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ABSTRACT 

A consequence of the ‘data deluge’ is the exponential increase in digital video footage, while 

the ability to find relevant video clips diminishes. Traditional text based search engines are no 

longer optimal for searching, as they cannot provide a granular search of the content inside video 

footage. To be able to search the video in a content based manner, the content features of the 

video need to be extracted and modelled into a content model, which can then act as a searchable 

proxy for the video content. This thesis focuses on the extraction of syntactic and semantic 

content features and content modelling, using machine driven processes, with either little or no 

user interaction. Our abstract framework design extracts syntactic and semantic content features 

and compiles them into an integrated content model. The framework integrates a four plane 

strategy that consists of a pre-processing plane that removes redundant data and filters the media 

to improve the feature extraction properties of the media; a syntactic feature extraction plane that 

extracts low level syntactic feature and mid-level syntactic features that have semantic attributes; a 

semantic relationship analysis and linkage plane, where the spatial and temporal relationships of all 

the content features are defined, and finally a content modelling stage where the syntactic and 

semantic content features are integrated into a content model. Each of the four planes can be split 

into three layers namely, the content layer, where the content to be processed is stored; the 

application layer, where the content is converted into content descriptions, and the MPEG-7 layer, 

where content descriptions are serialised. Using MPEG-7 standards to produce the content model 

will provide wide-ranging interoperability, while facilitating granular multi-content type searches. 

The framework is aiming to ‘bridge’ the semantic gap, by integrating the syntactic and semantic 

content features from extraction through to modelling. The design of the framework has been 

implemented into a prototype called MAC-REALM, which has been tested and evaluated for its 

effectiveness to extract and model content features. Conclusions are drawn about the research 

output as a whole and whether they have met the objectives. Finally, future work is presented on 

how concept detection and crowd sourcing can be used with MAC-REALM. 
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CHAPTER 1: CONTENT FEATURE EXTRACTION AND MODELLING 

1.1 Introduction 

This chapter aims to establish the thesis by introducing the overarching themes and by placing 

the inspiration for the research undertaken into context. Subsequently, the motivation and goals 

defined for the investigation of the thesis are discussed, followed by a summary of the thesis 

project. Finally, an overview of the dissertation is given on a chapter-by-chapter basis. 

The explosion of multimedia content on the Internet and in digital archives over the last 

decade has led to a striking increase in data volume being transferred and stored (Vijayakumar & 

Nedunchezhian, 2012). The increase in data has lead to the need for better methods for processing 

and storage of content (Apache, 2013; Dropbox, 2013; Microsoft, 2013; SugarSync, 2013). Data 

can also be stored in a semantically rich way that allows for better links to be made between 

information stored in the content (Chiarcos, Nordhoff, & Hellmann, 2012; Mika & Greaves, 

2012). The film industry amongst others (i.e. gaming industry) has made extensive use of 

multimedia content for their businesses (Fromme & Unger, 2012; Tryon, 2012) , including Internet 

and mobile streaming services (Lawrence et al., 2012; Sarmiento & Lopez, 2012). Multimedia 

content not only contains text, audio, video and metadata such as length and time, but can also 

convey a wealth of information in the content itself. The information that is conveyed by 

multimedia can also include descriptions and events. For example, in the film industry multimedia 

content may also convey shots, scenes, people and objects. In addition, the multimedia content 

includes low-level information such as structural and signal level descriptions. For example, 3-

Dimensional (3D) content contains extra information to generate content for both eyes (Dal 

Mutto, Dominio, Zanuttigh, & Mattoccia, 2012). Even though multimedia contains and conveys a 

wealth of information, the information contained is not typically used for searching.  

Searches for multimedia content such as images are by and large a manual process. Typically, 

the manual search process performs a coarse search, based on simple identifiers of the multimedia 

content, which are often misleading and result in a deluge of results. The majority, if not all, of the 

results are incorrect, or the user must painstakingly identify all multimedia content manually that 

could be relevant. Traditional text-based search and filtering cannot directly query the multimedia 

content causing these inaccuracies. The main disadvantage to this is that the abundance of 

semantic information available within the data itself is largely ignored. Other metadata apart from 

the semantics within the content are largely ignored, for example how the content was created and 
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what formats it is available in. Typically, methods of searching require a granular description of the 

content in order to fully utilise semantic meanings within the media. There have been research 

endeavours to improve the representation and querying of multimedia content (Moens, Poulisse, & 

VRT, 2012; Weiming, Nianhua, Li, Xianglin, & Maybank, 2011). Google’s image search1 is one 

such endeavour that can now search for images, using an image as search criteria. However, 

research pertaining to video searching using similar methods are still not as readily available and is 

an on-going area of interest (Mezaris, Papadopoulos, Briassouli, Kompatsiaris, & Strintzis, 2009).  

To allow for the searching of multimedia content, the content requires to be represented in a 

suitable fashion, to better describe the content. The multimedia description can be represented and 

organised into a content model (Marios C. Angelides, 2003). The aim of a content model is the 

presentation of such information to allow content producers/consumers to effectively query and 

retrieve content (Weiming et al., 2011). A content model can also facilitate as a container for the 

automatic extraction of content semantics and the intricacies pertaining to multimedia 

interpretation (Garg and Ramsay, 2011). With the increase of the amount of content being 

generated the content representation also needs to be automatic. Automatic content representation 

is an implicit requirement from the combination of the increase in the amount of content being 

generated, and the wealth of information stored in multimedia content itself (Lavee, Rivlin, & 

Rudzsky, 2009; Moens et al., 2012).  

In Figure 1.1 we have an example of a video content extraction and modelling system 

environment. The video content feature extractor processes the raw media stream. Here the 

syntactic and semantic content features within the video stream are extracted. These are then 

modelled into a content model that can be accessed by a video search application. Consumers can 

query the content model via the video search application. The results are then sent back to the 

consumers’ devices. 

 

1 https://www.google.co.uk/imghp?hl=en&tab=wi 
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Figure 1.1: VIDEO CONTENT EXTRACTION AND MODELLING APPLICATION 

The focus of this thesis is merging content models with automatic feature extraction into the 

MAC-REALM cross-functional framework. MAC-REALM uses automatic feature extraction 

techniques on video content and models them into a hierarchically linked scheme. The 

automatically extracted features are analysed and semantic relationships derived, to allow the user 

to query relationships between entities in the multimedia content effectively. The extracted features 

are also structurally and conceptually linked together to provide a richly descriptive, granular and 

standardised (MPEG-7) content model, allowing users to view the content from multi-faceted 

perspectives. 

The research presented in this thesis aims to focus on solutions to address issues surrounding 

the automatic feature extraction and content modelling of video. In this context, its goal is to offer 

solutions focused on the combination of automatic extraction, analysis and indexing of syntactic 

and semantic content features for digital video streams. The research aims to explore the ability of 

a video feature extraction and indexing framework that links semantic features to syntactic 

foundations that allows both high and low level querying of video content in a more integrated 

manner. 

The main contribution of the thesis is the introduction of a new video framework called MAC-

REALM. MAC-REALM has novel approaches for content modelling for organising and solutions 

to facilitate automatic feature extraction. Specifically contributing novel approaches for: 

• Pre-processing video content to optimise syntactic feature extraction.  
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• Extracting syntactic features that incorporate semantic attributes.  

• Analysing and linking temporal and spatial relationships to mid and low level content 

features 

• Modelling feature extraction into standardised content models 

Other contributions include a state-of-the-art review of related literature, a reference 

implementation of the MAC-REALM framework and an empirical evaluation of the techniques 

and solutions proposed by this thesis. We will have a walkthrough of MAC-REALM that shows 

how the features are extracted and then indexed into a content model. The main culminations of 

these contributions are combined to create a novel framework for content-based video retrieval, 

which is able to achieve a more feature inclusive approach when compared to current solutions. 

Besides the aforementioned contributions, many others derived from this PhD work, including 

earlier work on Automatic feature extraction on an MPEG-7 content models (M. Parmar & 

Angelides, 2010), and Automatic feature extraction to COSMOS-7 content models (M. J. Parmar, 

2007), that both dealt with content feature extraction into a content model. In addition, other 

related work has been previously undertaken for Classified Ranking of Semantic Content Filtered 

Output Using Self-organizing Neural Networks (M. Angelides, Sofokleous, & Parmar, 2006), 

XML-based Genetic Rules for Scene Boundary Detection in a parallel processing environment (M. 

J. Parmar & Angelides, 2007) and Multimedia Information Filtering (M. J. Parmar & Angelides, 

2005) 

1.2 Research Direction 

The motivation for this thesis came from experiences gained while working at QVC, a 

broadcast shopping channel. They had launched an interactive service in 2000 (Minter, 1999) to 

maximise revenue by taking advantage of services made available from digital broadcasting and 

take advantage of online shopping boom that was happening at the time (Aburjanidze & Boucher, 

2010). The interactive channel, as it was called, would allow customers to get extra information 

about the products showing on the screen. This information was prepared before the show and 

made available at the correct time, by synchronising the information with the product broadcast 

scheduling system, in the gallery. This meant that the information was only available at the time of 

broadcast. The sourcing of information and then cataloguing of the product is a manual task and 

takes a department of over 40 staff.  
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The system in place at QVC up until September 2001 was adequate, as the interactive service 

ran as an additional resource to the TV broadcast. In September 2001, BskyB launched the first 

major digital personal video recorder (PVR)(BSkyB, 2012). The popularity of this and other PVR’s 

such as Freeview+(Group, 2006b), Freesat+(Humax, 2008), BT Vision(Williams, 2006), and Virgin 

Media's V+(Which?, 2009) changed the way people interacted with their televisions. PVR’s allowed 

viewers greater freedom and control to consume content in a manner that suited them. It also 

brought around the age of on demand TV. PVR’s can hold many hours of recordings and 

searching the content is a laborious task. Within an hour show in QVC there could be up to 15 

products for sale, also the product could be added or removed from the schedule depending on 

need. Some viewers like to buy more products from certain guests, presenters and product lines, or 

a combination of the three. Now viewers could not only watch what they wanted, they could 

decide when they wanted to watch it. The only problem with PVR’s was there was no way of 

actually searching the video itself, only the general description of the clip. What would be ideal 

would be a way of indexing the content so the user could perform a search and find clips of 

content that was of interest to them. The indexed content would be in the form of an associated 

metadata file, either in an xml based description language or machine readable binary format, that 

could accompany or be transmitted with the content (Wollborn, 2010). 

That was 2001 and digital broadcast TV and PVR’s are no longer the only means to view 

content. IPTV in the form of BT vision (Group, 2006a), which is a hybrid of digital terrestrial TV 

and IPTV, was the first commercially available IPTV service in the UK. Three major IPTV 

projects soon to be available are BskyB Now TV (Scott, 2012), YouView and Google TV(Goss, 

2011) that will aggregate content from both digital terrestrial and satellite TV and also the Internet 

in the form of catch up TV services. With current treads moving to use the Internet as a broadcast 

medium, there will not only be an increase in the amount of content, but content will also be 

available to a global audience. Broadcasts in different spoken languages complicate the problem of 

searching over multimedia content even further (LawTo et al., 2011).  

Traditional ways of viewing content in terms of location is also changing with the advent of 

mobile devices, such as smartphones and tablets, which allows content to be consumed 

ubiquitously. Virgin will be launching their exclusive web portal designed to bring their content to 

a range of mobile devices (Goss, 2012). With the proliferation of content and the amalgamation of 

services across so many domains and devices searching and pinpointing relevant content becomes 

more challenging.  
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When creating an index for multimedia content it is common to use syntactic features, such as 

colour, shape and texture (LawTo et al., 2011). However, this does not allow meaningful searches 

to be made on the content. Indexing semantic features allows the capturing of events, actions and 

concepts from the content, allowing more meaningful search results (LawTo et al., 2011). The 

search results are also provided with a context from a user’s query and can lead to more accurate 

results (LawTo et al., 2011). 

Research on extracting syntactic features from video and then creating a content model for 

those features has been researched (Weiming et al., 2011), as has semantic feature extraction, where 

the underlying concepts, events and objects are indexed (Lavee et al., 2009). As suggested in the 

latter’s research, syntactic and semantic feature extraction are interlinked, as syntactic features 

provide the foundation for semantic description of the concepts and events portrayed in the 

content. The syntactic feature extraction of the low-level aspects of the video can be extracted 

easily using machine based techniques such as pixel, object and logic based extraction (Lavee et al., 

2009). Semantic feature extraction uses content modelling techniques such as state models, Pattern 

recognition methods and semantic models (Snoek & Worring, 2009). What becomes apparent in 

this survey and others (Stamatia Dasiopoulou, Giannakidou, Litos, Malasioti, & Kompatsiaris, 

2011; Lavee et al., 2009; Money & Agius, 2008; Weiming et al., 2011) is that there is a firm 

conceptual distinction between syntactic and semantic feature extraction.  

Syntactic features are discernible because of their physical characteristics, such as colour, shape 

and texture (Kaleka, Singh, & Sharma, 2012) but some features hold a semantic facet to them. 

Scene segmentation is a low-level feature but has attributes of a high-level feature in that they 

represent a semantic event. Scenes are a collection of shots that are grouped together by how a 

user perceives the thematic relationship between the shots. This thematic relationship between the 

shots is semantic in nature (LawTo et al.). However, with regards to scenes the difference between 

syntactic and semantic features is not well defined. Video content feature extraction is used other 

domains aside from digital broadcasting domains, such as application in digital libraries, distance 

learning, video-on-demand and multimedia information systems (LawTo et al.). 

Content models can best be described as “surrogates” for the actual physical content of the 

multimedia (M.C. Angelides & Agius, 2006). This means that instead of searching, filtering or 

browsing the content directly the content model acts as an index of the information contained in 

the content. The content model has to be tightly integrated with the video stream, cataloguing all 

the features within the content that would be of interest to the consumer. The indexing 
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methodology must be able to allow the content features to be accessible and usable for a myriad of 

purposes. To this end the content model scheme must be standardised so that it can facilitate wider 

interoperability.  

Within the content model, features must represent not only the high level features that humans 

can search for, such as events and relationships, but also low level features that can be searched by 

automated methods. Therefore, by employing querying techniques that utilise the full breadth of 

the information contained within the stream, more relevant content can be discovered. This 

detailing and structuring of the content information within the model creates a description that is 

both rich and granular and represents the content comprehensively.  

1.3 Literature Review 

The following is a literature review based on the direction of research in the fields of content 

feature extraction and content modelling. The state-of-the-art review surveys video content 

modelling, technologies and techniques facilitating automatic feature extraction.  

The review begins with the pre-processing of raw media and then progresses through the 

different stages of syntactic feature extraction, followed by deriving the semantic features of the 

content and finally examining work to standardise the description of these features. 

1.3.1 Raw Media 

Raw media is the untreated video footage of the content. This is what most consumers want to 

query in a more meaningful way. They want to locate and view the content within that is relevant 

to them without searching manually through the whole content itself. The raw media is the 

formatted and encoded medium for the transport of the content to the user. Most raw media does 

not contain any structures for the discovery or querying of content features, either low or high 

level. Indeed the sole focus of most media is to enable the efficient transportation of the content to 

the end client. This treatment of the media is not beneficial, and is sometimes at odds with the goal 

of content feature extraction and modelling .  

Before content feature extraction can take place the raw media, in most cases, needs to be pre-

processed to optimise the effectiveness and/or efficiency of the extraction process. Typically, the 

pre-processing is a filtering step to remove artefacts that could cause errors in the extraction 

process (Y. Chen et al., 2010; Yongquan, Weili, & Shaohui, 2009), and can be used to reduce the 

time or complexity of processing the features (Amiri & Fathy, 2011; Chan & Wong, 2011; J. Li, 

Ding, Shi, & Li, 2010). The following section reviews a number of pre-processing techniques used 
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to prepare raw media for syntactic feature extraction. It is non-exhaustive, but presents the 

common approaches adopted by most feature extraction systems to prepare the raw media. 

As already mentioned, pre-processing is a necessary step in preparing the raw media so that the 

extraction process can extract it more readily. This is usually a case of normalising, converting or 

filtering the media in the pre-processing step. One such method of normalising is ‘flattening’ an 

image. Flattening is a pre-processing step that can help in making the syntactic feature extraction 

processes become more accurate. In (Yongquan et al., 2009) there are many different grey scale 

levels within a real time scene image. A correlation window is used to compute the grey mean of 

pixels across the image. To avoid a complex over segmentation of the image, Yongquan et al 

smooth the regions using a temporal correlation window that samples the different grey scale 

values and uses a 3x3 median filter to normalise values of adjacent pixels, if they are within a 

certain range. This reduces the region into candidate areas that are likely to be foreground and 

background regions. In (Y. Chen et al., 2010) the authors transform the colour space profile from 

the H.264 YUV colour space, into a more humanly perceptible HSV colour space. (Y. Chen et al., 

2010) then quantise the continuous HSV colour values into discrete intervals as follows: 

Eq. (1.1) 
ℎ′ =  [ℎ/∆ℎ]
𝑠′ =  [𝑠/∆𝑠]
𝑣′ =  [𝑣/∆𝑣]

 (Y. Chen et al., 2010) 

Here ∆ℎ, ∆𝑠 and ∆𝑣 denote the H, S and V dimension quantization intervals, and (ℎ′, 𝑠′, 𝑣′) 

are the quantized colour value. These pre-processing steps are performed to optimise the hue 

component that represents the most significant characteristic of the colour. These two steps come 

before the first phase of feature extraction. Figure 1.2  shows the life cycle of this system: 

 

Figure 1.2: GENERATING VIDEO SUMMARIZATION  A: FRAME ABSTRACTION, T: COLOR SPACE TRANSFORMATION, QM: COLOUR QUANTIZATION 
FE: FEATURE EXTRACTION, TS: TEMPORAL SEGMENTATION, K: KEY FRAME EXTRACTION,  S: IMAGE SCALING(Y. CHEN ET AL., 2010) 
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Another reason for pre-processing is to reduce the computational complexity, and therefore 

the processing time, into an acceptable amount. This of course, must be done without impacting 

the effectiveness of the extraction process. One such method is to reduce the amount of 

information needing to be processed by removing redundant data. In (Amri & Fathy, 2010) the 

sampling frame rate of the video sequence is reduced by a several factors before the extraction 

process, it was shown that this was adequate for video clips with no fast action sequences. The 

method employed reduces the high computational cost for processing higher frame rates. In (Chan 

& Wong, 2011) the authors describe using a sampling rate at one frame per half second, or 2 

frames per second (fps) for the pre-processing step. They used this sampling strategy since it 

assumes that for most domains, shot lengths are longer than 15 frames or half a second. In (Chan 

& Wong, 2011) go on to use Edge Change Ratio ECR to perform a first-pass on the video for 

optimal performance of the algorithm, and generate metrics for the evaluation of the genetic 

algorithm GA fitness function. 

Another way of reducing redundancy is to remove the amount of frames by applying a 

simplified data technique. Before shot extraction can begin, (J. Li et al., 2010) reduces the number 

of shot candidate frames by using a block colour histogram difference. This method is highly 

effective as a computational efficiency tool, as the shot boundaries included in film programs 

typically amount to less than 1% of total frames; thus it is inefficient and extremely time 

consuming to apply boundary detection processing to detect all the frames. 

Converting one codec from another codec is another method for reducing processing time. 

Some codecs are faster or better suited to certain feature extraction techniques. Popular codecs like 

MPEG- 2 are not particularly suited to feature extraction as they were not optimised for feature 

extraction and were focused on compressing the video signal to an absolute minimum (Haskell, 

Puri, Netravali, & Langdon, 1998). Newer codecs such as H.264 are better suited to video feature 

extraction as they have advanced features such as motion vector encoding that can be for syntactic 

feature extraction. In work by (Fei & Zhu, 2010) they segment objects based on motion vectors 

(MV) directly from H.264 formatted media. They still have to temporally normalise the raw MV to 

provide a uniform sample, which is ready for the segmentation process. In (Zajić, Reljin, & Reljin, 

2011) for the purpose of the experiment, the introductory sequence of the film “Good Year”2 was 

used. The video sequence which lasted 4 minutes, was converted from DIVX format to 

uncompressed AVI format, which is used for frame extraction. AVI format provides more 

2 http://www.imdb.com/title/tt0401445/ 
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uncompressed frames and is more suitable feature extraction as there is more frames in every 

frame sequences to process. This improves the precision of the extraction process.  

1.3.2 Syntactic Extraction 

Syntactic feature extraction is the segmentation of a video signal into its constituent parts. 

These parts represent the different physical aspects of video content that are directly discernible 

from viewing the video. Each aspect has its own unique physical attributes that describes a certain 

physical feature of the content that is of interest to a consumer. These properties can be used in a 

query to identify that segment, if it fulfils the criteria of that query.  

The motivation for syntactic feature extraction, or syntactic abstraction as it has been referred 

to, is to provide an intermediary representation of the video sequence. In this section, we 

concentrate on syntactic feature extraction and the different techniques used to segment features. 

These techniques can be grouped into three categories, pixel based, object based and logic based 

(Lavee et al., 2009).  

Pixel based techniques are generally used for temporal segmentation, and employs the 

processing of colour, texture, or gradient information in the content. Object based techniques are 

those that identify features that are the basis for description of semantic items, such as object 

detection and tracking, face recognition. Unlike pixel based techniques, which define a global 

primitive feature such as a shot, object based events aggregate edges, colour and textures into 

recognisable items. Objects based techniques are not typically classified as low level extraction 

techniques as they describe a feature or features that have semantic connotation of identity, albeit 

anonymously. Logic based techniques are the observation that the world is not described by multi-

dimensional parameterizations of pixel distributions, or even a set of semantic objects and their 

properties, but rather by a set of semantic rules and concepts, which act upon units of knowledge. 

Thus it aims to abstract low-level input into statements of semantic knowledge (i.e. assertions) that 

can be reasoned on by a rule based event model.  

Both logic and, to a lesser extent, object based techniques can be described as mid-level 

features. The major challenge for content based retrieval is to bridge the gap between the low level 

syntactic features and high level semantic features (Y.-F. Huang & Tung, 2010). Mid-level features 

help us achieve this aim by providing a linking mechanism between the low and high level features. 

Mid-level features are still syntactic features that have a semantic characteristic about them. For 

instance a object is a syntactic feature as it has no semantic meaning. It is a generic form and has 

no semantic concept attached to it such as a “person” or “car” for example. It does have a 
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semantic connotation of being a “thing” of interest that is cognitively distinct from the 

background. This distinction cannot be explained in purely syntactic terms; therefore it is a mid-

level feature. 

The choice of syntactic feature extraction is intended to isolate salient properties of the video 

data especially those that allow useful discrimination between interesting events. Syntactic feature 

extraction is thus related to the problem of feature selection. There are two categories of content 

based features that can be analysed in syntactic feature extraction: the global features extracted 

from a whole image and the local or regional features describing the chosen patches of a given 

image (Harikrishna, Satheesh, Sriram, & Easwarakumar, 2011). Each region is then processed to 

extract a set of features characterizing the visual properties including the colour, texture, motion 

and structure of the region. The shot-based features and the object-based features are the two 

approaches used to access the video sources in the database. 

Syntactic feature extraction may be a transformation of the low-level input or simply a way of 

organizing this input. Syntactic feature extraction approaches may be designed to provide input to 

a particular content model or to construct informative atomic primitives that can serve as input to 

a general content model. In this section we will discuss several popular ideas for how to abstract 

video data. Along with capturing the important event-discriminating aspects of the video data 

other main motivations in selecting a particular syntactic feature extraction scheme are 

computational feasibility, and ability to complement the chosen content model. 

We will examine the syntactical structure of video in a natural hierarchical analysis. We will 

begin by looking at the basic foundation of temporal segmentation, and look at the role it plays in 

deriving semantic features. This will be followed by review of spatial segmentation techniques and 

their importance in starting a semantic narrative of the content. Finally we will look at how the 

semantic gap, in terms of human perspective, has an influence on temporal segmentation when 

segmenting into hierarchical components. 

1.3.2.1 Syntactic Media 
The strategy employed for the use of low level primitives for input into the feature extraction 

process is key to the efficiency and effectiveness of the syntactic feature process. The syntactic 

media is the input for the syntactic feature process. The attributes of different types of syntactic 

media are used for different syntactic extraction processes.  The choice of media and the way the 

attributes for that media are selected have a major impact on the quality of the extracted syntactic 

features. This then has a direct impact on the descriptions of those features within the content 
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model. The rest of this section provides examples of different types of syntactic media and the 

impact they have on their extraction process.  

In (Seidl, Zeppelzauer, & Breiteneder, 2010) they investigate gradual transitions in old archive 

footage. They were specifically looking at how historic footage required different transition 

detections algorithms from contemporary footage. Contemporary footage algorithms mainly used 

colour and luminance based techniques. Historic footage cannot use colour and would have to use 

texture based methods. As historic material is black and white, they use global and local luminance 

histograms instead of colour histograms. They also use DCT coefficients and MPEG-7 edge 

histograms. To be invariant to object motion, they extract the luminance histograms globally. To 

be more sensitive to spatial information, they also extract the same features in localised blocks of 4, 

9 and 16 pixel.  

Scale invariant feature transforms (SIFT) are used in computer vision processing as a feature 

that In (J. Li et al., 2010) they use a SIFT descriptor that uses pixel intensity as the feature to be 

transformed but in (Sharmila Kumari & Shekar, 2010) they have extracted  SIFT descriptors for 

each colour plane of the RGB colour space. This is so that important visual information regarding 

colour is not missed. They call this approach Colour Scale Invariant Feature Transform (CSIFT). 

In (Zajić et al., 2011) they extracted for each frame low-level features (colour and texture) and 

concatenated in the form of a feature vector. The feature vector consists of the following features: 

HSV Colour histogram, Colour moments, Colour layout descriptor, Structural colour descriptor, 

Colour correlogram, Gabor transformation features, Radial co-occurrence matrix features, Edge 

histogram and Wavelet texture feature. The total number of FV coordinates is N = 1369. The 

selected sequence is characterized by feature matrix MxN = 4512x1369. Features matrix columns 

were normalized with a maximum value within a column. 

In (W. Li, Chen, Zhang, Shi, & Li, 2012) they produce an illumination-invariant histogram that 

is a robust method against illumination changes and object /camera motion without spatial 

information. Illumination-invariant histogram is selected as the feature vector. The normalized 

chromaticity is defined as: 

Eq. (1.2) 𝑟 =
𝑅

𝑅 + 𝐺 + 𝐵
,𝑔 =

𝐺
𝑅 + 𝐺 + 𝐵

, 𝑏 =
𝐵

𝑅 + 𝐺 + 𝐵
 (W. Li et al., 2012) 
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Histogram with 256 bins of each video frame is generated as features in normalized 

chromaticity colour space. 

Syntactic media can be used for context features as well as content features. In (J. Chen, Ren, 

& Jiang, 2011) they use motion and edges as context features since both of them mainly reflect the 

activities inside the captured visual scenes. In this way, shot cut detection can be made adaptive to 

the context changes as well as content changes. When motion is high, for example, it indicates that 

proportional content difference is caused by motion rather than by cuts, and thus the threshold 

should be moved higher. 

1.3.2.2 Syntactic Temporal segmentation 
The first step to manage video data is to divide them into a set of meaningful and manageable 

units, so that the video content remains consistent in terms of camera operations and visual events. 

This has been the goal of a well-known research area, called video segmentation. Video can be 

thought of as a hierarchical syntactical structure as shown in Figure 1.3. The video itself is 

comprised of scenes. The scenes are logical story units that describe a singular event. The scenes 

can be split into shots. Shots are units of action and consist of a continuous set of frames. A scene 

or shot is, on occasion, represented by a selected frame called a “key frame”. This frame is 

representative of the main event or action of the scene or shot.  

 

Figure 1.3: HIERARCHICAL STRUCTURE OF VIDEO CONTENT 
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The transition from one shot to the next may be of various types: broadly categorized as 

abrupt change shots and gradual change shots. Abrupt change shots, also known as cut shots, 

denote an instantaneous transition from one shot to another. This occurs due to simplest physical 

concatenation of two successive shots. On the other hand, a gradual transition shot is obtained by 

incorporating photographic effects, usually through editing. It can be further classified as fade-out, 

fade-in, dissolve, and wipe shot. Fade-out is a gradual transition of a scene by diminishing overall 

brightness and contrast to a constant image (usually a black frame). Fade-in is a reverse transition 

of fade-out. Dissolve is a gradual super-imposition of two consecutive shots. In general, abrupt 

transitions are much more common than gradual transitions, accounting for over 99% of all 

transitions found in video(Krulikovska, Pavlovic, Polec, & Cernekova, 2010). As shown in Table 

1.1 there is still a lot of activity in the area of shot boundary detection (SBD). The table shows the 

transition types detected, the syntactic feature used to detect them, whether they are compressed or 

not and the techniques used to detect them.  

It is well known that, in case of abrupt transition, the last frame of a shot and the first frame of 

the following shot are uncorrelated (Mohanta, Saha, & Chanda, 2012). A cut is generated by the 

natural process of capturing video data through the camera. On the contrary, gradual transitions 

(fade-in, fade-out, and dissolve or cross-fading) are generated through editing. For example, 

dissolves are generated by super-imposing the boundary frames of two successive shots over a 

duration. In case of fade-out (or fade-in), the intensity of boundary frames at the end (or the 

beginning) of a shot gradually decreases (or increases) and the last (or first) frame of such transition 

is usually a black frame. Thus, unlike abrupt transitions, gradual transitions span over a range of 

frames which are correlated. 

Different techniques have been proposed in the literature to address the temporal 

segmentation of video sequences (Haller, Krutz, & Sikora, 2009; H. Li & Ngan, 2011). Many 

research works have focused on the uncompressed domain (Amri & Fathy, 2010; Grana & 

Cucchiara, 2007; Hameed, 2009). The simplest technique employed is one based on pixel-wise 

difference between consecutive frames (Grana & Cucchiara, 2007) but it is very sensitive to motion 

of objects. To address the variation in pixel difference and mutual information due to object 

motion and small camera pan, zoom, and tilt, features like motion vectors (Krulikovska et al., 

2010) are incorporated to measure continuity.  In (Mohanta et al., 2012) motion vectors are used as 

localised feature statistics. By judging the shift in edge pixels in the horizontal and vertical 

directions a motion matrix can be built up that can identify both panning motion and zooming 

shots. 
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Greyscale or colour histogram-based features are also tried in need colour histogram and grey 

level references which are relatively stable though they lack spatial information. While most 

systems use intensity (Mohanta et al., 2012) or RGB colour histogram(C. Ma, Yu, & Huang, 2012) , 

some use other colour triplets, for example, YUV (Hameed, 2009) or HSV palette (Y. Chen et al., 

2010; R. Tapu & T. Zaharia, 2011; Xu & Xu, 2010). When using colour histogram features, it is 

necessary to decode the compressed video streams firstly (C. Ma et al., 2012). Hence these 

methods lack of spatial information. Histogram based technique are usually based on the fact that 

the colour distribution across a shot is usually stable and homogenous throughout the shot. When 

a shot break occurs there is usually, for abrupt shot transitions, a sharp change in colour 

distribution occurs. Measuring the colour histogram difference is a good indicator of abrupt shot 

change and has provided high rate detection results(Y. Chen et al., 2010). This can be affected by 

fast global motion (such as action scenes and quick pan and zoom) and special effects. It is argued 

that different colour spaces are better for shot boundary detection (Hameed, 2009).  In 

(Krulikovska et al., 2010) they used both RGB and YUV colour spaces and found that RGB 

format gave a marginally higher detection rate. There are rare colour triplets in use for SBD such as 

L*a*b* colour space which is used by (Küçüktunç, Güdükbay, & Ulusoy, 2010) for their SBD 

implementation for a content based copy detection application. The choice for this colour space is 

because of its practical application in this domain, as it is robust to illumination changes and 

quantization errors which are common when video is copied from one format to another. 

Edge and texture information is another content feature description that is useful for detecting 

shot boundaries (Chan & Wong, 2011). In (Mohanta et al., 2012) they use an edge strength scatter 

matrix to distinguish between fade in/fade out, dissolve, wipe and cut shots by mapping a scatter 

matrix of the pre-normalized gradient magnitude of corresponding edge pixels of successive 

frames which reveals the type of frame transition. 

Many works have used a hybrid technique in an effort to negate the disadvantages of one 

technique by using the strength of another. In (Grana & Cucchiara, 2007) they use a pixel based 

approach and histogram based approach in a unified linear transition decomposition.  The iterative 

algorithm tries to determine optimal transition extremities and length using only these two 

parameters. In (Y. Chen et al., 2010) they use two algorithms for shot detection, as each one 

negates the disadvantages of the other. They use a combination of colour histogram difference 

(CHD) and edge change ratio (ECR) to identify different types of shot. CHD is used to identify 

abrupt change shots as the algorithm has a strong precision and recall in identifying this type of 
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shot. Where it is weak in identifying transition shots they use ECR. ECR is not as strong in 

identifying abrupt shots as CHD but is extremely more effective at identifying transition shots.  

(R. Tapu & T. Zaharia, 2011) use a graph partition scheme that represents each video frame as 

a node in a hierarchical structure that is connected with the other vertexes by edges. The weight of 

an edge, expresses the similarity between the corresponding nodes. They have adopted as a visual 

similarity measure the chi-square distance between colour histograms in the HSV colour space. To 

solve the invariant lighting and shading problem QR decomposition has been put forward as a 

solution(Amri & Fathy, 2010). They use QR decomposition to utilise three-dimensional 

histograms, split into 3×3 blocks in the RGB colour space of each frame as spatial features. They 

then use these histograms as a feature vector of each frame in the video, applying the QR 

decomposition to this matrix and incorporating the QR components of this matrix as temporal 

features along the frames. To distinguish between the shot transitions and the image differences 

caused by large camera or object motions, they model each shot transition by using a Gaussian 

model.  

Now, a majority of video has deposited into compressed format So more studies on shot 

boundary detection are processed in compressed video streams from which the features are 

extracted such as discrete cosine transform coefficients (Mohanta et al., 2012) and motion vectors 

(Zhenyu & Zhiping, 2012). These features are extracted from the coded video bit stream. So the 

process of decode is omitted. The efficiency of algorithm in which feature is extracted from 

compressed video sequences is much better than those used in uncompressed video sequences. In 

(C. Ma et al., 2012) they only partially decompress the mpeg videos in order to obtain the I-frames. 

DC images are obtained by extracting DC coefficient of DCT coefficient in video code stream in 

the coarse phase of shot detection. In (Grana & Cucchiara, 2007) they design a linear transition 

model for SBD; their method is purely concentrated on gradual transitions with a linear behaviour. 

They utilized an accurate model which yields more discriminative power than with common 

methods. 

Motion vectors (MV) are a new research area in their own right (Amel, Abdessalem, & 

Abdellatif, 2010). Motion is a salient feature in video, in addition to other typical image features 

such as colour, shape and texture.   

An interesting method for video segmentation that uses geographical data to identify shots is 

proposed by (Wu, Liu, Wang, & Cai, 2012). This technique uses both Geographical Information 

System (GIS) and GPS data to segment shots from road cameras. The segmentation therefore is 
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based on geographical metadata associated with the video file, which is generated at the time of 

filming. 
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 CUT GRADUAL COLOUR/INTENSITY EDGE/TEXTURE/PIXEL MOTION COMPRESSED UNCOMPRESSED SBD 
TECHNIQUE(S) DOMAIN 

AMEL X X   X  X MV - 
AMIRI X  RGB    X QR-D/GTD - 
AMIRI X X RGB    X GED-GTD - 
BABAR X X GREYSCALE    X SURF - 
BAI X  RGB    X MUI VIDEO SUMMARY 
BOYAR X  RGB    X CHD SPORT 
CHAN X X  X   X GA - 
CHEN X X HSV    X HID NEWS 
CHEN X X YUV/GREYSCALE X X X  MPDT/FSM - 
DE BRUYNE X   X X X  MCIPM - 
DHILLON X X GREYSCALE X   X OC/SURF - 
DONATE X   X   X SLAM - 
FENG X X RGB    X FCM - 
GRANA  X RGB X   X LTD - 
HAMEED X  YUV    X WTAS - 
JIANG X X YUV X   X ABS-SIFT - 
KRULIKOVSKA X  RGB/YUV  X X X MV/MOI - 
KÜÇÜKTUNÇ X X L*A*B*    X FL CBCD 
LEE X  RGB    X SVD NEWS 
LEI X X HSV    X DS - 
LI X X RGB    X ICA MUSIC VIDEO 
LI X X  X    SURF-SVM - 
MA X X   X X  DCT - 
MENDHI X  YUV    X SSIM - 
MOHANTA X X GREYSCALE  X  X IHD/MM - 
SEIDL  X GREYSCALE    X EF-LF HISTORIC FILM 
SHARMILA KUMARI X   X   X CSIFT  
SHEKHAR X  HSV    X LFT - 
TUANFA X X  X X  X PI/MC - 
WEI X X GREYSCALE    X ST - 
WENZHU X X HSV    X GT - 
WU X    X  X GPS GIS 
XU X X X X   X FSHT/EC - 
YONGLIANG X X  X   X KNN-SVM - 
YU X X    X  MV - 
ZAJIĆ X      X MA - 
ZEINALPOUR-
TABRIZI  X  X   X FA - 

ZHANG  X  X   X NVF-SVM - 
ZHANG X  HSV    X CHD - 

Table 1.1: SHOT SEGMENTATION ALGORITHMS; FOR HYBRID SYSTEMS THE COLOURS INDICATE WHICH ALGORITHM IS RESPONSIBLE FOR WHICH FEATURE 
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1.3.2.3 Semantic Temporal Segmentation 
An important step in the process of video structure parsing is that of segmenting the video into 

individual scenes or “logical units” (Mezaris, Sidiropoulos, Dimou, & Kompatsiaris, 2010; 

Sidiropoulos et al., 2011). Scenes are defined as “composed of one or more shots which present 

different views of the same event, related in time or space” (J. Hunter & Iannella, 2009).  Shots 

describe actions or self-contained events that do not have much focus until they are put together to 

describe a larger story unit that are commonly called scenes. Shots have a physical boundary that is 

accurately detectable by computer vision processing methods, whereas scene are demarcated by 

semantic boundaries that are harder to detect by automatic methods. From a narrative point of 

view, a scene consists of a series of consecutive shots grouped together because they’re related 

semantically, either spatially or temporally, or because they share some thematic content. Scenes 

are more conceptual in structure and therefore have a strong semantic dimension about them. 

Video segmentation to shots and scenes are two different problems that are characterized by 

considerably different degrees of difficulty. State-of-the-art shot segmentation techniques, detecting 

the presence of video editing effects such as cuts and fades with the use of low-level visual 

features, have been shown in large-scale experiments (e.g., TRECVID3) to reach an accuracy that is 

close to perfect; this accuracy is deemed by the relevant community to be sufficient for any 

practical application (Smeaton, Over, & Doherty, 2010). Whereas scene segmentation has to take 

into account the semantic perspective of the content in order to temporally link shots into a scene. 

Due to the ambiguous nature of deciding the exact end and beginning of an event, scene 

segmentation is a more complex problem that has not enjoyed the same success rates as shot 

segmentation, nor the research focus.  

Scene segmentation plays an important part in dissecting a large volume of video content into 

smaller semantic constituencies which are easier to digest. It is often used to create video 

summarisation of content into a more semantically concise form. This is often used to make a 

shorter trailer of the content that contains the more salient points of the content. This can be 

viewed by a consumer to see if the content is relevant to their requirements. Scene segmentation is 

also used for splitting factual, news or sports programmes into semantic units that portray a 

particular event. This is useful for search and personalisation of content. There is a close 

relationship between scene segmentation and event detection. 

3 http://www-nlpir.nist.gov/projects/tv2012/tv2012.html#med 
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The close relation between video scenes and the real-life events depicted in the video make 

scene detection a key-enabling technology for advanced applications such as event-based video 

indexing (Ballan, Bertini, Bimbo, Seidenari, & Serra, 2011). It also has uses in movie video 

summarisation (Sang & Xu, 2010), artistic video archives (Mitrović, Hartlieb, Zeppelzauer, & 

Zaharieva, 2010), news story classification (Aly, Doherty, Hiemstra, & Smeaton, 2010; Choroś & 

Pawlaczyk, 2010; Dumont & Quénot, 2012; Heejun & Jaesoo, 2011),sports video classification 

(Choroś & Pawlaczyk, 2010; del Fabro & Boszormenyi, 2010; Y.-F. Huang & Tung, 2010; 

Tjondronegoro & Chen, 2010), scene genre identification (Ellouze, Boujemaa, & Alimi, 2010; S. 

Zhu & Liang, 2011) 

Much work has been done on scene segmentation in the last decade. They can be roughly 

classified into three categories. 

• Shot clustering based approach: It is well known that video shots belong to the same 

scene are semantically similar. The similarities between the shots provide a basic clue for the 

clustering based approach. In (Choroś & Pawlaczyk, 2010) they cluster shots based on content 

features of shots of TV sports news broadcast. Evaluation has shown that studio shots and action 

shots are arranged in certain sequences within a scene that can be used to cluster the shots into 

scenes using a rule based methodology. In (del Fabro & Boszormenyi, 2010) they cluster shots into 

scene sequences by employing a distance similarity measure between shot clusters that compares 

motion information. Shot clusters that have similar motion histograms are clustered together in an 

iterative approach. 

• Boundary detection based approach: In this approach, shot boundaries are considered as 

the candidates of scene boundaries and the false boundaries are removed by checking the 

coherence of the similarity between different shots. In (Baber, Afzulpurkar, & Bakhtyar, 2011) they 

detect fade and abrupt shot boundaries by frame entropy analysis and frame difference.  Their 

hypothesis is that fade effects are usually found at the start or end of the scenes. Therefore, a fade-

in is an indication of the beginning of the scene and fade-out indicates the end of the scene. 

(Dumont & Quénot, 2012) propose a fusion of content feature vectors that when analysed will 

show story segment boundaries where the multimodal vector shows a clear demarcation for most 

features. 

• Model based approach: This approach views that to group N shots into K scenes is 

equivalent to estimating the model parameters {𝛷𝑖}𝐾i=1, which represent the boundaries of K 
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scenes. In (Chao, Changsheng, Jian, & Hanqing, 2011) they use a Hidden Semi-Markov Model 

(HSMM) to model the relationship between the script video alignment and video shot clusters to 

the hidden scene partition sequence.  

Many methods have been developed to partition video scenes. Generally speaking, automatic 

scene boundary detection techniques can be categorized into following classes, i.e. graph based 

(Ayadi, Ellouze, Hamdani, & Alimi, 2012; del Fabro & Boszormenyi, 2010; Mezaris et al., 2010; 

Sakarya & Telatar, 2010; Sakarya, Telatar, & Alatan, 2012; Seeling, 2010; Sidiropoulos et al., 2011; 

Su, Bailan, Peng, & Bo, 2012; Ruxandra Tapu & Titus Zaharia, 2011), film editing technique based 

(Choroś & Pawlaczyk, 2010; S. Zhu & Liang, 2011), statistics learning based (Baber et al., 2011; 

Chao et al., 2011; Ellouze et al., 2010; S. N. Huang & Zhang, 2010; Mohanta, Saha, & Chanda, 

2010; Sang & Xu, 2010; Seung-Bo, Heung-Nam, Hyunsik, & Geun-Sik, 2010; Tjondronegoro & 

Chen, 2010; Wilson, Divakaran, Niu, Goela, & Otsuka, 2010; Zeng, Zhang, Hu, & Li, 2010), and 

multi-features based (Dumont & Quénot, 2012; Ercolessi, Bredin, Sénac, & Joly, 2011; Heejun & 

Jaesoo, 2011; Y.-F. Huang & Tung, 2010; Hui & Cuihua, 2010; S. B. Li, Wang, & Wang, 2010; 

Mitrović et al., 2010; Poulisse, Patsis, & Moens, 2012). 

Graph based techniques for shot detection have been very successful when employed in 

semantic scene segmentation. In (Sidiropoulos et al., 2011) they have proposed a technique, where 

the low-level and high-level features extracted from the visual and the aural channel have been 

used jointly. The proposed technique has been built upon the renowned method of the Scene 

Transition Graph (STG) for overcoming the difficulties of existing scene segmentation techniques. 

Firstly, a STG approximation has been introduced for reducing the computational cost, and then 

the uni-modal STG-based temporal segmentation technique has been extended to a method for 

multimodal scene segmentation. The latter has exploited the results of numerous TRECVID-type 

trained visual concept detectors and audio event detectors using a probabilistic merging process 

that merges several individual STGs while at the same time reducing the need for selecting and 

adjusting many STG construction parameters. Their proposed approach has been analysed using 

three test datasets, such as TRECVID documentary films, movies, and news-related videos. In (R. 

Tapu & T. Zaharia, 2011) they use a computationally efficient shot extraction method which 

adopts a normalized graph partition approach. This is enriched by using a non-linear, multi-

resolution filtering of the similarity vectors involved. The groups are then iteratively clustered into 

visually similar shots, under a set of temporal constraints. Two different types of visual features are 

exploited; HSV colour histograms and interest points. (Sang & Xu, 2010) propose an effective 

method for video scene segmentation based Ncut to decompose the scene similarity graph into 
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subgraphs (scene clusters). They generate a story flow graph (SFG) from the temporal relationships 

between scene clusters as nodes and transition probabilities between clusters as edges. Sub-story 

units are extracted by finding the cut edges of the SFG. 

Scenes are just one of many film editing techniques that make up a lexicon of film grammar. 

This grammar itself can be used to identify scenes. The arrangement of content features and effects 

can be used to either cluster shots together or find the boundaries between scenes. Audio cues are 

just as important as video cues in detecting scene boundaries. In (Sidiropoulos et al., 2011) they 

jointly exploit low level features from both the visual and auditory channels. (Ercolessi et al., 2011) 

use speaker diarisation to segment TV series into scenes. Speaker diarisation is the process of 

segmenting an audio stream and clustering resulting segments in different speakers. The structure 

of a film is conceived before the first camera ever starts rolling. Scenes are created first by screen 

writers who produce a script of the screenplay. The script information itself can be combined with 

the footage to identify scenes. Both (S. B. Li et al., 2010; Seung-Bo et al., 2010) use the movie 

script, that has the scene information, and match it to the subtitle information of the footage. By 

synchronising the script information with the on screen subtitles they can identify the time points 

of the start and end of the scene boundaries.  

The problem with film editing techniques is that they are used differently depending on genre 

and/or style of the filmmaker. This makes detection of scene boundaries using film-editing 

techniques, especially heavily dependent on the genre or film making style. A film editing technique 

in one genre or style will be totally ineffective in another. Using script subtitle synchronisation has 

a big drawback in that if you have large time periods without any dialogue then synchronisation 

will be inaccurate at best, and at worst, impossible.  

The solution to the problems of relying on one set of features is to use a multi-feature based 

approach. For example (Chao et al., 2011) combine script names with faces in the video to negate 

the problems mentioned before, along with the discrepancies between the script and subtitles and 

the scarcity of subtitles in non-English speaking languages. In (Poulisse et al., 2012) they use a 

similar technique for live sports action. As there is no script they use subtitles, which are time 

coded already, and extract SIFT features to produce multi-content type chains that identify scene 

boundaries through density graphs. This still relies on textual information being available and the 

accuracy of the transcription of the subtitles but using the SIFT features allows similarity matching 

of shots and overcomes the scarcity of subtitles problem. In (Dumont & Quénot, 2012) they use 

numerous visual and audio features and fuse them together after applying a local temporal context 
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window to them. The results are then analysed by various machine-learning algorithms, of which 

Random Forest had the best F1 score for detected scene boundary detection. A mixture of 

syntactic features can be used to cluster shots together for certain domains, as in (Mitrović et al., 

2010). Using block based intensity histograms (BBH), Edge change ratio (ECR) and SIFT 

keypoints they build up an orthogonal view of visual information that represent intensity, edges 

and salient keypoints. This captures a larger spectrum of visual similarities that can be used in 

identifying shot clusters using similarity measures. 

Although semantic scene segmentation is considered to be a concept based problem that 

requires the visual understanding of the content semantically, implying that all video streams need 

to be uncompressed, information from the compressed domain can be used to understand spatial 

relationships that can be of use in identifying scene boundaries or shot clusters. In (del Fabro & 

Boszormenyi, 2010) they extract the motion information from H.264/AVC compressed video that 

are used to create motion histograms that are one of the features that are used in the scene motion 

classification pattern matching. 

A general problem in semantic temporal segmentation is the dependence of techniques on 

domain or genre. For example in sports video annotation they still suffer from two important 

drawbacks: 1) a definitive scope of events detection and annotation (i.e., where to start and finish 

the extraction) and 2) the lack of a universal set of features for detecting different events and 

sports. (Tjondronegoro & Chen, 2010).  

1.3.2.4 Spatiotemporal segmentation  
Spatial segmentations aim to group image pixels together based on attributes that define a pixel 

region into a semantic object. Spatiotemporal segmentation takes this one step further by adding a 

temporal element to the segmentation by tracking the pixels over time and defining the object in 

both appearance and motion. Spatiotemporal segmentation is often described as 3D segmentation 

because of the temporal dimension (Fei & Zhu, 2010; Grundmann, Kwatra, Mei, & Essa, 2010; 

Sharir & Tuytelaars, 2012; Tian, Xue, Lan, Li, & Zheng, 2011; Vazquez-Reina, Avidan, Pfister, & 

Miller, 2010). This should not be confused with stereo camera based object segmentation that is 

used in the surveillance domain, where 3D video data is used to segment the objects using depth 

(Ghuffar, Brosch, Pfeifer, & Gelautz, 2012; Y. Ma & Chen, 2010; Van den Bergh & Van Gool, 

2012). Spatial segmentation differs from spatiotemporal segmentation in that temporal coherence 

of the object boundary maybe compromised when segmenting a series of contiguous frames as 

they are treated in isolation and redefine the object boundary for every frame (Grundmann et al., 

2010).  

23 
 



Objects can be defined at several levels, from general geometric boundaries, such as bounding 

boxes(Babenko, Ming-Hsuan, & Belongie, 2011) to regional granularity (Grundmann et al., 2010).  

The best balance is achieved when object are segmented into regions that can be easily recognised 

by humans (Grundmann et al., 2010; Ladický, Sturgess, Alahari, Russell, & Torr, 2010; Ochs & 

Brox, 2011). These should follow a hierarchical structure based on perception. For example, a 

person can be segmented into arms, torso, arms and legs (Shao, Ji, Liu, & Zhang, 2012). The arm 

can then be split into upper arm, elbow, forearm and hand. This segmentation along semantic 

understanding of objects is the most natural and easily relatable. 

A number of spatiotemporal segmentation algorithms have been proposed in recent years. The 

most popular approach employed is that of Optical flow, a time-domain motion analysis algorithm 

(Ghuffar et al., 2012; Lezama, Alahari, Sivic, & Laptev, 2011; Lin, Zhu, Fan, & Zhang, 2011; Ochs 

& Brox, 2011; Sharir & Tuytelaars, 2012; Tian et al., 2011; Van den Bergh & Van Gool, 2012). The 

optical flow method models the physical properties of optical flow that the moving objects change 

over time to subtract the moving object effectively. The basic optical flow equation is given by: 

Eq. (1.3) 𝐼𝑥u +  𝐼𝑦v + I𝑡 = 0 (Ghuffar et al., 2012) 

where I𝑡  is the image difference between the two images, and 𝐼𝑥u  and 𝐼𝑦v  are image 

derivatives. Its advantage is that it can also segment the independent moving object under the 

condition of camera motion. Its vulnerabilities are to image noise, colour, and non-uniform 

lighting, also most of flow computation methods have large computational requirements that make 

them unsuitable for real time processing and are sensitive to motion discontinuities. There are 

other types of Motion Analysis techniques apart from Optical flow such as (Christodoulou, 

Kasparis, & Marques, 2011; Fei & Zhu, 2010; Porikli, Bashir, & Huifang, 2010) but are very similar 

in their machinations.  

Conditional Random Fields (CRF) and Markov Random Fields are techniques that have 

recently been gaining popularity for spatiotemporal segmentation . In (Vazquez-Reina et al., 2010) 

they use a multiple hypothesis video segmentation technique that generates multiple pre-

segmentations per frame into multiple hypothesis and finds sequences of superpixels (shown as 

coloured regions) that match consistently in time. Each of these sequences, called a superpixel 

flow, is ranked depending on its photometric consistency and considered as a possible label for 

segmentation. The processing windows overlap one or more frames to allow labels to propagate 

from one temporal window to the next. They use higher-order conditional random fields (CRFs), 
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which they use to solve the hypothesis competition problem. They define the higher-order 

conditional random field on a sequence of fine grids of superpixels 𝑆 =  �𝑆1, . . . 𝑆𝑓 �. Each grid 𝑆𝑡 

is obtained as the superposition of the 𝑃 tessellations that were generated for the enumeration of 

hypotheses. The mapping 𝑔𝑡  takes superpixels 𝑣𝑡  from one of the pre-segmentations to the 

superposition 𝑆𝑡. Each superpixel in St is represented in our CRF with a random variable that can 

be labelled with one of the hypotheses {𝐻1, . . . ,𝐻𝐿}. In (Subudhi, Nanda, & Ghosh, 2011) they 

propose an edge-based compound MRF model for attribute modelling of video image frames 

followed by the maximum a posteriori probability (MAP) estimation by a hybrid algorithm (hybrid 

of both simulated annealing (SA) and iterated conditional mode (ICM)). The compound MRF uses 

spatial distribution of colour in the current frame, colour coherence in the temporal direction and 

edge maps in the temporal direction. The difference images obtained from the given video frames 

are largely affected by illumination variation and noise that propagates in the form of silhouette to 

the VOP. They then use an adaptive temporal segmentation scheme that reduces the effect of 

noise. Instead of segmenting the whole image at a time by a single threshold, they partition the 

input image into different windows/blocks and segment the objects in each of these windows. 

Then they combine the segmented objects from each window. The window size is determined by 

the entropy content of the considered window. 

So far we have looked at techniques that track an object over a moving background. 

Numerous works have looked at modelling the background first and then detecting the pixels of 

foreground objects by differencing the current frame with the background. This approach is only 

effective if the camera is stationary or has a background that is unchanging. These techniques are 

obviously suited to the surveillance domain of CCTV (Appiah, Hunter, Dickinson, & Meng, 2010; 

Bai, Wang, & Sapiro, 2010; Ladický et al., 2010; Y. Ma & Chen, 2010). A wide and increasing 

variety of techniques for background modelling have been described. The most basic way to do 

this is by using a frame difference techniques such as in (Christodoulou et al., 2011). This looks at 

the temporal difference in pixels across frames that identify moving object pixels across a non-

moving background of pixels. The algorithm utilises statistical quantities such as mean, standard 

deviation, and variance to define an adaptive and automatic threshold based on two-frame and 

three-frame differencing using automatic and adaptive statistical thresholding techniques for 

motion object detection. It dynamically adapts to environmental conditions by making use of the 

previous frame, as the current background model. However, temporal differencing works well only 

if the motion is small. It is common that methods only detect the outlines of regions of interest, 

which usually leads to generating holes inside moving entities. 
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The most popular method for background modelling is a unimodal approach that uses 

Gaussian Mixture Model’s (GMM)(Q. Zhu, Xie, Gu, & Wang, 2012). It constructs a grayscale 

distribution model of each pixel based on the distribution information of each pixel in time 

domain and builds a background model of the pixels. This technique and other GMM techniques 

(Bai et al., 2010; Subudhi et al., 2011) are used as they have relatively low computational cost and 

memory requirements. This technique gives poor results when used in modelling non-stationary 

background scenarios like waving trees, rain and snow. In (Appiah et al., 2010) they use a 

multimodal approach, modelling the values of each pixel as a Mixture of Gaussian (MoG). The 

background is modelled with the most persistent grey scale intensity values. The equation is given 

as: 

Eq. (1.4) 𝑃(𝑋𝑡) =  �𝜔𝑖,𝑡

𝐾

𝑖=1

η(𝑋𝑡,𝜇𝑖,𝑡,𝜎𝑖,𝑡) (Appiah et al., 2010) 

Where 𝜇𝑖,𝑡, 𝜎𝑖,𝑡 and 𝜔𝑖,𝑡 are the respective mean, standard deviation and weight parameters of 

the ith Gaussian component of pixel 𝑋at time 𝑡, and 𝜂 is a Gaussian probability density function: 

Eq. (1.5) 𝜂�𝑋𝑡,,𝜇𝑖,𝑡,𝜎𝑖,𝑡� =  
1

𝜎𝑖,𝑡√2𝜋
exp�

�𝑋𝑡 − 𝜇𝑖,𝑡�
2

2𝜎𝑖,𝑡2
� (Appiah et al., 2010) 

A new pixel value is generally represented by one of the major components of the mixture 

model, and is used to update the model. This technique though a more powerful alternative to 

GMM’s requires more computing power due to its multimodal nature and therefore is unsuitable 

for real time performance. There are also disadvantages including the blending effect, which causes 

a pixel to have an intensity value which has never occurred at that position (a side-effect of 

smoothing). 

With the advent of stereoscopic cameras and the emergence of 3D video, techniques have 

been developed that take advantage of the depth field to provide spatiotemporal segmentation. In 

(Y. Ma & Chen, 2010) they have used a stereoscopic camera to integrate depth information into 

the object segmentation process. They produce a 3D depth density image from the disparity map 

and then apply a region growing method to segment foreground objects. In (Ghuffar et al., 2012) 

they use motion estimation and segmentation of independently moving objects in video sequences 

from a time of flight range camera that can record depth. They present a motion estimation 

algorithm which is based on fusion of range flow and optical flow constraint equations. The flow 
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fields are used to derive long-term point trajectories. A segmentation technique groups the 

trajectories according to their motion and depth similarity into spatiotemporal objects. In (Van den 

Bergh & Van Gool, 2012) the authors use a real-time superpixel segmentation algorithm, which 

employs real-time stereo and real time optical flow. The system provides superpixels that represent 

suggested object boundaries based on colour, depth and motion. Each outputted superpixel has a 

3D location and a motion vector, and thus allows for straightforward segmentation of objects by 

3D position and by motion direction. In particular, it enables reliable segmentation of persons, and 

of moving hands or arms. 

To reduce computational expense a few works have tried to segment video without decoding 

the signal from its compressed state (Fei & Zhu, 2010; Khatoonabadi & Bajic, 2013; Porikli et al., 

2010; Tsao, 2011). The approaches used in the compressed domain make use of the data from the 

compressed video bit stream, such as motion vectors (MVs), block coding modes, motion-

compensated prediction residuals or their transform coefficients, etc. In practice, some, but not 

necessarily all, of the information from the bit stream needs to be decoded. There are two main 

types of cues: motion vector (MV) and discrete cosine transform (DCT) coefficients, which can be 

derived in the process of video coding or extracted by partially decoding the MPEG-compliant 

compressed videos (Fei & Zhu, 2010). These algorithms can be classified as following three classes: 

(i) DCT domain segmentation, which exploits texture characteristics of DCT coefficients for 

segmentation (Tsao, 2011); (ii) MV field segmentation. In this case, the spatial and temporal 

information of MVs were used for segmentation (Fei & Zhu, 2010); (iii) joint DCT and MV 

domain segmentation(Porikli et al., 2010). Another approach to reducing computationally 

efficiency is by using hardware based techniques to speed up the processing of complex 

algorithms. In (Appiah et al., 2010) they process a multimodal background differencing algorithm 

on a single Field Programmable Gate Array (FPGA) chip and four blocks of RAM. The real-time 

connected component labelling algorithm, also designed for FPGA implementation, run-length 

encodes the output of the background subtraction, and performs connected component analysis 

on this representation. The run-length encoding, together with other parts of the algorithm, is 

performed in parallel; sequential operations are minimized as the number of run-lengths are 

typically less than the number of pixels. The two algorithms are pipelined together for maximum 

efficiency. 

Temporal continuity of the spatiotemporal segmentation regions can only be achieved by 

tracking the object boundaries over the duration of a shot. In (Vazquez-Reina et al., 2010) they 

extract multiple segmentation hypotheses of superpixel flows in each frame, and then search for a 
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segmentation consistent over multiple frames. Robust unsupervised video segmentation must take 

into account spatial and temporal long-range relationships between pixels that can be several 

frames apart. Segmentation methods that track objects by propagating solutions frame-to-frame 

(Yongquan et al., 2009) are prone to overlook pixel relationships that span several frames. 

Some of the problems faced in spatiotemporal segmentation include occlusion (Ayvaci & 

Soatto, 2012). Local image measurements often provide only a weak cue for the presence of object 

boundaries. At the same time, object appearance may significantly change over the frames of the 

video due to, for example, changes in the camera viewpoint, scene illumination or object 

orientation (Lezama et al., 2011). Due to occlusions, objects often merge and split in multiple 2D 

regions throughout a video (Vazquez-Reina et al., 2010).  

This problem also relates to unsupervised segmentation of arbitrarily long videos that require 

the automatic creation, continuation and termination of labels to handle the free flow of objects 

entering and leaving a scene (Vazquez-Reina et al., 2010). Such events are common when dealing 

with natural videos with arbitrary camera and object motion. A complete solution to the problem 

of multiple-object video segmentation requires tracking object fragments and handling splitting or 

merging events. 

Two or more syntactic features are used to segment objects. This hybridisation is applied in 

two ways; by combining techniques that use different features symbiotically to segment the object 

or use different features to independently segment the object and use the results from one to 

reinforce the other. Examples of a symbiosis technique is (Bai et al., 2010) where they use motion 

estimation  as a probability framework of object localisation and then adapt the selection of colour 

model from global to localised  for different parts of the object so successive frames can be easily 

segmented.  The work from (Hu & Hsu, 2011) is an example of the second type that uses different 

syntactic features to extract and then reinforce object segmentation. They combine all three feature 

classes; colour, motion and edge information to extract foreground objects.  The proposed method 

uses a coarse to fine segmentation approach for object segmentation. They begin by extracting the 

motion information of the object using the angle module rule (Carmona, Martínez-Cantos, & Mira, 

2008). Then a coarse moving object motion mask is obtained using the motion and gradient 

variation information.  Compensation for still regions in a moving object, noise elimination, 

morphological processing and connected component labelling are used to provide a fine moving 

object mask. Finally, moving object region refinement is achieved by combining the object 

boundary refinement with region growth/compensation performed by Sobel edge detection.  
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Sometimes the same feature can be used by two different techniques to reinforce each other. For 

example, they use pixel intensity values in (Mahesh & Kuppusamy, 2012) with both frame 

difference algorithm and intersection of frame algorithm to extract objects for two different 

scenarios.  The motion segmentation process is carried out by both the frame difference algorithm 

and intersection method and subsequently the most common and accurate segmented objects are 

retrieved from both the segmented results whereas the static foreground are segmented using the 

intersection of consecutive frames. 

In Table 1.2 the state-of-the-art spatiotemporal segmentation methods are presented. It shows 

which content features are used for extraction, whether it is supervised or unsupervised, The name 

of the algorithm and the domain of use. 
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AUTHOR COLOUR/INTENSITY EDGE/TEXTURE/PIXEL MOTION SUPERVISED UNSUPERVISED SS TECHNIQUE(S) DOMAIN  NOTES 
APPIAH X   X  GMM CCTV MOG 
AVIDAN  X  X  ADABOOST -  
AYVACI   X  X LP -  
BAI X  X X  GMM CCTV/SPORTS DCF 
BROSCH  X   X  CVF -  
CHRISTODOULOU   X  X FDT CCTV PRE-

PROCESSING 
ELMINIR X X X  X HLSC -  
FATHI  X  X X GT BIOTRACKING  
FEI   X  X MV - COMPRESSED 
GHUFFAR   X  X GT FLIGHT CAMERAS USES 3D 
GRUNDMANN X    X GT -  
HOSTEN   X X  GT -  
HU X X X  X GVD/ED/MD -  
LADICKÝ  X   X CRF CCTV  
LEZAMA   X  X OF - GBS 
LIN   X  X MRF CCTV PRE-

PROCESSING 
MA   X   MD CCTV STEREO BASED 
MAHESH X    X FD/IF SPORT HYBRID 
NAGAHASHI X   X  GT - GMM 
OCHS   X  X LTTP -  
PHAN X   X  CA - BIOLOGICAL 
PORKILI   X  X VGCDS - COMPRESSED 
PRICE X   X  FGT -  
SHARIR  X   X CRF -  
SHAO   X  X MA SPORTS  
SUBUDHI  X   X MRF CCTV  
TIAN 

X  X X X GMM/MV CCTV/SPORTS VIDEO 
SUMMARY 

TSAO  X   X GT CCTV COMPRESSED 
VAN DEN BERGH X  X  X SLIC CCTV STEREO BASED 
VAZQUEZ-REINA  X   X CRF - MHVS 
YONGQUAN  X   X IFM SPORTS  
ZHU  X  X  GMM CCTV  

Table 1.2: SPATIOTEMPORAL SEGMENTATION ALGORITHMS; FOR HYBRID SYSTEMS THE COLOURS INDICATE WHICH ALGORITHM IS RESPONSIBLE FOR WHICH FEATURE 
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1.3.3 Semantic Relationships 

The semantic information used to identify video events has two important aspects (Marios C. 

Angelides, 2003). They are: (a) A spatial aspect presented by a video frame, such as the location, 

characters and objects displayed in the video frame. (b) A temporal aspect presented by a sequence 

of video frames in time such as the character’s actions and the object’s movements presented in a 

sequence. 

There has been much work recently on concept detection (Weiming et al., 2011). This has 

mostly been based on feature fusion and classifier fusion, which use syntactic feature sets for 

detection. The semantic feature based methods of concept detection are based on modelling 

relations. The two semantic features that need to be modelled are spatial and temporal 

relationships. Spatial relationships exist only between spatiotemporal regions and can evolve over 

time. Temporal relationships can be modelled between all features, syntactic or semantic, as all 

video features have a temporal component.   

1.3.3.1 Spatial Relationships  
Over the past years, the representation of spatial relationships in video has been extensively 

discussed (Weiming et al., 2011).  

One of the most important abilities of a semantic content model should be to be able to query 

the position of objects in relation to other objects or their relative positioning within the shot, not 

just as a reference to their absolute positioning stated as coordinates (Agius & Angelides, 2005). 

Consumers of content can query using simple relationships between objects as “A is left of B”, and 

also state by inference the inverse relationship “B is right of A”. Relative positioning can be given 

using 8 point compass direction such as “North” or “South-East”. Spatial relationships therefore 

can be an important tool in semantic querying of content.  

Unlike spatial relationship in images, spatial relationships in video have a temporal dimension. 

Temporally consecutive frames have explicit spatial constraints with object inheritance, spatial 

relationships and motion information from their previous frames. Temporal trajectories of spatial 

relations among objects are as important as temporal object trajectories to represent object 

activities and reveal semantic evolution of spatial properties over time. 
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Unfortunately, spatial relationships have not been adequately addressed in most video indexing 

systems despite their obvious importance, and where they have been they have not been explicitly 

derived (Baştan, Çam, Güdükbay, & Ulusoy, 2010; Kannan, Andres, & Guetl, 2010; Vrochidis et 

al., 2010). In such systems, indexing techniques work on modelling video by treating video 

shots/scenes as collections of still images, extracting relevant key-frames, and comparing their low-

level features.  

Spatial relationships were formalised using Allen’s temporal logic as a basis (Güsgen, 1989). 

Spatial relationships between objects describe the relative location of objects in relation to other 

objects (rather than their absolute screen coordinates) within the segment. Spatial representations 

aren’t an alternative to screen coordinates; they complement them. Sometimes when it’s difficult to 

derive screen coordinates, a spatial relationship is the only way to model an object’s presence. The 

spatial relationships between two objects may differ over time within the same segment. In Table 

1.3, we see the spatial relationships that are defined in MPEG-7 (Manjunath, Salembier, & Sikora, 

2002). 

RELATION INVERSE RELATION 

SOUTH NORTH 

WEST EAST 

NORTHWEST SOUTHEAST 

SOUTHWEST NORTHEAST 

LEFT RIGHT 

RIGHT LEFT 

BELOW ABOVE 

OVER UNDER 

Table 1.3: NORMATIVE SPATIAL RELATIONSHIPS IN MPEG-7 (MANJUNATH ET AL., 2002) 

Spatial relationships are a highly active field in other domains such as Content based 

information retrieval (Singhai & Shandilya, 2010), Human activity classification (Ryoo & Aggarwal, 

2009), Robotics (Rosman & Ramamoorthy, 2011) and Surveillance (Ryoo, Lee, & Aggarwal, 2010). 

1.3.3.2 Temporal Relationships 
One of the most important distinctions between semantic querying of video rather than images 

is the temporal dimension. Semantically queries can be structured to investigate the temporal 

relationships not only between syntactic features, but also semantic features. Temporal 

relationships between these features allow the content model to express dynamism at the higher 

level (Agius & Angelides, 2005).  
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Temporal relationships were first defined meaningfully by J.F. Allen (Allen, 1983) in his 

quintessential paper on temporal intervals. He stated that temporal intervals should be able to be 

represented imprecisely using a strictly relative nomenclature. He also stated that representation 

should allow for the uncertainty of temporal information. Often, the exact relationship between 

two times is not known, but some constraints on how they could be related are known. The 

representation should also allow one to vary the grain of reasoning. For example, when modelling 

knowledge of history, one may only need to consider time in terms of days, or even years. When 

modelling knowledge of computer design, one may need to consider times on the order of 

nanoseconds or less. Finally, the model should support persistence. It should facilitate default 

reasoning of the type, "If I parked my car in lot A this morning, it should still be there now," even 

though proof is not possible (the car may have been towed or stolen). Allen’s scheme for temporal 

relationships was expanded on by the MPEG-7 group (Manjunath et al., 2002), as shown in Table 

1.4. 

BINARY INVERSE BINARY N-ARY 

PRECEDES FOLLOWS CONTIGUOUS 

CO-OCCURS CO-OCCURS SEQUENTIAL 

MEETS MET BY CO-BEING 

OVERLAPS OVERLAPPED BY CO-END 

STRICT DURING STRICT CONTAINS PARALLEL 

STARTS STARTED BY OVERLAPPING 

FINISHES FINISHED BY - 

CONTAINS DURING - 

Table 1.4: NORMATIVE TEMPORAL RELATIONSHIPS IN MPEG-7 (MANJUNATH ET AL., 2002) 

1.3.4 Content Modelling 

Once features are extracted they need to be described so that text-based search engines can 

access the content descriptions. Each feature that is extracted needs to modelled into a content 

description that describes the syntactic and/or semantic properties of that feature. Once the 

content features are modelled they themselves need to be modelled into a single document, called 

the content model, that structures the content descriptions into a logical arrangement of content 

features that describes a video stream in term of what can be seen and heard, and what that means. 

The content model provides a content description “proxy” of the content contained within a video 

stream, and indexes the content to recreate the visually salient points of the content that would be 

of interest to users to formulate queries with. 

In this section we will examine which features need to be modelled that are at the core of 

describing a video stream. These core features should be included in a content model as they cover 
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the majority of features that are generally queried by most video content search applications. The 

next section looks at the requirements of applications that require content models in terms types of 

query and how state of the art content feature extraction and modelling applications fill those 

requirements. The last section looks at different multimedia content descriptions standards and 

focuses on MPEG-7 as a complete multimedia content description interface for creating content 

models. 

1.3.4.1 Modelled Features 
Content models must represent the content of a video stream in a complete and detailed 

manner. The content features must be described in both structurally syntactic and a semantically 

meaningful terms, concisely and comprehensively (Moens et al., 2012). The types of descriptors 

and the granularity of the description scheme have a direct impact on the usefulness of the content 

model to different domains and consumers. This leads to the issue of interoperability of the 

content model across multiple platforms and applications and vendor and propriety independence 

(Haslhofer and Klas, 2010). The content model must ideally be available to be used for as many 

purposes as possible. A content model must be structured in an explicit manner that must 

represent the content as a proxy that describes the information within that content in a complete 

and comprehensive manner. To achieve this the syntactic and semantic content descriptions that 

make up the content model must be integrated so that a symbiosis of structure and concepts 

within the content become manifest. 

Extracting the content features into a content model in a structured format that unlocks the 

semantic meaning of the content within the perspective of consumers is the main goal   of content 

modelling. This is commonly referred to as the semantic gap, which is the difference between what 

a user perceives as the meaning of the content (semantics) to what can be extracted using machine 

based indexing methods (syntactic) (Küçük and Yazıcı, 2011). This is one of the main problems in 

designing video indexing and retrieval systems that can effectively support semantic querying that 

can be translated and mapped to annotated semantic features. The choice of what and which 

content features to model can have an impact on the effectiveness and use of the resulting content 

model. The content model must contain features that users query regular. Looking at the type of 

query requirements for video identifies the core content features that need to be modelled to 

enable the content model to be utilised by a wide array of content based video search engines.  

The content features that are modelled must include all levels of the content feature hierarchy.  

The content features can be categorised into groups depending on their structural and/or 
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conceptual attributes. (Baştan et al., 2010) stated that user queries could be categorised into four 

categories, but also stated this list was not exhaustive. Related works (Marios C. Angelides, 2003; 

Inigo & Suresh, 2012; Lavee et al., 2009; Mezaris et al., 2009; Moens et al., 2012; Ren, Singh, Singh, 

& Zhu, 2009; Smeaton et al., 2010; Snoek & Worring, 2009; Weiming et al., 2011; Shiping Zhu & 

Guo, 2012) have categorised all the query types based on what type of content the query addressed. 

These query categories can be classed into categories based on their syntactic or semantic nature. 

The queries are categorised into four classes: 

• Low level syntactic queries – “Query by example” that is used for features that are easily 

processed by automatic feature extraction, such as images or video. The queries return 

multimedia results that have the same similarity in structural features such as colour, 

shape, texture and/or motion. 

• Mid-level syntactic queries – can be queried by providing examples or can use keyword 

based querying to find perception-based and spatiotemporal syntactic features such as 

scenes and objects. 

• High level semantic queries – Text based queries, expressed as natural language or 

keyword based, that are based on the human understanding of content. These queries 

might also incorporate narrative and context of the requirements of the results needed. 

This returns results that have high level semantic concepts, such as events, actions and 

conceptual relationships.  

• Combination of all the above – A mixture of all or some of the above query types. 

From the above query examples we can see the need for a content model to support these 

types of query will need to have similar content features that match up to the content feature 

queries. The core content features proposed by (Marios C. Angelides, 2003) contain four content 

feature classes, spatiotemporal objects, spatial relationships, event segments and temporal 

relationships. These four basic categories only cover the mid-level, high-level and semantic 

relationships requirement for content based video querying. Another category must be added for 

the low level syntactic features. This category is the temporal segments. The addition of the fifth 

content feature group makes the content feature classification complete. The expanded content 

feature descriptions are below:  
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• Spatiotemporal objects – objects that are depicted in the content and are tangible and 

have a causal effect on the semantics of the content by creating or changing events 

• Spatial relationships – the spatial relationship between objects and how they change 

over time 

• Temporal segments – A video segment or clip that depicts a single action or instance of 

an object that is part of an event. 

• Event segments – video segments or clusters of video clips that depicts events involving 

the objects 

• Temporal relationships – the temporal ordering between the different content features 

The difference between the temporal segment and the event segment is that the temporal 

segments action may not have a substantive semantic meaning of its own e.g. it may just be a 

simple action of camera movement such as a pan shot. The event segment has a definitive 

semantic meaning to it.  The event segment could be potentially be made of many temporal 

segments, who’s individual actions add up to an event. Conversely a temporal segment on its own 

could have a definitive semantic occurrence (e.g. car crashing) but this does not necessarily mean 

that it is an event as there could have been other actions that complete the event (e.g. car tyre 

blows out).  

These four basic categories covers most types of syntactic and semantic content features that 

are to be modelled for a comprehensive, granular and richly described content model. If we take 

these four content feature groups and match them up to the content feature query groups we get 

the following in Table 1.5: 

CONTENT QUERY GROUP CONTENT FEATURE GROUP 

LOW-LEVEL SYNTACTIC QUERIES TEMPORAL SEGMENT 

MID-LEVEL SYNTACTIC QUERIES SPATIOTEMPORAL OBJECTS, EVENT SEGMENTS 

HIGH-LEVEL SEMANTIC QUERIES SPATIAL RELATIONSHIPS, TEMPORAL RELATIONSHIPS 

Table 1.5: CONTENT QUERY REQUIREMENT GROUP VS. CONTENT FEATURE GROUP 

The low level syntactic queries are fulfilled by the temporal segments, which depict frames and 

shots, the fundamental building blocks of video. Frames are used to represent a snapshot of a 

temporal segment or another features semantic context, they have no value within themselves as a 

feature, syntactically or semantically. The spatiotemporal objects represent the mid-level syntactic 
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features needed for querying and event segments. Spatiotemporal objects are a mid-level syntactic 

feature as they represent a moving region of interconnected pixels that are semantically related to 

be described as an object. Events are usually described as “scenes” in video nomenclature. A scene 

is a syntactic feature that defines a temporal segment of video that is a collection of other temporal 

segments that are semantically related. Spatial and temporal relationships are semantic relationships 

that represent the interaction between features that give the event meaning. High level queries can 

use the semantic relationships to assess what type of event has occurred by being able to query 

when it occurred in relation to other features and what the interaction of the objects where.    

So with the addition of the temporal segments all the video content query requirements of the 

four content type query groups are met by the five content feature groups. Content models that 

possess the five content feature groups should be able to provide results to any content based 

video query that is formulated with any combination of feature requirements. In the next section 

current state-of-the-art content modelling applications are examined to see how well they fulfil the 

content model requirements stated. 

1.3.4.2 Content Modelling Applications 
As described in the previous section content feature extraction and modelling applications 

need to extract and model certain core content feature descriptions that will create a content model 

that can fulfil the requirements of the majority of content based video queries. In Table 1.6 we 

have the state-of-the-art content feature extraction and modelling systems that are the main players 

in video content extraction and modelling. In the table the content feature query groups are 

compared to each system and the features it extracts and models for that feature stated. The 

domain of use is also noted, as is the standard used to describe the content model, if any, is used to 

describe the content feature is also provided. 

At present supervised, semi-supervised and unsupervised content modelling prototypes and 

systems index content to a content model offline as it is a time consuming, laborious (in the case of 

supervised and semi-supervised methods) and computationally expensive process. The content 

models are then used as “proxy” for the original video stream. Some systems do not produce a full 

content model but produce descriptions of certain content features that are relevant for the needs 

of their domain or use. Not all content features are extracted by the system, indeed even those 

within each content feature category the actual content feature sets extracted can be quite different. 

The content features extracted largely depend on the extraction method of the content features 

and how the content features are to be used. The nuances of each system is described in an 

overview that follows the table and discusses the main function of the system and the content 
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features, and how they’ve implanted their content modelling strategy, discussing the pros and cons 

of the strategy. 
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CONTENT FEATURES 

INDEXING TECHNIQUE/S TYPE DOMAIN STANDARD CONTENT 
MODEL LOW MID HIGH RELATIONSHIP 

MKLAB VISUAL CONCEPT   SIFT/TEXT SEMI-SUPERVISED GENERIC MPEG-7 NO 

DYANA MOTION OBJECT   CSS/PC UNSUPERVISED GENERIC MPEG-7 NO 

BILVIDEO-7 SHOTS, 
KEYFRAMES, OBJECTS  SPATIAL, 

TEMPORAL CHD/MANUAL SEMI-SUPERVISED GENERIC MPEG-7 YES 

DANVIDEO  
OBJECTS, 
ACTORS, 
AGENTS 

MOOD SPATIAL, 
TEMPORAL MANUAL SUPERVISED DANCE MPEG-7 YES 

OVIDIUS SHOTS, 
KEYFRAMES 

SCENES, 
SPEECH   BOW/CHD/SPEAKER 

DIARISATION/HMM UNSUPERVISED DOCUMENTARY MPEG-7 YES 

SHIATSU SHOTS  CONCEPT   UNSUPERVISED LANDSCAPE NO NO 

VERGE SHOTS, 
KEYFRAMES SPEECH CONCEPTS TEMPORAL 

(LIMITED) SIFT/ASR/BOW/SVM UNSUPERVISED SURVEILLANCE MPEG-7 NO 

ZAVŘEL KEYFRAMES    MPEG7-XM UNSUPERVISED GENERIC MPEG-7 NO 

LAWTO THUMBNAILS PERSONS, 
SPEECH CONCEPTS  ASR/NLP UNSUPERVISED NEWS XML YES 

XUNET 
SHOTS, 

KEYFRAMES 
 CONCEPTS  MANUAL SUPERVISED MOVIES/TV MPEG-7 NO 

VISIONGO SHOTS, 
KEYFRAMES SPEECH CONCEPTS  MANUAL/ASR/ML SEMI-SUPERVISED NEWS NO NO 

ANTHROPOS-7 
SHOTS, 
KEYFRAMES, 
MOTION, 3D 

OBJECTS, 
ACTORS CONCEPT  MANUAL/AUTOMATIC SEMI-SUPERVISED MOVIES/TV MPEG-7 YES 

GOS (HCT) KEYFRAMES    AUTOMATIC UNSUPERVISED GENERIC MPEG-7 YES 

Table 1.6: AUTOMATIC VIDEO INDEXING SYSTEMS
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In (Baştan et al., 2010) they have developed an MPEG-7-compatible video feature extraction 

and annotation tool called Bilvideo-7. Low-level syntactic features are automatically extracted using 

a hierarchical temporal/spatiotemporal decomposition methodology. This segments the content 

features described into independent, but linked, descriptions that can be queried easily by two of 

the categories of content-based retrieval queries, low-level and mid-level syntactic features. 

Semantic labelling of these features is then added manually as to be able to query high-level 

semantics. The main low level features of interest that are modelled are shots, key segments 

(represented by keyframes) and objects (with backgrounds). It can formulate multimodal queries 

using the BilVideo-7 visual query interface that can support all three types of querying and also the 

fourth category, spatial and temporal relationships. Spatial and temporal relationships aren’t stated 

explicitly in the content model but can be queried during the query processing stage. This lack of 

an explicit structure for spatial and temporal relationships means that a content model produced 

from BilVideo-7 cannot be used for querying of those relationships by other systems without pre-

processing first. The major bottleneck in the system is that it has to be manually annotated. This 

can lead to errors in indexing, is time consuming and prone to unreliable human translation.  

In (Bursuc, Zaharia, & Prêteux, 2012) they have developed an Online Video Indexing 

Universal System (OVIDIUS), which is an online video browsing and retrieval platform. The client 

is a web-based interface with the querying performed on an MPEG-7 search engine server using a 

content management system that extracts and stores the MPEG-7 feature descriptions. They adopt 

a hierarchical approach to video segmentation, i.e. video, scenes, shots, speech segments and 

keyframes. The main capability OVIDIUS has over other systems is that all segmentation is 

processed automatically. The low level semantic features are extracted using established extraction 

techniques, which are very reliable. For instance the shots are segmented by a colour histogram 

difference (CHD). Semantic annotation is added by analysing associated text from the transcription 

process as local semantic features and items such as title and synopsis as global features. OVIDIUS 

does not extract objects and therefore spatial relationships. It also does not explicitly support 

temporal relationships either. 

In (Kannan et al., 2010) they have developed an MPEG-7 authoring and retrieval system for 

dance called DanVideo. They use a video annotator that has two parts, a macro and micro 

annotator, to index the raw media. The macro annotator is used to describe global semantic 

features of the video such as dancers, musicians, music, accompaniments, background, tempo of 

the dance steps (slow, medium, or fast), dance origin, dance type, context (live, rehearsal, 

professional play, competition, etc.). The micro annotator is used by the dance choreographer to 
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annotate the dance steps in each song of the video. This annotator provides instantiations of the 

global descriptions with additional descriptions that describes the local conditions of the local 

content features. The micro annotator is also used to describe the spatial and temporal 

relationships.  The annotations are first stored as hash tables and vectors as intermediate 

description data store. These descriptions are then turned into MPEG-7 D’s and DS’s by the 

MPEG-7 instance generator. DanVideo uses standard description tools from MPEG-7 and does 

not use the DDL, making it highly compatible with all MPEG-7 compatible systems. DanVideo 

has a very detailed and complete content model in regards to high level semantic features and mid-

level syntactic features but does not have any low-level syntactic features. This is not a problem in 

the dance domain where this system is intended for use but would present a problem in other 

domains or generic use. 

(Bartolini, Patella, & Romani, 2011) proposed a technique for automatic semantic-based 

hierarchical indexing of videos, called SHIATSU (Semantic Hierarchical Automatic Tagging of 

videos by Segmentation Using cuts). Shots are extracted using a double dynamic threshold system 

that implements a hybrid HSV based CHD and ECR. Both techniques are used for detecting cut 

shots but only ECR is used for detecting transition shots. This hybrid technique produced better 

recall and precision results than the reference technique. After the shots are segmented a keyframe 

is extracted from each shot to be annotated with semantic tags. Visual features are extracted from 

the keyframes and are compared using an M-Tree metric against pre-defined semantically 

annotated images in a knowledge base of concepts. The concepts can either be structured in 

hierarchical tree shaped taxonomy or in a flat structure. All keyframes once indexed are added to 

the knowledge base to improve accuracy and quality of the semantic tagging. SHIATSU is a fully 

automated system but initially requires a pre-defined knowledge base that has to be accurate for 

tagging to achieve precision. It also does not provide tagging of mid-level syntactic features, high-

level semantic features or spatial and temporal relationships. SHIATSU showed a high accuracy 

rate for datasets of landscapes but not for generic content. It also does not produce a standardised 

content model and therefore its semantically indexed database is not easily accessible or usable. 

In (Vrochidis et al., 2010) they introduce VERGE, a video interactive retrieval engine which 

combines indexing, analysis and retrieval techniques in various modalities (i.e. textual, visual and 

concept search). It extracts low level syntactic features such as shots and keyframes as the basis of 

its content retrieval strategy. Feature vectors are extracted into MPEG-7 visual descriptors that are 

concatenating to compactly represent each image in a multidimensional space. These are used for 

the visual part of the retrieval engine. For the mid-level syntactic features speech is transcribed 
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through ASR and used to produce a full text index. This is used for textual part of the multi-

content type query. Using the MPEG-7 feature vectors already processed from the BOW 

technique based on SIFT descriptors, a set of SVM classifiers is initially trained to represent each 

shot against each high level visual concept. They then iterate the results over a second set of SVM 

classifiers to fuse the results and produce a normalised score for each shot per high level concept. 

This final stage represents the high level semantic part of the video retrieval engine. Visual and 

textual information is then fused together by applying a manually assisted linear fusion. VERGE 

also supports a simple temporal querying functionality that returns temporally adjacent shots. 

VERGE is a great example of combining all three low, mid and high level features into a multi-

content type video retrieval platform. Unfortunately it does not produce an explicit content model 

that allows other systems to take advantage of such an integrated and granular approach. It also 

doesn’t support object descriptions, and therefore spatial relationships. Its limited functionality of 

temporal relationship queries does facilitate proper querying between all available features 

comprehensively as well. 

In (Zavřel, Batko, & Zezula, 2010) they extract MPEG-7 visual descriptors using the MPEG-7 

reference implementation library and it’s summarisation client. These are then used to compare 

videos against each other using a “query by example” method. It extracts keyframes based on the 

change of specific parameters. Five MPEG-7 global visual descriptors – colour structure (CS), 

colour layout (CL), scalable colour (SC), edge histogram (EH), and homogeneous texture (HT) are 

extracted from each key frame. Keyframes are matched against each other by comparing the five 

descriptors using a weighted distance function. The similarity between video clips is computed 

from how many matching keyframes they have and how well they match. There are no mid-level 

or high-level features extracted or compared against, and comparison is strictly done on a keyframe 

level.  

A scalable video search engine based on audio content indexing and topic segmentation is 

described in (LawTo et al., 2011). It segments news podcasts by topic, in both audio and video 

formats, by transcribing the audio. Using a multi-lingual state-of-the-art transcription system the 

audio stream is annotated into an xml file. The transcribed audio is then partitioned into speech 

segments, and after determining gender, the segments are clustered for each speaker. The raw text 

output is then segmented into topically homogenous segments that relate to a singular news story 

or topic. Natural language processing (NLP) are applied to each segment to extract named entities 

and multi-word terms. The time codes of the terms are recorded with them. A thumbnail from 

each segment is also extracted but is only a reference image and plays no part in processing. This 
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system does not use any meaningful low-level syntactic features in its content model or query 

formulation. Although it does identify objects by audio signal i.e. person speaking, it cannot map 

spatial relationships as there is no visual features. Temporal relationships are also not mapped even 

though time codes are extracted.  

XUNET (Quan & Zhiwei, 2011) is a distributed video retrieval system that supports semantic 

querying through graph annotation and NLP functions. Shots are segmented manually and a 

keyframe is extracted. MPEG-7 descriptions are used but describe only temporal attributes of the 

shot. Low-level syntactic features are extracted from the keyframes to MPEG-7 descriptors. 

Manual and semi-automatic annotation of the semantic information is added to each shot. The 

semi-automatic annotation utilises the script of the movie along with its time code references to 

match up the text with the correct shot. Although the system does support MPEG-7 descriptors 

the system stores them in a relational database as structured data. This negates the interoperability 

of the MPEG-7 content descriptions. No mid-level syntactic features are described as the high-

level semantic concepts are directly related to the low level features. This reduces the granularity of 

the descriptions of the content. Temporal and spatial relationships are also not supported. 

VisionGo (Luan, Zheng, Wang, & Chua, 2011) is a video retrieval engine for news stories that 

explores the role that relevance feedback can have to improve video retrieval results for CBVR. 

They try and bridge the semantic gap by using relevance feedback on an initial set of content based 

video results. The initial query is multi-content type and therefore the engine employs low, mid and 

high level features. The low-level features are represented by keyframes from manually segmented 

shots. The features extracted from the keyframes are 27-dimension colour moment features 

(including 1st, 2nd, and 3rd moments) obtained at a 3 x 3 block, 80-dimension normalized local 

edge histogram texture feature, eight directional motion features and one global motion feature, 

which result in a 116-feature vector for each keyframe. Speech is the mid-level feature that is 

extracted using ASR. From this they extract known named entities (NE) such as time, date, 

location, subjects and activities from text at story level. NEs have been found to be good 

descriptors especially for news. They use machine learning to train detectors to assign pre-defined 

high level concepts to the shots.  The pre-defined concepts are split into concept genres: (a) objects 

like cars, buildings; (b) audio-genre like cheering, silence, music; (c) shot-genre in news like 

political, weather, financial; (d) person-related features like face, people walking, people marching; 

and (e) scenes like desert, vegetation, and sky. This framework has proven highly accurate as the 

relevance feedback provides refinement and trains learning classifiers to better select more relevant 

results in the future. Although the low-level features are represented in adequate detail the mid-
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level feature are only represented by speech. Also there is no automatic feature extraction for shots. 

The features are represented by system specific description structures and metadata and therefore 

are unusable by other systems.  

Anthropos-7 is a content description interface framework based on the MPEG-7 standard 

(Tsingalis, Vretos, Nikolaidis, & Pitas, 2012). Anthropos-7 was created as reduced content 

description set to make the indexing and use of the description schemes more manageable, as 

MPEG-7’s myriad of tools was too extensive. They describe several new description schemes 

sculpted from MPEG-7 DDL for low-level and mid-level syntactic features, as well as high-level 

semantic features. For the low-level features they propose a ShotType DS and a TakeType DS. 

Both describe contiguous shots but only TakeType DS can be overlapped temporally. The 

ShotType DS has the option of containing keyframes or not.  Another low level feature description 

is the Correspondence DS that is used for multi-view camera set ups as in the case of stereoscopic 

cameras used in the production of 3D movies/TV. The mid-level syntactic features are 

ActorAppearanceType/ObjectAppearanceType DS, ActorInstanceType/ObjectInstanceType DS 

and SceneType DS. SceneType DS deals with the hierarchical scene segments that contains 

ShotType DS and a TakeType DS. ActorAppearanceType/ ObjectAppearanceType DS describe 

the temporal appearance of actors/objects, and describes the motion of the actor/object using a 

Motion DS. ActorInstanceType/ ObjectInstanceType DS describes the actor/object within the 

keyframe.  This contains the BodyPartsType DS that describes the anatomy of the actor. This 

approach does simplify the amount of descriptors required to describe movie/TV content but 

because these tools are created explicitly from MPEG-7 DDL, and are not standard descriptors it 

may not be totally or even partially compatible with other MPEG-7 systems without modification. 

It also does not address spatial and temporal relationships explicitly. 

Graphic Object Searcher (GOS) is video keyframe retrieval query interface that exploits a 

Hierarchical Cellular Tree (HCT) algorithm to index and search large video databases (Ventura, 

Martos, Giró-i-Nieto, Vilaplana, & Marqués, 2012). The video is segmented into representative 

keyframes using a keyframe extractor. The HCT partitions stores them within cells based on their 

similarity to each other. GOS extracts 4 MPEG-7 visual descriptors from the keyframes: (i) Colour 

Structure Descriptor, (ii) Dominant Colour Descriptor, (iii) Colour Layout Descriptor, and (iv) 

Texture Edge Histogram Descriptor. These are not embedded into a standard MPEG-7 content 

model but are referenced to the keyframe they were extracted from. This makes using the 

descriptors by another MPEG-7 video retrieval system difficult. The keyframes are the only feature 
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used for the entire system without any other low, mid or high level features supported. Spatial and 

temporal relationships are not supported explicitly either. 

1.3.4.3 Content Modelling Tools 
Content modelling is based on the choice of the correct standard of metadata to use. The 

correct choice of metadata interoperability will allow uniform access to media objects in multiple 

autonomous and heterogeneous information systems (R. Tapu & T. Zaharia, 2011). There are 

three main metadata building blocks: The language for defining the metadata scheme, the element 

definitions of metadata scheme and the metadata instance that contains content values of the 

metadata description (R. Tapu & T. Zaharia, 2011).  Several types of structural and semantic 

heterogeneities must be resolved in each of these building blocks before metadata interoperability 

is achieved. Standardised metadata schemes are one way of achieving this by establishing an 

agreement by means of consensus building from all areas of technical expertise, such as content 

producers; content aggregators; content distributors; post production services and consumers, both 

commercial and non-profit.  

Metadata itself is just another type of data that acts as a descriptive intermediary that represents 

the essence of the content. The metadata can be generalised into four categories, extended from 

the work done by (Moens et al., 2012) to apply specifically to multimedia content. These are: 

• Syntactic metadata – provides a description of the content structure 

• Semantic metadata - provides a description of the contents meaning. 

• Technical metadata – provides technical information on technical aspects of the 

material and the material carrier. Examples of this are file type, date of creation and 

encoding used.  

• Administrative metadata – describes metadata that includes creation and legal aspects 

associated with the metadata. Creation type metadata can include date of production, 

type of camera used and director. The legal aspects are concerned with intellectual 

property rights such as copyright and distribution policy. 

A number of multimedia content modelling metadata frameworks have been proposed in 

recent years. These frameworks have been initiated for different purposes and therefore have 

different function and feature sets. They all however try to model the content by linking semantics 
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to the syntactic features in some form or manner.  Table 1.7 lists state-of-the-art multimedia 

content modelling standards currently available. The list is non-exhaustive but relevant in that we 

are only looking at standards that deal with XML, as these standards can be classed as standard 

interoperable, or both audio and visual features. For more information please see Appendix-A – 

International Multimedia Metadata Standards. For this literature review we are to focus on MPEG-

7, as this is the most common and suited for the purpose of generic content modelling.  

NAME ENCODING USED FOR DOMAIN INDUSTRY 

MPEG-7 XML, RDF, OWL ARCHIVE, PUBLISH GENERIC GENERIC 

AAF NON-XML CONTENT CREATION BROADCAST CONTENT CREATION 

M3O XML ARCHIVE PRESERVATION MEDIA LIBRARY MEDIA DISTRIBUTION 

MXF NON-XML PRODUCTION CONTENT CREATION BROADCAST 

SMIL 3.0 XML, RDF 
PUBLISH, DISTRIBUTION, 
PRESENTATION, 
INTERACTION 

GENERIC WEB, MOBILE 
APPLICATIONS 

SVG XML PUBLISH, PRESENTATION GENERIC WEB, MOBILE 
APPLICATIONS 

IPTC-G2 XML PUBLISH NEWS, SPORTS, EVENTS NEWS &SPORTS 
AGENCIES 

MPEG-21 XML, NON-XML ANNOTATE, PUBLISH, 
DISTRIBUTE GENERIC GENERIC 

EBU P/META (V2.2) XML, NON-XML PUBLISH GENERIC BROADCAST 

DUBLIN CORE XML, RDF PUBLISH GENERIC GENERIC 

TV-ANYTIME XML DISTRIBUTE ELECTRONIC PROGRAM 
GUIDES BROADCAST 

XMP XML, RDF ANNOTATE, PUBLISH, 
DISTRIBUTE GENERIC GENERIC 

Table 1.7:  MULTIMEDIA METADATA STANDARDS FOR CONTENT MODELLING 

 
The MPEG-7 standard, formally named "Multimedia Content Description" (Manjunath et al., 

2002) aims to be an overall standard for describing any multimedia content. MPEG-7 standardizes 

so-called "description tools" for multimedia content: Descriptors (Ds), Description Schemes (DSs) 

and the relationships between them. Descriptors are used to represent specific features of the 

content, generally low-level features such as visual (e.g. texture, camera motion) or audio (e.g. 

melody), while description schemes refer to more abstract description entities (usually a set of 

related descriptors). These description tools as well as their relationships are represented using the 

Description Definition Language (DDL), a core part of the language. At its inception MPEG-7 the 

W3C XML Schema was recommended as the most appropriate schema for the MPEG-7 DDL, 

adding a few extensions (array and matrix datatypes) in order to satisfy specific MPEG-7 

requirements. Also the facility to describe MPEG-7 descriptions as either XML or in a binary 

format called BiMs was introduced for real time transmission of the descriptions in live 

environments. Now the standard is being translated into  Web Ontology Language (OWL) (Chrisa 
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Tsinaraki, Polydoros, & Christodoulakis, 2004) and Resource Description Framework (RDF) (Jane 

Hunter, 2005) to allow interoperability with other semantic web ontologies such as those 

mentioned in Table 1.7. A number of works are, at present, experimenting with MPEG-7 by 

converting the MPEG-7 XML Schema definitions into MPEG-7 RDF Schema definitions 

(RDFS), which will illicit the use of machine understandable MPEG-7 content descriptions that 

will be accessible in a semantic web environment (S. Dasiopoulou, Tzouvaras, Kompatsiaris, & 

Strintzis, 2010). This conversion is still to be ratified under W3C proposals and the MPEG-7 

standard itself (W3C, 2007).  

MPEG-7's comprehensiveness results from the fact that the standard has been designed for a 

broad range of applications and thus employs very general and widely applicable concepts. The 

standard contains a large set of tools for diverse types of annotations on different semantic levels 

(the set of MPEG-7 XML Schemas define 1182 elements, 417 attributes and 377 complex types). 

The flexibility is very much based on the structuring tools and allows the description to be modular 

and on different levels of abstraction. MPEG-7 supports fine grained description, and it provides 

the possibility to attach descriptors to arbitrary segments on any level of detail of the description. 

The possibility to extend MPEG-7 according to the conformance guidelines defined in part 7 

provides further flexibility. In fact a proposal for Synthetic Audio-visual Description Scheme, 

Method and System for MPEG-7 has been recommended on just that premise (Q. Huang, 

Ostermann, Puri, & Rajendran, 2009). Two main problems arise in the practical use of MPEG 7 

from its flexibility and comprehensiveness: complexity and limited interoperability. The complexity 

is a result of the use of generic concepts, which allow deep hierarchical structures, the high number 

of different descriptors and description schemes, and their flexible inner structure, i.e. the 

variability concerning types of descriptors and their cardinalities. This causes sometimes hesitance 

in using the standard. The interoperability problem is a result of the ambiguities that exist because 

of the flexible definition of many elements in the standard (e.g. the generic structuring tools). 

There can be several options to structure and organize descriptions which are similar or even 

identical in terms of content, and they result in conformant, yet incompatible descriptions. The 

description tools are defined using DDL. Their semantics is described textually in the standard 

documents. 

Due to the wide application, the semantics of the description tools are often very general. 

Several works have already pointed out the lack of formal semantics of the standard that could 

extend the traditional text descriptions into machine understandable ones (S. Dasiopoulou et al., 

2010; Gibbon, Liu, Basso, & Shahraray, 2011; C. Tsinaraki & Christodoulakis, 2011). Even 
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querying MPEG-7 documents through XQuery is not straightforward, as much multimedia 

information is vector-based and not able to support similarity measurement and measurement 

results scoring and ranking (Xue, Li, Wu, & Xiong, 2009b). A method used to try and bridge these 

gaps are by using profiles and levels 

Profiles and levels have been proposed as a means to reduce the complexity of MPEG-7 

descriptions (Daylamani Zad & Agius, 2010; Höffernig, Hausenblas, Bailer, & Troncy, 2010). Like in 

other MPEG standards, profiles are subsets of the standard that cover certain functionalities, while 

levels are flavours of profiles with different complexity. In MPEG-7, profiles are subsets of description 

tools for certain application areas; levels have not yet been used. The proposed process of the 

definition of a profile consists of three steps: 1) The selection of tools supported in the profile, i.e. the 

subset of descriptors and description schemes that are used in description that conform to the profile, 

2) The definition of constraints on these tools, such as restrictions on the cardinality of elements and 

on the use of attributes, and finally 3) Definition of constraints on the semantics of the tools, which 

describe their use in the profile more precisely. 

The result of tool selection and the definition of tool constraints are formalized using the MPEG-7 

DDL and result in an XML schema like the full standard. Several profiles have been under 

consideration for standardization and four profiles have been standardized (they constitute part 9 of the 

standard, with their XML schemas being defined in part 11): 

1) Simple Metadata Profile (SMP). Allows describing single instances of multimedia content or 

simple collections. The profile contains tools for global metadata in textual form only. The 

proposed Simple Bibliographic Profile is a subset of SMP. Mappings from ID3, 3GPP and 

EXIF to SMP have been defined. 

2) User Description Profile (UDP). Its functionality consists of tools for describing user 

preferences and usage history for the personalization of multimedia content delivery. 

3) Core Description Profile (CDP). Allows describing image, audio, video and audio-visual 

content as well as collections of multimedia content. Tools for the description of relationships 

between content, media information, creation information, usage information and semantic 

information are included. The CDP does not include the visual and audio description tools 

defined in parts 3 and 4. 

48 
 



4) AudioVisual Description Profile (AVDP) is based on version 2 (2004) of MPEG-7, and 

includes all low-level visual and audio descriptors defined in parts 3 (visual) and 4 (audio) of 

the standard. The constraints on description tools in AVDP concern those defined in part 

5 (Multimedia Description Schemes) of the standard, restricting AVDP documents only to 

complete content descriptions and summaries. A number of constraints are aimed at 

improving interoperability, by limiting the degree of freedom in choosing and combining 

description tools, and enforcing the use of elements and attributes that fix the semantics of 

elements in the description. 

The adopted profiles will not be sufficient for a number of applications. If an application requires 

additional description tools, a new profile must be specified. It will thus be necessary to define further 

profiles for specific application areas. For interoperability it is crucial, that the definitions of these 

profiles are published, to check conformance to a certain profile and define mappings between the 

profiles. It has to be noted, that all of the adopted profiles just define the subset of description tools to 

be included and some tool constraints; none of the profile definitions includes constraints on the 

semantics of the tools that clarify how they are to be used in the profile. 

Apart from the standardized ones, a profile for the detailed description of single audio-visual 

content entities called Detailed Audio-visual Profile (DAVP) (Bailer & Schallauer, 2006) was proposed 

but was superseded by AVDP . The profile includes many of the MDS tools, such as a wide range of 

structuring tools, as well as tools for the description of media, creation and production information and 

textual and semantic annotation, and for summarization. In contrast to the adopted profiles, DAVP 

includes the tools for audio and visual feature description, which was one motivation for the definition 

of the profile. The other motivation was to define a profile the supports interoperability between 

systems using MPEG-7 by avoiding possible ambiguities and clarifying the use of the description tools 

in the profile. The DAVP definition thus includes a set of semantic constraints, which play a crucial 

role in the profile definition. Due to the lack of formal semantics in DDL, these constraints are only 

described in textual form in the profile definition.  

In addition to the profiles, revisions were made to both MPEG-7 parts 3 (visual descriptors) 

and 5 (multimedia description schemes). MPEG-7 Part 3 was revised in 2004, 2006, 2009 and 2010 

(MPEG, 2010), with the addition of visual extensions, perceptual 3d shape descriptor, image 

signature tools and video signature tools. MPEG-7 Part 5 has been revised in 2003, 2004, 2008 and 
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2012 (MPEG, 2012a), with additions of new basic elements, additional Linguistic Description 

Tools, extensions to the user interactions descriptions tools for compatibility with MPEG-21 DIA, 

improvements to geographic descriptor and social metadata descriptors respectively.  
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1.4 Common research threads and challenges 

 Automatic Feature Extraction Content Modelling 

 pre-processing & Syntactic 
media 

temporal segmentation spatiotemporal  
segmentation 

semantic relationships Content feature and 
modelling 

Content model 

Problems Identified raw media is not optimised 
for feature extraction 

Raw media processing 
requires high computational 
expense  

  

The need to index video 
content into temporally 
syntactic and logical story 
units 

Identifying different syntactic 
attributes of temporal 
segments 

to segment a video stream 
into spatiotemporal regions 
of foreground objects and 
background 

two tier problem: 1) initially 
segmenting the object  and 2) 
tracking the object 
consistently over time 

  

to formalise the spatial and 
temporal relationships 
between features 

to analyse and model 
semantic relationships for 
respective content features 

combination of features that 
best describe the content in a 
video stream 

modelling of the content 
features so that they can be 
queried at different levels of 
content structure and media 

standardising content model 
descriptions to be read by any 
compliant application 

To be able to describe the 
content in a multi-faceted 
content representation 

ability to create new content 
descriptions 

Problems Solved Filtering of media increases 
effectiveness and efficiency of 
feature extraction processes 

removing data redundancy  
reduces computational 
expense 

Segmenting content into 
hierarchical structure that 
represents story units at 
different levels of detail 

Algorithms to identify the 
different types of transitions 

Clustering of shots into 
scenes using machine driven 
methods within certain 
domains or joint audio and 
visual cues for generic video 

techniques have been 
developed for modelling the 
background and then 
modelling the changes into 
spatiotemporal regions 

techniques developed for 
foreground based on tracking 
moving pixels and over 
segmentation 

Techniques developed for 
tracking spatiotemporal 
regions  

spatial and temporal 
relationships have been 
standardised and are 
complete 

spatial and temporal 
relationships are being 
modelled by a small number 
of those systems that have 
been reviewed  

to search and describe the 
structure of video, syntactic 
features are modelled 

to search and describe the 
concepts within the video, 
semantic features are 
modelled 

integrating syntactic features 
with semantic relationships 

 

MPEG-7 standard and other 
metadata standard created 

MPEG-7 describes content in 
syntactic, semantic, technical 
and administrative data 

MPEG-7 Description 
definition language used to 
create new descriptions when 
needed 

Unresolved Problems The pre-processing strategy is 
not considered important to 
the overall goal of application 
as elements can have other 
uses 

has a limited view of 
optimising for one feature 
extraction method and does 
not support  a multi-feature 
extraction use 

reliably identify shots with 
different transition types 

clustering of shots into scenes 
using only syntactic visual 
cues for generic video 

 

generic segmenting and 
tracking  of Spatiotemporal 
regions is poor for non-
modelled background 
techniques 

Techniques for generic 
segmenting cannot track 
objects consistently 

both spatial and temporal  
relationships are not being 
modelled explicitly and are 
ambiguous in description as 
different applications use 
different formulations for 
modelling the relationships 

extracting the content 
features in a machine driven 
manner that reduces the need 
for human intervention 

reducing the semantic gap by 
establishing the relationships 
between syntactic and 
semantic features by linking 
them through their semantic 
relationships  

creation of application 
specific tools makes some 
MPEG-7 content models 
“less” standard then others  

Table 1.8: RESEARCH TOPICS - IDENTIFIED, SOLVED AND UNRESOLVED IN AUTOMATIC FEATURE EXTRACTION AND CONTENT MODELLING 
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1.5 Literature Review Discussion 

As shown in Table 1.8 the literature review has covered a broad swath of research that is 

related to extracting content features and how those features can be modelled to represent the 

content both syntactically and semantically. We began by looking at how raw media is processed 

with a view to feature extraction. We then examined work on extracting low level features, namely 

shots, scenes and spatiotemporal segmentation, followed by looking how these features could be 

semantically linked. The focus of this was spatial and temporal relationships. We concluded the 

literature review by looking at how the semantic and syntactic features are indexed into a content 

model. This began with the reasoning behind which content model features are the most 

commonly modelled. This was followed by a state-of-the-art review of feature extraction systems 

that model features for retrieval purposes. The review ends with an examination of the MPEG-7 

standard for content description and its advantages and disadvantages in being able to produce a 

generic content model that can be used by any compliant MPEG-7 system.  

The importance of pre-processing raw media is to A) make feature extraction more effective 

by either filtering or converting the media so the salient points of the features of interest are easier 

to extract and B) to reduce processing time to within acceptable levels by reducing computational 

complexity. From the reviewed literature we can see this is a definite benefit in having a defined 

media preparation stage as the resultant media conversion improves feature extraction by many 

factors.  Most feature extraction systems have not employed an active strategy in defining a raw 

media pre-processing methodology. They have seen it as an implicit factor of extracting only a 

certain feature and do not apply a more broad philosophy to the system as a whole. Such a method 

could be more beneficial as the pre-processing could be applied more methodically in order to 

improve feature extraction for more features and improve on reducing processing times.  

The choice of low-level syntactic primitives used for syntactic feature extraction is an 

important factor in the success and effectiveness of extracting the desired content features. To 

extract a certain syntactic feature the chosen primitive feature type is integral to the feature 

extraction process. The choice of syntactic primitive feature itself is influenced by its physical 

properties and attributes. For instance, when wishing to extract shots by identifying shot 

boundaries there are a number of techniques available. If using a colour histogram difference 

technique the choice to use colour histograms is implicit, but the choice of colour space to be used 

is not. The choice of colour space has a direct bearing on the detection rate. Similarly the choice of 

low-level syntactic primitive should be made with a view to reusability and polymorphism of use in 

a multi-content feature extracting environment. Most systems assign one primitive to one process, 
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increasing computational expense and waste and not fully leveraging the benefits that a more 

multi-content centric approach could yield. 

Temporal video segmentation is a fundamental building block of all syntactic and semantic 

feature extraction systems. The ability to segment video into a temporal hierarchy is imperative to 

the construction of a video content model. Central to temporal video segmentation is shot 

segmentation. This has been an on-going topic of research for many years, and a popular one as 

well. Many techniques have been formulated over the years and all address the same problem. This 

is mainly to not only identify the shot boundaries but the type of boundary between it e.g. abrupt 

or transition. Very few techniques have equal success at identifying both types, and if they do they 

do not have the precision and recall of techniques that identify one or the other. The type of shot 

boundary can be semantically significant, as it can indicate the start of a semantic event. For 

example the presence of a fade in is usually an indication that a new scene has started.  The relative 

entropy of the shot can also indicate genre, for instance action scenes usually have fast moving 

panning shots or a lot of camera shake. Identifying such features and attributes of shots is 

important in linking semantic meaning to the underlying syntactic features.  

Whereas shot segmentation is a purely syntactic derivative, scene segmentation is dependent on 

the semantic relationship between shots. A scene describes a collection of shots that are temporally 

related to describing a semantic event as a narrative unit. Due to the semantic nature of scenes 

there are no effective machine readable techniques that can be used to directly identify scenes 

generically. There are syntactic feature techniques that are genre specific that identify possible 

scene boundaries by certain syntactic “landmarks” but these rely too heavily on format and content 

within the content stream being standardised with little change. More generic techniques have used 

either film grammar or machine learning techniques to either cluster shots, detect boundaries or 

model shots into scenes. These techniques though do not enjoy a high level of precision and recall 

such as shot segmentation. Scenes are an implicit structure required for content modelling, as they 

are a bridge between the physical content of the media and the meaning of the content. Scenes can 

be described for this reason as a mid-level syntactic feature; by the way they temporally group shots 

into semantic events. Scene segmentation needs techniques that 1) are genre independent and 2) is 

more semantically correct in boundary definition. The second point needs the technique to have an 

understanding of the semantics of the content. This requires knowledge of the events going on 

within each shot and how they relate to other shots that could be semantically grouped with them.  
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Another important step in syntactic feature is spatiotemporal segmentation. Spatiotemporal 

segmentation is another important step in modelling video content. They are integral in defining 

events by establishing the interaction between objects. Similar to scene segmentation, 

spatiotemporal segmentation defines the boundaries of semantically meaningful objects. 

Spatiotemporal segmentation has similar problems to scene segmentation in the fact that delimiting 

the borders of an object is a subjective process based in semantics. Due to its semantic nature the 

spatiotemporal objects can be classified as mid-level syntactic features. Also due to its temporal 

nature the segmentation evolves over time, this is what differentiates it from image segmentation. 

Techniques for spatiotemporal segmentation are centred on grouping pixels based on changes in 

colour, texture or motion. Although there has been relative success with unsupervised techniques 

these are limited by certain conditions that must be met for the segmentation to be successful. 

Most techniques employ a learning phase or training data to establish a base line for segmentation. 

These methods have proven more successful in the current state-of-the-art research.  

The relationship between features is as important as the features themselves, as the 

relationships allow the content to be queried in a more meaningful way that is natural to 

consumers. Spatial and temporal relationships answer the two out of the four major categories of 

querying which is the “where” and “when”, the other two being “who” and “what” (Agius & 

Angelides, 2005). The spatial relationship between objects is important to the querying of events as 

it allows users to query a particular arrangement of objects, or change in arrangement, that might 

indicate a particular event or action. Temporal relationships are the basis of querying the 

occurrence of events in relation to other events. The ability to query temporally is a powerful tool 

as it not only queries syntactic or semantic features homogenously but is also able to find the 

relationships between heterogeneous features. This allows the content model to be queried in a 

multi-faceted manner for all the features contained within. To have both of these relationships to 

be stated explicitly modelled means that the content can be uniformly queried from any system 

with the results being the same regardless of method.  

The features that are to be modelled play an important part in the effectiveness of the content 

model. Many different video indexing and retrieval systems use various content feature sets that are 

usually sculpted to fit the purpose of their querying methodology. Some use more features than 

others but they can be grouped into five syntactic and semantic content classes, as shown in Figure 

1.4. 
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Figure 1.4: FIVE CLASSES OF SYNTACTIC AND SEMANTIC CONTENT FEATURES 

The five classes of syntactic and semantic content features, as depicted in Figure 1.4, also 

includes an extraction hierarchy.  

The hierarchy shows the direction the content features need to be extracted in order to support 

the content feature classes above. Temporal segments are extracted first as they are the smallest 

unit of video feature extractable and consists of frames and shots. Once the shots and keyframes 

are extracted the objects within each unit is extracted. From this we can extract the events as we 

now can analyse the interplay of the objects and segment the video into appropriate action clusters 

that become an event. From the objects position the spatial relationship of the object, to both its 

environment and other objects, can be calculated. Once we have the other four classes of content 

feature, we can then define the temporal relationships between them.  

Four of the five classes represent the semantic “who” (objects), “where” (spatial relationships), 

“what” (events) and “when” (temporal relationships) that are the foundations of all semantic 

content queries.  This is of course is only a semantic content feature taxonomy, and does not 

support syntactic content feature integration. To our knowledge, no syntactic and semantic content 

feature integration exists in the current literature. Such an integration of syntactic and semantic 

content feature classification could help in reducing the semantic gap. The semantic gap is the gap 

between syntactic feature representation and the high level semantics they represent (Wang, 

Mohamad, & Ismail, 2010). By directly mapping semantic features to supporting syntactic features, 

the semantic gap can greatly be reduced. If video content indexing systems applied this 

classification to the content features they extract they could create content models that would be 

universally compatible with all similar video content retrieval systems and the results from a query 

on one system would have identical results on another system if the same query were used.  
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From the state-of-the-art video indexing and retrieval systems we ascertain that the different 

content modelling systems use different content features depending on the needs of the original 

motivation that it was created for. To the best of the author’s knowledge there is no other system, 

which models the same five classes of content feature and incorporates some type of hierarchical 

extraction. Even the systems that can retrieve spatial and temporal relationships do not explicitly 

state them as a reusable feature. This can lead to erroneous results when querying one systems 

content model on another. For example, if we are looking at spatial relationships one system could 

use the centroid of an object as the midpoint to calculate the spatial relationship of the object, but 

another system might use the closest edge of the object. This could lead to both systems giving a 

different spatial relationship when posed with the same query. This defeats the point of 

standardisation of content models, as the retrieval mechanism is allowed to add bias.  

MPEG-7 is the de facto standard for the description of multimedia content does not explicitly 

state how content should be created or consumed. Its function is to provide standardised metadata 

that any MPEG-7 compatible system can access and use for its purpose. As already mentioned a 

content model should have four classes of semantic content features modelled so that any system 

can uniformly access and use the data to answer a query. MPEG-7 provides tools for describing 

both semantic and syntactic features. Most systems reviewed use a genre specific implementation 

of these MPEG-7 description tools. This leads to two problems. The first is the mapping of 

syntactic to semantic features is incomplete outside of the intended use. This does not reduce the 

semantic gap for generic use of the features. The second is that they tend to use the MPEG-7 

DDL to craft genre specific description schemes that, although compatible with MPEG-7 

description schemes, will be unusable by other systems.  

From the reviewed literature we can ascertain these gaps in the current state-of-the-art research 

in automatic feature extraction and content modelling: 

1. A defined method of pre-processing raw media would increase feature extraction and 

reduce computation time for the extraction of all content features. 

2. Semantic temporal segmentation is ambiguous in nature and requires a user perspective 

to address the segmentation in a generic environment. 

3. Syntactic feature extraction and modelling should be directly mapped to support 

semantic features in order to reduce the semantic gap. 
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4. Spatial and temporal relationships should be explicitly stated. 

5. A complete framework that binds together the above mentioned point into a systematic 

architecture that converts the content into syntactic and semantic content descriptions. 

It’s functionality should incorporate the following:  

a. The features should be described in a granular manner that allows use of the 

feature description to be accessed in a local or global manner in relation to the 

other feature sets.  

b. The content, the feature extraction algorithms and content descriptions should 

be modular in their integration into the framework as the need to extract 

different feature sets or improve on the extraction of existing feature sets 

should be upgradeable for future work. The separation of these three 

components allows reuse and multi-purposing by other applications. 

c. The content descriptions should be universally accessible content model so that 

it can be used in the widest array of video content search applications. 

d. The content descriptions should be richly detailed in both syntactic and 

semantic content description. The structure of the content descriptions should 

be granular so that video search applications can retrieve different levels of 

content description detail depending on their specific requirements. 

1.6  Research aims, objectives and modelling techniques 

The aim of this thesis is to provide a framework that will extract and model video content 

features that allows for content within the video to be searched, by any video retrieval application 

that is standards compliant. The video stream will be processed to extract and derive both syntactic 

and semantic content features and the resulting output will be formed into content model. The 

content model will integrate syntactic and semantic content to facilitate multi-content type query 

formulation. The content model will also link the syntactic features to semantic relationships to 

provide a foundation for other high level video modelling applications, which employ concept 

detection processes, through spatial and temporal modelling.  
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The objectives of this thesis are: 

(O 1) To design an abstract framework that transcodes video stream content features into 

content descriptions. The framework must extract both syntactic content and semantic 

relationship descriptions and interlink them, in order to take a step closer to ‘bridging’ the 

semantic gap between syntactic and semantic features. To achieve these goals the 

framework must incorporate the following: 

(O 1.1) A pre-processing method that increases the feature extraction potential of the 

video stream, by filtering the media to improve extraction accuracy and reduce 

computational expense of the whole framework. 

(O 1.2) To extract syntactic features through machine driven processes, to substantially 

reduce the time of manually segmenting these features. The low-level features will 

be extracted through unsupervised techniques. The mid-level features will be 

extracted by semi-supervised techniques. These techniques will employ semantic 

understanding of the structure of the features through user feedback.  

(O 1.3) Through analysis of the syntactic features, semantic relationships will be 

derived and linked to these features. The semantic relationships will exploit the 

temporal and spatial dynamism in the content. It will allow querying of the 

semantic relationships in an unambiguous and explicit structure. In addition, the 

video search and high level concept detection applications produce results that are 

uniform and consistent across different platforms.  

(O 2) To integrate the syntactic and semantic descriptions into a content model that is 

accessible to the widest range of applications. The content model must: 

(O 2.1) Create an accessible content model that adheres to multimedia content 

description standard. The content model must also be independent of proprietary 

restrictions and backward compatible with earlier versions, thus making it available 

to the widest range of relevant content based video search applications.  

(O 2.2) The content descriptions will be organised into a hierarchical structure that 

interlinks all the content descriptions, regardless of modal type. This will allow 
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querying of the content using a multi-content type approach consisting of syntactic 

and semantic elements.  

(O 2.3) The content model will be granular in the structuring and detail of the content 

descriptions. This will allow video search applications to use “coarse to fine” 

search approaches making result retrieval more efficient and focused.  

 
(O 3) A prototype of the framework must be developed as a proof of concept. The prototype 

must implement all the objectives stated in objective 1 and 2. It must incorporate a 

modular framework that allows the component of the prototype to become extensible for 

future components and also allow updating of the existing modules. The prototype should 

incorporate all the modules into a holistic framework, where the components can be 

added, removed, reused and modified independently, thus increasing efficiency and 

potentially reducing processing time, while allowing for custom video processing pipeline 

to be created.  

From the objectives we formulate a research modelling methodology that will be used to provide 

an experimental “proof of concept” framework, which consists of content media, extraction and 

modelling components. Below are the research modelling methods that will be used: 

RM 1. Algorithms will be developed for each sub-objective of the framework. The algorithms 

will be modelled to implement the functions of each of the of the sub-objectives: 

RM 1.1 To develop a filtering and optimisation algorithm that can increase the 

effectiveness of the feature extraction process by increasing the saliency of 

syntactic features, while also reducing computational expense by removing data 

redundancy. This algorithm will be implemented into a proof-of-concept prototype 

and will be evaluated mathematically.  

RM 1.2 To develop a syntactic feature extraction algorithm that extracts syntactic 

features from a video stream. The algorithm will extract syntactic features in a 

hierarchical process to reduce computational expense by extracting features to take 

advantage of the linear dependency of the features in relation to each other. This 

algorithm will be implemented into a proof-of-concept prototype and will be tested 

using benchmarks test that are used widely by the research community. 
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RM 1.3 To develop an algorithm that analyses syntactic and semantic features and then 

links the features through spatial and temporal relationships. This algorithm will be 

implemented into a proof-of-concept prototype and will be analysed and evaluated 

against groundtruth samples.  

RM 2. To use create a content model that is standards compliant, namely MPEG-7 and that is: 

RM 2.1 Hierarchically structured to allow the content to be granular in description to 

allow video search applications to access the detail of content they require or 

employing a “coarse to fine” filtering approach for relevant content 

RM 2.2 To model the content description so that they are available to the widest range 

of applications. The content model must be unbiased to any particular specification 

and use so it must be structured to eliminate any ambiguity that can arise from 

vendor or proprietary use of its descriptions.  

RM 2.3 The syntactic and semantic content descriptions should be integrated and 

linked to facilitate multi-content type filtering and search queries. This will allow 

the content to be search using more naturally arranged queries that incorporate 

both syntactic and semantic features that are intertwined. 

RM 3. To build a “proof of concept” prototype, namely the MAC-REALM Framework, which 

incorporates all the developed algorithms mentioned in (1). The framework will be built as 

a modular and extensible development platform that allows the components to be updated 

or changed, or for the framework to be extended for future components or functions. 

1.7 Theses Outline 

The remainder of the thesis is organised as follows, Chapter 2 proposes MAC-REALM, an 

abstract video content extraction and modelling framework that comprises of three horizontal 

layers and four vertical planes, in its architecture. The three layers are the content layer, application 

layer and MPEG-7 layer. These describe the different stages of content as an input/output 

scenario that translates content into different states during the conversion of the content media 

into content descriptions. The four planes are comprised of 1) a raw media plane, 2) an extraction 

plane, 3) an analysis and linkage plane and 4) a modelling plane. These planes describe the 

conversion of the video stream into a content model.  
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Chapter 3 proposes a MAC-REALM proof of concept prototype application that implements 

the abstract framework in chapter 2. Using a reusable code base the prototype is developed into a 

modular platform. An overview of MAC-REALM is presented showing the content extraction and 

modelling process as a custom video processing pipeline that converts the raw video into a content 

model. This is followed by a detailed description of the components, sectioned plane by plane.  

Chapter 4 begins with a step-by-step walkthrough of the MAC-REALM prototype showing its 

functions and user interaction. This is followed by a performance evaluation that uses benchmark 

testing, where available, to examine the effectiveness of the frameworks extraction and modelling 

techniques in regard to their objectives of the content feature extraction and modelling framework. 

Finally a MAC-REALM evaluation is then presented, which discussed the walkthrough and results 

in the context of the framework itself. 

Chapter 5 concludes the thesis with a summary of the chapters, followed by a discussion of 

research contributions against research objectives. Lastly, we look at future work that can be 

undertaken based on the research in this thesis.   
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CHAPTER 2: THE MAC-REALM FRAMEWORK 

This chapter presents the MAC-REALM system (MPEG-7, Application and Content layers 

with Raw media; Extraction; Analysis and Linkage; and Modelling planes) an abstract modular 

cross-functional framework that is able to extract video content features into an MPEG-7 content 

model using a mixture of automated heuristic techniques. By combining several content and 

feature extraction techniques, as well as content analysis and modelling a system is created that 

indexes a video stream in terms of objects, shots, scenes and the spatial and temporal relationships 

between them and integrates them into a tightly integrated syntactic and semantic content model. 

The chapter is organised as follows. Section 2.1 presents MAC-REALM framework and 

discusses the role and function of the framework. Section 2.2 discusses the role automatic feature 

extraction has to play in MAC-REALM. Section 2.3 examines the content modelling strategy 

behind MAC-REALM and its feature selection and modelling strategy. Section 2.4 presents the 

design requirements for the MAC-REALM framework. Section 2.5 presents a detailed high level 

overview of the MAC-REALM architecture and provides a walkthrough of the custom video 

processing pipeline and the role the function modules serve in the process. Section 2.6 introduces 

the three layers of content conversion and creation of MAC-REALM. Section 2.7 provides a run 

through of each of the functional planes of MAC-REALM that convert the video stream into a 

content model. Finally, section 2.8 summarises the chapter. 

2.1 MAC-REALM Framework 

In chapter 1 we reviewed feature extraction and content modelling. Both aspects are integral to 

producing a video extraction and content modelling framework. Most video content extraction 

systems segment the content and do not process it any further, as the segmentation was the 

primary purpose. This wastes the potential of the information to be reused for other purposes, 

such as video search and concept detection. In addition, most video content extraction applications 

concentrate on one particular feature of the content. This is inadequate at describing the video 

content, as it contains a wealth of other content features. The more features extracted leads to 

more information that can be modelled, and the more useful the content model becomes. The 

content model should consist of syntactic and semantic content so that the content is described 

both structurally and conceptually. These have to be integrated so that the content can be searched 

or mined in a more semantically meaningful way. 
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The only way to achieve the goal of modelling content features from the video stream is to 

produce a framework were the flow of control follows a path of processing the raw media into a 

content model, whilst transforming the content features into content descriptions. As the content 

passes through the framework, it will be refined into more complex and meaningful content 

descriptions. The strength of the framework is that each stage of its process is designed to provide 

a complete set of content features and descriptions that can be reused or extended to capture even 

more content features and descriptions. The framework as a whole will provide a content model 

that will have a syntactic content description base that is semantically linked spatially and 

temporally, reducing the semantic gap between those sets of syntactic and semantic features.  

The first function of MAC-REALM is to extract and segment the video stream into content 

features. Content feature extraction is a complex computational task, and requires a number of 

different algorithms and approaches to extract the different types of features. These features once 

extracted can be structured into a metadata format that can act as a data exchange mechanism that 

can be used by content based video search applications. The relationship between content feature 

extraction and modelling techniques is integral to producing a content model that is rich in 

description, granular, universally accessible and multi-faceted.  

The second function of the MAC-REALM framework is producing a content model that 

integrates and couples syntactic content features to semantic content features to reduce the 

semantic gap associated between low-level and high level content features. From section 1.3.4.1, 

which describes which content features to model according to the requirements of content based 

video queries, any video content modelling system must incorporate five content features in order 

to produce a content model that is capable of supporting syntactic and semantic queries. These 

features must be coupled on two levels, a semantic level and a syntactic level. On the syntactic level 

the semantic attributes of the mid-level features must be properly defined to make the syntactic 

features more semantically correct e.g. Scene boundaries are defined by the cognitive perception 

that an event has taken place from start to finish or a person riding a horse are two different 

objects and yet the saddle of the horse can be attributed as part of the horse object. On a semantic 

level all content features, syntactic and semantic, must be have a mechanism which allows all the 

features to be queried or compared against each other through some sort of semantic relationship. 

For instance ways of semantically querying what shots have certain spatial relationships. Shots are 

totally syntactic features and the query would have to include an objects parameter in its 

formulation to act as a proxy for comparison between the features for the query to be answered. 
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Providing another mechanism for greater search flexibility would yield more possible ways to query 

different feature sets. 

MAC-REALM’s goal is to provide a framework that that extracts syntactic and semantic 

content features from a video stream and then models them into a content model that integrates 

the features so that the semantic gap is reduced for multi-content type queries. The way the 

content features are extracted is directly related to the way the content descriptions are modelled. 

The segmentation of the content features is designed to extract features the features in a 

hierarchical extraction process. This hierarchical extraction process is then mimicked in the 

modelling of the content model so that the syntactic and semantic content features are closely 

coupled. The resulting richly and granularly detailed content model is structured to facilitate multi-

content type content type search from compliant content based video search applications. 

2.2 Automated feature extraction 

The role of automatic content feature extraction is to provide the content features that would 

take an inordinate amount of time to manually extract or the complexities of extraction require 

precise segmentation that can only be provided by computer analysis. Syntactic features are usually 

the most difficult to extract manually in terms of manual processing as the features are very rich in 

detail and quantity and the intricacies of capturing them can lead to errors and omissions. Semantic 

features on the other hand are more accurately extracted by humans, as they perceive the complex 

conceptual intricacies of the semantic features better than any computer analysis can at present. 

Mid-level syntactic features have semantic attributes that help define the boundaries of that feature, 

whereas low-level features are purely signal based entities in that their boundaries are structure 

based and can be represented in purely physical characteristics e.g. a frame is a still image of a point 

in time of a video and a shot is a contiguous set of frames that are all visually similar. The 

complexities of extracting each type of feature must be addressed, as the subsequent content 

descriptions will be incomplete or incorrect if these nuances in definition are not captured 

properly.  

MAC-REALM will extract two types of content feature, syntactic (low and mid-level) and 

semantic high level features. The purpose of this is to fully represent the content features in the 

video stream completely when converting the features into a content model. The way these 

content features are extracted will have a direct impact on the quality of the content model. Once 

the content features are extracted, they are translated into content descriptions that will become 

integrated to produce a content model. The method of extracting the content features therefore 
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will not only extract the features but will also define the attributes and characteristics of captured 

content feature. These content feature characteristics can be coupled with characteristics from 

other content features if captured correctly. When capturing the characteristics of mid-level 

attributes correctly, from a user perspective, this can create better linkage between syntactic and 

semantic content features and help reduce the semantic gap.  

The first features that need to be extracted are the syntactic low level features, as these will 

become the input media for the extraction of the syntactic mid-level and semantic content features. 

The syntactic low level content features are extracted by automatic methods that do not require 

any human interaction. As being signal based entities they are prime candidates for automatic 

extraction as they will be extracted more precisely and efficiently then manual methods of 

extraction. The low level features are generally used for “query by example” methods of content 

based video search, where the need for minuet levels of detail are examined and compared by the 

search engine. Having low-level features described completely in a content model actually makes 

the process of search longer then if comparing the extracted feature directly. In this instance, the 

content model will act as an indexing system for these features and private a direct reference to the 

feature that best fits what the query was trying to find. This way the overhead of converting the 

search query is reduced. The low-level features are the building blocks of the content model and 

the higher level type content features will be extracted from them. The low-level syntactic features 

are directly used to extract the mid-level syntactic features as they are closely coupled in structure. 

Then the syntactic low and mid-level features are then analysed to create the semantic relationships 

between them. 

Syntactic mid-level features are more complex to extract but are of higher value as they are 

content features that are queried more directly by users then low-level features. The problem in 

extracting syntactic mid-level features is that semantic attributes of the feature make the 

segmentation process troublesome as machine driven methods find it hard to capture the semantic 

aspects of the features. For this reason most unsupervised methods are restrictive to one domain 

or genre, where the complexities of the semantics can be modelled accurately and applied to 

syntactic structures. These methods are of limited use, as the semantics have to be remodelled for 

every new domain or genre. Where domain restriction is removed, semi-supervised techniques are 

used as they can introduce semantic definition by directly using human perception. The user 

interaction is used to initiate or provide feedback to the process to allow it to more accurately 

capture the semantic attributes of the content feature, which in turn provides better definition to 
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the segmented boundary. This better definition of the semantic attributes of the mid-level features 

is key to addressing the problem of the semantic gap and how to bridge it.  

The semantic features of the media cannot be directly extracted from the video stream like the 

syntactic features were. Semantic features are in essence a cognitive feature that requires human 

perception to be able to be perceived correctly. What can be extracted are the semantic 

relationships between the content features. This does not require cognition of the features and only 

requires semantic analysis of the content features. The features are analysed from a specific 

semantic focus that compares the features against each other and derives a semantic link between 

those features. The semantic relationships can be automated, as they do not require any 

understanding of the content just that the relationship between features has specific meaning. The 

relationship between the features can be closely coupled to the syntactic feature. The semantic 

relationships themselves are key to defining the event occurring within the media stream. Thus 

through defining the semantic relationships and tightly integrating them with the syntactic features, 

the syntactic features themselves become more closely coupled to the events they represent, 

reducing the semantic gap between syntactic and semantic features.  

The importance of which features are extracted and how they are extracted are very important 

to the content model. The extraction process directly influences the quality of the content 

descriptions and the detail they provide. MAC-REALM will extract features primarily for the 

reason of modelling syntactic and semantic content features into a closely coupled integration of 

those features in order to produce a content model that reduces the semantic gap. The way the 

features are extracted will be in a “bottom up” manner, where the lowest level features are 

extracted first. The low level features will provide a foundation for the higher content features to 

me built upon. This will help build when creating the content model as the hierarchical structure of 

the content will have been implicit in its creation. 

2.3 Content Modelling 

In section 1.3.4.1 the five content classes that need to be extracted and represented for a content 

model to be able to answer all types of queries is explained. From those content classes five types 

of feature were identified, 1) segments that represent and action or instance of an object 2) objects 

within the media stream, 3) the spatial relationships between those objects, 4) events that occur 

involving those objects and 5) the temporal relationships between all those features. From these 

five content types we have five content features that can be modelled to represent them. The 

content class to content feature mapping is shown in Table 2.1. 
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CONTENT CLASS CONTENT FEATURE 

TEMPORAL SEGMENTS SHOTS 

OBJECTS MOVING REGIONS 

EVENTS SCENES 

SPATIAL RELATIONSHIPS SPATIAL RELATIONSHIPS 

TEMPORAL RELATIONSHIPS TEMPORAL RELATIONSHIPS 

Table 2.1CONTENT CLASS MAPPED TO CONTENT FEATURES 

Shots represent the temporal segments as they are a set of contiguous frames over a period of 

time within the video stream. Shots can represent an action, or they can represent an instance of an 

object. Objects are represented my moving regions as they represent an object completing an 

action. An inanimate object is treated as background as it is not taking part in an action or event. 

An object that was once moving and has become inanimate will still be represented by a moving 

region, as it once moved and may move again. Scenes represent events because an event is a 

collection of actions that together form a semantic event; much like a scene is a collection of 

semantically related shots. Spatial and temporal relationships cannot have a physical manifestation 

as they exist exclusively as high level semantic concepts. 

The features selected for content modelling are important to the ability of the content model to 

be granular in description. The content descriptions must be integrated in a hierarchical manner for 

each feature, which has a more complex structure and detail. Features that are of a higher content 

type might have a lower content type feature nested within them as the higher content feature 

might consist of the lower feature. For instance, Shots would naturally be nested in scenes as 

scenes consist of shots. Most features will have sub-features nested within them giving the features 

extra detail. Two examples are that shots contain not only there start time and duration but will 

also contain their transition type or objects will contain their object coordinates and colour 

distribution. This nesting allows the search to be granular by locating first the main content feature 

and then being able to query further the detail of that object.  

MAC-REALM will use the MPEG-7 standard to encode the content features into content 

descriptions. The subsequent content descriptions will themselves be integrated to produce an 

MPEG-7 compliant content model. The selection of which MPEG-7 tools to describe the content 

features affects the accessibility of the content model to content based video search applications. 

The selection of the correct feature set allows the media to be searched by many different video 

content search and retrieval systems, independent of the use or domain of the system in question. 

As MPEG-7 has been revised on numerous occasions and the introduction of profiles has added 

to the fracturing of the standard. The profiles use subsets of tools that are used within certain 
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domains or functions. MAC-REALM will use tools that are used by all profiles of MPEG-7 and 

are backward compatible with the version 1 of standard. 

Another important aspect of the creation of the content model is the way these features are 

modelled. The modelling of the features has a direct impact on the interoperability between the 

content model and the integration of its features so that it can better enable multi-content type 

content type querying and reduce the semantic gap. MAC-REALM will integrate the syntactic and 

semantic content features together in closely coupled structure, where the linking shows the 

interdependence of the features. In Figure 2.1, the outline for the mapping scheme is presented. It 

shows the linking of the semantic content to syntactic features. The objects are represented as 

moving regions, as foreground objects can be distinguished by the action they play. From the 

moving regions, we can then determine the spatial relationships between the objects and their 

positioning. To represent events the video stream is initially segmented into shots. The shots are 

then grouped together to form scenes. The scenes represent the events, as they are, by definition, a 

cluster of semantically related shots, which are linked to a portrayal of a common semantic theme 

or concept.  

 

Figure 2.1MAPPING OF SEMANTIC CONTENT FEATURES TO SYNTACTIC FEATURES  

Once all the moving regions, spatial relationships and temporal segments have been extracted 

or derived the temporal relationships between all these features is calculated. All features, whether 

syntactic or semantic, have a temporal characteristic, as video is a temporally evolving medium for 

content. It is this temporal component that is the basis of the linking mechanism between all the 

content features. This provides a powerful heterogeneous platform for search and retrieval in a 

syntactic/semantic environment.   
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2.4 Design Requirements for MAC-REALM 

The main aim of MAC-REALM is to extract syntactic and semantic features from a video 

stream and then model them so that the content model can be used by many video search 

applications that are compliant with MPEG-7. It will model the features so that the same query in 

each application should retrieve the same results. It will achieve this by removing ambiguity caused 

by the differing ways that applications interpret relationships between content features. It will also 

allow the content to be queried both syntactically and semantically in a manner that is familiar to 

the way video is structured and perceived by consumers.  

The framework will extract three types of feature; low and mid-level syntactic and high level 

semantic relationships. Five feature components will represent these three types of feature. The 

first feature to be modelled is the low-level feature of shots. Shots form the foundation blocks of 

the content model. The other content features will use the shots as the reference features to build 

upon for the hierarchical structure of the content model. 

The mid-level features will be the objects and scenes. Unlike the low level features, they are 

semantically derived syntactic features. They cannot be extracted by purely machine driven 

processes, as they require a level of semantic “recognition”, as well as comprehension, to their 

syntactic boundaries. The objects require a two fold approach; first they are segmented from the 

background, similar to image segmentation, and then they need to be tracked for the duration of 

the shot. Scenes have do not have a generic syntactic marker that can be used to segment them. 

They are usually demarcated with specific film grammar techniques or domain specific graphic or 

effect transition (see section 1.3.2.3). Each video stream will have its own formulation of syntactic 

features that will identify where the scene boundaries are.  

The high level semantic relationships consist of two components, the spatial and temporal 

relationships.  The spatial relationships will be modelled in two ways, absolutely and relatively. This 

will allow the position of objects to be queried or analysed with respect to their global position and 

their position to each other. Unlike the spatial relationships that are modelled for only one feature, 

the temporal relationships are modelled between all content features. The modelling of temporal 

relationships between all features, both syntactic and semantic, makes the querying and analysis of 

the content multi-dimensional and allows syntactic and semantic content descriptions to be queried 

temporally by direct comparison. This not only allows polymorphic querying of the content, but 

can also be used by temporal concept learning methods to model concepts to features that are not 

exclusively syntactic or semantic, such as scenes.  
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To model these five feature components we must extract them from the video stream. The raw 

signal must be pre-processed before extraction can take place. This is to improve the efficiency and 

effectiveness of the extraction process. In the extraction process, the syntactic features that form 

the foundation of the content model are segmented. The features are then analysed together both 

spatially and temporally and linked to form semantic relationships.  The syntactic and semantic 

features are then modelled into an MPEG-7 compliant content model that is made available to all 

MPEG-7 video search engines. 

Therefore the design requirements of MAC-REALM Framework, based on the research 

objectives and methods in section 1.6, are: 

1. A method for pre-processing the raw media that optimises the potential of the video stream 

for feature extraction and reduce computational overhead. The method should be based on 

1) filtering the raw media so that the feature extraction is more accurate and precise and 2) 

redundancy of data should employed so that only the minimum amount of salient data is 

processed during feature extraction. 

2. To extract the low level and mid-level syntactic features from the filtered media. The low 

level syntactic features will be extracted through unsupervised machine techniques. The 

mid-level features will need semi-supervised techniques as they have semantic attributes that 

can only be defined through user input. The processes will be optimised for efficiency and 

effectiveness in reducing computational expense and accuracy of features extracted. 

3. To derive from the low level and mid-level features the semantic relationships between 

them, both temporally, and where possible spatially.  These must be explicitly expressed, as 

to avoid ambiguity caused when different applications use the same query but not the same 

semantic relationship formulation. 

4. To model the syntactic and semantic features into a content model that interlinks the 

content so that the semantic gap between syntactic and semantic features is reduced. The 

content model must be structured to describe the content in a multi-faceted, richly detailed 

and granular manner. 

5. To integrate the four design requirements into a framework that uses each design goal to 

process the content from raw media into a syntactically and semantically complete content 

model. At each design goal, the process must be based around turning the content features 
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into content descriptions that can be used directly, integrated or extended. The four design 

requirements allows for custom video processing pipelines to be created. Processing 

pipeline are the arrangement of a sequence of customer or modified modules.  

2.5 MAC-REALM Architecture 

The MAC-REALM Framework comprises four planes and three layers: the raw media plane, 

the extraction plane, the analysis and linkage plane and the modelling plane. The three layers are 

the MPEG-7 layer, the application layer and the content layer. Each layer is described in more 

detail in section 2.6, whilst each plane is described in more detail in section 2.7. 

 

Figure 2.2: MAC-REALM DESIGN FRAMEWORK 

In Figure 2.2 we show the MAC-REALM design framework. It shows the flow of the content 

processing through the planes and the content transformation through the layers. Where MAC-

REALM intersects between layers and planes we have stages of processes of content or processed 

content. Each stage is responsible for the content conversion process at that intersection. The flow 

of content media between stages goes left to right and down then back up in the next plane.  

We begin with the raw media, which is the video stream that will be extracted into content 

features and then into content descriptions, and finally represented by a MPEG-7 content model.  
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The pre-processing stage processes the raw video streams into syntactic media that is optimised for 

feature extraction. The pre-processing stage removes redundant data by eliminating chunks of data 

that is only incrementally different to each other by a small margin, as to be insignificant in change. 

The media is then filtered to emphasis the content feature properties that are used for feature 

extraction.  

The syntactic media stage stores the filtered frames and histograms from the pre-processing 

stage, ready for the syntactic feature extraction stage. The syntactic feature extraction stage 

processes the syntactic media into syntactic content features. Three processes are part of the 

syntactic feature extraction stage, the shot, object and scene extraction processes. The shot 

processes extracts cut and transition shots. The object sub-process segments the objects and then 

tracks them. The scene process detects and segments scene boundaries. The segmented syntactic 

content features are then sent to two places the first is the semantic media stage for storage and the 

second is to the syntactic modelling stage. The syntactic modelling stage is where content features, 

once converted, are stored as MPEG-7 syntactic feature descriptions.  

The semantic media stage is where the temporal and spatiotemporal syntactic features are 

stored ready for processing by the spatial-temporal mapping stage. The spatial-temporal mapping 

stage consists of two processes, the spatial and temporal relationships process. The spatial 

relationship process analyses the spatiotemporal objects and maps the spatial relationships between 

them. The temporal relationship process then analyses all content features created and maps all the 

temporal relationships between them. Once the semantic content features are converted to 

MPEG-7 content descriptions they are stored in the semantic modelling stage. 

All the MPEG-7 syntactic and semantic content descriptions are stored in the syntactic and 

semantic descriptions stage. The syntactic and semantic descriptions are analysed and then 

integrated into a MPEG-7 content model. The content model is then serialised and stored in the 

modelled media stage. 

2.6 MAC Layers 

The three layers of MAC-REALM relate to the processing of the content that each plane goes 

through to convert its content media into modelled MPEG-7 content descriptions. The layers are 

the MPEG-7 layer, the Application layer and the Content layer. The content layer stores the media 

to be processed. The application layer processes the media and outputs syntactic or semantic 

descriptions of that media. In the MPEG-7 layer the syntactic or semantic description is modelled 
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into MPEG-7 content descriptions. The layers and the flow of content between them are shown in 

Figure 2.3. 

 

Figure 2.3: MAC-REALM LAYERS 

Whereas the planes describe the transformation of the video stream into a content model, the 

layers describe the process of the content being transformed and translated from media into 

content descriptions of the media.  

2.6.1 Content Layer 

The content layer contains the media for MAC-REALM. The type of media contained changes 

as you move down the planes from left to right. As the media moves from raw to modelled state 

the content and content features become more advanced and the content descriptions are of a 

higher type. In each plane, the content media can be used as supplementary media for the MPEG-

7 content model. This could prove useful for adapting the media to a user’s usage environment as 

discussed in (Sofokleous & Angelides, 2008). 

The first plane that has a content layer is the raw media plane. The raw media that is to finally 

be extracted and then converted into a content model, is an input at this point. The raw media will 

usually be a compressed digital video asset. The unprocessed media is usually compressed using 

some video coding standard or technique such as MPEG-1, 2, or 4, Quicktime, AVI or some other 

popular format for video encoding. The automatic feature extraction techniques cannot process 

the audio-visual stream in its compressed form, as the techniques require the visual components in 

uncompressed form for feature extraction to become possible. 
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The next plane with a content layer is the extraction plane. The extraction plane content layer 

has the pre-processed syntactic media that has been optimised for feature extraction. From these 

basic elements the syntactic features will be extracted, i.e. shots, objects and scenes. The extracted 

frames stored here can be used for digital item adaptation in conjunction with the content model 

to provide low-level content representation for scenarios where more complex media is not 

feasible. They can also be transformed into MPEG-7 BiMs (Heuer, Hutter, & Niedermeier, 2010) 

that use less bandwidth and storage space than the MPEG-7 XML making it useful for making the 

syntactic features adaptable for mobile devices and those with limited storage (M. Angelides & 

Sofokleous, 2013). 

In the analysis and linkage plane, the content layer contains the semantic media that is the input 

for the spatial-temporal mapping process. The three type of feature stored here are the extracted 

syntactic shots, objects and scenes. The scenes, shots and objects are stored as java objects and can 

be reused to produce different metadata formats of the syntactic content features if another xml-

based metadata exchange format is required.  

The modelling plane’s content layer is where the MPEG-7 syntactic and semantic content 

features are stored. The syntactic semantic media section aggregates all the syntactic and semantic 

descriptions before they are multiplexed together. Here we can see how the feature sets described 

earlier share characteristics and can be used in the multiplexing process to produce a more 

meaningful content model then if we were to use these feature sets in isolation. The MPEG-7 

descriptions from the previous planes can be modelled independently of each other or multiplexed 

together in certain combinations in order to keep bandwidth and storage requirements to a 

minimum.  

2.6.2 Application Layer 

The application layer is the processing layer for MAC-REALM and processes the content 

media into MPEG-7 descriptions. The processing of the content media becomes more complex 

content feature-wise as MAC-REALM goes across the planes. The application layer has two tasks; 

1) to process all content description into either syntactic or semantic content features and 2) 

convert these content features into MPEG-7 descriptions.  

The choice of processing engine for each layer is selected on the suitability of the techniques to 

produce the content descriptions that will be modelled into MPEG-7 descriptions.  In the 

extraction plane, we convert the syntactic media into temporal and spatiotemporal segments. In the 

analysis and linkage plane, the semantic media is processed into semantic relationships. The 
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spatiotemporal regions are analysed and then the spatial relationships of and between them are 

linked. All syntactic and semantic features are temporally analysed and the temporal relationships 

between them modelled. In the modelling plane, we have the syntactic and semantic MPEG-7 

descriptions. Here they are analysed and integrated into a fully compliant MPEG-7 content model 

that can be used by any MPEG-7 compliant application.  

The raw media plane is the only exception to the processing paradigm of MAC-REALM layers 

as it is a pre-process and does not produce any MPEG-7 descriptions. Instead, it filters and 

optimises the syntactic media for syntactic feature extraction. 

Each processing plane has an MPEG-7 XML binding engine. This converts and serialises all 

processed content features into MPEG-7 content descriptions. All the content descriptions that 

are serialised are well formed and are complete, and the MPEG-7 schema is used to validate them 

during their serialisation.  

2.6.3 MPEG-7 

The MPEG-7 layer stores the MPEG-7 content descriptions as they are created for each plane. 

In the syntactic and semantic content feature extraction planes, the MPEG-7 content descriptions 

for those planes are stored. In the modelling plane they are combined to finally create a content 

model of the syntactic features and semantic relationships. The MPEG-7 descriptions for each 

plane are complete and can be extracted and used to build customised content models for specific 

uses and domains if necessary. 

The descriptions are produced by the application layer, as a product of its feature extraction 

process. Each plane produces MPEG-7 content descriptions that are related to the features 

extracted by that plane. The MPEG-7 content descriptions described come from both the content 

and application layer e.g. Frames from the content layer and shots from the application layer.  

In the syntactic feature extraction layer we have, from the content layer, the keyframes that are 

described by the VisualDescriptor DS and ColorSpaceDescriptor DS (Ohm et al., 2003). These 

MPEG-7 content descriptions describe the colour distribution of the keyframe image using a 

continuous RGB value. The ColorSpaceDescriptor uses the RGB values extracted for all three 

bands during pre-processing. These values are quantised value of the three bands, each represented 

by 256 bins. From the application layer, the extracted shots scene and objects are described. The 

shots are represented by GlobalTransition DS, EvolutionType DS and Shot DS. Together these 

describe the length of the shot and the type of transition that precedes it. If it is a gradual 
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transition, it will also state the length of the transition. The 

VideoSegmentTemporalDecompositionType DS is used to cluster the MPEG-7 shot segments 

into clusters that represent a scene. It only has duration attribute, as it takes its start time and 

transition descriptions from the first shot segment. This structuring of the temporal segment types 

allows a tight integration of the shots and scene, which reproduces there natural relationship. The 

objects are described using the MovingRegion DS and supporting descriptors and description 

schemes SpatialMaskType, SubRegion, Polygon and Coords. The Coords describes the silhouette 

of the object using Cartesian coordinates that have their origin in the bottom left corner of the 

keyframe and describe the position of pixel points. The objects are linked to the shots and scenes 

by referencing their unique reference as the prefix to the MovingRegion DS id reference. Using 

this to link all relevant temporal and spatiotemporal segments together allows a tight integration of 

the features on a structural level. This aids both concept detection through spatial and temporal 

inference and collaborative search techniques in video retrieval. 

In the Analysis and linkage layer we have the MPEG-7 semantic features. From the content 

layer of this plane the id’s references for all the syntactic features is retrieved and used to model 

them into Node DS’s. These node DS’s are used to instantiate reference nodes that are structured 

into both spatial and temporal MPEG-7 semantic graph. The use of nodes makes features they 

represent polymorphic in their proxy representation, as they can be referenced to each other 

temporally without the restriction of type and usage that is a limiting factor when comparing 

heterogeneous feature types within MPEG-7. The temporal relationships of all the content features 

extracted and derived from the video stream are described using the TemporalRelationship CS and 

modelled into a semantic graph using the nodes. With the polymorphic properties of the temporal 

relationships all the content features can be queried and analysed from multiple viewpoints and any 

combination of low and high level queries can be formulated without structural and conceptual 

constraints. The spatial relationships of the objects are described using the SpatialRelationship CS 

and modelled into a semantic graph using the nodes.  

In the modelling layer, the MPEG-7 descriptions from both the Extraction plane and the 

Analysis and Linkage plane are integrated into a fully compliant MPEG-7 content model. The 

MPEG-7 descriptions in the content layer are the descriptions that were generated in the previous 

two layers. Within the application layer, these are taken and multiplexed into a content model, 

using the MPEG-7 schema to validate. The hierarchical structure of the final MPEG-7 content 

model is layered so that all elements can be referenced from a search query either independently or 

as a combination of features. This allows the content to be searched using multi-content type 
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forms of queries. Along with the polymorphic properties of the temporal relationships, it makes it 

ideal for use in a generic and universal multimedia search space that is domain and purpose 

independent. 

The complete MPEG-7 layer contains finished MPEG-7 content descriptions that describe the 

content and the results of the application layer of each plane. In this layer the descriptions from the 

extraction planes can be repurposed to be either integrated to the content that it was derived from 

in the content layer or they can be integrated together to provide a content model that is a 

comprehensive description of the content. If they are repurposed they can provide feature specific 

content descriptions that can be used for specific purposes that are focused on those features. If 

they are integrated into a richly detailed and multi-faceted content model they can be used to 

search the content using any combination of feature sets or used by concept detectors to infer new 

concepts to feature through inference that was not available due to structural or conceptual 

limitations.  

2.7 REALM Planes 

In Figure 2.4 we can see the basic flow chart diagram for the content extraction and modelling 

framework.  This is the REALM processing model and is represented in the framework as planes. 

The Planes are; Raw media, Extraction (of syntactic features), Analysis and Linkage (of semantic 

relationships) and Modelling of the content features.  

 

Figure 2.4: VIDEO EXTRACTION AND MODELLING PROCESS (REALM) 

The diagram shows how the video is processed through each stage beginning with pre-

processing of the raw media. The syntactic features are extracted from the filtered media and the 

semantic features are derived and linked to those features. Finally, both syntactic and semantic 

content features are modelled into a standard content description document that can be read by 

any compliant video search and retrieval system. Each stage of processing where the content is 

converted into another content type is represented by a plane within the MAC-REALM 

framework. 
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2.7.1 Raw media 

The video stream has to be pre-processed to filter the media so that it makes extracting the 

features more effective and efficient. The video stream also has to have feature redundancy 

techniques applied to remove the non-salient content data that adds no value to the extraction 

process and increases processing time. 

Before filtering, we must initially decode any compressed video into an uncompressed state, 

where each frame becomes available. During the initial decoding, we perform a redundancy 

operation whilst we decode all the frames. There is usually between 24 to 30 frames per second for 

any video footage. Experiments have shown that only two frames per second is adequate for shot 

segmentation (Chan & Wong, 2011). Two keyframes are picked per second for use in the 

extraction process. The keyframes that are chosen are at the beginning and middle frames of every 

second. The timestamp for each frame is extracted and stored as a reference point that will be used 

in successive processing stages in the framework.  

To know what filtering techniques we need we must first look at the features that are to be 

extracted and what it is required to extract them. The syntactic content features we need to extract 

from the raw media directly are the keyframes, shots and objects. Each feature needs different 

filtering techniques applied to improve its particular segmentation process.  Shots need to have the 

lighting source in the target video clip to be even and without any abrupt changes e.g. flashing light 

sequences such as lightning. Objects, depending on the technique used for extraction, also need the 

light source to be even throughout the shot for the segmentation to be effective as the outline of 

the objects becomes obscured in dimly lit scenes. Both also need the removal of distortion or 

“noise” that can affect the segmentation process.  

The way to negate the effect of such lighting changes is to use a colour space that is tolerant of 

such changes and can reduce their impact on shot segmentation and spatiotemporal extraction. To 

reduce the effect of lightning changes the video needs to be converted into the RGB colour model, 

if not in RGB already. RGB is shown to reduce the effect of lightning changes and improve 

invariance to shadows (Kristensen, Nilsson, & Öwall, 2006). YCbCr is marginally better than RGB 

for lighting and noise invariance but as RGB is commonly used by most codecs and recording 

equipment, the time taken to convert RGB to YCbCr is not worth the processing overhead for such 

a small gain. Converting to YCbCr from another colour space also adds noise in the conversion 

process. YCbCr is preferred in object extraction for as the illumination is limited to the Y band, but 

RGB is better for colour based shot segmentation algorithms as YCbCr is too insensitive for colour 
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changes to be recognised. Therefore RGB colour space has more advantages then YCbCr for both 

shot and object extraction. After the conversion is completed the RGB values are extracted and 

histograms of each frame are stored for use in the content layer of the extraction plane.  

Noise is removed by performing a flattening function over each of the extracted frames. Noise 

comes in the form of pixel “particulates” that are usually formed as artefacts left over from the 

decoding process as information was lost during the compression of the original video stream. The 

technique from (Yongquan et al., 2009) is adopted.  A median filter is used over each keyframe to 

reduce the noise of each pixel by smoothing the pixel using the adjacent pixels. The noise 

reduction removes pixel-fine artefacts from the frame that could cause erroneous segmentation 

boundaries for both object and shot boundary detection. 

The brightness and contrast are then adjusted to compensate for bad lighting levels. Once the 

adjustment is performed, the prominent features of the video stream become much more visible 

and thereby make the extraction processes more reliable.  

2.7.2 Extraction of syntactic features 

In section 2.3 the features that are needed to produce a universally compliant and accessible 

content model were identified. Temporal and spatiotemporal segmentation were the key syntactic 

features that will provide the foundation for the content model. The temporal content features will 

consist of one low level syntactic feature and two mid-level syntactic features. The low level 

syntactic feature will be shots, and the mid-level syntactic features will be the scenes and objects. 

The mid-level syntactic features have a conceptual structure and are harder to extract directly from 

the video stream. To facilitate this better the low level syntactic features are extracted first and then 

used as the basis for extraction of the mid-level syntactic features. 

The temporal segmentation of the video into shots and scenes provides the foundation of the 

content model. The shots are the basic building blocks for the content model.  Each shot will be 

represented by a keyframe extracted from the pre-processing stage within MAC-REALM. The 

spatiotemporal segmentation of the video stream will begin after the shot extraction process in the 

temporal segmentation component. After the spatiotemporal segmentation has taken place the 

scenes will be extracted.  

Once all the features are extracted, they are described by MPEG-7 syntactic content 

description schemes. The syntactic feature extraction process for this plane is shown in Figure 2.5. 
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Figure 2.5: SYNTACTIC FEATURE EXTRACTION PROCESS 

2.7.2.1 Shot extraction 
Shots are the elemental unit of video storytelling. They are a continuous temporally 

uninterrupted sequence of frames taken by a single camera. They do not have any semantic 

characteristics of their own, but can have syntactic attributes that are significant for other features 

semantically. Shot segmentation is the first process that yields a content feature within MAC-

REALM. The extracted shots will become the reference structure for all the other features, for 

both syntactic and semantic features. The shots will become the input and basic unit of the content 

model. Objects will be extracted from shots and scene will be a group of contiguous shots that are 

semantically related. The semantic relationships are derived from these content features; ergo they 

are derived from units of shots.  

For shot segmentation we need to identify two features, the first is the boundary between shots 

and the second is the type of transition between the shots. The importance of the type of boundary 

is usually an indication of a semantic event change. Normal abrupt cut transition shots are normally 

associated with non-semantic changes, whilst gradual transition type shots are usually an indicator 

of a new semantic narrative within the video stream. When a semantic change does occur with an 

abrupt cut shots it is usually referred to as an ‘establishing shot’, which is a shot that is semantically 

neutral before a change in the narrative of the video.  An establishing shot is usually a still or slow 

panning shot that is a visual break between events. These shots are usually short in duration and 

the syntactic low level features do not show much change. The other type of shot is a gradual 

transition and is usually associated with a semantic event change. These are usually indicated with a 

wipe, dissolve or fade type transition. These visual cues are important for establishing semantic 

event boundaries and are therefore important to any content extraction and modelling framework 

for video. 
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There has been varying success with different algorithms on each type of shot. Some 

algorithms can do one or the other very well but are incapable or have bad success rates for the 

other type of shot. Others have been adapted to do both but have limited success in achieving 

better results than using individual methods for each type. The MAC-REALM shot extraction 

technique is based on the research from (X. Chen & Liu, 2010) that uses a hybrid algorithm of two 

different shot extraction techniques. The shot extraction techniques use a combination of shot 

algorithms that complement each other by eliminating the weakness of the other. Each algorithm 

specialises in identifying either an abrupt transition or a gradual transition. The abrupt shot 

technique uses colour histogram difference and the gradual transition technique uses edge change 

ratio. Both algorithms are extremely effective and identifying the type of shot, they have been 

selected for.  

In (X. Chen & Liu, 2010) they use fuzzy subset-hood theory for abrupt transition and fade 

out/in (FOI) transition shots. They begin using a binarysation process to assign frames to one shot 

or another. They convert each frame into greyscale and assign a value of either 1 or 0 to pixels 

depending on their shade. If they are not matched, they use an arbitrary threshold to approximate 

pixel difference until a match can be achieved. They then use an inclusion degree feature that 

determines if two frames belong to the same shot.  

The binarysation process, which is a type of frame differencing algorithm, has been proven a 

computationally expensive and inefficient at shot segmentation (Gargi, Kasturi, & Strayer, 2000). 

MAC-REALM uses Colour Histogram Difference for abrupt transition detection and ECR for 

FOI/Dissolve transitions. This improves the performance of the overall extraction process for 

both types of shot. Each is well suited to its particular type of transition and each achieves good 

precision and recall rates. We reduce the complexity of the calculation using one step processes for 

both abrupt and gradual transition shots. The reduced complexity does not mean reduced 

performance. Results should be comparable in precision and recall as other similar techniques. 

Colour histogram difference (CHD) is good at identifying abrupt transition shots due to the 

sharp change in the colour distribution of disjointed frame belonging to two different shots. 

Frames from the same shot tend to have a close fit to each other in terms of colour distribution. 

This is due to all the frames coming from one particular camera motion and therefore all frames 

are contiguous with little variation. Figure 2.6 is a visual representation of how CHD detects a shot. 

An illustration of frames represents the shot as it approaches the shot change boundary. Above the 
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frames is shown a histogram line graph of the frames, over time, to illustrate the colour distribution 

change between shots and the moment the shot change occurs. 

 

Figure 2.6: COLOUR DISTRIBUTION CHANGE BETWEEN SHOTS 

There is some colour fluctuation between frames and the colour distribution is never uniform. 

Instead, the distribution falls within a certain range. Therefore, a threshold has to be set that allows 

for minor fluctuations between frames from the same shot. The threshold must be sensitive 

enough to distinguish between shots that have low light levels or are uniform in colour 

distribution.  

MAC-REALM proposes an adaptive threshold that measures the fluctuation of the colour 

distribution over a certain period of frames and then takes the mean difference between those 

frames and multiplies them by a certain factor. That factor for triggering a shot change will be 

calculated using the following adaptive technique. Taking the mean of the fluctuation and using 

that as the basis of the threshold value negates any outliers of the colour distribution. Sensitivity to 

changing or low level lighting conditions is also minimised. To reduce the effect of uniform colour 

distribution over shots, the CHD threshold is performed over three bands (red, green and blue) 

and the adaptive threshold is worked out for each individual band. Using this method means that 

the colour distribution for each shot would have to be uniform for all three colour bands to miss 

the shot boundary. 

To identify gradual transitions, the change in integrity of the edges changes within each 

consecutive frame image over time has proven to be one of the best methods. There are three 

main types of gradual transition: dissolve, fade in/out and wipe. MAC-REALM concentrates on 
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finding only dissolve and fade in/out type transitions. Wipe transitions are not focused on as they 

are a rare feature. The edge change ratio (ECR) method is a very good technique for transition 

shots. It indicates the measure of the integrity of the edges for both types of transition shot. For 

dissolve shots, the edges are strong-weak-strong but in fade in/out the edges are either weak-

strong or strong-weak respectively. Figure 2.7 shows the integrity of edges over a certain period of 

frames for both dissolve and FOI. Shot A is a fade in shot and shot b is a dissolve shot. The 

accompanying graph of edge integrity vs. frames is shown above for each type of shot. Each 

particular type of gradual transition has its own type of graph curve. 

 

Figure 2.7: ECR SHOT DETECTION: A) FADE IN B) DISSOLVE 

MAC-REALM uses the same adaptive threshold technique to detect the FOI and dissolve 

transitions. The difference is that it is the fluctuation of the of the edge complexity that is used 

instead of the colour distribution, and the average is taken over a sliding window of frames rather 

than two consecutive frames. The fluctuation of the edge integrity over a certain period of frames 

is measured. The change in edge complexity over time is measured over a fixed window of frames. 

If the edge complexity has a certain gradient, it can be matched as either a dissolve or a FOI. 
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2.7.2.2 Object extraction 
Objects are one of the most fundamental building blocks of a content model. Each shot 

represents a unit of action. These actions build up to events. For the events and actions to take 

place, they must be performed by objects. This is the reason why they are important and form one 

of the major components of content modelling.  

For spatiotemporal segmentation, or object extraction as it is more commonly known, a set of 

frames must be segmented into foreground and background regions. To achieve segmentation a 

frame, which is an image snapshot of action, must be divided into a number of disjoint regions 

such that the features of each region are consistent with each other i.e. belong to an object. Since 

images generally contain many objects, which can be obfuscated by clutter, it is often not possible 

to define a unique segmentation.  

Another problem with objects as mid-level features is taking into account the semantic 

perspective needed to segment them. Objects need to be perceived cognitively to establish their 

boundaries. Even though they are directly extracted from the syntactic information in the video, 

and therefore syntactic in structure, they have a semantic connotation in that an object is a matter 

of perspective and cannot be reduced to any syntactic key feature points. This is complicated 

further by objects consisting of different parts, producing a hierarchical structure of connected 

“sub-objects”, for example as a person can be split into limbs. In addition, there is no correlation 

between the low-level syntactic features the object consists of and the object itself. Movement, 

Colour, shape and texture cannot be relied upon to distinguish the object solely.  

Deciding which regions belong to what object, and what is foreground and what is background 

is the main problem of spatiotemporal segmentation. A degree of user interaction is required for 

the most accurate methods in generic situations (see section 1.3.2.4). In other words, the 

segmentation problem can be ill posed when working in an unsupervised framework. Interactive 

algorithms allow the user to label a few pixels as either object or background, thereby making the 

segmentation problem well posed. In addition, there is the problem of tracking the spatiotemporal 

segmented regions once the initial segmentation is performed. It proves computationally very 

expensive and inefficient if the segmentation technique was used for the same technique for each 

frame. It could also lead to irregular segmentation of objects over time as the segmentation process 

reinitialises for every frame. 

To solve both problems two algorithms are used. One algorithm is used to segment the initial 

frame of the shot and then a second to track the segmented region through the shot. The 
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advantage of using both techniques is that gives the most effective and efficient form of extracting 

objects for the purposed of MAC-REALM. This allows for a highly accurate segmentation of the 

object, which is then tracked in a coherent and efficient manner. 

To segment the initial frame and initiate the object instantiation we use the technique from 

(Noma, Graciano, Cesar Jr, Consularo, & Bloch, 2012). They use an interactive attribute relation 

graph (ARG) segmentation technique to segment an image into foreground and background 

regions. It uses a watershed technique to oversegment the image into regions of spatial and colour 

homogeneity, known as the input graph. A user defined input graph is then overlaid the over 

segmented image, known as a model graph, and is used to mark regions on the input graph. 

Examples of the input and model graph are shown in Figure 2.8. These marks are used to 

instantiate a region-merging algorithm that is based on discrete search using deformed graphs to 

efficiently evaluate the spatial information. The advantages of using the ARG technique to segment 

objects is that:  

a) It reduces the problem of clutter in the image and focuses on regions of interest improving 

the definition of the segmentation  

b) It reduces the merging of objects that have similar visual properties and are touching e.g. 

two people in shot together wrapped around each other  

c) It the user input from one image can be reused on multiple similar images, reducing the 

supervision of the process. 

 

Figure 2.8: EXAMPLES OF A)INPUT GRAPH AND B) MODEL GRAPH 

85 
 



To track the spatiotemporal region MAC-REALM uses Hausdorff matching SVD covariance 

descriptors from work by (Guo, Xu, Ma, & Huang, 2010). Hausdorff distance measurement is a 

widely used tracking algorithm (Z. Liu, Shen, Feng, & Hu, 2012).  The reason for using this 

particular variant of the method is that it is robust against rotation and scale change, a problem for 

the Hausdorff tracking method. It also has proven to have a lower computational expense than 

other Hausdorff tracking algorithms. These factors make it ideal for tracking objects in MAC-

REALM as it reduces the time of processing whilst providing accurate tracking. 

The hybrid object extraction and tracking technique for MAC-REALM is a computationally 

efficient and effective way of segmenting and tracking objects. The shots extracted from the shot 

extraction process form the basis of the spatiotemporal segmentation process. A frame from the 

syntactic feature content layer that represents the key point in which the object first appears clearly 

in the shot is used for the initial segmentation frame. The frames extracted are at one second 

intervals, which represent an adequate interval for sampling the change in object spatial behaviour. 

At this frame rate most action changes are caught but computational expense is reduced. Each 

frame is then segmented, using the ARG technique, into a number of disjoint regions such that 

that the features of each region are consistent with each other. These regions are then tracked by 

the Hausdorff spatiotemporal region tracking algorithm tracking for the duration of the shot. The 

reuse of earlier features which have already been extracted, and using a separate computationally 

less expensive tracking algorithm instead of using the segmentation algorithm for all images, 

reduces the processing time of the object extraction and tracking  

2.7.2.3 Scene extraction 
Once objects are segmented and tracked, along with the extracted shots, they are used as the 

input features for the segmentation of the scenes. The scenes are an important syntactic feature as 

far as laying a foundation for semantic features. Scenes are another complex syntactic feature and, 

like objects, can be described as Mid-level content features. Scenes are syntactic features that are 

semantically defined. They are a collection of actions constituting shots that when combined 

describe a single event. To segment a video into scenes, shots must be clustered together based on 

a common semantic theme. 

Scenes are a type of cinematic grammar that is used by film and video creators to create story 

units. Just like grammar in a book, the video must consist of self-contained sections that describe 

the a story “unit” that is part of the plot of a book or play. Shots and objects in video are akin to 

scenes and actors in the structure of a script, indeed shots and objects are all scripted in a 

screenplay, and a storyboard formed of how they visually play out. Scenes themselves are like acts, 
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which play out a particular story plot of a play. The structure of a scene does not itself play a part 

in the semantic themes of a scene, but its arrangement and use define it. MAC-REALM exploits 

this grammatical relationship between video syntactic features and their correlating semantic 

themes to cluster shots together into scenes. 

Defining a common semantic theme for groups of shots is beyond present state-of-the-art 

scene segmentation. As reviewed in section 1.3.2.3 most scene segmentation algorithms use 

specific syntactic cues that can only be relied upon within a certain domain or use user input or 

training data to initiate segmentation for techniques that try and extracts scenes generically.  

For MAC-REALM we have chosen to use a scene boundary detection technique based on 

work from (Marios C Angelides & Kevin Lo, 2005). They proposed a genetic programming 

experiment that uses video and audio features to formulate rules that would identify the start of a 

scene boundary. To reduce the computational complexity of analysing both video and audio 

streams MAC-REALM will only formulate rules using video features. In Chapter 4, we will show 

this approach has positive impact on the performance of the algorithm and increases the efficiency 

of the overall scene segmentation process.  

The genetic programming method is preferred for scene segmentation because it takes into 

account the semantics perception associated with identifying scene boundaries and applies them 

abstractly to the syntactic features. MAC-REALM applies a multi-content type syntactic approach 

to defining the scene boundaries. Rules are evolved consisting of multiple syntactic features that 

have an association with the start of a scene change. These rules state the relationship between 

certain syntactic features and their visual cues are good at identifying scene boundaries.  Using 

training data, the rules are evaluated on their fitness to identify scene boundaries. Those scenes that 

are better at identifying the boundaries are evolved further. This process is repeated until a rule is 

formulated which identifies a certain percentage of scene boundaries, or the closest matching rule 

after a certain number of cycles is achieved. 

Using this particular method of scene segmentation allows MAC-REALM to maintain its genre 

and domain independence as this method can handle generic content and can achieve a good 

degree of accuracy for scene segmentation compared with similar methods (see chapter 4).  

2.7.3 Analysis and Linkage of semantic relationships 

Semantic querying is built upon the main categories of “what and when” and “who and 

where”. What and when refers to events and the temporal relationships between them. Who and 
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what refer to objects and where they are, to their environment and to other objects. The semantic 

analysis and linkage plane establishes the “when” and “where” that is so vital in semantic search 

and concept detection.  

Although semantic relationships have been critical to semantic search and retrieval they have 

also been noted as playing an important part in concept detection methods(Weiming et al., 2011). 

The spatial and temporal relationships between content features play an important part in 

determining the relationships between concepts. From these relationships knowledge of the 

actions and events can be learnt, and concepts that share similar themes can be grouped and new 

concepts inferred for the content. This makes accurate modelling of spatial and temporal 

relationships very important in discovering and learning concepts and ontologies.  

The MAC-REALM analysis and linkage plane is responsible for modelling the relationships 

between low and mid-level features extracted in the previous plane. As shown in section Table 1.6 

all video indexing and modelling systems do not explicitly model the semantic relationships 

between the content features. They treat the matter of spatial and temporal relationships as a post 

process to modelling that is done in an ad-hoc manner. This can lead to ambiguity as different 

methods for processing spatial and temporal relationships can lead to them being interpreted with 

different meanings.  

For uniformity between query results, and for improving concept detection through spatial and 

temporal concept modelling, having explicitly modelled spatial and temporal relationships is a 

necessity. This would allow the formation of consistent results and concept detection using 

semantic ontologies over all applications that used the content model. 

In Figure 2.9 we see the processes of the analysis and linkage plane. The semantic media from 

the content layer is processed to produce spatial and temporal relationships. The temporal 

relationships between spatial relationships and other features are also modelled. They are all finally 

converted into MPEG-7 content descriptions. 
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Figure 2.9: SEMANTIC RELATIONSHIP ANALYSIS AND LINKAGE PROCESS 

2.7.3.1 Spatial relationships 
As discussed in section 1.3.3.1, spatial relationships have not been given much attention in 

recent studies. Though spatial relationships have been formalised, there has been no attempt at 

unifying the processes from which they have been derived. In section 1.3.4.2, we see that video 

content extraction and indexing applications approach the problem as a post process ad-hoc 

methodology problem.  

The main problem that stops spatial relationships being uniform in through content based 

video search applications is where the reference point for basing the spatial reference is calculated. 

None of the systems reviewed in section 1.3.4.2 stated the quantitative methods used for defining 

the spatial relationships. This is not an inconvenience if the content model is used exclusively for 

the purpose or application it was designed for. It becomes a problem though when other 

applications use the content model and then use a different reference point for the spatial 

relationships. This could lead to a different interpretation of spatial relationships and therefore 

different results if queried with the same criteria.  

To find a solution to this particular problem we look at the possible ways of how to define the 

reference points for objects, for both absolute and relative spatial relationships. With absolute 

relationships, the reference point or points must accurately depict the relationship between the 

object and the global position it occupies within the frame. In relative relationships, the reference 

point or points must define accurately the position of the objects in relation to each other in real 

and perceived terms. Both sets of reference points should also ideally align themselves to the same 

philosophy of definition of referencing as not to induce any problems from querying on both types 

of relationship. 

With absolute relationship, the initial reaction is to use the centre point of the object. The 

reason for this is the natural way absolute positions are judged by humans. The main problem here 
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is defining the centre point of a non-uniform body. The irregular shape may mean that the centre 

of the body may not be obvious as irregular protrusions may make defining the centre more 

complex. What is needed is a technique that takes the most natural and actual representation of the 

centre of the mass. MAC-REALM for this reason uses the centroid of a mass technique (Marghitu, 

2012). The centroid of a mass finds the arithmetical mean of all the points in a two dimensional 

object. If we use the edge silhouette of the object for the points, we can determine the centre of 

mass. Setting the absolute relationship on the centre of mass allows the definition of the 

relationship to not only be based on the true centre but also the perceived centre of the object as 

its central mass is centred around that point.  

For the relative position, we find the centroid of the mass for both objects. Their relative 

positioning is then based on the calculation between points. This technique works well because it is 

accurately used to depict relationships where one object might be larger than the other. If we used 

the nearest point between both objects, this might give an inaccurate reference point as the mass of 

the object might be located in another region or dispersed over a great area.  

Using the centre of mass as the defining technique for both relationships means that querying 

and comparisons of spatial co-occurrence can be modelled with consistency throughout. Both sets 

of relationships will provide a consistent approach to absolute or relative spatial relationship 

queries.  

2.7.3.2 Temporal relationships 
In section 1.3.3.2 and 1.3.4.1, it was shown that temporal relationships are fundamentally 

important to the areas of video extraction and content modelling. Video is a temporally defined 

media and therefore having the ability to search it temporally is an important aspect for all video 

search applications.   

It has also been used for concept detection, but has only been considered by a few and is not 

used as widespread as spatial relationships. This is surprising as the temporal relationships have the 

advantage of being able to model all syntactic and semantic content features and spatial 

relationships can only be used for spatiotemporal regions. Using temporal relationships between 

features increases the concept detection probabilities throughout a video, and seems an intuitive 

answer to not only modelling concepts based on objects but more accurately to modelling 

concepts based on events.  
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The ability to model temporal relationships between both syntactic and semantic content 

features is unique. As shown in Table 1.6 most systems that use temporal relationships do not 

model them explicitly; only the semantic features are modelled, which also misses the opportunity 

to model the syntactic features. All features in video have temporal properties that can be used to 

find similarities and associations between them, and can also be used to compare features 

temporally against each other. These can then be used by applications to model or infer concepts 

between syntactic and semantic features, which can be used to reduce the semantic gap. The 

dynamism of temporal relationships forms intra (between the same content type e.g. shot and 

scene) or inter (between the different content type e.g. shot and spatial relationships) temporal 

relationship links between features based on proximity and co-occurrence. Because of its flexibility 

in being structurally independent of feature types it can be used by applications to detect and infer 

concept relationships between features of different types and domains. 

Modelling the temporal relationships explicitly is important for completeness of the relationship 

between all features. Most video content extraction and indexing applications only model the 

temporal relationships between concepts and ignore the relationships between them and their 

underlying syntactic foundations. This limited view of temporal relationships does not exploit the 

potential that modelling all the features will have on being able to search the content temporally in 

a content-type independent manner.   

Below in Table 2.2 we show the relationship combinations between syntactic and semantic 

features. The temporal relationships between these feature sets can be described as either intra-

temporal or inter-temporal relationships.  Where the feature sets are homogenous in structure (e.g. 

both syntactic) or in concept (e.g. both semantic) they are described as intra-temporal relationships, 

where the feature sets are heterogeneous they are described as inter-temporal relationships.  

 SHOTS SCENES OBJECTS SPATIAL 
RELATIONSHIPS 

TEMPORAL 
RELATIONSHIPS 

SHOTS INTRA INTRA INTRA INTER INTER 

SCENES INTRA INTRA INTRA INTER INTER 

OBJECTS INTRA INTRA INTRA INTER INTER 

SPATIAL RELATIONSHIPS INTER INTER INTER INTRA INTRA 

TEMPORAL 
RELATIONSHIPS 

INTER INTER INTER INTRA INTRA 

 

 

Table 2.2: INTRA/INTER RELATIONSHIPS BETWEEN SYNTACTIC AND SEMANTIC RELATIONSHIPS 

The relationship between homogenous entities are described as intra as the attributes between 

them have a direct correlation to each other in content type and can be compared in a similarly 
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structured content queries. Entities that do not share similar attributes in content type are 

considered inter-temporal. They cannot be queried together semantically as one feature does not 

have any semantic meaning. Due to the heterogeneity of the content features involved in inter-

temporal relationships, the temporal relationship is the only feature that can be queried 

semantically between them. This allows querying of temporal relationships between these feature 

sets, allowing for multi modal querying on a semantic level, whereas before it was only possible on 

a logical level. 

The temporal processing is a basic chronological comparison exercise. For all syntactic and 

semantic features, the timestamp of when they begin and end is stored. This is then used by the 

temporal processor to calculate each relationship. Once all the relationships are processed, they are 

explicitly stated and referenced using the unique id of the features involved. Any application that 

can use the content model can then analyse and compare the relationships for any feature against 

all other features. There is no need for the application to calculate or query the content model for 

the availability of temporal relationships, all are available and all possible combinations of 

relationships and features are included. 

2.7.4 Modelling 

Once we have modelled all the syntactic and semantic content features we need to integrate 

them into a content model that can be used by MPEG-7 compliant applications. The content 

model must be integrated so that all the syntactic and semantic content features are interlinked and 

can be searched by queries that are formulated using different content requirements.  

 

Figure 2.10: MODELLING PROCESS 

To help bridge the semantic gap between the underlying syntactic foundations and the 

semantics of the content the extracted content description need to integrate the syntactic and 

semantic features into a unified content model. This would help to address the problem of the 

many types of video content query that can be formulated (see section 1.3.4.1). A content model 

should be able to handle queries with impartiality to the domain or genre of the querying 

application. The content features must be accessible to as many applications as possible. 

MAC-REALM proposes a solution to the semantic gap problem by modelling the extracted 

syntactic and derived semantic features into a hierarchical MPEG-7 compliant content model. The 

92 
 



content model uses the syntactic features as the foundation blocks of the content model, and then 

uses MPEG-7 semantic graphs to link the semantic relationships to the syntactic foundations.  The 

use of the MPEG-7 graph description scheme in defining temporal relationships allows the 

content model to establish a semantic multi-feature linking mechanism between all features 

regardless of content type. The content model only uses standard MPEG-7 tools to model the 

features. This way any MPEG-7 compliant application can readily interpret the content model with 

no ambiguity of the content semantic. 

In section 1.3.4.1, the four main types of semantic feature categories were identified that 

should feature in all content models. These were spatiotemporal objects, the spatial relationships 

between them, events depicted within the content and the temporal relationships between all the 

features. The four categories describe these features in semantic terms only. The fifth type of 

feature was temporal segments, but these are syntactic and already represented. The semantic 

categories alone are not adequate query formulation can also be a mixture of syntactic and 

semantic features. We have to revise these features into an integrated content description 

framework, with all features integrated into a layered hierarchy that supports multi-content type 

querying. In Figure 2.11 the mapping of the four semantic categories to MPEG-7 content 

descriptions to produce the MAC-REALM content model is shown. The spatial and temporal 

relationships are high level features that are directly mapped to the content model as they are. 

Events are represented as mid-level temporal segments (i.e. scenes). This integrates it with the 

other low-level type temporal segments (i.e. shots). The spatiotemporal objects are described using 

moving regions. 

 

Figure 2.11: TRANSLATION OF SEMANTIC FEATURE CATEGORIES TO A SYNTACTIC SEMANTIC CONTENT MODEL 

From Table 1.6 we found that most video content extraction and indexing applications do not 

explicitly extract and create a content model that has all five video content feature types categories. 

MAC-REALM takes a step closer to ‘bridging’ the ‘semantic gap’ by incorporating a combination 

of low, mid and high content features to provide a foundation that can be used for searching the 

93 
 



content. It can also be used for concept detection providing a framework for concept discovery by 

learning spatial and temporal concept modelling using the spatial and temporal relationships.  

Although users formulate their queries on a semantic level, they formulate the queries from the 

basis of a syntactic foundation. The foundations of an integrated content model needs to be built 

on two feature sets; syntactic features that support and help define concepts, and semantic 

relationships that can be used to infer and model concepts. MAC-REALM uses the shots as the 

skeleton of the content model as it is the syntactic foundation of the content. The spatiotemporal 

moving regions that represent the objects are then associated with each shot that they belong to. 

The scenes are created from the shots, providing a very close coupling between them and the 

shots. The close coupling between the scenes and shots leads to a relationship between the 

spatiotemporal objects and scenes. Finally semantic graphs are created, first for the spatial 

relationships for the objects and then for the temporal relationships between all the features. This 

interlinking and integration of features makes the content model searchable from a multi-content 

type perspective, and rich and granular in description.  

MAC-REALM begins by modelling the temporally segmented syntactic features that have been 

extracted, namely the shots and scenes. The shots are embedded within the scenes they originate 

from as well as the shot transitions that precede each shot. Within each shot we have the 

description of the colour histogram of the shot, calculated from the aggregation of colour samples 

from extracted frames within the shot. The shot and transition descriptions are linked by their time 

attribute. Therefore, if a shot is the start of a scene then the associated shot transition is also the 

transition for the start of the scene. Each scene and shot is given an id reference. The scene id 

reference just states the scene number in reference to its position numerically to other scenes. The 

shot id reference however incorporates the scene it originates from as well as the numerical 

position of the shot. Shots that do not belong to a scene do not have a scene number, just a shot 

number. The shot numbering is carried through to the next shot, regardless of what scene it 

originates from, in order to show the position of orphaned shots in relation to other shots.  

After the scenes and shots have been modelled, the spatiotemporal moving regions are 

modelled. Each spatiotemporal moving region has a unique id reference that is used to link it to 

the scene/shot it originates from. Within the unique identifier of the moving region is an “object” 

reference id assigned that uses the frame number of the shot. The object number relates to the 

number of objects within the shot, with the frame number showing exactly when the object 
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appeared in the shot. This helps to identify and link the spatiotemporal moving region to the 

temporal segment it originated from.  

The semantic modelling phase is split into three parts; relationship nodes, spatial relationships 

and temporal relationships. The relationship nodes’ are responsible for the polymorphic nature of 

the semantic relationships.  Nodes take a feature and assign a unique identifier for each feature that 

describes only the features in arbitrary terms, whilst removing the syntactic or semantic attribute 

descriptions. This allows for building temporal relationships between all features, without 

becoming encumbered with syntactic or semantic description that would complicate content based 

video search and retrieval tasks.   

Nodes are assigned to every feature instantiation of shots, scenes, objects and spatial 

relationships. These are then used by either (in the case of object nodes) the spatial relationships or 

temporal relationships when identifying the source and target of the entities described in the 

relationship.  

Spatial relationships use the nodes to describe the spatial relationship between objects, taking 

into account the change of that relationship over time. Each object is tracked and when it’s spatial 

relationship changes, a new node is created that identifies that change. All spatial relationships are 

modelled into nodes themselves, for the purpose of defining their temporal relationships. 

The temporal relationships of all the features are then modelled using the node identifiers for 

source and target of the relationships. Each intra-temporal and inter-temporal relationship is 

mapped for all the feature sets. Temporal relationships are not modelled into nodes because of 

their semantically finite nature.  

2.8 Summary 

Chapter 2 proposes a design of a content feature extraction and modelling framework called 

MAC-REALM. The framework is introduced and the motivations behind the requirements of 

MAC-REALM are examined. The following two sections examine automatic content feature 

extraction and content modelling design requirements in further detail. These are then stated as 

formal design requirements that elaborate on the requirements from the objectives in chapter 1.  

The MAC-REALM Framework is presented as an architecture that incorporates the design 

requirements into function components that are linked by a custom video processing pipeline. 
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Content passed through the pipeline and is converted from content media to content descriptions 

in layers of different content feature levels as the video stream is translated into a content model.  

The design of the content, application and MPEG-7 layers is then looked at. For the content 

layer we describe the media to content description conversion for each plane. The content layer 

stores the media for each plane that will be processed. The application layer converts the content 

for each plane into content descriptions that are relevant for that planes function. The MPEG-7 

layer is where the content description are modelled into MPEG-7 content descriptions. An in 

depth view is given of the planes and how they are to perform their function. The choices of the 

processing strategy for each component are discussed in reference to the function it performs in 

the MAC-REALM framework. Where applicable the sub-processed are discussed and the 

techniques employed are focused on in their own sections. 
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CHAPTER 3: PROTOTYPING MAC-REALM 

In chapter 2 we proposed MAC-REALM, a cross-functional framework that is able to extract 

video content features and model them into a MPEG-7 content model that tightly integrates 

syntactic and semantic content features. The extraction process takes place over two function 

planes with another function plane responsible for modelling the content into a content model. 

Before the extraction of features can begin the content is pre-processed to optimise the extraction 

potential of the video stream. This chapter presents the implementation of MAC-REALM, and its 

three-layer, four plane architecture.  

In this chapter the design for MAC-REALM is implemented into a proof of concept prototype. A 

modular framework is developed and the component modules for each plane are added to provide 

the functions of MAC-REALM as described in the design requirements (section 2.4.). The MAC-

REALM prototype is developed using an iterative prototyping methodology. Existing codebase is 

repurposed and modified to implement the function components of the framework. The 

components are self-contained modules that are loosely coupled modular framework that used 

custom video processing pipeline to pass content between the components. This implementation 

strategy allows the modules to be updated or extended without altering the functionality of the 

framework as a whole. This development strategy allows the prototype to be maintainable and 

extendible for future development of the platform. 

The chapter is organised as follows. Section 3.1 presents the implementation requirements of 

the MAC-REALM prototype, and then introduces an overview of the custom video processing 

pipeline between the modules within the framework. Section 3.2 discusses the Raw Media plane 

and shows how the AV stream is decoded and filtered for feature extraction. Section 3.3 presents 

the Extraction plane and discusses the multi-tiered automated/intelligent heuristic processing that 

automatically extracts syntactic features and then models these features into MPEG-7 visual tools. 

Section 3.4 discusses the Analysis and Linkage plane that derives semantic relationships, both 

temporally and spatially, of the syntactic content features extracted and the semantic relationships 

themselves. Finally, in section 3.5 the Modelling plane is presented and how the syntactic and 

semantic features are combined together to provide an MPEG-7 content model that enables 

granular search and facilitates multi-content type video search. 
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3.1 MAC-REALM Framework 

The MAC-REALM design requirements in chapter 2 outlined the requirement for a video 

content feature extraction and modelling framework. These design requirements were derived 

from the research objectives and methods in chapter 1. From these requirements the aim of the 

MAC-REALM implementation is as follows: 

1. The framework will convert the media into a content model through an extraction 

process that segments and then models syntactic and semantic content features. The 

integrated content model will be MPEG-7 compliant. The framework will consist of 

functional planes arranged in custom video processing pipeline that will: 

a. Pre-process the raw media to increase the potential of the extraction of the 

content media and reduce the processing during the extraction phases of MAC-

REALM.  

b. Extract syntactic features from the video stream. The feature will be extracted in 

a hierarchical process of extraction that will: 

i. Extract shots and identify the type of shot transition.  

ii. Extract objects and track them 

iii. Identify scene boundaries 

c. Derive from those features explicit spatial and temporal relationships.  These 

semantic relationships will specifically implement: 

i. A reference algorithm that defines the centre point of objects to provide 

uniformity in spatial relationship definition across platforms. 

ii. To model temporal relationships of all syntactic and semantic features 

to facilitate semantic multimodal search for all combinations of content 

type. 

d. Create a content model that integrates the syntactic and semantic content 

feature descriptions into: 

i. A hierarchical structure to allow the content to be searched granularly. 

ii. A content model that is coded to be accessible to a wide a range of 

MPEG-7 compliant applications, regardless of the profile or version. 

iii. An interlinking structure of syntactic and semantic content features that 

are modelled to reduce the semantic gap and emphasis the relationships 

between the heterogeneous features. 
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For the prototype implementation of the MAC-REALM framework, it was decided to integrate 

existing framework platforms if possible and reuse other codebases.  This section will provide an 

overview of MAC-REALM prototype, implemented with the listed requirements. 

MAC-REALM is designed as a framework that allows the components that it consists of to be 

added, amended or replaced by other components. Therefore what was required was a platform 

for implementation that was both extensible and modular. For these reasons MAC-REALM was 

designed on the NetBeans platform4. NetBeans is a generic platform for swing applications and is 

written in Java. It provides a modular platform for designing complex desktop applications such as 

MAC-REALM that require GUI environment that has multiple screens for different functions.  

The programming platform has many features such as ready-made modules and tools designed to 

streamline the development process. The interaction between all the components is handled by 

NetBeans and does not require any complex coding. NetBeans offers many advantages that are 

useful to the implementation of a prototype for MAC-REALM. 

To begin with NetBeans employs a module system where each logical component of MAC-

REALM can be created and then be deployed into the MAC-REALM container. The MAC-

REALM container uses a bootstrap module that the different module functions are registered to, 

this dictates the order the modules are available and how they are integrated into the MAC-

REALM container to provide the complete MAC-REALM prototype.  

The communication between the modules is another key advantage of NetBeans allows the 

different modules to interact through a look-up service that provides a generic communications 

mechanism that allows all the modules to correctly transmit and receive data from each other. The 

look up service facilitates the exchange between not just between native java data structures but 

also MPEG-7 XML based description schemes through JAXB 5. The lookup service also can 

handle other non-native API’s such as C++ and MATLAB, making it an important part of the 

ability of MAC-REALM to be an extensible framework that is independent of propriety 

restrictions. 

The usefulness of NetBeans in providing an ideal coding environment as test bed to MAC-

REALM is in the ability to manipulate the modules and the coding level during runtime. This 

allows deployment, debugging and testing of any module of MAC-REALM without having to halt 

4 https://netbeans.org/features/platform/features.html 
5 https://jaxb.java.net/ 
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the other components. The NetBeans Platform provides a virtual file system, which is a 

hierarchical registry for storing user settings, comparable to the Windows Registry on Microsoft 

Windows systems. It also includes a unified API providing stream-oriented access to flat and 

hierarchical structures, such as disk-based files on local or remote servers, memory-based files, and 

even XML documents. 

Figure 3.1 depicts the implementation of the MAC-REALM Framework. The diagram 

highlights component intersections between the layers and the planes. Within each component, 

features or processes are shown within them. In the content layer, we can see all the features that 

are created and stored as we go down the planes. For the processes in the application layer the 

algorithm(s) that are implemented are shown within each sub-component. The MPEG-7 layer 

contains the MPEG-7 description schemes that are used to describe the modelled syntactic and 

semantic features. 

 

Figure 3.1: OVERVIEW OF MAC-REALM IMPLEMENTATION 
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The Raw Media Plane is where the video stream is input into MAC-REALM as a compressed 

digital footage. The video is then decoded using libVLC 6 (an open source video multimedia 

framework) and the all the frames are extracted. The Media Processing module then processes the 

extracted frames to remove redundant data. If the colour space of the video is not RGB, it is 

converted to RGB. MAC-REALM implements the colour space converter, frame redundancy 

reducer and noise filter using Java Media Framework (JMF)7 and Java Advanced Imaging (JAI)8. 

Noise is removed from the frames by applying a morphological filter. Once the noise removal is 

complete the histograms for the corresponding frames are finally extracted, ready for the next 

plane. 

In the Extraction plane the Syntactic Media module stores the frames with their corresponding 

histograms, for use by the Syntactic Feature Extraction module. The Syntactic Feature Extraction module 

extracts shots, objects and scenes, from the information stored. All of the low-level and mid-level 

syntactic features that are to be modelled are extracted in this plane (Section 3.2.2). The Syntactic 

Feature Extraction module consists of three sub-modules namely Shot Extraction, Object Extraction and 

Scene Extraction. The Shot Extraction sub-module is based on a new algorithm that is implemented by 

combining two existing algorithms in a novel arrangement, Colour Histogram Difference (CHD) 

and Edge Change Ratio (ECR), each algorithm is responsible for detecting different shot types 

(Section 3.2.2.1). The Object Extraction sub-module has an algorithm implemented that uses the 

outputs from both Graph Cuts Segmentation and Covariance Matrix Tracking algorithms (Section 

3.2.2.2) to extract objects and then track them for the duration of the shot. The final sub-module 

of the Syntactic Feature Extraction module is Scene Extraction. Scene Extraction is implemented using a 

modified genetic programming algorithm that evolves a rule that can identify scene boundaries by 

certain syntactic feature markers (Section 3.2.2.3). The Syntactic Feature Extraction module passes the 

extracted shots, objects and scenes to the Semantic Media module in the Analysis and Linkage Plane. 

The last module in the Syntactic Feature Extraction module is the Syntactic Modelling module. Here the 

extracted shots, objects and scenes are modelled into MPEG-7 syntactic feature description 

schemes (section 3.2.3). 

The shots, objects and scenes are then ready to be processed in the Analysis and Linkage 

Plane where they are stored in the semantic media layer (Section 3.3.1). The spatial and temporal 

relationships are mapped in the Spatial-Temporal Mapping module, which has two sub-modules. The 

6 http://www.videolan.org/vlc/libvlc.html 
7 http://www.oracle.com/technetwork/java/javase/tech/index-jsp-140239.html 
8 http://www.oracle.com/technetwork/java/javase/tech/jai-142803.html 
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Spatial Relationships sub-module defines both absolute and relative spatial relationships, and the 

inverse of the relative spatial relationships (Section 3.3.2.1). The spatial relationship sub-module 

calculates the centre of mass of each object to provide a uniform point of reference for measuring 

the spatial relationships. The centre of mass reference point defines the resulting spatial 

relationships with an accurate focus that mimics human perception of the bearing of the object/s. 

The temporal relationships for all the syntactic and semantic content features are mapped in the 

Temporal Relationship sub-module (Section 3.3.2.2). The semantic relationships are then modelled 

into MPEG-7 semantic content descriptions in the Semantic Modelling module (Section 3.3.3). 

The MPEG-7 syntactic and semantic features are retrieved from the Syntactic Modelling and 

Semantic Modelling modules and placed in the Syntactic Semantic Descriptions module, as detailed in 

section 3.4.1. The syntactic and semantic MPEG-7 descriptions are then interlinked together 

within the Content Modelling module, as detailed in section 3.4.2. The descriptions are set into a 

MPEG-7 document shell and presented as a complete MPEG-7 content model in the Model Media 

module, as detailed in section 3.4.3. 

From the diagram we can see that MAC-REALM goes from Layer to layer and from plane to 

plane. Using the NetBeans platform as the development platform for implementing MAC-

REALM satisfies the design and implementation requirements for MAC-REALM to be modular 

an extensible. NetBeans offers a platform to build a framework that is extensible and modular 

through a loose coupled architecture offering high cohesion, but low coupling of components, 

offers pluggability of different technologies, and platform independence. The following two 

sections we look at how the MAC layers and the REALM planes are implemented to satisfy their 

design requirements.   

3.2 Raw media plane 

The need for an integrated method to pre-processing the raw media to optimise the feature 

extraction process was discussed in chapter 1. Digitised video comes in many formats, each with 

their own subtle variations for encoding the video. Some formats are better than others for feature 

extraction. The requirements of pre-processing, as stated in chapter 2, are that the video is to be 

optimised for effective and efficient feature extraction whilst reducing computational expense.  

The algorithm presented in this section presents a holistic pre-processing method for MAC-

REALM. It begins with decoding the video and removing redundant data. To reduce the 

computational expense we extract keyframes from intervals that reduces data redundancy whilst 
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not impacting on the effectiveness of the feature extraction process. Once the frames are extracted 

the colour conversion begins, converting the colour space into RGB, which is the colour space 

most suited for the subsequent feature extraction processes The keyframes are then filtered to 

remove noise to improve the salient features that are most important to feature extraction. 

In Figure 3.2 we have a flow chart that represents the raw media plane process, followed by a 

detailed description of the processes. 

 

Figure 3.2: RAW MEDIA PLANE PROCESS 

The extraction process begins by separating out the video component from the audio. The 

plug-in libVLC is used to decode the video and demultiplex AV content from multiple formats. 

Time stamps are also extracted during this operation and are used to sync the features and calculate 

the temporal relationships in latter operations. 
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Once video stream frames are input the frame extraction process begins. They are extracted 

using Java Media Framework (JMF) plug-in along with Java Advanced Imaging (JAI). If the video 

stream comes from a format that is using an uncompressed video (PAL, NTSC, AVI, DV, etc.) 

Java Advanced Imaging (JAI) can just grab the frame and buffer it in memory as an image. The 

images are grabbed at 1 frames per second (fps). Due to the many frame rates possible, and in the 

future, the fps has to be calculated on a per video basis. This frame rate is calculated dynamically by 

the equation: 

Eq. (3.1)  𝑓𝑝𝑠 =
1

𝐹𝑟𝑎𝑚𝑒𝑠𝑚𝑎𝑥/𝑇𝑖𝑚𝑒𝑚𝑎𝑥
  

Where 𝐹𝑟𝑎𝑚𝑒𝑠𝑚𝑎𝑥 is the total amount of frames in the video and 𝑇𝑖𝑚𝑒𝑚𝑎𝑥 is the total time in 

seconds of the video. We use MediaInfo9 plugin to get the total number of frames and the total 

time of the video. 

The extracted keyframe is then normalised for efficient processing.  We use linear normalisation 

to regulate the resolution of the image. After the frame is normalised the image is filtered to 

remove noise from the decoding processing. Using a morphological opening/closing gradient filter 

the noise within the image is reduced and the keyframe is “flattened”. The images are then stored 

for in the syntactic media component. 

We then follow analyse the colour space of the images and determine if they are using RGB or 

HSV/ YCbCr. If the images are RGB we extract the RGB values into three separate bins 

representing each band, with a value between 0 and 255. If the colour space is either HSV or 

YCbCr then we send it to the colour space converter. For conversion of the colour space we use 

Java Colour class which has standard functions for HSV to RGB and for YCbCr we use JAI that 

supports that colour profile. Once the RGB colours are obtained they can be stored in the 

syntactic media layer in the extraction plane. 

3.3 Extraction plane  

The design requirements for a content model were based on syntactic feature extraction of the 

video to produce the foundation for the content model. The foundation of any content model is 

based on syntactic features, notably temporal segment content descriptions. The three syntactic 

features identified for extraction were shot, objects and scenes. Shots are a low level syntactic 

9 http://mediaarea.net/en/MediaInfo 
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feature that can be identified through unsupervised machine based methods. Objects and scenes 

are mid-level syntactic features, meaning that they have conceptual attributes that require semi-

supervised machine based algorithms to identify them. Once the features are extracted, they 

require modelling into MPEG-7 syntactic content description schemes. The syntactic feature 

extraction process is implemented so the extraction process implicitly interlinks the syntactic 

content features together. This close coupling of features will be replicated in the content model to 

build foundation that will then integrate semantic relationships in a tightly integrated content 

model that will help bridge the semantic gap. In this section the algorithm and techniques used to 

extract the shots, objects and scenes, and then model them into MPEG-7 syntactic descriptions are 

described in detail.  

In the application layer for this plane, we have three different feature extraction engines; Shot 

Extraction, Object extraction and Scene extraction. In shot extraction, the normalised images are 

used to detect transition type shot boundaries, whilst the RGB histograms are used to detect the 

cut type shot boundaries. The shot boundaries are then used by the object extraction process as the 

demarcation points to start extracting objects. Object extraction uses the extracted frames from the 

content layer to extract objects from the first frame of a shot and then track the objects in all 

subsequent frames of the shot. The output from the shot and object extraction is then used by 

scene extraction to extract the scene boundaries of the content. The following sections are a 

discussion of each of the syntactic feature extraction processes, and the modelling of those features 

into MPEG-7 syntactic description schemes in the MPEG-7 layer.  

This plane is split into three layers; 1) Syntactic Media, 2) Syntactic Feature Extraction and 3) 

Syntactic Modelling.  The first two sections use java along with JMF to process and extract the 

lower level features of the syntactic elements of the content. In the third section we use parse the 

resultant extracted features, which are still java data structures into corresponding MPEG-7 

description schemes that represent the low level features.  

3.3.1 Syntactic Media 

At this layer, the syntactic media is parsed into java data structures, for both images and RGB 

values. The reference id for each frame and RGB bin is the timestamps that were extracted in the 

raw media plane.  The RGB values are input into the shot extraction process and the extracted 

images are used in both the shot extraction process and the object extraction process. 
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3.3.2 Syntactic Feature extraction 

We have three distinct processes within syntactic feature extraction section; 1) Shot extraction, 

2) Object Extraction and 3) Scene extraction. The processes are not independent as each preceding 

process produces features that are then used as input for the processes that follow. This was an 

implicit occurrence of using features that share the same characteristics in their structural 

composition. The rest of this section describes each process and it’s relation to other processes, 

and how this all comes together to produce the syntactic model of the content. 

3.3.2.1 Shot Extraction 
As previously discussed in Chapter 2, a shot extraction algorithm needs to be robust (i.e. gives 

high recall and precise and thus reducing missed and false positive shots), while keeping 

computational expense to a minimum. MAC-REALM’s shot extraction algorithm combines two 

separate shot detection algorithms, ECR and CHD. They combine them to produce a new 

algorithm, which negates the weaknesses of both algorithms. The algorithms are modified to 

increase system performance by reducing computational expense, whilst not impacting on the 

overall effectiveness of the algorithm. 

Depending on the type of genre, cinematography and shot boundary, some techniques offer 

several advantages when it comes to identifying one type of shot but will display disadvantages 

when it comes to identifying other types. To negate these disadvantages the techniques have been 

fused together to negate their disadvantages whilst exploiting their strengths. The hybrid technique 

consists of CHD for detecting abrupt cut type shots and ECR for transition type shots. This 

hybrid approach offers several advantages over using the techniques individually. 

Figure 3.3 show the shot extraction algorithm diagram. The shot extraction process consists of 

three sub-processes; 1) Edge Change Ratio, 2) Colour Histogram Difference and 3) the shot fusion 

processes. The shot extraction implementation is explained in more detail the following sections. 
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Figure 3.3: SHOT EXTRACTION PROCESS 

CHD provides a robust method for detecting cut shots. CHD work by detecting colour 

discontinuities between frames over a certain threshold that indicate that a shot has been detected. 

This measure is denoted by 𝐶𝐻𝐷𝑖 , where i is a frame of the shot, and is related to the difference 

or discontinuity between frame 𝑖 and 𝑖 + 𝑘 where 𝑘 > 1. The absolute difference between frames 

is used to compute the value of  𝐶𝐻𝐷𝑖: 

1.1  𝐶𝐻𝐷𝑖 =
1
𝑁
∙  � � � |𝑝𝑖(𝑟,𝑔, 𝑏) − 𝑝𝑖+𝑘(𝑟,𝑔, 𝑏)|

2𝑛−1

𝑏=0

2𝑛−1

𝑔=0

2𝑛−1

𝑟=0

 (Lienhart, 2001) 

 

Where  𝑝𝑖(𝑟,𝑔, 𝑏) is the colour histogram of a frame 𝑖 with 2𝑛−1 bins per histogram being 

considered. The RGB values for each frame are retrieved from the syntactic media component. 

Once the histograms are retrieved the colour histogram difference between each frame is 

calculated. For each frame stored in the syntactic media component, the colour value for each 

colour band is stored (𝑅𝐺𝐵𝑛). To compute the histogram difference the formula (A. Jacobs, A. 
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Miene, GT Ioannidis, & O. Herzog, 2004) has been adapted for use. The CHD between each 

frame is calculated, giving an initial threshold value using the equation: 

1.2  
  Δ𝑅𝐺𝐵 = 2 × (𝑅𝐺𝐵𝑛+𝑘 - 𝑅𝐺𝐵𝑛 ) (A Jacobs, A Miene, GT Ioannidis, & 

O Herzog, 2004) 

The threshold is adaptive as it is constantly revaluated as it works through the series of frames. 

When it detects a shot it resets the threshold and calculates a new threshold based on the first 

successive frames in the new shot. This method works to make the threshold maxima sensitive to 

the localised colour differences within the shot. The thresholding technique is more suitable for 

MAC-REALM as it uses less processing time. This is because the square difference method used in 

the original work used a calculation over five contiguous frames, as they tried to find transition 

shots as well.  

To stop false positives caused by flashing lights we simply omitted frames where  𝑅𝑛,𝐺𝑛,𝐵𝑛 ≥

250 and the next frame n + 1,  where  𝑅𝑛,𝐺𝑛,𝐵𝑛 < 250, would be used instead to determine if 

there was a cut shot. Figure 3.4 is the pseudo code for the CHD process. 

 

Figure 3.4: CHD PSEUDO CODE 

The CHD technique is effective for abrupt cut shots were there is a sharp colour difference 

between two shots due to a sudden change of all colour pixel values. If there is a transition shot in 

which the colour pixel values between the two shots change gradually and smoothly, CHD will not 

pick up the change and will miss the shot change.  

To counteract this disadvantage ECR is used to detect the transition shots (Lienhart, 2001). 

ECR is used to identify abrupt shot transitions by comparing consecutive frames. MAC-REALM 

extends the work by producing edge transition graphs over a 10 frame sliding window. Within the 

1. Get histograms for frame 𝑛 = 1 and 𝑛 + 𝑘, 𝑅𝐺𝐵𝑛 and 𝑅𝐺𝐵𝑛+𝑘  

2. Calculate initial  Δ𝑅𝐺𝐵 = 2 × (𝑅𝐺𝐵𝑛+𝑘 - 𝑅𝐺𝐵𝑛 ) 
3. For frames 𝑛  to ∀𝑛 

a. if 𝑅𝐺𝐵𝑛 >  250 then skip 𝑅𝐺𝐵𝑛  
b. if 𝑅𝐺𝐵𝑛+𝑘 >   𝑅𝐺𝐵𝑛 +  Δ𝑅𝐺𝐵 

i. then mark 𝑛 as start of shot 
ii. Set 𝑛 = 𝑛 + 1 
iii. calculate new   Δ𝑅𝐺𝐵 = 2 × (𝑅𝐺𝐵𝑛+𝑘 - 𝑅𝐺𝐵𝑛 ) 

4. Mark last frame as end of shot 
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10 frames we can identify the types of gradual transition from the shape of the transition graphs. 

The equation for this is given by: 

1.3  𝐸𝐶𝑅𝑛 = max�
𝑋𝑛𝑖𝑛

𝜎𝑛
,
𝑋𝑛−𝑘𝑜𝑢𝑡

𝜎𝑛−𝑘
� (Lienhart, 2001) 

In fade shots the amount of hard edges of objects increases from zero or decreases to zero over 

time. Fade in’s, having increasing visible edges, lead to a positive slopped graph. Fade outs, having 

decreasing visible edges as the shot gradually fades to black, create a negative slopped graph. 

Dissolve shots on the other hand produce a concave hyperbolic graph as the pre-dissolve edges 

dissolve and the post-dissolve edges form. These have been illustrated in Figure 3.5. 

 
Figure 3.5: ECR SHOT DETECTION: A) FADE IN B) DISSOLVE 

The algorithm charts the edge change ratio over the 3 frame sliding window. The sliding 

window allows the computational complexity of the algorithm to only be greater than using the 

original method at the beginning of the process. This is due to the edge count for the first ten 

frames is first calculated and then after that only the 3rd frame is processed for a new edge count 

every operation. The algorithm for the sliding window is given below in Figure 3.6. 
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Figure 3.6:  ECR PSEUDO CODE  

Once shot detection has been performed for both cut and transition shots, using CHD and 

ECR respectively, both techniques are used in shot fusion to provide ancillary confirmation of the 

preciseness of the other shot techniques detection accuracy. The ECR technique picked up both 

types of shot, which we will call 𝐸𝐶𝑅𝑛𝑐𝑢𝑡and 𝐸𝐶𝑅𝑛𝑡𝑟𝑎𝑛𝑠, which represent cut and transition shots 

respectively. The 𝐸𝐶𝑅𝑛𝑐𝑢𝑡 is used as a confirmation on the CHD cut shots, 𝐶𝐻𝐷𝑛 . If it is 

confirmed, then the probability of cut shot is considered high. If not, then the cut shot is 

considered a medium probability of being correct. If there is an 𝐸𝐶𝑅𝑐𝑢𝑡 but no corresponding 

𝐶𝐻𝐷𝑛  cut the probability of a shot is considered low. 

For transition shots,  𝐸𝐶𝑅𝑡𝑟𝑎𝑛𝑠  confirmation of a shot change is given by the first and last 

frame of a transition, 𝐸𝐶𝑅𝑛𝑡𝑟𝑎𝑛𝑠 and 𝐸𝐶𝑅𝑛+𝑘𝑡𝑟𝑎𝑛𝑠 and comparing them against the corresponding 

frames from the CHD process,𝐶𝐻𝐷𝑛 and 𝐶𝐻𝐷𝑛+𝑘to check to see if a shot change has occurred. 

If the histograms of 𝐶𝐻𝐷𝑛 and 𝐶𝐻𝐷𝑛+𝑘 are compared sequentially and a cut shot is found we can 

1. For Frames 𝑛 = 1 to ∀𝑛 
2. Perform Canny edge detection(Canny, 1986) 
3. Then for every frame n + k, where 1 ≤ 𝑘 ≤ 3  

a. Count the number of 𝑃𝑛𝑖𝑛 and 𝑃𝑛+𝑘𝑜𝑢𝑡   pixels. 
b. Dilate the edges and invert the images. 

i. Store dilated & inverted image 𝑛 in 𝐷𝐼𝑛−𝑘𝑜𝑢𝑡  

ii. Store dilated & inverted image 𝑛 + 𝑘 in 𝐷𝐼𝑛𝑖𝑛 
c. Perform bitwise AND operation 

i. For every pixel (i,j) 
1. 𝑛 && 𝑑𝑖𝑛+𝑘 
2. 𝑛 + 𝑘 && 𝑑𝑖𝑛 

d. Count the number of entering and exiting edge 

pixels in the images to obtain 𝑋𝑛𝑖𝑛 and 𝑋𝑛−𝑘𝑜𝑢𝑡  

e. Calculate the 𝐸𝐶𝑅𝑛 = max �𝑋𝑛
𝑖𝑛

𝜎𝑛
, 𝑋𝑛−𝑘

𝑜𝑢𝑡

𝜎𝑛−𝑘
� 

4. Compare edge transition plot to FOI and dissolve patterns 

and see if a gradual transition is present 

5. Increment n by one and repeat step 3 
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deduce that 𝐸𝐶𝑅𝑛𝑡𝑟𝑎𝑛𝑠 and 𝐸𝐶𝑅𝑛+𝑘𝑡𝑟𝑎𝑛𝑠 are the start and finish of a transition shot. The algorithm is 

presented in Figure 3.7. 

 

Figure 3.7: SHOT AMALGAMATION PROCESS PSEUDO CODE  

Using both the modified CHD and ECR implementations significantly improves precision and 

recall of both abrupt and gradual transition shots. The modification of the ECR algorithm makes it 

effective at identifying gradual transition shots and does not need more computational expense 

then the original that compared only two frames. The CHD is reduced in computational efficiency 

by reducing amount of frames processed for the threshold value. The reductions in computational 

expense lower the processing time, which provides a more feasible overall time span for processing 

in MAC-REALM. This is done whilst keeping the shot extraction at a performance level that is 

close to other similar approaches as shown in chapter 4. 

3.3.2.2 Object Extraction 
Object segmentation for video is a two-task process of segmentation and tracking, as described 

in chapter 2. The first task is to segment the foreground objects from the background. The 

segmentation must also be able to differentiate and group multiple objects correctly, even when 

they are overlapping. The second task is to track the object(s) over time as they move. The tracking 

must be consistent and maintain the integrity of the object boundary from the initial segmentation. 

MAC-REALM approaches the two-step problem with a unified two-phase algorithm. In the 

first phase it uses graph cut theory to segment the initial frame, which can segment multiple 

objects. The second phase tracks the objects segmented from the first phase, maintaining the 

integrity of the object silhouette, even if tracking multiple objects.  

1. For ∀𝐶𝐻𝐷𝑛𝑐𝑢𝑡  
a. If 𝐶𝐻𝐷𝑛𝑐𝑢𝑡 = 𝐸𝐶𝑅𝑛𝑐𝑢𝑡 then 𝐶𝑈𝑇𝑝𝑟𝑜𝑏  is high 
b. If 𝐶𝐻𝐷𝑛𝑐𝑢𝑡 != 𝐸𝐶𝑅𝑛𝑐𝑢𝑡 then 𝐶𝑈𝑇𝑝𝑟𝑜𝑏  is average 

2. If 𝐸𝐶𝑅𝑛𝑐𝑢𝑡 !=  𝐶𝐻𝐷𝑛𝑐𝑢𝑡 then 𝐶𝑈𝑇𝑝𝑟𝑜𝑏  is low 

3. For ∀(𝐸𝐶𝑅𝑛𝑡𝑟𝑎𝑛𝑠,𝐸𝐶𝑅𝑛+𝑘𝑡𝑟𝑎𝑛𝑠) 
a. Get 𝐶𝐻𝐷𝑛𝑐𝑢𝑡 and 𝐶𝐻𝐷𝑛+𝑘𝑐𝑢𝑡   

b. If (𝐶𝐻𝐷𝑛𝑐𝑢𝑡,𝐶𝐻𝐷𝑛+𝑘𝑐𝑢𝑡 ) is cut then  
i. Mark 𝐸𝐶𝑅𝑛𝑡𝑟𝑎𝑛𝑠 as start of transition shot 

ii. Mark 𝐸𝐶𝑅𝑛+𝑘𝑡𝑟𝑎𝑛𝑠 as end of transition shot 
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Object extraction, or image segmentation as it is more commonly known, refers to the problem 

of dividing an image into a number of disjoint regions such that the features of each region are 

consistent with each other. Since images generally contain many objects that are further 

surrounded by clutter, it is often not possible to define a unique segmentation. In other words, the 

segmentation problem can be ill posed when working in an unsupervised framework. Interactive 

algorithms allow the user to label a few pixels as either object or background, thereby making the 

segmentation problem well posed. 

Another problem is once the image is segmented, how is it tracked through the shot? As the 

shot moves on from the original frame the objects shape and position will change. The objects 

shape will change for non-rigid bodies as they move, even rigid bodies can change their shape 

through the effect of perspective. The position of objects changes over time. The position can 

change slowly such as an interview or rapidly such as action sequences. The fast change sequences 

poise a problem, as it is hard to find continuity with consecutive frames as the position of the 

object could have drastically altered.  

For these reasons segmenting and then tracking the object in MAC-REALM is treated as a two 

phase problem. The initial phase is the segmenting of frame into background and foreground 

objects. This is followed by the tracking phase, where the region(s) of interest (ROI) are then 

analysed and their features are used as the initial reference point for tracking the object.  

Object extraction in MAC-REALM uses graph theory to segment an image. A graph based 

segmentation approach from (Noma et al., 2012) is used. Graph based image-segmentation is a fast 

and efficient method of generating a set of segments from an image. They supersede old edge-

based approaches as they not only consider local pixel-based features, but also look at global 

similarities within the image. 

Object extraction is performed using a semi-automated procedure that segments based on 

structural pattern recognition to extract objects from their background. The object extraction 

process begins by creating two attributed relational graphs (ARG’s). ARG’s are very useful at not 

only model initialisation but also providing information on image structure. The first graph is an 

over segmented image using a watershed algorithm. The second image is a user defined input 

image that has different coloured stroke marks for different objects and the background. The first 

graph known as the input graph is processed against the second user defined graph, the model 

graph. The model graph is used to prime segmentation by providing and approximation of the 

objects core. From the initial stroke marks the regions are expanded, by merging the 
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interconnected regions based on colour similarities and structural consistency. The background 

strokes are used to grow the background regions in the same manner. Once all regions have been 

assigned to either objects or background the segmentation stops. This method was chosen as it is a 

very fast, and deals with the problem of image clutter by using user feedback to determine the 

initial ROI.   

Once we have identified the region we have to track it across several frames so we can track the 

objects movements and spatial orientation for the duration that they appear. The algorithm 

described for segmentation was conceived for the use with still images. Using the same algorithm 

to segment the rest of the frames in the shot would lead to two problems. The first is the 

continuity of the object outline. The silhouette would become unstable, as the algorithm would 

segment each frame of the shot individually. This would cause the outline to fluctuate as the 

segmentation information from the prior frame is ignored. The second problem would be that the 

stroke marks used in the initial frame could become inaccurate as the shot progresses through the 

frames. What is required is a second algorithm that takes the ROI and tracks the pixels, using the 

information from the previous frame as the starting point for tracking. 

In order to solve the problem of tracking in the second phase we use the region covariance 

technique implemented by (Tuzel, Porikli, & Meer, 2006). The tracking is initialised by extracting 

feature vectors from the ROI’s of the keyframe. From the vectors a covariance matrix is built of 

the feature vectors for the ROI’s of each frame. The covariance matrix is measure of how much 

two variables vary against each other. This is used to track the adjacent pixels next to each other in 

the ROI. The covariance becomes more positive for each pair of values that differ from their mean 

in the same direction, and becomes more negative with each pair of values that differ from their 

mean in opposite directions. The covariance descriptor method can use any set of features 

(intensity, colour, gradients, filter response). For MAC-REALM, colour and intensity has been 

chosen for the covariance descriptors. These were selected as they are convenient features to 

extract as the colour histogram extraction algorithm used to provide the colour histograms can be 

used, and with a small modification can also be used to extract intensity image as an alpha value.  

The tracking algorithm is suitable for MAC-REALM as it has many advantages over other 

techniques:  

a) It is robust against lighting changes and moving camera motion  

b) It can track non-rigid bodies as they change  
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c) It can track fast moving object even if there is a large gap in position since the last 

consecutive frame  

d) The algorithm is very fast at computing covariance as it uses integral images which are 

intermediate image representations used for fast calculation of region sums. 

Using a two phase approach to segmenting and tracking the objects makes the overall result 

more precise, robust and fast then just using a single technique. The image segmentation phase 

segments the initial keyframe into ROI’s in a fast and precise manner. The user defined strokes 

eliminate the confusion of image clutter and provide a template for the region growing algorithm. 

Once the keyframe is segmented into ROI’s the tracking algorithm then tracks them through 

covariance matrices of extracted feature vectors of the ROI’s. The result is that objects can be 

reliably segmented and then tracked with minimal input from the user. It can handle multiple 

objects and objects that are similar in size and colour.  

3.3.2.3 Scene Extraction 
Scene segmentation clusters shots together into semantically themed scenes. Syntactic queues 

that identify the scene boundaries are hard to identify as different cinematography is applied to 

different genres and even between different film makers. Within genres and specific footage, rules 

can be produced for identifying scene boundaries with a high level of precision and recall (see 

section 1.3.2.3 Semantic Temporal Segmentation). However, these rules are limited to their own 

genre and cannot be applied universally. What is required is an algorithm that can formulate rules 

for any video clip that is supplied.  

MAC-REALM uses a Genetic Programming (GP) approach based on work from (Marios C. 

Angelides & Lo, 2005) that evolves rules from a set of pre-defined features that are good indicators 

of scene boundaries in general film production. MAC-REALM has improved upon this by 

selecting different features which are better indicators and that also reduce the computational 

expense of processing the footage to formulate the rules. As shown in chapter 4 this approach 

gives higher precision in identifying scene boundaries, whilst reducing processing time overall for 

MAC-REALM.  

The scene boundary detection is a semi-automatic process that detects boundaries by using a 

trained GP algorithm that identifies low level feature combinations that identifies scene 

boundaries. Due to scene boundaries having a semantic definition, the boundary must be 

perceived semantically. This means a user must train the GP with a small video clip of pre-
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identified scene boundaries. The GP then formulates rules that identify certain feature sets, i.e. 

histogram difference, object number, shot transition type and shot duration that identify the scene 

boundaries. It uses a fitness function based on how well the rule correctly identifies scene 

boundaries from the training clip. Input for scene extraction is sourced from both shot and object 

extraction processed, as well as the content layer. The shot duration and transition type is sourced 

from shot extraction, whilst the number of objects present in a shot is sourced from the object 

extraction engine. The histogram values are sourced from the content layer via the shot extraction 

engine. 

In the original work the features that were used to create the rules were multimodal i.e.  2 video 

features and 2 audio features. MAC-REALM has instead used four video features, and foregone 

the audio features. This has been done for two reasons. The first is that although audio features are 

a good indicator of scene change, they are only as good as the analysis of the features extracted. 

Voice recognition has to be used, as well as other audio recognition algorithms, as a scene change 

is usually indicated by a change in actors or environments. In the original work they used speech 

and audio breaks to formulate the rules. Although these are adequate, they in themselves do not 

provide accuracy to the start of a scene. In MAC-REALM they have replaced them with video 

features that correlate more strongly with a scene change and therefore give a higher degree of 

accuracy of rules evolved that will identify a scene boundary. The second is that it reduces 

computational complexity and therefore allows processing time to be kept to a minimum. All the 

features used by MAC-REALM to create the rules have already been extracted during the previous 

processes. 

The two new video features that replace the audio features are the number of objects in the 

shot and the global histogram difference of the shot. These two features are a very good indicator 

of a scene change. The number of objects in a shot are a good indicator to the start of a scene as 

they usually have a low or fixed number for the establishing shot of the scene. The histogram 

difference can provide a good measurement for a scene change as the colour distribution for shots 

belonging to the same scene are more similar to each other than the colour distribution from a 

shot from another scene. These two new features are a better indicator of scene change than audio 

breaks. So the feature set to be used as the main parameters of the GP algorithm includes: 

• Shot Duration – the length of a shot in seconds till the start of the next shot, 
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• Histogram difference – the change in the mean histogram values of the RGB values of the first 

frame of a shot to a specified preceding/subsequent shot, 

• Transition Effect – what transition effect there is between the shot, gradual or cut transitions, and 

• Number of Objects – how many identified objects are there in the shot. 

The low level features described have already been automatically extracted during earlier stages 

of feature extraction. The shot duration, histogram difference and transition effect are sourced 

from the shot extraction stage, whilst the object extraction stage provides the number of objects. 

The goal of the GP algorithm is to discover rules that determine scene boundaries (shot 

detection and feature extraction are not included). The GP algorithm takes as input a series of 

shots S1, S2, … SN, and their corresponding features. The choice of features directly affects the 

result. If not enough features are selected, an optimal rule may never evolve (rules evolve by 

reproduction, crossover and mutation). On the other hand, if there are too many features, the 

search space will become inoperably large and seriously affect the processing time of the system. 

We attribute the following five features with each shot: transitional effect, number of objects, shot 

duration and histogram difference. 

There are two types of transitional effects: abrupt change (cut) and gradual change (dissolve, 

fade and wipe). We look at the number of objects in the starting frame of a shot and count how 

many, if any, objects there are. Shot duration is measured using the W3C time code from the ISO 

8601 Standard (Wolf & Wicksteed, 1998). With respect to the histogram difference, two key frames 

are extracted from each shot. The first one is extracted from the beginning of the shot and the 

second one from the end. The first key frame’s colour histogram difference with the second key 

frame from the previous shot is computed using the same formula as the one used in shot 

boundary detection.  

THE TREE ROOT MUST BE EITHER AND OR OR 

THE LEFT CHILD OF A TE, HD, SD OR NO MUST BE A SP 

THE MIDDLE CHILD OF A TE OR NO MUST BE AN OPS1 

THE MIDDLE CHILD OF A HD OR SD MUST BE AN OPS2 

THE RIGHT CHILD OF A TE OR NO MUST BE A BV 

THE RIGHT CHILD OF A HD OR SD MUST BE A PI 

Figure 3.8: FORMAL SYMBOL SYNTAX 
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The function set of the algorithm can be defined as F =  {SD, HD, TE, NO, AND, OR}, Where 

SD, HD, TE, NO are the four features; Shot duration, Histogram difference, Transition effect, 

Number of Objects and AND, OR are Boolean operators. The terminal sets comprise of T =

 {sp, bv, pi, op1, op2}, where  sp =  {A, B, C, D, E }is the position of the shot to be compared 

against the current shot (C), bv =  {true, false}, pi is a positive integer in the range of 1 – 126789, 

op1 =  {=,≠} for Boolean operations and op2 =  {<,≥} for arithmetic operations. The formal 

symbol syntax is shown in Figure 3.8. 

The Scene boundary rules use the grammar provided by reverse polish notation (Visser, 2011). 

This is convenient because as a last-in-first-out (LIFO) stack is used implementing the stackbuffer 

method in java. It also makes calculations much more efficient by reducing the complexity of the 

calculations as all brackets and parentheses are eliminated. 

An example of a scene boundary rule is provided in Figure 3.9. For simplification reasons only 

two features are present in this particular example, where transition effect and shot duration are 

assigned the identifiers a and b respectively.  

 

Figure 3.9: EXAMPLE OF A SCENE BOUNDARY RULE 

Computation starts with evaluating the rule against each of the shots. We ignore shot 1 because 

it does not have a preceding shot, hence making the = operator incomputable. Starting from shot 

2, the = operator on the right returns TRUE because shot 2 has a gradual transitional effect. The   

operator on the left also returns TRUE because shot 1 has a duration of 120 frames. The final 

result of the rule is TRUE because TRUE AND TRUE = TRUE. Similarly, the result for shot 3, 
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4, 5, 6, 7 and 8 are FALSE, FALSE, TRUE, TRUE, FALSE and FALSE respectively (see Table 

3.1). 

SHOT RESULT SHOT RESULT 

2 TRUE (CORRECT) 6 TRUE (CORRECT) 

3 FALSE (CORRECT) 7 FALSE (CORRECT) 

4 FALSE (WRONG) 8 FALSE (WRONG) 

5 TRUE (WRONG)   

Table 3.1 : THE RESULT OF THE RULE ON EACH SHOT 

The result is correct for shot 2, 3 6 and 7. Using the fitness function, to calculate:   

1.4  𝑓 =
4
7

= 0.57  

After finalising the syntax for the rules, the initial population has to be created to evolve the 

rules from. The initial population of rules are grown using three different GP strategies. These 

increase the diversity of the rules and helps evolve more varied and healthier children that are more 

resistant to convergence of the population. There are three popular generative methods in classic 

GP: full, grow and ramped half-and-half (Torres et al., 2009). The full generative method creates a 

population with full trees (the left tree in Figure 3.10). The grow method; on the other hand, 

generate the initial population with trees that are variably shaped (the right tree in Figure 3.10).  

 

Figure 3.10: TREES GENERATED BY FULL AND GROW METHOD (MARIOS C ANGELIDES & KEVIN LO, 2005) 

The ramped half-and-half generative method is a combination of the full method and the grow 

method. The ramped half and half method has a depth limit of five to achieve a reasonable level of 

diversity. Half of the trees are generated by the full method and half of the tress are created by the 

grow method. 
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After the rules have been generated, they need to be assessed to see which are better at identifying 

scene boundaries then others. A fitness function is used that identifies the rules that are more 

proficient at finding scene boundaries. The fitness function is given by the equation: 

1.5  𝑓 =
𝑁𝑐
𝑁𝑡

 
(Marios C Angelides & Kevin Lo, 2005) 

Nc is the number of correctly identified scene boundaries, and Nt is the total number of shots.  

The fitness function gives a score between 0 and 1, with 1 representing the optimal solution. The 

fitness function evaluates the quality of a rule, i.e. the rule’s performance in determining scene 

boundaries. What follows is an example that shows how a fitness value is calculated. The example 

works on the testing data in Table 3.2. 

 SCENE BOUNDARY TRANSITION EFFECT SHOT DURATION 

SHOT 1 NO FALSE 120 

SHOT 2 YES TRUE 80 

SHOT 3 NO FALSE 220 

SHOT 4 YES FALSE 140 

SHOT 5 NO TRUE 200 

SHOT 6 YES TRUE 800 

SHOT 7 NO FALSE 10 

SHOT 8 YES TRUE 200 

Table 3.2 : AN EXAMPLE WITH EIGHT SHOTS AND THEIR CORRESPONDING SET OF FEATURES (MARIOS C ANGELIDES & KEVIN LO, 2005) 

Once the fitness of all the rules is assessed a new generation of rules is created that are better 

adapted to identifying scene boundaries. These rules must carry over the best traits from the 

existing rules for producing better ones in the next evolution. MAC-REALM uses a method of 

cloning, mutation, crossover and introducing new rules to facilitate this. To begin with the top 

10% are copied over to the next generation, whilst the bottom 70% are discarded. The top 30% 

are mutated to provide new rules. The top 30% are then used in a crossover operation to provide 

another set of new rules. The last 30% of rules are generated using the same methods as the initial 

population. This technique of creating new generations allow the properties of the best rules to be 

favoured in the next cycle of evolution whilst making sure that the population stays diverse enough 

to stop convergence. Ensuring that suitable divergence is assured is paramount, or the algorithm 

could converge to early on a less than optimal solution.  

The algorithm is iterative and will stop either when an optimal rule is obtained (i.e. the fitness 

value fo the rule matches the target fitness value) or the maximum pre-determined number of 

generations is reached. The optimal rules fitness value limit has been set at a minimum of 95%. 
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The maximum number of generations that will be generated is set at 300. Table 3.3 lists the key 

steps of the GP scene boundary detection algorithm: 

 

STEP INSTRUCTION 

1 GENERATION = 0 

2 CREATE INITIAL POPULATION WITH SIZE P 

3 APPLY FITNESS FUNCTION TO EVALUATE THE FITNESS VALUE OF EACH RULE 

4 SORT THE RULES ACCORDING TO THEIR FITNESS VALUE IN DESCENDING ORDER 

5 IF TERMINATION CRITERION MET (BEST FITNESS VALUE > 0.95 OR GENERATION >  MAX 
GENERATION K), OUTPUT THE BEST RULE AND EXIT. ELSE GO TO STEP 6 

6 THE WORST FIT RULES (THE WORST 70%) ARE DISCARDED 

7 GENERATION = GENERATION + 1 

8 PERFORM REPRODUCTION OPERATION (TOP 10%) 

9 PERFORM CROSSOVER OPERATION (TOP 30%) 

10 PERFORM MUTATION OPERATION (TOP 30%) 

11 CREATE NEW RULES (30%) 

12 GO TO STEP 3 UNLESS A) GENERATIONS = 300 B) A RULE HAS 95% FITNESS SCORE 

13 END 

Table 3.3 : MAJOR STEPS OF THE GP SCENE BOUNDARY  DETECTION ALGORITHM (MARIOS C ANGELIDES & KEVIN LO, 2005) 

The GP scene boundary detection algorithm is a suitable in MAC-REALM as it is good at 

detecting the scene boundaries of generic video clips. Most scene boundary detection algorithms 

are limited to certain domains as they apply rules that are specific to a genre (see section 1.3.2.3). 

The GP algorithm is suitable for generic footage as it builds the rule explicitly for any footage that 

has a clip of video data where the scene boundaries are identified. The algorithm formulates the 

rule as feature vectors based around video features that are good indicators of scene boundaries 

regardless of the domain or content. As the rules are judged on a fitness function that uses the 

training data as ground truth, a rule can be generated that takes into account the abstract semantic 

nature of the scene boundary. This makes the scene boundaries identified very close to the 

semantic perspective of users.  

3.3.3 Syntactic Modelling 

Once the shots, objects and scenes have been extracted they need to be modelled into MPEG-7 

syntactic content descriptions. There are a myriad of ways to describe content in MPEG-7, and 

these can be used to model the same features but in a different manner to facilitate different 

functionality or use. MPEG-7 also allows customised descriptions that can be created for a 

particular purpose within the target application.  
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Within MAC-REALM, we use standard pre-defined MPEG-7 syntactic content descriptions to 

describe the features. This makes the content descriptions accessible to all MPEG-7 applications, 

as there is no ambiguity that can be associated with customised schemes written for a specific 

profile or application. The selection of the descriptions schemes has been based on two criteria a) 

the ability to describe the feature comprehensively and concisely and b) the ability to interlink the 

DS’s together into a multi-faceted description structure. 

Modelling the syntactic extracted features into MPEG-7 is done in two parts. We model the 

scenes and shots together as one feature set as they both share exactly the same attributes as lower 

level features. They are only distinct on a semantic level.  

Objects have temporal characteristics but also have spatial attributes and are modelled 

separately in MPEG-7. Their temporal attributes are used as a referencing mechanism associated 

with the scenes and shots they exist in, and these are used as their reference id’s. 

3.3.3.1 Scene and shot descriptions 
For describing the scenes and shots, the VideoSegment DS is used. Scenes and shots are 

similar as they have the same physical attributes i.e. Start time and duration, so temporally they are 

integrated in the modelling process. Scenes are described using the VideoSegment DS and are 

given an ID to uniquely identify them. The physical location of the media is defined by the 

MediaLocator DS and can locate media from either a local or remote source using the MediaUri D. 

The physical media is then given a unique id using the Video DS tag. 

Scenes are created using the VideoSegmentTemporalDecompositionType DS to segment the 

scenes temporally. A scene is embedded into the root of the Video DS using the 

VideoSegmentTemporalDecompositionType DS. Using the MediaTime DS within the 

VideoSegment DS, the start of the scenes is stated by its timestamp and its duration using the 

MediaTimepoint D and MediaDuration D respectively. A unique id is given to the scene in the 

VideoSegment DS. After the scene has been described the shots that comprise the scene are 

contained within the AnalyticEditingTemporalDecomposition DS. The DS describes a temporal 

decomposition of the segment into one or more sub-segments that correspond to shots or global 

transitions. The shots are listed in the scene description using the Shot DS and GlobalTransition 

DS.  The  GlobalTransition DS and Shot DS come in pairs with the GlobalTransition DS 

appearing before the Shot DS it is describing. The GlobalTransition DS describes the edit of the 

shot boundary, i.e whether it is a cut or a transition.  The GlobalTransition DS has an 

“evolutionReliability” attribute that shows the confidence in the transition state. The 
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EvolutionType CS is a classification scheme that identifies what type of transition is described in 

the Shot DS. The Shot DS contains an “id” attribute that contains the unique identifier of the shot. 

 

 
Figure 3.11: EXAMPLE OF DESCRIPTION OF SCENES & SHOTS USING MPEG-7 

For video segment identification using the histogram values extracted in the shot extraction 

process the VisualDescriptor DS is used. The type of the VisualDescriptor DS is set to 

“GoFGoPColorType“, which aggregates the colour distribution across a number of frames in a 

shot. Then the ScalableColorDescriptor DS is used to model the colour distribution. This can then 

be used to locate shot segments based on cinematography (e.g. a search for a warm toned scene or 

shots) or query-by-example (e.g. basing a search on histogram values from an image). An example 

of a snippet of the MPEG-7 descriptions for scenes and shots is given in Figure 3.11 

 

<VideoSegmentTemporalDecomposition> 
 <VideoSegment id = "AVP-SCENE-1"> 
  <MediaTime> 
   <MediaTimepoint>36.36</MediaTimepoint> 
   <MediaDuration>80.72</MediaDuration> 
  </MediaTime> 
  <AnalyticEditingTemporalDecomposition> 
   <GlobalTransition evolutionReliability="false"> 
    <MediaTime> 
     <MediaTimepoint>36.36</MediaTimepoint> 
    </MediaTime> 
    <EvolutionType ref="urn:mpeg7:cs:EvolutionTypeCS:2001:Cut"/> 
   </GlobalTransition> 
   <Shot id = "AVP-SCENE-1-SHOT-29"> 
    <MediaTime> 
     <MediaTimepoint>36.36</MediaTimepoint> 
     <MediaDuration>6.3600006</MediaDuration> 
    </MediaTime> 
    <VisualDescriptorxsi:type="GoFGoPColorType" 
aggregation="Intersection"> 
     <ScalableColornumOfCoeff="16" 
numOfBitplanesDiscarded="0"> 
      <Coeff>264712</Coeff> 
     </ScalableColor> 
    </VisualDescriptor> 
   </Shot> 
<GlobalTransition evolutionReliability="false"> 
<MediaTime> 
 <MediaTimepoint>42.72</MediaTimepoint> 
                               </MediaTime> 
 <EvolutionType ref="urn:mpeg7:cs:EvolutionTypeCS:2001:Cut"/> 
 </GlobalTransition> 
 <Shot id = "AVP-SCENE-1-SHOT-30"> 
 <MediaTime> 
<MediaTimepoint>42.72</MediaTimepoint> 
 <MediaDuration>3.5999985</MediaDuration> 
 </MediaTime> 
 <VisualDescriptor xsi:type="GoFGoPColorType" aggregation="Intersection"> 
 <ScalableColor numOfCoeff="16" numOfBitplanesDiscarded="0"> 
 <Coeff>463375</Coeff> 
 </ScalableColor> 
 </VisualDescriptor> 
 </Shot> 
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3.3.3.2 Object representation 
Objects are described by modelling them using the MovingRegion DS tool. A unique id is 

given to the object using the attribute tag in the MovingRegion DS. The id tag for the object 

references’ what scene (e.g. AVP-SCENE-0), shot (e.g. SHOT-25), and frame number (e.g. 711), 

the object appears in, as well as the number of the object in relation to other objects in the frame 

(e.g. OBJECT-1). The frame number is added due to the fact that an object may not appear in a 

shot in the first frame. 

  
Figure 3.12: EXAMPLE OF OBJECT DESCRIPTION USING MPEG-7 

The object boundary that was extracted during the object extraction process is referenced by 

the Mask DS. The Mask DS is typecast to “SpatialMaskType”. The SpatialMask D describes a 

mask in 2-D space. The SpatialMask D is used by the MovingRegion DS to describe the boundary 

of a region within the video frame using a polygon. The spatial mask type is comprised of an 

unbounded set of subregions using the SubRegion D, where each sub-region is described using the 

Polygon D. The Polygon D demarcates the silhoulette of the object as Cartesian coordinates using 

the Coords D. The first row of Coords D references the x coordinates and the second the y 

coordinates. An example of MPEG-7 object descriptions is given in Figure 3.12. 

3.4 Analysis and Linkage plane 

The analysis and linkage plane consists of three layers, the first is the semantic media layer, 

which is the content layer for this plane and contains the shots, objects and scenes that have been 

extracted from the extraction plane. The second layer is the spatiotemporal mapping layer, which is 

the application layer of the plane. Here the semantic media is analysed and the feature vectors 

processed and their semantic relationships created and linked. The spatial relationships are 

calculated for the objects, relative to both other objects and their global position in the frame. The 

temporal relationships are then processed for all the syntactic and semantic feature vectors. Once 

<MovingRegion id = "AVP-SCENE-0-SHOT-25-OBJECT-1-711"> 
    <Mask xsi:type = "SpatialMaskType"> 
       <SubRegion> 
          <Polygon> 
              <Coords mpeg7:dim="2:5">191 290 153 154 155 156 157 158 159 160 161 
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 199 221 
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 
267 268 269 270 276 277 278 279 286 287 288 289 290 292 293 312 313 314 315 316 320 321 
322 323 324 325 ....</Coords>                <Coords mpeg7:dim="2:5">35 35 36 
36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 
36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 
36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 
36 36 36 36 36 36 36 36 36 36 36 37 37 37 37 37 37 38 38 38 38 38 38 38 38 38  
          <Polygon> 
       </SubRegion> 
    </Mask> 
</MovingRegion> 
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all temporal and spatial relationships are created they are converted into MPEG-7 Semantic 

descriptions using the Semantic Graph DS to provide the linking mechanism between the 

relationships between all the features.  

3.4.1 Semantic Media 

In this layer, the semantic media is parsed into java data structures that represent the shots, 

objects and scenes that were extracted from the previous phase. The scenes and shots are 

represented by timestamps, whereas the objects are represented as Cartesian coordinates in 2D 

space with timestamps as their reference id. 

3.4.2 Spatial and Temporal Mapping 

In chapter 1 the importance of semantic relationships to content modelling was identified as a 

major feature that should be explicitly defined in all content models. The relationships between 

features are the “glue” of a content model and helps contextualise the interactions between 

features that is all important in semantic or multi-content type querying. Spatial and temporal 

relationships fulfil two of these criteria that is related to the “Where and When”. Spatial 

relationships deal with the question of “where”, by stating the position of objects to their position, 

globally and with relation to each other. The “when” deals with the temporal relationships of all 

the features, both syntactic and semantic, and their chronological ordering in relation to each other. 

There are two distinct processes within the spatiotemporal mapping section; 1) Spatial 

relationships and 2) Temporal relationships. The first semantic relationship to be defined is the 

spatial relationship mapping of objects. This is followed by the temporal relationship mapping of 

the shots, scenes, objects and spatial relationships.  

The rest of this section describes the processes for mapping of spatial relationships, both 

absolute and relative. This section is then followed by how the temporal relationships are 

formulated between scenes, shots and objects.  

3.4.2.1 Spatial relationships 
Spatial relationships are a problem within content modelling as they are not explicitly modelled. 

Indeed, from the literature review in chapter 1 it can be seen that it is left to the target application 

to calculate the relationships in any manner they see fit. Having spatial relationships to be 

arbitrarily defined can lead to the problem of ambiguity, as the method to calculate the position of 

objects varies between systems. This can lead to different applications giving different spatial 

relationships for the same content, which can lead to inaccurate query results. 
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The implementation requirements stated that the spatial relationships needed to be explicitly 

modelled into content descriptions. The explicitly stated spatial relationships need to fulfil two 

criteria:  

a) They need to calculate the reference point for the centre of the object in a consistent and 

natural manner that makes the resulting measurements logical and intuitive in relation to queries  

b) Relationships must be given for both the global positions of the individual objects and also 

for the relative positions of the objects to each other, stating their inverse relationships as well. 

MAC-REALM uses a centroid algorithm that can work out the centre of an irregular shaped 

lamina, and then calculates the absolute and relative positions of the object using standard 

techniques.  

The modelling of the spatial relationships begins with finding the centroid of the object(s). The 

centroid of the object is used as the reference point to measure the position of the objects. To find 

the centroid of an object the boundary of the object must be defined. The object silhouettes are 

retrieved from the semantic media module and are used as the object boundaries.  They are 

analysed frame-by-frame, with each objects edge boundary used as the Cartesian coordinates as the 

input for the centroid algorithm.  

The spatial relationships are defined within two classification types; 1) absolute and 2) relative. 

Absolute spatial relationships are stated using the points of the compass, as stated Table 1.3, and 

are precise about location in terms of description. This is used for objects independently and gives 

a spatial orientation that is dependent on its global orientation within the frame. Relative spatial 

relationships are stated in terms of the objects position in relation with another object. Examples 

of this are object 1 is above object 2 and object 1 is on the right of the screen. 

Absolute spatial relationships 

To calculate absolute spatial relationships we split the screen according to the visual 

composition rule known as the “rule of thirds” (L. Liu, Chen, Wolf, & Cohen-Or, 2010). The 

screen is split into 9 different sections and forms a 3x3 matrix. Each position in the matrix has an 

absolute spatial relationship attached to it depending on its absolute spatial orientation within the 

matrix 𝑃, such that: 
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Eq. (3.11)  𝑃(𝑖,𝑗) = �
𝑁𝑊 𝑁 𝑁𝐸
𝑊 𝐶 𝐸
𝑆𝑊 𝑆 𝑆𝐸

� 
 

The absolute position of an object is given by the placement of the centroid within the matrices 

boundary. If the object is in the middle of the matrix it’s position is given as “centre”.  

Relative spatial relationships 

 To calculate the relative spatial relationships of objects two methods for different cases are 

employed; 1) generalised position and 2) relative to another object. In the first case two matrices 

are used, one for vertical positions and the other for horizontal positions. This is done to capture 

the spatial relationship of an object in both planes. An object is only counted as having a single 

position (in one plane) when it is in a central position, or “neutral position in the other. Where 

both sets 𝑉 and 𝐻 are 3x3 matrices and have members: 

Eq. (3.12) 

 𝑉(𝑖,𝑗) = �
𝑇 𝑇 𝑇
0 0 0
𝐵 𝐵 𝐵

�  

 𝐻(𝑖,𝑗) = �
𝐿 0 𝑅
𝐿 0 𝑅
𝐿 0 𝑅

�  

 

Where 𝑇 = 𝑡𝑜𝑝,𝐵 = 𝑏𝑜𝑡𝑡𝑜𝑚, 𝐿 = 𝑙𝑒𝑓𝑡  and  𝑅 = 𝑟𝑖𝑔ℎ𝑡. The combined relative position in 

both planes can be calculated  by adding the two matrices together as can be seen in equation 3.13. 

There is no “centred” position within the relative spatial positions as there is no relative centre as 

the both objects positions are arbitrary.  

Eq. (3.13)  (𝑉 + 𝐻)(𝑖,𝑗) = �
𝑇𝐿 𝑇 𝑇𝑅
𝐿 0 𝑅
𝐵𝐿 𝐵 𝐵𝑅

�  

For the relative positioning between two objects, from object A to object B, the cardinal point 

positions of one object from another are taken in degrees. North is taken to be 𝜃 = (0°, 360°). 

For any cardinal point, any 22.5°  angled section from that point, both clockwise and anti-

clockwise, can be considered as having the same bearing as  that cardinal point. Each cardinal point 

is given the same 45° segment around its point. The half cardinal points are given to the 

boundaries of each main segment. This arrangement gives the best mapping cognitively to what 
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users perceive when thy think of direction. Therefore the cardinal point sections are represented 

by: 

Eq. (3.14) 
𝐵 =

⎝

⎜
⎜
⎜
⎜
⎛

315° < 45° = 𝑁
45° = 𝑁𝐸

45° ≤ 135° = 𝐸
135° = 𝑆𝐸

135° ≤ 225° = 𝑆
225° = 𝑆𝑊

225° ≤ 315° = 𝑊
315° = 𝑆𝑊⎠

⎟
⎟
⎟
⎟
⎞

 

 

 

 The inverse bearing is given by: 

Eq. (3.15) 𝐵𝑖𝑛𝑣𝑒𝑟𝑠𝑒 = �𝑖𝑓  𝐵 ≤ 180° ∴ 𝐵 + 180°
𝑖𝑓  𝐵 > 180° ∴ 𝐵 − 180°�  

 

3.4.2.2 Temporal relationships 
In chapter 1 it was discussed that temporal relationships are one of the most important content 

features that can be queried, as most searches in video will have an element of when an event 

happens or object appears. As with spatial relationships it has been shown that temporal 

relationships are not explicitly stated but are modelled as a post-process to query input. Without an 

explicit structure interlinking the events and objects the risk of “content discovery”, the ability to 

discover new features and concepts that might be of interest but were not inferred in the original 

query, are limited. 

Temporal relationships are important as they provide an all-important linking mechanism 

between syntactic and semantic features. This allows a much more integrated approach to content 

discovery that makes connections between the physical structure of the video and the meaning of 

the content. 
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MAC-REALM explicit media structure enables temporal relationships between syntactic 

features (scenes, shots and objects) to be determined through a partial temporal ordering of these 

entities. A partial ordering < can be defined on a set of features as follows:  

Eq. (3.16) 
[𝑖1, 𝑗1] <  [𝑖2, 𝑗2]   

𝑖𝑓 𝑖1 ≤  𝑖2  ∴  𝑗1 ≤  𝑗2   

 

Where 𝑖1 =   start of syntactic features  and 𝑖2 =   end of syntactic features  thus syntactic 

features can be ordered according to each associated features i value such that the feature denoted 

by [𝑖1, 𝑗1]  precedes the feature denoted by [𝑖2, 𝑗2]. Partial ordering enables MAC-REALM to 

determine which content features occur before or after which other content features and which 

intersect or occur simultaneously ('simultaneously" is defined as [𝑖1, 𝑗1] ⊆  [𝑖2, 𝑗2]). ). For example, 

once partially ordered, to determine if a syntactic feature, A, occurs before or after a given group of 

syntactic features, B, the i value of A is compared to the i value of the first syntactic feature within 

B. If it is smaller, then A occurs before B. However, if the j value of A is greater than the j value of 

the last syntactic feature within B, then A occurs afterwards. Similarly two syntactic features, 

𝑆1 = [𝑖1, 𝑗1]  and  𝑆2 = [𝑖2, 𝑗2]  , can be compared to determine if they intersect, which will be in 

one of five ways; (1)  𝑖1 =  𝑖2 and 𝑗1 <  𝑗2, (2)  𝑖1 <  𝑖2 and 𝑗1 =  𝑗2, (3)  𝑖1 <  𝑖2 and 𝑗1 <  𝑗2, (4) 

 𝑖1 =  𝑖2 and 𝑗1 =  𝑗2 and (5)  𝑖1 <  𝑖2 and 𝑗1 >  𝑗2 . With these temporal ordering rules, it is 

possible during querying to, for example, determine the next group of syntactic features within a 

given set of syntactic features that occur simultaneously. This takes place as follows. Once all the 

time stamps for the start and finish of each syntactic feature is collected, those constituent syntactic 

features that occur within a specific parent syntactic feature would be partially ordered. The next 

group of syntactic features is determined by taking the first syntactic feature and then adding to the 

group those syntactic features whose j values are not greater than the j value of the first syntactic 

feature. These syntactic features are thus those that occur simultaneously with the first syntactic 

feature. 

3.4.3 Semantic Modelling 

The semantic relationships produced during the content analysis and linkage phase need to be 

referenced in order to show not just the relationships between the spatial and temporal 

relationships of the low level features (i.e. scenes, shots and objects), but also the temporal 
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relationships of the spatial relationships between themselves and the low level features. Using the 

SemanticDescriptionType DS a referencing system can be constructed that allows for the 

flexibility and grammar needed to achieve such a referencing system, and also use MPEG-7 

classification schemes to define the relationships between entities. Using the node graph structure 

allows both syntactic and semantic features to be named in a manner that is independent of their 

abstract type and attributes, and thus makes stating the relationships between features of 

heterogeneous origin uniform and standard. 

 

 
Figure 3.13: EXAMPLE OF LOW AND HIGH LEVEL FEATURES BEING REFERENCED IN MPEG-7 

Using the SemanticDescriptionType DS a referencing system is created using the Graph DS. 

The Graph DS describes language-independent terms for use in multimedia descriptions and 

schemes for classifying a domain using a set of such terms. The ClassificationScheme DS describes 

a vocabulary for classifying a subject area as a set of terms organized into a hierarchy. A term 

defined in a classification scheme is used in a description with the TermUse or ControlledTermUse 

datatypes. 

In the instance of referencing all low and high level features with a homogenous referencing 

system, the Graph DS allows us to create nodes that identify each feature set using the Node D 

tool. This tool allows us to assign a unique id tag to all low level and high level features that is 

<Description xsi:type = "SemanticDescriptionType"> 
     <Semantics> 
           <Labels> 
               <Name>Nodes for Temporal/Spatial Relationships</Name> 
           </Labels> 
           <Graph> 
               <Node id = "SC1" href="AVP-SCENE-1"/> 
               <Node id = "SC2" href="AVP-SCENE-2"/> 
               <Node id = "SC3" href="AVP-SCENE-3"/> 
               <Node id = "SH1" href="AVP-SCENE-0-SHOT-0"/> 
               <Node id = "SH2" href="AVP-SCENE-0-SHOT-1"/> 
                ................ 
               <Node id = "SH28" href="AVP-SCENE-0-SHOT-27"/> 
               <Node id = "SH29" href="AVP-SCENE-1-SHOT-28"/> 
               <Node id = "SH30" href="AVP-SCENE-1-SHOT-29"/> 
               <Node id = "SH31" href="AVP-SCENE-1-SHOT-30"/> 
                ....................... 
               <Node id = "OB1" href="AVP-SCENE-0-SHOT-0-OBJECT-1-13"/> 
               <Node id = "OB2" href="AVP-SCENE-0-SHOT-1-OBJECT-1-41"/> 
               <Node id = "OB3" href="AVP-SCENE-0-SHOT-2-OBJECT-1-51"/> 
               <Node id = "OB4" href="AVP-SCENE-0-SHOT-3-OBJECT-1-73"/> 
                .......... 
               <Node id = "SR1" href="AVP-SCENE-0-SHOT-10-OBJECT-1-160"/> 
               <Node id = "SR2" href="AVP-SCENE-0-SHOT-12-OBJECT-1-182"/> 
               <Node id = "SR3" href="AVP-SCENE-0-SHOT-13-OBJECT-1-213"/> 
               <Node id = "SR4" href="AVP-SCENE-0-SHOT-14-OBJECT-1-270"/> 
                   /  
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related to the temporal instance of that feature. This keeps complexity to a minimum by not over 

complicating the linking mechanism when a relationship between a high level and low level feature 

is described. The low level features are referenced using their id tag from their original feature 

description. In the case of the spatial relationships the id tag from their original feature of the first 

object is used. This is done because it is known that for the spatial relationships only need a time 

reference point to be identified with, as the spatial relationship will be compared in terms of its 

temporal relationship to other features. The spatial relationship is linked to the other objects in the 

spatial relationship graph presented later. An example of scenes being modelled into nodes is given 

in Figure 3.13. 

3.4.3.1 Spatial relationships 
The spatial relations are modelled using the SpatialRelation CS, which defines all the spatial 

relationships that are describable in MPEG-7. Typecasting the Description DS to 

“SemanticDescriptionType” allows for the description of the spatial relationships between objects. 

Using the Semantics DS, objects are stated and the the spatial relationships described between 

them. The spatial relations graph is labelled using the Label DS within this element. The Graph DS 

is then used to describe the spatial relationships between those objects. The Relation DS is used to 

describe the spatial relationship between two objects. The spatial relationship is stated using the 

SpatialRelation CS, which defines the relationship in terms of a source node applied to a target 

node. The node structuring allows for a flexible and clearer way of describing relationships then if 

stating them directly. An example of MPEG-7 SpatialRelationship CS is given in Figure 3.14 that 

shows the relative spatial relationships between objects. 
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Figure 3.14: EXAMPLE OF SPATIALRELATIONSHIP  CS IN MPEG-7 

3.4.3.2 Temporal Relationships 
Temporal relationships are modelled in much the same manner as spatial. Once again we 

typecast the Description DS to “SemanticDescriptionType” to indicate the following graph is 

describing high level features (i.e. semantic content). The graph is labelled using the Label DS to 

identify it as a temporal relationship graph.  In a similar manner as before the Relation D within 

the Graph DS is used to describe the relationships. The difference is that now the MPEG-7 

TemporalRelation CS is used to typecast the graph as containing temporal relationships. Using the 

aforementioned referencing system the temporal relationships are described between both 

homogeneous and heterogeneous content type feature sets. In Figure 3.16 an example of the  

variety of different types of temporal relationship is shown between homogeneous content type 

feature sets. The nodes in Figure 3.16 that represent scenes and shots content descriptions. In 

Figure 3.15 an example is given of temporal relationships modelled between heterogeneous 

content feature types, the nodes represent shot and spatial relationships. From the two examples of 

homogeneous and heterogeneous content feature types it can be seen that the nodes provide a 

<Description xsi:type = "SemanticDescriptionType"> 
  <Semantics> 
    <Labels> 
      <Name>Spatial Relationships</Name> 
    </Labels> 
    <Graph> 
       <Relation type="urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:southwest" source ="OB11" 
target = "OB12"/> 
       <Relation type="urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:northwest" source ="OB13" 
target = "OB14"/> 
       <Relation type="urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:south" source ="OB15" 
target = "OB16"/> 
       <Relation type="urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:west" source ="OB17" 
target = "OB18"/> 
       <Relation type="urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:northeast" source ="OB21" 
target = "OB22"/> 
       <Relation type="urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:east" source ="OB23" 
target = "OB24"/> 
       <Relation type="urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:northwest" source ="OB25" 
target = "OB26"/> 
       <Relation type="urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:northwest" source ="OB28" 
target = "OB29"/> 
       <Relation type="urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:northeast" source ="OB41" 
target = "OB42"/> 
       <Relation type="urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:northeast" source ="OB46" 
target = "OB47"/> 
       <Relation type="urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:southwest" source ="OB55" 
target = "OB56"/> 
       <Relation type="urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:west" source ="OB60" 
target = "OB61"/> 
       <Relation type="urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:west" source ="OB64" 
target = "OB65"/> 
       <Relation type="urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:southwest" source ="OB64" 
target = "OB65"/>  
      <Relation type="urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:southwest" source ="OB69" 
target = "OB70"/> 
    </Graph> 
  </Semantics> 
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proxy representation of the features. This abstract representation of the feature sets allows 

temporal comparison between them facilitating the requirement of multi-content type search 

possible in a semantic context.  

 
Figure 3.15: EXAMPLE OF TEMPORAL RELATIONSHIPS BETWEEN HETEROGENEOUS CONTENT TYPE FEATURE SETS 

 

<Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:follows" source ="SR13" target = 
"SH68"/> 
<Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:follows" source ="SR13" target = 
"SH69"/> 
<Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:coOccurs" source ="SR13" target = 
"SH70"/> 
<Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:meets" source ="SR13" target = 
"SH71"/> 
<Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:metBy" source ="SH71" target = 
"SR13"/> 
<Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:precedes" source ="SR13" target = 
"SH72"/> 
<Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:precedes" source ="SR13" target = 
"SH73"/> 
<Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:precedes" source ="SR13" target = 
"SH74"/> 
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Figure 3.16: EXAMPLE OF A VARIETY OF MPEG-7 TEMPORAL RELATIONSHIPS WITHIN A HOMOGENEOUS FEATURE SET 

3.5 Modelling plane 

As discussed in chapter 1 the combining of all the content descriptions into a single content 

model document is the primary goal of MAC-REALM. Only then is the full potential of the 

content descriptions achieved, as the content model gives all the features a context and relationship 

to the structure and meaning of the content. As stated in chapter 2 the final content model 

document should link all the features together through a hierarchical structure and should provide 

mechanisms for all the features to be interlinked into a flat structure to optimise search capabilities 

and content discovery.  

MAC-REALM modelling algorithm achieves this by layering the content features to the root 

node so that the top-level container for each feature is only one link away from any other top-level 

<Description xsi:type = "SemanticDescriptionType"> 
  <Semantics> 
    <Labels> 
      <Name>Temporal Relationships</Name> 
    </Labels> 
    <Graph> 
       <Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:meets" source ="SC1" target = 
"SC2"/> 
       <Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:metBy" source ="SC2" target = 
"SC1"/> 
       <Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:precedes" source ="SC1" 
target = "SC3"/> 
       <Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:follows" source ="SC2" target 
= "SC1"/> 
       <Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:meets" source ="SC2" target = 
"SC3"/> 
       <Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:metBy" source ="SC3" target = 
"SC2"/> 
       <Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:follows" source ="SC3" target 
= "SC1"/> 
       <Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:follows" source ="SC3" target 
= "SC2"/> 
       <Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:follows" source ="SC1" target 
= "SH1"/> 
       <Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:follows" source ="SC1" target 
= "SH2"/> 
       <Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:contains" source ="SC1" 
target = "SH29"/> 
       <Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:starts" source ="SC1" target 
= "SH29"/> 
       <Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:startedBy" source ="SH29" 
target = "SC1"/> 
      <Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:contains" source ="SC1" target 
= "SH30"/> 
       <Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:strictDuring" source ="SC1" 
target = "SH30"/>  
      <Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:strictContains" source ="SH30" 
target = "SC1"/> 
       <Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:contains" source ="SC1" 
target = "SH31"/> 
      <Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:strictDuring" source ="SC1" 
target = "SH31"/> 
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container. This makes the content more easily searchable and content discovery multi-faceted as 

the features are not rigidly structured in a nested tall structure. To date, there is no other content 

modelling scheme that has used such a method to modelling as they have been created with a 

specific purpose. MAC-REALM content model facilitates generic use through the structure and 

interlinking of its content descriptions. 

The modelling plane has three distinct sections; 1) Syntactic Semantic Descriptions, 2) Content 

Modelling and 3) Model media.  The first section is the MPEG-7 output from the extraction plane 

and analysis and linkage plane. These descriptions were modelled in the MPEG-7 layer. The 

second section parses all the MPEG-7 descriptions and then combines them into one DOM. The 

DOM is then serialised to the final stage, which is the model media. This is the final process of 

MAC-REALM, and outputs a MPEG-7 document model that can be used by any search/filtering 

application that is MPEG-7 compliant.   

3.5.1 Syntactic Semantic Descriptions 

In this content layer section, both the syntactic and semantic content descriptions are stored, 

and expressed as MPEG-7 descriptions. Syntactically there is shots/scenes and objects, and 

semantically there is spatial and temporal relationships. These descriptions on their own are still 

very useful and can be published as is. This would be useful to MPEG-7 compliant devices where 

storage, bandwidth or processing power is constrained and only certain aspects of the media 

content are of interest. 

3.5.2 Content Modelling 

In chapter 1 it was shown that the four categories of features needed to be included for a 

comprehensively described content model. These features were a) temporal segments b) objects, c) 

the spatial relationships between them, c) events and the e) all the temporal relationships between 

them. In MAC-REALM these are represented by a) shots b) moving regions for objects, b) spatial 

relationships, c) scenes and d) temporal relationships. These features are integrated together  These 

features can be split into two different groups based on content type: 

1) Syntactic (Structural) description schemes – these describe the low level and mid-level 

syntactic content descriptions. The syntactic content descriptions are built around the 

notions of segment description schemes that represent temporal or spatiotemporal 

aspects of the multimedia content. These description schemes utilise a hierarchical 

organisation that can produce an indices for searching the multimedia content. The 
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common reference point for video is the media time DS. These segments can then be 

further described in terms of colour, shape, etc. 

2) Semantic (Conceptual) description schemes – These describe the higher level semantic 

content descriptions. The semantic content description entities are described through 

graph structures that provide a method for defining the semantic relationships between 

content features. The graph structure creates an abstract relationship between entities to 

form a conceptual narrative that is abstractly linked to the structural foundations of the 

multimedia content.  

The syntactic and semantic content description schemes are linked by two methods that allow 

the multimedia content to be integrated so that the semantic gap can be bridged. The first method 

allows the syntactic and semantic content features to be linked on a semantic level. The semantic 

linking mechanism is provided by modelling all the features into nodes that represent all content 

features abstractly. The nodes are then used as proxy representations for the features and the 

temporal relationships between all these features is modelled allowing direct comparison between 

all content features, regardless of content type. This is shown in the temporal relationships section 

3.3.3.2.  

The second method for facilitating multi-content type search is to model the syntactic and 

semantic content descriptions together into a content model with all the features interlinked 

through their logical dependencies. When the features were extracted they were extracted using a 

hierarchical input/output extraction process where each feature extracted was the input for the 

next feature. Due to the extraction process all the features are intrinsically and implicitly linked 

together as the features share many attributes in common.  

The scenes and shots have the media time to link them together and are naturally nested within 

each other, as scenes consist of shots. The objects are created from the shots and are linked to 

them through their id reference attributes. All the syntactic features are then modelled into nodes. 

The object nodes are used to model the spatial relationships, which implicitly links the spatial 

relationships to the shots and scenes through inheritance of attributes. The nodes of all the 

features are then modelled into temporal relationships, providing semantic linking of all the 

features. The arrangement of the linking mechanisms throughout the content makes joint syntactic 

and logical content based video search more effective as one search parameter can be applied to 

any amount of content features simultaneously. 
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MAC-REALM unifies the syntactic and semantic content using these linking mechanisms. The 

framework is set by defining the top level elements that state this MPEG-7 document relates to 

content description of the structural and conceptual content of video. Within this modelling 

structure both types of content can be defined and link together, specifically usingMPEG-7 part 5 

MDS descriptions. The first structural elements to be defined are the top level elements, as these 

are the skeleton of the content model and establish MPEG-7 compliance. The Multimedia DS, 

which is typecast to video, is the anchor element for both the syntactic and semantic content 

description schemes. There are two description schemes that relate directly to the Multimedia DS, 

as they describe two global values associated with the video; MediaLocator DS and MediaTime 

DS. The MediaLocator DS contains the MediaURI D which describes the physical location of the 

media. The MediaTime DS uses the MediaTimePoint DS and MediaDuration DS to describe the 

global start time of the media and its duration respectively. 

Within the structural description schemes there are three main description schemes anchored to 

the Multimedia DS; AnalyticEditingTemporalDecomposition DS (container element for Shots 

DS), VideoSegmentTemporalDecomposition DS (scenes) and MovingRegion DS (objects). The 

VideoSegmentTemporalDecomposition DS defines scenes through VideoSegment DS child 

nodes. Within the VideoSegment DS, which represents the scenes directly, there is anchored the 

AnalyticEditingTemporalDecomposition DS that contains the shots for that particular scene. The 

AnalyticEditingTemporalDecomposition DS can also be a direct node from the Multimedia DS 

that can represent shots that do not belong to a scene. The AnalyticEditingTemporal-

Decomposition DS can only be instantiated once as a top level structural type, unlike the 

VideoSegmentTemporalDecomposition DS, but can appear many times under the VideoSegment 

DS, on a one-on-one basis per instantiation of the VideoSegment DS. 

The MovingRegion DS, which represents objects, is rooted to the Multimedia DS and treated as a 

structural top level type. Each object is represented by its own instantiation of a MovingRegion 

DS. Each object can appear as an instantiation of the MovingRegion DS as a top level node as 

many times as is necessary. Alternatively if there aren’t any objects, then there will be no 

MovingRegion DS instantiations.  

The semantic relationships of the content model are all anchored to the Multimedia DS through 

the SemanticDescriptionType DS, which is cast through the abstract Description DS. Whereas the 

structural components had used time as the basis of their hierarchical structure, within the 

SemanticDescriptionType DS the graph structure of semantic relations is used. The Graph DS is 
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the only child node of the Semantic DS and is instantiated for both spatial and temporal 

relationships. The Shot DS, VideoSegmentTemporalDecomposition DS and the MovingRegion 

DS are all model into Node D’s. As stated, the Node D allows the freedom to make relationships 

not between different content type features and allows the content model to detail the intricacies of 

relationships between syntactic and semantic content features. In Figure 3.17 an entity diagram is 

presented of the unified content model showing the relationships between the top level document 

nodes and the syntactic and semantic nodes within them.  

 

Figure 3.17:  UNIFIED MPEG-7 CONTENT MODEL ENTITY DIAGRAM 
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3.5.3 Model Media 

The linking mechanism between the syntactic and semantic description schemes is based on 

the structural hierarchy of the syntactic features. The serial numbering of scenes and shots provide 

the linking mechanism foundation for the content model. Objects are referenced using the shot id 

reference they come from and spatial and temporal relationships use the node reference to 

associate by proxy with the content features.   

In Figure 3.18 is an example of the MAC-REALM content model that has been simplified so 

that all the content descriptions can be placed within it.  The content model begins with the top 

level description schemes that provide the anchor for any MPEG-7 standard content model. Using 

the attribute declaration “type” within the Multimedia DS, the element is typecast as “VideoType”. 

The child element of the Multimedia DS is the Video DS that encompasses all the syntactic and 

semantic content description schemes and relates them to the description of video. The Video DS 

contains the MediaLocator DS, and the MediaTime DS, stating the physical location and global 

time properties of the media respectively.  

After the content model container is initialised the  first content features to be added are the 

shots that do not belong to a scene. These orphan shots are modelled within the top level 

AnalyticEditingTemporalDecomposition DS element. Within this element the Shot DS’s are 

modelled with an id reference that consists of the name of the movie, a scene number of ‘0’ and 

the shot number, all delimited by a hyphen e.g. “AVP-SCENE-0-SHOT-1”. Next the scenes are 

modelled, which are explicitly stated within VideoSegmentTemporalDecomposition DS via a single 

child VideoSegment DS. The VideoSegment DS id attribute is given the scene number of the clip 

in the same manner as the orphan shots but with the shot information omitted, e.g. “AVP-

SCENE-1”. Within the VideoSegment DS the shots for the scene are represented via a child 

AnalyticEditingTemporalDecomposition DS. The Shot DS’s are referenced as before but have a 

scene number that references the scene number from the corresponding parent VideoSegment DS. 

This way the scenes, shots and orphan shots can all be searched using the same search parameters.  
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Figure 3.18: UNIFIED MPEG-7 CONTENT MODEL SKELETON 

<Mpeg7xmlns="urn:mpeg:mpeg7:schema:2001"xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001"xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"xmlns:schemaLocation="urn:mpeg:mpeg7:schema:2001:Mpeg7-
2001.xsd"> 
  <Description xsi:type="ContentEntityType"> 
    <Multimedia xsi:type="VideoType"> 
      <Video> 
         <MediaLocator> 
           <MediaURI>F:/AVP/Video/AVP_test.mpg</MediaURI> 
         </MediaLocator> 
         <MediaTime> 
           <MediaTimePoint> PT1H5M3S0N25F </MediaTimePoint> 
           <MediaDuration>PT25M35S20N25F</MediaDuration> 
         </MediaTime> 
         <AnalyticEditingTemporalDecomposition> 
          ………………….. 
            <Shot id = "AVP-SCENE-0-SHOT-1"> 
             ……………………. 
         </AnalyticEditingTemporalDecomposition> 
         <VideoSegmentTemporalDecomposition> 
            <VideoSegment id = "AVP-SCENE-1"> 
            <AnalyticEditingTemporalDecomposition> 
               ………………….. 
              <Shot id = "AVP-SCENE-1-SHOT-1"> 
               ……………………. 
            </AnalyticEditingTemporalDecomposition> 
         </VideoSegmentTemporalDecomposition> 
         <VideoSegmentTemporalDecomposition> 
           <VideoSegment id = "AVP-SCENE-2"> 
         </VideoSegmentTemporalDecomposition> 
            ………………….. 
         <MovingRegion id = "AVP-SCENE-0-SHOT-1-OBJECT-1-41"> 
          …………………..  
         </MovingRegion> 
          ………………….. 
         <MovingRegion id = "AVP-SCENE-3-SHOT-13-OBJECT-2-786"> 
          ………………….. 
        </MovingRegion> 
        <Description xsi:type = "SemanticDescriptionType"> 
          <Semantics> 
             ………………….. 
            <Graph>  
              <Node id="SC1" href="AVP-SCENE-1"/> 
               ………………….. 
              <Node id="SH203" href="AVP-SCENE-3-SHOT-1"/> 
               ………………….. 
              <Node id = "OB50" href="AVP-SCENE-2-SHOT-55-OBJECT-1-3463"/> 
               ………………….. 
              <Node id = "SR13" href="AVP-SCENE-2-SHOT-69-OBJECT-1-5908"/> 
            </Graph> 
          </Semantics>  
          <Semantics> 
            ………………….. 
            <Graph>  
              <Relation type = "urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:west" source ="OB17" 
target = "OB18"/> 
              ………………….. 
            </Graph> 
          </Semantics> 
          <Semantics> 
             ………………….. 
            <Graph>  
             <Relation type="urn:mpeg:mpeg7:cs:TemporalRelationCS:2001:follows" source ="SH180" 
target = "SR15"/> 
            </Graph> 
          </Semantics> 
        </Video> 
     </Multimedia> 
   </Description> 
</Mpeg7> 
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The id reference for scenes and shots is extended for objects and used in the MovingRegion 

DS to include the object number and frame the object first appears in, e.g. "AVP-SCENE-0-

SHOT-1-OBJECT-1-41". This provides the link between scenes/shots and objects.  

This naming convention for scenes, shots and objects is then used as the input for the 

Semantics DS relations structure, via the Graph DS. As explained in section 3.3.3, the referencing 

mechanism employed allows for the relationships between heterogeneous and homogenous 

content features to be explored and stated without the attributes associated with content feature or 

content type. This abstract approach to syntactic and semantic content type linkage opens up the 

opportunity to explore relationships between syntactic and semantic information that are more 

informative. They provide a more cognitive approach to the content model that is more holistic 

and true to the content and the myriad ways a user perceives and searches content.  

3.6 Summary 

Chapter 3 presents MAC-REALM and the implementation of its four planes, three layers 

architecture. The implementation requirements are presented based on the research methods and 

design requirements stated in earlier chapters. An overview of the MAC-REALM prototype is 

shown, and how the custom video processing pipeline passes through the planes and the 

interaction of the components of each plane play a part in transforming the content. Next each 

plane is presented individually and the function of each component within the plane detailed.  

The raw media plane removes redundant data by removing frames incrementally, converts the 

colour space to be more beneficial to extraction and finally the noise is removed from the frames 

using morphological filtering to stop impurities affect the performance of the extraction process. 

The filtered frames and the colour histograms are sent to the syntactic media component in the 

extraction plane to await processing. 

The extraction plane integrates two shot detection algorithms to detect two different types of 

shot transition, abrupt cut and gradual transition. The shots are then used for object extraction, 

where a two-phase approach is used. Graph cuts segmentation is used to extract the object/s from 

the background, and then covariance matrix tracking is used to track the pixels across the shot. 

Both shots and objects, along with the colour histograms are used by the scene segmentation 

algorithm as the input of features that will be used by the GP Algorithm to evolve rules that will 

identify a scene boundary. The resulting shots, objects and scenes extracted in this plane are then 

140 
 



used as input for the next plane. They are also modelled and serialised into syntactic MPEG-7 

content descriptions.  

The analysis and linkage plane analysis and links the content features together to form spatial 

and temporal relationships between them. Before the spatial relationships are defined the centroid 

of each object is defined to provide the reference point of measurement. Then the absolute, 

relative and inverse relative spatial relationships are calculated. Then all the temporal relationships 

between all the content features are mapped and modelled. The spatial and temporal relationship 

are then serialised into MPEG-7 semantic content descriptions. 

The MPEG-7 syntactic and semantic features are then integrated together in the modelling 

plane. They are combined in a hierarchical structure that uses a MPEG-7 content model wrapper 

to interlink the syntactic and semantic content features into a tightly coupled integrated content 

model that is capable of granular search and facilitates multi-content type search. 
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CHAPTER 4: EVALUATING MAC-REALM 

In chapter 3 the implementation of the MAC-REALM prototype is presented as a four planed, 

three-layered modular framework that implements a custom video processing pipeline to convert 

video into a MPEG-7 content model.  

In this chapter provides a walkthrough MAC-REALM, undertakes an empirical performance 

evaluation of the sub components of MAC-REALM and how well each component completes its 

task. Finally, an evaluation of MAC-REALM framework is provided that discusses the 

walkthrough and performance evaluation results in the context of the research objectives, and 

draws con 

In order to conduct a performance evaluation of the initial reference implementation of MAC-

REALM, the objectives outlined in Chapter 1 are used as a benchmark for testing: 

(E 1) To design an abstract framework that translates a video stream into content descriptions. 

The framework will extract and integrate syntactic and semantic content descriptions into a 

content model to reduce the semantic gap. This is proven through benchmark testing and 

evaluation of the framework functionality. The benchmark test will also prove the sub-

objectives of: 

(E 1.1) Creating an algorithm that reduces computational expense and filters the media 

to improve extraction accuracy of features. This objective is evaluated  in two parts. 

First the computational saving is evaluated through mathematical proof that shows 

the reduction in computational expense. The improvement of feature extraction 

accuracy is evaluated by feature extraction metrics.  These feature extraction 

metrics are part of the evaluation process in point 2 of this section.  

(E 1.2) Detecting and accurately extracting low-level and mid-level syntactic features 

from the video stream. The extraction techniques that need evaluating are for 

shots, scenes and objects. The features are evaluated using common and standard 

benchmark tests that look at the accuracy and detection rates of MAC-REALM for 

each feature. This will investigate whether MAC-REALM extracts syntactic that 

can then be modelled into MPEG-7 syntactic content features. 
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(E 1.3) Automatically creating semantic relationships between extracted features, in a 

suitable manner for video searching to be possible. There are no standard 

benchmarking tests for the derivation of spatial or temporal relationships. An 

analysis is provided of the spatial and temporal relationships that quantifies the 

features and shows the relationship between the content features and the semantic 

relationships. For spatial relationships a benchmark test has been implemented to 

test the precision of the derived relationships compared to a user’s view of the 

relationships to see if the method shown in chapter 3 for calculating the position of 

the objects.  

(E 2) To implement the MAC-REALM framework into a proof of concept prototype. The 

functionality of MAC-REALM must be proven through a walkthrough of the proof of 

concept prototype to show how the functionality of the framework was implemented. 

(E 3) To combine syntactic and semantic descriptions into a compliant content model that can 

be used by other applications in a standardised manner.  The content model will be 

validated and shown to the best of effort to: 

(E 3.1) Prove to be MPEG-7 compliant. A standardised and popular MPEG-7 

validation tool is used to validate the resulting MAC-REALM content model and 

to check if it has any errors or is using illegal syntax or structure. 

(E 3.2) Show the syntactic and semantic content descriptions that are valid to enable 

multi-content type content based video queries. 

(E 3.3) Validate the hierarchically detailed structure of the content model to show that 

it enables granular content based video search in “coarse to fine” detail. 

4.1 Walkthrough of MAC-REALM 

THE MAC-REALM prototype is designed with the interface corresponding to the systems’ 

architecture described in chapter 2. The prototype implements the four plane and three layer 

architecture that converts a raw media stream into a content model. Each module can be 

experimented and tested and results clearly viewed for evaluation. It also allows for easier 

development of future features and extensibility of MAC-REALM as further modules can be 

added as plug-ins, without major alteration to the MAC-REALM base platform.  
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MAC-REALM consists of four main tabs each corresponding to the 4 planes of the MAC-

REALM architecture: Raw Media, Extraction, Analysis and Linkage and Modelling. Each main tab 

is then split into subsequent sub-tabs that each represents one of the MAC layers: Content, 

Application and MPEG-7. Section-tabs are provided for different processes for extracting/linking 

features when a sub tab has multiple processes. These section tabs correspond with the sub-

sections indicated in the application layer of the system architecture.  

4.1.1 Raw Media Plane 

The initial sub-tab of the first screen of MAC-REALM allows the user to input an AV stream 

to initialise the raw media extraction process. In Figure 1.0Figure 2.1Figure 3.1Figure 4.0 the 

“Load” button is seen that the user presses to bring up a file chooser pop up box. The user then 

navigates through the directories to the media clip of their choice. If the user picks a format that is 

not recognised a pop up box appears telling them that they cannot use this clip as the format is 

unrecognised and must select another media clip that is compatible.  

 

Figure 4.1: RAW MEDIA PLANE – AV STREAM SCREEN (CHOOSING AV FILE) 

Once the input stream is accepted the media clip is played in the lower left preview panel. The 

AV stream media info also shows information about the clip’s physical structure. The AV stream 

info is split into two main sections, the general media attributes and the stream attributes. 

Depending on the number of streams there might be more than one stream attributes section. The 
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general media attributes described are always consistent. In Figure 4.1 it can be seen as: number of 

streams present, duration (in milliseconds) of media clip, file size (in bytes) and bit rate. The 

individual stream attributes will differ depending on the type of stream, video or audio. For both 

video and audio the codec type and the codec itself, the start time of the media, timebase and 

coder timebase are all potentially available. For video there is also width and height, format and 

frame rate. 

 

Figure 4.2: RAW MEDIA PLANE – AV STREAM SCREEN (MEDIA INFO) 

Once the video has finished the input of the video, and the media information has been 

retrieved, the filtering process of the raw media plane begins. In Figure 4.2 the filter panel is 

shown. The filter panel is set into four parts: the image preview panel, filter settings control panel, 

main filter control panel and process output panel. 
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Figure 4.3: RAW MEDIA PLANE – FILTER SCREEN 

The image preview panel shows an extracted frame in two preview panels, the original image 

and the filtered image. The original image preview is the image without any filtering process 

applied, whilst the filtered image preview shows in real time the changes being made in the filter 

settings control panel. The filter setting control panel has 2 slider controls: one to alter the 

brightness the other to alter the contrast. Using these sliders the user can improve the contrast and 

brightness of a video. Once the user has selected settings they may save them using the save button 

in the right panel. Alternatively the user can load previous settings and use them if they wish. The 

reset button resets the brightness and contrast slide controls to their original positions. Once the 

user is happy with the contrast and brightness they may press the start button for the process of 

filtering all images to begin. The process can be viewed in real time in the progress output text area. 

This shows the frames (as image file) being retrieved, the noise in each frame being reduced and 

then the contrast and brightness being adjusted. 

4.1.2 Extraction Plane 

In the first tab of the extraction plane (Figure 4.3) we can see the content that was extracted 

from the plane before in the “syntactic media” tab. Here we can view both normalized frames and 

the colour histograms associated with those frames. This is done clicking on a frame number in the 

list box. 
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Figure 4.4: EXTRACTION PLANE – SYNTACTIC MEDIA SCREEN 

The next tab holds the application layer for the extraction plane. This has three sub tabs: 1) 

shot detection, 2) object detection and 3) scene detection. 

The cuts shots sub-tab consists of four panels: the cuts shots preview panel, the transition 

shots preview panel, the control panel and the process output text area. The control panel has 

three buttons. The start button starts the shot detection for both cut and transition shots. The save 

button lets the user save the CHD’s and ECR’s of every frame in a text file. The load button lets 

the user load previously saved frames data text file. This was used for testing purposes so we would 

not have to go through the process from the start again and again. The test file button allows the 

user to load a file that has the cut/transition shots for the clip marked out manually. This is used to 

calculate the detected/false positive/missed scores for the detected shots. The results are shown in 

the text fields underneath. 

  Once the cut and transition shots are detected they are previewed in the cut and transition 

shot preview panels respectively. The cut shots preview panel allows the user to browse through 

the first frame of every cut shot that has been detected. This is done by selecting the frame in the 

list box on the right of each preview panel. The transition shots preview panel performs the same 

function but for transition shots. If no shots for either are found the preview panels show a cover 

image and a blank list box, as seen in Figure 4.4.  
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Figure 4.5: EXTRACTION PLANE – SHOT DETECTION SCREEN 

The process output text area panel for shot detection shows the process of detection in real 

time of both the transition and cut shots for monitoring purposes during tests. 

After the shot detection tab we have the next sub-tab of the application layer for the extraction 

plane, the object detection panel. This is split into four separate panels: the shot selector panel, the 

user input panel, object preview panel and process output panel. The user selects a shot from the 

shot list box whose key frame is shown in the preview panel to the right of the list box. Once 

selected the user then begins using the user input panel. This has three sub tabs that can only be 

used in the order they are presented and must be completed for object detection to start. To the 

left of the sub tabs we have the image canvas panel that allows the user to draw stroke lines directly 

onto the image. 

In Figure 4.5 we see the first step in the object detection process, namely the user input that is 

used to determine the starting points for model initialisation of the segmentation graphs.  The user 

must first select the amount of objects in the frame to a maximum of three. The actual amount of 

objects that can be handled is unlimited. Three was picked as a suitable number for test purposes 

as this cuts down on computation time, storage and analysis of results. It also reduces the overhead 

in coding and application. 
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Figure 4.6: EXTRACTION PLANE – OBJECT DETECTION SCREEN (NUMBER OF OBJECTS) 

Once we have identified the amount of objects in the screen we move onto the next sub tab in 

the user input panel that allows the user to provide input that initialises the segmentation of the 

image into foreground objects and background. In Figure 4.6 we see that the next tab has three 

check boxes, two for the 1st and 2nd object and one for the background. This corresponds to the 

choice made by the user in Figure 4.5. If the user had selected a different amount of objects then 

this would have been reflected in the amount of choices for objects displayed. The user selects a 

tick box and then draws a stroke line for that selection on the image canvas panel. The user will 

select each tick box and draw a stroke line on the image that corresponds to the selection. Each 

item is given a different colour to distinguish it from the other selections.  

The colours used for strokes are highly saturated primary colours so they can be easily 

distinguished from each other and the image background. This also stops false positives occurring 

by having colours too similar to colours already present in the background image. The drawback to 

this is that if the background image has highly saturated primary colours within it this would cause 

incorrect model initialisation of the segmented graphs causing erroneous results. This could easily 

be rectified by a colour analysis algorithm that would see what the prevalent colours where in the 

background image and then use only colours that are not in the background image.  It is a rarity 

and only really occurs in animation where objects are artificially created. 
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Figure 4.7: EXTRACTION PLANE – OBJECT DETECTION SCREEN (DRAW STROKE LINES) 

In figure 4.7 we see the last sub tab. This has a start button that begins the segmentation of the 

key frame into objects. Once pressed, we see the beginning of the automated object extraction 

engine begin. The process output panel shows the process of image segmentation in real time. This 

shows the image being initially segmented into regions by the watershed algorithm and then the 

region reduction being performed by applying the user input to the model image.   

Once the image is segmented and the regions have been reduced to their minimal outlines the 

resulting object maps are shown in the output preview panel. In Figure 4.7 we see this in action. In 

the output process box we see the steps performed during initial image segmentation and 

subsequent region reduction in detail. In the output preview panel we see two images. The first 

image on the left of the output preview panel is the coloured object map of the extraction process. 

It shows the outlines of the objects according to the colour(s) used by the user when drawing 

stroke lines for each of the objects in the user input panel. The background colour is marked by 

the colour used in the user input panel as well. Next to that we have the preview image of the 

outline map of the objects. This shows a black outline drawn onto the original key frame and lets 

the user see how accurate the segmentation process was by providing a defined silhouette of the 

object. 
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Figure 4.8: EXTRACTION PLANE – OBJECT DETECTION SCREEN (OBJECTS DETECTED) 

The third tab is the final part of the application layer for extraction plane, the scene detection 

sub panel and is shown in Figure 4.8. This is split into four separate panels: the GP training data 

panel, the GP output panel, GP settings and results panel and scene segmentation panel.  

We begin with the GP training data panel. Using the load button we select the training data file 

(a file with a small video sample clip with scene boundaries identified) that will be used by the 

fitness function to test and ascertain which rules are fit, and therefore should be allowed to evolve 

to the next generation. Once the file is loaded it can be viewed in the text area of the GP training 

data panel. Each line of the training data file represents a frame number, duration, histogram and 

number of objects within a shot.  

Below this panel we have the GP settings and results panel. In the stings part of the panel we 

can adjust the maximum fitness of the rules so that if achieved the process will stop and present 

the rule. We also have a maximum generations setting that allows us to set the maximum amount 

of generations that will be cycled before termination of the GP process if the maximum fitness is 

not achieved. Underneath these two text fields we have the start button that begins the process of 

GP to find the best rule for scene segmentation.   
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Figure 4.9: EXTRACTION PLANE – SCENE DETECTION SCREEN 

Once started the process of finding the best rule is shown in the GP output panel. This shows 

the rules as they are generated and then shows the populations of new rules as they are evolved. 

Next to each rule is its fitness value as calculated from the fitness function. Once the best rule is 

found it is shown in the GP results section. Here we see the rule with its fitness value and the 

generation it was evolved in. 

Once we have a best evolved rule that will identify scene breaks we are ready to begin the 

process of segmenting the target video clip into scenes.  We use the start button in the scene 

segmentation panel to begin the segmentation process. We can see the process being applied in the 

preview text area of the scene segmentation panel. Once the scenes are identified the amount of 

scenes are shown in a text field with the actual start times of the scenes shown in the preview text 

area. These can be saved to a text file using the save button.  

 The final tab of the extraction plane, shown in Figure 4.9, is the MPEG-7 syntactic 

descriptions schemes layer that contains all the MPEG-7 descriptions of the scenes, shots and 

objects. We have two panels: one panel for the MPEG-7 scenes and shots, whilst the other has the 

DS’ for the MPEG-7 objects within the scenes and shots. As the MPEG-7 description schemes are 

indented to xml syntax both panels are scrollable both vertically and horizontally so that they can 

be viewed in their completeness. 
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Figure 4.10: EXTRACTION PLANE – MPEG-7 LAYER SCREEN 

 

4.1.3 Analysis and linkage Plane 

The first tab of the Analysis and linkage plane is the content pane which shows us the list of 

syntactic features that were extracted from the extraction plane. This screen allows us to analyse 

the implicit relationship between syntactic features that will be analysed for their semantic 

relationships. 

In Figure 4.10 we can see that the content pane consists of three panels, one each for each of 

the syntactic features extracted: scenes, shots and objects. Each panel has three list boxes all of 

which represent the three syntactic features extracted. The first list box is selectable. If you select a 

feature instance from the first list box of any feature panel you will be shown the features it is 

related to in the other two feature list boxes within the panel. 

For instance if we look at the shots panel we can see that a shot that starts with the frame 

number 3814 is selected. The next list box shows the scene (in this case scene starting with the 

frame number 2927). The list box after that shows what objects are contained with this shot. 

The application layer of the analysis and linkage plane consists of two sub tabs. These two sub 

tabs are the spatial relationships and temporal relationships processing tabs.  
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Figure 4.11: ANALYSIS AND LINKAGE PLANE – CONTENT SCREEN 

We begin with looking at the spatial relationship analyser tab. In Figure 4.11 we see that the 

spatial relationship tab is made of three panels: the spatial relationship's control panel, spatial 

relationship’s analyser panel and the spatial relationship output panel. 

The spatial relationship control panel has a start button that starts the process analysing the 

objects, finding the centroid of each objects and then calculating their absolute spatial relationship 

within the frame or, if two objects or more are present, then the relative spatial relationship 

between them. The save and load buttons on the control panel are for saving the results to a text 

file or loading from a text file that has results from an earlier experiment to be analysed. 

The spatial relationship analyser has a drop down box that contains the frame numbers for all 

the shots that contain objects. By selecting a frame we show in preview panel to the right of the 

drop down box a colour coded object map that is produced during the object extraction phase. 

The text fields underneath the drop down box shows which object is of what colour. Above both 

of these are the absolute and relative spatial relationships of the objects depicted. This depends on 

the amount of objects. If there is only one object then there can only be an absolute relationship 

but for two or more objects there will be a suitable number of absolute and relative spatial 

relationships. 
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Figure 4.12: ANALYSIS AND LINKAGE PLANE – APPLICATION LAYER (SPATIAL RELATIONSHIPS SCREEN) 

In the spatial relationship output panel we can see the spatial relationships being processed for 

each object or set of objects in real time. This shows the key frame of the shot that contains the 

object(s), the centroid of the object(s) and the absolute, and if containing more than one object, the 

relative spatial relationships. 

In Figure 4.12 we see the temporal relationship analyser tab that analyses the intra-temporal 

relationships between homogenous feature sets as well as the intra-temporal relationships between 

the heterogeneous feature sets.  We see that the temporal relationship analyser tab is made of three 

panels: the temporal relationship's control panel, temporal relationship’s analyser panel and the 

temporal relationship output panel. 

The temporal relationship control panel has a start button that starts the process of analysing 

the temporal attributes of the syntactic and semantic features and finding all the temporal 

relationships between them. The save and load buttons on the control panel perform the same 

function as the save and control buttons on the spatial relationship analyser control panel. 
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Figure 4.13: ANALYSIS AND LINKAGE PLANE – APPLICATION LAYER (TEMPORAL RELATIONSHIPS) 

Once we have all the intra and inter temporal relationships we can view them in the temporal 

relationship analyser panel. Here we have four list boxes, each containing a different content 

feature set. Selecting two content features from any two boxes will show their temporal 

relationship as well as their inverse relationship. 

 

Figure 4.14: ANALYSIS AND LINKAGE PLANE – MPEG-7 LAYER SCREEN 
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In Figure 4.13 we see the final main tab of the analysis and linkage plane. We have the MPEG-

7 semantic descriptions schemes layer that contains all the spatial and temporal relationships. We 

have two panels: one panel for the MPEG-7 spatial relationships and one containing the MPEG-7 

temporal relationships. As before both panels are scrollable both vertically and horizontally so that 

they can be viewed in their completeness. 

4.1.4 Modelling Plane 

The content main tab presents us with all the separate MPEG-7 content features, syntactic 

content features that have been extracted and semantic content features that have been derived 

from those syntactic content features.  

In Figure 4.14 we see the tab consists of four panels, two panels are for the syntactic features 

of scenes andshots, and objects and the other two are for the semantic features of the spatial and 

temporal relationships. The descriptions here are MPEG-7 compliant but these are still fragments 

that need to be modelled together.  

 

Figure 4.15: MODELLING PLANE – CONTENT LAYER SCREEN 

The application tab of the modelling plane is the integration screen used for combining all the 

syntactic and semantic content features into one coherent MPEG-7 document that can be parsed 

by any MPEG-7 compliant consumer application. 
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In Figure 4.15 we can see that the application tab consists of four panels: the MPEG-7 content 

modelling control panel, the MPEG-7 feature selector panel, the MPEG-7 feature input/output 

panel and the MPEG-7 modelling output panel.  The first three panels are all used together to 

provide settings, inputs and outputs to produce the final content model. 

The MPEG-7 feature input/output panel allows the user to input previously saved MPEG-7 

content features from earlier experiments from MPEG-7 files. It also allows the user to save the 

MPEG-7 content features to MPEG-7 files that will include in the file name the feature as well as a 

time stamp indicating when they were created. This allows the user to return and integrate a new 

feature in a different way. 

The MPEG-7 feature selector panel allows the user to select which feature they would like to 

integrate into the complete MPEG-7 content model. The panel has four check boxes that 

represent the four feature sets displayed in the main content tab. By checking these boxes they will 

be included in the complete MPEG-7 content model. A fifth check box toggles the input from the 

present experiment to the input from the MPEG-7 feature input/output panel instead. When this 

is checked the other input check boxes are disabled as all the input must come from the feature 

input/output panel. 

 

Figure 4.16: MODELLING PLANE – APPLICATION LAYER SCREEN 
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The MPEG-7 content modelling control panel has three buttons: start, reset and save. Once all 

features to be included in the complete MPEG-7 content model have been selected the start 

button is pressed to begin the modelling integration process. The reset button is used to reset all 

the inputs back to an unselected state so that a new set of features can be input and modelled. The 

save button saves the completed MPEG-7 content model to an MPEG-7 file with the name of the 

original media clip and a time stamp for date of creation.  

In Figure 4.16 we can see the final tab presents us with the final MPEG-7 Layer of the 

modelling plane. Here we can view the complete MPEG-7 content model. Here all the features 

that were selected and processed in the application tab can be seen linked together to produce a 

content model that is rich and granular in description and is personalised to the users requirements.  

 

Figure 4.17: MODELLING PLANE – MPEG-7 LAYER SCREEN 

4.2 Performance Evaluation 

The performance evaluation is arranged in two sections. The first describes the testbed and 

performance benchmarks to be used in evaluating MAC-REALM. The second section presents 

and discusses the results gathered.  

4.2.1 Testbed 

In order to answer the questions above, we ran tests for different clips of Alien vs. Predator 

(AVP) (W.S. Anderson, 2004) through MAC-REALM. We then looked at how accurately MAC-
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REALM extracted the syntactic features from the content.  AVP was used because it has objects 

on screen that are invisible. This provides for the hardest test footage to test MAC-REALM with.  

The test data consisted of four clips of AVP. The video was digitised in MPEG-1 format at a 

frame rate of 25 fps (total of ~720,000 frames) and a resolution of 352*288 pixels (commonly 

known as the CIF standard (Richardson, 2010)). This was accomplished using a Pentium PC and 

Adobe Premiere Pro. For ease of manipulation, and to keep file sizes manageable, the video was 

cut and digitised into 4 segments of 20 minutes each.  

To provide an authoritative guide to the test set, the locations and types of shot, scene, and 

program boundaries were manually analysed to give a series of detailed log files, each representing 

a 20-minute video segment. This collection of log files is referred to as the groundtruth, and 

represents a time consuming process that requires manual processing. The groundtruth allows us 

to compare the results generated by our detection algorithms to a ground truth. It also enables us 

to calculate statistics such as the number of frames and shot boundaries found in each content 

type. As noted above, the groundtruth contains extremely detailed semantic information.  

All of the tests conducted with MAC-REALM were carried out using Windows 7 Professional 

operating system and a standard PC, consisting of the following hardware:  

• Intel i7 3.4 GHz CPU (with Hyper Threading) 

• 16 GB DDR2 2400MHz DDR3-RAM (Tested Latency: 10-12-12-31) 

• 120GB SSD Primary hard drive (550 MB/s read, 510 MB/s write)   

• 2TB secondary hard drive @ 5400rpm 

4.2.2 Benchmark Tests 

Benchmark testing methodology is employed to evaluate MAC-REALM with regards to the 

objectives outlined at the start of section 4.2, uses standard benchmark techniques when possible. 

When there are no standard tests available, tests have been devised using other common 

techniques used by others in related research areas.  

4.2.2.1 Computational expense and improving accuracy of extraction 

The raw media plane pre-processes the media with two objectives in mind: To reduce 

computational expense, and to filter the media to improve the extraction of syntactic features. The 
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computational expense is evaluated first by using a mathematical proof that is explained in chapter 

3. The evaluation of the extraction of syntactic features is examined by testing the filtering 

technique used for the MAC-REALM pre-processing method. 

MAC-REALM reduces the amount of redundant data by using one frame per second of the 

video for feature extraction. Using only one frame and discarding the rest, reduces the processing 

by a factor equal to the frame rate. From the equation in chapter three a new formula is derived to 

calculate the computational reduction in processing. Eq. (4.1) shows the reduction in processing is 

directly proportional to the reduction in frame rate.. 

Eq. (4.1) 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
1
𝑓𝑝𝑠

  

where 𝑓𝑝𝑠 is the frames per second of the video frame rate. From this mathematical proof we 

can see that the computational expense of processing per frame is reduced by a factor that is equal 

to the 𝑓𝑝𝑠 of the video compared to the case where the full complement of frames is used. 

The media is filtered in two different ways: 1) the colour space is converted into RGB, if not 

already in that colour space, and 2) noise is removed from the image by using morphological noise 

removal. The colour space is chosen as it gives the best trade-off between performance and 

processing load. This has been proved in the seminal paper by (Koprinska & Carrato, 2001) which 

thoroughly surveyed temporal segmentation techniques. Three global colour histogram based 

methods for temporal segmentation were tested using six different colour spaces: RGB, H SV, 

YIQ, L∗a∗b∗,L∗u∗v∗ and Munsell (Westland, Laycock, Cheung, Henry, & Mahyar, 2012). The 

RGB histogram of a frame is computed as three sets of 256 bins. The other five histograms are 

represented as a 2-dimensional distribution over the two non-intensity based dimensions of the 

colour spaces, namely: H  and S for the H SV, I and Q for the YIQ, a∗ and b∗ for the L∗a∗b∗,u∗ 

and v∗ for the L∗u∗v∗ and hue and chroma components for the Munsell space. The number of 

bins is 1600 (40×40) for the L∗a∗b∗,L∗u∗v∗ and YIQ histograms and 1800 (60 hues×30 

saturations/chromas) for the H SV and Munsell space histograms. 

The study found that in terms of overall classification accuracy YIQ, L∗a∗b∗ and Munsell 

colour coordinate spaces performed well, followed by HSV, L∗u∗v∗ and RGB. In terms of 

computational cost of conversion from RGB, the H SV and YIQ are the least expensive, 

followed by L∗a∗b∗, L∗u∗v∗ and the Munsell space. Seeing that RGB and H SV had similar 
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computational expense and had good performance they were chosen as the best all round choice. 

The computational expense is a factor as the size of the testbed, which is a desktop PC, has limited 

processing power compared to workstation or batch server configurations. RGB is settled upon 

out of the two as most video clips are in that format and would require no conversion. HSV has a 

small advantage over RGB in spatiotemporal segmentation but this is due to its explicit handling of 

shadow and illumination changes. The morphological noise removal and flattening negates this 

advantage by eliminating the luminance variations and improving the chromaticity of the image.  

The accuracy and detection rates evaluated for this method are in the shot, object and scene 

segmentation results. 

4.2.2.2 Shot Boundary 

To evaluate the shot boundary technique we used the evaluation tool from TRECVid10. This is 

a popular benchmark test for many shot boundary algorithms that have been tested by the 

TRECVid community (Smeaton et al., 2010). This is a suitable benchmark to test the performance 

of MAC-REALM’s Shot Boundary Detection algorithm. 

The tool allows evaluation of detected scene boundaries against a groundtruth of any video 

clip. The results are split into three sections, total number of cuts detected, number of abrupt 

transitions and number of gradual transitions. For each shot the start frame of the transition is 

given followed by the end frame of the transition. For abrupt transitions the start and end frame 

numbers are consecutive and relate to the last pre-transition and first post-transition frames so that 

it has an effective length of two frames (rather than zero). For the gradual transitions the start 

frame would be the beginning of the transition and the end frame number would be the number 

the transition completed. A single frame overlap between the detected transitions and the reference 

transition was all that was required being the only detection criteria as this made the detection 

independent of the accuracy of the detected boundaries. Short gradual transitions (of less than 1 to 

5 frames) are considered as abrupt cuts. In the ground truth samples the short gradual transitions 

(SGT) were expanded by 5 frames in each direction before matching against submitted transitions 

to accommodate differences in frame numbering from the SBD sample. The reason for this is that 

the number SGT’s has increased over the years to become a substantial percentage of the shot 

transition count, and the majority of them are 1 frame long (Table 4.0). 

 

10 http://www-nlpir.nist.gov/projects/trecvid/trecvid.tools/ 
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 2003 2004 2005 

% of all transitions 2 10 14 

% of all graduals 7 24 35 

% of SGT’s = 1 frame 41 88 83 

 
Table 4.1:  SHORT GRADUAL TRANSITIONS(SMEATON ET AL., 2010) 

To classify the base metrics for the MAC-REALM SBD algorithm we use recall and precision 

(Han, Kamber, & Pei, 2011) to evaluate MAC-REALM’s performance. Precision is the proportion 

of correct shot boundaries identified by MAC-REALM to the total number of shot boundaries 

identified by MAC-REALM. Precision is defined as: 

Eq. (4.2) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  

 

where 𝑇𝑃 is ‘true positives’ or shots that have been correctly identified and 𝐹𝑃 is ‘false positives’ 

or where a shot boundary has been identified but is incorrect.  

Recall is the proportion of shot boundaries correctly identified by MAC-REALM to the total 

number of shot boundaries present. Recall is expressed as: 

Eq. (4.3) 𝑅𝑒𝑐𝑎𝑙𝑙 =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=  

𝑇𝑃
𝑃

  

 

where 𝑇𝑃 is the number of shots correctly identified by MAC-REALM and 𝐹𝑁 is the number 

of ‘false negatives’ or shot boundaries that were missed. 𝑇𝑃 + 𝐹𝑁 is equal to 𝑃 which is the total 

number of groundtruth shots. 

Both precision and recall are taken into account to provide an overall score for the 

effectiveness and efficiency of the shot extraction technique. This measure is called the 𝑓1 score 

and is defined as: 

Eq. (4.4) 𝑓1 =   
2 . 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

 
 

 

Ideally, the 𝑓1 score should equal 1. This would indicate that we have identified all existing 

shot boundaries correctly, without identifying any false boundaries. 
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4.2.2.3 Object Detection 

To evaluate the object detection (OD) we use two different benchmark tests, one for the 

segmentation of the object and another for the tracking of the object. The reason for this is 

because there is no specific evaluation test for the combined criteria of object detection and 

tracking. The object segmentation metric is from (Feng, Song, & Tiecheng, 2006) and the object 

tracking is from metrics based on the performance evaluation criteria outlined in (Bashir & Porikli, 

2006). 

The metric on the accuracy of the object segmentation uses the figure ground assumption. The 

object segmentation can split the shot into only two defining regions, foreground and background. 

The foreground may contain one or more objects. The first frame of the shot is taken as the 

segmentation image to be evaluated. The same frame is then manually segmented using Photoshop 

CS611 and used as the groundtruth image. The performance of the segmentation is evaluated on 

the degree of overlap between the segmented image 𝑆 and the groundtruth image 𝐺. The following 

formula measures the accuracy of the intersection between the two images: 

Eq. (4.5) 𝑃(𝑆\𝐺) =   
|𝐺 ∩ 𝑆|
|𝐺 ∪ 𝑆| =  

|𝐺 ∩ 𝑆|
|𝐺| + |𝑆| − |𝐺 ∩ 𝑆|′

 
 

 

This measure has no bias to the segmentations that produces overly large or small number of 

segments. The numerator |𝐺∩ 𝑆|, measures how much the ground-truth structure is detected. The 

denominator, |𝐺∪ 𝑆|, is a normalisation factor of the accuracy measure to the range of [0, 1]. With 

this normalisation factor, the accuracy measure penalizes the error of detecting irrelevant regions as 

the foreground segments (false positives). It is easy to see that this region-based measure is 

insensitive to small variations in the ground-truth construction and incorporates the accuracy and 

recall measurement into one unified function. 

The benchmark test for object tracking was originally meant for evaluating the performance of 

video surveillance systems. Whereas they used video of pseudo synthetic environments as the test 

data, MAC-REALM will be using the clips from “Alien vs. Predator”. This should not affect the 

experiment as the video of the pseudo synthetic environments used provided a controlled 

environment were the complexity could be controlled to mimic different scenarios. No such 

11 http://www.adobe.com/mena_en/products/photoshop.html 
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control is needed here as the generic nature and purpose of MAC-REALM means that the 

environment the test should be carried out in should not be controlled.  

To evaluate the tracking of the object in MAC-REALM the Object Tracking error must be 

measured. The error in tracking is calculated by the average deviation from the centroid of the 

object segmented by MAC-REALM to the centroid of the groundtruth object. This is given by:  

Eq. (4.6) 𝑂𝑏𝑗𝑒𝑐𝑡 𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟 (𝑂𝑇𝐸) =  
1
𝑁𝑟𝑔

 � ��𝑥𝑖
𝑔 − 𝑥𝑖𝑠�

𝑖∈𝑔 (𝑡𝑖)∧𝑟(𝑡𝑖)

− �𝑦𝑖
𝑔 − 𝑦𝑖𝑠� 

 

 

where 𝑁𝑟𝑔  represents the total number of overlapping frames between ground truth and 

system results, 𝑥𝑖
𝑔,𝑦𝑖

𝑔 represents the coordinates of the centroid of object in the 𝑖𝑡ℎ  frame of 

ground truth whilst  𝑥𝑖𝑠 ,𝑦𝑖𝑠 represents the coordinates of the centroid of object in the 𝑖𝑡ℎ frame of 

MAC-REALM segmentation. 

4.2.2.4 Scene Detection 

To evaluate the performance of the scene boundary detection (SD) algorithm of MAC-

REALM, the metrics must measure the effectiveness of locating the boundaries of all the scenes 

compared to the groundtruth of scene boundaries. The MAC-REALM algorithm already implicitly 

formulates a metric for this purpose, the fitness function. It is used by the GP algorithm to select 

the rules that are the most accurate at identifying scene boundaries. This though is only theoretical 

and needs to be evaluated to see how accurate the prediction will be when the rule is actually used 

to segment the video stream.  

To achieve this we use the same metrics as used for the SBD evaluation, recall, precision and 

F1 score. This is because structurally they are physically similar and the metrics only measure the 

physical attributes of the feature. This choice of metrics provides a mechanism for validating the 

accuracy of the selected rule, and therefore the fitness function.  

 

4.2.2.5 Spatial relationships 

There are no standard benchmark tests for evaluating spatial relationships between objects. 

Most spatial relationships are formulated as a post-process feature that is not part of the content 

modelling authoring tool, and where they have been explicitly stated they have been manually 

created and, therefore, an evaluation of captured relationships is redundant. The problem of spatial 
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relationships is the ambiguity of the direction of the spatial relationship as it can be calculated with 

a different formula depending on where measurements are taken from. MAC-REALM uses the 

centroid method that gives the most natural orientation of the objects from a human perspective. 

To evaluate the accuracy of the formulation of MAC-REALM’s derived spatial relationships 

we use the precision metric. Precision gives us the metric of how correct the position of the 

derived spatial relationship is. This metric allows us to analyse the quality of the spatial 

relationships. Recall, which would give us the quantity of spatial relationships, is not required as we 

know this will depend on how many objects are identified and segmented by the OBD algorithm. 

To produce a groundtruth for the experiment we manually define both absolute, and where 

applicable, relative spatial relationships. The spatial relationships are stated by the user as giving the 

most obvious spatial relationship from their perspective. To evaluate the precision of 

relative  (𝑆𝑅𝑅) , absolute (𝑆𝑅𝐴)  and total number (𝑆𝑅𝑇)  of spatial relationships we use the 

formulas: 

Eq. (4.7) 𝑆𝑅𝑅 =   
𝑆𝑅𝑟
𝑆𝐺𝑅

 
 

 

Eq. (4.8) 𝑆𝑅𝐴 =    
𝑆𝑅𝑎
𝑆𝐺𝐴

 
 

 

Eq. (4.9) 𝑆𝑅𝑇 =    
𝑆𝑅𝑡
𝑆𝐺𝑇

=
𝑆𝑅𝑟
𝑆𝐺𝑅

+ 
𝑆𝑅𝑎
𝑆𝐺𝐴

 
 

 

where 𝑆𝑅𝑟,𝑆𝑅𝑎 and 𝑆𝑅𝑡 are the derived relative, absolute and total number of spatial 

relationships spatial relationships from MAC-REALM, respectively, and 𝑆𝐺𝑟,𝑆𝐺𝑎 and 𝑆𝐺𝑡 is the 

groundtruth for the respective relative, absolute and total number of spatial relationships. 

4.2.2.6 Temporal relationships 

As is the case when benchmarking spatial relationships, there are no standard benchmark tests 

available for temporal relationships. Typically, such benchmarks are either manually created, or are 

calculated post process to the creation of the content features extraction. However, unlike spatial 

relationships there is no ambiguity in the interpretation of the temporal relationships, as content 

features all have a definitive start and end point. Thus, making precision reliable for all temporal 

relationships.  
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The evaluation is therefore not an empirical evaluation of the retrieval of the temporal 

relationships, but of the data collected. Examining the data collected we look at the types of feature 

and quantity of relationships for each feature. This evaluates the trends in the complexities of 

describing features temporally and the temporal richness of each feature. The number of each type 

of relationship is evaluated to examine trends and infer reasons for the proportions of the features.  

4.2.2.7 Content modelling 

The content model once assembled from all the constituent content features must be able to 

be validated as an MPEG-7 compliant document. As the purpose of the content model is to be 

universally accessible to all the MPEG-7 compliant applications the content model must be 

validated against the MPEG-7 Schema. 

To validate the content model an MPEG-7 Validator tool called VAMP (Troncy, Bailer, 

Höffernig, & Hausenblas, 2010) is used to validate the content model. This tool can validate 

MPEG-7 files to many different profiles, so is ideal at checking compatibility for different versions 

of MPEG-7. The tool comes with a downloadable client tool for uploading and testing local files 

on the VAMP servers. 

4.2.3 Results 

All results for the tests were carried out using the testbed computer and using the benchmark 

tests explained in section 4.2.2. The results for each benchmark test were run three times and the 

median average taken for all three runs used and presented here. Where a benchmark test uses 

need input from another process that has been part of another benchmark test, the results that are 

presented are used for the input into the new benchmark test.  

4.2.3.1 Shot Boundary detection 

Before beginning the experiments, the segmentation algorithm was tuned on a number of small 

(< 10 minute) video segments extracted from the test set. These training runs enabled fine-tuning 

of the adaptive threshold levels for each clip.  

The experiment was conducted with the four sample clips, and the results are depicted in 

Figure 4.17, alongside the number of groundtruth shots. Detection rates are provided separately 

for both cut and gradual transition shots.  

All the gradual transition shots were detected with a 100% recall. The cut shots had variable 

rates of detection that were: clip 1 = 90.34%, clip 2 = 91.34%, clip 3 = 98.92% and clip 4 = 
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98.48%. Clips 1 and 2 where poorly-lit scenes and, therefore, the colours in them were not as vivid 

as in clips 3 and 4. If they had been then they would have had similar detection rates. The gradual 

transitions relied on edge information, which although it was diminished, was still able to accurately 

detect the gradual transitions. 

 

Figure 4.18: SHOTS DISCOVERED PER CLIP 

In Figure 4.18 we can see how many shots detected were correctly identified and how many 

were incorrectly labelled as shot boundaries. 

 

Figure 4.19 NUMBER OF SHOTS CORRECTLY IDENTIFIED 
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From these results we see that 𝑇𝑃 = 941, 𝐹𝑃 = 42, 𝐹𝑁 = 52 and 𝑃 = 1031. From this we 

calculate that the recall, precision and 𝑓1 score of the shot detection algorithm as: 

Eq. (4.10) 

𝑃𝑟𝑒𝑐𝑠𝑖𝑜𝑛 =   
941

941 + 42
=  95.73% 

 

 

Recall =   
941

1031
=  91.27% 

 

 

𝑓1 =   
2 × 95.73 × 91.27

95.73 + 91.27
= 93.44 

 

From this result we conclude that the shot detection algorithm is close to the optimal score of 

1 which makes it a very good shot detector. The transition detection of the ECR is good but the 

cut detection missed a small percentage of shots and mislabelled a relatively few shot boundaries 

incorrectly. This could be due to lighting which is dark and the colours are not distinct enough. 

4.2.3.2 Object Detection 

To detect an object, the object detection method, requires an object to be segmented accurately 

so that the contour of the object is the boundary of the object, and that the object boundary is 

tracked accurately once segmented.  

The methodology employed to measure the object segmentation, uses 4 randomly selected 

objects. These objects, the intersection between them and the groundtruth samples were recorded. 

Using Eq. (4.5) we calculated the accuracy for all four objects. They are presented in Table 4.1: 

Object Accuracy 

1 0.87 

2 0.80 

3 0.73 

4 0.83 

Table 4.2: SEGMENTED OBJECT ACCURACY 

The results for sample selections of the object extraction are shown in Figure 4.19, with each 

row showing the results for a key frame of a shot. The original colour images are shown on the far 

left of each row. The user-defined label traces overlaid on the image are shown in the left middle 

column of each row. Each colour represents a different label, object 1 is red and the background is 

yellow. Green is used as the colour for second objects. The object segmentation is shown in the 

third from left of each row. On the far right of each row we have a colour map of the objects, 

clearly showing the boundaries of each object and the backgrounds through colour.  

169 
 



 

Figure 4.20 EXAMPLES OF OBJECTS EXTRACTED FROM IMAGES 

The image regions may present similar grey-levels due to dark scenes and belong to different 

model classes defined by the user labels. Also, there are some image regions with substantial grey-

level variation because of belonging to non-homogeneous textured regions, which are traditionally 

very difficult to segment. The structural information leads to a robust segmentation performance 

even in such cases. For brighter regions with well contrasted boundaries the segmentation has 

accuracies of between 0.97 – 0.998. 
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 We can see that an object has bled into the “letterbox” lines of the image in frames B, D and 

E. These lines were never traced as background and so were not eliminated. If done so they would 

have been removed too. The rough tracing of objects has led to some objects edges not being 

defined, as in C and E.  

For the object tracking we have tracked the same objects. These did not handle scenarios of 

occlusion and partial occlusion. Table 4.2 shows the OTE calculated from Eq. (4.6) for the four 

objects 

Object OTE 

1 0.98 

2 0.75 

3 0.55 

4 0.93 

Table 4.3: OTE FOR SEGMENTED OBJECTS 

The tracking was good for 1 and 4 as the object contours were well defined and the motion 

smooth. Object 2 had problems with tracking as it was a fast moving scene and there was some 

motion blur that affected the integrity of the object boundary. For object 3 the problem was that 

the object had not been segmented well and therefore the tracking became erroneous.  

4.2.3.3 Scene detection 

Scene detection was tested by using the first clip of AVP as the training data for the GP 

algorithm. The resulting rule was then used on the remaining three clips to ascertain how well the 

clips were segmented into scenes. The four features used in the GP algorithm (shot duration, 

number of objects, colour histogram and shot transition) was provided by the results of the shot 

detection and objects detection on the four AVP clips as java data structures that had been 

serialised to data text files.  

Each test run was set up with parameters p (population size) = 500, k (maximum generation) = 

300 and f (maximum fitness) set at 98%. The experiment was run three times on the same dataset.  

What was found was that an optimal rule was found with 98% fitness around the 118 – 120 

generations mark. The best machine-generated rule from each run is shown in Table 4.3 in 

Reversed Polish Notation (RPN). 
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Best Rule 1 

(((dC03<cA75<dA39<&)((cC04>cA85<cA09<^)(dE03<cA78<cA39<&)&)&)((dE01<c
A79<cA33<&)((cC04>cA42<cA09<^)((dC03<cA71<cA39<&)(((cE03<cA78<cA39<&
)((((cC04>cA82<cA09<^)(cD04<cA72<cC09<&)&)((cC06>cA72<cC09<&)(dE01<cA
79<cA39<&)&)&)((cC06>cA72<cC09<&)(dE01<cA79<cA39<&)&)&)^)((bC04>cA52
<cA09<&)((cC04>cA42<cA09<^)((cC04>cA42<cA09<^)((dC03<cA75<cA39<&)((dE
01<cA79<cA39<&)(((dC03<cA78<cA39<&)(((cC04>cA72<cA08<&)(((cC04>dA72<c
A04<&)(dC03<cA78<cA39<&)^)(dC03<cA78<cA39<&)&)&)((dB03<dA78<cA39<&)
(dB01<cA79<cA39<&)^)&)&)((((cC04>dA72<cA04<&)((cC04>cA72<cA08<&)(dC03
<cA78<cA39<&)&)^)(cC04>cA72<cA08<&)&)((cC04>cA72<cC09<&)(dC03<cA78<
cA39<&)&)&)&)&)&)&)&)&)&)&)&)&)&) 

118 

Best Rule 2 

(((dC03<cA75<dA39<&)((cC04>cA85<cA09<^)(dE03<cA78<cA39<&)&)&)((dE01<c
A79<cA33<&)((cC04>cA42<cA09<^)((dC03<cA71<cA39<&)(((cE03<cA78<cA39<&
)((((cC04>cA82<cA09<^)(cD04<cA72<cC09<&)&)((cC06>cA72<cC09<&)(cD04<cA
72<cC09<&)&)&)((cC06>cA72<cC09<&)(dE01<cA79<cA39<&)&)&)^)((bC04>cA52
<cA09<&)((cC04>cA42<cA09<^)((cC04>cA42<cA09<^)((dC03<cA75<cA39<&)((dE
01<cA79<cA39<&)(((dC03<cA78<cA39<&)(((cC04>cA72<cA08<&)(((cC04>dA72<c
A04<&)(dC03<cA78<cA39<&)^)(dC03<cA78<cA39<&)&)&)((dB03<dA78<cA39<&)
(dE01<cA79<cA39<&)^)&)&)((((cC04>dA72<cA04<&)(cC04>cA72<cA08<&)^)(cC0
4>cA72<cA08<&)&)((cC04>cA72<cC09<&)(dC03<cA78<cA39<&)&)&)&)&)&)&)&
)&)&)&)&)&)&) 

120 

Best Rule 3 

(((dC03<cA75<dA39<&)(dC03<cA78<dA19<&)&)((dE01<cA79<cA33<&)((cC04>cA
42<cA09<^)((dC03<cA71<cA39<&)(((cE03<cA78<cA39<&)((((cC04>cA82<cA09<^)
(cD04<cA72<cC09<&)&)((cC06>cA72<cC09<&)(dE01<cA79<cA39<&)&)&)((cC06>
cA72<cC09<&)(dE01<cA79<cA39<&)&)&)^)((bC04>cA52<cA09<&)((cC04>cA42<c
A09<^)((cC04>cA42<cA09<^)((dC03<cA75<cA39<&)((dE01<cA79<cA39<&)(((dC03
<cA78<cA39<&)(((cC04>cA72<cA08<&)(((cC04>dA72<cA04<&)(dC03<cA78<cA39
<&)^)(dC03<cA78<cA39<&)&)&)((dB03<dA78<cA39<&)(dE01<cA79<cA39<&)^)&
)&)((((cC04>dA72<cA04<&)(cC04>cA72<cA08<&)^)(cC04>cA72<cA08<&)&)(cC04
>cA42<cA09<^)&)&)&)&)&)&)&)&)&)&)&)&) 

119 

Table 4.4: BEST SCENE BOUNDARY CHANGE  RULES GENERATED BY THE GP ALGORITHM FOR DETECTING SCENE CHANGES IN AVP FILM 

The rules are applied to testing data for measuring its accuracy. We use the same performance 

measures used for shot detection, precision and recall, to evaluate the accuracy of the rule. The 

methods have been used extensively to compare the performance of shot boundary detection 

techniques. Since the nature of scene boundary detection is similar to shot boundary detection, it is 

plausible to use the method as well without any modification.  

There are 786 shots in total in the three AVP clips to be segmented. Among them, there are 23 

scene boundaries (manually counted) and the rule has discovered 21. But only 13 of them are 

correct, so there are 8 false alarms. Of the 21 scenes found only 13 have correct boundaries, which 

means it missed the other 8. Hence, with equation 4.1, the recall value is computed as: 

Eq. (4.11) 𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑒𝑛𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 
𝑖𝑑𝑒𝑛𝑡𝑓𝑖𝑒𝑑 𝑏𝑦 𝑀𝐴𝐶 − 𝑅𝐸𝐴𝐿𝑀

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑠𝑐𝑒𝑛𝑒𝑠

=
13
23

= 56.5% 

 

With Eq. (4.12), the precision value is calculated as:  

Eq. (4.12) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑒𝑛𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 
𝑖𝑑𝑒𝑛𝑡𝑓𝑖𝑒𝑑 𝑏𝑦 𝑀𝐴𝐶 − 𝑅𝐸𝐴𝐿𝑀
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑒𝑛𝑒𝑠

𝑖𝑑𝑒𝑛𝑡𝑓𝑖𝑒𝑑 𝑏𝑦 𝑀𝐴𝐶 − 𝑅𝐸𝐴𝐿𝑀

=  
13
21

= 61.9% 
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From this we can calculate the 𝑓1 score for the scene boundary detection algorithm as: 

Eq. (4.13) 𝑓1 =  
2 × 61.9 × 56.5

61.9 + 56.5
=  59.08  

As discussed in section 3.2.2.3 the performance for the GP algorithm is better using the four 

video features compared to two video and two audio features for the sample clip. When tested 

using the audio/video feature combination 23 clips were identified and only 10 were correct with a 

rule that had 96% fitness. The results for this test were 47.6% for precision and 43.5% for recall, 

giving an f1 = 45.45. One of the possible reasons for this is because AVP does not have much 

dialogue and long pauses of silence for suspense, making audio breaks are rare. 

After close examination of the result we discovered that there is a substantial number of “near-

misses”, where the correct boundary is just one or two shots away from the boundary detected by 

the rule. By observation, we discovered that some of the missed boundaries are very close to the 

correct ones. However, the measurement we use can only indicates that the results are correct or 

not but cannot specify the margin of error. Most researchers agree that since scene boundary is a 

subjective concept, people may have different perception on where the scene boundaries are 

located (Hua & Zhang, 2009). The solution is to treat false alarms unequally. The distance between 

the false alarms and the correct ones is taken into account during the evaluation. 

Furthermore, insufficient terminal and function sets are a potential problem, which is a 

common difficulty in genetic programming. We selected the terminal and function sets based on 

the attributes that have been proved to be valuable clues in determining scene boundaries. It is 

impractical to include as many functions and terminals as possible because the presence of 

extraneous functions and terminals would adversely affect the algorithm’s performance. 

4.2.3.4 Spatial relationships 

Two things are of main concern when evaluating the spatial relationships: are all the spatial 

relationships captured and are they captured accurately. The results of the object extraction process 

are used as the input dataset for the spatial relationship analysis. To be able to accurately calculate 

the spatial relationships the centroid of the objects are calculated to provide the reference point of 

the objects. 

A groundtruth of spatial relationships is produced for all objects by visually examining all shots 

and manually determining where the centre of the main body of an object lies and stating its 
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absolute position. If two objects are within the shot frame then a relative position is calculated for 

them.  

As we can see in Figure 4.20 recall was 100% and precision was 100%. All absolute and relative 

spatial relationships were correctly identified and all spatial relationships were correct according to 

the groundtruth observations of the spatial relationships. 

 

Figure 4.21: DERIVED SPATIAL RELATIONSHIPS VS. TOTAL AMOUNT OF SPATIAL RELATIONS 

Figure 4.21 contains a list of absolute spatial relationships derived by the spatial relationship 

analyser. Using the centroid function as the point of calculation for spatial relationships holds true 

for the dataset used. 

 

Figure 4.22: NUMBER OF ABSOLUTE SPATIAL RELATIONSHIPS FOUND FOR EACH POSITION 
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When the absolute spatial relationships are analysed a lot of the objects were only marginally 

within the boundary of the particular position they were allocated. A lot of objects central mass, 

and not their central point were in the centre of the screen. A more accurate derivation for a 

number of spatial relationships would be more accurately described as “central”. Seeing that 

“central” or “centre” are not in the MPEG-7 spatial relationship CS, this could not be used. 

In Table 4.4 we have a grid of relative spatial relationships. The table does not show inverse 

relationships. 

 Above Below Left Right 
Above 40  25 22 
Below  43 24 28 
Left 25 24 40  

Right 22 28  38 
Table 4.5: NUMBER OF RELATIVE SPATIAL RELATIONSHIPS FOUND FOR COMBINATION OF POSITIONS 

The relative spatial relationships have a fuzzier categorisation as they can have both a 

horizontal and vertical element for their relative positioning. Of the 270 relative spatial 

relationship's 60% were single positions whilst 40% had two positions both horizontally and 

vertically.  With 40% of spatial relationships having 2 positions, compared with those with just 1 

position, it was correct for MAC-REALM to state two positions as it gives more clarity to the 

positioning of the objects. 

4.2.3.5 Temporal relationships 

Temporal relationships form the basis of semantic querying by allowing the user to investigate 

both semantic and syntactic features through their chronological relationship to each other and the 

meaning of those relationships.  

All features have a temporal component and can therefore have a temporal relationship with 

any other feature. This intra/inter temporal relationship dependency allows for more intuitive 

search queries from the user that allows them to link abstract concepts to physical elements. For 

example a query can be formulated that states “When does an object A and object B reverse 

positions”. This query involves all the content features that have been extracted and sets a context 

for a user query.  

In Table 4.5 we have types of content feature along both axes. The intersection where they 

meet shows the amount of temporal relationships between them. The table shows both binary and 

inverse binary relationships. These are shown together as to eliminate pointless duplication.  
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Feature vs. Feature Shots Scenes Objects Spatial 
Relationships 

Shots 685584 12420 117576 761760 
Scenes 12420 225 2130 13800 
Objects 117576 2130 20164 130640 

Spatial Relationships 761760 13800 130640 846400 
Table 4.6: NUMBER OF TEMPORAL RELATIONSHIPS FOUND FOR COMBINATION OF FEATURES 

From the table we can see that the amount of temporal relationships increases by multiple 

factors depending on the number of the instances of the content feature within the video stream. 

As there are only a few scenes the amount of temporal relationships is small. As there are a large 

amount of spatial relationships there are thousands more temporal relationships. The table shows 

temporal relationships add descriptive meaning exponentially depending on the increased presence 

of a feature, thus, giving more querying advantages. 

 

Figure 4.23: NUMBER OF TEMPORAL RELATIONSHIPS FOUND FOR EACH FEATURE 

From the graph in Figure 4.22 we can see that the majority of temporal relationships are 

precedes/follows. This makes sense when we consider the generalised case of a feature’s time 

point  [𝑖𝑥, 𝑗𝑥] . If it is but one of many features [𝑖𝑁 , 𝑗𝑁]  then   ∀[𝑖𝑁−𝑥, 𝑗𝑁−𝑥] <  [𝑖𝑥, 𝑗𝑥] <
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require one time point of a feature to meet another time point of another feature with the most 

popular being meets, overlaps, starts, finishes, co-occurs and their inverses. Finally, those that 

needed both time points of both features to be satisfied i.e. contains, during, strict contains and 

strict during were the least used.  

4.2.3.6 Content Modelling 

The MAC-REALM content model was validated against different versions, profiles and 

constraints of MPEG-7 standard. Both versions 1(1999) and 2(2004) of MPEG-7, with three 

different profiles,, namely DAVP, TRECVID and AVDP, along with temporal validation. The 

MAC-REALM content model successfully completed all possible permutations. The MPEG-7 

valid MAC-REALM content model means that the model is accessible to all MPEG-7 compliant 

content based video search applications. 

To fully test the content model for its multi-content type ability and granular search 

capabilities, the MAC-REALM content model needs to be tested against a number of MPEG-7 

compliant content based video search applications. At the time of testing there were no MPEG-7 

compliant content based video search applications available. The MAC-REALM content model 

validates for all known profiles of MPEG-7, and is compliant to all parts of the standard. From the 

compliance results it can also be extrapolated that all other MPEG-7 compliant content based 

video search applications will also be interoperable. Even though MAC-RELAM is compliant with 

the MPEG-7 standards, there could be some integration work necessary (i.e. libraries, or 

implementation of API’s) to ensure compatibility across other MPEG-7 applications and devices.  

During the development of the MAC-REALM prototype, there was no standardised formal query 

syntax defined, to create search queries with. Other related works used solved this problem  using 

XQuery (Baştan et al., 2010; Döller, Stegmaier, Stockinger, & Kosch, 2011; Kannan et al., 2010). 

Often extensions were added to XQuery for multimedia (Xue, Li, Wu, & Xiong, 2009a) and 

SQL/MM, MMDOC-QL (Kang, Kim, & Ko, 2003). The proprietary nature of some metadata 

descriptions and the lack of formal semantics, are two main issues that do not allow using XQuery 

based applications, as a query testbed for MAC-REALM. The first issue is that XQuery search 

tools where created application by application to fit the needs of the content model, and act as a 

proof-of-concept for the particular application. Such XQuery search tools were not guaranteed to 

be MPEG-7 compliant, as combining these varied query approaches with alternate metadata 

description formats and retrieval interfaces prevents effective interoperability between MPEG-7 

multimedia retrieval systems. The non-standardised process to designing MPEG-7 search 
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functionality means, although many content based video search systems claim to be “MPEG-7 

compliant”, they were in practice limited in their compatibility of the MPEG-7 standard, especially 

with regards to the semantic querying of multimedia content. The second issue is that XQuery 

lacked any formal syntax for semantics. This along with the ability to not be able to handle “fuzzy” 

query types (e.g. “query-by-example”) and having no formal semantics for processing multimedia 

objects, meant that it was unsuitable for testing of multi-content type queries.  

MPEG-7 query format (MPQF) was created to solve the problem of search interoperability 

and was ratified officially into the MPEG-7 standard (MPEG, 2012b). MPQF provides a query 

syntax that makes access to distributed multimedia resources unified. The standardisation of 

MPQF into MPEG-7 leads to two main benefits; interoperability between parties in a distributed 

environments and platform independence. The key feature of MPQF is that it addresses the 

weaknesses of XQuery such as fuzzy request handling and formal semantics for syntax and 

processing multimedia objects. MPQF allows for queries specifically targeted by the MAC-

REALM content model such as query-by-example media, query-by-example-description, query-by-

keywords, query-by-feature-range, query-by-spatial-relationships and query-by-temporal-

relationships. The MAC-REALM content model is better suited to MPQF queries, as it allows the 

search and retrieval of complete, or partial multimedia content data, metadata by specification of a 

filter condition tree and desired processing granularity. This would allow querying to be performed 

in a “coarse to fine” manner, with the capability of searching only relevant content features within 

the MAC-REALM content model.  

Applications that are fully MPEG-7 compliant would provide a better test platform for the 

MAC-REALM content model, but there are currently no applications available for testing. The 

MPQF reference software was only available after the development and testing of MAC-REALM 

had been completed. As MAC-REALM was validated against a broad range of specifications for 

the MPEG-7 standard and that MPQF has been ratified into the standard, it can be concluded that 

interoperability between MAC-REALM and MPQF could facilitate multi-content type and 

granular searches.  

4.3 Discussion of MAC-REALM Framework 

The GUI front end screens are user friendly and allow the user to navigate through the process 

of creating a content model from a video stream. The interaction between the user and the MAC-

REALM front end is intuitive and guides the user step-by-step through each process. The user is 

shown the results of each process after completion and can analyse the MPEG-7 content 
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descriptors at the end of every stage. The design of the GUI puts the interaction between the user 

and MAC-REALM at the forefront of creating the mid-level syntactic content descriptions.  The 

user input and feedback is taken to create mid-level content descriptions that are more accurate 

semantically. The GUI design is very user concentric and hides the underlying processes well, but 

in doing so the user does feel disconnected with the functionality of MAC-REALM as a content 

creation tool in the unsupervised machine driven parts of the processing. Extensive user testing 

needs to be carried out on the GUI to make it more HCI friendly, but this was outside the scope 

of this thesis as it is only a proof of concept for the MAC-REALM framework. 

The pre-processing method is proven to reduce the computational expense of processing by a 

multiple factors, depending on the video frame rate, by eliminating redundant frames from the 

processing chain. The filtering is improved, whilst reducing processing time, by choosing the RGB 

colour space that is shown to be an all-round good choice as a trade-off for performance vs. 

improved results. The colour profile increases the feature extraction potential of the media and is 

less computationally expensive than other comparable colour profiles. Noise removal and 

flattening of the images improves the feature extraction potential of the RGB colour space by 

removing the susceptibility it has to noise and luminance changes. 

The syntactic feature extraction processes are shown to segment the low-level and mid-level 

features accurately and with high detection rate for each feature. The shot boundary technique has 

high precision, recall and F1 score of 95.73%, 91.27% and 93.44% respectively. Detection rates 

and accuracy could have been higher if footage was used that had more definition through 

improved lighting. The object detection was a semi-supervised process, where the objects were 

manually identified through brush strokes. This allowed for all objects to be identified. The object 

boundaries were then segmented from the background and then tracked by the MAC-REALM 

OBD algorithm. The accuracy of the contours for varied between clip from 0.73 – 0.87 as the 

quality of the image affected the segmentation process due to the dark scenes and lack of definition 

of the objects. The object tracking accuracy was 0.55 – 0.98 for the same set of sample objects. 

The varying rate of the tracking was down to the initial problem of poor segmentation leading to 

incorrect pixels being tracked and the integrity of the tracking process being impeded because of 

this. The scene detection algorithm recorded results of precision, recall and F1 score for the scene 

segmentation as 56.5%, 61.9% and 59.09% respectively. The score was much lower than the 

predicted 98% of scene detection predicted by the fitness function of the GP algorithm that tested 

the evolved rule used. The discrepancy comes from the fact that a large number of scene 

boundaries were a less than three frames away from the correct boundary. This is within a margin 
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of error that If there were taken into account the scene detection rate would have been very close 

to the hypothetical figure predicted by the fitness function. 

The semantic relationships are analysed and discussed to see how they describe the spatial and 

temporal relationships of the content features, and the implications of this. All the spatial 

relationships are captured and the accuracy of their positions are shown to be 100% when 

compared to the user defined groundtruth positions. This shows that using the centroid function, 

as the reference point for measuring the spatial relationships positions is the best method for 

defining relationships that are intuitive to that of the human perspective. The temporal 

relationships between features are shown to increase exponentially as the number of instances of 

the features increase. This implies the amount of temporal information associated with the each 

feature increases and the querying potential increases of the content model. This increase in 

temporal information between different feature sets facilitates inter/intra temporal querying that 

provides tighter integration of the content model. The types and amounts of temporal 

relationships were also analysed and it was shown how they exponential increase for the features.  

The final MAC-REALM content model is shown to integrate the extracted content features 

into a standardised content description document, which has been validated as MPEG-7 

compliant. MAC-REALM’s content model was validated against different types of profiles from 

the MPEG-7 standard, along with different configurations, and was found to be compliant with all 

of the specifications. This means that the MAC-REALM content model will be compatible with all 

correctly MPEG-7 compliant applications, regardless of what version of MPEG-7 is being used. 

To fully test the MAC-REALM content model, MPEG-7 compliant video search applications were 

required, but no application at the time were found suitable, nor would they allow the satisfactory 

querying of the MAC-REALM’s content model. Achieving the research objective to facilitate 

granular and multi-content type searches, employs that the MPQF specification is used as a basis 

of comparison to the MAC-REALM content model. From this comparison and MPEG-7 content 

model validations, it can be inferred that the content model fulfils the research objective and steps 

closer to ‘bridging’ the semantic gap. 

4.4 Summary 

Chapter 4 provides a walkthrough of MAC-REALM including GUI front end screens that 

enable the users to extract low level features and from those features derive high level features, 

which are then integrated to together to produce a MPEG-7 compliant content model.  
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A performance evaluation is presented, based on how well the objectives have been fulfilled by 

MAC-REALM. The first section of the performance evaluation presents the testbed and the 

benchmark tests that are required to test MAC-REALM. The second section presents the results, 

firstly of the syntactic extraction techniques using empirical evaluation, followed by an analysis of 

the semantic features and their relation to the lower level features. The section finishes by 

validating the MAC-REALM content model against different MPEG-7 profiles. Finally, there is a 

discussion about MAC-REALM’s content model and how it can have the facility of multi-content 

type and granular searches capabilities using MPQF.  

Finally, this chapter presents an overall discussion about the MAC-REALM framework. The 

main points of the interaction and functionality of the GUI is examined and how it helps users 

navigate through MAC-REALM. The main points of the results are summarised and their 

implications of MAC-REALM’s for objectives discussed. The summary concludes the chapter.  

The next chapter concludes by summarising the thesis, presenting and measuring the research 

contributions against the research objectives and considering further research and development.  
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CHAPTER 5: CONCLUSION 

In chapter 4 we provide a walkthrough and evaluation of MAC-REALM prototype.  The 

walkthrough provides a step-by-step examination of the MAC-REALM GUI and how a user is 

guided through the process of converting a video stream into a standardised content model that 

describes the content in both syntactic and semantic terms. An evaluation of each component of 

MAC-REALM  

The chapter is organised as follows. Section 5.1 reviews the thesis chapter by chapter 

discussing the main points of each chapter. Section 5.2 we examine the research contributions 

against the research objectives and section 5.3 considers future research and development. 

5.1 Thesis Overview 

Chapter 1 aims to establish the thesis by introducing the overarching themes and by placing the 

inspiration for the research undertaken into context. Subsequently, the motivation and goals 

defined for the investigation of the thesis are discussed, followed by a summary of the thesis 

project. Finally, an overview of the dissertation is given on a chapter-by-chapter basis. 

Chapter 2 proposes a design of a content feature extraction and modelling framework called 

MAC-REALM. The framework is introduced and the motivations behind the requirements of 

MAC-REALM are examined. The following two sections examine automatic content feature 

extraction and content modelling design requirements in further detail. These are then stated as 

formal design requirements that elaborate on the requirements from the objectives in chapter 1.  

The MAC-REALM Framework is presented as an architecture that incorporates the design 

requirements into function components that are linked by a custom video processing pipeline. 

Content passed through the pipeline and is converted from content media to content descriptions 

in layers of different content feature levels as the video stream is translated into a content model.  

The design of the content, application and MPEG-7 layers is then looked at. For the content 

layer we describe the media to content description conversion for each plane. The content layer 

stores the media for each plane that will be processed. The application layer converts the content 

for each plane into content descriptions that are relevant for that planes function. The MPEG-7 

layer is where the content description are modelled into MPEG-7 content descriptions. An in 

depth view is given of the planes and how they are to perform their function. The choices of the 
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processing strategy for each component are discussed in reference to the function it performs in 

the MAC-REALM framework. Where applicable the sub-processed are discussed and the 

techniques employed are focused on in their own sections. 

Chapter 3 presents MAC-REALM and the implementation of its four planes, three layers 

architecture. The implementation requirements are presented based on the research methods and 

design requirements stated in earlier chapters. An overview of the MAC-REALM prototype is 

shown, and how the custom video processing pipeline passes through the planes and the 

interaction of the components of each plane play a part in transforming the content. Next each 

plane is presented individually and the function of each component within the plane detailed.  

The raw media plane removes redundant data by removing frames incrementally, converts the 

colour space to be more beneficial to extraction and finally the noise is removed from the frames 

using morphological filtering to stop impurities affect the performance of the extraction process. 

The filtered frames and the colour histograms are sent to the syntactic media component in the 

extraction plane to await processing. 

The extraction plane integrates two shot detection algorithms to detect two different types of 

shot transition, abrupt cut and gradual transition. The shots are then used for object extraction, 

where a two-phase approach is used. Graph cuts segmentation is used to extract the object/s from 

the background, and then covariance matrix tracking is used to track the pixels across the shot. 

Both shots and objects, along with the colour histograms are used by the scene segmentation 

algorithm as the input of features that will be used by the GP Algorithm to evolve rules that will 

identify a scene boundary. The resulting shots, objects and scenes extracted in this plane are then 

used as input for the next plane. They are also modelled and serialised into syntactic MPEG-7 

content descriptions.  

The analysis and linkage plane analysis and links the content features together to form spatial 

and temporal relationships between them. Before the spatial relationships are defined the centroid 

of each object is defined to provide the reference point of measurement. Then the absolute, 

relative and inverse relative spatial relationships are calculated. Then all the temporal relationships 

between all the content features are mapped and modelled. The spatial and temporal relationship 

are then serialised into MPEG-7 semantic content descriptions. 

The MPEG-7 syntactic and semantic features are then integrated together in the modelling 

plane. They are combined in a hierarchical structure that uses a MPEG-7 content model wrapper 
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to interlink the syntactic and semantic content features into a tightly coupled integrated content 

model that is capable of granular search and facilitates multi-content type search. 

Chapter 4 provides a walkthrough of MAC-REALM including GUI front end screens that 

enable the users to extract low level features and from those features derive high level features, 

which are then integrated to together to produce a MPEG-7 compliant content model.  

A performance evaluation is presented, based on how well the objectives have been fulfilled by 

MAC-REALM. The first section of the performance evaluation presents the testbed and the 

benchmark tests that are required to test MAC-REALM. The second section presents the results, 

firstly of the syntactic extraction techniques using empirical evaluation, followed by an analysis of 

the semantic features and their relation to the lower level features. The section finishes by 

validating the MAC-REALM content model against different MPEG-7 profiles. Finally, there is a 

discussion about MAC-REALM’s content model and how it can have the facility of multi-content 

type and granular searches capabilities using MPQF.  

Finally, this chapter presents an overall discussion about the MAC-REALM framework. The 

main points of the interaction and functionality of the GUI is examined and how it helps users 

navigate through MAC-REALM. The main points of the results are summarised and their 

implications of MAC-REALM’s for objectives discussed. The summary concludes the chapter.  

The next chapter concludes by summarising the thesis, presenting and measuring the research 

contributions against the research objectives and considering further research and development.  

5.2 Research contributions 

This section will provide an overview to the objectives and research contributions of this 

thesis. Our objectives were presented in Chapter 1 and are summarised in Table 5.1, along with 

each corresponding research contribution. Objectives 1 and 3, as listed in Table 5.1 contain a 

number of sub-objectives, each of which are detailed later in this section. 
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OBJECTIVE RESEARCH CONTRIBUTION 

O1. TO DESIGN AN ABSTRACT FRAMEWORK THAT TRANSCODES VIDEO 
STREAM INTO CONTENT DESCRIPTIONS. THE FRAMEWORK MUST 
EXTRACT BOTH SYNTACTIC CONTENT AND SEMANTIC RELATIONSHIP 
DESCRIPTIONS AND INTERLINK THEM; HELPING TO BRIDGE THE 
SEMANTIC GAP. 

• A METHOD TO PRE-PROCESS VIDEO SUITED FOR 
EXTRACTION 

• EXTRACT SYNTACTIC FEATURES  

• CREATE SEMANTIC RELATIONSHIPS AND CONTENT 
DESCRIPTIONS  

RC1. THE ABSTRACT MAC-RELAM FRAMEWORK DESIGN 

• THE RAW MEDIA PLANE - IMPROVES EXTRACTION AND 
REDUCES COMPUTATIONAL EXPENSE 

• THE EXTRACTION PLANE - EXTRACTS LOW-LEVEL 
SYNTACTIC FEATURES AND MID-LEVEL SYNTACTIC 
FEATURES WITH SEMANTIC ATTRIBUTES INTO SYNTACTIC 
CONTENT DESCRIPTIONS 

• THE ANALYSIS AND LINKAGE PLANE - LINKS THE SPATIAL 
AND TEMPORAL RELATIONSHIPS OF ALL THE FEATURES 
INTO SEMANTIC CONTENT DESCRIPTIONS  

O2. TO INTEGRATE THE SYNTACTIC AND SEMANTIC DESCRIPTIONS 
INTO A CONTENT MODEL THAT IS ACCESSIBLE TO A WIDE RANGE OF 
APPLICATIONS AND THAT SUPPORTS GRANULAR SEARCH AND 
FACILITATES MULTI-CONTENT TYPE SEARCH. 

• INTEROPERABLE CONTENT MODEL 

• A CONTENT DESCRIPTION THAT SUPPORTS QUERYING 

• COMBINE SYNTACTIC AND SEMANTIC FEATURES FOR 
QUERYING 

RC2. THE OUTPUT PRODUCED FROM MAC-RELAM IS A STANDARDS 
BASED CONTENT MODEL 

• MAC-REALM’S CONTENT MODEL VALIDATES AGAINST 
ALL PROFILES AND VERSIONS OF MPEG-7, THUS IS USABLE 
BY MPEG-7 COMPLIANT APPLICATIONS. 

• THE CONTENT DETAILS ARE IN A HIERARCHICAL 
STRUCTURE THAT IS MAPPED ON THE STRUCTURE OF THE 
CONTENT MODEL. THIS STRUCTURE ALLOWS FOR “COARSE 
TO FINE” SEARCHES TO BE PERFORMED 

• INTERLINKS CONTENT ON A SYNTACTIC AND SEMANTIC 
LEVEL, FACILITATING SYNTACTIC AND SEMANTIC SEARCH 
QUERIES ON ALL CONTENT FEATURES 

O3. TO DEVELOP A PROTOTYPE OF THE FRAMEWORK AS A PROOF OF 
CONCEPT. 

• EXTENSIBLE AND MODULAR 

• ALLOW FOR CUSTOM VIDEO PROCESSING PIPELINES TO BE 
CREATED 

 

RC3. THE MAC-RELAM PROTOTYPE THAT IMPLEMENTS A FOUR 
PLANE AND THREE LAYER SYSTEM ARCHITECTURE. 

• AN OBJECT ORIENTED AND PORTABLE FRAMEWORK THAT 
ALLOWS FOR MODULES TO BE DEVELOPED, EXTENDED, 
REUSED, SHARED AND MODIFIED INDEPENDENTLY 

• THE FRAMEWORK ALLOWS FOR SEQUENCES OF MODULES 
TO CREATE CUSTOM VIDEO PROCESSING PIPELINES 

 

Table 5.1: RESEARCH OBJECTIVES VS. RESEARCH CONTRIBUTIONS 

The main contribution of this thesis is the abstract framework that was developed to achieve 

objective 1 and its sub-objectives 1.1 to 1.4, which aims to “To design an abstract framework that 

transcodes video stream content features into content descriptions. The framework must extract 

both syntactic content and semantic relationship descriptions and interlink them, in order to take a 

step closer to ‘bridging’ the semantic gap between syntactic and semantic features” MAC-REALM 

conceptualises the entire content feature extraction and modelling process. It uses a mixture of 

existing algorithms that have been extended or adapted in order to enable extract content features 

into content description from raw media, then amalgamates and structures the content descriptions 

into a content model. The abstract design of MAC-REALM provides enough flexibility in order to 

customise both its architecture and functionality and therefore, its implementation. In turn, this 

yields several advantages, firstly, separation of its functionality into four distinct planes with three 

layers, allows customisation at each layer rather than the entire framework and helps to achieve low 

level of coupling, for example modularity. Secondly, use of a novel pre-processing technique 

improves the feature extraction from the media and reduces unnecessary processing by removing 

redundant data. Thirdly, the syntactic feature extraction plane uses a hierarchical architecture, 
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which extracts three syntactic features using a mixture of unsupervised and semi-supervised 

algorithms, reducing the need for user interaction. Where human interaction is required it is to 

provide input that defines the semantic characteristics of the syntactic features. Fourthly, the 

semantic relationships of the content features are derived from analysis, along with the subsequent 

linking of the syntactic features, provides semantic links between all features. Spatial relationships 

provide a spatial context to the content model, facilitating spatial search parameters on the content. 

The temporal relationships allow queries of the syntactic and semantic features in the same 

temporal context. The semantic relationships provide a semantic foundation to the content model 

that can enable the addition of high level concepts and facilitates event based querying. The second 

research contribution relating to objective 2 and its sub-objectives of this thesis is the modelling of 

the content into a widely accessible standard compliant content model. The choice of MPEG-7 as 

the content model feature description language led to problems of its own, as the standard has 

been revised numerous times. To make sure that the MAC-REALM content model was acceptable 

to the widest range of applications the descriptions were made backward compatible by using 

unrevised elements; a hierarchical structure with the main four category elements connected to a 

top level element and a general profile. The hierarchical structure also makes possible “coarse to 

grain” search by of any feature or combination of features. Through the temporal relationships, a 

semantic temporal search is possible on all of the features. The interlinking of the syntactic and 

semantic features through the syntactic features elements, physical attributes and the semantic 

modelling nodes, provides tight coupling between the syntactic and semantic features. The tight 

integration of these features on a structural level also allows the content to be queried using logic 

based queries. Modelling all the temporal relationships between all content features provides an 

abstract temporal relationship, which allows the content to be queried using event based queries. 

These two types of querying provide multi-content type search, through the integration of logic 

and semantic search capabilities. 

The third and last contribution is the implementation of the MAC-REALM prototype that 

aims to develop “a proof-of-concept application which implements objectives 1 and 2”. It must be 

extensible and modular to allow for customisation and updates. The proof of concept should 

provide a framework that allows for modules to be added, re-used, extended and modified. The re-

use of modules allows for modules to be shared and further developed and can potentially reduce 

processing time, while allowing for custom video processing pipelines. MAC-REALM is a 

functional prototype and proves that MAC-REALM can convert “raw media into a content model 

through a process of content feature extraction and modelling”. The framework is a novel 

approach to content conversion, where there are three layers to the content extraction and four 
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modelling planes. Each layer provides modularity, by defining the function of each component at 

the intersection between planes. These components can be updated to provide better extraction of 

existing features, or extended to extract new features that better fulfil the desired functionality. The 

sequential arrangement of custom modules at layers, allows for custom video processing pipelines 

to be created. To the best of the author’s knowledge, there is no other tool that attempts to bridge 

the ‘semantic gap’, by combining automated syntactic and semantic content extraction, into a 

MPEG-7 standards based and searchable content model, while providing an extensible and 

modular development framework, which allows for custom pipelines to be created.    

5.3 Further Research 

This section discusses possible future research and development work that may be undertaken 

to improve or extend the development of MAC-REALM. 

5.3.1 Concept detection and classification of semantic events and objects 

Automatic detection of complex events in unconstrained videos has great potential for many 

applications, such as web video indexing, consumer content management, and open-source 

intelligence analysis. Semantic concept detection is a research topic of current interest, as it 

provides semantic filters to help analysis and search of multimedia data. It is essentially a 

classification task, which determines whether an image or a video shot is relevant to a given 

semantic concept. The ability to detect events and label objects through concept detection is a 

possible extension to the MAC-REALM framework. This facility allows concept detectors to use 

spatial and/or temporal relationships to find syntactic features matches to concepts through the 

relationships between those features. In the study by (Jiang, Zeng, & Ye, 2010) it is stated that 

spatial - temporal features are very effective at multimedia event detection, when combined with 

other content descriptors, such as SIFT descriptors and audio features.  

Using spatial and temporal relationships between the features, could potentially improve the 

detection rates of events further then just spatial-temporal interest points (STIP), which capture 

space-time volumes where the image values have significant local variations in both space and time. 

STIP has a problem with variations in length and complexity of the content as it is a direct measure 

of the spatial and temporal properties of certain features. Using spatial and temporal relationships 

between the features removes length and complexity of the feature from the equation, while 

normalising the feature description of these properties between all features. This would build a set 

of semantic feature descriptions that are built around a vocabulary that is more suited to learning 

methods (e.g. classifiers) that need fixed dimensions of input. 
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Once the concept are detected they can be classified using standardised semantic web 

ontologies, such as Dublin Core ("Dublin Core Website," 2012), TV-Anytime (Rey-López et al., 

2010) or the suite of IPTC G2 News Exchange Format Standards ("IPTC News Exchange Format 

Standards," 2014). This means that the content model produced by MAC-REALM must be 

translated from its MPEG-7 XML-Schema base and converted into MPEG-7 RDF Schema, as 

suggested by (Jane Hunter, 2005). This would allow the metadata terms to be accessible, re-usable 

and interoperable with other ontological domains.  

5.3.2 Crowd sourcing to extract semantic features 

To improve the extraction capabilities of MAC-REALM for semantic content features, it could 

be extended to include crowd sourcing as a semantic feature extraction technique. Crowd sourcing 

has become a powerful tool in collaborative classification schemes that can build a structured 

knowledge base through user feedback via the world wide web (Doan, Ramakrishnan, & Halevy, 

2011). The crowd sourcing could be used to extract semantic content features more efficiently and 

effectively as the semantics of the content would be directly perceived and could be mapped onto 

syntactic features through an interface. This would bridge the semantic gap as the knowledge base 

grows and could be used to train concept detectors to more accurately match concepts through a 

larger corpus of semantic material. Similar work has already been done where semantically 

annotated sport video clips from users are crowd sourced to provide fan-centric video summaries 

based on team supported (Tang & Boring, 2012). 
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Baştan, M., Çam, H., Güdükbay, U., & Ulusoy, O. (2010). Bilvideo-7: an MPEG-7- compatible 
video indexing and retrieval system. MultiMedia, IEEE, 17(3), 62-73. doi: 
10.1109/mmul.2010.5692184 

BSkyB. (2012). BSkyB Corporate Timeline  Retrieved 22.08.12, 2012, from 
http://corporate.sky.com/about_sky/timeline 

Bursuc, A., Zaharia, T., & Prêteux, F. (2012). OVIDIUS: A Web Platform for Video Browsing and 
Search. In K. Schoeffmann, B. Merialdo, A. Hauptmann, C.-W. Ngo, Y. Andreopoulos & 
C. Breiteneder (Eds.), Advances in Multimedia Modeling (Vol. 7131, pp. 649-651): Springer 
Berlin Heidelberg. 

Canny, J. (1986). A computational approach to edge detection. Pattern Analysis and Machine 
Intelligence, IEEE Transactions on(6), 679-698.  

Carmona, E. J., Martínez-Cantos, J., & Mira, J. (2008). A new video segmentation method of 
moving objects based on blob-level knowledge. Pattern Recognition Letters, 29(3), 272-285. 
doi: http://dx.doi.org/10.1016/j.patrec.2007.10.007 

Chan, C., & Wong, A. (2011, 5-7 Dec. 2011). Shot Boundary Detection Using Genetic Algorithm 
Optimization. Paper presented at the Multimedia (ISM), 2011 IEEE International 
Symposium on. 

Chao, L., Changsheng, X., Jian, C., & Hanqing, L. (2011, 20-25 June 2011). TVParser: An automatic 
TV video parsing method. Paper presented at the Computer Vision and Pattern Recognition 
(CVPR), 2011 IEEE Conference on. 

Chen, J., Ren, J., & Jiang, J. (2011). Modelling of content-aware indicators for effective 
determination of shot boundaries in compressed MPEG videos. Multimedia Tools and 
Applications, 54(2), 219-239. doi: 10.1007/s11042-010-0518-y 

Chen, X., & Liu, W. (2010, 13-14 Oct. 2010). Study on Shot Boundary Detection Based on Fuzzy Subset-
Hood Theory. Paper presented at the Intelligent System Design and Engineering Application 
(ISDEA), 2010 International Conference on. 

Chen, Y., Deng, Y., Guo, Y., Wang, W., Zou, Y., & Wang, K. (2010, 26-28 Feb. 2010). A Temporal 
Video Segmentation and Summary Generation Method Based on Shots' Abrupt and Gradual Transition 
Boundary Detecting. Paper presented at the Communication Software and Networks, 2010. 
ICCSN '10. Second International Conference on. 

Chiarcos, C., Nordhoff, S., & Hellmann, S. (2012). Linked Data in Linguistics: Representing and 
Connecting Language Data and Language Metadata: Springer. 

Choroś, K., & Pawlaczyk, P. (2010). Content-Based Scene Detection and Analysis Method for 
Automatic Classification of TV Sports News. In M. Szczuka, M. Kryszkiewicz, S. 

190 
 

http://corporate.sky.com/about_sky/timeline
http://dx.doi.org/10.1016/j.patrec.2007.10.007


Ramanna, R. Jensen & Q. Hu (Eds.), Rough Sets and Current Trends in Computing (Vol. 6086, 
pp. 120-129): Springer Berlin / Heidelberg. 

Christodoulou, L., Kasparis, T., & Marques, O. (2011, 6-8 July 2011). Advanced statistical and adaptive 
threshold techniques for moving object detection and segmentation. Paper presented at the Digital 
Signal Processing (DSP), 2011 17th International Conference on. 

Dal Mutto, C., Dominio, F., Zanuttigh, P., & Mattoccia, S. (2012). Stereo Vision and Scene 
Segmentation.  

Dasiopoulou, S., Giannakidou, E., Litos, G., Malasioti, P., & Kompatsiaris, Y. (2011). A survey of 
semantic image and video annotation tools. In P. Georgios, D. S. Constantine & T. George 
(Eds.), Knowledge-driven multimedia information extraction and ontology evolution (pp. 196-239): 
Springer-Verlag. 

Dasiopoulou, S., Tzouvaras, V., Kompatsiaris, I., & Strintzis, M. G. (2010). Enquiring MPEG-7 
based multimedia ontologies. Multimedia Tools and Applications, 46(2), 331-370.  

Daylamani Zad, D., & Agius, H. (2010). An MPEG-7 Profile for Collaborative Multimedia 
Annotation The Handbook of MPEG Applications (pp. 263-291): John Wiley & Sons, Ltd. 

del Fabro, M., & Boszormenyi, L. (2010, 13-19 June 2010). Video Scene Detection Based on Recurring 
Motion Patterns. Paper presented at the Advances in Multimedia (MMEDIA), 2010 Second 
International Conferences on. 

Doan, A., Ramakrishnan, R., & Halevy, A. Y. (2011). Crowdsourcing systems on the World-Wide 
Web. Commun. ACM, 54(4), 86-96. doi: 10.1145/1924421.1924442 

Döller, M., Stegmaier, F., Stockinger, A., & Kosch, H. (2011). XQuery Framework for Interoperable 
Multimedia Retrieval. Paper presented at the Grundlagen von Datenbanken. 

Dropbox. (2013). Dropbox  Retrieved February 20th, 2013, from https://www.dropbox.com/ 
. Dublin Core Website. (2012), from http://dublincore.org/specifications/ 
Dumont, É., & Quénot, G. (2012). Automatic Story Segmentation for TV News Video Using 

Multiple Modalities. International Journal of Digital Multimedia Broadcasting, 2012, 11. doi: 
10.1155/2012/732514 

Ellouze, M., Boujemaa, N., & Alimi, A. (2010). Scene pathfinder: unsupervised clustering 
techniques for movie scenes extraction. Multimedia Tools and Applications, 47(2), 325-346. 
doi: 10.1007/s11042-009-0325-5 

Ercolessi, P., Bredin, H., Sénac, C., & Joly, P. (2011). Segmenting TV Series into Scenes Using Speaker 
Diarization. Paper presented at the WIAMIS 2011:, 12th International Workshop on Image 
Analysis for Multimedia Interactive Services. 

Fei, W., & Zhu, S. (2010). Mean shift clustering-based moving object segmentation in the H.264 
compressed domain. Image Processing, IET, 4(1), 11-18. doi: 10.1049/iet-ipr.2009.0038 

Feng, G., Song, W., & Tiecheng, L. (2006, 17-22 June 2006). Image-Segmentation Evaluation From the 
Perspective of Salient Object Extraction. Paper presented at the Computer Vision and Pattern 
Recognition, 2006 IEEE Computer Society Conference on. 

Fromme, J., & Unger, A. (2012). Computer Games and New Media Cultures: A Handbook of Digital 
Games Studies: Springer. 

Gargi, U., Kasturi, R., & Strayer, S. H. (2000). Performance characterization of video-shot-change 
detection methods. Circuits and Systems for Video Technology, IEEE Transactions on, 10(1), 1-13. 
doi: 10.1109/76.825852 

Ghuffar, S., Brosch, N., Pfeifer, N., & Gelautz, M. (2012, 11-13 April 2012). Motion segmentation in 
videos from time of flight cameras. Paper presented at the Systems, Signals and Image Processing 
(IWSSIP), 2012 19th International Conference on. 

Gibbon, D., Liu, Z., Basso, A., & Shahraray, B. (2011). Using MPEG Standards for Content Based 
Indexing of Broadcast Television, Web, and Enterprise Content. The Handbook of MPEG 
Applications, 343-361.  

191 
 

http://www.dropbox.com/
http://dublincore.org/specifications/


Goss, P. (2011). YouView: We welcome Google TV competition  Retrieved 30.08.11, 2011, from 
http://www.techradar.com/news/television/youview-we-welcome-google-tv-competition-
1005658 

Goss, P. (2012). Virgin TV Anywhere officially outed, arriving autumn 2012  Retrieved 07.09.12, 
2012, from http://www.techradar.com/news/television/virgin-tv-anywhere-officially-
outed-arriving-autumn-2012-1095475 

Grana, C., & Cucchiara, R. (2007). Linear Transition Detection as a Unified Shot Detection 
Approach. Circuits and Systems for Video Technology, IEEE Transactions on, 17(4), 483-489. doi: 
10.1109/tcsvt.2006.888818 

Group, D. T. (2006a). BT Vision reveals December launch date  Retrieved 28.11.2012, 2012, from 
http://www.dtg.org.uk/news/news.php?id=2092 

Group, D. T. (2006b, 18.05.2006). Industry unites to promote Freeview Playback  Retrieved 
21.08.12, 2012, from http://www.dtg.org.uk/news/news.php?id=1674 

Grundmann, M., Kwatra, V., Mei, H., & Essa, I. (2010, 13-18 June 2010). Efficient hierarchical graph-
based video segmentation. Paper presented at the Computer Vision and Pattern Recognition 
(CVPR), 2010 IEEE Conference on. 

Guo, W., Xu, C., Ma, S., & Huang, S. (2010). Hausdorff matching based SVD-covariance descriptor for 
object tracking. Paper presented at the Proceedings of the Second International Conference 
on Internet Multimedia Computing and Service, Harbin, China.  

Güsgen, H. W. (1989). Spatial reasoning based on Allen's temporal logic: International Computer Science 
Institute. 

Haller, M., Krutz, A., & Sikora, T. (2009, 6-8 May 2009). Evaluation of pixel- and motion vector-based 
global motion estimation for camera motion characterization. Paper presented at the Image Analysis 
for Multimedia Interactive Services, 2009. WIAMIS '09. 10th Workshop on. 

Hameed, A. (2009, 19-20 Oct. 2009). A novel framework of shot boundary detection for uncompressed videos. 
Paper presented at the Emerging Technologies, 2009. ICET 2009. International 
Conference on. 

Han, J., Kamber, M., & Pei, J. (2011). Data mining: concepts and techniques: Morgan Kaufmann Pub. 
Harikrishna, N., Satheesh, S., Sriram, S. D., & Easwarakumar, K. S. (2011, 28-30 Jan. 2011). 

Temporal classification of events in cricket videos. Paper presented at the Communications (NCC), 
2011 National Conference on. 

Haskell, B. G., Puri, A., Netravali, A. N., & Langdon, G. G. (1998). Digital video: an introduction 
to MPEG-2. Journal of Electronic Imaging, 7(1), 265-266.  

Heejun, H., & Jaesoo, K. (2011, 19-21 Oct. 2011). An useful method for scene categorization from new video 
using visual features. Paper presented at the Nature and Biologically Inspired Computing 
(NaBIC), 2011 Third World Congress on. 

Heuer, J., Hutter, A., & Niedermeier, U. (2010). Method for improving the functionality of the 
binary representation of MPEG-7 and other XML based content descriptions: Google 
Patents. 

Höffernig, M., Hausenblas, M., Bailer, W., & Troncy, R. (2010). VAMP: Semantic Validation of 
MPEG-7 Profiles.  

Hu, W. C., & Hsu, J. F. (2011). Foreground extraction-based video object segmentation using 
motion information and gradient compensation. International Journal of Innovative Computing, 
Information and Control, 7(8), 4849-4859.  

Hua, X. S., & Zhang, H. J. (2009). Automatic Home Video Editing. Multimedia Content Analysis, 1-
35.  

Huang, Q., Ostermann, J., Puri, A., & Rajendran, R. K. (2009). Synthetic Audiovisual Description 
Scheme, Method and System for MPEG-7: US Patent App. 20,100/106,722. 

Huang, S. N., & Zhang, Z. Y. (2010). Scene detection in videos using mutual information. Applied 
Mechanics and Materials, 34, 920-926.  

192 
 

http://www.techradar.com/news/television/youview-we-welcome-google-tv-competition-1005658
http://www.techradar.com/news/television/youview-we-welcome-google-tv-competition-1005658
http://www.techradar.com/news/television/virgin-tv-anywhere-officially-outed-arriving-autumn-2012-1095475
http://www.techradar.com/news/television/virgin-tv-anywhere-officially-outed-arriving-autumn-2012-1095475
http://www.dtg.org.uk/news/news.php?id=2092
http://www.dtg.org.uk/news/news.php?id=1674


Huang, Y.-F., & Tung, L.-H. (2010). Semantic scene detection system for baseball videos based on the MPEG-
7 specification. Paper presented at the Proceedings of the 2010 ACM Symposium on Applied 
Computing, Sierre, Switzerland.  

Hui, C., & Cuihua, L. (2010, 9-11 July 2010). A practical method for video scene segmentation. Paper 
presented at the Computer Science and Information Technology (ICCSIT), 2010 3rd 
IEEE International Conference on. 

Humax. (2008). Freesat+ launches with humax foxsat-hdr in November 2008  Retrieved 28.09.12, 
2012, from http://www.humaxdigital.com/freesat/press_081023.asp 

Hunter, J. (2005). Adding multimedia to the Semantic Web-Building and applying an MPEG-7 ontology: 
Wiley. 

Hunter, J., & Iannella, R. (2009). The application of metadata standards to video indexing. Research 
and Advanced Technology for Digital Libraries, 514-514.  

Inigo, S. A., & Suresh, P. (2012). General Study on Moving Object Segmentation Methods for 
Video. International Journal of Advanced Research in Computer Engineering & Technology 
(IJARCET), 1(8), pp: 265-270.  

. IPTC News Exchange Format Standards. (2014), 2014, from 
http://www.iptc.org/site/News_Exchange_Formats/ 

Jacobs, A., Miene, A., Ioannidis, G., & Herzog, O. (2004). Automatic shot boundary detection combining 
color, edge, and motion features of adjacent frames. Paper presented at the TRECVID 2004 
Workshop Notebook Papers. 

Jacobs, A., Miene, A., Ioannidis, G., & Herzog, O. (2004). Automatic shot boundary detection combining 
color, edge, and motion features of adjacent frames. 

Jiang, Y.-G., Zeng, X., & Ye, G. (2010). Columbia-UCF TRECVID2010 Multimedia Event Detection: 
Combining Multiple Modalities, Contextual Concepts, and Temporal Matching. Paper presented at 
the NIST TRECVID Workshop. 

Kaleka, J. S., Singh, J., & Sharma, R. (2012). Different Approaches of CBIR Techniques. 
INTERNATIONAL JOURNAL OF COMPUTERS & DISTRIBUTED SYSTEMS, 1(2), 
76-78.  

Kang, J.-H., Kim, C.-S., & Ko, E.-J. (2003). An XQuery engine for digital library systems. Paper 
presented at the Proceedings of the 3rd ACM/IEEE-CS joint conference on Digital 
libraries, Houston, Texas.  

Kannan, R., Andres, F., & Guetl, C. (2010). DanVideo: an MPEG-7 authoring and retrieval system 
for dance videos. Multimedia Tools and Applications, 46(2-3), 545-572. doi: 10.1007/s11042-
009-0388-3 

Khatoonabadi, S. H., & Bajic, I. V. (2013). Video Object Tracking in the Compressed Domain 
Using Spatio-Temporal Markov Random Fields. Image Processing, IEEE Transactions on, 
22(1), 300-313. doi: 10.1109/tip.2012.2214049 

Koprinska, I., & Carrato, S. (2001). Temporal video segmentation: A survey. Signal Processing: Image 
Communication, 16(5), 477-500.  

Kristensen, F., Nilsson, P., & Öwall, V. (2006). Background segmentation beyond RGB. Computer 
Vision–ACCV 2006, 602-612.  

Krulikovska, L., Pavlovic, J., Polec, J., & Cernekova, Z. (2010, 15-17 Sept. 2010). Abrupt cut detection 
based on mutual information and motion prediction. Paper presented at the ELMAR, 2010 
PROCEEDINGS. 

Küçüktunç, O., Güdükbay, U., & Ulusoy, Ö. (2010). Fuzzy color histogram-based video 
segmentation. Computer Vision and Image Understanding, 114(1), 125-134. doi: 
10.1016/j.cviu.2009.09.008 

Ladický, Ľ., Sturgess, P., Alahari, K., Russell, C., & Torr, P. (2010). What, Where and How Many? 
Combining Object Detectors and CRFs. Paper presented at the Computer Vision – ECCV 2010. 
http://dx.doi.org/10.1007/978-3-642-15561-1_31 

193 
 

http://www.humaxdigital.com/freesat/press_081023.asp
http://www.iptc.org/site/News_Exchange_Formats/
http://dx.doi.org/10.1007/978-3-642-15561-1_31


Lavee, G., Rivlin, E., & Rudzsky, M. (2009). Understanding Video Events: A Survey of Methods 
for Automatic Interpretation of Semantic Occurrences in Video. Systems, Man, and 
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 39(5), 489-504. doi: 
10.1109/tsmcc.2009.2023380 

Lawrence, E., Newton, S., Corbitt, B., Lawrence, J., Dann, S., & Thanasankit, T. (2012). Internet 
commerce: digital models for business: John Wiley & Sons. 

LawTo, J., Gauvain, J. L., Lamel, L., Grefenstete, G., Gravier, G., Despres, J., . . . Sebillot, P. 
(2011). A Scalable Video Search Engine Based on Audio Content Indexing and Topic 
Segmentation. arXiv preprint arXiv:1111.6265.  

Lezama, J., Alahari, K., Sivic, J., & Laptev, I. (2011, 20-25 June 2011). Track to the future: Spatio-
temporal video segmentation with long-range motion cues. Paper presented at the Computer Vision 
and Pattern Recognition (CVPR), 2011 IEEE Conference on. 

Li, H., & Ngan, K. N. (2011). Image/Video Segmentation: Current Status, Trends, and Challenges 
Video Segmentation and Its Applications. In K. N. Ngan & H. Li (Eds.), (pp. 1-23): 
Springer New York. 

Li, J., Ding, Y., Shi, Y., & Li, W. (2010). A divide-and-rule scheme for shot boundary detection 
based on sift. International Journal of Digital Content Technology and its Applications, 4(3), 202-214.  

Li, S. B., Wang, L. F., & Wang, J. L. (2010). Video Segmentation Method Based on Film Script and 
Subtitle Information. Computer Engineering, 15, 077.  

Li, W., Chen, T., Zhang, W., Shi, Y., & Li, J. (2012, May 1, 2012). Music video shot segmentation using 
independent component analysis and keyframe extraction based on image complexity. Paper presented at 
the Proc. SPIE 8334, Fourth International Conference on Digital Image Processing 
(ICDIP 2012), Kuala Lumpur, Malaysia. 

Lienhart, R. (2001). Reliable transition detection in videos: A survey and practitioner's guide. 
International Journal of Image and Graphics, 1(03), 469-486.  

Lin, G., Zhu, H., Fan, C., & Zhang, E. (2011). Object segmentation based on guided layering from 
video image. Optical Engineering, 50(9), 097006-097006. doi: 10.1117/1.3625415 

Liu, L., Chen, R., Wolf, L., & Cohen-Or, D. (2010). Optimizing Photo Composition. Paper presented at 
the Computer Graphics Forum, 2010. 

Liu, Z., Shen, H., Feng, G., & Hu, D. (2012). Tracking objects using shape context matching. 
Neurocomputing, 83(0), 47-55. doi: http://dx.doi.org/10.1016/j.neucom.2011.11.012 

Luan, H., Zheng, Y.-T., Wang, M., & Chua, T.-S. (2011). VisionGo: Towards video retrieval with 
joint exploration of human and computer. Information Sciences, 181(19), 4197-4213. doi: 
http://dx.doi.org/10.1016/j.ins.2011.05.018 

Ma, C., Yu, J., & Huang, B. (2012). A Rapid and Robust Method for Shot Boundary Detection and 
Classification in Uncompressed MPEG Video Sequences. Computer Science Issues, International 
Journal of  (IJCSI), 5(2), 368-374.  

Ma, Y., & Chen, Q. (2010). Stereo-Based Object Segmentation Combining Spatio-Temporal 
Information. In G. Bebis, R. Boyle, B. Parvin, D. Koracin, R. Chung, R. Hammound, M. 
Hussain, T. Kar-Han, R. Crawfis, D. Thalmann, D. Kao & L. Avila (Eds.), Advances in 
Visual Computing (Vol. 6455, pp. 229-238): Springer Berlin / Heidelberg. 

Mahesh, K., & Kuppusamy, K. (2012). Video Segmentation using Hybrid Segmentation Method. 
European Journal of Scientific Research, ISSN, 312-326.  

Manjunath, B., Salembier, P., & Sikora, T. (2002). Introduction to MPEG-7: multimedia content description 
interface (Vol. 1): John Wiley & Sons Inc. 

Marghitu, D. B. (2012, 9th October 2012). Centroids and centre of mass  Retrieved 9th October, 
2012, from http://www.eng.auburn.edu/users/marghdb/MECH2110/C_3.pdf 

Mezaris, V., Papadopoulos, G. T., Briassouli, A., Kompatsiaris, I., & Strintzis, M. G. (2009). 
Semantic Video Analysis and Understanding. chapter in “Encyclopedia of Information Science and 
Technology”, Second Edition, Mehdi Khosrow-Pour.  

194 
 

http://dx.doi.org/10.1016/j.neucom.2011.11.012
http://dx.doi.org/10.1016/j.ins.2011.05.018
http://www.eng.auburn.edu/users/marghdb/MECH2110/C_3.pdf


Mezaris, V., Sidiropoulos, P., Dimou, A., & Kompatsiaris, I. (2010). On the use of visual soft semantics 
for video temporal decomposition to scenes. Paper presented at the Proc. Forth IEEE Int. Conf. on 
Semantic Computing (ICSC 2010). 

Microsoft. (2013, 2013). SkyDrive  Retrieved February 20th, 2013, from https://skydrive.live.com/ 
Mika, P., & Greaves, M. (2012). Editorial: Semantic Web & Web 2.0. Web Semantics: Science, Services 

and Agents on the World Wide Web, 6(1).  
Minter, R. (1999, 15.11.1999). QVC launches interactive shopping channel  Retrieved 02.08.2012, 

2012, from http://www.campaignlive.co.uk/news/31797/ 
Mitrović, D., Hartlieb, S., Zeppelzauer, M., & Zaharieva, M. (2010). Scene Segmentation in Artistic 

Archive Documentaries. In G. Leitner, M. Hitz & A. Holzinger (Eds.), HCI in Work and 
Learning, Life and Leisure (Vol. 6389, pp. 400-410): Springer Berlin / Heidelberg. 

Moens, M. F., Poulisse, G. J., & VRT, M. M. (2012). State of the art on semantic retrieval of AV 
content beyond text resources.  

Mohanta, P. P., Saha, S. K., & Chanda, B. (2010). A heuristic algorithm for video scene detection using shot 
cluster sequence analysis. Paper presented at the Proceedings of the Seventh Indian Conference 
on Computer Vision, Graphics and Image Processing, Chennai, India.  

Mohanta, P. P., Saha, S. K., & Chanda, B. (2012). A Model-Based Shot Boundary Detection 
Technique Using Frame Transition Parameters. Multimedia, IEEE Transactions on, 14(1), 
223-233. doi: 10.1109/tmm.2011.2170963 

Money, A. G., & Agius, H. (2008). Video summarisation: A conceptual framework and survey of 
the state of the art. J. Vis. Comun. Image Represent., 19(2), 121-143. doi: 
10.1016/j.jvcir.2007.04.002 

MPEG. (2010, 2010). Information technology -- Multimedia content description interface -- Part 3: 
Visual ISO/IEC 15938-3. 2013, from 
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=3423
0 

MPEG. (2012a, 2012). Information technology -- Multimedia content description interface -- Part 
5: Multimedia Description Schemes ISO/IEC 15938-5. 2013, from 
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=3423
2 

MPEG. (2012b). Information technology -- Multimedia content description interface -- Part 12: 
Query format. ISO/IEC 15938 ISO/IEC 15938-12:2012. from 
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=
61195 

Noma, A., Graciano, A. B. V., Cesar Jr, R. M., Consularo, L. A., & Bloch, I. (2012). Interactive 
image segmentation by matching attributed relational graphs. Pattern Recognition, 45(3), 
1159-1179. doi: http://dx.doi.org/10.1016/j.patcog.2011.08.017 

Ochs, P., & Brox, T. (2011, 6-13 Nov. 2011). Object segmentation in video: A hierarchical variational 
approach for turning point trajectories into dense regions. Paper presented at the Computer Vision 
(ICCV), 2011 IEEE International Conference on. 

Ohm, J.-R., Cieplinski, L., Kim, H. J., Krishnamachari, S., Manjunath, B., Messing, D. S., & 
Yamada, A. (2003). The MPEG-7 Color Descriptors.  

Parmar, M., & Angelides, M. (2010). Automatic Feature Extraction to an MPEG-7 Content Model. 
Advances in Semantic Media Adaptation and Personalization, 2, 399.  

Parmar, M. J. (2007). Automatic feature extraction to COSMOS-7 content models. Paper presented at the 
Semantic Media Adaptation and Personalization, Second International Workshop on. 

Parmar, M. J., & Angelides, M. C. (2005). Multimedia Information Filtering. 
Parmar, M. J., & Angelides, M. C. (2007). XML-based Genetic Rules for Scene Boundary 

Detection in a parallel processing environment. Retrieved from  
doi:http://bura.brunel.ac.uk/handle/2438/601 

195 
 

http://www.campaignlive.co.uk/news/31797/
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=34230
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=34230
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=34232
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=34232
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=61195
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=61195
http://dx.doi.org/10.1016/j.patcog.2011.08.017
http://bura.brunel.ac.uk/handle/2438/601


Porikli, F., Bashir, F., & Huifang, S. (2010). Compressed Domain Video Object Segmentation. 
Circuits and Systems for Video Technology, IEEE Transactions on, 20(1), 2-14. doi: 
10.1109/tcsvt.2009.2020253 

Poulisse, G.-J., Patsis, Y., & Moens, M.-F. (2012). Unsupervised scene detection and commentator 
building using multi-modal chains. Multimedia Tools and Applications, 1-17. doi: 
10.1007/s11042-012-1086-0 

Quan, Z., & Zhiwei, Z. (2011, 16-18 April 2011). An MPEG-7 compatible video retrieval system with 
support for semantic queries. Paper presented at the Consumer Electronics, Communications 
and Networks (CECNet), 2011 International Conference on. 

Ren, W., Singh, S., Singh, M., & Zhu, Y. S. (2009). State-of-the-art on spatio-temporal information-
based video retrieval. Pattern Recognition, 42(2), 267-282. doi: 10.1016/j.patcog.2008.08.033 

Rey-López, M., Fernández-Vilas, A., Díaz-Redondo, R. P., López-Nores, M., Pazos-Arias, J. J., 
Gil-Solla, A., . . . García-Duque, J. (2010). Enhancing TV programmes with additional 
contents using MPEG-7 segmentation information. Expert Systems with Applications, 37(2), 
1124-1133.  

Richardson, I. (2010). The H. 264 advanced video compression standard: Wiley. 
Rosman, B., & Ramamoorthy, S. (2011). Learning spatial relationships between objects. The 

International Journal of Robotics Research, 30(11), 1328-1342.  
Ryoo, M. S., & Aggarwal, J. K. (2009, Sept. 29 2009-Oct. 2 2009). Spatio-temporal relationship match: 

Video structure comparison for recognition of complex human activities. Paper presented at the 
Computer Vision, 2009 IEEE 12th International Conference on. 

Ryoo, M. S., Lee, J. T., & Aggarwal, J. K. (2010). Video scene analysis of interactions between humans and 
vehicles using event context. Paper presented at the Proceedings of the ACM International 
Conference on Image and Video Retrieval, Xi'an, China.  

Sakarya, U., & Telatar, Z. (2010). Video scene detection using graph-based representations. Signal 
Processing: Image Communication, 25(10), 774-783. doi: 
http://dx.doi.org/10.1016/j.image.2010.10.001 

Sakarya, U., Telatar, Z., & Alatan, A. A. (2012). Dominant sets based movie scene detection. Signal 
Processing, 92(1), 107-119. doi: http://dx.doi.org/10.1016/j.sigpro.2011.06.010 

Sang, J., & Xu, C. (2010). Character-based movie summarization. Paper presented at the Proceedings of 
the international conference on Multimedia, Firenze, Italy.  

Sarmiento, A. S., & Lopez, E. M. (2012). Multimedia Services and Streaming for Mobile Devices: Challenges 
and Innovation: Information Science Reference. 

Scott, K. (2012). BSkyB to launch pay-as-you-go IPTV service called Now TV  Retrieved 21.08.12, 
2012, from http://www.wired.co.uk/news/archive/2012-03/21/bskyb-launching-now-tv 

Seeling, P. (2010). Scene Change Detection for Uncompressed Video. In M. Iskander, V. Kapila & 
M. A. Karim (Eds.), Technological Developments in Education and Automation (pp. 11-14): 
Springer Netherlands. 

Seidl, M., Zeppelzauer, M., & Breiteneder, C. (2010). A study of gradual transition detection in historic film 
material. Paper presented at the Proceedings of the second workshop on eHeritage and 
digital art preservation, Firenze, Italy.  

Seung-Bo, P., Heung-Nam, K., Hyunsik, K., & Geun-Sik, J. (2010, 13-15 Dec. 2010). Exploiting 
Script-Subtitles Alignment to Scene Boundary Dectection in Movie. Paper presented at the 
Multimedia (ISM), 2010 IEEE International Symposium on. 

Shao, L., Ji, L., Liu, Y., & Zhang, J. (2012). Human action segmentation and recognition via 
motion and shape analysis. Pattern Recognition Letters, 33(4), 438-445. doi: 
http://dx.doi.org/10.1016/j.patrec.2011.05.015 

Sharir, G., & Tuytelaars, T. (2012, 16-21 June 2012). Video object proposals. Paper presented at the 
Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer 
Society Conference on. 

196 
 

http://dx.doi.org/10.1016/j.image.2010.10.001
http://dx.doi.org/10.1016/j.sigpro.2011.06.010
http://www.wired.co.uk/news/archive/2012-03/21/bskyb-launching-now-tv
http://dx.doi.org/10.1016/j.patrec.2011.05.015


Sharmila Kumari, M., & Shekar, B. H. (2010, February 2010). Color-SIFT model: a robust and an 
accurate shot boundary detection algorithm. Paper presented at the Second International 
Conference on Digital Image Processing, Singapore, Singapore. 

Sidiropoulos, P., Mezaris, V., Kompatsiaris, I., Meinedo, H., Bugalho, M., & Trancoso, I. (2011). 
Temporal Video Segmentation to Scenes Using High-Level Audiovisual Features. Circuits 
and Systems for Video Technology, IEEE Transactions on, 21(8), 1163-1177. doi: 
10.1109/tcsvt.2011.2138830 

Singhai, N., & Shandilya, S. K. (2010). A Survey On:“Content Based Image Retrieval Systems”. 
International Journal of Computer Applications IJCA, 4(2), 22-26.  

Smeaton, A. F., Over, P., & Doherty, A. R. (2010). Video shot boundary detection: Seven years of 
TRECVid activity. Computer Vision and Image Understanding, 114(4), 411-418.  

Snoek, C. G. M., & Worring, M. (2009). Concept-Based Video Retrieval. Found. Trends Inf. Retr., 
2(4), 215-322. doi: 10.1561/1500000014 

Sofokleous, A. A., & Angelides, M. C. (2008). DCAF: an MPEG-21 dynamic content adaptation 
framework. Multimedia Tools and Applications, 40(2), 151-182.  

Su, X., Bailan, F., Peng, D., & Bo, X. (2012, 25-30 March 2012). Graph-based multi-modal scene detection 
for movie and teleplay. Paper presented at the Acoustics, Speech and Signal Processing 
(ICASSP), 2012 IEEE International Conference on. 

Subudhi, B. N., Nanda, P. K., & Ghosh, A. (2011). Moving objects detection from video sequences using 
fuzzy edge incorporated Markov random field modeling and local histogram matching. Paper presented 
at the Proceedings of the 4th international conference on Pattern recognition and machine 
intelligence, Moscow, Russia.  

SugarSync. (2013). SugarSync  Retrieved February 20th, 2013, from https://www.sugarsync.com/ 
Tang, A., & Boring, S. (2012). #EpicPlay: crowd-sourcing sports video highlights. Paper presented at the 

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 
Austin, Texas, USA.  

Tapu, R., & Zaharia, T. (2011). High Level Video Temporal Segmentation. Advances in Visual 
Computing, 6938, 224-235. doi: 10.1007/978-3-642-24028-7_21 

Tapu, R., & Zaharia, T. (2011). Video Segmentation and Structuring for Indexing Applications. 
International Journal of Multimedia Data Engineering and Management (IJMDEM), 2(4), 38-58.  

Tian, Z., Xue, J., Lan, X., Li, C., & Zheng, N. (2011). Key object-based static video summarization. Paper 
presented at the Proceedings of the 19th ACM international conference on Multimedia, 
Scottsdale, Arizona, USA.  

Tjondronegoro, D. W., & Chen, Y. P. P. (2010). Knowledge-Discounted Event Detection in 
Sports Video. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 
40(5), 1009-1024. doi: 10.1109/tsmca.2010.2046729 

Torres, R. S., Falcão, A. X., Gonçalves, M. A., Papa, J. P., Zhang, B., Fan, W., & Fox, E. A. (2009). 
A genetic programming framework for content-based image retrieval. Pattern Recognition, 
42(2), 283-292.  

Troncy, R., Bailer, W., Höffernig, M., & Hausenblas, M. (2010). VAMP: a service for validating 
MPEG-7 descriptions w.r.t. to formal profile definitions. Multimedia Tools and Applications, 
46(2-3), 307-329. doi: 10.1007/s11042-009-0397-2 

Tryon, C. (2012). ‘Make any room your TV room’: digital delivery and media mobility. Screen, 53(3), 
287-300.  

Tsao, H. H. (2011). DCT Based Fast Object Detection and Segmentation Design for Compressed Video and 
Implementation on Embedded System. Master, National Yunlin University of Science and 
Technology, Douliu City, Yunlin County, Taiwan. Retrieved from 
http://ethesys.yuntech.edu.tw/ETD-db/ETD-search/getfile?URN=etd-0819111-
142117&filename=etd-0819111-142117.pdf   

Tsinaraki, C., & Christodoulakis, S. (2011). Domain Knowledge Representation in Semantic 
MPEG 7 Descriptions. The Handbook of MPEG Applications, 293-316.  

197 
 

http://www.sugarsync.com/
http://ethesys.yuntech.edu.tw/ETD-db/ETD-search/getfile?URN=etd-0819111-142117&filename=etd-0819111-142117.pdf
http://ethesys.yuntech.edu.tw/ETD-db/ETD-search/getfile?URN=etd-0819111-142117&filename=etd-0819111-142117.pdf


Tsinaraki, C., Polydoros, P., & Christodoulakis, S. (2004). Integration of OWL ontologies in MPEG-7 
and TV-Anytime compliant Semantic Indexing. Paper presented at the Advanced Information 
Systems Engineering. 

Tsingalis, I., Vretos, N., Nikolaidis, N., & Pitas, I. (2012, 25-28 March 2012). Anthropocentric 
descriptors and description schemes for multi-view video content. Paper presented at the 
Electrotechnical Conference (MELECON), 2012 16th IEEE Mediterranean. 

Tuzel, O., Porikli, F., & Meer, P. (2006). Region Covariance: A Fast Descriptor for Detection and 
Classification. In A. Leonardis, H. Bischof & A. Pinz (Eds.), Computer Vision – ECCV 2006 
(Vol. 3952, pp. 589-600): Springer Berlin Heidelberg. 

Van den Bergh, M., & Van Gool, L. (2012, 9-11 Jan. 2012). Real-time stereo and flow-based video 
segmentation with superpixels. Paper presented at the Applications of Computer Vision 
(WACV), 2012 IEEE Workshop on. 

Vazquez-Reina, A., Avidan, S., Pfister, H., & Miller, E. (2010). Multiple Hypothesis Video 
Segmentation from Superpixel Flows. Computer Vision – ECCV 2010, 6315, 268-281. doi: 
10.1007/978-3-642-15555-0_20 

Ventura, C., Martos, M., Giró-i-Nieto, X., Vilaplana, V., & Marqués, F. (2012). Hierarchical 
Navigation and Visual Search for Video Keyframe Retrieval. In K. Schoeffmann, B. 
Merialdo, A. Hauptmann, C.-W. Ngo, Y. Andreopoulos & C. Breiteneder (Eds.), Advances 
in Multimedia Modeling (Vol. 7131, pp. 652-654): Springer Berlin Heidelberg. 

Vijayakumar, V., & Nedunchezhian, R. (2012). A study on video data mining. International Journal of 
Multimedia Information Retrieval, 1(3), 153-172. doi: 10.1007/s13735-012-0016-2 

Visser, A. (2011). On the ambiguation of Polish notation. Theoretical Computer Science.  
Vrochidis, S., Moumtzidou, A., King, P., Dimou, A., Mezaris, V., & Kompatsiaris, I. (2010, 23-25 

June 2010). VERGE: A video interactive retrieval engine. Paper presented at the Content-Based 
Multimedia Indexing (CBMI), 2010 International Workshop on. 

W3C. (2007, 14/08/2007). MPEG-7 and the Semantic Web  Retrieved 24/05/13, 2013, from 
http://www.w3.org/2005/Incubator/mmsem/XGR-mpeg7/#conclusions 

W.S. Anderson, P. (2004, 22/10/2004). AVP: Alien vs. Predator, from 
http://www.imdb.com/title/tt0370263/ 

Wang, H. H., Mohamad, D., & Ismail, N. (2010). Semantic Gap in CBIR: Automatic Objects 
Spatial Relationships Semantic Extraction and Representation. International Journal Of Image 
Processing (IJIP), 4(3), 192.  

Weiming, H., Nianhua, X., Li, L., Xianglin, Z., & Maybank, S. (2011). A Survey on Visual Content-
Based Video Indexing and Retrieval. Systems, Man, and Cybernetics, Part C: Applications and 
Reviews, IEEE Transactions on, 41(6), 797-819. doi: 10.1109/tsmcc.2011.2109710 

Westland, S., Laycock, K., Cheung, V., Henry, P., & Mahyar, F. (2012). Colour harmony. JAIC-
Journal of the International Colour Association, 1.  

Which? (2009). Virgin Media V+ HD review Retrieved 04.10.12, 2012, from 
http://www.which.co.uk/technology/tv-and-dvd/reviews/pvrs/virgin-media-v--
hd/review/ 

Williams, C. (2006). BT Vision is go  Retrieved 04.07.2012, 2012, from 
http://www.theregister.co.uk/2006/12/04/bt_vision_launch/ 

Wilson, K. W., Divakaran, A., Niu, F., Goela, N., & Otsuka, I. (2010). Method for detecting scene 
boundaries in genre independent videos: Google Patents. 

Wolf, M., & Wicksteed, C. (1998). Date and time formats. W3C NOTE NOTE-datetime-19980827, 
August.  

Wollborn, M. (2010). USA Patent No. 7697613. Google Patents: U. S. Patents. 
Wu, J., Liu, Y., Wang, J., & Cai, X. (2012, 16-19 July 2012). A geographic information based video 

segmentation method. Paper presented at the System of Systems Engineering (SoSE), 2012 7th 
International Conference on. 

198 
 

http://www.w3.org/2005/Incubator/mmsem/XGR-mpeg7/%23conclusions
http://www.imdb.com/title/tt0370263/
http://www.which.co.uk/technology/tv-and-dvd/reviews/pvrs/virgin-media-v--hd/review/
http://www.which.co.uk/technology/tv-and-dvd/reviews/pvrs/virgin-media-v--hd/review/
http://www.theregister.co.uk/2006/12/04/bt_vision_launch/


Xu, W., & Xu, L. (2010, 16-18 April 2010). A novel shot detection algorithm based on graph theory. Paper 
presented at the Computer Engineering and Technology (ICCET), 2010 2nd International 
Conference on. 

Xue, L., Li, C., Wu, Y., & Xiong, Z. (2009a). VeXQuery: an XQuery extension for MPEG-7 
vector-based feature query Advanced Internet Based Systems and Applications (pp. 34-43): 
Springer. 

Xue, L., Li, C., Wu, Y., & Xiong, Z. (2009b). VeXQuery: An XQuery Extension for MPEG-7 
Vector-Based Feature Query. In E. Damiani, K. Yetongnon, R. Chbeir & A. Dipanda 
(Eds.), Advanced Internet Based Systems and Applications (Vol. 4879, pp. 34-43): Springer Berlin 
/ Heidelberg. 

Yongquan, X., Weili, L., & Shaohui, N. (2009, 7-8 Nov. 2009). A Simple and Fast Segmentation 
Approach for Sport Scene Images. Paper presented at the Artificial Intelligence and 
Computational Intelligence, 2009. AICI '09. International Conference on. 

Zajić, G. J., Reljin, I. S., & Reljin, B. D. (2011). Video Shot Boundary Detection based on 
Multifractal Analisys. Telfor Journal, 3(2), 105-110.  

Zavřel, V., Batko, M., & Zezula, P. (2010). Visual video retrieval system using MPEG-7 descriptors. Paper 
presented at the Proceedings of the Third International Conference on SImilarity Search 
and APplications, Istanbul, Turkey.  

Zeng, X., Zhang, X., Hu, W., & Li, W. (2010). Video Scene Segmentation Using Time Constraint 
Dominant-Set Clustering. In S. Boll, Q. Tian, L. Zhang, Z. Zhang & Y.-P. Chen (Eds.), 
Advances in Multimedia Modeling (Vol. 5916, pp. 637-643): Springer Berlin / Heidelberg. 

Zhenyu, Y., & Zhiping, L. (2012, 18-20 July 2012). Scene change detection using motion vectors and dc 
components of prediction residual in H.264 compressed videos. Paper presented at the Industrial 
Electronics and Applications (ICIEA), 2012 7th IEEE Conference on. 

Zhu, Q., Xie, Y., Gu, J., & Wang, L. (2012). A New Video Object Segmentation Algorithm by 
Fusion of Spatio-temporal Information Based on GMM Learning. In G. Lee (Ed.), 
Advances in Automation and Robotics, Vol. 2 (Vol. 123, pp. 641-650): Springer Berlin 
Heidelberg. 

Zhu, S., & Guo, Z. (2012, 23-25 Aug. 2012). An Overview of Video Object Segmentation. Paper 
presented at the Industrial Control and Electronics Engineering (ICICEE), 2012 
International Conference on. 

Zhu, S., & Liang, Z. (2011). Semantic scene segmentation for advanced story retrieval. Information 
Technology Journal, 10(1), 98-105.  

 

 

199 
 


	Abstract
	Preface
	Acknowledgements
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF PUBLICATIONS
	Chapter 1: Content Feature Extraction and Modelling
	1.1 Introduction
	1.2 Research Direction
	1.3 Literature Review
	1.3.1 Raw Media
	1.3.2 Syntactic Extraction
	1.3.2.1 Syntactic Media
	1.3.2.2 Syntactic Temporal segmentation
	1.3.2.3 Semantic Temporal Segmentation
	1.3.2.4 Spatiotemporal segmentation

	1.3.3 Semantic Relationships
	1.3.3.1 Spatial Relationships
	1.3.3.2 Temporal Relationships

	1.3.4 Content Modelling
	1.3.4.1 Modelled Features
	1.3.4.2 Content Modelling Applications
	1.3.4.3 Content Modelling Tools


	1.4 Common research threads and challenges
	1.5 Literature Review Discussion
	1.6  Research aims, objectives and modelling techniques
	1.7 Theses Outline

	Chapter 2: THE MAC-REALM Framework
	2.1 MAC-REALM Framework
	2.2 Automated feature extraction
	2.3 Content Modelling
	2.4 Design Requirements for MAC-REALM
	2.5 MAC-REALM Architecture
	2.6 MAC Layers
	2.6.1 Content Layer
	2.6.2 Application Layer
	2.6.3 MPEG-7

	2.7 REALM Planes
	2.7.1 Raw media
	2.7.2 Extraction of syntactic features
	2.7.2.1 Shot extraction
	2.7.2.2 Object extraction
	2.7.2.3 Scene extraction

	2.7.3 Analysis and Linkage of semantic relationships
	2.7.3.1 Spatial relationships
	2.7.3.2 Temporal relationships

	2.7.4 Modelling

	2.8 Summary

	Chapter 3: Prototyping MAC-REALM
	3.1 MAC-REALM Framework
	3.2 Raw media plane
	3.3 Extraction plane
	3.3.1 Syntactic Media
	3.3.2 Syntactic Feature extraction
	3.3.2.1 Shot Extraction
	3.3.2.2 Object Extraction
	3.3.2.3 Scene Extraction

	3.3.3 Syntactic Modelling
	3.3.3.1 Scene and shot descriptions
	3.3.3.2 Object representation


	3.4 Analysis and Linkage plane
	3.4.1 Semantic Media
	3.4.2 Spatial and Temporal Mapping
	3.4.2.1 Spatial relationships
	Absolute spatial relationships
	Relative spatial relationships

	3.4.2.2 Temporal relationships

	3.4.3 Semantic Modelling
	3.4.3.1 Spatial relationships
	3.4.3.2 Temporal Relationships


	3.5 Modelling plane
	3.5.1 Syntactic Semantic Descriptions
	3.5.2 Content Modelling
	3.5.3 Model Media

	3.6 Summary

	Chapter 4: Evaluating MAC-REALM
	4.1 Walkthrough of MAC-REALM
	4.1.1 Raw Media Plane
	4.1.2 Extraction Plane
	4.1.3 Analysis and linkage Plane
	4.1.4 Modelling Plane

	4.2 Performance Evaluation
	4.2.1 Testbed
	4.2.2 Benchmark Tests
	4.2.2.1 Computational expense and improving accuracy of extraction
	4.2.2.2 Shot Boundary
	4.2.2.3 Object Detection
	4.2.2.4 Scene Detection
	4.2.2.5 Spatial relationships
	4.2.2.6 Temporal relationships
	4.2.2.7 Content modelling

	4.2.3 Results
	4.2.3.1 Shot Boundary detection
	4.2.3.2 Object Detection
	4.2.3.3 Scene detection
	4.2.3.4 Spatial relationships
	4.2.3.5 Temporal relationships
	4.2.3.6 Content Modelling


	4.3 Discussion of MAC-REALM Framework
	4.4 Summary

	Chapter 5: Conclusion
	5.1 Thesis Overview
	5.2 Research contributions
	5.3 Further Research
	5.3.1 Concept detection and classification of semantic events and objects
	5.3.2 Crowd sourcing to extract semantic features


	References

