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Abstract

Non-invasive detection, localization and characterization of an arterial stenosis (a blockage
or partial blockage in the artery) continues to be an important problem in medicine. Partial
blockage stenoses are known to generate disturbances in blood flow which generate shear
waves in the chest cavity. We examine a one-dimensional viscoelastic model that incorporates
Kelvin-Voigt damping and internal variables, and develop a proof-of-concept methodology
using simulated data. We first develop an estimation procedure for the material parameters.
We use this procedure to determine confidence intervals for the estimated parameters, which
indicates the efficacy of finding parameter estimates in practice. Confidence intervals are
computed using asymptotic error theory as well as bootstrapping. We then develop a model
comparison test to be used in determining if a particular data set came from a low input
amplitude or a high input amplitude; this we anticipate will aid in determining when stenosis
is present. These two thrusts together will serve as the methodological basis for our continuing
analysis using experimental data currently being collected.

Mathematics Subject Classification: 62F12; 62F40; 65M32; 74D05.

Key words: viscoelastic model; sensitivity analysis; inverse problem; asymptotic theory; boot-
strapping; model selection.
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1 Introduction

Current methods to detect and locate arterial stenoses (blocked arteries) include somewhat invasive
angiography and expensive CT scans. Neither procedure is particularly easy to administer, while
the CT scan can localize hard plaques but not soft plaques [28]. Accordingly, there is interest in
examining other methods to determine the existence and location of stenosed vessels. Previous
work [2, 11, 12, 13, 15, 28, 34] focused on developing a sensor device to be used with a physical
model of a chest cavity, and then developing a mathematical model to describe the medium in
which a stenosis-generated acoustic signal is propagated to the chest surface. After an interregnum
of roughly five years between that earlier work and our current efforts, we have returned to the
early ideas and have reformulated the problem to some extent. This is motivated by companion
experiments being conducted with novel acoustic phantoms built at Queen Mary, University of
London (QMUL) and Barts & London NHS Trust (BLT) in England. Our viscoelastic model
will be quite general, incorporating Kelvin-Voigt damping and internal variables in a hysteresis
formulation, so as to provide maximum flexibility in these early stages of model development and
analysis.

In this work, we continue to use mathematical modeling techniques in order to non-invasively
determine the existence and location of any arterial stenoses, ideally through sensors placed only
on the surface of the chest. To this end, we have developed novel experiments to produce one-
dimensional pressure wave data that can be fit using the viscoelastic model developed here. While
this work will be informed partly by test experimental devices which have been built, we note that
all the data employed in this initial mathematical formulation will be simulated data. Broadly,
then, the work here is intended to serve as a proof-of-concept of our mathematical and statistical
inverse problem methodology, using simulated data very similar to the experimental data we will
subsequently use with these methods along with incorporation of standard viscoelastic models (see,
e.g., [6]).

Our goals for these initial efforts are twofold. We first focus on developing methodologies for
determining material parameters and analyzing data using a viscoelastic model, as well as also
quantifying the uncertainty in the estimation procedure through both bootstrapping and asymptotic
error theories. As part of this latter goal, we also conduct model comparison testing to examine
the viability of determining if data originated from a low-amplitude traction (e.g., resulting from
normal blood flow) or high-amplitude traction (e.g., resulting from abnormal blood flow caused by a
stenosis). This notion uses and enhances previous work (see, e.g., [2, 29, 30, 31, 32, 35, 36, 37]) which
discussed the compression and shear waves which result from a stenosed vessel and some methods for
measuring these waves, in particular the shear waves which experience slower transmission than the
pressure waves. An ultimate goal of our wider research project will be a methodology to decide if a
vessel is stenosed or not, and if so, possibly the extent and location of the stenosis. However, at this
point we are still in the process of carrying out experiments to determine these differences in either
test devices or live subjects. Thus, in these early efforts we make the (very) tentative assumption of
representing the difference between normal vessels and stenosed vessels as a comparison between low
and high shear input amplitudes, leaving the specifics of the actual system inputs to future work.
We believe that this a reasonable first approximation to the anticipated experimental data. Overall,
then, these two thrusts of material parameter estimation and model comparison tests represent a
proof-of-concept for our future data-driven inverse problem efforts.
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2 Viscoelastic model

In this section, we will examine a simplified one-dimensional viscoelastic model for an agar phantom,
as pictured in Figure 1. This configuration is an approximation to the novel experimental devices
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Figure 1: Setup of agar phantom, with sample one-dimensional domain denoted.

we are using at QMUL to gather experimental data. Development of general viscoelastic equations
can be found throughout the literature; in particular, one may refer to [6] as a source of the
model components discussed in this current work. As in the example in [6], we make simplifying
assumptions that will result in a one-dimensional wave equation. If we assume a uniform force
applied along the top of the phantom and radial symmetry within the phantom (in part to closely
match the symmetrically constructed phantoms used at QMUL), then we can simplify the cylindrical
physical domain to a one-dimensional domain and to finding the function u(x, t) which represents
the material response to, in this case, an applied stenosis-generated like force.

We will use a general acoustic pressure viscoelastic wave equation on a one-dimensional domain
Ω = [0, L]. For the purposes of our initial investigation here, all parameters will be considered
constant (i.e., a homogeneous medium). This is not necessary but significantly simplifies our initial
computations in the methodology development. Choosing a material initially at rest with a reflecting
boundary at x = 0, an applied force g(t) at the x = L boundary, and no additional forcing terms
we obtain the system for the displacement u given by

ρutt − σx = 0

u(0, t) = 0, σ(L, t) = −g(t),

u(x, 0) = 0, ut(x, 0) = 0.

(1)

Here the stress σ(x, t) is assumed to be described by

σ(x, t) = E1uxt(x, t) + E0

∫ t

0

P (t− s)
d

ds
ux(x, s)ds, (2)
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where the E1uxt term is the so-called Kelvin-Voigt damping, and P is some stress relaxation function.
Development of this model is described in [6], as well as in standard viscoelastic theory [18, 20,
21, 22, 25, 27]. It is worth noting that the linear system (1) with (2) is found to give a reasonable
approximation to the experimental data provided by QMUL. Thus, this linear model is deemed
adequate for our investigation for the current experimental setting.

2.1 Existence and uniqueness of weak solution to system (1) with (2)

Let H = L2(0, L), V = {φ | φ ∈ H1(0, L), φ(0) = 0}, and V
∗ denote the topological dual space

of V. If we identify H with its topological dual H∗, then V →֒ H = H
∗ →֒ V

∗ is a Gelfand triple
[1, 38]. Throughout this presentation 〈·, ·〉 denotes the inner product in H, and 〈·, ·〉V∗,V represents
the duality paring between V

∗ and V (again see [1, 38] for details).
Let Cw(0, T ;V) denote the set of weakly continuous functions in V on [0, T ], and LT = {v :

[0, T ] → H | v ∈ Cw(0, T ;V) ∩ L2(0, T ;V) and vt ∈ Cw(0, T ;H) ∩ L2(0, T ;V)}. The weak solution
for system (1) with (2) is defined in the following way.

Definition 2.1. We say that u ∈ LT is a weak solution of the system (1) and (2) if it satisfies

ρ〈ut(t), ηt(t)〉 − ρ

∫ t

0

〈us(s), ηs(s)〉ds+

∫ t

0

g(s)η(L, s)ds+ E1

∫ t

0

〈usx(s), ηx(s)〉ds

+E0

∫ t

0

〈
∫ s

0

P (s− ξ)
d

dξ
ux(ξ)dξ, ηx(s)

〉

ds = 0

(3)

for any t ∈ [0, T ] and η ∈ LT . Here and elsewhere in this section u(t) and η(t) denote the functions
u(·, t) and η(·, t), respectively.

As in [1, 13, 14, 38] we remark that this notation of the weak solution for system (1)-(2) agrees
with the usual one in that it yields utt ∈ L2(0, T ;V∗) with equation (1) holding in the sense of
L2(0, T ;V∗). To ensure the existence and uniqueness of a weak solution to system (1) with (2), we
make the following assumptions on the force function g and stress relaxation function P :

(A1) g ∈ L2(0, T ).

(A2) The function P is differentiable with respect to t ∈ R
+, and there exist constants c1 and c2

such that |P (t)| ≤ c1 and |Ṗ (t)| ≤ c2 for all t ∈ R
+, where Ṗ denotes the differentiation of P

with respect to t.

Theorem 2.2. Under assumptions (A1) and (A2), the system (1) with (2) has a unique weak
solution on any finite interval [0, T ].

We remark that system (1) with (2) is a special case of the viscoelastic model presented in [13]
if we change the left boundary condition u(0, t) = 0 in (1) to σ(0, t) = gl(t) with gl(t) being some
force function and change the right boundary condition to be stress free (i.e., g ≡ 0). Specifically,
the stress-strain relationship in [13] is described by the following nonlinear form

σ(x, t) = E1uxt(x, t) +

∫ t

0

Γ(t− s;F)
d

ds
σe(ux(x, s))ds. (4)
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Here σe is the so-called elastic response function, and Γ is defined by

Γ(t;F) =

∫

T

γ(t, τ)dF(τ),

where T ⊂ (0,∞), γ is a function of t and relaxation time τ , and F is a probability distribution
function of relaxation time τ . The existence and uniqueness of weak solution for this general
viscoelastic model was given in [13], and the continuous dependence of the weak solution on the
probability distribution function F was also given in [13] under a Prohorov metric framework
[1, 3, 9, 13, 33] on the space of probability distributions.

Note that assumptions (A1) and (A2) conform with the ones made in [13]. Hence, the arguments
for Theorem 2.2 are similar to those given in [13, 14]. Hence, we only sketch the ideas, referring
readers to [1, 13, 14, 38] for further details. Let {ψj}

∞

j=1 be any linearly independent total subset

of V. We define the Galerkin approximation um(t) =
m
∑

j=1

βm
j (t)ψj as the unique solution of

ρ〈umtt , ψj〉V∗,V + E1〈u
m
tx, ψ

′

j〉+ E0

〈
∫ t

0

P (t− s)
d

ds
umx (s)ds, ψ

′

j

〉

+ g(t)ψj(L) = 0, j = 1, 2, . . . , m,

on the interval [0, T ], where ψ′

j denotes the derivative of ψj with respect to x, j = 1, 2, . . . , m. We

can argue that {um} and {umt } are bounded uniformly in L2(0, T ;V). Then by the Banach-Alaoglu
theorem we know that there exists a function u ∈ L2(0, T ;V) such that

um → u weakly in L2(0, T ;V),

umt → ut weakly in L2(0, T ;V).

In addition, the following convergence results can be proven by using the Ascoli-Arzela theorem
(e.g., see [23, Theorem 3.6.4]) and Aubin’s lemma (e.g., see [19, Lemma 8.4])

um → u weakly in V uniformly in t ∈ [0, T ], i.e., um → u in Cw(0, T ;V),

umt → ut weakly in H uniformly in t ∈ [0, T ], i.e., umt → ut in Cw(0, T ;H),

umt → ut in L2(0, T ;H).

We can then show that umx (t) → ux(t) in H. Based on these convergence results, u can be easily
shown to be a weak solution of system (1)-(2). The uniqueness of the weak solution can be es-
tablished by using a standard technique which demonstrates that the difference between any two
possible solutions must be zero [38].

2.2 System (1)-(2) with a special form of stress relaxation function

Note that the origin for time is assumed at the beginning of motion and loading. Hence, we can
rewrite (2) into the following form

σ(x, t) = E1uxt(x, t) + E0

(

P (0)ux(x, t)−

∫ t

0

(

d

ds
P (t− s)

)

ux(x, s)ds

)

. (5)
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For the remainder of the paper, the form of the stress relaxation function P (t) is assumed to be a
Prony series

P (t) = p0 +

Np
∑

j=1

pje
−t/τj , (6)

where all the pj are nonnegative numbers and the τj values are positive, and with Np being a
positive integer. This series is based on the assumption that relaxation in a viscoelastic material
can be well represented by a discrete number of relaxation times τj . Without loss of generality, we

will also enforce P (0) = 1. A result of this constraint is that

Np
∑

j=0

pj = 1. It is worth noting here

that this special form of P satisfies assumption (A2). Hence, system (1) and (5) with P given by
(6) also has a unique weak solution on any finite time interval [0, T ].

If we replace
d

ds
P (t− s) in (5) with the s-derivative of the Prony series at t− s, we obtain

σ(x, t) = E1uxt(x, t) + E0

(

ux(x, t)−

Np
∑

j=1

∫ t

0

pj
τj
e−(t−s)/τjux(x, s)ds

)

.

We can reformulate the integrals related to each internal variable as differential equations which we
can solve simultaneously with the main system (1). To this end, we define the “internal variables”

ǫj =

∫ t

0

pj
τj
e−(t−s)/τjux(s)ds.

Then the time derivative of ǫj is given by

ǫjt =
pj
τj
ux(t)−

1

τj

∫ t

0

pj
τj
e−(t−s)/τjux(s)ds.

Relating ǫj and ǫjt allows us to model the internal variables dynamically as

τjǫ
j
t + ǫj = pjux,

ǫj(0) = 0.
(7)

for j = 1, 2, . . . , Np. We can then write the overall stress-strain relationship (5) as

σ = E1uxt + E0

(

ux −

Np
∑

j=1

ǫj

)

. (8)

Note that even though p0 is an element in the Prony series for P (t), once the series is substituted
in the model the constant p0 no longer appears. However, p0 is still present in the sum-to-one
constraint on all pi values, but we can easily work with the alternate constraint that the remaining

pj terms must satisfy

Np
∑

j=1

pj ≤ 1.
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The damping and internal variables provide us the future flexibility to match the model to
data from the experimental devices, and also present an interesting question of identifiability of
the damping and internal variable parameters which we will later discuss in depth. Note also that
the authors in [2, 28, 34] give computational results (using essentially an equivalent model from a
slightly different conceptual formulation involving a distribution of relaxation mechanisms-see (4))
showing that discrete relaxation times can model well the viscoelastic material responses of the type
we consider in this work (namely, attempting to approximate the response of biological soft tissue
as characterized in [2, 24]). In fact, in previous work no more than two discrete relaxation times
were used, which has informed our decision to allow a maximum of two relaxation times.

Since the ultimate goal of the wider research project will be examining the traction into the
chest cavity that results from a healthy artery experiencing a heartbeat as compared with an artery
containing a stenosis, our nonzero boundary input g(t) will here be represented by an approximation
to a pulse traction. In order to ensure a smooth, compactly supported input, we implement the
input function as a Van Bladel function which is a good approximation to expected perturbation
inputs to our system [2, 36] . This smoothness is useful in order to get the maximum benefit from
using high order numerics. The function used is

g(t) =







A · exp

(

|ab|

t(t+ a− b)

)

if t ∈ (0, b− a),

0 otherwise,
(9)

where A is some positive constant, a and b are some constants with b > a.

Parameter values used in simulations Motivated by the experimental data to which we intend
to apply this methodology, we choose values for the system parameters which simulate low-amplitude
(on the order of 0.1mm) oscillatory motions. For data generation, we will use two internal variables
(Np = 2). The weights pi for our two relaxation time model will be fixed as given below. The
baseline material parameter values chosen for this work are as follows:

E0 = 2.2× 105 Pa, E1 = 40 Pa · s, ρ = 1010 kg/m3, L = 0.053 m
τ1 = 0.05 s, τ2 = 10 s, p1 = 0.3, p2 = 0.55.

(10)

Note that the density ρ = 1010 kg/m3 is the true density of the agar gel that is used in the medium
for our experiments at QMUL, and L = 0.053 m is the true height of the phantom. These are
parameter values which are directly taken to approximate the experimental device. The values for
E0 and E1 and for the relaxation times are physically reasonable parameters based on a perusal of
the viscoelastic materials research literature and are also informed by our early experiments with
the agar gels. In the Van Bladel function, the values of a and b have an effect on pulse width as well
as the amplitude, while the value of A only has an effect on the amplitude. Their baseline values
are chosen as follows:

a = 6× 10−3, b = 20× 10−3, A = 6× 103, (11)

where the values a and b allow for an effective pulse application time of 14 ms.
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Direct problem Altogether, this description (1) along with (7)-(9) encompasses the one dimen-
sional model for the displacement u(x, t) that will be studied in both major sections of this work.
In other words, system (1) along with (7)-(9) with given parameter values is the direct or forward
problem. Throughout this work, we solve (1), (7)-(9) for u(x, t) with given parameter values using
a spectral continuous finite element method in space (Gauss-Lobatto nodes) and a discontinuous
Galerkin method in time. The numerical scheme is specially tailored to allow for high order space-
time discretization in order to control dispersion errors and will be documented fully in [26] along
with its convergence properties.

3 Estimation of material parameters

In this section, we examine an inverse problem methodology for estimating material parameters
(and thus gain a sense for our ability to characterize an individual’s material properties) with given
simulated observations of displacement at the x = L position (where the simulated data is generated
under various measurement noise conditions, see details blow). In addition to determining an esti-
mate for material parameters, we also need to determine our confidence in the estimation procedure.
To this end, we will compare two techniques for determining confidence intervals, specifically the
asymptotic theory discussed in [5, 16] versus using bootstrapping as discussed in [5].

In reality, one will obtain a set of experimental data and then one needs to determine how many
(if any) relaxation times are required to represent well the data. Thus, we will want to compare the
performance of our estimation procedures in three models. In each model, we will always estimate
E0 and E1 (assuming given values for ρ and L in (10) along with given values of a, b and A in (11)),
but we will vary the number of relaxation times incorporated into the model. The three models to
be used in inverse problems are as follows:

1. For a model with no relaxation times, we do not include any τi or corresponding pi in the
model. Thus, we estimate only θ̄ = (E0, E1)

T .

2. In the case with one relaxation time, we incorporate a single internal variable (i.e., Np = 1).
For this case, θ̄ = (E0, E1, τ1)

T will be estimated, but the corresponding material weight p1 is
fixed to be p1 = 0.3.

3. For the case of two relaxation times (i.e., Np = 2), we will estimate θ̄ = (E0, E1, τ1, τ2)
T

with the corresponding material weights fixed to be the values in (10), that is, p1 = 0.3 and
p2 = 0.55.

Note that for the models with one and two relaxation times the corresponding weights pi are fixed.
Though in reality one would certainly need to estimate the weights pi, we take the liberty here
of assuming them to be known so we can focus on the general methodology and in particular the
reliability in identifying the relaxation times.

Considering this set of models will allow us to follow what one would consider in practice,
examining the results of adding/subtracting model features. It is worth noting here that for this
particular set of models, the one-relaxation-time model (the second case) is not a special case of
the two-relaxation-time model (the third case) as the material weight p2 in the two-relaxation-time
model is fixed, and that the zero-relaxation-time model (the first case) is not a special case of
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the one-time-relaxation model as the material weight p1 in the one-relaxation-time model is fixed.
However, if we allow the corresponding material weights to be free (i.e., to be estimated along with
relaxation times), then the zero-relaxation-time model is indeed a special case of the one-relaxation-
time model, and the one-relaxation-time model is a special case of the two-relaxation-time model.
We will therefore use the sensitivity equations and parameter estimation results as well as model
selection criterion to suggest the number of relaxation times needed in practice.

3.1 Sensitivity of model output with respect to material parameters

Before discussing simulated data and actually solving the inverse problems, we wish to complete
some analysis on the model around the “true” material parameter values in (10). We found through
numerical simulations that changes in E0 have a significant effect on the oscillation frequency of
model output u(L, t) as well as a minor effect on its peak heights, and that increases in damping, E1,
lead to the expected effects that the energy dissipates faster in the material (so the oscillation peak
heights become smaller and the material experiences fewer small oscillations at later simulation
times). We also found that relaxation times can allow the model flexibility in matching the periodic
local “peaks” and “troughs” in the oscillation part of model output. However, the scale of changes
they induce in the model output is minor (compared to the scale of the model output). For
more information on the general effects of changing material parameters on the model output, the
interested readers can refer to [7, Section 2.1].

In order to further quantify the model response to changes in parameters around the baseline
values of (10), we will examine the sensitivity of the model output u(L, t) with respect to material
parameters. Note that since the values of parameters are on such a varying scale, we will actually
work with the log-scaled versions of the material parameters we are attempting to estimate. In other
words, if θ̄ = (E0, E1, τ1, τ2)

T is the vector of parameters to be estimated, we define θ = log10(θ̄).
Sensitivity analysis has been widely used in inverse problem investigations (e.g., see [16] and the

references therein for details) to identify the model parameters and/or initial conditions to which the
model outputs are most sensitive and for which one can readily construct confidence intervals when
they are estimated (i.e., which are the most reliably estimated values). To compute the sensitivity of
the model output to each parameter, one needs to find sensitivity equations which describe the time
evolution of the partial derivatives of the model state with respect to each parameter. Sensitivity
equations in terms of the non-log-scaled parameters θ̄ are derived in [7, Appendix A].

We can use the sensitivity of model output to the non-log-scaled parameters to find the sensitivity
of model output with respect to the log-scaled parameters, which will be of interest here. Using the
chain rule, we find that

∂u(L, t; 10θ)

∂θi
= θ̄i ln(10)

∂u(L, t; θ̄)

∂θ̄i
,

where θi and θ̄i are the ith elements of θ and θ̄, respectively.
The sensitivities of model output with respect to parameters (log10(E0), log10(E1), log10(τ1),

log10(τ2)) are depicted in Figure 2. From this figure we see that model output is most sensitive to
log10(E0), sensitive to log10(E1), less sensitive to log10(τ1), and only minimally sensitive to log10(τ2).
The most interesting feature related to our study is the fact that the scale of sensitivity of model
output to the first relaxation time is on the order of 10−5 whereas the sensitivity of model output to
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Figure 2: (upper left pane) Sensitivity of model output with respect to log10(E0); (upper right
pane) Sensitivity of model output with respect to log10(E1); (bottom left pane) Sensitivity of model
output with respect to log10(τ1); and (bottom right pane) Sensitivity of model output with respect
to log10(τ2). All sensitivities are around the baseline parameters (10) and (11).

the second relaxation time is roughly two orders of magnitude smaller on the order of 10−7. We will
later see that, while we have difficulty estimating both relaxation times due to the small changes
they induce in the model solution (as previously discussed), we especially have difficulty obtaining a
reasonable estimate for τ2 because the model is so much less sensitive to the second relaxation time
than to the first. In addition, we observe from Figure 2 that at later times the model output is not
particularly sensitive to all the material parameters except the second relaxation time. This further
indicates that we may have trouble in estimating the second relaxation time with high additive
noise data (which will be discussed later).

Armed with our knowledge of sensitivities of model output with respect to the material param-
eters around the true parameter values (10), and our knowledge of effects on the model solution of
changing the parameters, we next describe the generation of our simulated data and discuss solution
of the inverse problem.

3.2 Statistical model and inverse problem

We will work with simulated data for various noise levels generated at position x = L, namely data
uj corresponding to the model solution u(L, tj) at measurement time points tj , j = 0, 1, . . . , n− 1.
Then the statistical model (a model used to describe the observation process) is assumed to take
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the following form
Uj = u

(

L, tj ; 10
θ0
)

+ Ej, j = 0, 1, . . . , n− 1, (12)

where u(L, tj; 10
θ0) is the solution to (1) along with (7)-(9) at x = L with a given set of true material

parameter values θ0 and the values of the rest of parameters given in (10) and (11). Here Ej denotes
the measurement error (a random variable) at measurement time point tj , j = 0, 1, . . . , n − 1. (It
is worth noting that Uj , j = 0, 1, 2, . . . , n− 1, are also random variables due to the randomness of
measurement errors.) For the current proof of concept discussion, we will assume the measurement
errors Ej, j = 0, 1, . . . , n−1, are independent and identically distributed with mean zero (E(Ej) = 0)
and constant variance var(Ej) = σ2

0. We thus are assuming absolute additive error; this is necessary
in order to use the hypothesis testing methodology later, and is reasonable as an initial error model
for our proof of concept investigations. We do not make further assumptions about the distributions
of the Ej in order to carry out the inverse problem methodology or the asymptotic analysis below.
(To apply the AIC comparison methodology below there is the tacit assumption of normality on
the Ej.)

Under these assumptions for the measurement errors in the statistical model (12), the estimator
Θ̂ of θ can be obtained by using the ordinary least squares method

Θ̂ = argmin
θ∈Q

n−1
∑

j=0

[

Uj − u(L, tj; 10
θ)
]2
, (13)

where Q ⊂ R
κ is some viable admissible parameter set, assumed compact in R

κ with κ being the
number of parameters requiring estimation. Thus, Θ̂ can be viewed as a minimizer that minimizes
the distance between the data and the model where all observations are treated as of equal impor-
tance. Note that under different error assumptions, one would need to modify the cost function in
(13) (a topic discussed in [16]) for an appropriate asymptotic parameter distribution theory to be
valid.

Since Θ̂ is a random variable (inherited from the fact that Uj are random variables), we can

define its corresponding realizations θ̂ by minimizing the cost function

J (θ) =

n−1
∑

j=0

[

uj − u(L, tj; 10
θ)
]2

over the set Q. That is, θ̂ is obtained by solving the following inverse problem

θ̂ = argmin
θ∈Q

n−1
∑

j=0

[

uj − u(L, tj; 10
θ)
]2
, (14)

Here uj is a corresponding realization of Uj, and it is given by

uj = u(L, tj ; 10
θ0) + ǫj, j = 0, 1, . . . , n− 1. (15)

with ǫj being realizations of Ej , j = 0, 1, . . . , n − 1. Note that the model solution u(x, t) is con-
tinuously dependent on the model parameter θ. Hence, J is a continuous function of θ. Since

11



Q is assumed to be compact, the inverse problem (14) has a solution. Since for our studies we
will be interested in perturbations around nominal values 10θ0 of parameters and the correspond-
ing solutions, our test problems will not in general suffer from serious ill-posedness and some type
of stability or regularization techniques (Tikhonov regularization, regularization by discretization,
etc., [10]) are not required for our studies. This will not necessarily be the case when using the
inverse problem methods studied here with experimental data.

Estimating material parameters θ̂ from given sets of data with different noise levels, as well as
quantifying uncertainty in our estimates, will be the key focus of our work in this section. We use
the values for E0, E1, τ1, and τ2 in (10) in their log scaled form as the true values θ0 used to simulate
data. That is,

θ0 = (5.3424, 1.6021,−1.3010, 1)T = (log10(2.2× 105), log10(40), log10(.05), log10(10))
T .

As previously discussed, we will find parameter estimates for models with zero, one, and two relax-
ation times in the model itself (and thus the number of parameters estimated changes). In all cases,
the parameters belong to a viable compact set Q with the upper and lower bounds on parameters
being taken (in educated guesses) as θlb = (−15,−15,−15,−15)T , θub = (7.3010, 2.3010, 2, 2)T for
two relaxation times estimation, θlb = (−15,−15,−15)T , θub = (7.3010, 2.3010, 2)T for the one re-
laxation time estimation, and θlb = (−15,−15)T , θub = (7.3010, 2.3010)T for the no relaxation time
estimation.

3.2.1 Data generation

We will simulate data using two relaxation times (and a question of interest later will be how many
of those relaxation times we can recover) with the values of parameters given in (10) and (11). The
measurement time points are taken at tj = 0.001j, j = 0, 1, . . . , 250. Thus, there are a total of
n = 251 data points. We note that noiseless data has maximum amplitude on the order of 10−4

(depicted by the solid line in Figure 3), which was again motivated by the anticipated scale of results
from the experimental device. This level informs the magnitude we choose for the additive noise.
We represent a “low” noise level with σ2

0 = 5 × 10−6, a “medium” noise level by σ2
0 = 10 × 10−6,

and a “high” noise level by taking σ2
0 = 20 × 10−6. In Figure 3, we show plots corresponding to
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Figure 3: Simulated noisy data around the true parameter values. (left pane) Low noise level.
(middle pane) Medium noise level. (right pane) High noise level.

the three levels of noisy simulated data against the system dynamics corresponding to the true
parameters θ0. Noise is assumed absolute for our initial investigations (though we may ultimately
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need to explore relative noise once an error model is developed for our experimental data), and is
added according to the error model (12). Low noise results in data mostly along the trajectory of
the true model. Medium noise begins to obfuscate the later-time oscillations which have lost much
of their earlier energy. High noise significantly affects the level of peaks and troughs from t = 0.05
forward. We thus obtain a series of increasingly difficult problems in obtaining material parameter
estimates, though entirely expected since higher noise tends to significantly affect data features and
presents a more difficult parameter estimation problem.

3.2.2 Parameter estimates obtained by using different optimization routines

In this section, we discuss different options for the optimization routine used to solve the inverse
problem (14), and begin to gain a sense of the robustness of parameter estimation with respect to
the optimization routine. Note that we expect to have some difficulty in relaxation time estimation,
based on our earlier discussion on the model response to changes in relaxation times as well as model
sensitivities. We do expect to obtain more accurate estimates for E1, and very good estimates for
E0. To begin this discussion, we will examine parameter estimates for a model which incorporates
two relaxation times.

The optimization routines we compare are all built-in Matlab routines. We use fmincon with
active-set optimization, which treats the optimization as constrained nonlinear programming with
our cost function J (θ). We also examine the use of lsqnonlin, which is designed for nonlinear
least squares data-fitting problems; our cost function is exactly the form of a nonlinear least squares
function. We test both the Levenburg-Marquardt (LM) option and the trust-region-reflective (TRR)
option. Note that the Levenburg-Marquardt algorithm does not allow bound constraints; we tried
the routine out of curiosity, to see if it would produce unrealistic estimates of any parameters (it
does at high noise levels).

Results from optimizing for θ by using different optimization routines are shown in Table 1. All
optimization runs used the initial guess

θinit = (log10(1.8× 105), log10(60), log10(0.5), log10(20))
T = (5.2553, 1.7782,−0.3010, 1.3010)T .

This table includes the parameter estimates θ̂, computation time (CPU) in seconds for that par-
ticular optimization run, and the residual sum of squares (RSS) defined as

RSS =
n−1
∑

j=0

[

uj − u(L, tj ; 10
θ̂)
]2

.

Overall, we observe from Table 1 that the routines do a good job of estimating E0 (as we expected).
The lsqnonlin routines tend to better estimate E1. As for relaxation times, we begin to see a
major flaw in use of the fmincon routine. It does not seem particularly sensitive to the relaxation
times, and the resulting estimates of the relaxation times stay near the initial guess. The fmincon

routine produced similar non-responsive results for different initial guesses. The lsqnonlin routines
estimate both the relaxation times well in the presence of low noise. At medium noise, the routines
estimate τ1 well but not τ2. At high noise, relaxation time estimation is poor. This will be quantified
further in the following sections on error analysis.
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Table 1: Estimation of material parameters at low, medium and high noise levels: Com-
parison between optimization routines (lsq-TRR=lsqnonlin with trust-region-reflective option,
lsq-LM=lsqnonlin with Levenburg-Marquardt option).

Noise level Routines Estimated parameter values θ̂ CPU (s) RSS

Low
fmincon: (5.3422, 1.6581,−0.3000, 1.3012)T 194.16 6.7618× 10−9

lsq-TRR: (5.3425, 1.6046,−1.2297, 1.0046)T 347.09 6.2458× 10−9

lsq-LM: (5.3425, 1.6044,−1.2309, 1.0316)T 613.47 6.2458× 10−9

Medium
fmincon: (5.3430, 1.6583,−0.2998, 1.3012)T 203.75 2.4435× 10−8

lsq-TRR: (5.3433, 1.5889,−1.3269, 2.0000)T 241.51 2.3647× 10−8

lsq-LM: (5.3433, 1.5893,−1.3252, 5.9303)T 608.27 2.3646× 10−8

High
fmincon: (5.3433, 1.6380,−0.2995, 1.3012)T 238.58 1.03291× 10−7

lsq-TRR: (5.3433, 1.6361,−1.990, 0.2496)T 606.36 1.03257× 10−7

lsq-LM: (5.3433, 1.6351,−0.02324, 3.6112× 10−4)T 1110.83 1.03248× 10−7

true values θ0: (5.3424, 1.6021,−1.3010, 1.0000)T

Even though there might be some spurious computation times on desktop machines (due to other
background programs), we still include them here in Table 1 to demonstrate typical optimization
routine performance. Consistently, fmincon was the fastest routine. This is in part due to the fact
that this routine alone of the three supports parallel computation, so on our multi-core desktop
machines we were able to see a speed-up. However, the computation times for the trust-region-
reflective lsqnonlin algorithms are reasonable. Using Levenburg-Marquardt consistently is the
slowest method, and the results are not better than those using trust-region-reflective lsqnonlin

algorithm.
As a result, we recommend using the trust-region-reflective lsqnonlin algorithm when trying

to estimate relaxation times (this is also the routine that we use in the remainder of this paper). If
the model does not contain relaxation times (i.e., only estimating E0 and E1), the speedup afforded
by using fmincon may make that algorithm the one of choice. Figure 4 illustrates model fits to
the data at different noise levels, where the model solution is calculated with the values of model
parameters obtained through lsqnonlin TRR routine. We see in all cases that the model solution
provides reasonable fits to the data.
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Figure 4: Data and two-relaxation-time model solutions at parameter estimates obtained using
lsqnonlin, trust-region-reflective method, at different noise levels (see Table 1). (left pane) Low
noise. (middle pane) Medium noise. (right pane) High noise.
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3.2.3 Asymptotic error analysis

Most asymptotic error theory [5, 16] is described in the context of an ODE model example ż(t) =
f(z(t; θ); θ). However, we can use the PDE sensitivities of the model output with respect to each

parameter in θ, namely
∂u(L, t; 10θ)

∂θi
, in a similar manner to the ODE sensitivities in the asymptotic

theory. The steps of the asymptotic theory error analysis are as follows (the theory for the following
steps is described in [5, 16]).

1. Determine θ̂ by solving the inverse problem (14).

2. Compute the sensitivity equations to obtain
∂u(L, t; 10θ̂)

∂θi
(as discussed in Section 3.1) for

i = 1, . . . , κ where κ is the number of parameters being estimated. The sensitivity matrix
χ(θ̂) can then be calculated with its entries

χj,i(θ̂) =
∂u(L, tj ; 10

θ̂)

∂θi
, j = 0, 1, . . . , n− 1, and i = 1, . . . , κ.

Note that χ(θ̂) is then an n × κ matrix. We can also obtain an estimate for the constant
variance σ2

0 as

σ̂2 =
1

n− κ

n−1
∑

j=0

(

uj − u(L, tj; 10
θ̂)
)2

.

3. Asymptotic theory yields that the estimator Θ̂ is asymptotically (as sample size n → ∞)
normal with mean approximated by θ̂ and the covariance matrix approximated by

Cov(Θ̂) ≈ Σ̂ = σ̂2[χT (θ̂)χ(θ̂)]−1.

4. The standard errors for each element in the parameter estimator Θ̂ can be approximated by

SE(Θ̂i) =

√

Σ̂ii, i = 1, 2, . . . , κ,

where Θ̂i is the ith element of Θ̂, and Σ̂ii is the (i, i)th entry of the matrix Σ̂. Hence, the
endpoints of the confidence intervals for Θ̂i are given by

θ̂i ± t1−α/2SE(Θ̂i)

for i = 1, 2, . . . , κ. Here t1−α/2 is a distribution value that is determined from a statistical
table for Student’s t-distribution based on the level of significance α (i.e., α = .05 for a 95%
confidence interval).

We will present results below in Tables 2-4 on the low, medium, and high noise data sets using
zero, one, and two relaxation times, and using the routine lsqnonlin with trust-region-reflective
option (interested readers can refer to [7] for the results obtained by using fmincon). We see
throughout the tables that the problem of estimating the second relaxation time is fraught with
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Table 2: TRR lsqnonlin: Parameter estimates, asymptotic standard errors (SE) and confidence
intervals for zero-relaxation-time model (model 0), one-relaxation-time model (model 1) and two-
times-relaxation model (model 2) obtained at low noise level.

Model Params True Value Estimate SE 95% Confidence Interval

0
log10(E0) 5.3424 5.3422 4.9498× 10−4 (5.3413, 5.3432)
log10(E1) 1.6021 1.6651 0.005434 (1.6544, 1.6758)

1
log10(E0) 5.3424 5.3425 0.01011 (5.3226, 5.3624)
log10(E1) 1.6021 1.6050 0.3167 (0.9811, 2.2288)
log10(τ1) -1.3010 -1.2317 2.2200 (-5.6041, 3.1407)

2

log10(E0) 5.3424 5.3425 0.0101 (5.3225, 5.3624)
log10(E1) 1.6021 1.6046 0.3202 (0.9738, 2.2353)
log10(τ1) -1.3010 -1.2297 2.2369 (-5.635, 3.1761)
log10(τ2) 1 1.0046 16.0237 (-30.5560, 32.5651)

Table 3: TRR lsqnonlin: Parameter estimates, asymptotic standard errors (SE) and confidence
intervals for zero-relaxation-time model (model 0), one-relaxation-time model (model 1) and two-
times-relaxation model (model 2) obtained at medium noise level.

Model Params True Value Estimate SE 95% Confidence Interval

0
log10(E0) 5.3424 5.3429 9.2836× 10−4 (5.3411, 5.3448)
log10(E1) 1.6021 1.6653 0.0102 (1.6452, 1.6854)

1
log10(E0) 5.3424 5.3433 0.01042 (5.3228, 5.3638)
log10(E1) 1.6021 1.6050 0.3167 (0.9811, 2.2288)
log10(τ1) -1.3010 -1.2317 2.2200 (-5.6041, 3.1407)

2

log10(E0) 5.3424 5.3433 0.01045 (5.3227, 5.3639)
log10(E1) 1.6021 1.5889 0.3717 (0.8567, 2.3211)
log10(τ1) -1.3010 -1.3269 2.0383 (-5.3415, 2.6878)
log10(τ2) 1 2.0000 156.5630 (-306.369, 310.369)

difficulty (the standard error is significantly higher than its estimated value), even though we know
the simulated data came from a model incorporating two relaxation times. This could be predicted
from our earlier examination of the sensitivities with respect to the second relaxation time, as well
as the results for relaxation times seen when using different optimization routines. In addition, when
estimating two relaxation times on high noise data (shown in Table 4) we see that the estimates for
τ1 and τ2 are not close to the true parameter values; also, the standard error for τ1 is much larger
than in any other case. Thus, instead of merely having difficulty estimating a second relaxation
time, in this estimation we now additionally have a less confidence on the estimate of τ1.

We observe from Tables 2-4 that the standard errors for E0 and E1 increase significantly at all
noise levels when moving from the zero-relaxation-time model to the one-relaxation-time model. We
also found that at all noise levels the difference for the residual sum of squares is small among the
zero-relaxation-time, one-relaxation-time, and two-relaxation-time models (see the third columns of
Table 5). In addition, for each level noise data set, when we plot the model solutions corresponding
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Table 4: TRR lsqnonlin: Parameter estimates, asymptotic standard errors (SE) and confidence
intervals for zero-relaxation-time model (model 0), one-relaxation-time model (model 1) and two-
times-relaxation model (model 2) obtained at high noise level.

Model Params True Value Estimate SE 95% Confidence Interval

0
log10(E0) 5.3424 5.3433 1.7767× 10−3 (5.3398, 5.3468)
log10(E1) 1.6021 1.6452 0.0204 (1.6050, 1.6855)

1
log10(E0) 5.3424 5.3433 0.01046 (5.3227, 5.3639)
log10(E1) 1.6021 1.6397 0.1526 (1.3391, 1.9403)
log10(τ1) -1.3010 -1.3253 2.0328 (-5.3291, 2.6785)

2

log10(E0) 5.3424 5.3433 0.01046 (5.3227, 5.3639)
log10(E1) 1.6021 1.6361 0.1591 (1.3227, 1.9496)
log10(τ1) -1.3010 -0.1990 15.8821 (-31.4806, 31.0827)
log10(τ2) 1 0.2496 12.0051 (-23.3958, 23.8951)

to the zero, one, and two relaxation time models, we found that they approximately lie on top of
each other, and give good fits to the data. To gain further insight into which model should be
chosen, we turned to some model selection criterion analysis.

Model selection criteria There are numerous model selection criteria in the literature that can
be used to select a best approximating model from a prior set of candidate models. These criteria
are based either on hypothesis testing or mean squared error or Bayes factors or information theory,
and they all are based to some extent on the principle of parsimony (see [17]). It should be noted
that some of these criteria can only be used for nested models (e.g., two models are said to be
nested if one model is a special case of the other), but others can be used for both nested models
and non-nested models.

Here we employ one of the most widely used model selection criteria – the Akaike information
criterion (AIC). The AIC was developed by Akaike (in 1973) who formulated a relationship between
the Kullback-Leibler information (used to measure the information lost when a model is used
to approximate the true model) and the maximum value of the log likelihood function of the
approximating model. As might be expected we find that the AIC value depends on the data set
used. Thus, when we try to select a best model from a set of candidate models, we must use the
same data set to calculate AIC values for each of the models. One of the advantages of the AIC is
that it can be used to compare non-nested models (which is our case here). For the least squares
case, it can be found (e.g., see [17, Section 2.2]) that if the observation errors are i.i.d normally
distributed, then the AIC is given by

AIC = n log

(

RSS

n

)

+ 2(κ+ 1). (16)

Here κ + 1 is the total number of estimated parameters including θ and the observation error
variance. Given a prior set of candidate models, we can calculate the AIC value for each model,
and the best approximating model is the one with minimum AIC value. It should be noted that
the AIC may perform poorly if the sample size n is small relative to the total number of estimated
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parameters (it is suggested in [17] that the sample size n should be at least 40 times the total
number of estimated parameters (κ + 1); note this is true for our investigations).

In practice, the absolute size of the AIC value may have limited use in supporting the chosen
best approximating model, and one may often employ other related values such as Akaike differences
and Akaike weights to further compare models. The Akaike difference is defined by

∆i = AICi −AICmin, i = 1, 2, . . .R, (17)

where AICi is the AIC value of the ith model in the set, AICmin denotes the AIC value for the best
model in the set, and R is the total number of models in the set. The larger ∆i, the less plausible
it is that the ith model is a good approximating model for given the data set. The Akaike weights
are defined by

wi =
exp(−1

2
∆i)

∑R
r=1 exp(−

1
2
∆r)

, i = 1, 2, . . . R. (18)

These Akaike weights wi can then be interpreted as the probability that ith model is the best
approximating model (see [17]).

Table 5 presents residual sum squares (RSS), AIC values, AIC differences, and AIC weights
obtained for the two-relaxation-time model, the one-relaxation-time model and the zero-relaxation-
time model at low, medium and high noise levels using lsqnonlin. From this table, we see that on

Table 5: lsqnonlin: Residual sum of squares (RSS), AIC values, AIC differences (∆) and AIC
weights for zero-relaxation-time model (model 0), one-relaxation-time model (model 1) and two-
relaxation-times model (model 2) obtained at low, medium and high noise levels.

Noise level Model RSS AIC ∆ AIC weights

low noise
0 7.0368×10−9 -6.0927×103 27.8791 6.4125×10−7

1 6.2470×10−9 -6.1206×103 0 7.2595×10−1

2 6.2458×10−9 -6.1186×103 1.9483 2.7405×10−1

medium noise
0 2.4674×10−8 -5.7778×103 8.6863 9.4255×10−3

1 2.3646×10−8 -5.7865×103 0 7.2527×10−1

2 2.3647×10−8 -5.7845×103 2.0113 2.6531×10−1

high noise
0 1.0337×10−7 -5.4182×103 0 6.4303×10−1

1 1.0330×10−7 -5.4164×103 1.8299 2.5756×10−1

2 1.0326×10−7 -5.4145×103 3.7340 9.9406×10−2

low and medium level noise data sets the one-relaxation-time model is the best with the probability
to be chosen as the best model being more than 0.7 (see the Akaike weights in the last column of
these two tables), and the zero-relaxation time model has almost no chance of being selected as the
best. For the high noise data set, the zero-relaxation-time model is the best, with the probability of
being chosen as the best being more than 0.6, while the two-relaxation-time model has little chance
of being selected as the best model. It is worth noting here that we obtain similar conclusions from
the results obtained by using fmincon (the interested readers can refer to [7] for details).
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Summary remark Based on our analysis to this point, we can conclude that estimating two
relaxation times is likely to be difficult. Adopting a model with zero or one relaxation times may
be the most feasible approach. However, until we can confirm this approach by examining these
methods on experimental data we believe that attempting all three options for including relaxation
times in the viscoelastic model (zero, one, or two times) is advisable.

3.2.4 Bootstrapping error analysis

For ease of presentation, we reiterate here the algorithm described in [5], in the context of the
current viscoelastic model under study.

1. Determine θ̂0 by solving the inverse problem (14).

2. Define the standardized residuals (recall n is the number of data points, and κ is the number
of parameters under consideration) to be

r̄j =

√

n

n− κ

(

uj − u(L, tj; 10
θ̂0)
)

for j = 0, 1, . . . , n− 1. Set m = 0.

3. Create a sample of size n by randomly sampling, with replacement, from the standardized
residuals r̄j to form a bootstrap sample {rm0 , . . . r

m
n−1}.

4. Create bootstrap sample points

umj = u(L, tj; 10
θ̂0) + rmj , j = 0, 1, . . . , n− 1.

5. Solve the OLS minimization problem (14) with the bootstrap-generated data {umj } to obtain

a new estimate θ̂m+1 which we store.

6. Increase the index m by 1 and repeat steps 3-5. This iterative process should be carried out
for M times where M is large (we used M = 1000, as suggested in [5]). This will give M
estimates {θ̂m}Mm=1.

Upon completing all M simulation runs, the following will give the mean and covariance matrix for
the bootstrap estimator Θ̂boot of θ:

θ̂boot =
1

M

M
∑

m=1

θ̂m, Σ̂boot =
1

M − 1

M
∑

m=1

(θ̂m − θ̂boot)(θ̂
m − θ̂boot)

T . (19)

Then the standard errors for the bootstrap estimator Θ̂boot is given by

(SEboot)i =

√

(

Σ̂boot

)

ii
, i = 1, 2, . . . , κ,
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where
(

Σ̂boot

)

ii
is the (i, i)th entry of covariance matrix Σ̂boot. Hence, the endpoints of the confidence

intervals for (Θ̂boot)i (the ith element of Θ̂boot) are given by

(θ̂boot)i ± t1−α/2(SEboot)i

for i = 1, 2, . . . , κ.
Note that bootstrapping requires solving the inverse problem 1000 times. Even for a model

that is solved in a short time (e.g., less than one minute), bootstrapping takes a significant time to
compute (as we must solve the inverse problem many times and each inverse problem involves solving
the model multiple times). Due to long computational times (e.g., one week for bootstrapping versus
minutes for the asymptotic theory), we report here results only for a case using lsqnonlin, the
trust-region-reflective option, to estimate E0, E1, and τ1 in a one-relaxation-time model. It is
worth noting that even though the bootstrapping algorithm can be implemented in parallel, this
requires a considerable amount of computing resources (unavailable to most investigators) to achieve
computational times comparable to that attained in using the asymptotic theory. For our purposes,
the bootstrap results we provide are sufficient to indicate that the less conservative asymptotic error
analysis yields a reasonable uncertainty measure in the inverse problem we investigate.

The bootstrapping results for a one-relaxation-time model obtained by using lsqnonlin TRR
routine are summarized in Table 6. We see that confidence intervals for all parameters are wider

Table 6: TRR lsqnonlin: Parameter estimates, bootstrap standard errors (SE) and confidence
intervals obtained at low, medium and high noise levels for one-relaxation-time model.

Noise level Params True Value θ̂boot SE 95% Confidence Interval

Low noise
log10(E0) 5.3424 5.3425 0.01547 (5.3120, 5.3730)
log10(E1) 1.6021 1.6025 0.5937 (0.4332, 2.7719)
log10(τ1) -1.3010 -1.2294 3.8697 (-8.8510, 6.3923)

Medium noise
log10(E0) 5.3424 5.3434 0.03136 (5.2816, 5.4052)
log10(E1) 1.6021 1.5852 1.4590 (-1.2884, 4.4589)
log10(τ1) -1.3010 -1.2079 16.9971 (-34.6849, 32.2692)

High noise
log10(E0) 5.3424 5.3434 0.061762 (5.2218, 5.4651)
log10(E1) 1.6021 1.6029 2.4545 (-3.2314, 6.4372)
log10(τ1) -1.3010 -0.1592 40.8381 (-80.5930, 80.2746)

than those obtained using the asymptotic error theory, especially for the cases of medium and high
noise level (the same phenomenon was also observed for the results obtained for a zero-relaxed-
time model by using fmincon routine, see [7] for details). However, this is expected. At the low
noise level, we obtained fairly good results for E0 and E1 but the standard error for the relaxation
time is larger in magnitude than the relaxation time value itself. This is even more prominent at
higher noise levels – the results in the table indicate that on medium and high noise data sets, the
estimation of τ1 is not very robust. Note also that the estimation of E1 begins to suffer as well,
resulting in a higher standard error than its own value on the high noise data set. This is a further
indication that we may have problems in the future estimating even the single relaxation time.

We depict histograms of the estimates in Figure 5. We see on a low noise data set that each
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Figure 5: Histograms of bootstrap estimates θ̂m for a one-relaxation-time model obtained at low
noise (upper row), medium noise (middle row) and high noise (bottom row) levels. (left column)
Estimates for log10(E0); (middle column) Estimates for log10(E1); (right column) Estimates for
log10(τ1).

parameter estimator appears to be mostly normally distributed. This begins to break down for the
case of middle noise level data set (shown in the middle row of Figure 5), where we begin to see
some outliers at the log10(τ̂1) = 2 level (which means the estimates were converging to our upper
bound on that parameter) and also some more pronounced skewness in the count levels. Finally,
on the high noise level (shown in bottom row of Figure 5) we have the distribution for the E1

estimates skewed, and we also observe a clear proliferation of estimates of the first relaxation time
approaching the value 2. This further supports the expectation of difficulty in estimating relaxation
times, particularly when the noise level is high. It is worth noting here that for the zero-relaxation-
time model each parameter estimator, obtained by fmincon routine, tends to have the shape of a
normal distribution regardless of the noise level - see [7] for details.

4 Model comparison and hypothesis testing on amplitude

In this section, we develop a methodology for determining whether or not data came from a low-
amplitude input traction. This simulates the problem of determining if the data came from a
vessel experiencing a normal heartbeat or not. We will ultimately run the inverse problem without
amplitude restrictions and use a scoring function to compare results with the score of the model
solved at a low amplitude. A model comparison test will be implemented to determine if there is
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statistical significance in the differences between the model solved with the unrestricted estimate
and the model solved using the restricted amplitude value.

4.1 Setup

We first examine the sensitivity of the model with respect to the Van Bladel input amplitude
parameter A, to insure that an estimation procedure is reasonable (if the model were insensitive
to A then the results from the optimization routine would be suspect). The form of the sensitivity
equation is nearly identical to that of the actual model, just with a lower amplitude. This is seen in
Figure 6, which has a form similar to that of the model solution (depicted by the solid line in Figure
3). In both the low and high amplitude cases, the sensitivity with respect to amplitude is most
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Figure 6: Sensitivity of model with respect to Van Bladel input parameter A around the baseline
parameters (10). (left pane) High forcing function amplitude A = 6×103. (right pane) Low forcing
function amplitude A = 6× 102.

marked during early times and less so at later times; this makes perfect sense, as the amplitude is
greater early on before being damped out. In the problem below, we will take data throughout the
full time frame t ∈ [0, 0.25] so with our sensitivity results we can be assured that the early data will
drive estimation of the amplitude parameter.

4.2 Data generation

For the high amplitude data, we use the same low, medium, and high noise data sets as described in
Section 3.2.1 and shown above in Figure 3. We form the low amplitude data by taking Alow = A/10
as our Van Bladel input amplitude parameter. Thus, the dynamics are roughly 10% the magnitude
of the high amplitude data. This means the corresponding noise for the low noise, low amplitude
data set will be generated with variance σ2 = 5 × 10−7, medium noise with σ2 = 10 × 10−7, and
high noise with σ2 = 20× 10−7. The low amplitude input data set then is supposed to represent a
normal heartbeat and the high amplitude data set then is meant to represent the input shear for
a heartbeat in the presence of a stenosis in the vessel. Note that we are not yet exactly certain
regarding the difference between these effects in an actual patient, so the data sets here are truly
for a proof-of-concept investigation. The low amplitude data sets are depicted in Figure 7.
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Figure 7: Simulated low amplitude noisy data around the true parameter values. (left pane) Low
noise level, σ2

0 = 5 × 10−7. (middle pane) Medium noise, σ2
0 = 10 × 10−7. (right pane) High noise

level, σ2
0 = 20× 10−7.

4.3 Hypothesis testing methodology

We can now begin to discuss the approach to model comparison and hypothesis testing that we will
use by defining a model comparison test statistic. The work here follows the development in [16].
Our performance criterion for hypothesis testing will be

J(~U, θ) =
n−1
∑

j=0

[Uj − u(L, tj; θ)]
2.

For the purposes of this paper, we postulate that a normal (non-stenosed) vessel corresponds
with a low amplitude input parameter A ≤ 6×102. Then, a stenosed vessel would have a high input
amplitude parameter with A > 6× 102. The hypothesis test we use requires a set benchmark value
for A, so we choose that benchmark to be A0 = 6× 102. Then, we define the restricted parameter
set

AH = {A ∈ A|A = A0 = 6× 102},

where A = [A0,∞) is the larger set of unrestricted admissible amplitudes.
Our null hypothesis H0 is that the amplitude is a low amplitude, represented by A ∈ AH = {A0}.

The unrestricted amplitude model would then represent the amplitude parameter as A = A0 + Ã
where Ã ∈ [0,∞). This framework will allow us to develop a test statistic to determine the
confidence level of accepting or rejecting H0 for a given data set. In other words, we will develop
a test to determine if the data is statistically better represented by the benchmark A0 than the
unrestricted amplitude.

The first step is to determine the performance criterion at the benchmark amplitude θ̂H = 6×102,
which we will denote J(~u, θ̂H) (Since the value θ̂H is fixed in our case, no optimization problem is
needed to compute these values). We then run an optimization routine to determine an unrestricted
input amplitude parameter estimate θ̂, which we then use to compute J(~u, θ̂). The value for θ̂
comes from solving the unrestricted optimization problem (14). As discussed in [16, 4], the model
comparison statistic is defined as

V̂ = n
J(~U, Θ̂H)− J(~U, Θ̂)

J(~U, Θ̂)
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with realization

v̂ = n
J(~u, θ̂H)− J(~u, θ̂)

J(~u, θ̂)
. (20)

If our null hypothesis H0 were true, the model comparison statistic V̂ converges in distribution to V
as n→ ∞ where V ∼ χ2(r) is a chi-square distribution with r degrees of freedom (r is the number
of constraints in AH). For our problem, r = 1. Given the significance level α, we can obtain a
threshold value ν such that the probability that V will take on a value greater than ν is α. In
other words, Prob(V > ν) = α. In our context, if the test statistic v̂ > ν we reject H0 as false with
confidence level (1 − α)100%. Otherwise we do not reject H0 as false, at the specified confidence
level. In Table 7 we include sample values from the χ2(1) distribution for reference (table repeated
from [16]).

Table 7: Sample χ2(1) values.
α ν confidence

0.25 1.32 75%
0.1 2.71 90%
0.05 3.84 95%
0.01 6.63 99%
0.001 10.83 99.9%

We summarize in Table 8 the results of computing the OLS performance criterion for the low
amplitude and high amplitude data each with the restricted/unrestricted parameters. Based on

Table 8: Model comparison test results using (20) on low, medium, and high noise data sets
generated with both high and low input amplitude parameter A values.

J(~u, θ̂) J(~u, θ̂H) v̂
Low A, low noise 6.3846e-11 6.3887e-11 0.1609

Low A, medium noise 2.6872e-10 2.6896e-10 0.2258
Low A, high noise 9.8836e-10 9.9658e-10 2.0878

High A, low noise 6.6812×10−9 3.5229×10−7 1.2984e+04
High A, medium noise 3.1016×10−8 3.4730×10−7 2.5596e+03
High A, high noise 9.9737×10−8 4.6015×10−7 907.0283

this table and Table 7, we see for both the low and medium noise cases with data generated with a
low A value that we do not reject H0 with high degrees of confidence. However, the case with high
noise is somewhat less certain, though we would still likely not reject H0 with a fairly high degree
of confidence. The results are more stark in the cases where the data was generated from a high
amplitude. Given that the magnitude of v̂ is greater than 900 at all noise levels, we would reject
H0 as false on these data sets with confidence level more than 99.9%. Altogether, these results
suggest robustness in our methodology for determining whether the data came from a normal vessel
experiencing a heartbeat (low input amplitude) or from a abnormal (stenosed) response.

24



5 Conclusion

In this work we have carried out proof-of-concept investigations for estimating material parame-
ters and created a model comparison test as a basis for distinguishing between data that comes
from a normal or from a stenosed blood vessel. We found that the model was less sensitive to
a second viscoelastic relaxation time than to the other parameters, and this was manifested as a
difficulty in recovering two relaxation times. On the other hand, models with zero or one relaxation
time allowed for more confidence in the estimation procedure (i.e., smaller standard errors). We
compared asymptotic error theory with bootstrapping error theory, and found (as expected) that
bootstrapping gives more conservative confidence intervals but not so much so that the asymptotic
theory cannot be profitably used for uncertainty quantification in models with large computational
costs rendering bootstrapping less desirable. In terms of the model comparison on the input ampli-
tude parameter A, we were able to develop a successful methodology for statistically determining
whether or not data came from a low amplitude input force. This will form the basis of a model
comparison test we can use on experimental data sets.

In future efforts, we may need to examine the possibility of relative error instead of absolute
error, which will necessitate a generalized least squares (GLS) cost function in our inverse problems
due to changes in the error process. This will be coupled with a study of a statistical model for the
measurement processes being used in the experiments at QMUL. The changes needed are discussed
in [16]. If we require a GLS framework, we will use the proper model comparison framework for
GLS problems given in [8]. The most important immediate efforts will be to apply the methods
presented in this paper to the data from the QMUL experiments.
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