P33 for some P3» 3=1,2,...,n‘,
3=l I
n -
so ¢B Ya) = ¢B ¢ ) pjaj) = 0,
. 51
so B-l( )) pjaj) =T, (r is an integer vector)
3=1
or '
n m
Z pjaj - Br - .X
. j:]_ : - 3=1
So

ad:s‘, implies ag[B}. therefore K ¢B-l f_{B} '

Similarly we can prove that{B}_&_ X ¢B-l’ thus,

44

Let us study the structure of the gmupzm/ {B}.
Sincez™ is m-dimensional, the unit vectors ei(i=l,2,...,m) serve as a basis
-férzm, and certainly for the group {B}; where

): le i (3=1,24.0.4m). Therefohe the matrix B éxpresses every
i=l .
bl b2 l:’m

-
e | by Byp o o o Py

e, bZl b22 e o e b2m

emkbmlbm2"‘ bmm

b in term of eJ. By changing the basis vector b. and The unit vector e.,

we can diagonalize the matrix by a series of element
it is of the form ary “ransformations such that

* (0 is the identity element of the group {&})
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. L]
: bl bé b"n N
. N
| ]
e1 | & )
eé 62 0 = B s
. .
1
®m : S
L J

where «Si is a divisor of 6i+1(i=l,2,...,m-l). The matrix B is called the
"Smith Normal Form" of the matrix B (the process of transforming a matrix
into Smith Wormal Form can be found in }3] or in our report {4]. Since

the” process does rot change the determinant D=|detB|=detB=6.¢

l 2..
bi =48 . eJ'._ (i=1,2,...,m) where eJ!_(i=l,2,...,m) are basis fori?_m.

.8 , and

It is well known tha‘tzm can be expressed as a direct sum group.

“ZZ"‘= Ze] @ Ze) @ ...0- Ze!

and bi(i=l,2,... sM) are basis for the group {B}, therefore it can also be
expressed as a direct sum group

{B} (, b @® ... & Zb! (L any integer)
-, = L v ]
= 18.e L/ (AP @ e ® Z8 e
X2r.ce The guotient groupZ / {B} may be expressed as,

G) Ze’ @ LI ] @ ZE'm )

I -
Z /3y "
Zejs, ® Zejsy (D oo © Zels
This group and the group _
Z 7 ’
zc O z«s e ® Zs

are isomorphic, therefore Zm/ {B} and the direct sum of m cyclic groups ere

isomorphic, and the ith cyclic group is of order s (1=1,2,...,m). Further
the order of this group is

D : 6162..; IGm
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Now, D = m

2/ |° 27 &
{B} (A) /{B}

as {B} c{A}, so {A} / ivides D. If A should contain identity

{B}
matrix zm/{A} = 1.

In the theorem of page 10 it is proved that thekernel K¢ of the homomorphisin is
" the group {B} , and Z" is {A} if A contains an identity matrix. Therefore from

~

the theorem in page § it follows

2"/ {B} is isomorphic W:Lth the group {a}, and they should be of the
same order, i.e., | {a}] = D.

The important result concerning the group {a}constructed out of the fractional
elements of the matrix as B-lA, obtained under the operation of addition
modulo 1, and the direct sum group constructed out of the diagonal elements
of the Smith Normal form may be summarized as:

%6 + .. o+ L are isomorphic,

Two groups {a} and %5
1 m
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PART THO

.2.1. Knapsack problem

This is the classical problem that a hiker faces in deciding how to pack his
knapsack. '

let aj be the weight of the jth item, éj be‘.the value of the jth item, xj be
the number of items of type j that the hiker carries with him, and let b

dencte the total weight limitation. Then the hikers problem may be expressed as

n
max ) cjxj,(cj integer, 3 = 1,25¢..,0),
j:l Y '
subject to )) ajxjsb(aj ,b positive integer), _ (1)

j=1

| _ x_.’;'o, and integer.
The knapsack problem can be solved by any of the general Integer Linear Programmi
(ILP) algorithms, however it has only one constraint and more direct algorithms
may be used for its solution. A general ILP in bounded variables can be

transformed into a knapsack problem as well L3]

2.2. Group knapsack problem

Consider the finite abelian group G, and H = {g; 5+..,8; } a subset of G, and
1 n .

let the set Q be made up of the subscripts such that Q = {il’i2"” ,in}.
Consider the problem of finding non-negative integers t; j=1,2,...,n such that

J
t- « = t' g' @ see t' g- < g*EGc (2)
© 38 7 i By LR _
Now for integer p and m such that
p+mig .z O | ®

(p +mlg g =pg + mlglg = pg + mg, = pg
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Thus if one component t, of the solution of (2) is given by
Tk = p, keQ there are solutions :

" with Ty = p +m|gk| for all m such that p +m|gk| 2 0. Related

to the pure integer programmng pmblem, there exists the group knapsack
pmblem ‘

ok ' : '
fn(g)=mln):t33 ‘ . )
‘ 3Q |
subject to .
' t.g.= g
jeQ JgJ

'tj 2 0 and integer, j eQ.

where dj are given for all j €Q. Note that dJ 2 0 J.mplles that
if (4) has a solution, it has an optimal solution w1th .
t5 s]g | for all je Q. However, if there exists 3 such that
dJ* < 0 and (4) has a solution, then it is wnbounded. It can
be shown that this problem can be solved as knapsack problem,
and the relation between (4) and (1) is as follows :

By intfbducing a slack variable X 41 to the constraint
in (1) , (1) can be written in the form

n§1

mx x = C. X. ‘ - v

o 51 373 (5)

subject to
n+l _
a.x.=b 5

21 3% b (5a)
%, 2 0, and integer, j = 1,250 00 4n¢1

where 41" 1 apd °n+1= 0.

Assume that the variables in (5) are ordered so that

1 2 “h L, %hn . . .
2 T % e 23 2 . An optimal solution to the LP correspond-
?1 2 ) . an n+l b cl .
ing to (5) is given by X = 31 ) X = _'EI b, xj =0 for § » 2.
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From (5a) x‘llmay be expressed as
| b 1  nn

Xy =23 - 3 _); 3%y (5b)
| =2
Substituting (5b) in (5) gives ‘
. c,b 1 ngl
T MAX X S - = e (cja: - a,c:). (5¢)
0 | a 3 522 17 173
Now maximiiing (5¢) subject to (5a) is equivalent to
n+l n+l
i : . = Ca . = X 6
min. ): (cyay = csa,)x; z dyx; says | (6)
j=2 - ‘ j=2
ntl a.x. : : :
subject to % - .1 —;—i > 0, and integer ' (7
.. 1 .
j=2
R 0, and integer j = 2,3,...,n+l
. (We have assumed that b is not integer).
a
1

- If b is large enough, so that Xy is certain to be positive in an optimal
solution, the non-negativity on x, can be dropped. Equation (7) can be
written in the form

n+l a.x.
] 4l =2 mab,
e 2 1
or n+l _
) asXs = bmod a,), : (8)
3=2
or _ n+l
Z pjxj = po(mod al),
j=2

where p. = a.,(mod a,) j = 2,3,..., n+l, and
I R

).

pb = p(nod a,

Note that (8) can be written as a group equation over the group G(al) .
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0

0

-l

-1

0 O

0

0

0

Therefore

()
0

0

0

Q0
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Let Q = {2,3,l4,...,n41} , and g* = g, » (it has been assumed that
o - ,
dy £ d; i=3,1,j52,...,n+1, otherwise see [3]), then (8) can be expressed as:

@. t.g; = g* A (9)
1eQ C

where t. = X3 ieG and i = pj.

Now for large b (7) may Le written as the group knapsack problem

minimize )) diti.’
ieQ
~subject to . _
@ . g. = g* s ' C . - ; (10)
e *P ‘ ' : ' .

t; 3 0 and integer, ieQ.

Example: Consider the problem
max xo"= 1Ox1 + Eix2 + 3x3 + 2xu + Xgs

subject to. : : .
6xl + ux2 + 3x3 + 2xu + st < 40 ' : (7a)

Xq 9%y 3X32X3,X) 5Xc 3 0 and integer.
Introdue Xs as slack variable, the problem (7a) may be expressed as
max x, = lel + Gx2 + 3x3 + 2%, + Xg + Oxs, (7b)

= 40,

subject to 6x; + ux, + 3x, + 2x + 5Xg + X

1 2 3 4

X 9X9 sX3,%) 3% X5 2 0, and integer.

- The optimal solution to the problem (7b) ignoring the integrality condition

e . . _ 40 _ 400 n s o
on the variables is X} 25 2 Xy = F s and xi-O 13 2 Writing X3 and Xy
in terms of the remaining variables one obtains

_bO w12 -8 u4 10
T T8 TF BTt XTE%TF %
40 4 3 2 5 1 (7e)
M TERTEXRTENTE S TE
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| Ignoring the non-negativity condition on X, (7c) can be written as:

P ' ; b ,
minimize | x, + .|2x3 + axu + lnxb + .I_Oxb,

subjoect Lo

g+ 2x), 45X+ X =Y (mod 6), (/e

ux,z + 3x\3

X5y Xg3 Xy» xs,f xg % 0,

and the group minimization problém corresponding to (7d) becomes

+ 12t, + 8t +lmt5+10t

minimize 4t 1

2

Yy 3

subject to
Byty * B3ty ¥ Bty * Bsty + 81ty < 8y

tuo t3: t29 t5’ tl 3 0 integer.l : pr

The optimal solution is t, =1, t; = 0, i # 4, Therefore the optimal

solution corresponding to (7a) is
._x2=l,xl=6.,x3=xu.=x5=x6=0,andxo=66.

The advantage of representing (5), (5a) as a group knapsack problem is that

the order of the group is only a,, where a, ¢ b. In (5), (5a) the number

of calculation is in a lose sense proportional to the magnitude of b and in

(10) it is proportional to the magnitude of a,.

2.3. Relatidn Between Integer Programming and the Group Knapsack Proslem

Consider the pure integer program
max ¢ X .
subject to A X s b, | , Qi
X 3 0, and integer S
where & is m X n integer matrix, b an integer m-vector, and © an integer
n-vector. Alternatively the integer program (11) can be written as:
max o©x ‘ ,
subject to  AX = b, | " | a2»

where A is an m x (mn) integer matrix, ¢ an (mn) vectér, and x is an

(mtn) vector which includes the slack variables introduced to convert the

inequalities (11) to equations of (12). Partitioning A as (B,N],(12) may

be rewritten as

| max Cg xg + &y Xy R
subject to BxB + Nxy = b, S - (13)

‘Xgy X%y 0 and integer, '
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where B3 is an m x m non-singular matrix. lxpressing Xg in term of
. -1 -1 . ' ’

Xyo o€y X = B™b~-B NX.N, we can write (13) as:

1

max CgB ™ - (CyB - Xy

1

. o1
NxN-B

subject to b S ' - . (14)

,xB+ B

Xp> Xy 2 0 integers.

If we consider (14) as a linear program, i.e., drop the integer restriction
on Xps and Xy and if B is the optimal basis of the linear program, then the

optimum solution to the linear program is

Xp = B-lb, Xy F o,

1

1 b happens to be an integer vector, then,

where Cp B "N - Cy > 0. If 3’
1

xB=B'b,xN=o,

is obviously the optimum solution to integer program (14). When B™lb is not
an integer vector, Xy must be increased from zero to some non-negative integer
vector such that ' "

lb - B-lN Xy 2 0, and integer.

Xp = B
This leads to two questions:
(1) Under what conditions B™lb - B.leN 2 0 holds ?

1

(2) When is B b - B-leN an integer vector ?

To start with, consider the relaxation of (14) in which the nonnegativity
condition Xpg 2 0 and the integer restriction are omitted; the problem becomes
1 Iy - CN) X

= B7Nb - Nxp), L o (15)

max cBB'

b - (CgB
subject to
B
w3 0.
In tre r~dimensional space over which the components of Xy are defined the
feasitle sclutions to (15) correspond to the cone defined by the non-negative
orthant. For this reason, LP's of form (15) are called [P's over cone: and
LEEtEN

Xg = B"l(b - NxN) Xg integer : (16)

N _1 -
max CBB b - (CBB

X3 0, integer

are ILP's in which the corresponding LP's are over cones. Thus problems in
the form of (16) are called ILP's over cone or ILPC's. an ILPC is a relaxation
of the corresponding ILP in which, for a given B the nor-negativity restriction

on x, are omitted.
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It will be seen that an ILPC is considerably easier to solve than the
'cor'nesponding ILP. In fact, an ILPC can be solved as a group knapsack
problem over a direct sum group which is of order D = |det Bf.

To answer the second question stated above, note that:
The ‘condition Xg be an integer .vector is equivalent to

~1,. :

B (b-NxN) O(md 1).
Eliminating the constant term from the objective function of (16) and changing
from max into min we obtain the ILPC statement

min (C.B N-C,)
pB NGy xy
subject to ) _ :
By = B7lbiod D, - - - an
Xy 2 0, integer,

where (CBB-lN—CN) 30 Assume that xﬁ is an optimal solution to (17) so that
the correspording value of Xg is '

x’é =B ]"(b-le"i).

We can think of ‘B-leﬁ as a minimum cost correction to B 'b that yields x§
. integer. If the carrection is such that xg 2 O, then (xg,xﬁ) is the optimal
solution to ILP (12). |

For this reason it is intuitively appealing to choose B such that B-lb 0.
Thus one gener'ally works with an ILPC and an associated optimal basis B.
However, the theory and the algorithm apply to any ILPC generated by a dual
feasible basis. :

2.4, Eouivalent ILPC Representation

Sur cojective is to transform the ILPC constraints of (16), by changing
variables, into a form more suitable for analysis. Some classical result on

the solution of simultaneous linear equations in intezers provides the background.
Let

S = {x|Bx

{y|By

b, x integer}

T

b, y integer}
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where B and B are mth-order matrices, and b, b, m~dimensional integer

vectors. If there is a one-to-one cor'respondence' between the elements of

S and.T given by y = px, where p is an mth—order infeger matrix, then

Bx = b, x integer and By = D,y integer are said to be equivalent representation.
- To obtain a representation equivalent  Bx = b,x integer, the following

theorem proves to be useful. ' ' L

Theorem 1. Let E be an mth-order ummodular integer matrix, then for every
integer vector y there exists a unlque x such that y = Ex.

Theorem 2. Let R and C be m"

A
RBC = ﬁ, then Bx = b,x integer, and By = Rb,y integer are equivalent

order unimodular integer matrices, and let

representation. 4
Proof: Multiplying Bx = b on the left by R yields RBx = Rb. (19)
Since C"l exists it is also true that - |
A _ o ‘ :
RB = B C2 ‘ ' C ' (20)
From (19), (20) it follows that |
A -
BCLx=RBx=Rb, ° o | | (21)
Let - . ‘ »
clx=y ‘ | . (22)
1

Note that C unimodular and integer implies that C is unimodular, and
integer. Using Theorem 1, it follows that there is a one-to-one correspondence
between the integer value x and y in (22). ' ‘

Substituting (22) into (21) yields
A .
By = Rb. | (23)
Consider a particular integer solution Xy = x&, in (16), then
Bxg = b - NXI:I is integer (24)
An equivalent representation of (24) is therefore,

By R(b NxN),ymteger. S (25)

Thus pmblem (16) can be made easier to analyse by obtamlng a particular form
for B, say diagonal form. ‘This form is simpler to handle than that of the
~original B matrix.
Example: Consider the ILP (taken from {3])
max 2xl + X,
XY Xt X3
- X Xy b X,

6x, + 2x, + X¢

subject to

"
o

(26)

"
o

21, X;,X,9Xq5%, %20, and integer
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The optimal solution to the corresponding LP is

i ... 91 3 o
Xg = (xl,xz,xu) = & T %) and Xy = (x3,x5) = (0,0).

- The ILPC corresponding to the optimal basis L? is
max 2xl + X, o ' | (26

subject to

Xi + x2 +jx3

-'xl+x2+xq

5

0 | | (25

‘ 6)_(l+2x2+x5=2l
" Xgs xs 2 0 and integer'
' xl; Xps Xy integer* ' o (26
Thus (26)" can be written as follows:
. [ l1 1 O1 fxl‘ r 51 r1 0‘
-1 1 1 =|x) [of-fo of ¥ (27

6 2 o x| |2a] o 1] %
; ) H U R U R 5
let R and C by any unimodular matrices such that REC = B, and these
unimodular matrices are chosen such that B is the Smith Normal Form of B.
This is computed as illustrated below.




- 222 -

3
R o= | ° RNx y = X3
-9 76x3+ Xg
L y \ ) J

[ ) ( )
_ A 5 -x3‘
A -
By = Y2 = 5 X3 or
Lyq ‘ -9 +6x3- Xg
x J - J
y1 = 5= X3 ] .
y2=5-x3 ' - (28)

Uyy = =94+ bxy= X

Now (28) is a simpler representation than (27), in the sense
that it immediately provides necessary and sufficient condition
on (x 3,xs) for y to be integer, and equivalently for xB to be
integer. In particular any (xs, xs) integer yields (yi, y2)
integer, and Y3 is integer if and only if

-9 +6x3-x5= 0 (mod 4)

or . '
=0 (mod &) (29)
3 ~|»2x$+3x5 -

or _
2x3+ 3x5- 1 (modu)

Thus (x3, xs) 20 and integ‘ef yields a feasi.bl_e solution
to the ILPC if and only if (28) holds. Therefore the



- 223 -

prublem reduces to :s

X X
. - 3 _°%
MmZ-’—-—z-——q

3+ 3 =1 (modt&),

X3y X 2 0, and integers,

subject to 2x

and this is a group Knapsack problem over the’group G(4).

2.5 Group Knapsack Representation of an ILPC

Suppose g is the Smith Normal Form of B, then

By = R(b-Nx), y integer,
is, equlvalent to e

BxB+ NxN =b, xB integer

where B =RBC, and y = Clx. Therefore (17) can be
stated as: o

(CBB]'N CN”‘N

By R(b—NxN)
y integer )
Xy 2 0,. and integer

Denote the 1“‘ row of R by R, (i = 1,2,...,m then the
i row of By =R(b- ~Nog) is”

Since for Xy integer, the right-hand side of (33) is
_ an integer, there exists an integer ' satisfying (:3)
if and only if .
Ri(b~NxN) = 0 (md ci) or

equivalently
RiNxN ='Rib (mod Gi) 1=1,2,0009m.

(30)

(31)

(32)

(33)

(34)
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Note that if & = 1, (34) is superfluos, in the sense that it is satisfied
by any integer vector xy. S '
If 61 . ]l."sk’l’ then from (33), (31) can be stated as
- =1 '
= (CgB N CN)xN |
R,Nxy = R;b(mod §;) izk,...,m | o (38)
Xy 2 0, integér

Note that D > 1 implies that S > 1.

Suppose k=m, so that there is exactly one constraint in (35) let x= (xl,xz,. o

-1
J 3

Cy B aj—C = d., and Prs &naj(mod m ) Ppo = Bb(nod m);_then (35) reduces to

- <

10

subject to
r ' R
) Prg %5 © Py (mod ) . . (36)
3= |
xJ 3 0, integer j=1,2,...,r.

As stated 13
stated earlier lemj 3
J*

(36) is the corresponding group knapsack problem. The objective coefficient
dj can be transformed into integer by multiplying the objective function by D.

® Pro (mod 6 ) is a group equation over G(§ ) and

In the general case where lgk<m Pij * ;8 (mod 8.), and p; = R;blmod §;)

then (35) can be stated as

minimi.ze z, =

~

J

dj X. ' (37)

j=1

subject to
r
) Pis %5 = pio(mod si), i=Kkyees,m,
i=l

xj;O integer 3=1,24...,1

X,
)
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The congruences of (37) taken together are equivalent to & group equation over
the dlrect sum group G(<S k+1""’6 ); this sum group is of order

lD' = 6k k+

JELEEEL a.nd (37) is a group knapsack problem. Represent P; i3 by the
group element gl in G(§,; ) denote the element of the group G(Gk"skﬂ"” . )

by glk,... 2 s whcr_e Oslzsﬁz (2k,...,m). Therefore gpk s+ sPps is an element
. m . . . J
of the group G(Gk,... ,Gm).

Example

Max Z, = X3 = 2xu
. - )
Subject to le + l&xz + Xy = 12,
12%; + 8x, + X, = 60, - L (38)

l’ Xys X35 X2 20, and integer.

).

The optimal LP solution to this problem is given by (xl »Xy ,xa,*u) (2’4’

and the optirrél basis is

2 y
B =
12 8
1 0ot 2 4 1 0! 2 o0 1 o 2 0.
0o 11! 12 8 0 1t 12 -16 6 -1 0 16
l1. O l -2 l -2
0 1 o 1 0 1
SoR = 10 c= |% -2 s therefore 61=é,62 = 16
6 -1 o 1

: 2 0Of. .
B - , D=32andN= |* O . Thus the ILPC associated with the
c 16 , o 1 ‘ a

. .. . - Y
Optimal LP basis is given by max(Cy B N - CN)XN
op

‘ maxx3+2xu

‘ Bubject t . '
PPIECt TO R, (bNx) =0 (mods;), is1,2 . (39
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20 (wod2)

or _ l2-x3
12-6_><3+x920 (md,ls)

i.e" . . »
x3=.-0 (mod 2) . o . _ : (39"
6x3-. u:—-lz (mod 16) -

where X,,%, 2 0, and Litegei*.

This can be represented as a group knapsack problem over the group G(2,16).
In particular theo_oefficient of Xq and x, corresponds to &1,6 and &,15
respectively. Introduce the two integer variables tyty corresponding to Xq
and X, respectively, and the group knapsack problem becomes

~3

minimize t; + 2t,
subject to. t1g1,6®t2go,15 * g2 S - (40)

tl,t2 ; 0', and integer. |
An optimal solution to (40) is t; = 2, t, = 0, this yields

X = 5, x2 = 0, Xy = 2, X, = O which is a fea;ible solution to the ILP and
therefore optimal,

To obtain the group knapsack problem the basis matrix B has been diagonalized
‘into Smith Normal Form. However, it is clear that any unimodular R and C
such that RBC = ﬁ, where B is a diagonal matrix with positive integer
diagonal elements (§),8,5... ,6’) will yield a group knapsack problem.

Smith Normal Fcrm is preferred for camputation because it yields the simplest
representation of the group.

Consider now the problem of finding sufficient conditions for an ILPC to solwve
an ILP, The objective is to get an upper bound of Nx“N, where x*N is an optimal
solution to ILPC(17), Then given an optimal basis B cne looks for a sufficient
cordition such that '

L Xy =BT N 3 0. } ()
If (41) holds, (x*B,x*N) solves the ILP (12).
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An upper bound on ||Nx* || (by||Nx*, || we mean the Euclidean length of the
vector Nx*N) , may be obtained which depends on the coefficients of N and

the magnitude of D. The bound is mainly of theoretical interest, since it is
frequently very loose. The upper bound is derived from a bound on the variable
in the corresponding group knapsack problem. '

Consider the problem

Min d.t. ' 3 42
Z 55 A | (42)
JeQ '

‘subject to : S
&, tjgj = g*, tj 2 0, and‘in‘teger,_

~over the group G. It follows fram earlier discussions (see

if (42) has a feasible solution it has an optimal solution t*, with

t*j ¢|6|-1, for all jeQ. ' '

A stronger bound on t*® 3 is given by,

]t < j6]-1
je@ 3 '
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