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Abstract

Graph-based methods have been widely used for the analysis of biological networks. Their application to metabolic
networks has been much discussed, in particular noting that an important weakness in such methods is that
reaction stoichiometry is neglected. In this study, we show that reaction stoichiometry can be incorporated into
path-finding approaches via mixed-integer linear programming. This major advance at the modeling level results in
improved prediction of topological and functional properties in metabolic networks.

Background
The use of graph theory in the analysis of biological net-
works has been extensive in the past decade [1]. Particu-
larly, in metabolic networks different relevant topics
have been examined using the rich variety of graph-the-
oretic concepts, ranging from topological properties
[2-5], evolutionary analysis [6-8], pathway analysis
[9-13], transcriptional regulation [14-16], functional
interpretation of ‘omics’ data [17-20] and prediction of
novel drug targets [21-23].
Graph-based methods start by converting the metabolic

network into an appropriate graph. Different representa-
tions are possible here: i) metabolite graphs, where nodes
are metabolites and arcs represent reactions linking an
input and output metabolite; ii) reaction graphs, in which
nodes are reactions and arcs represent intermediate meta-
bolites shared by reactions; iii) bipartite graphs, where
nodes are reactions and metabolites, while arcs link meta-
bolites to reactions (for substrates) and reactions to meta-
bolites (for products). Note here that each type of graph
can be either directed or undirected. A deeper introduc-
tion to such graphs can be found in Deville et al. [24].
Importantly, graph-based methods rely on the defini-

tion of connectivity based on paths, that is, two nodes
in the graph are connected (or not) depending upon
whether (or not) we have a path linking them. This

definition of connectivity is debatable, however, particu-
larly when it is claimed that such a path is a competent
metabolic pathway, as recently discussed [25-27]. In this
context, the major criticism raised as to path-finding
methods is that they neglect reaction stoichiometry and
there is, therefore, no guarantee that any path found can
operate in sustained steady-state.
The steady-state condition requires the definition of

the boundary of the metabolic network under study.
Metabolites inside the boundary of the network, typically
called internal metabolites [28], must be in stoichiometric
balance. Balancing does not apply to metabolites outside
the boundaries of the system (external metabolites),
which are typically input/output metabolites and (some-
times) cofactors. In other words, for internal metabolites,
their production and consumption (if possible) must be
captured with the reactions in the network under study.
The steady-state condition and its underlying bound-

ary definition are critical for the performance of any
method for analyzing a metabolic network and ignoring
it may provide misleading insights. A nice illustration of
this is the one presented in the work of de Figueiredo et
al. [25], which (unsuccessfully) tested the ability of path-
finding methods to answer the question as to whether
(or not) fatty acids can be converted into sugars. Klamt
et al. [29] also recently emphasized this issue for differ-
ent biological networks.
Note here that elementary flux modes (and extreme

pathways) represent a more general and elegant concept
for metabolic pathways than paths [28,30]. Their compu-
tation is, however, much more expensive in large meta-
bolic networks than paths and, though different efforts
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have been made in this area [31-33], much research is
still needed to make elementary flux modes a practical
tool for the analysis of large metabolic networks.
Given the limitations discussed above, a novel theoreti-

cal concept termed flux paths is introduced here. A flux
path is a simple path (in the graph-theoretical sense, so no
nodes revisited) from a source metabolite to a target meta-
bolite able to operate in sustained steady-state. In essence,
flux paths incorporate reaction stoichiometry into tradi-
tional path-finding methods [4,7,34,35]. By means of this
concept we show that the path structure of metabolic net-
works is substantially altered when stoichiometry is con-
sidered. In addition, we illustrate (with several examples)
that flux paths offer new perspectives for the analysis of
metabolic networks at the topological and functional
levels. The determination of flux paths requires going
beyond graph theory via mixed-integer linear program-
ming. We present below details as to our mathematical
optimization model for determining K-shortest flux paths
between source and target metabolites.

Results and discussion
Mathematical model
Assume we have a metabolic network that comprises R
reactions and C metabolites. Note here that reversible
reactions contribute two different reactions to the meta-
bolic network. For this reason we can regard all fluxes as
taking positive values. Let Scr be the stoichiometric coeffi-
cient associated with metabolite c (c = 1,...,C) in reaction r
(r = 1,...,R). As usual in the literature [28], input metabo-
lites have a negative stoichiometric coefficient, whilst out-
put metabolites have a positive stoichiometric coefficient.
We here used a metabolite (directed) graph representa-

tion of the network where nodes are metabolites and arcs
link the input and output metabolites of each reaction.
Figure 1a shows an example of the metabolite graph repre-
sentation of the phosphoenolpyruvate (PEP): pyruvate
(Pyr) phosphotransferase system for the uptake of glucose.
Suppose that we are concerned with finding a flux

path from a source metabolite a to a target metabolite
b. As mentioned above, a flux path is a simple path
from the source metabolite a to the target metabolite b
able to operate in steady-state. We present below our
mathematical optimization model for flux paths.

Path finding constraints
We need to decide the arcs involved in the flux path
from the source metabolite a to the target metabolite b.
This fact is represented with a zero-one (binary) variable
uij, where uij = 1 if the arc i®j linking metabolite i (i =
1,...,C) to metabolite j (j = 1,...,C) is active in the flux
path, 0 otherwise.
Deletion of arcs from the metabolic graph is standard

practice in path-finding methods [4,7,34,35]. We
removed arcs not involving an effective carbon
exchange. Carbon exchange is indeed essential for meta-
bolic purposes. For this reason, we henceforth use the
term carbon flux paths (CFPs).
Note here that a similar criterion has been used in

[35]. In this work, however, input and output metabo-
lites can have any type of atom or atom groups in
common. This criterion is illustrated in Figure 1b,
where PEP donates a phosphate group to glucose (D-
Glc). The focus on carbon atoms makes our approach
more restrictive, as observed in Figure 1c, which shows
that there is only effective carbon exchange between
D-Glc and glucose 6-phosphate (G6P), and PEP and
Pyr.
Let dijr be a binary (0/1) coefficient establishing

whether (or not) there exists an effective carbon
exchange between input metabolite i (Sir < 0) and out-

put metabolite j (Sjr > 0) in reaction r. If
R∑

r=1
dijr = 0, so

there is no reaction involving metabolites i to j in car-
bon exchange, then uij is also fixed to zero.
In the following lines we present constraints needed to

obtain an appropriate directed path from the source
metabolite (a) to the target metabolite (b). Equation 1
ensures that one arc leaves a and one arc enters b;
equation 2 that no arc enters a and no arc leaves b:

C∑

j=1

uαj = 1 and
C∑

i=1

uiβ = 1 (1)

C∑

i=1

uiα = 0 and
C∑

j=1

uβj = 0 (2)

Equation 3 ensures that the number of arcs entering a
metabolite k is equal to the number leaving; Equation 4
ensures that a metabolite cannot be revisited in the path:

C∑

i=1

uik =
C∑

j=1

ukj, k = 1, ..., C; k �= α, β (3)

C∑

i=1

uik ≤ 1, k = 1, ..., C (4)

PEP D-Glc

Pyr G6P

PEP D-Glc

Pyr G6P

PEP D-Glc

Pyr G6P

(a) (b) (c)

Figure 1 Metabolite graph representation of the PEP: Pyr
uptake system of glucose. (a) Metabolite graph; (b) metabolite
graph restricted to atomic exchanges; (c) metabolite graph
restricted to carbon exchanges. D-Glc, glucose; G6P, glucose 6-
phosphate; PEP, phosphoenolpyruvate; Pyr, pyruvate.
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Stoichiometric constraints
Equations 1 to 4 define a simple path that preserves car-
bon exchange in each of its intermediate steps. We need
to guarantee that this path can work in sustained
steady-state. As will be shown below, to do this, it is
required to find a steady-state flux distribution able to
involve the path. We here introduce variables and con-
straints needed to define the steady-state flux space.
Any steady-state flux distribution satisfies Equation 5

for the set of internal metabolites (I). We denote vr the
non-negative (continuous) flux associated with each
reaction, r = 1,...,R:

R∑

r=1

Scrvr = 0, ∀c ∈ I (5)

External metabolites (E) are not subject to balancing
constraints. If a specific growth medium (Em) is intro-
duced, however, metabolites not involved in such a
medium can be produced, but cannot be consumed, as
observed in Equation 6:

R∑

r=1

Scrvr ≥ 0, ∀c ∈ E, c /∈ Em (6)

For convenience, we introduced a zero-one (binary)
variable zr (r = 1,...,R), which defines the reactions
involved in a steady-flux distribution, namely zr = 1 if
reaction r has a non-zero flux, 0 otherwise (r = 1,...,R).
We need constraints relating the reaction variables zr
and the flux variables vr. Equation 7 ensures that no
flux traverses a reaction r if zr = 0:

zr ≤ vr, r = 1, ..., R and vr ≤ Mzr, r = 1, ..., R (7)

In addition, it guarantees that vr is non-zero if zr = 1.
Here we have scaled fluxes so that the maximum flux is
M and the minimum (non-zero) flux is 1. This does not
constitute an issue if we consider M sufficiently large.
As we split reversible reactions into two irreversible

steps, we need to prevent a reaction and its reverse from
appearing together in any steady-state flux distribution,
as observed in Equation 8, where the set B = {(l,μ)| reac-
tion l and reaction μ are the reverse of each other}:

zλ + zμ ≤ 1 ∀(λ, μ) ∈ B (8)

Current path-finding approaches deal with this situa-
tion indirectly, namely by removing computed paths
involving a reaction and its reverse.
Equations 5 to 8 define the steady-state flux space for

a particular metabolic network.
Linking path finding and stoichiometric constraints
As noted above, it is required that the path defined by
constraints 1 to 4 can operate in a steady-state flux dis-
tribution. For this purpose, we need to guarantee that if

we use an arc i®j in a path, then some reaction r with
dijr = 1, that is, involving effective carbon exchange
between i and j, is contained in the steady-state flux dis-
tribution. This is a critical point in our formulation,
which makes it different from previous path-finding
methods. With this condition we naturally link the topo-
logical and (steady-state) flux planes. This linking con-
straint is reflected in Equation 9:

R∑

r=1,dijr=1

zr ≥ uij i = 1, ..., C; j = 1, ..., C; i �= j (9)

Equation 9 ensures that if an arc i®j is active in the
CFP (so uij = 1), then at least one reaction r containing
this arc in carbon exchange (so dijr = 1) is forced to be
active. By forcing zr to be 1 there will be a non-zero
flux associated with the reaction due to Equation 7. An
important point to note from Equation 9 is that it
allows reactions to be active even if they are not
involved in the CFP. In other words reactions can be
active with non-zero flux (to satisfy the requirements of
steady-state, Equation 5) but without any of their input/
output metabolites being involved in the CFP.
To illustrate constraint 9, consider the example meta-

bolic network in Figure 2, which involves seven reac-
tions and nine metabolites. The set of internal
metabolites is I = {A,B,C,D,E,F}. Assume now that we
are concerned with finding a CFP between metabolites
A and F. We have only one possible path, namely
A®B®C®E®F (uAB = uBC = uCE = uEF = 1). Due to
Equation 9, reactions 2, 3, 4 and 5 are active, that is, z2
= z3 = z4 = z5 = 1 and, therefore, via Equation 7, their
flux will be non-zero. To balance such a path and satisfy
the steady-state condition, Equation 5, we require three
additional reactions off-path: reaction 1 for the produc-
tion of A, reaction 7 to consume F and reaction 6 to
produce D. If these off-path reactions are active, the

Aext

E

FFext

DDext

v1
v3v2

v4

v5

v6

v7

A B C

Figure 2 Example flux path in a toy metabolic network.
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path from A to F is able to work in sustained steady-
state and, therefore, it is a flux path, as denoted in the
Background section. We are obviously considering that
Aext and Dext are in the growth medium. If we remove
one of these metabolites from the medium, though we
still have a path from A to F at the graph-theoretical
level, no flux path will exist, since the path cannot work
in sustained steady-state.
Objective function
Equations 1 to 9 define the set of constraints for the
determination of any CFP between metabolite a and
metabolite b. However, our purpose here is to find the
shortest CFP, as observed in Equation 10:

Minimize
C∑

i=1

C∑

j=1,j �=i

uij (10)

Enumerating constraint
As in other path-finding approaches, we may be inter-
ested in computing not only the shortest CFP, but the
k-shortest CFPs (k = 1,..,K). Since we have an objective
relating to finding the shortest CFP, we need to add
constraints eliminating previously found CFPs, as shown

in Equation 11. In that constraint Uk
ij is the binary solu-

tion value for the uij variable in the k-shortest CFP:

C∑

i=1

C∑

j=1,j �=i

Uk
ijuij ≤

C∑

i=1

C∑

j=1,j �=i

Uk
ij − 1 k = 1, ..., K - 1 (11)

Validation
This section is organized as follows. By means of several
well-documented examples, we first illustrate the bio-
chemical relevance of particular constraints in our CFP
approach. We then carry out a side-by-side comparison of
our CFP approach with current path-finding approaches.
Path-finding comparison
As shown in the ‘Mathematical model’ section, the path-
finding strategy used in our CFP approach is based on
using arcs involving effective carbon exchange and
imposing the reversibility constraint, Equation 8. In this
sub-section we illustrate the importance of these factors
and show that a path-finding approach incorporating
them outperforms existing methods in the literature.
For this analysis, the effect of stoichiometry is not con-
sidered, as is common in existing approaches. Its effect
will be separately considered in detail in the next sub-
section (’Effect of stoichiometry’). Therefore, for this
analysis, Equations 5 and 6 were ignored.
Effective carbon exchange Figure 3a shows two paths
from bicarbonate (HCO3) to cytidine-diphosphate
(CDP) in Escherichia coli. The long path is a well-

known (canonical) metabolic pathway for de novo pyri-
midine biosynthesis. The short path is a shortcut via
ADP, which has no biological relevance. The removal of
arcs not involving carbon exchange, as done in our CFP
approach, considerably reduces the appearance of such
non-meaningful paths. Indeed, when we applied our
approach to find a CFP from HCO3 to CDP to the gen-
ome-scale metabolic network of E. coli [36], the long
pathway was directly recovered. Note here that we
manually removed arcs not involving carbon exchange
in the network of Feist et al. [36]. The resulting list of
arcs can be found in Additional file 1. This same bio-
chemical example was recently discussed in Faust et al.
[13], under different strategies. In the best case scenario,
they require additional information as to the intermedi-
ate metabolites to recover this pathway. The fact that
our approach can recover the pathway without inter-
mediate metabolite information shows how effective the
carbon exchange constraint is.
Reversibility Path-finding methods typically split rever-
sible reactions into two irreversible steps. In contrast to
current approaches [13], in our CFP approach we pre-
vent two such irreversible steps from being active in the
same path, as observed in Equation 8. To illustrate the
importance of this constraint, we analyzed the shortest
path from D-Glc to Pyr in E. coli, which is the Entner-
Doudoroff pathway, as shown in the left-hand side of
Figure 3b. When we applied our CFP approach from D-
Glc to Pyr without including Equation 8, we obtained
the path in the right hand-side of Figure 3b (D-
Glc®AcGlc-D®AcCoA®L-Mal®Pyr). This solution
has no biochemical meaning, since the first and second
step in that path is a cycle involving the forward and
backward step of the reversible reaction catalyzed by D-
glucose O-acetyltransferase (GLCATr: D-Glc + AcCoA
↔ AcGlc-D + CoA). By adding Equation 8 this path is
removed from the solution space and our CFP approach
directly obtains the Entner-Doudoroff pathway.
Side-by-side comparison In order to analyze the perfor-
mance of any path-finding method, it is usual in the lit-
erature to evaluate its ability in recovering well-known
metabolic pathways. For this purpose, we used a data-
base of 40 reference E. coli (metabolic) pathways pre-
viously discussed in Planes and Beasley [37] (these 40
pathways are listed in Additional file 2).
The input metabolic graph was built from the gen-

ome-scale metabolic network of E. coli [36]. We com-
puted the 100 shortest CFPs between the source and
target metabolites of each of the 40 reference pathways.
As mentioned above, stoichiometric constraints are not
considered in this sub-section since the aim is to estab-
lish the effectiveness of carbon exchange when com-
bined with reversibility in path finding. To compare the
100 shortest CFPs and the reference pathway, we used

Pey et al. Genome Biology 2011, 12:R49
http://genomebiology.com/2011/12/5/R49

Page 4 of 14



the recovery rate. Recovery is a 0/1 parameter, being 1 if
a CFP fully matches with the reference pathway, 0
otherwise.
A similar analysis was conducted for existing path-

finding methods [4,7,34,35]. These methods make use of
different strategies to provide biochemical meaning to
the computed paths. For comparison, we classified these
strategies into different groups: the first strategy
(denoted ‘topology’) involves the use of an unadjusted
metabolic graph; the second strategy (denoted ‘hubs’)

adjusts the metabolic graph by removing any arc invol-
ving a highly connected metabolite (hubs) [7,34] (we
took the list of hubs from Planes and Beasley [37]); the
third strategy (denoted ‘connectivity’) assigns weights to
metabolites according to their connectivity in an unad-
justed metabolic graph, where connectivity is defined to
be the number of reactions involving a metabolite [9].
Finding K-shortest paths is substituted here by finding
K- lightest paths, that is, the sum of weights of arcs
involved in the path is minimized.
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Figure 3 Effect of carbon exchange and reversibility constraints. (a) De novo biosynthesis of pyrimidine ribonucleotides in E. coli discussed
in Faust et al. [13]. (b) Shortest pathway from glucose to pyruvate in E. coli. 2DDG6P, 2-Dehydro-3-deoxy-D-gluconate 6-phosphate; 6PGC, 6-
Phospho-D-gluconate; 6PGL, 6-phospho-D-glucono-1,5-lactone; AcCoA, Acetyl-CoA; ACCOAC, acetyl-CoA carboxylase; AcGlc-D, 6-Acetyl-D-glucose;
ASPCT, aspartate carbamoyltransferase; CBASP, N-Carbamoyl-L-aspartate; CBP, Carbamoyl phosphate; CBPS, carbamoyl-phosphate synthase; CDP,
cytidine-diphosphate; CTPS2, CTP synthase; D-Glc, D-Glucose; DHOr-S, (S)-Dihydroorotate; DHORTS, dihydroorotase; DHORD2, dihydoorotic acid
dehydrogenase; EDA, 2-dehydro-3-deoxy-phosphogluconate aldolase; EDD, 6-phosphogluconate dehydratase; G6PDH2r, glucose 6-phosphate
dehydrogenase; GLCATr, D-glucose O-acetyltransferase; G3P, Glyceraldehyde 3-phosphate; G6P, D-Glucose 6-phosphate; GLX, Glyoxylate; HCO3,
Bicarbonate; HEX1, hexokinase; L-Asp, L-Aspartate; L-Glu, L-Glutamate; L-Gln, L-Glutamine; L-Mal, L-Malate; OMPDC, orotidine-5’-phosphate
decarboxylase; ORPT, orotate phosphoribosyltransferase; MalCoa, Malonyl-CoA; MALS, malate synthase; ME1, malic enzyme; NDPK2, nucleoside-
diphosphate kinase; NDPK3, nucleoside-diphosphate kinase; Orot, Orotate; Orot5P, Orotidine 5’-phosphate; PGL 6-phosphogluconolactonase;
PRPP, 5-Phospho-alpha-D-ribose 1-diphosphate; Pyr, Pyruvate; UMPK, UMP kinase.
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Note here that there are path-finding strategies that
use structural atomic mapping information. These
approaches can be classified into two different groups.
In the first group atomic mapping is used to build the
metabolic graph, that is, an input metabolite is linked to
an output metabolite in a given reaction if they share an
atom mapping. In other words, an arc between a given
pair of input/output metabolites exists if they have
atoms in common in at least one reaction. The work of
Faust et al. [35], based on the RPAIR database [38], is a
reference example for these approaches. The effective
carbon exchange strategy used in our CFP approach
also falls into this group. However, it is slightly more
restrictive than the approach presented in Faust et al.
[35], since we exclusively focus on carbon atoms, that is,
an arc between a given pair of input/output metabolites
exists if they have carbon atoms in common in at least
one reaction.
In the second group atomic mapping is used to guar-

antee that the pathway target metabolite involves at
least one atom from the source metabolite. This concept
was first introduced by Arita et al. [39], and recently
revisited in Blum and Kohlbacher [40], and Heath et al.
[41]. We are aware that this type of approach is, in the-
ory, more restrictive than the effective carbon exchange
strategy used in our CFP approach, since we guarantee
effective carbon exchange between intermediates in the
path, but not between the source and target metabolites.
Tracing an atom from source to target metabolite, how-
ever, requires detailed knowledge of carbon atom map-
pings for each reaction. Though active research is being
undertaken into this topic, more effort is still needed to
release a fully curated and complete database for atomic
mappings in genome-scale metabolic networks, espe-
cially for those from the Biochemical Genetic and Geno-
mic (BiGG) database [42], which we are using here. For
completeness, we will include results for the most recent
approach [41], denoted as atom mapping-based strategy.
Results were extracted from the web service (named
AtomMetaNetWeb) available from Kavraki’s lab [43].
Figure 4 shows results obtained for each of the strate-

gies discussed above. It can be observed that the hubs-
based strategy increases the average recovery rate with
respect to the unadjusted metabolic graph (topology) by
around 20% on average. The atom mapping-based strat-
egy is clearly less accurate than the hubs-based strategy,
which reflects the point discussed above that current
databases for atomic mappings require further develop-
ment. In addition, the connectivity-based strategy sub-
stantially outperforms the hubs-based strategy - for
example, for k = 1, 62.5% and 32.5% of reference path-
ways are recovered, respectively. Finally, our CFP
approach outperforms the connectivity-based strategy.
This analysis shows, therefore, that our CFP approach

(even without considering stoichiometry) outperforms
existing path-finding methods.
Finally, note that other works [9,13] typically used the

accuracy rate, instead of the recovery rate, for compar-
ing the computed paths and reference pathways. We
repeated the same analysis using this parameter. As
observed in Additional file 2, a similar result to Figure 4
is obtained, which again shows that our CFP approach
outperforms current methods.
Effect of stoichiometry
To illustrate the effect of stoichiometry, we first analyze
a previously considered example from the literature,
which emphasizes the fact that some paths (at the
graph-theoretical level) cannot perform in steady-state
and therefore are not biologically meaningful. We then
repeat the side-by-side comparison presented in Figure
4 when stoichiometry is considered. To emphasize its
importance, we examine how the connectivity structure
of several metabolites is altered when stoichiometry is
considered.
Stoichiometry and infeasible paths Figure 5 shows a
simplified network from that presented in de Figueiredo
et al. [25], which considered the question as to whether
(or not) fatty acids can be converted into sugars. This
question is answered by finding pathways from acetyl-
CoA (AcCoA) to G6P. In that work, two scenarios were
analyzed, namely pathway structure from AcCoA to
G6P in the presence and absence of the enzymes of the
glyoxylate shunt (indicated by dashed lines in Figure 5).
In the metabolic network in Figure 5, when the glyoxy-
late shunt is absent, no possible pathway can exist in a
stoichiometric balance from AcCoA to G6P. As
observed in de Figueiredo et al. [25], this fact is not
properly captured by path-finding methods, since stoi-
chiometry is not taken into account. In contrast, our
CFP approach correctly answers this question, by find-
ing no paths between AcCoA and G6P when the glyoxy-
late shunt is not active. This is due to the addition of
constraint 9, which forces paths to be able to work in
sustained steady-state.
Side-by-side comparison with stoichiometry We
repeated the side-by-side comparison previously pre-
sented in Figure 4 for path-finding methods when stoi-
chiometry is considered. Similarly, we used the 40 E.
coli metabolic pathways discussed in Planes and Beasely
[37], and the E. coli metabolic network in Feist et al.
[36].
As we previously showed above (Figure 4) that our

CFP approach (without considering stoichiometry, Equa-
tions 5 and 6) outperforms existing path-finding meth-
ods, we here compare the performance of our CFP
approach with and without Equations 5 and 6 so as to
evaluate the effect of stoichiometry. For this purpose, we
analyzed our CFP approach in two different scenarios,
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namely when we used a minimal medium based on glu-
cose as a sole carbon source under oxic and anoxic con-
ditions, respectively. See Additional file 3 for details.
It is important to note that the use of a specific mini-

mal medium (as we do here) prevents some known
metabolic pathways from functioning in E. coli due to
stoichiometric constraints. For example, the tricarboxylic
acid (TCA) cycle cannot work in anoxic conditions in E.
coli. The ability to detect these false positives cannot be
accomplished without the use of stoichiometry. In light
of this, the definition of recovery (as used in Figure 4) is
slightly modified here. Recovery rate is 1 if (under a
given growth medium) the model recovers a feasible
pathway or the model excludes from the solution space
an infeasible pathway, 0 otherwise. For illustration, if
our CFP approach (incorrectly) detects the TCA cycle in
anoxic conditions, recovery would be zero. However, if
our CFP approach correctly excludes the TCA cycle
from the solution space, then recovery would be 1.
Figure 6a shows how recovery rate evolves over k-

shortest CFPs (k = 1,...,100) with/without stoichiometry
in oxic conditions. We found that in these conditions, 6
out of 40 metabolic pathways cannot work in steady-
state (Additional file 2). For example, the pathway for
the degradation of 2,5-diketo-D-gluconate is not func-
tionally feasible under these conditions since it cannot
be synthesized from glucose in E. coli [44]. This logically
cannot be captured without considering stoichiometry.
This is reflected in Figure 6a, where average recovery
rate among 100 shortest CFPs decreases to 0.85 without
stoichiometry. The same analysis was repeated in anoxic
conditions (Figure 6b), finding two additional pathways
(TCA cycle and Allantoin degradation) not able to work
in steady-state (given our growth medium). Figure 6c
summarizes Figure 6a and Figure 6b for some particular

values (k = 1, 5, 10 and 100). See Additional file 2 for
further details, including results when average accuracy
rate was used instead of recovery rate. This analysis
shows the importance of stoichiometry and its underly-
ing boundary definition at the functional level.
Connectivity analysis and stoichiometry To emphasize
the effect of stoichiometry, we examined the connectiv-
ity structure of oxaloacetate (OAA) in E. coli. OAA
plays an important role in the regulation of carbon flux
in most organisms. Again, for this study, we used the
metabolic network presented in Feist et al. [36] and a
minimal medium based on glucose as a sole carbon
source and oxic conditions.
We determined CFPs from OAA to all reachable

metabolites (obviously some metabolites may not be
reachable via a CFP from OAA). In order to organize
and compare the obtained results, we plotted a connec-
tivity curve that shows the total number of connected
metabolites when we move a specified number of reac-
tion steps away from the source metabolite. To show
the effect of stoichiometry, we plot the connectivity
curves when stoichiometry is included (so including
Equations 5 and 6) and when it is not included (so
excluding Equations 5 and 6).
Figure 7a shows the connectivity curves for OAA. For

example, in five reaction steps, OAA reaches 300 meta-
bolites when stoichiometry is included and 400 metabo-
lites otherwise. It can also be observed that, in any
number of reaction steps, the number of metabolites
reachable from OAA when stoichiometry is taken into
account is 834, but 1,028 metabolites when it is not
considered. These results clearly show the effect of con-
sidering stoichiometry. We repeated the same analysis
in two structurally different metabolites, namely arginine
(L-Arg), an amino acid, and phosphatidic acid (PA120),
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an important lipid. We found a very similar behavior, as
observed in Figure 7b,c. This analysis shows the impor-
tance of considering stoichiometry for the topological
analysis of metabolic networks from a path-based
perspective.

Application
It is usual to find K paths between a pair of key metabo-
lites/reactions in, for example, the interpretation of
‘omics’ data [13,20]. Current path-finding methods do
not take into account stoichiometric constraints for this
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analysis. In the analysis presented below we show that
the resulting K functional paths are strongly dependent
on stoichiometric constraints. This fact is illustrated in
this sub-section with the pathway analysis of Pyr-OAA
metabolism.
PEP, Pyr and OAA are important metabolites whose

underlying inter-conversions control the carbon flux dis-
tribution in bacteria [45]. The performance of the PEP-
Pyr-OAA node changes in different organisms and
growth conditions. We focus here on the structure of
CFPs from Pyr to OAA in E. coli in two different sce-
narios, namely in oxic and anoxic conditions. Pyr and
OAA are linked by two fundamental metabolic pro-
cesses. Firstly, Pyr (via PEP) can be carboxylated to
OAA for the replenishment of TCA cycle intermediates
or for anabolic purposes (for example, amino acid bio-
synthesis). This process is typically referred to as ana-
plerosis. In addition, Pyr and OAA are strongly related
via the TCA cycle, which oxidizes carbon of Pyr to CO2

and requires OAA to operate.
We calculated the 100 shortest CFPs in both scenarios

using the metabolic network presented in Feist et al.

[36]. Again, we used the list of arcs presented in Addi-
tional file 1. In addition, we used a minimal medium
based on glucose. See Additional file 3 for details as to
the medium used.
Figure 8 shows the 100 shortest CFPs from Pyr to

OAA in oxic conditions. Both fundamental metabolic
processes described above between Pyr and OAA (ana-
plerotic route via PEP and the TCA cycle) are recovered
(see dashed lines). In addition, different alternative
routes to these processes are found. In particular, sev-
eral bypasses to the TCA cycle can be observed in Fig-
ure 8. The glyoxylate (GLX) shunt was recovered, as
well as the g-aminobutyrate (GABA) shunt, whose role
as an integral part of the TCA cycle was recently
hypothesized [46]. We also determined a (theoretical,
non-experimentally determined) bypass via propionyl-
CoA (PPCoA), which was reported in a previous paper
[31]. Interestingly, we also predicted a bypass to the
TCA cycle via L-Arg catabolism. Though not shown in
Figure 8, L-Arg is consumed in a reaction catalyzed by
arginine succinyltransferase (AST; SUCCoA + L-Arg ®
SUCArg). Several links to the TCA cycle with arginine-
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L metabolism has been previously reported [47],
although more research is needed to examine whether
this detour is a functionally feasible alternative route to
succinyl-CoA synthetase (SUCOAS) (ATP + CoA +
SUCC ↔ ADP + Pi + SUCCoA).

Though the number of non-meaningful paths has
been substantially reduced, it can be observed in Figure
8 that they still exist - for example, different routes via
CoA. These false positives do not arise from the lack of
stoichiometric balancing, but due to carbon exchange
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constraints. Indeed, these routes exchange carbon atoms
in each of their intermediate steps but do not exchange
carbon atoms between Pyr and OAA. When the current
limitations described above (in the discussion of atom
mapping-based approaches) are addressed, such strate-
gies may be an effective constraint to remove these false
positives.
We repeated the same analysis in anoxic conditions

(Figure 9). In this situation, the main variability in the
100 shortest CFPs is found in anaplerotic routes, since
the TCA cycle is not active. This is due to the fact that
the balancing of coenzyme Q (CoQ) and ubiquinol is
not possible without oxygen and therefore enzyme suc-
cinate dehydrogenase (CoQ + SUCC ® Fum + CoQH2)
cannot work in sustained steady-state. This meant that
several other reactions involved in the TCA cycle do
not appear in the 100 shortest CFPs, namely isocitrate
dehydrogenase (ICit + NADP ↔ AKG + CO2 +
NADPH), 2-oxogluterate dehydrogenase (AKG + CoA +
NAD ® CO2 + NADH + SUCCoA) and SUCOAS
(ATP + CoA + SUCC ↔ ADP + Pi + SUCCoA) are not
in Figure 9. This is also the case for metabolite AKG,
which is now not involved in the 100 shortest CFPs
from Pyr to OAA, while in oxic conditions it appeared
in five solutions. In addition, most of the bypasses pre-
viously mentioned in oxic conditions are not involved in
Figure 9; indeed just the glyoxylate shunt is kept in the
solution.
Finally, as observed in Figures 8 and 9, our CFP

approach properly captures the metabolic changes
induced when oxygen is removed from the medium.
These changes cannot be captured if stoichiometric con-
straints are not considered, showing again the strength
of our CFP approach.

Conclusions
Graph-based methods have been widely used for the
analysis of metabolic networks, but suffer from the
important weakness that reaction stoichiometry is
neglected. In this paper we show that, using the novel
concept of CFPs, reaction stoichiometry can be incorpo-
rated into path-finding approaches, which constitute a
clear progress over the state of the art at the methodo-
logical level.
Our results show that, when stoichiometry is incorpo-

rated into path-finding methods, the resulting set of
functional pathways is substantially altered, as observed
in the analysis of the 40 reference pathways. This idea is
also reflected in the analysis of aerobic and anaerobic
Pyr-OAA metabolism, which emphasizes the importance
of the steady-state condition and its underlying bound-
ary definition for the analysis of metabolic networks. In
addition, connectivity analysis revealed important differ-
ences when stoichiometry was considered, as we

illustrated with regard to a number of metabolites. In
summary, CFPs open new avenues for analyzing meta-
bolic networks at the topological and functional levels
and constitute a major advance.
Though the incorporation of stoichiometry into a

path-finding method is the main feature of our work,
our CFP approach focuses on paths involving effective
carbon exchange in each of their intermediate steps.
The results we have presented confirm the relevance of
this strategy when analyzing metabolic networks using a
path-finding approach. Our public release of the manu-
ally curated E. coli database incorporating effective car-
bon exchange information (based on BiGG [42] and the
work of Feist et al. [36]) represents a valuable dataset
available for the scientific community, which can be
used for further analysis.
It is important to mention that our CFP approach is

formulated as a mixed-integer linear program, which
cannot be solved using classical algorithms from graph
theory and requires a branch and bound approach.
Computational experience shows that the determination
of CFPs is not expensive, namely in the order of millise-
conds. This fact makes our approach an effective tool
for addressing other relevant questions previously
addressed by path-finding approaches.
Our analysis of CFPs in aerobic Pyr-OAA metabolism

allowed us to detect several bypasses to the TCA cycle.
Some of these bypasses have been recently reported
using a different pathway analysis technique, namely ele-
mentary flux patterns for the bypass via the GABA
shunt [48] and generating flux modes for the bypass via
PPCoA [31]. In addition, we found an alternative bypass
to the TCA cycle via L-Arg. This novel pathway is cur-
rently theoretical (it should be treated with caution) and
requires experimental validation; however, it shows the
capability of our CFP approach to generate new
hypothesis.
Finally, despite much debate in the field comparing

the performance of path-finding methods and stoichio-
metric methods [25,27,49], this article shows that both
approaches can work in a synergic fashion so as to
explore the huge complexity in cellular metabolism.

Materials and methods
Equations 1 to 11 presented in the ‘Mathematical model’
sub-section define a mixed-integer linear problem and,
algorithmically, such problems are solved by linear pro-
gramming-based tree search. Modern software packages
to perform this task, such as ILOG CPLEX, which we
used, are well developed and highly sophisticated. ILOG
CPLEX was run in a Matlab environment version 7.5
(R2007b).
The computation of the shortest CFP and the 100

shortest CFPs took us (on average) 300 ms and 2.5

Pey et al. Genome Biology 2011, 12:R49
http://genomebiology.com/2011/12/5/R49

Page 11 of 14



for

fgam

10fthf

23dhdp

2h3oppan

2pg

glyc-R

3pg

2aobut

athr-L

gly

g3p

13dpg

actp
thf

acsermethf

hpyr

3php

pser-L

acgam1p

uacgam

uri

r1p

ins

ump

prpp

kdo8p

kdo ckdo

cmp

r5p

rib-D

2dr1p

gmp

adn

gar

r15bp
ugmda

alaala

ala-D

ala-L

hxan

gsn

dtdp4aaddg

dtdp

dttp

acACP

ACP

octeACP

pa181

cdpdodec11eg

pa161

hdeACP

cdpdhdec9eg

udpLa4fn

udp

dudp

dump

duri

cytd

udp

utp

AcCoA

mlthf

dtmp

thymp

ser-L

Pyr PEP

accald

ac

2dr5p

ICit

SUCCoASUCC

Cit

Acon-C

Fum

OAA

L-Mal

GLX

dcamp

fprica

impfpram

air

5aizc 25aics5caiz

thdp sl2a6o sl26da

CoA

acgluacg5p

acg5sa

acorn

orn

citr-L

argsuc

mmcoa-R mmcoa-S PPCoA

aicar

tdecoa

td2coa

3htdcoa

3otdcoa

ddcacoa

dd2coa

3hddcoa

3oddcoa

amp

dcacoa

dc2coa

3hdcoa

3odcoa

occoa

oc2coa

3hocoa

3oocoa

seramp

atp

itp

Figure 9 100 shortest CFPs in E. coli from Pyr to OAA in anoxic conditions. Both the thickness of arcs and the size of metabolite nodes
correspond to their frequency of appearance in the 100 shortest CFPs. Metabolites in grey are intermediates involved in the TCA cycle. See
Additional file 3 for details.

Pey et al. Genome Biology 2011, 12:R49
http://genomebiology.com/2011/12/5/R49

Page 12 of 14



minutes, respectively, on a 64-bit, 2.00 GHz PC with 12
Gb RAM. Analysis using regression indicated that, over
the range of K values examined (up to K = 250), the
total time for computing the K shortest CFPs was
(approximately) proportional to K1.4. This implies that
the computation time of CFPs grows only as a low
power of the number of paths (K) sought.

Additional material

Additional file 1: Database of carbon exchange arcs. PDF document
containing a list of arcs involving effective carbon flux in the metabolic
network of Feist et al. [36].

Additional file 2: Supporting data for side-by-side comparison. Word
document containing a list of 40 reference pathways used in the side-
by-side comparison, a side-by-side comparison using accuracy rate, and a
discussion on infeasible pathways in Figure 6 [7,9,12,13,35-37,41,44,50-56].

Additional file 3: Supporting data for Figures 8 and 9. Details of the
100 shortest CFPs in oxic and anoxic conditions from Pyr to OAA.
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