
Evolving Collective Behavior in an
Artificial Ecology

Christopher R. Ward
University of Nottingham
School of Computer Science

Fernand Gobet∗
University of Nottingham
School of Psychology

Graham Kendall
University of Nottingham
School of Computer Science

Keywords
ALife, artificial ecology, coexistence
of prey and predator, evolution, fish,
flocking, schooling, sensor

Abstract Collective behavior refers to coordinated group
motion, common to many animals. The dynamics of a group
can be seen as a distributed model, each “animal” applying
the same rule set. This study investigates the use of evolved
sensory controllers to produce schooling behavior. A set of
artificial creatures “live” in an artificial world with hazards
and food. Each creature has a simple artificial neural network
brain that controls movement in different situations. A
chromosome encodes the network structure and weights,
which may be combined using artificial evolution with
another chromosome, if a creature should choose to mate.
Prey and predators coevolve without an explicit fitness
function for schooling to produce sophisticated,
nondeterministic, behavior. The work highlights the role of
species’ physiology in understanding behavior and the role of
the environment in encouraging the development of sensory
systems.

1 Introduction

Collective behaviors such as conformity, obedience, and leadership have been studied
for years in social psychology. Yet we can see primitive characteristics of these behav-
iors in animals, such as fish schools, insect swarms, and bird flocks. Even across such
a diverse set of species, the dynamics of the group are very similar. Partridge [18] states
that collective behavior occurs when animals move “in unison, more like a single organ-
ism than a collection of individuals” (p. 90). Movement is dependent on the characteris-
tics of the animal; for example insects can fly in three dimensions, unlike sheep, which
can only move in two dimensions. The circumstances that stimulate movement differ
too, for example, the presence of prey or cold climates. In this article we consider the
role of sensory configuration as an important aspect in determining collective behavior.

From an evolutionary standpoint, it is understandable why collective behaviors are
prevalent in many species. Biologists propose several hypotheses for collective be-
havior, including reducing the risk of being eaten by a predator, providing mating
efficiency, making the search for food easier, and providing a good environment for
learning and reducing overall aggression [23]. Collective motion may also save energy
through reducing drag [17].

Zoologists and other scientists have studied collective behavior in nature for a long
time, but these phenomena have proven difficult to study objectively without threaten-
ing ecological validity. Partridge [18], for example, studied collective behavior in fish
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using a circular tank 10 m in diameter with a central gantry. Experimenters projected
a light over the fish, which were conditioned to be attracted to it. Fish were marked
with a number and, as the gantry moved, the fish were tracked by measuring various
distances to investigate the adjustment of position within the school.

In recent years, computer modeling and simulation have provided a concrete way
to test and derive new theories of collective behavior. Reynolds [21] presented the
seminal artificial life (ALife) work in collective behavior. His program BOIDS, which
implemented artificial birds, did not make any pretense to represent the behavior of
birds. Instead, its objective was to produce convincing flocking behavior. Each BOID
executed three simple rules or tendencies in the presence of neighbors. Using these
three simple rules, complex global behavior emerged from simple local interactions.
The results have been reproduced many times. Some variation on the initial rule set
and the method of obtaining neighbors has been explored. In general, changing depth
of vision and parameters such as tendency to change velocity and heading in response
to neighbors can drastically alter the structure of the flock.

Since Reynolds [21], little research has been carried out to devise a rule set that
can produce more realistic behavior without compromising the sheer simplicity of the
original work. Mataric [14] successfully developed robots to produce flocking behavior.
Mataric states that collective behavior is the weighted combination of a number of basic
interactions: collision avoidance, following, dispersion, aggregation, and homing. By
programming each of these behaviors into several robots and then setting a weight that
determined which was more likely to execute, Mataric was able to produce some fairly
sophisticated collective behavior.

These “behavioral” models are suitable for defining what characteristics to look for
when identifying collective behavior. However, they were “hand written.” Rather than
consider the environment and physiology of the species, they are based on some con-
cept about what principles might be considered important [22]. By focusing on behavior
alone, these models create a deterministic, one-dimensional controller. Knowledge is
generally represented in productions (i.e., “if. . . then. . . ” rules) and these models fre-
quently neglect sensory modalities. Here we describe the design of a realistic controller
called E-BOIDS capable of a variety of behaviors, where schooling is a truly emergent
property of the system, rather than deterministically stated. E-BOIDS is an acronym for
evolving BOIDS, in recognition of Reynolds’ work.

The article is organized as follows. Section 2 briefly discusses the existing literature
on collective behavior and fish physiology. Section 3 outlines the rather unique features
of the implementation. Section 4 describes the design of our system. Section 5 presents
a thorough statistical analysis of the results. Finally, we discuss some conclusions.

2 Related Work

Husbands, Harvey, Cliff, and Miller [13] claim that there is no evidence that humans are
capable of designing systems exhibiting emergent behavior involving many interactions
between constituent parts. They suggest the “use of artificial evolution to fully, or
partially, automate the design process” (p. 133). With this in mind we can briefly
review the work that has attempted to use evolutionary methodologies [20, 22, 23,
24]. Each has had mixed success, with typical problems in assigning fitness to the
population. Zaera, Cliff, and Bruten [24] applied the BOIDS rules to synthetic fish, but
these rules proved to be insufficient in describing all the characteristics of a school. In
fact the authors state that “to the best of our knowledge, nowhere in the literature on
collective behaviors (in either animals or animats) is a quantitative scalar measure of
schooling employed” (p. 642). A more dynamic measure of fitness, such as that used
in PolyWorld [20], is an energy score in combination with an artificial ecology. This
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encourages a diverse range of creatures, without discriminating against other interesting
behaviors. The important consideration here is to consider the biology of the species
(e.g., the sensory modalities available) and the influence of the environment on its
evolution.

Fortunately, there is no shortage of literature on every aspect of fish behavior and
biology. Some of this background must be explored in order to design the artificial
sensory systems necessary to evolve schooling behavior. First of all, let us clarify the
terms “schools” and “shoals,” since they are often used interchangeably. Shoaling is
where a group of fish occupy an area or territory, whereas schooling is where a group
of fish act as a single organism. A school of fish is a fascinating display of nature,
hundreds of small fish gliding in unison, more like a single organism than a collection
of individuals. There is a highly coordinated structure, yet there is no leader or external
stimulus that prompts the form of this polarized configuration. It is estimated that “out
of 20,000 species of fish, more than 10,000 species collect in schools during some part
of their lives” [18, p. 91], which suggests a common evolutionary history.

Schooling would appear to obey the rules of a distributed model (each individual
applying the same set of simple behavioral rules). Each fish takes into account all fish
that swim in its neighborhood, paying more attention to the closest ones and trying
to match its velocity and direction with that of its neighbors [18]. Yet, it is known
from Zaera, Cliff, and Bruten’s [24] work that the BOIDS rules do not describe all
these properties, since the rules proved insufficient as a fitness function. And further
supporting this notion, schooling varies from one species to another. It is known that
some fish spend all or most of their time in a school (obligate schoolers) whereas some
join occasionally (facultative schoolers). A slightly more sophisticated model is needed,
and for this a flexible representation of the fish’s knowledge (i.e., its sensory systems)
must be designed.

3 Modeling E-BOIDS

This section outlines the components of our system. First, we consider the flexible
controller (i.e., the neural network) on which we can build a host of behaviors. Sec-
ond, we take a look at distributing the controllers to creatures in the environment using
chromosomes and evolving the system using genetic algorithms (GAs) such that prof-
itable behaviors are retained in later generations. Finally, we consider the environment
in which the creatures “live.”

3.1 Artificial Neural Network—Fish Biology
Fish have a remarkably small brain, yet they are known to produce some of the most
complex collective behavior in the animal kingdom. As there is little evidence to
suggest that schooling is voluntary, a reactive model could be a suitable methodology.
Braitenberg [1] explored the use of reactive robots in a set of experiments that looked
at the potential of building synthetic creatures using a set of sensors. It was found that
by varying the connections between sensors and motor actions on a simple base unit
a whole host of behaviors could be observed. Many ALife researchers use this kind
of methodology to design robotic creatures, or hardware animats. As discussed, the
design of the architecture can be troublesome if we want to achieve complex behavior,
especially if it involves changing physically wired connections.

An artificial neural network (ANN) can be applied using the same methodology,
but because it is software based, the structure can be changed at will. The ANN must
be designed to facilitate schooling and other behaviors such as predation. If there is
not enough freedom in the architecture, the range of behaviors will be limited. This
question will be taken up in the next section.
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Figure 1. An E-BOID projects senses across its environment.

3.1.1 Input Units—Fish Senses
The different sensory modalities can be modeled to provide the organisms with different
types of information about their environment. The input units need to be directional
and able to distinguish between objects. For example, on seeing a predator on the left,
the prey learns to turn right. To achieve directionality, a “pyramid of vision system”
is used (shown in Figure 1). The neighborhood region for each sense can be divided
into sectors. For example, if there were two sectors, one would capture all objects
between 0 and 180◦ and the other between 180 and 360◦. The depth and the number
of these sectors differ among sensory types and organisms. The resolution of these
patches could prove to be very important.

Given that we are interested in the essence of the creature, only two of the most
important senses are considered in this article. However, it should be kept in mind that
fish possess other senses, such as chemical releases. We now describe the two senses
in question, lateral line and vision.
Lateral line Zaera, Cliff, and Bruten [24] represented two major fish senses, the lateral
line and vision. The lateral line is the hearing system. Sound vibrations are transmitted
from the water through the fish’s body to its internal ears. The ear canal contains
sensory hair cells that respond to the movement of the liquid within the fish’s ear, just
like the human inner ear. The lateral line is used to detect local changes in water
pressure within one or two body lengths of the fish [18]. It acts as a repulsion force,
ensuring that fish maintain their personal space.
Vision Although water permits only limited visibility, fish are capable of distinguishing
predators from prey using vision [18]. However, when facing a school, predators are
confused by a sensory overload, unable to select any one member. The visual system
can see far beyond the lateral line range. It is used to maintain distance and angle to
the closest neighbors [23]. Schooling fish compare information from the eyes with the
information from the lateral line [18]. Combining these two into a single ANN classifier
is a suitable model for implementing this behavior.

In PolyWorld [20], the investigators rendered the viewpoint of each creature, which
was passed into the ANN brain. This is actually extremely complicated, because we
must also encompass motion and depth information. It also violates the principle
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Figure 2. Network architecture of an E-BOID, showing the lateral line input units (where L is maximum) and the
vision input units (where V is maximum). Each input unit refers to a sensory sector; for example, 0 might refer
to 0–45◦. For each input unit the discrimination weights are applied for that type of input (i.e., lateral or vision)
for food, prey, and predators. All these inputs feed forward in a fully connected manner to the intermediate layer
(dominance). Intermediate nodes modulate the balance between lateral and vision sensor inputs (dominance). Their
output is passed to the corresponding output unit that determines the motor output (turn left or right).

of ALife, which is to capture the essence of the system. We shall assume that such
information is passed directly into the ANN (i.e., a perfect sensory system). This is
achieved by a function of both the area occupied by objects and their distance away
from the center of the creature.

3.1.2 Output Units—Fish Behavior
Werner and Dyer [23] and PolyWorld [20] represented a different behavior in each of the
output nodes. This study takes a simple approach. Instead of discrete output values
(i.e., 1 or 0) that limit a creature to left/right or mate/not mate, nodes take continuous
values to create more believable motion, capable of behaviors that are less limiting.

Werner and Dyer represented three output values, in their three-dimensional system.
We propose just two for this two-dimensional system, a turn left and turn right node.
If the input to the left node is 1 (the maximum value) then that would result in a 180◦
turn counterclockwise, an input of the same value to the right node would result in a
180◦ turn clockwise. Note that this change is always with respect to the current angle;
therefore if both output nodes were excited equally, the organism would not change
direction (a useful property).

It is assumed that a creature is always moving, and that this motion is always constant.
Therefore an organism cannot suddenly speed up or slow down. The speed of a
creature is determined by the body size, so a larger body will swim faster than a
smaller one (to derive the coordinates of the movement, the tail is moved to where the
head was previously).

3.1.3 Network Architecture
The ANN is a feed-forward, fully connected network (see Figure 2). A weighting of 0
will mean the connection does not pass its input value. An input node represents a
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patch of sensory input that projects a pyramid of “vision” that identifies the position
(with respect to itself) and the type of organism in the neighborhood. The attention
given to each type of organism when in the different types of sensory modalities is
scored between 0 and 1. This means a creature might, for example, pay more attention
to a fellow prey organism in the visual system, but be less interested if it is in the lateral
range (to avoid collision, for example). These discriminatory weightings are stored
independently from the ANN.

The network output is computed as follows. First, the contribution of each sensory
modality and sector is calculated. Each sector corresponds to one input node, and
each input node sends a signal to the motor output layer (turn left and right) through
the dominance nodes (see Figure 2). There are three recognized objects in the world
(food, prey and predator), and each creature has weights that dictate the attention paid
to these objects (discrimination nodes).

The objects in the environment are translated into sensory signals as a function
of both the area occupied by objects and their distance away from the center of the
creature. The contribution of each object to a sector is calculated by multiplying its
input activation by its discrimination weight (the discrimination weights are the same
for all the sectors within a sensory modality). With the contributions of the input
nodes established, the input is fed forward additively in a fully connected manner to
the dominance layer (see Figure 2). This same calculation is applied for both lateral
and visual sector inputs. The weights of the dominance layer determine the balance
between the lateral and visual systems. For each sensory system, the inputs to left and
right nodes are simply multiplied by the corresponding dominance weight.

The same base network structure is shared between all creatures in the environment,
which allows them to be easily combined (i.e., mated). Independent weights are
stored for each creature. We can consider the implications of these sensory weights on
behavior in a simple example. A good predator sensory system might turn left if it sees
prey on the left, and turn right if it sees prey on the right. To achieve this, we have
weights: left sense to left motor = 1, left sense to right motor = 0, right sense to right
motor = 1, and right sense to left motor = 0. This sensory network would not be of
much use for prey. In contrast, prey would be better served by a network that turned
themselves away from predators (the inverse of the predator network). Although this
is a trivial example, we would not wish to have to hand code such values, because
the emergence of interactions between different weightings and between behaviors of
different creatures cannot be foreseen. The next section looks at techniques to enable
the evolution of these values.

3.2 Genetic Algorithms
Genetic algorithms simulate genetic systems and were first proposed by Fraser [8, 9]
and Bremermann [2]. Despite the age of this early work, it still has relevance today, as
it has recently been revisited by Fogel [6, 7]. John Holland, together with his students
and colleagues at the University of Michigan in the 1960s and 1970s, is also credited
with carrying out much of the pioneering work in GAs. Holland’s book of 1975 [11] is
recognized as one of the seminal works in the area.

Genetic algorithms are computer programs that are based on Darwin’s principle of
natural evolution. A GA holds a population of solutions (often referred to as chromo-
somes). The way in which each solution is represented is largely down to the designer
of the GA. Historically, bit strings have been used but these are by no means the only
possible representation. This work, for example, uses a set of real numbers that in
turn represent the weights of a neural network. Each chromosome (shown in Figure 3)
is assigned a fitness value that indicates the quality of the solution the chromosome
represents.
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Figure 3. An example of the chromosome structure used in E-BOIDS.

During the execution of a GA algorithm the population is continually replaced by
new populations. The new populations are created by applying operators (crossover
and mutation) to members of the existing population. An individual’s chance of being
chosen as a parent is proportional to its fitness. This is done so that the principle of
natural selection is mimicked; that is, the fittest members of the population are allowed
more opportunity to breed in the hope that they will pass their good genetic material to
the next population. If this happens enough, the population should gradually improve
as fitter and fitter individuals are created. Introductions to GAs can be found in Goldberg
[10], and Michalewicz [15, 16].

3.3 Ecology
Evolutionary perspectives on schooling suggest that the environment plays a key role in
its emergence, yet the number of factors to consider is potentially infinite. For example,
the fluid dynamics as the E-BOIDS swim and displace the water could be considered.
However, we have implemented only the principal components of the ecology.

From its conception, an organism will be either predator or prey and will recog-
nize other organisms as such. Using predators and prey within the same system and
evolving them together is important because one of the key reasons for schooling is
the protection it provides.

At the start of its life, an organism has a numerical amount of energy, which it
can spend on a number of behaviors. It is the implicit goal of every creature to pass
on its chromosome to the next generation. Each type of organism is capable of the
same repertoire of actions (Turn, Move, Eat, Collide, and Mate; note that mating is
done asynchronically in the ecology) that use a predefined amount of energy (refer to
Table 1). Since the amount of energy is used to decide which members are selected,
it is advantageous to minimize energy expenditure. Predators eat prey and prey eat
randomly placed food. If energy should fall below zero, a creature will die and turn
into food for prey organisms.

The spatial distribution of food and organisms will be random for each generation.
This is to ensure the population does not evolve to suit only one configuration of the
world. Food will be placed in random clusters since PolyWorld [20] showed that terri-
tories of food could be very important to the ecology as they provide a common goal.

Table 1. Example of energy changes per behavior used in a typical simulation. Note that prey are not necessarily
killed upon being (partly) eaten.

Behavior Prey Predator

Birth +200 +200
Clash −3 −3
Eat food +20 +25
Eaten −5 N/A
Mate −2 −20
Move −1 −1
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There are a limited number of creatures within the world for each generation; hence,
a selection scheme is necessary. The energy values are used as the fitness score: pairs
of organisms, assuming that they had mated together during their lives, are selected as
a function of the average energy value of the pair at the time of mating. The following
is an outline algorithm for the evolution of generations:

1. Initialize population of chromosomes by randomly producing legal prey and
predators, in a set ratio of 2:1 (prey:predator). Create ANN based on the
chromosomes.

2. Run the creatures through a specified number of moves, and keep track of the
pairs of organisms that have mated in the ecology. At the end of the generation:

2.1. Give priority to fitter parents.

2.2. Create new chromosomes by mating the current population using the genetic
algorithm.

2.3. Delete previous generation.

2.4. Insert new members into the population.

3. Repeat stage 2 until no further generations are required (user intervention).

This strategy allows one to search in parallel through a large number of possible
organisms, without discriminating against useful behaviors. A parameter is assigned
that defines how likely crossover and mutation typically occur. Generally probabilities
for mutation are 0.008 and crossover 0.6 [2].

4 Implementation

The main program (written in C++) controls the population dynamics such as evolution,
movement, and the ecology for each generation. The output depicting the movements
can be viewed using a separate system. The benefit of this approach is that the main
program is not slowed down by graphics and that no artificial delays need to be im-
plemented. Each generation can also be compared easily.

The population dynamics are displayed via VRML source code generated by the
main program, which is parsed by an external VRML browser. This gives complete
control over the viewing angle, speed, blurring, zooming, and coloring and enables
dynamic navigation in the environment, all at the touch of a button. VRML is a platform-
independent language, accessible over the Internet via the World Wide Web. In addi-
tion, HTML code was generated to produce statistics for each generation. This design
enabled us to make all the results accessible online [5].

5 Experiments with E-BOIDS

This section describes experiments with the E-BOIDS world to investigate the effects
of evolution on its inhabitants. There is no objective, quantitative measure of flock-
ing or schooling [23]. As a consequence, many collective behavior studies resort to
informal descriptions of the behavior of their system. However, several authors [4, 19]
have recommended the use of standard statistical techniques to evaluate the behavior
of synthetic systems. In an attempt to describe objectively the results in the follow-
ing analyses, we have used a Euclidean distance measure to approximate schooling
behavior and then subjected these measures to statistical methods [12]. In addition, a
selection of behavioral results may be viewed online [5].
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The first experiment looks at the ecology dynamics, that is, relationships developed
in the environment between organisms. Highlighting these relationships, the next ex-
periments aim to pick out common prey (Experiment 2) and predatory (Experiment 3)
behaviors and the effects of changing parameters such as sensory configuration on
behavior.

5.1 Ecology Dynamics
5.1.1 Method
A Euclidean distance measure was taken of each member of the population with respect
to all the other creatures in the environment. The aim is to look at the development
of global behavior in the system with each generation. Three variables were under
consideration: first, the distance from food to each prey; second, the distance from
each prey to another; and third, the distance from predators to prey.

Samples of 20 prey to 10 predators were taken, with 16 clumps of food (2 food
items per clump). Energy values were set to encourage prey objects to be drawn
toward food and predators to eat the prey. There were negative effects for collisions
and for being eaten (Clash = −3, Eat food = 20, Eat prey = 25, Eaten = −15, Mate
= −5, Move = −1). Prey were set to swim slower than predators. The system was run
for 25 generations, with 200 moves in each, and a total of 10 runs were made, therefore
1,500,000 moves were observed. The average distance for each generation was taken.

5.1.2 Results and Discussion
Figure 4 shows the average distance with each generation. It can be seen that with
each generation predators learn to get closer to prey and that prey get closer together.
Prey also seem to learn the value of food. To investigate the relations between these
variables, a Pearson product moment correlation was performed.

Figure 4. Distribution of distance with respect to prey for prey, predator, and food as a function of generation
number.
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Table 2. Means and standard deviations of distance from prey as a function of ecology type (with or without
predators) and organisms (prey or food).

Baseline distance Average distance

Prey Predator Food Prey Predator Food

Mean 152.29 184.44 174.01 121.71 197.68 121.39
Standard deviation 1.52 3.08 1.95 24.35 19.50 10.12

First, it was hypothesized that prey should adapt to schooling due to the influence
of predators in the environment. The correlation between prey distance from prey
and predators, respectively, supports this hypothesis (0.73, p < 0.01). Second, it was
hypothesized that, as prey get closer to other prey with each generation, they should
get closer to food as well. The observed correlation (0.91, p < 0.01) is consistent with
this hypothesis. Lastly, it was hypothesized that predators will be drawn toward food
since prey get closer to food. The observed correlation is 0.53 (p < 0.01).

Another way to analyze schooling is to look at the average distance between or-
ganisms and prey and to compare it with the baseline distance, that is, the random
distances between organisms and prey at the start of each generation. Measuring the
change of these figures with time gives an indication of the behavior trends of the
creatures. From Table 2, it appears that prey tend to get closer together, that predators
are not as close to prey on average than they are at the start of the simulation, and that
prey are closing in on food objects. The standard deviation indicates quite a variation
in the development. To clarify the situation, some statistics are calculated to check
whether the behaviors observed are significantly different from chance.

The first analysis looks at the prey dynamics. We can describe our experiment as
consisting of two groups (“ecologies”), one where the distance is measured at the
start of the simulation, and one where the average distance is taken. For each of these
groups, measurements are repeated over 25 trials (generations). A 2×25 mixed analysis
of variance (ANOVA) was therefore conducted, with ecology type as a between-group
variable with 2 levels (baseline and average), and generations as a within-group variable
with 25 levels. The dependent variable was the distance between prey E-BOIDS.

There was a significant main effect of ecology type (F1,18 = 9.39, MSe = 116,953.69,
p < 0.01), a significant main effect of generations (F24,432 = 5.45, MSe = 2,981.72,
p < 0.001), and a significant interaction between ecology and generations (F24,432 =
5.43, MSe = 2969.39, p < 0.001). Overall, it appears that the spatial distribution
of prey organisms is different from their random starting positions, and that with each
generation, there is a significant change. Figure 5 shows the distribution of these results
(left panel).

The next analysis aims to look at the relationship between predators and their prey.
A 2× 25 mixed ANOVA was conducted with ecology type as a between-group variable
with 2 levels (baseline and average) and generations variable with 25 levels. The
dependent variable was the distance between prey and predator E-BOIDS.

There was no significant main effect of ecology type (F1,18 = 2.84, MSe = 21,923.77,
p > 0.05), a significant main effect of generations (F24,432 = 2.93, MSe = 2,173.98, p <

0.001), and a significant interaction between ecology and generations (F24,432 = 2.32,
MSe = 1,722.77, p < 0.01). These results suggest that, on average, the distance between
prey and predators after several generations is not different from the baseline distance.
However, the significant interaction as well as the significant main effect of generation
show that predators tend to reduce their distance to prey, as shown in Figure 5 (right
panel). Comparisons were not performed on the distance between prey and food
because the food is randomly repositioned in each generation and after 50 moves.

It can be concluded that prey and predators are developing to show behavioral
traits. Prey are moving closer to food and appear to be inclined to go toward each
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Figure 5. Behavior of prey E-BOIDS in different ecologies. Left graph shows the mean distance between prey. Right
graph shows the mean distance between prey and predators. Error bars indicate the standard errors of the mean.

other. Predators appear to be going toward prey objects, though not significantly so
from their baseline distance. However, it must be remembered that the baseline is only
a snapshot of a random starting position, not random movement.

The results have demonstrated that a simple measure such as the Euclidean dis-
tance can be used to quantify schooling behavior. Some important relationships in the
ecology have been identified that may not have been obvious from the outset. They
indicate that prey increasingly move together and that predators appear to be drawn
to food areas. In fact there are a range of behavioral repertoires observed. It appears
that there is a sensory overload around food areas. This means that predation is more
successful outside food areas, and that it is best to steer away from them. But at the
same time some predators are drawn toward food in the knowledge that prey are likely
to be around. A balance between these behaviors is generally observed, some preda-
tors driving the prey out of the food areas while the others stay back to hunt them
down.

5.2 Prey Dynamics
The results of the ecology dynamics (Experiment 1) look promising, but they were
obtained using a rather primitive measure of schooling behavior. To understand fully
whether schooling really occurs, further tests must be performed. This section focuses
on the dynamics of prey behavior.

5.2.1 Method
Mataric [14] states that flocking is the combination of a number of basic primitives:
collision avoidance, following, dispersal, aggregation, and homing. The aim of this
experiment is to look for evidence of each of these behaviors. To perform this ex-
periment, we attempted to increase all the energy constants associated with moving
close together. Therefore mating caused an increase in energy, eating vegetation had
no effect, and a clash had a small effect. The system was run for 25 generations with
200 moves in each, and a total of 10 runs were made. The average distance for each
generation was taken. As expected, schooling behavior was observed.

5.2.2 Results and Discussion
The experiment was run over many generations, with varying parameters to look for
evidence of schooling behavior. Unfortunately, observation was the only measure
available. Selections of the behavioral results are shown in Plate 1.

The results appear to satisfy Mataric’s primitives and demonstrate schooling behavior.
Each prey appears to value the school more than food itself, with the security that it
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Plate 1. A selection of the schooling behavior observed in the prey E-BOIDS. Blue indicates prey, red predators,
and green food.

provides. The motion of the school is due to slight variation in the distance senses of
each creature, each guiding the other. Some creatures appear to be providing a “global
lookout” whereas the others maintain their close-up motion, guiding them toward food
objects and toward each other. The lateral line is always used as a repulsion force
keeping each other apart to avoid collisions. Figure 6 shows a sensory network taken
from a typical prey in the final generation.

The weights in the lateral line indicate that the prey will generally turn away whereas
the weights in vision generally guide them toward their target. Prey tend to be guided
toward food (0.70) in the vision system, whereas in the lateral range, greater attention
is given to predators (0.43).

In contrast, a successful predator network is shown in Figure 7. The lateral line and
vision of the predator serve a completely different function to the prey’s. Here predators
employ the sensory system to guide them toward prey and food in the environment.
Again we see a high weighting of the lateral sense (0.51) but this time a small depth,
perhaps due to the high-resolution fields required to pick out their prey. It is interesting
to note that predators regard each other more highly than their prey, perhaps due to
the fewer numbers of predator to prey.

To test the differences in weights between prey and predators, we used a matched
t -test. We found reliable differences (p < 0.05) for dominance (both lateral and vision)
and for depth of vision. With respect to attention, we found reliable differences for food
and predators in the lateral line, and in all the sensory weights of the lateral line. The
role of the lateral line would therefore appear to be one of the defining characteristics
in the difference between predators and prey.
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Figure 6. Evolved sensory network of prey. The figure indicates the number of input units for each sense, and how
they map to the output nodes (turn left, turn right). The network feeds from left to right; input units show the
lateral and visual sensors. The weights of food, prey, predators and the depth of the senses are shown in the table
(bottom right). Intermediate nodes modulate the balance between lateral and vision sensor input (dominance). The
structure of an E-BOID is shown right.

The number of visual and lateral sectors were varied, but there appears to be
very little difference in the number required to school. The prey dynamic results
were collected using two lateral and three visual sectors. It would appear therefore
that prey organisms need only very low-resolution visual systems to be successful in
their environment. The issue is taken up later when predator visual systems are dis-
cussed.

Figure 7. Evolved sensory network of predator.

Artificial Life Volume 7, Number 2 203



C. R. Ward et al. Evolving Collective Behavior in an Artificial Ecology

Figure 8. Distribution of distance over each generation for runs with and without (dotted) predators.

5.3 Predator Dynamics
5.3.1 Method
The initial results from our ecosystem suggest that predators were encouraging prey
to school. This section explores whether this was the case. The first experiment is
repeated with and without predators, to see if predators are a necessary requirement of
the ecosystem; conditions are kept the same (Clash = −3, Eat food = 20, Eat prey = 25,
Eaten = −15, Mate = −5, Move = −1). The system was run for 25 generations, with
200 moves in each. A total of 10 runs were made. The average distance for each
generation was taken.

5.3.2 Results and Discussion
Referring to Figure 8, it would appear that the pattern of the results is quite similar,
though it can be seen that the simulation “with predators” shows more schooling be-
havior, as operationalized by the distance from other prey. This result demonstrates
the role of schooling in goal-directed behavior such as eating, with each member of
the school aiding the others, and the role of predators in shaping the school.

As in the first experiment, we also analyze the results using average distance across
generations. The results (Table 3) suggest that predators have a part to play in the
environment, but perhaps not as important as might have been thought. To establish

Table 3. Means and standard deviations of distance from prey as a function of ecology type (with or without
predators) and organisms (prey or food).

With predators Without predators

Prey Food Prey Food

Mean 121.71 121.39 130.89 125.56
Standard deviation 24.12 19.20 21.03 10.18
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Figure 9. Distribution of distance between prey with respect to generations, under two ecology types (with and
without predators). Error bars indicate the standard errors of the mean.

whether the effect is reliable, a 2×25 mixed ANOVA was conducted with ecology type
as a between-group variable with 2 levels (with and without predators) and generations
as a repeated measures variable with 25 levels. The dependent variable was the distance
between prey E-BOIDS.

There was no significant main effect of ecology type (F1,18 = 0.47, MSe = 10,323.96,
p > 0.05), a significant main effect of generations (F24,432 = 7.83, MSe = 9,573.73, p <

0.001), and no significant interaction between ecology and generations (F24,432 = 0.65,
MSe = 798.87, p > 0.05). Overall, evolution appears to have an effect on the distance
between prey, yet the ecology type does not have a significant role. Figure 9 (left
panel) illustrates this result.

Next, the relationship between prey and food is considered. A 2×25 mixed ANOVA
was conducted with ecology type as a between-group variable with 2 levels (with and
without predators) and generations as a repeated measures variable with 25 levels. The
dependent variable was the distance between prey E-BOIDS and food.

There was no significant main effect of ecology type (F1,18 = 0.08, MSe = 2,142.40,
p > 0.05), a significant main effect of generations (F24,432 = 3.44, MSe = 1,877.25, p <

0.001), and no significant interaction between ecology and generations (F24,432 = 0.34,
MSe = 185.38, p > 0.05). Overall it appears that evolution, again, has a strong effect,
this time on the distance between prey and food, and that, again, ecology type does not
have a significant effect. Figure 9 (right panel) shows the distribution of these results.

To analyze the change of behavior with each generation further, a regression analysis
was performed on different ecology types (with and without predators) to test whether
one generation learns to school more quickly than the other. It was hypothesized that
aggregation follows a power law. Figure 10 shows the distribution of the data and the
fitted power function. It was found that the distance between prey does indeed follow
a power law; both with predators (F (2, 23) = 124.88, p < 0.001) and without predators
(F (2, 23) = 52.69, p < 0.001). Interestingly when predators are in the system there is a
steeper power law, as reflected by the differences in exponent (−0.1995 vs. −0.1445).

The results suggest that predators have a role in the emergence of schooling behavior
in the ecosystem; however, this role is perhaps not as strong as might have been hoped.
Even so, we believe that this is purely a reflection of the measure used rather than
behavior. To illustrate the point, Plate 2 shows the predation observed.

It appears that predators experience a sensory overload when faced with a school,
yet when the prey E-BOIDS split from the group the predators can home into them.
To illustrate the difference in the sensory systems seen when predators are not in the
system, a typical network of a prey is shown in Figure 11.
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Figure 10. Behavior of prey E-BOIDS in different ecologies. Left graph shows the mean distance between prey when
predators are present in the environment. Right graph shows the mean distance between prey in the absence of
predators. The curve shows the best-fitting power function.

Plate 2. Evolution of predatory behavior in the system. Blue indicates prey, red predators, and green food. Of
particular note is that prey organisms are “swimming” away from predators and predators are tracking prey.

In contrast to Experiment 2, Figure 6, the creature is highly oriented toward ev-
erything with high weights on food in vision (0.55) and very little on predator. The
lateral sense dominates over vision, in terms of attention (0.85 vs. 0.15) and depth
(79.4 vs. 138). This indicates that the prey are not looking out for predators as they
were before; now, they consume as much food as possible to increase their energy to
compete for the next generation. As with the experiment outlined in Section 5.2 we
used a matched t -test to identify reliable differences in the weights of the networks of
prey with different ecologies. We found statistically reliable differences (p < 0.05) for
all weights except for the attention weight prey (vision) and lateral weights (1 → 0,
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Figure 11. Sensory network of an evolved prey from an ecology with no predators. The figure indicates the number
of input units for each sense, and how they map to the output nodes (turn left, turn right). The network feeds from
left to right; input units show the lateral and visual sensors. The weights of food, prey, and predators and the depth
of the senses are shown in the table (bottom right). The structure of the E-BOID is shown right. Contrast this
network to that found with predators (see Figure 6).

1 → 1; refer to Figure 11 for annotations), and visual (2 → 0, 2 → 1). There were
marginally significant differences for the lateral food weight (p < 0.06) and the visual
food weight (p < 0.08).

To explore schooling behavior further, the number of visual and lateral sectors were
varied; it was found that increasing the number of visual sectors produced superior
predatory behavior. For example, it appears that frontal visual systems in predators
are very important in directing their attention, whereas prey require a peripheral visual
system to detect the objects all around them. To aid predators, three visual sectors
were used, with each covering 120◦: the majority of sectors dominated frontal vision
because 240◦ were focused forward to the left and right with 120◦ looking backward.
This observation is consistent with evolutionary work that suggests predators have
higher resolution visual systems than prey [3].

The results have also shown the importance of coevolving creatures rather than
artificially introducing hand-crafted prey-targeting systems [22]. Designing a controller
that could foresee, or indeed cope with these interactions would be a hugely complex
task, were it to be hand coded.

6 Summary and Discussion

This article has considered the role of sensors in the emergence of primitive collective
behaviors. We identified a particular species (the fish), looked at the role of ecology in
the evolution of sensors, and designed a flexible structure that would enable complex
movement and perception on a simple base network. With schooling in mind we
hoped to extend previous work that had failed to produce these results.

Primitive behaviors were evolved through an ecology in which predator and prey
coexisted within the same environment. Although these behaviors have been achieved
with a fairly simple base network on which all creatures exist, the simplicity has not
constrained the behavioral repertoires observed. Using the same base network, two
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highly different behaviors were observed, that of predatory and prey behavior. These
behaviors were not hand coded, in contrast to previous studies; rather, they were
evolved using an ecology. Analyzing the role of the ecology showed that predators
are of key importance as a means of encouraging prey to school. Schooling behavior
was achieved, together with predation, and these results were validated with statis-
tical analysis. These results have shown that small changes to sensory systems can
produce major changes in behavior. In that respect, our work contrasts with previous
studies, which exclusively relied on informal descriptions to evaluate the success of
the simulations, without taking into account the effect of random variation. The work
also improves on previous research, in that these behaviors have been produced with
a simple dynamic neural network structure without a fitness function incorporating a
measure of schooling [23].

One way to improve the system is to increase its complexity. For example, as a
form of motivation, it may be useful to represent the energy level as an input. When
an E-BOID would get low on energy, it would be encouraged to forage for food [23].
However, it is unclear how this energy level would feed into the behavioral system.
One possibility is to use a Boltzmann machine controller that could be evolved to
motivate it. Adding such new complexity may, however, violate one of the tenets of
ALife, which is to capture the essence of a system.

Many researchers appear to design complexity into their representations and, in
doing so, constrain the generalizations that might be made. By contrast, the work
described in this article highlights the idea that complex behavior can be achieved by
simple interactions, and that many of these subtle developments cannot be foreseen
using conventional techniques.

Evolutionary methods are a powerful programming technique. It would have been
difficult, if possible at all, to foresee or even implement the results reported in this
article using hand-crafted production rules. Artificial neural networks created a vast
array of behaviors, including schooling, which has proved very problematic to achieve
in related work. Yet the ANN used in E-BOIDS was not as complex as many of these
unsuccessful systems. The reason for success is due to the simple base network and
to the artificial ecology, which together overcame the difficulty in assigning fitness to
the population to evolve schooling behavior.
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