
1

Data Quality: Some Comments on the NASA

Software Defect Data Sets
Martin Shepperd Qinbao Song Zhongbin Sun Carolyn Mair

Abstract

BACKGROUND – self evidently empirical analyses rely upon the quality of their data. Likewise replica-

tions rely upon accurate reporting and using the same rather than similar versions of data sets. In recent

years there has been much interest in using machine learners to classify software modules into defect-

prone and not defect-prone categories. The publicly available NASA datasets have been extensively used

as part of this research.

OBJECTIVE – this short note investigates the extent to which published analyses based on the NASA

defect data sets are meaningful and comparable.

METHOD – we analyse the five studies published in IEEE Transactions on Software Engineering since

2007 that have utilised these data sets and compare the two versions of the data sets currently in use.

RESULTS – we find important differences between the two versions of the data sets, implausible values

in one data set and generally insufficient detail documented on data set pre-processing.

CONCLUSIONS – it is recommended that researchers (i) indicate the provenance of the data sets they

use (ii) report any pre-processing in sufficient detail to enable meaningful replication and (iii) invest

effort in understanding the data prior to applying machine learners.

I. INTRODUCTION

Presently there is a good deal of interest in using machine learning methods to induce prediction systems

to classify software modules as faulty or not faulty. Accurate prediction is useful since it enables, amongst

other things, testing resources to be targeted more accurately. A 2009 Mapping Study [4] identified 74

relevant studies and this has grown to 208 by the end of 2010 (as reported by Hall et al. [7]). These

Martin Shepperd is with Brunel University, UK.

Qinbao Song and Zhongbin Sun are with Xi’an Jiaotong University, China.

Carolyn Mair is with the University of the Arts, UK

October 24, 2012 DRAFT



2

studies have employed a range of methods (e.g. Bayesian, Support Vector Machines and instance-based

learners) and applied them to different software defect data sets.

With so much research being undertaken, there is a clear need to combine individual results into a

coherent body of knowledge. To accomplish this it is necessary to make valid comparisons between

studies. This is facilitated where studies have used the same data sets. It also assumes that results

are derived from meaningful data. However, a recent paper by Gray et al. [6] has raised important

questions about the quality of the 131 software defect data sets that have been made publicly available

and extensively used by researchers (e.g. [7] found more than a quarter of relevant defect prediction

studies, that is 58 out of 208, made use of the NASA data sets). Therefore these concerns, about data

integrity and inconsistencies between different versions of the NASA data sets in circulation, require

urgent attention. To do otherwise undermines the scientific basis of empirical validation and replication

of studies of software defect prediction.

This note builds upon initial work of Gray et al. who pointed out the quality problems with the NASA

data sets currently in use by the research community. We consider the extent of the problem, describe

in detail a preprocessing algorithm and the impact of various cleaning ordering issues, make different

cleaned datasets publicly available and and conclude with suggestions as to the research community

might avoid such problems in the future.

II. INVESTIGATION AND RESULTS

Machine learning is a data-driven form of research and so it comes as no surprise that data sets are

archived and shared between researchers. In this regard, the Promise Data Repository2 has served an

important role in making software engineering data sets publicly available. For example, presently [June

14, 2012] there are 96 software defect data sets available. Amongst these are 13 out of the 14 data sets

that have been provided by NASA and which were also available for download from the NASA Metrics

Data Program (MDP) website3.

Table I compares the two versions and in terms of cases (instances) and features (attributes). All data

are for the raw, i.e. un-preprocessed versions of the files. We see that no two versions are identical

although the scale of the differences varies considerably. We also note that the ordering of cases within

1There are presently 14 data sets but note that KC2 was not present on the MDP website and KC4 is not present in the

Promise Data Repository.
2See http:\\promisedata.org
3Presently they may be found at http://www.filesanywhere.com/fs/v.aspx?v=896a648c5e5e6f799b

October 24, 2012 DRAFT



3

TABLE I

COMPARISON OF THE TWO VERSIONS OF THE NASA DEFECT DATA SETS

Cases Features

Data Set MDP Promise MDP Promise

CM1 505 498 43 22

JM1 10878 10885 24 22

KC1 2107 2109 27 22

KC2 n.a. 522 n.a. 22

KC3 458 458 43 40

KC4 125 n.a 43 n.a

MC1 9466 9466 42 39

MC2 161 161 43 40

MW1 403 403 43 38

PC1 1107 1109 43 22

PC2 5589 5589 43 37

PC3 1563 1563 43 38

PC4 1458 1458 43 38

PC5 17186 17186 42 39

the data sets differs. This may impact validation strategies such as n-fold cross-validation if random folds

are not utilised.

Next we consider the different types of data quality problem that might arise. These are defined in

Table II and employed in Tables III and IV which analyse the data quality issues of each data set from

the NASA MDP repository and Promise repository in more detail. Column A refers to a situation where

two or more features contain identical values for all observations, i.e. for all cases. Column B refers to

features that contain the same value, i.e. add no information. Column C counts the number of features

that contain one or more missing observations and Column I counts the number of instances with missing

values. We provide both values since both list and case-wise deletion are possible remedial strategies.

For the same reason we give both feature (Column D) and case (Column J) counts of conflicting values.

These arise when some implied relational integrity constraint is violated, e.g. LOC TOTAL cannot be

less than Commented LOC, since the former must subsume the latter. Another instance is where the

MacCabe’s v(G) is 128 for a module yet the count of executable lines of code is zero (see [5] for a brief

tutorial article on integrity constraints). Next, Columns E and K give the counts of the number of features

October 24, 2012 DRAFT



4

TABLE II

DATA QUALITY

Column

Label

Data Quality Category Explanation Example

A Identical features Refers to a situation where two or more features

contain identical values for all cases.

F1=F2=F3 ∧ F4=F5 =⇒ 3 features

are identical so could be deleted.

B Constant features Refers to features that contain the same value for

every instance, i.e. add no information.

C Features with missing

values

Counts the number of features that contain one or

more missing observations.

F1 has 10 missing values ∧ F3 has 3

missing values =⇒ 2 features contain

missing values.

D Features with conflict-

ing values

Counts features that violate some referential in-

tegrity constraint

F1 should equal F2+F3 but does not.

We cannot say which feature is in error

therefore =⇒ 3 problematic features.

E Features with implausi-

ble values

Counts features that violate some integrity con-

straint

F1 should be non-negative but contains

1 or more instances < 0 =⇒ 1

problematic feature.

F Total problem features Count of features impacted by 1 or more of A-E.

Since features may contain more than one problem

this need not be the sum of A to E .

G Identical cases Refers to a situation where two or more cases

contain identical values for all features including

class label.

H Inconsistent cases As per G but the class labels differ, all other data

item values are identical.

There are two identical modules M1

and M2 where M1 is labelled as fault-

free and M2 is labelled as faulty.

I Cases with missing val-

ues

Counts the number of cases that contain one or

more missing observations

J Cases with conflicting

feature values

Counts cases that contain features (2 or more by

definition) that violate some referential integrity

constraint. Count each case irrespective of the

number of features implicated.

As per Column D

K Cases with implausible

values

Counts cases that violate some integrity constraint.

Count each case irrespective of the number of

features implicated.

As per Column E.

L Total of data quality

problem cases

Count of cases impacted by one or more of I to

K that we denote DS′. Since cases may contain

more than one problem this need not be the sum

of I to K.

M Total problem cases ac-

cording to [6]

Count of cases impacted by one or more of G to

K denoted DS′′October 24, 2012 DRAFT



5

TABLE III

DETAILED DATA QUALITY ANALYSIS OF THE NASA DEFECT DATA SETS BY FEATURES

A B C D E F

Identical Constant Features with Features with Features with Total problem

features features missing values conflicting implausible features

values values

Data Set MDP Prom MDP Prom MDP Prom MDP Prom MDP Prom MDP Prom

CM1 2 0 3 0 1 0 2 14 0 6 6 15

JM1 0 0 0 0 0 5 9 15 0 6 9 16

KC1 0 0 0 0 0 0 4 15 0 6 4 16

KC2 n.a. 0 n.a. 0 n.a. 0 n.a. 14 n.a. 6 n.a. 15

KC3 0 0 1 0 1 0 0 0 1 1 3 1

KC4 27 n.a. 26 n.a. 0 n.a. 3 n.a. 0 n.a. 30 n.a.

MC1 0 0 1 0 0 0 3 3 1 1 5 4

MC2 0 0 1 0 1 0 0 0 0 0 2 0

MW1 2 0 3 0 1 0 0 0 0 0 4 0

PC1 2 0 3 0 1 0 4 14 1 6 8 15

PC2 3 0 4 0 1 0 2 2 1 1 8 3

PC3 2 0 3 0 1 0 2 2 1 1 7 3

PC4 2 0 3 0 0 0 7 7 1 1 11 8

PC5 0 0 1 0 0 0 3 3 1 1 5 4

and cases containing one or more implausible values such as LOC=1.1. The checks are are described in

the Appendix. The data quality problems are then summarised by the total number of features impacted

(Column F) and cases (Column L).

Finally, note that all data sets ‘suffer’ from problems of duplicate cases. Some researchers have

considered this to be a problem since the identical case may be used both for training and validation

(e.g. [6], [10]), however, we do not fully concur since our view is that it depends upon the goal of the

investigation. If one is concerned with generalisation to other settings and data sets then elimination of

duplicate cases has some basis since duplicate instances may not be commonplace and will tend to lead

to an over-optimistic view of predictive capability. If the research goal is to form a view of how the

classifier will perform in a particular setting then naturally occurring duplicate cases (i.e. different software

modules indicated by different module id’s with similar profiles) offer either a learning opportunity (since

a previously encountered, identical case should facilitate learning). We would also argue likewise with

October 24, 2012 DRAFT



6

TABLE IV

DETAILED DATA QUALITY ANALYSIS OF THE NASA DEFECT DATA SETS BY CASE

G H I J K L M

Identical Inconsistent Cases with Cases with Cases with Total Total

cases cases missing conflicting implausible problem problem

values feature values values cases, DS′ cases, DS′′

Dataset MDP Prom MDP Prom MDP Prom MDP Prom MDP Prom MDP Prom MDP Prom

CM1 26 94 0 2 161 0 2 3 0 1 161 3 178 61

JM1 2628 2628 889 889 0 5 1287 1294 0 1 1287 1294 3158 3165

KC1 1070 1070 253 253 0 0 12 14 0 1 12 14 945 947

KC2 n.a. 182 n.a. 118 n.a. 0 n.a. 38 n.a. 1 n.a. 38 n.a. 197

KC3 12 170 0 2 258 0 0 0 29 29 258 29 264 142

KC4 10 n.a. 9 n.a. 0 n.a. 125 n.a. 0 n.a. 125 n.a. 125 n.a.

MC1 7972 7972 106 106 0 0 189 189 4841 4841 4841 4841 7619 7619

MC2 4 6 0 2 34 0 0 0 0 0 34 0 36 5

MW1 15 36 5 7 139 0 0 0 0 0 139 0 152 27

PC1 85 240 13 13 348 0 3 26 48 49 355 74 411 196

PC2 984 4621 0 100 4004 0 129 129 1084 1084 4055 1163 4855 4297

PC3 79 189 6 9 438 0 2 2 52 52 444 54 490 138

PC4 166 166 3 3 0 0 60 60 111 111 112 112 182 182

PC5 15730 15730 1725 1725 0 0 185 185 1772 1772 1782 1782 15507 15507

inconsistent or conflicting cases. This leads to challenges for any learner. Removing them may distort

results to being over-optimistic. The researchers’ choices again depend upon the investigation goal.

Table V lists five empirical studies that have been published in TSE since 2007 of which three out

of five report using the MDP versions of the data sets. This was established by emailing the authors of

each study. Of course many other studies have been published elsewhere, but for brevity we focus on the

community’s flagship journal. What is clear is that there are differences in the base level data set version

and in reporting detail. Unfortunately this hinders making sense of the combined results and building

an overall body of knowledge. Unless these problems are resolved any attempt at meta-analysis will be

compromised.

October 24, 2012 DRAFT



7

TABLE V

RECENT SOFTWARE DEFECT STUDIES PUBLISHED IN TSE BASED ON THE NASA DATASETS

Pre-processing

Study Year Version Missing Inconsistent Duplicate

items items cases

Menzies, Greenwald and Frank [16] 2007 Promise × × ×
Zhang and Zhang [21] 2007 n.a. n.a. n.a. n.a.

Lessman, Baesens, Mues and Pietsch [12] 2008 MDP × × ×
Liu, Khoshgoftaar and Seliya [15] 2010 MDP X X ×

Song, Jia, Shepperd, Ying and Liu [19] 2011 MDP X × ×

III. CLEANED VERSIONS OF THE NASA DATA SETS

In this section we address the problems identified previously, describe the pre-processing involved and

make new versions of the data sets available for other researchers. This will enable a common basis for

research and meaningful comparison between studies.

The pre-processing strategy is that first the problem data (e.g., cases with either conflicting feature

values or implausible values) are discarded, and then the data, which are not problematic but do not help

improve the defect prediction (e.g., the features with constant values and either identical or inconsistent

cases), are removed. This results in data set DS being transformed to DS′ and DS′′ respectively.

Procedure NASA MDP Data Preprocessing Approach provides the details.
The pre-processing algorithm consists of two parts: the first part (lines 3-24) deals with cases while

the second part (lines 25-31) handles features. Cases with either implausible values or conflicting feature

values are logically erroneous: they either are implausible or contain features that violate some referential

integrity constraint, so they are removed first (lines 3-10). The identical cases may constitute problems

as a consequence of the cross-validation strategy. The inconsistent cases are problematic since it is not

obvious how the learner should be trained. Thus they are also both deleted (lines 11-20). Note that,

the pre-processing order of these two situations cannot be swapped, otherwise some inconsistent cases

may not be removed. For example, suppose cases i and j are a pair of inconsistent cases, and case k is

identical to case i (i<j<k). Thus cases k and j are also a pair of inconsistent cases, and all these three

cases should be removed. However, if cases i and j are removed first, then case k might not be removed

as there is no longer any case that is inconsistent with case k. Lines 21-24 delete the cases with missing

values. Finally, features with constant and identical values are removed (lines 25-31).

October 24, 2012 DRAFT



8

Procedure NASA MDP Data Preprocessing Approach
inputs : Data – the original NASA MDP data sets.

Flag – the indictor of whether or not the identical/inconsistent cases are removed, can be TRUE or FALSE.

output: DS′ or DS′′ – the preprocessed NASA MDP data sets. The former is with identical and inconsistent cases while the latter not.

//DS - a specific data set in Data.

//M - the number of cases in DS; N - the number of features in DS.

//DS.Value[i][j] - the value of feature j for case i in DS.

Data′ = NULL;1

Remove features MODULE ID and ERROR DENSITY, convert ERROR COUNT into defective or non-defective flags (1/0);2

for each DS ∈ Data do3

for i = 1 to M do //step 1: remove cases with implausible values4

for j = 1 to N do5

if DS.Value[i][j] is an implausible value then6

DS = DS - DS.Value[i][1...N];7

for i = 1 to M do //step 2: remove cases with conflict feature values8

if DS.Value[i][1...N] contains conflict feature values then9

DS = DS - DS.Value[i][1...N];10

if Flag then11

for i = 1 to M - 1 do //step 3: remove identical cases12

for k = i + 1 to M do13

if DS.Value[i][1...N] ≡ DS.value[k][1...N] then14

DS = DS - DS.Value[k][1...N];15

for i = 1 to M - 1 do //step 4: remove inconsistent cases16

for k = i + 1 to M do17

if DS.Value[i][1...N-1] ≡ DS.Value[k][1...N-1] and DS.Value[i][N] 6= DS.Value[k][N] then18

DS = DS - DS.Value[i][1...N];19

DS = DS - DS.Value[k][1...N];20

for i = 1 to M do //step 5: remove cases with missing values21

for j = 1 to N do22

if DS.Value[i][j] is a missing value then23

DS = DS - DS.Value[i][1...N];24

for j = 1 to N do //step 6: remove constant features25

if DS.Value[1...M][j] is constant then26

DS = DS - DS.Value[1...M][j];27

for j = 1 to N - 1 do //step 7: remove identical features28

for k = j + 1 to N do29

if DS.Value[1...M][j] ≡ DS.Value[1...M][k] then30

DS = DS - DS.Value[1...M][k];31

Data′ = Data′ ∪ {DS};32

If (!Flag) then DS′ = Data′ else DS′′ = Data′;33

October 24, 2012 DRAFT



9

By applying the cleaning algorithm NASA MDP Data Preprocessing Approach to the original NASA

data sets, we obtain the corresponding new version of the data sets, which were until recently available

from their web site. Note that Gray et al. [6] suggest an alternative cleaning algorithm, however, as we

have observed, there are ordering effects and we think it better to remove demonstrably incorrect data

items first as this may resolve conflicting feature values and so less data are lost in the cleaning process.

Such considerations illustrate the subtleties of data cleaning. The cleaned data sets are available from

http://j.mp/scvvIU.

IV. DISCUSSION

Our analysis of data sets used for defect prediction research poses two questions. Do the data quality

and differences between data sets matter in any practical sense? And if so, what should researchers do

about it?

This short paper raises some difficulties concerning the extensively used, collection of publicly available

NASA software defect data sets. However, we consider it raises some significant and more widespread

difficulties about how we conduct research into software defect prediction. This is for three reasons.

1) There is a growing movement towards ensuring that computational science (including machine

learning) should generate reproducible results [20], [8], which is an undeniably good thing. A

mainstay for this is sharing data and code. Such initiatives are undermined when differences, even

subtle ones, between versions of the ‘same’ data are used, either due to different pre-processing

or version control issues. When these differences are undetected by the research community the

problems deepen.

2) The differences between versions of some of the NASA datasets are not large. Nevertheless it adds

to the variance of the results so minimally it will make it more difficult to observe patterns across

experimental results and will confound meta-analyses since a reduced proportion of the variability

of the response variable (accuracy however measured, of the predictors under investigation) due to

the treatments (different choices of learning algorithm, data set and so forth).

3) Generally we are dealing with small effects [17] but large samples (typically in the thousands or

tens of thousands), consequently even small differences in training and validation data can lead to

statistically significant differences in results. This in itself may be a reason to pay more attention

to effect sizes and less to null hypothesis testing and p values [1].

Given we believe data quality problems can matter considerably, we now move to the question of what

might be done about it.

October 24, 2012 DRAFT



10

First, whilst sharing and making data available to members of the research community is clearly a

good thing, given the possibility of differences being injected through copying and sharing, researchers

should indicate the source of their data. As confirmation that this is not an isolated problem consider the

proliferation of differing versions of Fisher’s famous Iris data set which has been used to explore linearly

inseparable classification since the 1920s [2].

Second, as the methods of computational science become increasingly involved and demanding, great

care is needed to ensure sufficient attention is paid to the data as well as the algorithms. Many machine

and statistical learning methods are intricate and require a good deal of skill. This can divert attention

away from data issues. In addition there is a danger that secondary data analysis distances the researcher

from the real world phenomenon represented by the data. The meaning of the data can be lost and

researchers may not know or ask what is meaningful. Consider the situation of a data item of zero LOC.

Is this plausible? In some programming languages and depending upon how LOC is defined in the first

place it is possible though unlikely. Being distanced from the data collection makes it hard to answer

these kind of questions. We are not arguing against secondary analysis but pointing out it does bring

some attendant dangers. Consequently, detailed documentation of the data is essential.

For example, we have observed, in common with Boetticher [3], some of the data sets contain

implausible values such as LOC=1.1. Given that some of these have occurred in the first case and

feature (e.g. data sets CM1 and PC1) it is striking that this has elicited so little comment from those

using these files. We collectively must be more zealous to police the quality of the data that drives

our research. As Jian et al. state “as we present our research results, we rely on the integrity of metric

collection process and the description of software metrics reported in MDP repository” [9]. The problem

is compounded with duplicate versions of data sets that turn out to be inexact duplicates.

Therefore the role of groups such as the Promise Data Repository who manage public archives of

data sets needs to be extended to embrace data quality issues. Systematic reviews on how data quality is

handled within empirical software engineering by Liebchen and co-workers [14], [13], [18] indicate that

presently there is diversity in approach and scope for improvement. Even a simple traffic light system

indicating the level of confidence in a data set could be useful. The inputs for determining colour would

be the extent of (i) documentation and (ii) reproducibility of results based upon the data set.

Third, as is evident from Table V, authors (including ourselves) have not been in the habit of providing

complete information regarding pre-processing of data. Given that many reported differences between

machine learners are quite modest, the means by which missing values are handled and whether duplicates

are removed or inconsistent values checked, matter a good deal. Keung et al. [11] also comment that

October 24, 2012 DRAFT



11

“ranked estimator lists are highly unstable in the sense that different methods combining with different

preprocessors may yield very different rankings, and that a small change of the data set usually affects

the obtained estimator list considerably.” Thus the trivial detail may have a far reaching impact upon

the final results and conclusions. These problems can be addressed by agreed reporting protocols which

need to be developed and owned by the research community.

To conclude, some of the differences and data quality may seem trivial and sometimes impact only

a small proportion of the observations. However, if our research is to have the respect of our fellow

scientists then addressing such problems is not optional.

Lastly, we should stress the foregoing discussion is not in anyway a criticism of NASA, rather it raises

some questions concerning how we, as a research community, have made use of such data in order to

learn more about predicting defect-prone software modules.

ACKNOWLEDGMENT

We would like to thank the NASA MDP organisation for making their defect data sets publicly available.

We also thank David Bowes and David Gray for useful discussions, the authors of the other TSE studies for

providing additional information concerning their analysis techniques, and the referees for their careful

reading and constructive comments. This work is supported in part by the National Natural Science

Foundation of China under grant 61070006.

REFERENCES

[1] S. Armstrong. Significance tests harm progress in forecasting. International Journal of Forecasting, 23(2):321–327, 2007.

[2] J. Bezdek, J. Keller, R. Krishnapuram, L. Kuncheva, and N. Pal. Will the real Iris data please stand up? IEEE Transactions

on Fuzzy Systems, 7(3):368–369, 1999.

[3] G. Boetticher. Improving credibility of machine learner models in software engineering, pages 52–72. Idea Group Inc,

London, 2007.

[4] C. Catal and B. Diri. A systematic review of software fault prediction studies. Expert Systems with Applications, 36(4):7346–

7354, 2009.

[5] W. Fan, F. Geerts, and X. Jia. A revival of integrity constraints for data cleaning. Proc. VLDB Endow., 1(2):1522–1523,

Aug. 2008.

[6] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson. The misuse of the NASA metrics data program data sets for

automated software defect prediction. In EASE 2011, Durham, UK, 2011. IET.

[7] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A systematic literature review on fault prediction performance

in software engineering. IEEE Transactions on Software Engineering, Accepted for publication - available online, 2011.

[8] D. Ince, L. Hatton, and J. Graham-Cumming. The case for open computer programs. Nature, 482(7386):485–488, 2012.

October 24, 2012 DRAFT



12

[9] Y. Jiang, B. Cukic, and T. Menzies. Fault prediction using early lifecycle data. In The 18th IEEE International Symposium

on Software reliability Engineering (ISSRE), pages 237–246. IEEE, 2007.

[10] K. Kaminsky and G. Boetticher. Building a genetically engineerable evolvable program (geep) using breadth-based explicit

knowledge for predicting software defects. In IEEE Annual meeting of the Fuzzy Information Processing Society, pages

10–15, Banff, Canada, 2004. IEEE Computer Society.

[11] J. Keung, E. Kocaguneli, and T. Menzies. A ranking stability indicator for selecting the best effort estimator in software

cost estimation. Automated Software Engineering, Accepted for publication, 2011.

[12] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking classification models for software defect prediction: A

proposed framework and novel findings. IEEE Transactions on Software Engineering, 34(4):485–496, 2008.

[13] G. Liebchen. Data Cleaning Techniques for Software Engineering Data Sets. Doctoral thesis, Brunel University, 2011.

[14] G. Liebchen and M. Shepperd. Data sets and data quality in software engineering. In PROMISE 2008, Leipzig, 2008.

ACM Press.

[15] Y. Liu, T. Khoshgoftaar, and N. Seliya. Evolutionary optimization of software quality modeling with multiple repositories.

IEEE Transactions on Software Engineering, 36(6):852–864, 2010.

[16] T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to learn defect predictors. IEEE Transactions

on Software Engineering, 33(1):2–13, 2007.

[17] T. Menzies and M. Shepperd. Editorial: Special issue on repeatable results in software engineering prediction. Empirical

Software Engineering, 17(1-2):1–17, 2012.

[18] M. Shepperd. Data quality: Cinderella at the software metrics ball? In Proceedings of the 2nd International Workshop on

Emerging Trends in Software Metrics, pages 1–4. ACM, 2011.

[19] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu. A general software defect-proneness prediction framework. IEEE

Transactions on Software Engineering, 11(3):356–370, 2011.

[20] V. Stodden. The scientific method in practice: reproducibility in the computational sciences. 2010.

[21] H. Zhang and X. Zhang. Comments on “Data mining static code attributes to learn defect predictors”. IEEE Transactions

on Software Engineering, 33(9):635–636, 2007.

APPENDIX

The data cleaning tool may be downloaded from http://nasa-softwaredefectdatasets.wikispaces.com/.

Implausible values

LOC TOTAL = 0

value of any attribute is < 0

any count is a non-integer

Referential integrity checks

(1) NUMBER OF LINES ≥ LOC TOTAL

(2) NUMBER OF LINES ≥ LOC BLANK

October 24, 2012 DRAFT



13

(3) NUMBER OF LINES ≥ LOC CODE AND COMMENT

(4) NUMBER OF LINES ≥ LOC COMMENTS

(5) NUMBER OF LINES ≥ LOC EXECUTABLE

(6) LOC TOTAL ≥ LOC EXECUTABLE

(7) LOC TOTAL ≥ LOC CODE AND COMMENT

(8) NUM OPERANDS ≥ NUM UNIQUE OPERANDS

(9) NUM OPERATORS ≥ NUM UNIQUE OPERATORS

(10) HALSTEAD LENGTH = NUM OPERATORS + NUM OPERANDS

(11) CYCLOMATIC COMPLEXITY ≤ NUM OPERATORS+1

(12) CALL PAIRS ≤ NUM OPERATORS

(13) HALSTEAD VOLUME = (NUM OPERATORS+NUM OPERANDS)

*log2(NUM UNIQUE OPERATORS+NUM UNIQUE OPERANDS)

(14) HALSTEAD LEVEL = (2/NUM UNIQUE OPERATORS)

*(NUM UNIQUE OPERANDS/NUM OPERANDS)

(15) HALSTEAD DIFFICULTY = (NUM UNIQUE OPERATORS/2)

*(NUM OPERANDS/NUM UNIQUE OPERANDS)

(16) HALSTEAD CONTENT = HALSTEAD VOLUME/HALSTEAD DIFFICULTY

(17) HALSTEAD EFFORT = HALSTEAD VOLUME*HALSTEAD DIFFICULTY

(18) HALSTEAD PROG TIME = HALSTEAD EFFORT/18

October 24, 2012 DRAFT


