
From “Community” to “Commercial” FLOSS – the 
Case of Moodle

Andrea Capiluppi, Andres Baravalle
Centre of Research on Open Source Software – CROSS

University of East London
London, UK

{a.capiluppi, a.baravalle}@uel.ac.uk

Nick W. Heap

The Open University
Walton Hall, Milton Keynes, UK

n.w.heap@open.ac.uk 

Abstract—This paper qualitatively documents how the decision of 
the largest UK e-learning provider to adopt Moodle had an effect 
on  this  FLOSS  system.  The  study  of  its  evolution  provides 
evidence  of  the  success  of  this  project:  increasing  amounts  of 
provided effort by developers correspond to similarly increasing 
produced outputs to the Moodle system. It becomes evident how 
commercial  partners  helped  this  OSS  system  to  achieve  the 
transition from an “average” OSS system to a successful multi-
site, collaborative and community-based OSS project.

Keywords-evolution; FLOSS systems; phases

I.  INTRODUCTION

This paper studies the evolution of the Moodle e-learning 
platform,  and  describes  how  it  achieved  the  status  of 
“successful  FLOSS  project”  thanks  to  the  Open  University 
(OU), the largest online course provider in the UK. In order to 
achieve  this,  this  paper  uses  a  mixed  qualitative  and 
quantitative  approach,  and  uses  a  wealth  of  information 
sources, ranging from interviews with commercial stakeholders 
in  Moodle,  to  empirical  data  contained in  the  Moodle  code 
repository. It  is argued that this system represents a “hybrid” 
OSS project  [6]: since its inception in the early 1980’s, OSS 
projects  were  purely  volunteer-based,  heavily  relying  on 
personal  efforts  and  non-monetary recognitions,  and  bearing 
communication  and  coordination  issues  (“Plain  OSS”,  right 
end  of  Figure  1,  adapted  from  [6]).  Nowadays  Commercial 
OSS are also present (more similar to Closed source systems, 
as in Figure 1), where a commercial company plays a major 
role in the development and decision making. Community OSS 
instead are more similar to pure OSS systems, they are driven 
by the community, but they also often have several commercial 
stakeholders.

This paper is articulated as follows: section 2 describes the 
case study from the point of view of its stakeholders. Section 3 

quantifies the evolution of Moodle from two different points of 
view: at first, relatively to the active developers working on it; 
then, regarding the outcomes of the activity within the Moodle 
community. It also provides the basis for a framework of the 
transition  of  OSS  projects  to  different  stages  of  maturity. 
Section 4 finally concludes.

II. MOODLE

This  paper  focuses  on  an  extensive  analysis  (both 
qualitative and quantitative) of the business and development 
model  of  Moodle,  a  popular  Open  Source  software  for  e-
learning.  Given  its  size,  extensive  development  and  user 
community, a more in-depth appreciation of Moodle, and how 
it achieved its status, is central to understanding Open Source 
software and its future among the software competitors.

Moodle’s development is centered around various actors:

1. Moodle  core  developer: Martin  Dougiamas 
originally  developed  Moodle  while  working  at  his 
Ph.D.  thesis  in  Curtin  University  of  Technology, 
Australia.  Now  Moodle’s  development  is  lead  by 
Moodle Pty Ltd, a company he founded and leads.

2. Commercial stakeholders and Moodle developers: 
the entities that have an interest in the creation and 
support of Moodle:

• Moodle  partners:  a  number  of  organizations 
across the world who are directly contributing to 
the development of Moodle by way of funding or 
contributing  their  expertise.  As  we  write 
(12/2009) there are some 50 partners, distributed 
across the Americas, Europe, Asia and Oceania. 
As yet there are no African partners.

• Commercial  exponents,  not participating  in  the 
partnership, but working on the development of 
modules, plug-ins, themes and language packs.

• Moodle  developers:  whilst  Moodle’s 
development  is  lead  by  Martin  Dougiamas 
through  Moodle  Pty  Ltd,  a  large  number  of 
individuals  have  been  contributing  to  the 
development  of  Moodle.  Just  over  200 
developers have write access at this stage, but not 
all have been contributing into the source code. 

Figure 1: Software licensing continuum

Closed
source

Commercial
OSS

Community
OSS

Plain
OSS

mailto:n.w.heap@open.ac.uk
mailto:a.capiluppi@uel.ac.uk


Other developers do not have the right to publish 
their changes in the CVS tree (as quantified in the 
next sections). A Moodle partner or a commercial 
exponent may employ a number of developers. 

• Commercial  exponents focusing  on  installation, 
lightweight  customization  and  support,  but  not 
providing custom development for Moodle.

3. Moodle community: this includes the large number 
of  users  of  Moodle  spread  across  204  countries 
(September  2009).  The   community  engages  in 
Moodle’s  activities  though  on-line  discussions  in 
forums and in other specialised events. While the role 
of the community is important, Moodle is not led, as 
other projects, by the community.

A. MOODLE at the Open University

The Open University of the United Kingdom is a centrally 
funded higher education institution specializing in blended and 
distance  learning,  with  an  enviable  reputation  for  its 
contributions to educational  technologies.  Recently,  the  Open 
University scored  the  highest  student  satisfaction  rating  in  a 
National Student Satisfaction Survey covering England, Wales 
and  Northern  Ireland.  Students  are  not  required  to  satisfy 
academic entry requirements,  which encourages participation 
from  a  diverse  student  body  able  to  enrol  and  pursue  the 
majority of awards and curricula. 

Experiments with e-learning date from the mid-1980s and 
the  spread  of  home computers.  Computer  conferencing  was 
introduced  to  courses  of  5000  students  as  early  as  1989 
followed by the first web sites in 1993. All these developments 
were bespoke and hence expensive to develop and maintain.

In  November  2005,  the  Open  University's  Learning  and 
Teaching Office (LTO) announced it was to commence a £5 
million programme to “build a comprehensive online student  
learning environment for the 21st century”. Moodle is just one 
part  of  this  student  learning  environment,  but  is  the  most 
visible  from a  student's  perspective.  The  first  courses  were 
hosted in May 2006 at which time it  was claimed to be the 
largest use of Moodle in the world.

III. QUANTITATIVE STUDY

In these following sections it will be studied what happened 
in terms of effort provided and results achieved by the Moodle 
community.  This  will  be done  empirically,  by analysing the 
public  data  pertaining the  open  development  of  Moodle.  In 
terms  of  data  sources,  it  has  been  established  that  different 
development  practices  have  an  influence  on  the  best  data 
source([5], [17]), and that both the Configuration Management 
Systems (CMS) and the ChangeLog files offer more reliable 
information ([4], [11], [21]).

The  steps  to  extract  the  information  from  the  Moodle 
server,  and  to  produce  the  results  can  be  summarized  in  i) 
extraction of  raw data,  ii)  filtering of  the raw data,  and iii) 
extraction of metrics. As part of these steps, Perl scripts were 
written to download, extract the activity logs, and parse the raw 
data contained in the CMS, and finally to extract pre-defined 
data fields.

A. Raw data extraction and filtering

The choice of the information sources was focused on the 
CMS commits of the system. The Moodle project maintains an 
own CMS server1, and the data contained spans some 9 years, 
between Nov 2001 and Aug 2009. Perl scripts were used to 
identify and extract every occurrence of the following items:

• Committer: contributor responsible for the commit;

• Commit:  the  detailed  activity  a  committer  was 
responsible for;

• Date: day, month and year of change.

The field Commit type includes: File affected (the name of 
the file created or directly modified by a change), and Module 
(the name of the subsystem a file belongs to). As mentioned 
above,  two types  of changes were considered in the present 
study: the creation of an element (a file or a module), and the 
modification of existing files or modules. After performing the 
extraction, we arranged the resulting data on a SQL table. It 
made  up  to  some  72,000  entries,  including  new  element 
creations and changes. 

Apart  from  the  basic  information  on  the  authorized 
committers to the Moodle CMS, several cases were identified 
were  sporadic  contributors  (i.e.,  without  a  committer  ID) 
submitted  their  code  patches  directly  to  the  core  Moodle 
developers. This additional information was also extracted, and 
some  additional  cleansing  performed:  for  example,  obvious 
variations of people ID’s,  in this case their  email  addresses, 
were mapped to one unique ID. Finally, the email address ID’s 
relating to a known committer ID were converted into a single 
ID.

B. Metrics choice and description

The analysis of the Moodle system involved two types of 
metrics, used differently to discuss the research questions:

• Input  metrics  (person/months): the  effort  of 
developers was evaluated by counting the number of 
unique  (or  distinct,  in  a  SQL-like  terminology) 
developers  during  a  specific  interval  of  time.  The 
chosen  granularity  of  time  was  based  on  months: 
different approaches may be used, as on a weekly or 
on  a  daily  basis,  but  it  is  believed  that  the  month 
represented a larger grained unit of time to gather the 
number of active developers. This metrics was used to 
evaluate the first research question. For example, in 
Feb 2006, it was found that the core Moodle system 
had  22  distinct  and  active  (i.e., committing  to  the 
CMS “moodle” trunk) developers. This accounts for 
22 person/months.

• Output  metrics  (modules/months): the  work 
produced was evaluated by counting the touches to 
files  or  modules  during  the  same  interval  of  time. 
Smaller-grained metrics, like lines of code, were not 
considered in this study: evaluating how many lines of 
code  are  produced  by  OSS  developers  could  be 
subject to strong limitations2. In the following sections 
this metric will be used also as an indicator of parallel 

1 The  web  interface  to  the  Moodle  CVS  is  browsable  at 
http://cvs.moodle.org/

http://cvs.moodle.org/


development work performed in successful projects. 
As  in  the  example  above,  it  was  detected  that  594 
distinct PHP files (contained in 163 distinct modules 
and sub-modules),  were added or modified (but  not 
deleted)  in  Feb  2006.  This  accounts  for  163 
modules/months.

In  order  to  produce  a  realistic  set  of  initial  data,  these 
metrics were monthly filtered, by excluding from the “Input” a 
specific  committer  ID  (“moodlerobot”)  responsible  for 
automatic, uninteresting, commits (around 2,000 overall); and 
by excluding from the “Output” any activity concerning the 
“Attic” CMS location (which denotes deleted source material).

C. Results

This  section  presents  the  main  results  obtained  in  the 
analysis of the commits and the committers' activity. The first 
set of results will summarize the analysis performed to measure 
the  overall  number  of  active  developers,  and  the  output 
produced. The second part will instead produce a description of 
the activities of one of the most productive commercial partner 
within the Moodle community3 As an high-level objective, it 
was studied  whether  it  was possible  to  trace the activity of 
commercial  stakeholders  in  the  development  of  this  OSS 
system. In particular the results of Commercial OSS systems 
(Eclipse,  as  reported  in  [22])  are  compared  with  those  in 
Moodle as an example of Community OSS system.

CMS 
entries

In 
CMS 
since

Distinct 
developers 
(overall)

KSLOC
s (as of 
09/09)

Files 
(as of 
09/09)

moodle 77,100 11/01 120 293 1,587

patches 10,029 07/03 48 266 1,330

plugins 31,768 09/03 113 538 3,330

tools 1,981 02/04 23 38 104

Table 1: summary of characteristics of the studied directories  
in Moodle's CMS

1) Input as Applied Effort
Core Moodle. The first attempt to collect data and results 

regarding the active developers of Moodle pertained only the 
“core” Moodle directory as found in the CMS server.  Apart 
from  this  central  component  (which  makes  for  the  public 
releases), another folder (“contrib”) contains various code by 
contributors  (organised  in  “plugins”,  “patches”  and  “tools”), 
but is not wrapped in the official release.

As visible in Figure 2 (top), the first part of the evolution of 
the  “core”  system  has  the  typical  results  of  an  early  (or 
“cathedral” [5]) OSS project [8]: few contributors are visible in 
the  first  months,  often  the  main  Moodle  developer  (Martin 

2 Lines of code produced are biased by the skills of the developer, 
the  programming language  and,  in  general,  the  context  of  the 
modifications.

3 Catalyst, http://www.catalyst.net.nz/

Dougiamas),  and  few  other  sporadic  contributors  who  are 
being active in a discontinuous way.

A second, more sustained period is then visible in the top 
part  of  Figure 2:  the number of  active developers  follows a 
growing  trend  with  peaks  of  over  30  developers  a  month 
contributing to the “core” Moodle.  Albeit  local  maxima and 
minima appear frequently, the underlying increasing trend of 
the number of active developers reveals a “bazaar” phase [5], 
where the barriers to entry are more easily overcome by new 
contributors.

A third phase is  finally present: during the last  observed 
year, the number of active developers gradually started to peak 
off, and eventually to decrease. A further investigation into this 
revealed that one of the Moodle partners (Catalyst) gradually 
pulled  its  contributors  from  the  development  of  the  “core” 
Moodle.

Aggregate Moodle. The bottom part of Figure 2 is instead 
an  aggregate  view  of  all  the  contributors  and  developers 
working on both the “core” and the “contrib” components of 
Moodle. The more loose procedure to contributing to a non-
core  patch  is  visible  in  a  continuously  growing  trend,  that 
summed  up  to  the  “core”  activity,  still  produces  a  growing 

trend. The interpolation with a linear equation produces an 
adequate goodness-of-fit (R2=0.9).

As  reported  above,  one  of  the  most  active  committers 
among  the  Moodle  partners  (Catalyst)  lately  reduced  the 

Figure  2: active developers to the “core” Moodle (above) and the  
“aggregated” (core + contrib) Moodle system (below)

04/01 08/02 12/03 05/05 09/06 02/08 06/09

0

5

10

15

20

25

30

35

Moodle core --input

months

04/01 08/02 12/03 05/05 09/06 02/08 06/09

0

10

20

30

40

50

60

f(x) = 0.02x - 642.62
R² = 0.9

Moodle complete --input

months

http://www.catalyst.net.nz/


amount of effort to be contributed to the community. Currently, 
a major factor that determines success or failure of an FLOSS 
initiative is whether its project management is in the hands of a 
commercial  software  corporation  (the  “Commercial  OSS 
projects”  of  Figure 1,  [6]).  For  example,  the success  of  the 
Eclipse  integrated  development  platform  can  be  largely 
attributed to the project management of IBM. As demonstrated 
by the analysis of socio-technical relationships in the software 
change history of Eclipse [22], the upper part of the developer 
hierarchy is dominated by IBM staff. If this company decided 
to remove its support, the community around it would lose key 
developers and expertise.

In the Moodle analysis, the OSS community is in charge of 
most  of  the  decision  and  development  processes  (as  in 
“Community OSS projects”, [6]): if a commercial partner fails 
to provide its support, the development process does not come 
to a stop. This will be further validated in the Output section 
below.

2) Output as Produced Modules and Files
Similarly to  what  is  done above,  in  this  subsection it  is 

studied the amount of output produced on a monthly basis. In 
particular  the  empirical  analysis  concerned  the  amount  of 
“distinct” modifications to “unique” tuples (file, module): even 
if a specific file in a module was modified several times in a 
given month, the produced output would be only counted once. 
In the following example (Table 2), 5 modifications happened 
in  06/2002,  4  of  which  affecting  the  tuple  (index.php, 
/cvsroot/moodle/moodle),  and  one  the  tuple  (config-dist.php, 
/cvsroot/moodle/moodle).  Since only the  distinct  tuples  were 
considered in the analysis, from this example an output of 2 
modifications  is  recorded  for  the  month  06/2002.  Below  a 
summary  of  the  findings  regarding  the  output  (both  in  the 
“Core” and in the “Aggregated” system) is given.

month year module file Developer 
ID

6 2002 /cvsroot/moodle/moodle config-
dist.php

martin

6 2002 /cvsroot/moodle/moodle index.php martin

6 2002 /cvsroot/moodle/moodle index.php martin

6 2002 /cvsroot/moodle/moodle index.php martin

6 2002 /cvsroot/moodle/moodle index.php martin

Table 2: excerpt from the CMS log of Moodle

Core Moodle.  As distinguished above, it was first studied 
what visible output was obtained in the “core” Moodle system 
(first  row  of  Table  1),  by  analyzing  the  additions  and  the 
modifications  of  PHP code  in  the  “moodle”  CMS directory 
alone. The results are shown in the top part of Figure 3: the 
initial phase mirrors the presence of just one developer, while 
the increasing amount of developers committing to the code 
becomes  more  and  more  evident  with  regular  cycles  of 
productivity, where the maximum peaks reflect the presence of 
public releases.

Aggregate Moodle. Repeating the process above, also the 
other contributed modules were analyzed with respect  to the 
output obtained, and summarized in the bottom part of Figure 
3. The overall distribution of changes throughout the Moodle 
evolution  proceeds  on  a  linear  trend  (R2=0.78):  in  recent 
months, the inflection of productivity in the “core” Moodle has 
been balanced by the late growth of contributions to the other 
parts. That reflects a more and more distributed participation to 
the Moodle development, and a low barrier to entry, but several 
of the proposed modules have not been selected for inclusion in 
the main Moodle system.

3) The Catalyst involvement
As  a  further  analysis,  it  was  studied  the  specific 

involvement of Catalyst,  a Moodle partner which has so far 
provided a large number of modifications to the core Moodle, 
by deploying several of its own developers who became active 
contributors within the community. 

Since March 2004 Catalyst had from one developer up to a 
maximum of 6 developers (March 2005) working on Moodle. 
The profile of the contributed outputs is visible in Figure 4, and 
can be defined as a “seasonal” effort pattern, meaning a large 
contribution on a very specific time interval, and lower levels 
of effort before and after it.  Also the modules developed by 
Catalyst are specifically targeted to a quite focused part of the 
core  of  Moodle:  Figure  6 displays  the  distribution of  effort 
along  the  modules,  and  it  becomes  evident  how  Catalyst 
wanted  to  be  involved  early  on  in  the  development  of  the 

Figure 3: distinct tuples (file, module) as output produced in  
the “core” alone (above) and the overall Moodle (below)

04/01 08/02 12/03 05/05 09/06 02/08 06/09

0

200

400

600

800

1000

1200

Moodle core --output

months

04/01 08/02 12/03 05/05 09/06 02/08 06/09

0

200

400

600

800

1000

1200

1400

f(x) = 0.32x - 11939.14
R² = 0.78

Moodle complete -output

months



SCORM  (Sharable  Content  Object  Reference  Model) 
collection of specifications.

The two Figures 4 and 6 show that the involvement of 
commercial  entities  follows  the  same  principle  of  attracting 
individuals into an OSS community: they start to contribute to 
the periphery, then become more confident with the code, and 
have a peak of productivity, then leave [19]. 

The  second  observation  shows  that  the  “Community 
FLOSS” projects (from Figure 1) are not overly dependent on 
specific commercial stakeholders: the reduction of effort and 
output by Catalyst does not shrink the overall productivity. On 
the contrary, Commercial OSS projects (e.g., Eclipse), led and 
managed  by specific  companies  (e.g.  IBM)  would  probably 
collapse when the existing backing company decided to pull 
away its support.

D. Discussion

The growth patterns of the Moodle system should not be 
considered  as  “exceptional”,  but  put  in  the  context  of  a 
“framework  of  evolution”  [2].  It  is  claimed  that  Moodle 
achieved two main transitions in its lifecycle: first, it overgrew 
the average projects in an OSS repository as SourceForge, so it 
needed  to  be  pulled  away  from  that  repository;  second,  it 
achieved a transition from a “plain OSS” to a  “Community 
OSS”  project  (as  per  the  definitions  of  Figure  5).  The  two 

transitions together have made this project a success, and they 
also put the foundations of “trust” in this system.

Also the Moodle project achieved such a transition: after 5 
years of hosting on SourceForge, the Moodle team felt that the 
project had “outgrown it”4, so they moved to their dedicated 
web-server,  and own CMS facility,  in turn showing that  the 
project has achieved a status similar to flagship OSS projects 
(like Apache or Linux and the such). This transition happened 
after  a  major  interest  of  governmental  and  commercial 
stakeholders,  which  on  the  other  hand  helped  Moodle  to 
become  a  successful  “Community  OSS”  project,  with  an 
increasing number of sponsors and partners that increased the 
perceived trust in it.

IV. CONCLUSIONS
This paper has proposed a quantitative study of the Moodle 

e-learning  platform.  This  project  started  as  a  small  project 
managed  by  only  one  developer  on  the  SourceForge  OSS 
portal, and is now used internationally, sponsored by several 
commercial partners and supported by even more commercial 
companies.  Its  usage  and needs have grown to the  point  to 
require its  own servers,  and to gradually being pulled away 
from the SourceForge hosting.

This paper proposed the account of the largest e-learning 
provider  in  the  UK,  the  Open  University,  which  in  2005 
migrated its technology to use the Moodle platform. In turn, 
this  had  the  effect  of  becoming an  active participant  in  the 
development  process,  and  to  increase  the  popularity  and 
visibility of Moodle as a widely-spread solution for e-learning 
needs. The study of the evolution of Moodle (from its inception 
up  to  Sept  2009)  visualised  a  recurring  trend  for  FLOSS 
projects: a first stage of development where few developers are 
responsible for most of the activity, followed by a continuous 
growth  that  appears  to  be  self-sustained.  Even  when  one 
Moodle partner discontinued its  contributions to the Moodle 
core, the development still appears to be not affected.

As a corollary, this project achieved a double transition: as 
mentioned in a previous research work, Moodle transited from 
an  Open  Forge  (i.e.  SourceForge)  to  a  more  defined,  more 
successful status, as experienced by OSS projects transiting to 
more renowned and quality-stringent  OSS portals.  Secondly, 
starting from a community-driven OSS, Moodle has become a 
Community  OSS  project,  where  several  commercial 
stakeholders start to act as sponsors of the project, increasing 
its visibility and establishing it  as a de-facto standard in the 
domain.

V. REFERENCES
[1] A.  Baravalle,  S.  Chambers.  Market  Relations.  Non-Market  Relations 
and Free Software. PsychNology Journal, 5(3):299–309, 2007.

[2] K.  Beecher,  A.  Capiluppi,  and  C.  Boldyreff.  Identifying  exogenous 
drivers and evolutionary stages in FLOSS projects.  Journal of Systems and 
Software 82(5):739-750, 2009.

[3] A. Bonaccorsi and C. Rossi.  Altruistic  individuals,  selfish firms? The 
structure of motivation in open source software. First Monday, 1(9), January 
2004.

[4] A. Capiluppi. Models for the evolution of OS projects. In Proc. of Intl 
Conference on Software Maintenance (ICSM 2003),  pp.65-74, Amsterdam, 
Netherlands.

4 “Moodle CVS has moved off Sourceforge”, news at 
http://sourceforge.net/projects/moodle/

Figure 4: output produced by one of the partners (Catalyst)

04/01 08/02 12/03 05/05 09/06 02/08 06/09

0

10

20

30

40

50

60

70

80

90

Output by Catalyst

Figure 5: modules contributed by Catalyst

course

datatheme forum glossary

lib
search

scorm

modules worked on by Catalyst

http://sourceforge.net/projects/moodle/


[5] A. Capiluppi, M. Michlmayr (2007). From the Cathedral to the Bazaar:   
An Empirical Study of the Lifecycle of Volunteer Community Projects. In:   
Feller,  J.,  Fitzgerald,  B.,  Scacchi,  W.,  Silitti,  A.  (Eds.),  Open  Source 
Development, Adoption and Innovation, pp.31–44

[6] E.  Capra,  C.  Francalanci,  and  F.  Merlo.  An  empirical  study  on  the 
relationship  between  software  design  quality,  development  effort  and 
governance in open source projects. IEEE Trans. Softw. Eng., 34(6):765–782, 
2008.

[7] J. Dalziel. Open standards versus open source in e-learning: The easy 
answer may not be the best answer. Educause Quarterly, 4:4–7, 2003.

[8] Y. Fang, and D. Neufeld. Understanding Sustained Participation in Open 
Source  Software  Projects.  Journal  of  Management  Information  Systems, 
25(4):9-50, 2009.

[9] J. Feller, B. Fitzgerald, F. Hecker, S. Hissam, K. Lakhani, A. van der 
Hoek (eds.). Characterizing the OSS process, ACM, 2002.

[10] M.  Fischer,  M.  Pinzger,  and  H.  Gall.  Populating  a  release  history 
database  from  version  control  and  bug  tracking  systems.  In  Proc  of  Intl 
Conference on Software Maintenance (ICSM 2003),  pp.23-32, Amsterdam, 
Netherlands, 2003.

[11] D.  M.  German.  An  Empirical  Study  of  Fine-Grained  Software 
Modifications. In Proc. of Intl Conference on Software Maintenance (ICSM 
2004), Chicago, US.

[12] D. M. German, The gnome project: a case study of open source, global 
software  development,  Software  Process:  Improvement  and Practice  8  (4): 
201–215, 2004.

[13] A.  Hemetsberger,  C.  Reinhardt,  Sharing  and  creating  knowledge  in 
open-source  communities  :  The  case  of  kde,  in:  Procedings  of  the  Fifth 
European  Conference  on  Organizational  Knowledge,  Learning  and 
Capabilities (OKLC), Insbruck University, 2004.

[14] S. Koch, G. Schneider, Effort, cooperation and coordination in an open 
source software project: Gnome, Information Systems Journal 12 (1) (2002) 
27–42.

[15] M. Kuniavsky,  S. Raghavan, Guidelines are a tool:  building a design 
knowledge management system for programmers, in: DUX ’05: Proceedings 
of the 2005 conference on Designing for User eXperience, AIGA: American 
Institute of Graphic Arts, New York, NY, USA, 2005.

[16] P. B.  de Laat.  Governance  of  open source software:  State of  the art. 
Journal of Management and Governance, 11(2):115-117, 2007/

[17] T. Mens, J. F. Ramil, and M. W. Godfrey. Analyzing the evolution of 
large-scale  software:  Guest  editorial.  Journal  of  Software Maintenance and 
Evolution, 16(6):363-365, 2004.

[18] M. Michlmayr,  A. Senyard. A statistical analysis of defects in Debian 
and strategies for improving quality in free software projects, in: J. Bitzer, P. J. 
H. Schrder (eds.),  The Economics of  Open Source Software Development, 
Elsevier, Amsterdam, The Netherlands, 2006.

[19] G. Robles and J. M. González-Barahona. Contributor turnover in libre 
software projects. In E. Damiani, B. Fitzgerald, W. Scacchi, M. Scotto, and G. 
Succi, editors, OSS, volume 203 of IFIP, pages 273--286. Springer, 2006. 

[20] G. Robles, S. Duenas, J. M. González-Barahona. Corporate involvement 
of libre software: Study of presence in Debian code over time, in: J. Feller, B. 
Fitzgerald, W. Scacchi, A. Sillitti (eds.), OSS, vol. 234 of IFIP, Springer, 2007.

[21] N. Smith, A. Capiluppi, and J. F. Ramil. Agent-based simulation of open 
source  evolution.  Software  Process:  Improvement  and  Practice,  11(4):423-
434, 2006.

[22] M.  Wermelinger,  Y.  Yu,  and  M.  Strohmaier.  Using  formal  concept 
analysis to construct and visualise hierarchies of socio-technical relations. In 
Proc. of the 31st International  Conference on Software Engineering, 18-24 
May 2009, Vancouver, Canada.


	I.  Introduction
	II. MOODLE
	A. MOODLE at the Open University

	III. QUANTITATIVE STUDY
	A. Raw data extraction and filtering
	B. Metrics choice and description
	C. Results
	1) Input as Applied Effort
	2) Output as Produced Modules and Files
	3) The Catalyst involvement

	D. Discussion

	IV. CONCLUSIONS
	V. REFERENCES

