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Abstract 
 

Finance risk management has been playing an increasingly important role in the 

finance sector, to analyse finance data and to prevent any potential crisis. It has been 

widely recognised that Value at Risk (VaR) is an effective method for finance risk 

management and evaluation. 

 

This thesis conducts a comprehensive review on a number of VaR methods and 

discusses in depth their strengths and limitations. Among these VaR methods, Monte 

Carlo simulation and analysis has proven to be the most accurate VaR method in 

finance risk evaluation due to its strong modelling capabilities. However, one major 

challenge in Monte Carlo analysis is its high computing complexity of O(n²). 

 

To speed up the computation in Monte Carlo analysis, this thesis parallelises Monte 

Carlo using the MapReduce model, which has become a major software programming 

model in support of data intensive applications. MapReduce consists of two functions 

- Map and Reduce. The Map function segments a large data set into small data chunks 

and distribute these data chunks among a number of computers for processing in 

parallel with a Mapper processing a data chunk on a computing node. The Reduce 

function collects the results generated by these Map nodes (Mappers) and generates 

an output. The parallel Monte Carlo is evaluated initially in a small scale MapReduce 

experimental environment, and subsequently evaluated in a large scale simulation 

environment. Both experimental and simulation results show that the MapReduce 

based parallel Monte Carlo is greatly faster than the sequential Monte Carlo in 

computation, and the accuracy level is maintained as well. 

 

In data intensive applications, moving huge volumes of data among the computing 

nodes could incur high overhead in communication. To address this issue, this thesis 

further considers data locality in the MapReduce based parallel Monte Carlo, and 

evaluates the impacts of data locality on the performance in computation. 
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Chapter 1: Introduction 

1.1 Background 

 

Financial risk means that there are possibilities that investors can lose money during 

their economic activities. The common financial risks include credit risk, liquidity 

risk, market risk and operational risk [1]. The credit risk means that the debtor cannot 

repay the debt principal and interest, so that creditors may be economic losses. For 

example, the financial crisis in 2008 was caused by credit risks. The liquidity risk 

refers to the economic entities such as firm loss due to the uncertain changes of the 

financial liquidity of the assets such as cash flow break. The market risk means the 

potential losses caused by changes of market factors such as stock market prices, 

interest rates, exchange rates and other changes in value [1]. The operational risk is 

the risk of loss which resulted by internal processes, people or systems’ mistakes [2], 

or other external operations and relevant events.  

 

Financial risks cannot be eliminated, but can be controlled. The control approach is 

the financial risk management, which means controlling the possible loss undertaken 

within the limits in the market economic activities. The famous financial risk 

management method is Value-at-Risk (VaR)[2],which focuses on the hidden risks and 

potential losses. Furthermore, the VaR includes three elements: a preset level of loss, a 

fixed period of time which risk is evaluated and a confidence interval [2]. 
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There are three main approaches to measure the Value at Risk: the Variance-

Covariance method, the Historical Simulation and the Monte Carlo simulation [3]. 

The Variance-Covariance method originates a probability distribution of the hidden 

risky values through relative simple computing. The advantage of this method is 

simpleness. There have four steps be concerned when using this method to map the 

risks. First, it requires users to take each individual asset in portfolio and translate the 

asset to standardized instrument. Second, each asset is explained as set of position in 

the standardized instrument which was indicated in the step one. The third step is the 

key of the whole process while once the asset in portfolio had been identified in the 

standardized instrument and then the user has to assess the variances and covariance 

by searching historical data. The final step is computing the VaR by using the weights 

from the step two and the variances and covariance from the step three. Even the 

Variance-Covariance method is very simple to calculate, it has three weaknesses. First 

is the wring distributional supposition. This means if the returns distribution is 

abnormal and then the computed VaR will be much lower than the true VaR. Second 

is the input error. Even the distributional supposition is correct the result still possible 

be wrong due to used incorrect variances and covariance. Third is non-stationary 

variable. 

 

The historical simulation is a simple way to compute the VaR of numbers of portfolios 

by using the historical data of a specify asset in the portfolios. The wakness with the 
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historical simulation is the past performance doesn’t equal to the performance in 

future. In those three VaR approach the historical simulation is the most depend on 

historical data method. The second weakness is the historical data has its trend. In the 

historical simulation all data in the equal period of time are weighted equally during 

the process of computing VaR. but in difference historical time the data are influenced 

by various factors such as the price changes [3]. The third weakness of the historical 

simulation is difficult to compute the VaR for a new asset or a new market risk. 

 

 The Monte Carlo method bases on the theory of probability and statistics. Monte 

Carlo method is used widespread because of it can realistically simulate the 

characteristics of things and the physical experiments to solve problems which 

difficult to be done by numerical methods. In other words, the Monte Carlo 

simulation can be considered as huge random experiments which are used to compute 

the specific unknown result. 

 

1.2 Motivation 

 

As described above, the VaR approach has three common methods: the Variance-

Covariance method, the Historical simulation and the Monte Carlo simulation [2]. 

Although the VaR is a very famous tool in risk management, it has many limitations. 

Almost methods need using more or less historical data to compute the VaR. 

Comparing with other methods the Monte Carlo method is the only one that can 
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compute VaR without historical data. It bases on the theory of probability and 

statistics. So the Monte Carlo simulation depends on repeating random sampling and 

statistical analysis [4][5]. Simulating more iterations mean that the calculated value is 

more close to the true value [6].  In other words, more computations would lead to 

that the calculated probability of risk occurred is closer to the truth. On the other hand, 

more computations mean more time cost. The financial market is constantly changing, 

so it cannot provide real help for the decision-making process in a timely manner. In 

other words, spend less time to calculate the result which is inaccurate, but accurate 

result takes long time. 

 

The thesis focuses on speeding up the computation of Monte Carlo parallel by using 

MapReduce [78]. The computation of Monte Carlo is repeating the calculating 

process, so the simulation is very suitable for parallelization. The MapReduce is 

developed to compute large-scale data [84] in parallel environments. It uses Map and 

Reduce functions to process data. First, it divides large data files into file chunks 

(usually 16MB – 64MB) which are formatted in the <key, value> pairs [84]. Those 

chunks are used as input data and processed by the Map function which is built up by 

Mappers and running on many nodes. Comparing with large input file, the chunks 

will be processed very quickly because of those chunks are computed parallel by 

many nodes at the same time. Then those Mappers produce the intermediate data <key, 

value> pairs [84]. Those pairs will be identified and sorted in different groups by the 

same key and sent to the Reducers which are running on many nodes. Similar to the 
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Map function, those data also are parallel computed. At last, the result that is 

produced by each of Reducer will be mixed and added into the final output file. The 

time cost of using MapReduce to compute large-scale data is less than compute in 

normal way. The MapReduce model can work on a cluster or any other distributed 

systems which may contain a lot of various personal computers. Therefore, it is a 

good parallel computing platform.   

1.3 Major Contributions 

The major contributions of the thesis are summarized below. 

 The thesis reviews VaR methods and assesses their limitations. Each method 

of VaR has its own limitations which may lead to incorrect results. In some 

particular situations the computing errors may be large enough to lead to 

mistakes in user’s decision making process. Usually the VaR methods less 

concern the market risks during its computation process. That means the true 

values of risks are bigger than the computed VaR values.  

 

 It presents a MapReduce based parallel Monte Carlo algorithm. For a Monte 

Carlo job, a number of Mappers are used to process data segments in parallel 

which speeds up the computation process. All the output data of Mappers also 

are processed by Reducers in parallel. The parallel Monte Carlo algorithm is 

evaluated in both a Hadoop cluster and a simulation environment, and the 

results show that effectives of the algorithm. 
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 To further improve the performance of the parallel Monte Carlo, data locality 

is considered in a Hadoop MapReduce cluster. Hadoop jobs are allocated to 

these nodes that are close to the data. This reduces the overhead in data 

transmission. The results show the performance improvement of the Hadoop 

cluster with data locality with different sizes of input data; different sizes of 

chunks; different number of nodes and different number of replicas. It also 

indicates that using data locality significantly improves the performance of the 

parallel Monte Carlo simulations. 

 

1.4 Methodology 

  

There are many methods can deal with the simulating of Monte Carlo method. In this 

thesis, Matlab and MapReduce were used to do tests. Matlab embed a lot of 

simulators in its program, Monte Carlo is one of them. Matlab is easy to use and it 

also can provide visualization of the simulated result. But its operation is opaque that 

means it is difficult to optimize the process or identify the problems of simulating 

process.  

 

Compare with Matlab, MapReduce is an open-source [78] platform which can deal 

with large-scale data. Its operation is easy to parallelize the Monte Carlo algorithm. 

The important point is all the stages of MapReduce can be set or adjusted by users. 

This means that has great potential for optimizing. On the other hand, users can 

observe and quickly identify the problems. For example, the input data are divided 
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into chunks, the sizes of chunks can be set by users. How many Mappers and 

Reducers are used and the sort factor also are set by users.      

1.5 Thesis Structure 

 

The rest of the thesis is structured in the following way. 

 

Chapter 2 presents the literature review of all relevant topics of this thesis, such as 

different types of financial risks, advantages and disadvantages of Value-at-Risk 

methods, the Monte Carlo method and its limitations. 

 

Chapter 3 presents the details of Monte Carlo simulation. It discusses development of 

Monte Carlo method, and discusses in-depth the characteristics of Monte Carlo 

simulation. 

 

Chapter 4 presents the design and implementation of the parallel Mote Carlo building 

on the MapReduce programming model which has become the major model in 

support of data intensive applications in cloud computing systems [78]. It analyzes the 

implementation and performance in distributed system of MapReduce programming 

model. The performance of Monte Carlo simulation is also evaluated in both an 

experimental and simulated MapReduce cluster environments. 

 

Chapter 5 evaluates data locality aware scheduling process in MapReduce model. 
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Data locality helps to improve the performance of MapReduce when processing a 

large-scale data and keeps computation close to data. The testing results show the 

effectiveness of data locality which reduces time in computation.  

 

Chapter 6 concludes the thesis and points out some future works. 
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Chapter 2: Literature Review 
 

2.1 Background of Value at Risk 

 

Financial risks cannot be eliminated, but can be controlled. The control approach is 

the financial risk management, which means controlling the possible losses 

undertaken within the limits in the market economic activities. The Value at Risk 

(VaR) is a popular and widely used tool to measure financial risks by financial 

institutions in recent years [7], and it becomes a kind of technical standard [8]. The 

VaR approach is one of the most effective risk management techniques on market 

level currently. Computing VaR values become more possible and easier due to the 

increasing of computer simulating capabilities.  

 

The competition between financial institutions has been increased and became 

fiercely due to the financial derivatives markets’ rapid development in the world. The 

large international banks and securities [7][15] firms recognized and developed their 

own risk management systems in the first time when they were conscious of  

influences of effectivities of market risk management on value changes of their 

financial products such as portfolios [9]. Can be measured is one characteristic of 

financial risk [10], so a technical measure of risk can be carried out to analyze the risk 

degree of losses. Which means the basis of risk management is measuring risks in 

values. Financial institutions are more likely to determine and control risk if a more 
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accurate measure method is adopted. Value at Risk as a famous financial tool to help 

managers during their decision making [7][9][11] process is widely known. The VaR 

is the most advanced and most widely applied method comparing with other various 

risk measure methods. It is the latest financial risk management tool used to measure 

mainstream market risks and is a famous approach to measure financial market risks 

by using of integrated modern mathematical techniques [12] and the increased of 

complex of financial risks since 1990s [16]. The VaR method focuses on the hidden 

risks and potential losses [13]. Every banks and firm fear of liquidity risk such as cash 

flow crisis which can cause the firms in dangerous even bankruptcy [10][14]. It is 

used by investment banks and financial institutes to calculate the potential losses of 

their financial products or trading portfolios in value over a specified period of time. 

It is important to those financial firms or banks who are try to make the investment 

decisions without the hidden risky influences on their cash flow [14]. 

 

The index of VaR was widely used due to the strongly recommended and encouraged 

by the Basel Committee on Banking Supervision (BCBS) [15]. Organizations, 

financial institutions and banks as the members had to publish their daily VaR reports 

[15] by response the requirements of Basel Committee on Banking Supervision. The 

reason of VaR approach so attractive is it can express the potential losses by using of 

currency measure units, which is the core of risk management. Currently, the VaR 

method is used in various types of financial risks measurement and management in 

the world. Usually to measure the VaR needs to preset a confidence interval, in other 
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words, a confidence level [16].  For example, calculate a VaR value with set the 95% 

confidence level with a £100 million asset during a one-week time, which means over 

one week time there has only 5% chance that the losses will more than £100 million 

[9][10][17][19]. 

The definition of VaR means how the sizes are of the maximum potential values may 

suffer losses of an individual assets or a group of assets or portfolios under normal 

market condition with a given confidence level [17][18]. In other words, the financial 

instruments and portfolios are facing a potential maximum amount of losses or worst-

case amount of losses in a certain holding period of time and a certain degree of 

confidence. An example is shown in Figure 2.1. 

 

Figure 2.1: The maximum of possibility to loss in one day with 99% confidence. 

 

Value at Risk is a tool to measure securities’ financial risk by using of the statistical 

technique. Its mathematical definition is: 

P{ VaRp }=1-c                                   (2-1) 

Where    are the securities portfolio losses in a period of holding time (   .  VaR is 
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the value at risk with confidence level c [20]. 

 

In other words, for a particular portfolio, VaR gives the maximum possible expect 

losses of the portfolio under normal market condition [21] with a given confidence 

level in a period of time. This means the VaR has answered that the possibility of 

occurrence of loss is more than c, in other words, it ensures the probability of the loss 

will not exceed the VaR is 1-c. For example, the Bankers Trust Company in its 1994’s 

annual report disclosed that its average daily VaR is $35 million with 99% confidence 

level in 1994 [15]. Which means the company promised that the average loss of its 

each product on a specific point of time will not be more than 35$ million in the next 

24 hours. The company’s capital in contrast was $4.7 billion and it achieved $615 

million annual profits in 1994, the bank’s risk profile was shown at a glance through a 

VaR report. 

 

2.1.1 The General VaR Calculation Method 

 

Actually the VaR is the area between the expectation value and the minimum value of 

the portfolio at a certain confidence level under the normal circumstances. According 

to Jorion’s definition [18], VaR can be defined as: 

VaR =E（）-
*                   (2-2) 

Where E（）is the expectation value or expectation value of the asset or portfolio; 

  is the finally true value of the portfolio; 
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*  is the minimum value of asset or portfolio at the end with confidence level  . 

And supposing that  = 0
（1+R）            (2-3) 

Where 0  is the value of the portfolio [18] when held at the beginning; 

R is the rate of return of portfolio in a preset period of holding time (usually one year).  

*   =
 0

（1+R
*）                             (2-4) 

R
* 
is the lowest rate of profit of the portfolio with the confidence level  . 

According to the basic nature of mathematical expectation, put Equation (2-3) and (2-

4) into Equation (2-2), and then got Equation (2-5) [18]: 

VaR=E[ 0  (1+ R)]-( 0 + R
*
) 

    =E 0 +E 0 (R) - 0 - 0 R
* 

  = 0 + 0 E(R) - 0 - 0 R
*
 

= 0 E(R) - 0 R
*
 

= 0  [E(R) -R
*
]                       (2-5) 

 

Through series of mathematical transformations, then the Equation (2-5) is the VaR of 

the portfolio. According to Equation (2-5), if the value of R
* 

at confidence level can 

be identified, and then the value of VaR will be calculated. 

 

2.1.2 The Special Case 

 

If the future value of the portfolio can be in line with the normal distribution 

[7][8][9][17][19][22], then the above VaR Equations can be simplified to the process 
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of finding the standard deviation of the portfolio [18]. 

 

Let the future value of the portfolio R obeys normal distribution with mean t  and 

variance t2 [18]. It is R~N（ t ， t2 ）. Then 
t

tR








 is a standard normal 

distribution with mean 0 and variance 1. That is 
t

tR








 ~N（0，1）, and the 

probability density function is shown in Equation (2-6): 

  2

2

2

1
x

ex





                                  (2-6) 

 

If R is in line with the normal distribution, to find the value of R
* 

at a given 

confidence level c just site on the point z in the standard normal distribution table, 

such as 1-c=    dx

z






, then the confidence level c can be calculated by Equation   

(2-7): 

R
*
 = - tz   + t                               (2-7) 

Put the Equation (2-7) into Equation (2-5), then can got Equation (2-8) [18]: 

VaR= 0 【E(R) -R
*】 

 = 0 ( t - *R ) 

                   = 0 ( t  + tz  - t ) 

                            = 0 tz                      (2-8) 

To calculate the VaR by using Equation (2-8), the key point is the calculation of 

standard deviation in Equation (2-5).  
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2.2 The Current Methods used of VaR 

 

2.2.1 The Known Conditions 

 

Generally two known conditions are given when calculating the VaR. First is the 

confidence level. The definition of confidence level is the credibility of the results of 

the probability measurement. The confidence level selection may reflect with 

investor’s attitudes on risk. The higher degree of risk aversion means the more losses 

cost, so more capitals required for compensate to the losses, and then the confidence 

level is set higher. For example, the Bank Trust uses 99% confidence level; Chemical 

and Chase bank uses 97.5% confidence level; Citibank uses 95.4% confidence level; 

Bank of America and JP Morgan Bank use 95% confidence level [15][16]. Second is 

the period of holding time. The longer period of holding time means the higher 

volatility of the value of portfolio [13]. Generally, the period of holding time can use 

one day, or one week, or 10 days, or two weeks, and or one month and so on. 

According to the proposal proposed by Basel Committee in 1995, financial 

institutions can use the 99% confidence level and the time of analysis was limited to 

ten working days [15], in other words, two weeks. 

 

2.2.2 Assumptions 

 

Usually, the VaR method assumes two conditions. First is the market efficiency 

hypothesis. Second, assuming market volatility is random and there is no 
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autocorrelation [13][14][19]. In general, use mathematical models to analyze 

economic phenomenon must follow those assumptions.  

 

2.3 Calculation Methods 

 

Currently, there are many methods can calculate VaR. From the point of view of 

reference set, those methods can be divided into three categories: parametric methods, 

semi-parametric methods and non-parametric methods [11][13][14][16][18][25]. A 

common feature of these methods is calculating quantiles by using distributions of 

profits or losses in future, and then obtaining the values of VaR indirectly [25]. 

Therefore, from this point of view, these methods also can be referred to indirect 

methods [34]. The parameter method mainly refers to the Analytic Variance-

Covariance approach [16]. The core of approach based on estimating of variance-

covariance matrix of returns or losses. One of the most popular and famous 

representative methods is the Risk Metrics method which developed and used by JP 

Morgan Bank [16][24][25]. The semi-parametric method considers on extreme case 

because of partial peak heavy tail is the feature of the loss distribution. So it is using 

the extreme value theory such as the Heavy Tail Model [26]. The non-parametric 

method does not make assumptions for distributions and mainly be divided into 

historical simulation method and Monte Carlo simulation method [27].  
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2.3.1 The Analytic Variance-Covariance Approach 

 

The core concept of the method is based on the estimation of the Variance-Covariance 

matrix [28][43] of the assets. The Variance-Covariance method originates a 

probability distribution of the hidden risk values through relative simple computations. 

The advantage of this method is simpleness [29]. There is a simple example of the 

Variance-Covariance method, suggest that calculating the VaR of a single asset, where 

the hidden risk values are in line with normal distribution with a mean of £100 million 

and a monthly standard deviation of £10 million. Set the confidence level as 95% and 

evaluate the value of asset will not downside below £60 million or raise above £100 

million in future [27][30].  

 

There are four steps when using this method to address the risks.  First, it requires the 

user to take each individual asset in portfolio and translate the asset on standardised 

instrument. Second, each asset is explained as a set of positions in the standardised 

instrument which was indicated in the step one. The third step is the key point of the 

whole process of the method because of once the asset in portfolio has been identified 

on the standardised instrument and then the user has to assess the variances and 

covariance by searching historical data. The final step is computing the VaR by using 

the weights from the second step and the variances and covariance from the third step 

[27][28][33][52][61]. 
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The JP Morgan’s Risk Metrics method [16] is the most representative method of 

Variance-Covariance method. There are two important assumptions of this approach.  

 

First this method is the linear assumption [58]. Which means the relationship between 

value changes of an asset in a given period of time and the returns of its risk factors is 

in line with a linear changing. That is: 

                         kkk SS /                     (2-9) 

 

Second is the normal distribution assumption. Which means the returns of risk factors: 

Rs= kk SS / are in line with the normal distributions. Which is denoted as R~( ，

 ). Assume that the returns of a portfolio is in line with normal distribution in 

future, and  is the N*N covariance matrix [31][32]. 

 

2.3.1.1 The Method Introduction 
 

The basic ideas of the Variance-Covariance approach are: First, use the historical data 

to obtain the variance, standard deviation and covariance [34] of the returns of a 

portfolio; second, assume that the returns of a portfolio is in line with a normal 

distribution in future, and then it can be obtained the threshold which reflects the 

degree of deviation from the mean to the returns of the distribution with a certain 

confidence level; finally, deduced the VaR values which associate with the assets at 

risk or potential losses [33][41][39]. 
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2.3.1.2 Application Conditions 
 

This method suitable used for large-scale assets [34] and portfolios which contain a 

few financial derivatives such as option. From this view point of time, it suitable for 

the short term VaR measurement. This method operates easily because of it only 

requires the current market price and risk data [34][35] which means volatility. It also 

can be used to measure market risks of all financial assets, such as bank’s credit risks 

[15], operational risks and so on. It is good quantified based on the financial risks. So 

it can be used for optimize the allocation of financial assets, risk assets management, 

the analysis of bank’s strategic business decision making processes, performance 

evaluations such as risk-adjusted rate of returns, etc.  

 

2.3.1.3 Advantages and Disadvantages 
 

The advantages and disadvantages of the Variance-Covariance approach are shown in 

Table 2.1. 

Table 2.1: Advantages and disadvantages of Variance-Covariance approach. 

 

Advantages 

 

Disadvantages 

 Easy Calculation: just a few minutes 

it can calculate the entire bank’s risk 

exposure. 

 Assume that the portfolio return is in 

line with the Normal Distribution. 

This means if the return distribution 

is abnormal and then the computed 

VaR will be much lower than the true 
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Value at Risk [58]. 

 According to the Central Limit 

Theory, this method also can be used 

even if the distribution of risk factor 

is not in line with the normal 

distribution. As long as the risk 

factors are large enough [55] and 

independently of each other. 

 Assume that the multivariate risk 

factors are in line with Lognormal 

Distribution. Therefore, it cannot 

handle ‘‘the heavy tail’’ distribution 

[58]. 

 No pricing model needed. It just 

needs the Greek alphabet system 

which can be got directly from 

bank’s current system.  

 The estimation of correlation 

between the volatility and income of 

the risk factors is needed.  

 Be easy to introduce incremental 

VaR methodologies.  

 The Taylor theory can be used for 

approximately on behalf of the 

security income. However, the 

second-order expansion cannot fully 

reflect to the risk of option in some 

cases.  

  It cannot be used for sensitive 

analysis.[55] 

  It cannot be used for derive the 

confidence interval of VaR.[58] 

  The input error. Even the assumption 

of distribution is correct, the final 

result still possible be wrong because 
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of if used the incorrect variance and 

covariance. 

 

2.3.2 The Semi-Parametric Method 

 

The value of VaR calculated by the Monte Carlo method often underestimated and 

with large errors if the probability distribution of portfolio is not in line with normal 

distribution [36][37]. The distribution of extreme return is particularly important 

because of the VaR analysis heavily relies on the rate of extreme return. The semi-

parametric method is developed to solve the heavy tail problem [58] of the probability 

distribution, so it is also called the Heavy-tail method.   

 

Assume that the function distribution of returns rate R is F(R), when R→∞ and under 

the moderate regular condition, then F(R) has Second-order Expansion shown in 

Equation (2-10): 

F（R）=1-Br
-a

L+Cr
-b

                   (2-10) 

Where B, C, a and b are parameters. The main parameter is a, in other words, a is the 

tail index which value is the size of the tail [38][58]. 

 

2.3.3 The Historical Simulation Approach 

 

The historical simulation method is a simple way to compute the VaR of numbers of 

portfolios by using with the historical data of a specify asset in portfolios [33]. 
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2.3.3.1 Method Introduction 
 

The basic ideas of the historical simulation approach are: first, weight the asset at the 

current time to re-simulate the history of the portfolio [33] by using of the actual rates 

of return on assets [40] in the past period of time; second, arrange simulated portfolios 

from low value to high value in order to get the overall distribution of the virtual 

incomes; finally, the VaR at a given confidence level will be obtained from the 

distribution [33][40][42].  

 

2.3.3.2 Application Conditions 
 

The historical simulation method simulates the samples which picked up from 

historical data. Therefore, it is not need to assume any distributions of rates of return 

and value changes of portfolios [41].  

 

2.3.3.3  Advantages and Disadvantages  

 

The advantages and disadvantages of the historical simulation method are shown in 

Table 2.2. 

Table 2.2: The Advantages and Disadvantages of Historical simulation method. 

 

Advantages 

 

Disadvantages 

 No need to assume that the 

distribution of risk factors.[45] 

 Entirely depend on the specific 

historical data [39]. This means that 



 

Chapter 2: Literature Review                                                                                            Yu Zhao 

23 

 

the extreme market condition [43] 

will be ignored because of it was not 

included in data, or distorted for 

certain purpose. 

 No need to estimate volatility [45] 

and correlation. Which have already 

been hinted into the daily market 

factors data. 

 It cannot consider the impacts of 

market structural changes, such as 

the birth of Euro in June 1999 [43]. 

 The method can handle heavy tail 

distribution and other extreme 

situations as long as there are 

sufficient data can use. 

 The calculated VaR may bias and 

imprecise if the involved historical 

data not long time enough [33]. 

 It can directly summarize data in 

different markets.  

 It cannot be used for sensitive 

analysis. 

 It allows users to calculate the 

confidence interval of VaR method. 

 The calculation is not effective if the 

portfolio contains complex securities 

[44]. It is an effective method to 

compute VaR for an individual asset. 

It can handle each asset in portfolio 

but cannot analyze them together.  

   The historical data has its own 

trends. In the historical simulation 

method all data in the equal period of 

time are weighted equally during the 

process of computing the VaR. But in 
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different historical time the data are 

influenced by various factors such as 

the price changes, the waves of 

currency exchange rate and so on. 

Those factors lead to the computed 

VaR deviating the actual VaR. 

[33][43][58][67] 

   The historical simulation method is 

difficult to compute the VaR for a 

new asset or when it faces a new 

market risk because this method 

depends on the historical data of the 

specify asset. If there is no historical 

data that can be used, the method 

cannot handle the situation. 

 

Boudoukh, Richardson and Whitelaw presented a variant to improve the historical 

simulation in their book in 1998, where they gave different weights to the data which 

were picked up from different periods of time [7]. In other words, they defined that 

the recent data weighted more than distant data by using a decay factor in their time 

weighting mechanism [7]. For example, set the decay factor as 1 to the recent data, 

and then the distant data will be set as 0.9 or less. 
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2.3.4 The Monte Carlo Simulation Approach 

 

2.3.4.1 The Method Introduction 
 

The basic idea of Monte Carlo simulation is repetition of financial variables and 

covers all possible random process situations [45]. If these variables are in line with 

the predetermined probability distribution, and then the process of Monte Carlo 

simulation is reproducing the value distributions of portfolio.  

 

Use Monte Carlo simulation to calculate VaR has three basic steps. The first step is 

scenario generation. Select the stochastic processes and distributions of changes of 

market factors and estimate the corresponding parameters [68]. And then simulate the 

path of market factors changing and try to build up the scenarios of market factors 

changing in future [67]. The second step is valuing portfolio. Calculate portfolio’s 

values and changes of the market factors in each scenario by using pricing formulas or 

other methods. The third step is evaluation the VaR. It relies on the simulation results 

of distribution of portfolio value changing to calculate the VaR at a given confidence 

level. [40][45][53][61][67][68][71][73]. 

 

2.3.4.2 Application Conditions 
 

The Monte Carlo simulation can be considered as the best way to calculate VaR 

comparing with other methods. It can effectively deal with problems which other 

methods cannot handle. For example, the non-linear pricing risk, volatility risk, event 



 

Chapter 2: Literature Review                                                                                            Yu Zhao 

26 

 

risk, model risk, the variance changing over time, heavy-tail distribution, extreme 

scenarios and even the credit risk [58][67]. 

 

2.3.4.3 Advantages and Disadvantages of the Monte Carlo Simulation 
 

The advantages and disadvantages of Monte Carlo Simulation are shown in Table 2.3. 

Table 2.3: Advantages and Disadvantages of Monte Carlo Simulation. 

 

Advantages 

 

Disadvantages 

 It can be applied to all kind of 

distributions. 

 Some situations are not included into 

the distribution [45].  

 The simulation model can contain 

any complex portfolios. 

 This simulation is very complex and 

high depending on abilities of large 

amount of computations.  

 It allows user to calculate confidence 

intervals of VaR.[45] 

 

 It allows user to perform sensitive 

analysis and stress tests if required 

[45][73].  

 

 

For the selection of those three methods above, users need to consider many factors, 

such as the ease of data collection, ease of method, the calculation speed, the market 

stability and the ability of assumption [46]. But both of those methods have a 

common disadvantage, that is they cannot reflect the degree of losses in case the 
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market emergency situation occurred, such as the Asian financial crisis and the world 

financial crisis since 2008. From this point of view, a complementary approach is 

necessary and which is the stress testing approach [73]. 

2.3.5 The Stress Testing Approach 

 

The Stress testing approach can be regarded as ‘disposable’ or ‘limited times’ Monte 

Carlo simulation [73], users can choose the path of return on asset without any 

historical data [47]. Therefore, it is an approach which can avoid depending on 

historical data in theory. The Stress testing approach assumes a value of extreme 

changing of assets, and then calculates the changing values of portfolio for those 

hypothetical extreme changes [73]. The selection of these extreme changes often 

based on happened crisis in history, but there is no clear selection standard rule. In 

other words, it is not ideal method to use in practice. That means the stress testing 

approach is usually used as a complement to the VaR approaches rather than used 

alone. So the completely risk management is constituted by the VaR approaches plus 

the Stress testing approach. Under normal market conditions, the VaR approaches 

capture revenue opportunities. Otherwise, the Stress testing approach reflects the 

extent of losses in case of unexpected events occurred or the market is in a period of 

confusion time.  
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2.4 The Applications of VaR Model in Financial Risk 

Management 

 

The various calculation methods and basics of VaR were discussed, the application of 

VaR will be introduced in this part. 

 

2.4.1 The Development of VaR Applications 

 

The VaR becomes an active risk management tool in recent years. It helps institutions 

who mastered the VaR tool to balance the relationship between risk and return. The 

economic capital can be used as a function of business risk and adjusted performance 

according to trader’s evaluation [48]. In the most advanced institutions, VaR approach 

is used to determine the scope of competitive advantages, or adjust the departments 

which risk may increasing internal the company.  

The process of VaR development is shown in Figure 2.2 [49][55]. It can be seen that 

the companies’ negative activities when they were facing risks in history and the 

changes of their activities, finally, VaR approach is used to control risks actively.  
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Figure 2.2: The development of VaR. 

2.4.2 The Application of VaR 

 

First, VaR is an information disclosure tool. Second, VaR is a risk management tool. 

Finally, VaR is an active management tool which used for self-management 

configuration. The active risk management contains strategic decision making, 

performance evaluations and capital allocation [50]. The capital allocation means the 

company allocates capital into products, business projects and a variety of 

transactions.  

2.4.2.1 Risk Disclosure 
 

Disclosure of the market risks is one of three pillars of guidelines of the credit risk 

which was argued by the Basel Committee [15]. The Basel Committee considered that 

public information about market risk is an effective way to achieve the market 

discipline. If the meaningful information are provided, and then investors, depositors, 

Negative - 
Reporting Risks 

• Public information to share holders 

• Report to management 

• Response the requirements of regulators 

Defensive - 
Controling Risks 

• Set Exposures (at departal level) 

Active - 
Allocating Risks  

• Performance Assessment 

• Capital Allocation 

• Set up Strategic Department 
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lenders and the both sides of traders can impose strong market discipline on financial 

institutions [15][33] together, which can make sure they manage their trading and 

derivatives along with established business objectives with the prudent manner. Risk 

Disclosure cannot only provides valuable reference information to investors, but also 

brings great benefits to the companies who had already disclosed their risk 

information. Because of comparing with other companies without risk disclosure, 

investors prefer to buy stocks from the companies with risk disclosure. 

[15][27][33][43][51]. 

 

2.4.2.2 Financial Regulation 
 

According to the provisions which were formulated by the Basel Committee, the 

bank’s capital is determined by the calculated VaR risk measurement models, while it 

gave suggestions and regulations on the using of calculation model. Based on the 

results of VaR, financial regulatory authorities can calculate the required minimum 

margin of financial institutions in order to avoid the market risk [15]. The VaR 

approaches also can be used by regulatory authorities to monitor the risks of banks 

and other financial institutions [33]. The value of VaR has become the uniform 

standard to measure the risks of financial intermediaries.  

2.4.2.3 Risk Control 
 

The VaR approaches are used for risk control, which are needed for risk management 

by banks and other financial institutions themselves, on the other hand which are also 
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the responses for the financial regulatory requirements. In 1995, the Basel Committee 

had approved the banks use approved and accredited internal models to calculate VaR. 

On this basis, multiplied by 3 [15], and then the capital amounts meet the 

requirements of market risk. By 3 can provide necessary buffers because of the 

standard VaR is difficult to capture and loss probability will high in case in extreme 

risk market. Compare with using the Basel’s standardized approach for capital 

required, banks are using VaR methods can save up to 60% - 85% [15] for the capital 

required. This allows banks obtain advantages in compliance with regulatory capital 

requirements. Banks can raise quality and the operational efficiency of working 

capital through developing appropriate investment strategies, timely adjustment of the 

portfolio to diversify and avoid risks by using calculated values of VaR. The strict 

VaR management can significantly prevent losses in some financial transactions. 

 

2.4.2.4 Performance Evaluation 
 

The performance assessment of traditional traders and business departments depend 

on the returns on investment. Traders may disregard great risk and pursuit of high 

returns in the financial investment. So it may lead to a large number of risk 

occurrences if just simply use the returns on investment to carry out performance 

evaluation. Due to the necessary for the normal operation, companies have to limit 

trader’s possible excessive speculations [51]. Therefore, it is necessary to introduce 

the performance evaluation [52] of risk factors.  
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The VaR approaches ensure that management to adjust traders’ level of income by 

according to different risks they are facing. Traders in different markets usually get 

different benefits due to different volatilities of markets where they are. This 

distinction does not come from levels of their operations. The values of VaR can be 

used as standard and reasonable evaluations of the investment performances. The Risk 

Adjusted Return on Capital (Raroc) [15][17] is a kind of more scientific design of 

measurement of performance evaluation. The formula is: Raroc = returns on 

investment / values of VaR. It can be seen from the formula, when traders engaged in 

high risk investments, even got high returns of investment, the results of the values of 

evaluation Raroc will not be high because the corresponding values of VaR are also 

high. Meanwhile, the VaR method is adjusted to help to reduce the existing moral 

hazard or adverse selection behaviors of traders by according to the different market 

risks.  

 

2.5 Advantages and Disadvantages of VaR 

 

Overall, VaR becomes the popular financial analysis tool used in a variety of 

companies or organizations. Therefore, to better understanding its advantages and 

disadvantages are important when use VaR.  

 

2.5.1 The Advantages of VaR 
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VaR is built up by statistical approaches to measure the risk comprehensibly and 

integrality. Compare with other subjective and artistic traditional risk management 

methods, the VaR methods greatly increase the scientific of the risk management. Its 

advantages include: 

 

 The VaR methods mixed the sizes and likelihoods of the expectation of future 

losses [52]. In other words, VaR lets the investors know the sizes and likelihoods 

of the losses when the losses occurred. Managers can more clearly understand 

their financial institutions through analyzing the results of VaR. It can show 

expect performances of the organization at different degree of risks just by 

adjusting the confidence levels. Therefore, the VaR methods facilitate the 

different management needs for different organizations.  

 

 The VaR methods also can comprehensive measure various market risks such as 

interest rate risks, exchange rate risks, equity risks, commodity price risks and 

financial derivative instruments risks [53]. Therefore, VaR methods allow 

financial institutions to use values of VaR as the index which represent the risk 

profiles of their products and themselves. The VaR methods greatly facilitate to 

the exchanges of risk information [53] between departments and leaderships 

internal organizations. Meanwhile, the regulators also can propose uniform 

requirements conveniently to financial institutions through analyzing values of 

VaR.  
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 Unlike other risk management methods, the VaR methods pre-calculate risks 

before they are going to occur [54]. VaR can calculate the risks of individual asset 

and portfolios. Which the traditional financial risk management methods may 

cannot do. 

 

2.5.2 The Disadvantages of VaR 

 

On the other hand, VaR methods also have some limitations. In other words, their 

disadvantages are shown in below: 

 

 There are some flaws of the principles and statistical estimations [53] of the VaR 

methods themselves. The VaR methods’ calculations are based on the objective 

probabilities of risks [54]. This means the VaR in order to estimate the maximum 

possibility of losses occurrence by using statistical analysis of performance of the 

asset or portfolios in the past and then predict their prices volatility and 

correlation [33]. For example, the parameter methods, historical simulation 

method and stochastic simulation methods (Monte Carlo simulation method) 

[47][54]. The full financial risk management includes risks identification, 

measurement and control. To control risks is the ultimate goal in financial risk 

management [55] which involves the risk managers’ risk appetites and risk price 

factors. Therefore, if a method only based its concepts on probability of risk may 

lead to the losses, or a method only concerned with the statistical characteristics 

of the risk, those are not the systematic risk management [33]. Because of itself 



 

Chapter 2: Literature Review                                                                                            Yu Zhao 

35 

 

of the probability of risk does not reflect to the wishes or attitudes of institutes to 

economic risks. So, the VaR methods are not comprehensive in financial risk 

management, managers cannot depend on those methods at all to balance all the 

risk factors before risk occurrence.  

 

 The VaR methods are usually used to measure the market risks in normal market 

conditions which mean the VaR cannot handle situations in extreme market 

conditions [73]. In normal market conditions, the VaR methods are used much 

more effective due to there have a large amount of the historical data of 

transactions can be used for analysis. However, when the market is going away 

the normal conditions, the historical data of transactions become scarce, 

especially when the market crisis is occurred [56][57]. Therefore, those factors 

make users impossible to use the VaR methods effectively measure market risks 

at this time.  

 

 According to the stringent requirement on the data of the VaR methods, the risk 

values are easily obtained when prices of frequent transactions and portfolios are 

easily got. But the measure risks ability is severely restricted when use VaR 

methods to analyze illiquid assets which with the lack of daily market trading 

prices data such as bank loans [58]. Therefore, users need to divide the illiquid 

financial products [59] into strong liquidity portfolios and then analyze the risks 

by using VaR methods.  
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 The main purpose of VaR methods is measuring the market risks, but it is difficult 

to reflect on liquidity risks, credit risks, operational risks and legal risks [59]. 

Therefore, VaR is a tool used to value the interest rates, the exchange rates and 

the other different types of market risks that may occur during the economic 

activities of financial institutions. But the valuation is narrowly focusing on 

market risks which cannot represent all risks avoided by the financial institutions 

and investors.   

 

 Finally, from the view of technical perspective, the values of VaR indicate the 

maximum losses [60] at a certain degree of confidence level. The VaR cannot 

guarantee the values of true losses will exceed the values of VaR. For example, 

assume that one day VaR=$ 100 million at the 99% confidence level. Which 

means there still has 1% possibility that the losses will be more than $ 100 

million [59] in a day. In case this situation happened, it will be catastrophic 

damage to the company.  

 

Overall, the VaR methods are highly depending on historical data, so, the fundamental 

flaw of VaR is the history cannot always as a good guideline for future. The VaR 

approaches cannot cover every risks in the financial risk management, so users still 

need to integrated using of a variety of other qualitative and quantitative [61] methods.  
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2.6 Case Study of VaR Approaches 

 

This case study uses Monte Carlo method to calculate the values of VaR. The case 

study starts with 200 days of the Shanghai Composite Index closing price data from 

June 2000 to November 2000. And then use the Monte Carlo simulation to calculate 

the next trading day’s VaR of the Shanghai Composite Index [102]. Set the confidence 

level as 95% and select the day holding period. Use the geometric Brownian motion 

as the stochastic model to reflect of changes in the Shanghai Composite Index, and its 

discrete form can be expressed as follows [29]: 

1 ( )t tS S t t     
                     (2-11) 

                                              (2-12) 

Where:    is the Asset price at time t; 

     is the Asset price at time t+1; 

  is the mean of return on assets;  

  is the volatility of return on assets; 

  is random variables.  

 

Generally, Monte Carlo simulation method uses the standard deviation to measure the 

volatility of returns by assuming that is in line with normal distribution.   is the 

standard deviation of the return of SCI,   is random variable in normal distribution. 

Then we divide the one day holding period into 20 equally period of time.    is the 

SCI at initial period of time and      is the SCI at time t+i.       is the variation of 

SCI at each period of time. The mean and the standard deviation [102] of SCI returns 
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at each period of time are represented by 
 

  
 and 

 

   
. So the SCI at time t+i should be: 

                  

                                           
 

  
   

 

   
          (2-13) 

Where             . 

 

Here are the specific steps of calculating the VaR of SCI by using of Monte Carlo 

simulation method. 

The first step is estimating mean and the standard deviation [102]. Use mean   and 

the standard deviation   of the 200 days SCI to calculate the mean 
 

  
 and standard 

deviation 
 

   
 [102] of each period of time. 

The second step is generating the random numbers [55]. Produces 20 standard normal 

distributed random number such as                

The third step is simulating a possible path of price changes of SCI. Substitute   , 
 

  
, 

 

   
 and    into Equation (2-13), then can get the SCI at time t+1:  

           
 

  
   

 

   
                   (2-14) 

And can be obtained as follows: 

               
 

  
   

 

   
             (2-15) 

               
 

  
   

 

   
             (2-16) 

. 

. 

. 

                  
 

  
   

 

   
             (2-17) 

=   

Where                        is a possible path of price changes of SCI and    is 
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the possible closing price of SCI. 

The fourth step is simulating 10,000 possible closing prices. Just repeat the second 

step and the third step 10,000 times to obtain the 10,000 possible closing prices of 

SCI. 

  
    

    
      

      

The final step is calculating the VaR. Sort in order of   
    

    
      

      from small 

values to large values, and find out below the 5% quintiles   
     , and then calculate 

the VaR at 95% confidence level. It is shown in Equation (2-18): 

                                
                     (2-18) 

2.7 Summary 

 

This Chapter reviewed the background and development of the Value-at-Risk methods 

such as the Variance-Covariance approach, the Historical simulation approach, the 

Monte Carlo simulation approach and the Stress Testing approach. It also presented 

the advantages and disadvantages of these methods and the applications of VaR 

methods in financial risk management. It pointed out limitations of these methods. 

Finally this Chapter analyzed a case study of the Monte Carlo approach to Shanghai 

Composite Index.   
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Chapter 3: Monte Carlo Simulation 
 

The Monte Carlo method is also known as a random sampling or a statistical test 

method [45] [56] [59]. Since half a century ago, Monte Carlo method was proposed as 

an independent method due to the development of Science and Technology and the 

invention of computers. The first application of Monte Carlo method was during in 

testing and developing of nuclear weapons [57]. Compare with other calculation 

methods, Monte Carlo method is very different. Monte Carlo method based its ideas 

on the theory of probability and statistic. The Monte Carlo method is used widespread 

now because of it can realistic simulates the characteristics of things and simulates 

physical experiments to solve problems which are difficult to be done by other 

numerical methods.  

3.1 Basic Concept 

 

Although Monte Carlo method was proposed in the past of decades, its basic ideas are 

much older. It can be said that the ideas are based on two typical probabilities 

examples.   

First example is Comte de Buffon’s experiment which in order to evaluate the value 

of π by using of needles in 1768 [60].  In the experiment, people arbitrarily pelt a 

needle which the length was    on the ground, and then used the frequency of 

intersecting between a needle and a group of parallel lines and their distances were 

        to instead of the probability  [60][61]. It is shown in Figure 3.1. 
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Figure 3.1: Buffon’s Experiment. 

 

Then used the exact relationships: 

                              
  

  
                         (3-1) 

To calculate the values of π:  

                       
  

  
 

  

 
 
 

 
                    (3-2) 

 

Where N is the total numbers of needle has pelted.   is the number of times that the 

needle and parallel lines intersect. This is the Buffon’s experiment in the classical 

probability theory.  

 

Some researchers conducted same experiments and the results are shown in Table 3.1. 

 

 

Parallel Parallel Parallel Parallel 

Distance 2a between parallel lines 

Distance 2a 
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Table 3.1: Results of some Buffon’s experiments [61]. 

Resear

-chers 

Year Total Numbers 

of Pelting 

Values 

of π in 

experiments 

Wolf 1850 5000 3.1596 

Smith 1855 3204 3.1553 

Fox 1894 1120 3.1419 

Lazzar

ini 

1901 3408 3.1415

929 

 

 Another typical example is the shooting game. Let   represents the distance between 

shooters and targets,      represents the corresponding hit scored and      represents 

the distribution density function of points of bullet contacted. The shooting 

performance should be [64]: 

                                             
 

 
                     (3-3) 

 

In probability language,   is the mathematical expectation of a random variable     

[64]. 

That is 

                                          .                              (3-4) 

 

Assume that athlete shoots   times, the points of bullet contacted each time are 

              and the hit scores each time are                         . 
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Therefore, the arithmetic mean     represents the performance of the athlete.  

That is: 

                                
 

 
      

 

   
                         (3-5) 

It can be seen from the above two examples, Monte Carlo method’s basic idea is when 

the solution to the problem is the probability of an event, or a mathematical 

expectation of a random variable [64], or the value relevant to probability or 

mathematical expectation [65], through finding out the frequencies of occurrence of 

the event, or the arithmetic mean of the random variables to obtain the solution to the 

problem. In other words, the mathematical expectation [65] is the probability of an 

event [65] when the value of the random variable is only 1 or 0, or the probability of 

the event is the mathematical expectation of a random variable which value is only 1 

or 0.  

 

So Monte Carlo method is using of randomized trials to calculate integrals [66][68]. 

That means the integrals is the mathematical expectation of the random variable     

and it is in line with density distribution of certain function     .  

That is: 

                                          
 

 
                        (3-6) 

In probabilistic language, sample numbers of samples from the distribution density 

function      are              . The integral’s approximates is the arithmetic mean 

of the corresponding random variables                          . 

That is: 
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                            (3-7) 

 

In order to obtain high degree accuracy approximation will require doing a lot of time 

experiments. It is difficult or even impossible to make large number of tests manually. 

Therefore, Monte Carlo method had been rarely used until the rapidly development of 

computers [67].   

 

3.2 Monte Carlo Simulation 

 

The computational simulation is a process of transfer the experiments to mathematical 

programs.  We still use the above two cases as examples to explain this process.  

 

3.2.1 Simulation of Buffon’s Experiment 

 

 Assume that the positions on the ground of pelted needles can be described by a set 

of parameters [67]      , where x is the coordinates of the needle midpoint and   is 

the angle between the needle and the parallel lines. Those are shown in Figure 3.2. 
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Each time of needle is casted randomly, that means x and   are taken arbitrarily. But 

the range of x is limited to       and angle   is limited to       . In this case, the 

needle and parallel lines intersected is in line with the mathematical conditions: 

                                                                               (3-8) 

X is an arbitrary value in      , which means x is in line with  the uniform distribution 

in       and the distribution density function is: 

                                  
            

           
                      (3-9) 

Similarly, the distribution densities function of   is: 

                                 
            

           
                      (3-10) 

So the process of generating an arbitrary       includes sampling   from       and 

sampling   from     . And then can get: 

Figure 3.2: The position between the needle 

and the parallel lines [69]. 
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                                                                                   (3-11) 

                                                                                    (3-12) 

Where   and    are random variables distributed in (0,1).  

Each experiment of needle cast is actually transferred to process of sampling from 

two uniform distribution random variables [70] to obtain       by using computers. 

And then the definition of the random variables of needle and parallel lines 

intersected can be described as       , then we got: 

 

                                
             
           

                         (3-13) 

 

If pelt the needle N times, then we got: 

                                   
 

 
         

 
                              (3-14) 

And the Calculated value is the estimation of the probability P of the needle and 

parallel lines intersected. Then can get: 

                        

  
  

 

 

 

 
  

 

     

 

 

                                    
  

  
                                                (3-15) 

So [71]: 

  
  

  
 

                                              
  

    
                               (3-16) 
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3.2.2 Simulation of Shooting Game 

 

Set the points of impact are distributed shown in Table 3.2. 

 

Table 3.2: Hit marks and Probabilities [72]. 

Target Marks 7 8 9 10 

Probabilities 0.1 0.1 0.3 0.5 

 

To start a simulation of randomized trial needs to select a random number   and then 

follow the steps as follows [72]: 

                          

10arg

9arg5.0

8arg2.0

7arg1.0

ett

ett

ett

ett

























                (3-17) 

 

Thus, it has done a randomized trial and has got a score    . And then can get an 

approximation of the athlete shooting performance after N trials. The process is 

shown in Equation (3-18):  

 

                                      
 

 
      

 
                   (3-18) 
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3.3 The Convergence and Error of Monte Carlo Method 

 

The Monte Carlo simulation as a calculating method its general concerns are 

convergence and error [73]. 

As described above, Monte Carlo method uses the approximation as the solution of 

the arithmetic average of sub-simples such as               which are from 

random variables X. The Equation is: 

 

                                    
 

 
   

 
                          (3-19) 

 

From the perspective of the law of large numbers [74], if               are 

independent and in line with identical distribution [74] and have limited expectations 

        , then we can get: 

 

                                                        (3-20) 

This means the arithmetic mean    of the random variable X, when the sub-sample 

number N is large sufficiently, the    converges to its expectation value      with 

probability 1 [74].  

 

The central limit theorem which is well known in probability theory, gives the 

solution to solve error problem between the true value and approximation calculated 

by Monte Carlo method [74]. It argues that if               are independent and in 

line with identical distribution [74] and have a limited non-zero variance   , then we 
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can get: 

                           
 
                        (3-21) 

     is a distribution density function [74] of X, then we can get: 

        dtexXEX
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When and where N is large sufficiently, there has an approximate formula shown in 

Equation (3-23):  

      

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Where   is confidence, and     is the confidence level. 

The inequality is shown in Equation (3-24): 

                                
N

XEX N

 )(                          (3-24) 

The inequality is based on the probability       And the error convergence rate [74] 

in line with )( 2/1NO .  

Typically, the Monte Carlo method error   can be defined as: 

                                                                   
   

  
                                (3-25) 

Where    and confidence   are correspondence each other. When the confidence 

level has determined, the    also can be determined by checking the standard normal 

distribution table. 

 

 There are a few common values of   and    shown in Table 3.3. 
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Table 3.3: Some common values [75]. 

  0.5 0.05 0.003 

   0.6745 1.96 3 

 

The error of the Monte Carlo method indicates two features. First, the fundamental 

difference between the Monte Carlo method and other numerical methods is its error. 

It is only probability error, which determined by the basic ideas of Monte Carlo 

method. Second, the mean square   is unknown, so must use its estimate to instead of 

the mean square during simulation. That is where error from. 

                         
2

11

2 )
1

(
1

ˆ 



N

i

i

N

i

i X
N

X
N

                  (3-26) 

 

It can be seen from the Equation (3-26). Obviously, when a given confidence level   

has determined, the degree of error depends on          . To reduce  , can try to 

through increasing N, or reducing the variance   . In the case of the value of   is 

fixed, the improvement of the accuracy of an order of magnitude increasing will need 

the number of tests N in two orders of magnitude increasing. Therefore, simply 

increasing N is not an effective way. 

 

On the other hand, if we reduce the estimated mean square error   and then the final 

result error will reduce. For example, if the mean square error has reduced half, and 

then the final result error is reducing half. The performance is equals to increase N 

four times.  
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Generally, the variance reduction techniques lead to the trend of time increasing of 

observation on a sub-sample. In other words, the variance reduction techniques reduce 

the total number of observed samples in fixed time. Therefore, users can evaluate their 

simulation by using time cost of observations on a sub-sample and variance. This is 

also the concept of efficiency in Monte Carlo method. Which is defined as     . 

Where   is the time cost of observation on a sub-sample. Obviously, smaller      

means more efficient of the Monte Carlo simulation.  

 

3.4 The Characteristics of Monte Carlo Method 

 

The Monte Carlo method has many characteristics as shown in below: 

 

 The Monte Carlo method can realistically describe the characteristics of random 

nature things and physical experiments.  

In this sense, the Monte Carlo method can partly replace several physical 

experiments. It also can get results even though the physical experiments cannot 

handle. Use Monte Carlo methods to solve practical problems [44] can directly 

start with simulations of actual problems rather than start with the mathematical 

expressions or equations [75]. From this point of view, it can show the image the 

problem intuitively. 
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 The Monte Carlo method is only a little bit influenced by geometric constraints 

[44][74].  

For example, calculate the function in area    where in s-dimensional space. The 

function is shown in Equation (3-27): 

 

          ss
D

dxdxdxxxxgg
s

 2121 ),,,(                    (3-27) 

If the described conditions of the geometric characteristics of    are given, N 

points such as ),,,( )()(

2

)(

1

i

s

ii xxx   can be uniformly generated from the area 

regardless how the shape of the particular region    is. Then we can get the 

Equation (3-28): 
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2

)(
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Where    is the volume of region. The numerical methods are difficult to do like 

this. In addition, there is no difficulty in principle when using the Monte Carlo 

method even the shape of image is very complicated.  

 

 Problem’s convergence rate has nothing to do with the dimension [75]. 

According to the definition of error, the convergence rate of Monte Carlo method 

is )( 2/1NO when a confidence level given, and has nothing to do with the 

dimension. Any changes of dimension only influence on the estimated calculation 

and sampling time. That means it does not affect the error. In other words, in the 

Monte Carlo simulation, the total number of sub-samples N is irrelevant to the 
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dimension S. The increasing of dimension leads to the increasing of the 

corresponding calculations, nothing effect on errors. This feature determines the 

Monte Carlo method suitable for multidimensional problems. When use general 

numerical methods to calculate the definite integral problems, the computation 

time increases with the dimension power. If run those computations on computer, 

it will take up a large amount of computer memory. For general numerical method, 

these problems are difficult overcame. 

 

 It has capacity with simultaneously computing multiple programs and multiple 

unknowns [76]. 

For the problem which is needed to calculate the number of options, the Monte 

Carlo method does not need to calculate the options one by one like other 

conventional methods. It can calculate all options at the same time and the time 

cost almost same to calculate one option. For example, to calculate the plate 

geometry with shield of the uniform medium, it only needs to calculate the 

probability of certain kinds of thickness of penetration. The probabilities of other 

thickness can be obtained simultaneously just deal with a little more calculations 

of the results. 

 

 It can easily determine errors. 

For general calculation methods, they are difficult to give the errors between the 
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calculated results and the true values. According to the error formula of the 

Monte Carlo method, errors can be calculated at the same time while the results 

calculated even in a very complicated Monte Carlo simulation model.  

A problem often exists in general methods, which is the loss of significant digits. 

For those methods are difficult to solve this problem. But Monte Carlo method 

eliminates this problem.  

 

 The implementation of Monte Carlo simulation is simply and easily [76]. 

When simulate Monte Carlo method on computer, the simulation can be divide 

into many chunks [76] and implemented parallel.  

 

 Slow convergence [76]. 

The convergence rate of the Monte Carlo method is )( 2/1NO and it is not easy to 

get a high accuracy approximation of the convergence rate. Compare with other 

methods, the performance of Monte Carlo method is not effective when 

calculating small dimension problems. 

 

 Probability errors [71]. 

Monte Carlo method has probability errors due to the result is estimated at a 

certain confidence level. 
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3.5 Simulation of Specific Case 

 

In this case, we use the Monte Carlo simulation method to simulate the Brownian 

motion [35] due to its characteristics. A visual simulator will be established in Matlab 

environment and will intuitively demonstrate the advantages of Monte Carlo 

simulation method. 

 

In 1827, the Scottish botanist Brown observed irregular movement of pollens in the 

water through using a microscope [58]. Therefore, people argued that the random 

continuous motion of particles in a fluid medium as the Brownian motion. In 1908 the 

Langevin theory [58] had published to prove that the mean of displacement square of 

a Brownian particle is proportional to time. From the perspectives above, random 

walk is the essential of Brownian motion. This characteristic is suitable to use Monte 

Carlo simulation to show.  

 

The function of Langevin theory is defined in Equation (3-29): 

                       
   

   
   

  

  
                            (3-29) 

Where      is the power of fluctuation,        is the Stokes formula, a is the 

particle radius,   is viscosity.  Multiplied by   of both sides of Equation (3-29) and 

then we can get Equation (3-30): 
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Obtain the mean of all particles in Equation (3-30). Because of the mean value is 0 of 

    . Then we can get Equation (3-31): 
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So the Equation (3-31) is the second order common coefficient non - homogeneous 

linear differential equation of      . Then we can get Equation (3-32): 
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After approximation, and assume that all particles are in area of     when the time 

   , and then we got     . Therefore we got Equation (3-33): 

 

                 t
kT

x


22                                            (3-33) 

The Equation (3-33) shows that the Lagevin theory argued the mean of displacement 

square of a Brownian particle is proportional to time.  

 

As described before, the Monte Carlo method is a calculation solution by using of 

continuous generation of random number. The Monte Carlo method is very 

appropriate to the Brownian motion due to both of them have regularity of certain 

randomness and statistical.  

 

For example, assume that a drunken man will walk N steps from the origin. Each step 
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has randomness in the direction of the line and has nothing to do with the previous 

step and each step size is in the specified range. Then each step in the x and y 

directions are: 

 

 11, yx  ，   22 , yx  ，……，
 nn yx  ,

 

After walked N steps, the distance R between the location of the origin and drunken 

man is in line with the following relationship: 
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   (3-34) 

 

If walk is in line with true random, and then the probabilities of each step walk 

directions are same. After take large enough number of steps, the cross-terms in 

Equation (3-34) will be cancelled, then we can get: 

 

22

2

2

1

22

2

2

1

2

nn yyyxxxR    (3-35) 

Then we get: 

                                             22 nrR                                         (3-36) 

Where r is the step size. Where n large enough is the condition of Equation (3-36) 

established.   

 

To visualize the Brownian motion we need to create a three-dimensional spatial 
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coordinate. It is shown in Figure 3.3. 

 

Figure 3.3: The three-dimensional spatial coordinates [68]. 

Then we use polar coordinates, they are shown in Equation (3-37):  

barX cossin ， barY sinsin ， arZ cos ， 

               r0 ， 20  b ，  a0 ，             (3-37) 

To allow the movement of these Brownian particles we need to give the moving 

directions and steps length. We choose step length as ss=2 (r=2) and Define two 

angles b=theta 1, a= theta 2 and then we give the motion directions in polar 

coordinates by using the random number generation function. The Monte Carlo 

simulation will run in the Matlab environment. First we simulate 200 Brown particles 

motions and then we track the moving of a single particle. Finally we record and draw 

the motion path.  

 

The corresponding Matlab program codes are listed in below: 

1) rand('state',sum(100*clock));        % Generating Random 

2) ns=200;                                  % Set Times 

3) np=200;                                  % Total number of  
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4) ss=2;                                     % Set the step length 

5) sl=zeros(np,3); 

6) for a=1:ns 

7) for c=1:np 

8) theta1=rand*2*pi;          % Define the scope of theta 1 

9) theta2=rand*pi; 

10) sl(c,1)=sl(c,1)+(ss*cos(theta1))*sin(theta2); % Find the x component 

11) if sl(c,1)>20 

12) sl(c,1)=sl(c,1)-2*(ss*cos(theta1))*sin(theta2); 

13) end 

14) if sl(c,1)<-20 

15) sl(c,1)=sl(c,1)-2*(ss*cos(theta1))*sin(theta2); 

16) end 

17) sl(c,2)=sl(c,2)+(ss*sin(theta1))*sin(theta2); 

18) if sl(c,2)>20 

19) sl(c,2)=sl(c,2)-2*(ss*sin(theta1))*sin(theta2); 

20) end 

21) if sl(c,2)<-20 

22) sl(c,2)=sl(c,2)-2*(ss*sin(theta1))*sin(theta2); 

23) end 

24) sl(c,3)=sl(c,3)+ss*cos(theta2); 

25) if sl(c,3)>20 
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26) sl(c,3)=sl(c,3)-2*ss*cos(theta2); 

27) end 

28) if sl(c,3)<-20 

29) sl(c,3)=sl(c,3)-2*ss*cos(theta2); 

30) end 

31) end 

32) plot3(sl(:,1),sl(:,2),sl(:,3),'.r') 

33) axis([-20 20 -20 20 -20 20]) 

34) title('Brownian motion dynamic presentation','fontsize',10,'color','k') 

35) xlabel('x'); ylabel('y'); zlabel('z'); 

36) grid on 

37) pause(0.001) 

38) rt(a,:)=([sl(1,1),sl(1,2),sl(1,3)]) 

39) end 

40) %  Tracking the motion of a single Brownian particle 

41) m=1; 

42) figure                                     % Open a new window 

43) while m<=ns 

44) axis([-20 20 -20 20 -20 20]) 

45) plot3(rt(m,1),rt(m,2),rt(m,3)'.') 

46) title('A single Brownian motion particle dynamics 

presentation','fontsize',10,'color','k') 
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47) xlabel('x');ylabel('y');zlabel('z') 

48) grid on 

49) hold on 

50) pause(0.05) 

51) m=m+1 

52) end 

53) figure 

54) axis([-20 20 -20 20 -20 20]) 

55) plot3(rt(:,1),rt(:,2),rt(:,3), rt(:,1),rt(:,2),rt(:,3),’.r’) 

56) title('A single Brownian particle motion path','fontsize',10,'color','k') 

57) xlabel('x');ylabel('y');zlabel('z')； 

58) grid on 

And then all simulated results are shown in below. 

 

Figure 3.4: It shows the final positions of 200 Brownian particles that are evenly 
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distributed in the space. 

 

Figure 3.5: Those are tracking positions of a single Brownian particle after 

diffusion in 200 seconds. 
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Figure 3.6: It shows a trace of a single Brownian particle motion path. 

The Figure 3.6 result shows that the Brownian motion is in line with the 

randomly and trend distribution.  

 

Figure 3.7: The mean square displacement of a Brownian particle is proportional 

to the time t. 

 

The Monte Carlo method simulated the Brownian motion well in Matlab environment. 

It solves problems that the classical Brownian motion experiments hard to observe 

and record. Furthermore, compare with manually experiments, the Monte Carlo 

simulation method saves a lot of time and other costs.  
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3.6 Summary 

 

This Chapter presented the history and development of the Monte Carlo method. It 

also discussed the characteristics of the Monte Carlo simulation. Monte Carlo 

simulation was conducted to simulate the Brownian motion in Matlab environment. 
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Chapter 4: Parallelizing Monte Carlo with 

MapReduce Model 

 

In recent years, Google invented a new Distributed Computing Model which is named 

‘MapReduce’ [78]. As Google’s core technology, it has obvious advantages in process 

over TeraByte (TB) level of huge data area.  

 

MapReduce is Google company’s secret, but the Hadoop project is a Java’s clone 

version which was created by the open source community [84]. In recent years, 

Stanford University’s Phoenix [78] project has putted MapReduce into shared-

memory architecture of hardware platform and has already made some achievements.  

 

4.1 Distributed Computing 

4.1.1 Moore’s Law and Free Lunch 

The Moore’s law was defined as the number of circuits on integrated circuit chip 

which doubles in every 18 to 24 months [77]. From 1965 to the present, this law has 

been recognized by people. The various properties of CPU have improved 

exponentially in recent decades. Especially from 2000 to 2003, the frequency of CPU 

had been developed rapidly and successfully entered into the 3GHz era. However, the 

development trend has stopped since 2004. The main PC chip manufacturers such like 

AMD, Intel, Sparc, PowerPc and other companies have stopped their high frequency 
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research projects, meanwhile they developed hyper-threading and multi-core 

technologies. It indicates that although Moore’s Law predicted the pace of 

development in the past few decades, we can see that this trend would stop in the near 

future because of the limitation of hardware technology. In 2005, Herb Sutter, who is 

the chairman of C++ Standard Committee, issued a famous article “The Free Lunch Is 

Over----A Fundamental Turn Toward Concurrency in Software” [78][93]. He argued 

that if software wants to survive in multi-core era it must consider the concurrency 

problems. Then, he has made a fearless and amazing prediction: there is no silver 

bullet any more to solve the multi-core programming problems and no tools can solve 

the concurrent programming problems in an easy way. To develop high-performance 

parallel programs, software developers need fundaments to change their minds of 

programming method. In other words, it is not only changing in the traditional 

sequential programming method, but also changing sequential thinking habit of 

people over millions years [79][80]. 

 

Now, Herb Sutter’s prediction has been confirmed. Single-core computers are out of 

dated and the prices of multi-core computer have dropped rapidly. People still look for 

an efficient way to solve multi-core programming problems. The ultimate goal is to 

improve computer. Google’s MapReduce model makes use of a cluster of computers 

and utilizes functional ideas to improve performance of program implementations 

[78].  
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4.1.2 Sequential and Parallel Programming 

 

In the early times, programs were often executed sequentially. Programs are 

sequences of instructions in the single-core computer era because of these instructions 

are sequentially executed one by one from the beginning to the end in a program [81].  

 

Research for parallel programming is a way in order to improve the performance and 

efficiency of program executions [81]. In a parallel program, a process can be divided 

into several threads and each thread is executed concurrently. Each part of a program 

can run on the different cores simultaneously. These cores can be in one CPU or many 

CPUs and they work together. 

 

The Parallel programs can run faster, also they are used to solve a large data set. If 

there are groups of already networked computers, and then we have groups of 

computable CPUs. Meanwhile we have strong ability to process a large-scale data set 

if the file systems have already been distributed. 

 

4.1.3 Parallel Computing Concepts 

 

The first step to establish a parallel program [83] is to distinguish tasks which can be 

done simultaneously, or parts of the data can be processed simultaneously. However, 

some programs are impossible to process parallel such as the Fibonacci function [82]. 
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It is shown in Equation (4-1): 

 

                               
                             
                             
                

                       (4-1) 

 

The value of this function depends on the value of the previous function, which means 

to calculate each step’s result needs to use the previous step’s result as the input data. 

Therefore, programs like this function are unable to process parallel.   

 

There is a widespread phenomenon of parallel programs, in which the input data has 

the same structure. If the input data can be divided into the same size data chunks, 

then we can process the problem in parallel.  

 

Fox example, we can break a large array down into several same size sub-arrays. 

Assume that each sub-array is executed in the same way without depending 

calculation on other sub-arrays and there is no communication of each process. Then 

the computation can be parallelized. It is shown in Figure 4.1. 
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Figure 4.1: The whole array, each sub-array is identified in different color. 

 

To solve a problem like this, usually people use a common Master/Worker model 

[81][83][92]. The structure of Master/Worker model is shown in below: 

Master: 

 Initialize the arrays, and then according to the number of workers [83] to 

disintegrate the arrays. 

 Send sub-arrays to workers after disintegration. 

 Receive results from each worker. 

 

Worker: 

 Receive sub-arrays from Master. 

 Process sub-arrays. 

 Send results to Master. 

All steps above are the basic ideas of the Master/Worker model. 
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Another example of Master/Worker model is calculating the value of π. First of all, 

draw a square and a build-in circle as shown in Figure 4.2. 

 

Figure 4.2: Calculating the Value of  . 

 

The area of square is             ;                                                 (4-2) 

The area of circle is      .                                                                   (4-3) 

Then we can get: 

   
  

  
 

       

    
  

 
  

   
  

  

 

 

                                                                    
   

  
                                      (4-4) 

 

The reason to do this algebraic derivation is that the calculation can be parallelized by 

using the following steps.  
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 We generate a number of points in the square in a random way. 

 The we count the number of the points which are located in the circle. 

 P=
 

 
 , A represents                                       , and B represents 

the                                   . 

 π=4p. 

 

Consequently, we can use the following program to achieve the parallel calculation. 

1) NUMPOINTS = 100000; // The bigger the number, the results more 

approximate 

2) n = the number of worker 

3) numPerWorker = NUMPOINTS / n; 

4) worker: 

5) countCircle = 0; // Each worker has one counter 

6) // every worker does following program 

7) for (i = 0; i < numPerWorker; i++) { 

8) Generates two random numbers within the square； 

9) xcoord = The first random number； 

10) ycoord = The second random number； 

11) If (xcoord, ycoord) in the circle 

12) countCircle++; 

13) } 

14) master: 
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15) Receive the values of countCircle from each worker; 

16) Calculate π：pi = 4.0 * countCircle / NUMPOINTS; 

 

This is a typical Monte Carlo method to parallel the calculation of the value of π. 

 

4.1.4 MapReduce Programming Model 

 

In the past few years, many Google’s employees have done hundreds of calculations 

with a purpose to process a lot of original data, such as reptile documents, the request 

logs of Web pages [78][84]and so on. Calculations of all kinds of derive data include 

inverted index, various representations of the graph structures of web documents, the 

summary of number of creeping pages on each host, the largest number of daily 

requires and so on [78]. From the view of concepts, many of these calculations are 

easily understood. However, for large-scale data, only the calculations are distributed 

into hundreds of machines and then it will be able to complete in acceptable time. The 

parallel computation, data distribution and error identification, all those problems 

together lead an easy calculation process to become very hard to handle. Therefore, 

users need to write a lot of codes for the parallel programming. In order to respond 

this complexity, Google’s engineer Jeffery Dean designed a new abstract model which 

allowed users to do easy calculations [78]. Meanwhile, users don’t need to care the 

problems like hiding parallelization, fault-tolerant, data distribution and load 

balancing by putting them into a library. The inspiration of this abstract model is from 
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Lisp and original representations of Map and Reduce of other function languages. 

Actually, many calculations have the same operation: use Map functions in logical 

record of input data to calculate middle key/value set; and then use Reduce functions 

calculate those key/value sets in groups and combine all results to a final output file. 

The abstract model and users appointed Map and Reduce functions together in order 

to achieve massively parallel computing in an easy way. The abstract model uses the 

restart function as a primary mechanism can easily to achieve fault-tolerant. The main 

contribution of this work is via a simple and powerful interface to achieve automatic 

parallelization and large-scale [83] distributed computing. That means a large number 

of common PCs also can achieve high-performance computing just like a cluster.  

 

Use the input key/value sets [78][84][92][95] to generate the output key/value 

[78][84][92][95] sets via computations. Users of MapReduce library need to use two 

functions express this calculation: the Map function and the Reduce function. Users 

can self-define the Map function [92] to accept input pairs [95], and then to generate 

the middle key/value pairs. Then the MapReduce library will integrate all middle 

values together by the same middle key [78], and then send them to the Reduce 

functions [84]. Same to the Map functions, users also can self-define the Reduce [92] 

functions. When the Reduce functions receive a middle key and its relevant value sets, 

it will combine these values together and build a small value set. Usually, each time of 

the Reduce functions only generates zero or one output value.  
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4.1.5 Word Count Case Study 

 

Consider this problem: Count the number of occurrences of each word [84] in a huge 

document. Users will  write similar pseudo codes shown in below: 

1) map(String key，String value)： 

2) //key：name of file 

3) //value：content of file 

4) for each word w in value： 

5) EmitIntermediate(w，"1")； 

6) reduce(String key，Iterator values)： 

7) //key：one word 

8) //values：one count list 

9) int result=0； 

10) for each v in values： 

11) result+=ParseInt(v)； 

12) Emit(AsString(resut))； 

 

The Map functions can generate any words and the times of the specified word (In 

this simple example is 1). The Reduce functions count each word specified by the 

Map function. Furthermore, users use the names of input/output [84] files and 

optional regulation parameters to fill in a MapReduce specification object [92]. And 

then users call and send the specification objects to MapReduce functions. And then 
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the Users’ codes and the MapReduce library have been linked together [97]. 

 

4.1.6 Type Format 

 

Even if the previous pseudo-codes are written in term format of character string input 

and output, but conceptive users have relevant types when they are writing Map and 

Reduce functions. Those formats are shown in below [96]: 

 

map(k1，v1)   list(k2，v2); 

reduce(k2，list(v2))   list(v2)  

 

4.1.7 Use Cases of MapReduce 

 

Here are some simple programs shown in below which can easily executed by 

MapReduce.  

 

Distributed Grep [78]. If the input data matched the given format, the Map function 

will transfer input data to intermediate data, and then the Reduce function only copy 

the intermediate data to produce output files [95].  

 

Calculate frequencies of URL access [78]: The Map function processes the record of 
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web page requests [92] and produces output data in a format of (URL, 1). Then the 

Reduce function sums up all values with the same URL and generates a output pair in 

the format of (URL, total numbers). 

 

Reverse web-link graph [78]. The Map function produces outputs data of each link in 

the format of (Target, Source) pair [92]. Where each URL is called Target, the Source 

includes this URL page. And then the Reduce function will produce a list of those 

URLs and generate (Target, List (Source)) pairs as the output file. 

 

4.2 MapReduce Implementation 

4.2.1 Execution Overview 

The MapReduce automatically partitions the input data into chunks and distributes 

those chunks to Mappers who are located at multiple computers. Those chunks can be 

parallel processed by each Mapper. Then Mappers produce intermediate data for the 

next step. And then the sort factor put those intermediate keys into groups. After this 

step, each Reducer will be allocated a group of data to process. At last, all result of 

each Reducer will be combined to the final output file.  The implementation of 

MapReduce is shown in Figure 4.3. 
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Figure 4.3: The implementation of MapReduce [78]. 

Figure 4.3 shows the MapReduce operation. When user’s program calls [95] the 

MapReduce function, and then the following actions will occur (the numeral labels in 

Figure 4.3 are corresponding to the following list). 

 

 First, the MapReduce library [78] divides the input files into M [83] chunks. Each 

size of chunk typically is 16MB-64MB [78] which can be controlled by using of 

optional parameter. And then those chunks will be amount copied in the cluster. 

 One of the copies is set as a master [78]. The rest of copies are workers which 

receive and execute tasks from the master. Totally there are M Map function tasks 

and R Reduce function tasks [83] assigned. The master will drop a Map task or a 

Reduce task to an idle worker. 

  When a worker is assigned task by master. That means the Map tasks and the 



 

Chapter 4: Parallelizing Monte Carlo with MapReduce Model                                     Yu Zhao 

78 

 

Reduce tasks may be computed by same worker. The intermediate data pairs 

produced by Mappers will be buffered into memory [95] when a Map task is 

running on the worker.  

 Periodically, those intermediate data pairs are written into local hard disks. The 

partitioning function [78] is used to divide those data into R regions. And then the 

master receives the region location information of each data pair. The master will 

forward the information to all workers once it got them.  

 When a Reducer worker receives the information from the master it will call 

intermediate data from the Map worker local hard disks. Before the Reduce 

workers get all the data. The sort factor grouping all values with the same key 

together. In this step, sorting is necessary because of there are many values with 

different keys [95] in the intermediate data.  

 Each unique key and relevant pairs in the intermediate data will be sent to the 

user’s self-defined Reduce function. All the output of each Reducer will be 

combined in a final output file [95]. 

 After the successful completion of all tasks, then the MapReduce program will 

return to the user interface. 

 

After successful completion, the output data of the MapReduce are stored in R files 

(each Reduce task has a user-defined file) [78][84]. Usually, these files will be used as 

input data for another MapReduce program or another distribution which can handle 

those partitioned files. 
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4.2.2 Master Data Structures 

 

The master keeps several data structures [95]. It stores the status of each Map task and 

Reduce task such as idle, working, or completion. So, it also avoids that the workers 

are in the idle status.  

 

The master just like a tube where is a way of inputs data pairs from the Map function 

to the Reduce function. Therefore, the master stores all the locations information and 

sizes information of the R intermediate files which were produced by Map workers. 

All information will be sent to the running Reduce workers.  

4.2.3Fault Tolerance 

The MapReduce is designed to process the large-scale data [78] through using large 

number of computers or processors, so it must tolerate computers failures very well. 

 

4.2.3.1 Worker Fault 

 

The master pings each worker periodically [95]. If master dose not receives response 

from a worker in a certain period of time, and then the worker will be identified as a 

failed worker [84][94]. All map tasks were completed by a failed worker need to reset 

to their initial idle status, meanwhile, those tasks will be sent to other working 

workers. The completed Map tasks on a failure worker will be executed again because 

the output data are stored on the worker’s local hard disks which have had unable to 
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visit. The completed Reduce tasks by the failure worker do not need to re-executed 

because Reducer’s output data are stored in the global file system [96]. For example, 

another worker will execute a map task if the previous worker failed, this situation 

will be informed to all workers who are executing Reduce tasks. The Reduce worker 

who has not received data from the previous worker will get data from the new 

worker [95]. From this point of view, MapReduce can easily handle worker failures 

because it just simply re-executes tasks until the operation completed.  

 

4.2.3.2 Master Fault 

 

It is easily to let master cyclically to write checkpoints of the data structures described 

above. This means if the master process failed, another new master process will start 

since the latest checkpoint. However, due to there is only one master in the system, its 

failure is very troublesome. Therefore, we can achieve right now that if the master 

failed, the MapReduce implementation will be terminated [92][100] by the system. 

And then users will be noticed and can check this status and restart the operation or 

sort out problems.  

 

4.2.3.3 The Error Handing Mechanism 

 

A distribution system will be established during the MapReduce operating 

[78][84][96][97][99]. Each task has its own private temporary file in MapReduce. A 
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Reducer only has one such file, and a Mapper has R such files, each file is 

corresponding to one of Reducers. The information of the temporary R files will be 

sent to master after the completion of a Map task. The master will ignore the 

information message if it has already got one. Otherwise, master will record the 

information message into its data structures. After a Reduce task completed, each 

Reducer renames its own output file and combine all Reducers’ files into the final 

output file. The underlying file system [95] is making sure that each Reduce task has 

only one file will be combined into the final output file. It is necessary if there are 

many Reducers assigned the same Reduce task by master.  

 

4.2.4 The Storage Location 

 

Network bandwidth is a limited resource in distribution system environment [95][98]. 

We save network bandwidth via store the input data controlled by Google File System 

(GFS)[84] into workers local hard disks. The GFS divides input data into 64MB 

chunks and stores several replicas of each chunk [95][96] in different workers. The 

master considers the location information of the input files [95] and tries to create a 

Map task on the worker which has relevant input data in its hard disks. If master’s 

efforts failed, then it tries to create a Map task on a near worker. For example, the new 

selected worker is in one switch framework with the worker which contains input data. 

To save the network bandwidth and improve the performance of large-scale 

computations when use MapReduce in a cluster environment, almost input data are 
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read from local hard disks. 

 

4.2.5 Task Granularity 

 

As described above, the Map tasks are divided into M numbers and the Reduce tasks 

are divided into R numbers [99]. The total number of M and R are much more than 

the total number of workers. Each worker performs several different tasks to improve 

the dynamic load balancing [93] and allows MapReduce to do fast recovery from 

worker failure. For example, all completed Map tasks by a failed worker will be 

assigned by master to other working workers. There are limitations of sizes of the 

scope of M and R because the master must dispatch O(M+R) times and save O(M*R) 

statuses into memory [98][101]. The statuses only use small amount of memories, 

each Map/Reduce pair approximately only uses one byte. In addition, usually R is 

limited by users [95], that is because of each Reduce task creates its own output file, 

more Reduce task means more memory will be used. Generally, R is set as the 

multiple of workers the users expected to use. For example, set the MapReduce 

implemented with M=80,000, R=2,000 in 800 workers.  

 

4.2.6 Alternate Tasks 

 

A laggard is one of the reasons to extend the operating time of MapReduce. In other 
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words, a worker successfully completes one of Map or Reduce tasks in an unusual 

long time [85][91]. There are many possible reasons for producing a laggard. For 

example, a worker with hard disk errors occurrence frequently but those faults can be 

corrected may lead to the read performance from 80MB/s down to 10MB/s. 

Meanwhile, master has already distributed other tasks to this worker. There are many 

reasons can cause the slowly implementation of MapReduce such as the performance 

limitation of CPU, memory, hard disk, and network bandwidth [83][86].  

 

There is a mechanism used for assuaging the laggard problems. When implementation 

of MapReduce almost finished, the master calls alternates workers to execute the 

remaining tasks which still in progress. Whether the tasks completed by original 

worker or alternates workers, the tasks will also is marked as completion. This 

mechanism will normally take more than a few percentages of the workers resources, 

but it significantly helps to save time cost of the MapReduce implementations. 

 

4.3 MapReduce for Multi-core Systems with Phoenix  

 

Phoenix is a kind of implementations of MapReduce based on the shared-memory 

systems [78]. Its goal is making the execution more efficiently and users do not care 

the multiple core platform. In fact, in the concurrency management even an 

experienced programmer is also may make mistakes. Phoenix is consisted by an 

efficiently runtime component and a few simple APIs which are open to application 
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developers. In Phoenix implementation, the runtime component is used to handle 

parallelization, resource management, and bug fix.  

 

4.3.1 Basic Operation and Control Flow 

 

 

Figure 4.4: The basic flow of Phnoenix runtime [89]. 

 

As shown in Figure 4.4, the scheduler controls the runtime. The responsibilities of 

scheduler are creating and managing all threads of in progress Map and Reduce tasks. 

It is also managing the buffers which are used for communications between tasks. 

Programmers through using scheduler_args structure to initialize all the scheduler 

needing such as data and functional pointers. And then the scheduler detects the total 

number of processor cores can be used for the computation. The scheduler will 

establish a worker thread on each processor core and the Map and Reduce tasks are 
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dynamically allocated to the thread for executions.   

 

In the start step of Map phase, the Splitter function divides input data into number of 

equal-sized chunks [89][92]. The Splitter is called once [97] by each Map task and 

then returns data to Map tasks to process. Map tasks are dynamically distributed to 

workers [97] and each task produces the intermediate <key, value> pairs which will 

be used as input data of the Reduce tasks. In each buffer, values are sorted by the 

assistance of key. At this time, the Map phase is end. After all Map tasks completed, 

the scheduler starts the Reduce phase.  

 

Reduce tasks are similar to Map tasks, also distributed dynamically to workers. The 

only difference is that each Map task is completely independent when the Map tasks 

are processing pairs. The Reduce tasks are quite differently, they must process all 

values with the same key [89] in one Reducer. Therefore, in Reduce phase, workers 

may appear unbalanced loading, so the dynamic allocation is crucial. Before the 

Reducer starts to work, all final output file produced by each Mapper will be merged 

together into a single buffer [95] and sorted by keys. This step is processed by the sort 

factor. The merging process has     
 

 
 steps, where P is the total number of using 

workers. 

 

4.3.2 The Buffer Management 

There are two different type of buffers between the Map phase and the Reduce phase 
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[94]. All buffers are assigned in shared memory and interviewed by specified function. 

When users are have to re-arrange buffers [95] in some conditions. For example, split 

across tasks. In this condition, we control pointers rather than the actual pairs because 

the data of pairs are very large. Furthermore, the intermediate buffer is not visible to 

the application program.  

 

All the intermediate data pairs are stored in buffers. Each worker has its own private 

buffer. This buffer is defaulted the size during the system initialization and then the 

size will change dynamically based on demands in process. In sorting step, a key may 

corresponds to multiple key/value pairs. In order to accelerate the speed of Partition 

function, the Emit_intermediate function [95][96] is used to store all the same key 

pairs in the same buffer. At the time of the Map tasks completed, all the buffers are 

sorted in order by key. In this phase, each key is associated with only one value. After 

this step, the final output file is produced and it can be accessed by user assigned 

output data buffer. 

 

4.3.3 Fault Tolerance 

The runtime provides a limit repair service for solving the accidents or the persistent 

errors during the Map phase and the Reduce phase.   

 

Phoenix uses timeout policy method to detect the system failures [96]. If a worker 

completes a task over the standard time cost which is made by considered cost time of 
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other workers have done similar tasks. And then master can suspect that there are 

errors occurred within this worker. Of course, errors often lead to incorrect or 

incomplete data rather than totally system failed. The Phoenix system itself is unable 

to detect this situation and even cannot prevent shared memory polluted by erroneous 

tasks [99].  

 

The Phoenix runtime and existing error detect technologies are used together to 

complement this defect. Phoenix provides relevant information to simplify the process 

of error detection. For example, Phoenix can notify the status of load/store address 

such as safe or unsafe to the hardware when it has known the address ranges of input 

data and output data. If the address may be unsafe, then Phoenix will send a unsafe 

signal to hardware. 

 

When an error is occurred or pended, the runtime system tries to execute the failed 

task again [87][91]. Since the failed task may be still in progress, the new task will be 

assigned a new output data buffer. Otherwise, the new task address space is in conflict 

with the original task and this situation will cause the pollution of data.  

 

When one of those two tasks finish, the runtime will adopt the result calculated by the 

completed task and put the result into the part of the output data. Then the scheduler 

assumes that the error occurrence just is an accident and continues to assign new tasks 

to the worker had failed before. If errors occur again on that worker in a short time, 
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the scheduler determines that is a persistent error condition rather than an accident. 

Meanwhile, the scheduler will be no longer to assign any task to this worker.  

Furthermore, the Phoenix scheduler itself does not provide bug fix services. 

 

4.3.4 Concurrency and Locality Management 

 

The runtime scheduling policy directly affects the efficiency of performance of all 

parallel tasks. Phoenix uses three methods during its decision making process: 

 Use the default policy if a system which had been considered in its 

development; 

 Dynamically determine the optimal scheduling policies via monitoring 

available resources and the runtime behaviours; 

 Allow the programmer to custom policy [93][95][96]. 

 

4.4 Performance Evaluation 

This section presents the performance evaluation results of the parallel Monte Carlo in 

an experimental environment. 

 

4.4.1 Experimental Results 

A small MapReduce Hadoop cluster was set up using 4 computers with the following 

configurations as shown in Table 4.1. 
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Table 4.1: Hadoop configurations. 

Hardware environment 

  CPU Number of 

Cores 

RAM 

Node 1 Intel Quad 

Core 

4 4GB 

Node 2 Intel Quad 

Core 

4 4GB 

Node 3 Intel Quad 

Core 

4 4GB 

Node 4 Intel Quad 

Core 

4 4GB 

     Software environment  

   

   

OS Fedora10  

Hadoop Hadoop 0.20  

Java JDK 1.6  

 

Figure 4.5 shows the speedup of the MapReduce enabled parallel Monte Carlo using a 

varied number of Mappers in comparison with the sequential one on different sizes of 

data. As can be observed from this figure, more Mappers are used, better speedup is 

achieved especially on a larger data set. 

 

 

Figure 4.5: The speedup of different number of Mappers. 
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Figure 4.6 shows the accuracy of the parallel MapReduce Monte Carlo which shows 

the accuracy of the parallel Monte Carlo is highly close to that of the sequential one. 

 

 

Figure 4.6: The accuracy of MapReduce Monte Carlo. 

 

Table 4.2: summarises the accuracy the parallel Monte Carlo. 

 
Sequential  
Monte Carlo 

MapReduce Monte Carlo 

Correctly computed ≈ 94.04 % ≈ 96.23 % 

Incorrectly computed ≈ 6.96 % ≈ 4.77 % 

128,000 data samples (processing 
time in seconds) 

≈ 532 s ≈ 115 s 

 

4.4.2 Simulation Results 

To further evaluate the performance of the parallel Monte Carlo in a large scale 

Hadoop cluster environment, we employed HSim [103], a Hadoop simulator 

developed by the research group at Brunel. Table 4.3 shows the configurations of the 

simulated Hadoop cluster. 
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Table 4.3: Hadoop simulation configurations. 

 

 

Figure 4.7 shows the impact of the number of Reducers on the efficiency of the 

MapReduce Monte Carlo. It is observed that the number of Reducers does not make 

much difference on the efficiency of the parallel Monte Carlo. However, the 

processing time decreases with an increasing number of Mappers, as the computation 

of Monte Carlo is mainly carried by the Mapper nodes. 

 

Figure 4.7: The impact of Mappers. 
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Figure 4.8 shows the effect of sort factor on the performance of the parallel Monte 

Carlo. It can be observed that the higher the sort factor is, the better performance is 

achieved which means that a lower overhead in computation is incurred. This is 

because the sort factor affects the performance of Hadoop in IO operations. 

 

 

Figure 4.8: The impact of sort factor. 

 

4.5 Summary 

 

This Chapter presented the implemented parallel Monte Carlo algorithm with 

MapReduce model. It discussed distributed computing and programming and 

implementation of the MapReduce model. It also presented the multi-core systems 

with Phoenix MapReduce model and it also evaluated the performance of the parallel 

Monte Carlo in both an experimental environment and in a large scale Hadoop cluster 
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environment. Both the experimental results and the simulation results showed that 

parallel Monte Carlo is faster than the sequential Monte Carlo. For large-scale input 

data, more Mappers used, a better performance can be achieved.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 5: Data Locality in MapReduce Model                                                               Yu Zhao 

94 

 

Chapter 5: Data Locality in MapReduce Model 

 

5.1 Introduction  

 

MapReduce is a parallel programming model developed by Google for processing 

large amounts of data in distribution system environment. Due to its features such as 

fault-tolerance, simplicity and scalability, MapReduce can be used as a framework to 

process large scale data [86] applications such as scientific simulation and web data 

mining. In addition, the MapReduce model has a very simple architecture because it 

processes parallelization details by only using the runtime, Map and Reduce functions. 

There are some implemented systems of the MapReduce such as Hadoop, Dryad, 

Phoenix, Mars and Sphere.  Yahoo [84] has developed its own open source 

MapRedcue project which is called Hadoop. It runs jobs that produce massive data 

(over 300 TB compressed) on at least ten of thousand cores. 

 

The Hadoop’s basic principle is moving computation to the data or as close as 

possible to the data which are needed to compute [84]. From this point of view, 

usually there are large amount of nodes in a framework. Those nodes can be personal 

computers or clusters. A lot of data are needed to compute in local disks. Move those 

data to application in progress worker costing bandwidths and time. On the other hand, 

just move the application to or near the disks where the data located will improve the 

overall performance and save time cost. In the other words, the computation tasks are 
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closer to data called data locality. Today’s cluster has thousands of shared nodes 

which transmit massive data that impose network load and create congestion. So, an 

efficiently scheduler can avoid unnecessarily data transmissions. The Scheduler 

considers data locality because it determines the performance of MapRedue due to the 

limitation of network bandwidth in distribution systems [77].  

 

According to the distance between workers and input data [84], there are three levels 

of Map tasks in each worker. The most efficient locality is the first level locality 

where the in progress Map task is launched on the worker which holds the task input 

data. It is also called the node level locality. When a task cannot achieve the first level 

locality, then the scheduler will execute task on a node in the same rack where the 

computation node and data node are located together. So it is called rack level locality, 

also known as the second level locality. If the task still fails to achieve the second 

level locality and then the scheduler will launch the task on a node located at a 

different rack. This is called rackoff level locality, also known as the third level 

locality.  

 

Otherwise, if locality is not achieved, the data transferring IO cost will seriously 

affect the performance of the whole system due to the limitation of shared network 

bandwidth. The default Hadoop scheduler provides some mechanisms to improve the 

data locality but they have some inherent deficiencies. To avoid unnecessary data 

transformations in Hadoop environment, researchers developed data-locality aware 
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schedulers. In this part, we study these schedulers and describe how they improve the 

data locality in Hadoop environment. Furthermore, we analyze and evaluate these 

schedulers and present their strengths and weaknesses. 

 

5.2. Hadoop MapReduce Overview 

 

As described above, Hadoop is an open-source MapReduce model [84]. The Hadoop 

environment consists of two main components: the MapReduce framework and HDFS 

(Hadoop Distributed File System) [84]. 

 

The MapReduce framework is shown in Figure 5.1, it divided computations into Map 

and Reduce functions. In Map function, the job is divided into small tasks and 

assigned to specific slave nodes. In this stage, each Map task processes one chunk of 

input data in the form of <key, value> pairs [77] and produces the intermediate result 

data < key, value> pairs. The intermediate data < key, value> pairs are stored in 

worker’s local disk. In Reduce function, the intermediate data are read in the form of 

<key, value> pairs and combined all values corresponding to same key to produce the 

final output. Both the Map and Reduce functions can independently execute each 

<key, value> pair, exposing significant parallelism [78][84]. 

 

Two software services, JobTracker and TaskTracker are implemented in Hadoop 

MapReduce framework. The JobTracker is run on master and TaskTracker is run on 
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each worker. The JobTracker is responsible for splitting the input data into small 

chunks and scheduling each task on workers. It is monitoring the working conditions 

by receiving the signals from workers and recovering from failures by re-assigning 

tasks. The TaskTracker is running on each worker and accept to the Map and Reduce 

tasks from the JobTracker. Each TaskTracker contacts with JobTracker periodically 

via the heartbeat messages to report the task completion progress and request for new 

task when the worker is idle. When master receives signal from the worker, the master 

calls the scheduler (JobTracker) to assign a new task to the worker. The rest of steps 

have no difference to other MapReduce models such as Phoenix.  

 

In the cluster environment, the Hadoop Distributed File System (HDFS) is designed 

to provide the global access for files [83]. HDFS is closely resembled to Google File 

System [81] and highly reliable because each input data chunk has multiple replicas 

(3 by default) are stored in multiple data nodes for the purpose of fault-tolerance [82]. 

HDFS has master/slave structure which includes a NameNode and many DataNodes. 

In Hadoop environment the input file is stored in HDFS and passed to Map function.  

HDFS splits the input file into even-size fragments (64 MB by default) which are 

distributed across to group of DataNodes for further processing. The NameNode 

manages file system’s namespace and standardize the client to access the files. The 

DataNode(s) manages the storage devices which are directly attached to each data 

node.   
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Figure 5.1: Hadoop MapReduce Framework. 

 

5.3. Data Locality in Hadoop 

 

As data locality is a determining factor in Hadoop environment, it significantly affects 

the performance of the system. There are several factors that affect the date locality 

such as the size of the cluster, the number of data replica and job execution stage. In a 

large size cluster and small amounts of jobs condition, the probability of the data 

locality is low. For example, if a job has 10 Map tasks which are submitted to a 

cluster which has 150 nodes. It is impossible to obtain a good locality rate. Since each 

task has 3 replicas of input data which are distributed on 3 different nodes, there are 

only one fifth workers that can get the input data. This means the probability of the 

data locality for the job is only 20%. If we decrease the number of nodes to 50, then 

the data locality of the job will increase to 60%. 
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Similarly, the number of replicas and job execution stage also influences on the data 

locality. Increasing the number of replicas of input data improves the data locality, but 

it consumes a lot of storages. At the job initialization stage, there are large number of 

unmapped tasks and input data stored on nodes, so the probability of the data locality 

is high. While at the end stage, the job has small number of unmapped tasks and input 

data are available on less number of nodes, so the data locality becomes much lower. 

 

The Hadoop default scheduler schedules jobs by FIFO and has already considered on 

the data locality [85]. When a master receives a signal from workers which indicate 

that a free Map slot is available, then the JobTracker on master node will try to find 

the Map task workers which have the job input data.  If the worker is found then the 

node level locality is achieved and task will be launched on that worker. When the 

node level locality is impossible to achieve, then JobTracker will try to seek the rack 

level locality. If the rack level locality still fails then task is arbitrary picked up and 

launched on an off-the-rack node. This simple scheduling algorithm is favoring the 

data locality but with deficiencies. For example, this algorithm strictly follows the 

FIFO policy where tasks are scheduled one by one and each task is scheduled without 

considering its impact on other tasks. 
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Let us consider a Hadoop cluster of three nodes (N1, N2 and N3) shown in Figure 5.2.  

Figure 5.2: Hadoop cluster. 

Each node has at least one free Map slot. Let us assume that there are three tasks (t1, 

t2 and t3). Each task input data has multiple replicas which are stored over multiple 

nodes for reliability purpose. Task t1 input data are stored on nodes N1, N2 and N3, 

task t2 input data are stored on nodes N1 and N2 and task t3 input data are stored on 

node N1shown in the Figure 5.3.  

 

Figure 5.3: Hadoop cluster task t3 loses Locality. 
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Now how the default scheduler assign these tasks to nodes. The scheduler assigns task 

t1 to node N1 and achieves the node level locality, and then task t2 is assigned to node 

N2 and it also achieves the node level locality. Now, there is only one node C has the 

idle slot and only one unscheduled task t3. So the task t3 must be assigned to node C 

as shown in Figure 5.3. To summarized, task t1 and task t2 have gained the locality 

while task t3 has lost the locality. That is because of the scheduler processes the tasks 

one by one rather than considers all tasks on all available idle slots. All tasks will 

achieve the locality if scheduler processes all the tasks on all available idle slots at 

once as shown in the Figure 5.4. 

 

Figure 5.4: Task t3 gain locality. 

 

 5.4. Data Locality Aware Scheduling  

 

In this section we study the state-of-art data locality aware scheduling algorithms in 
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Hadoop MapReduce environment. 

 

5.4.1. DARE Scheduling  

 

 Abad et al. [79], designed DARE (Adaptive Data Replication) algorithm to improve 

data locality by dynamically replicating the popular data and reducing network 

congestion through redistributing the correlated access chunks on different nodes. The 

implementation of this algorithm is relying on two approaches: the greedy approach 

and the probabilistic approach. 

 

In the current implementation, when the Map task is impossible to gain the local data, 

MapReduce framework will fetch data from remote node where the data located. Then 

those data are processed and will be discarded after the Map task completed. The 

greedy approach takes the advantages of remotely fetched data, it makes and inserts 

the subset of into HDFS at the node [89]. By doing this, DARE dynamically creates 

the replicas of data without any extra network cost. Replicate remotely fetched data 

chunks immediately leading to huge disk storage cost. To address this issue, DARE 

uses the eviction mechanism which is controlled by LRU (Least Recently Used) 

policy to delete recently least used data chunks to make sure that there are spaces for 

new replicas. 

 

The probabilistic approach is unlike the greedy approach. It does not replicate 
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remotely fetched data immediately but only replicate popular data. In this approach, 

each individual node runs the algorithm independently to generate replicas of the most 

popular data. This approach is also applied the aging eviction mechanism to rapidly 

expel the files with decreasing of popularity. When the storage budget is reached, the 

algorithm iterates dynamically replicated data chunks and evicts the files with 

decreasing of popularity to avoid files are being expelled. 

 

5.4.2. Delay Scheduling 

 

Zaharia et al [91] developed an algorithm which is called delay scheduling to enhance 

the data locality rate in Hadoop environment. The delay scheduler is applied into 

FairScheduler in Hadoop. FairScheduler has changed allocating equal share (time slot) 

of each job to allocating equal share of each user. Each user is assigned to its own 

spaces in a shared cluster. If a user cannot use its time slots, instead, other users can 

use them. If a user cannot get the minimum share meanwhile the preemption is being 

occurred. This means the scheduler reallocates the resources among the users. There 

are two approaches of preemption: first, killing the running jobs; second, waiting for 

running jobs to complete [100]. Killing the running jobs immediately scarifies the 

time had been run while waiting for running jobs to complete does not have such 

issue.  But it scarifies the fairness.  

 

The delay scheduling algorithm uses the waiting approach to achieve the data locality. 
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It is defined as if a node cannot process a local Map task then it will be waiting for a 

short time, and then it processes other tasks instead [92]. The delay scheduling relaxes 

the strict order of task assignment and delays job execution if there is no local Map 

task on a worker. Therefore, users specify the maximum delay time D is necessary. 

For example, if a worker has been skipped for longer than D time then it will be 

allowed to launch rack-level tasks. Thus, if it has been skipped for further longer time 

then it will be allowed to launch off-rack level tasks. These skip times are called delay 

time which is a very important factor in this algorithm. How to specify the values of 

delay time to achieve the target level locality is important. Usually, the values of the 

delay time are specified by using of either the 1.5 times to slave node heartbeat or the 

rate of the slots free up which is less than the average task length. The delay 

scheduling also resolves other locality problems such as Head-of-Line and Sticky-

Slots [91]. 

 

5.4.3. Matchmaking Scheduling Algorithm 

 

He et al [92] developed Matchmaking scheduling algorithm to enhance the data 

locality in MapReduce cluster. The main concept of this algorithm is making sure that 

each node has a fair chance to be assigned a local task before a non-local task. This 

process is similar to the Delay Scheduling. It can be defined as if a node has failed to 

be assigned a local task in the queue, and then the algorithm will continue to search 

the succeeding tasks. For the purpose of giving a fair chance to each node to get a 
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local Map task, a no non-local task will be assigned as the second choice when a node 

cannot find a local Map task at the first time. In other words, if a node still failed to 

get a local map task twice time, matchmaking scheduler will assign a non-local task to 

the node to avoid wasting of computation resources. This algorithm assigns a locality 

marker value to each node to represent the status of node. When a new job is added, 

all previously locality marker values will be cleared because of the new job may 

include local Map tasks for many slave nodes. 

 

5.4.4. Pre-fetching and Pre-shuffling Algorithm 

 

Sangwon et al. [89] developed two innovative techniques: Prefetching and Pre-

shuffling. Those can improve the overall performance of the MapReduce cluster. The 

prefetching technique enhances the data locality while the pre-shuffling reduces the 

time cost of shuffling of intermediate data produced by Map functions. In order to 

reduce the network overhead, the pre-shuffling technique is trying to predict the target 

Reducer where the intermediate result data are partitioned before the Mapper 

implementation. As we focus on data locality aware scheduling, so we only discuss 

the prefetching technique. 

 

The prefetching is a bi-directional technique which performs the complex 

computation in one side and in the other side pre-fetches and assigns data of the 

corresponding tasks. This technique pre-fetches the required data chunks of Map tasks 
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which are near to the computation node or in local rack. This technique includes two 

modules: the predictor and the pre-fetching. The predictor generates list of data 

chunks C which is required for the target task. First, the pre-fetcher identifies the 

location of replica c in the list of data chunks C. If the replica c does not exist in the 

local rack, but the access frequency of c is larger than the threshold, then the pre-

fetcher will try to replicate c in local node. If there is no enough space in the local 

node, then a replica of c will be created in the local rack. The pre-fetcher module is 

also monitoring the synchronization status between the computation and pre-fetching, 

and both activities are performing simultaneously. 

 

5.4.5. NKS Algorithm 

 

Zhang at el. [94] designed next-k-node scheduling (NKS) algorithm to improve the 

data locality of Map task in homogeneous environment. The algorithm preferentially 

schedules the node level locality tasks. If there are no such Map tasks available, then 

NKS algorithm will calculate the probability of each task and schedule the highest 

probability task.  

   

In this algorithm, the main factor is predicting the next node to issue request for task, 

this node is called k node. The method to determine the next k node is based on the 

progress reports of the running tasks. In Hadoop environment, all TaskTrackers on 

nodes are periodically reporting the progress statuses to the JobTracker. The size of 
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the whole input data and the size of processed data can be used to calculate the 

progress of the running tasks. In homogeneous environment, all the nodes are 

identical in term of processing and disk capacities, so the process speeds of tasks are 

the same.  Therefore, the task with the highest progress will be completed first and 

then the worker will request for next task. This means the request of this node is 

earlier than other workers. Then we know that the NKS algorithm is based on the 

progress of the running task to predict the next k node. However, in the conditions of 

different sizes of input data of the Map tasks, the NKS algorithm cannot predict the 

next k node correctly by using task progress because of those tasks will be completed 

at different time. In this case the NKS algorithm takes the input data sizes to equals to 

the Map tasks as a solution. To correct the prediction of next k node, the progress of 

the imaginary task is map with original task progress. 

 

To sum up, the advantages and limitations of all algorithms described above are 

shown in Table 5.1. 

Table 5.1: Summarized data locality aware scheduling. 

Scheduler  Strengths Weaknesses 

DARE 

Scheduler[79] 

 Creating replica 

without any extra 

network cost 

 Simple technique 

 Multiple replicas consumes 

unnecessary  huge amount of 

storage 

 Distribution of multiple 

replicas difficult in large-scale 

environment 

DELY 

Scheduling 

 Best perform in 

environment where 

 Perform worse in environment 

where jobs are longer and 
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[91] jobs are shorter and 

nodes are free up 

quickly.  

 Simplicity of 

scheduling algorithm 

nodes are free up slowly 

 Need careful turning. 

 

NKS [94]  Applied in 

Homogeneous 

Environment 

 Not applied in heterogeneous 

environment. 

 Need careful tuning   

Pre-fetching 

and pre-

shuffling [89] 

 No particular  Occupy much network 

bandwidth 

 Complex algorithm 

Matchmaking 

[92] 

 High cluster 

utilization 

 Every node has fair 

chance to grab a local 

task 

 Performed better than 

delay scheduling 

 No tuning required   

 No particular 

 

5.5. Discussion 

 

There are several points to discuss regarding the data locality scheduling aware 

algorithms. Both of these algorithms are trying to resolve the problems of data locality, 

but cause some other serious issues. For example, the DARE scheduler is a simple 

technique to improve the data locality by dynamically replicating the remote or 

popular data, but this technique also has several limitations.  
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 In a large-scale cluster, create replicas is very costly.  

 It increases the cost because storing large numbers of replicas require large-scale 

disk capacity. 

 Distributing large numbers of replicas are creating network overhead in Hadoop 

cluster.  

 

To address these limitations, a scheme was developed to implement a low-overhead 

file replication [99]. Another remedy was proposed to implement the data placement 

strategy [82]. Similarly, the Delay scheduling algorithm is working well if the most 

jobs are short and nodes are freeing up quickly. This algorithm does not suitable for 

the condition that the most jobs are long and nodes are freeing up slowly. Another 

issue of the Delay scheduling algorithm is the configuration of the values of delay 

time D. If the value of D is configured too small then it will cause assigning non-local 

tasks too fast. On contrary, if the value of D is configured too large then the job 

starvation may occur and it will affect the performance of the system. For the purpose 

of get the best data locality, this algorithm always need users to careful tuning by 

configuring the value of D.     

     

NKS and pre-fetching methods are developed for the purpose of the improvement of 

data locality. However, these techniques have several deficiencies. For Example, the 

pre-fetching algorithm is very complex and utilizing huge network bandwidth.  The 

NKS method is only applied in homogeneous environment and it cannot work in 
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heterogeneous environment. In heterogeneous environment, nodes have different 

levels of computation power in term of processing and storage capacities. Therefore, 

it is very difficult to correctly according to running task progress to predict the next k 

node. Another reason is the task speculation issue making it difficult to predict next k 

node. For the purpose of overcome the task speculation issue, researchers developed 

LATE (Longest Approximate Time to End) scheduler [100] and SAMR (Self Adaptive 

MapReduce Scheduling) algorithm [101]. In NKS algorithm, k is very critical factor 

which represents the difference between actual order and predicted order of the task 

requests. So users must configure the value of k very carefully. If the value of k is set 

too small then the next node request of task will cannot be captured. If the value of k 

is set too high then there are large numbers of nodes will be captured and this is 

unnecessary to improve data locality. Therefore, the carefully tuning is required for 

the purpose of better performance. 

 

5.6 Testing Results on Data Locality  

 

The default test platform configuration is shown as follows: 

 Totally 10 computers are divided into 2 frameworks, each framework has 5 

computers; 

 The inter-framework router bandwidth is 1000Mbit/s; 

 The export bandwidth of switches between frameworks is 1000Mbit/s; 

 Each node has four Mappers, the entire cluster has 40 Mappers and 1 Reducer. 



 

Chapter 5: Data Locality in MapReduce Model                                                               Yu Zhao 

111 

 

 The sizes of file chunks are set to 64MB; 

 Each Mapper’s private memory is set to 100MB and the spill threshold is set to 

0.8; 

 Each Reducer has 5 replicas threads;  

 the sort factor = 10; 

 The CPUs processing speeds are 7.5MB/s; 

 The sustained read/write speeds of hard disks are 80MB/s and 60MB/s; 

 The read/write speeds of memory are 6000MB/s and 5000MB/s. 

 Unless otherwise specified, the test results are computed by using this default 

configuration described above. 

 

Table 5.2: 10 Nodes in 2 frameworks everything is default. 

Data Size With DL (s) Without DL (s) 

10,000 MB 86 101 

20,000 MB 165 180 

30,000 MB 232 264 

40,000 MB 308 335 

50,000 MB 382 410 

60,000 MB 454 490 

70,000 MB 527 563 

80,000 MB 602 655 

90,000 MB 677 727 

100,000 MB 754 800 
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Figure 5.5: 10 Nodes in 2 frameworks everything is default. 

 

The Table 5.2 and Figure 5.5 show that the performance comparison of algorithm in 

the default test environment. We used same algorithm, one test had used the data 

locality strategy (the default policy) and the other one had not used the data locality 

strategy (single replica of random access memory). It can be seen from the reults, 

when the sizes of input data had increased from 10,000 MB to 100,000MB, the 

algorithm with data locality (default system with three storage replicas) always used 

less time comparing with the algorithm without data locality (default system with 

single replica of the random access memory). In other words, data locality can 

improve the performance of Monte Carlo algorithm in MapReduce environment 

whatever the sizes of input data are. That means apply a certain number of replicas of 

input data chunks in the storage system can bring benefits of the performance 
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improvement. 

 

Table 5.3: 10 Nodes in 2 frameworks, 40 mappers and 1 reducer in total, data size = 

51200MB, rep=3, rep=6. 

Chunk size(MB) Rep=3 (s) Rep=6 (s) 

64 390 373 

100 396 373 

150 414 382 

200 417 385 

250 422 418 

300 430 423 

350 438 414 

400 466 439 

450 461 422 

500 473 440 

40 384 369 

30 388 370 

20 374 367 

10 618 1190 
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Figure 5.6: 10 Nodes in 2 frameworks, 40 mappers and 1 reducer in total,  

data size = 51200MB, rep=3, rep=6. 

 

Figure 5.6 shows that how the performance relationship is between the number of 

replicas (three replicas or six replicas) and the sizes of chunks. We can see from 

Figure 5.6, when the size of chunk was very small (such as 10MB), the performance 

of multiple-replicas was extremely poor. Because of the system cost a lot of time to 

process the IO. With the increased of size of chunk, the performance of 6 replicas was 

better than the performance of 3 replicas. The reason is the system IO distribution 

policy of local multi-replicas instead of the networks streaming IO policy to reduce 

the network transmission delays. Also can be seen from the Figure 5.6, with the 

increased of sizes of chunks caused to the gradually increased of time cost of the 

algorithm implementation. Because of the large size chunks are hard to be replicated. 

This means there was no local replicas of data. And the transmission efficiency of 
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large size replicas between frameworks is relatively low due to the switches’ external 

interface bandwidth is smaller than the internal interface bandwidth. From the Figure 

5.6 we can see that the sizes of chunks from 10MB to 500MB, there is an optimal 

value between the number of replicas and the size of chunks. To determine this 

optimal value, we should consider the size of chunks, the network conditions, the 

number of replicas and the hardware IO capabilities.  

 

Table 5.4: 10 - 100 nodes in 2 frameworks, 4mappers in each node, 1 reducer in total, 

data size from 2560 - 25600MB, rep=3 and 12, mapper for one wave, chunk size = 

64MB. 

Node no & Data size MB Rep=3 (s) Rep=12(s) 

10. 2560 27 23 

20. 5120 37 29 

30. 7680 49 41 

40. 10240 61 55 

50. 12800 73 69 

60. 15360 84 80 

70. 17920 95 95 

80. 20480 107 104 

90. 23040 122 120 

100. 25600 135 128 
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Figure 5.7: 10 - 100 nodes in 2 racks, 4mappers in each node, 1 reducer in total, data 

size from 2,560 – 25,600MB, rep=3 and 12, mapper for one wave, chunk size 64MB. 

 

The test as shown in Figure 5.7 expressed in a Mapper wave the impaction on the 

system performance of different number of replicas. It is showed only one Mapper 

wave because of performance of each wave is same. In order to ensure the test can be 

completed successfully in the environment where the number of nodes from 10 to 100, 

so the data is also simultaneously from 2,560 MB to 25,600 MB. Because there are 10 

nodes, each node has 4 Mapper and size of chunk is 64 MB, then the data should be 

10*4*64=2,560 MB. Empathy, 20 * 4 * 64, 30 * 4 * 64, …, 100 * 4 * 64 = 25,600 

MB. From the Figure 5.7 we can see that the performance of more number of replicas 

was better than the performance of less number of replicas. But more number of 

replicas likely lead to the overhead of system IO. So the system performance is 

difficult to linear growth with the increasing of number of replicas, nodes and 

Mappers. Some Hadoop relevant documents show that with a default replica policy 
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configuration, the performance of certain algorithms will probably be around 10%. 

The Figure 5.7 also shows that when the numbers of nodes are 70 and 90, the 

performances are substantially the same. Because of the replicas storage locations are 

certain randomness. That means replicas storage location (no local replica storage) is 

difficult to optimize the performance of system IO. So the optimization the replica 

storage policy can help to improve the performance of Hadoop cluster.  

 

5.7 Summary  

 

This Chapter discussed data locality in Hadoop MapReduce model. It also presented 

data locality aware schedulings in Hadoop cluster such as DARE scheduling, Delay 

scheduling, Match making scheduling algorithm, Pre-fetching and Pre-shuffling 

algorithm and NKS algorithm. It analysed the limitations of each scheduling. The 

testing results showed the improvement of performance of data locality in Hadoop 

cluster environment. This chapter showed that for large-scale data computation, the 

cluster with data locality is much faster than the cluster without data locality strategy. 

It also evaluated the impact of different sizes of chunks and different numbers of 

replicas on the performance of a Hadoop cluster. 
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Chapter 6: Conclusion and Future Works 

 

6.1 Conclusion 

This thesis reviewed possible risks within the economic activities and presented the 

Value-at-Risk tool which can measure those risks. Any risks can lead to loss during in 

the trading process, so the VaR has become the famous financial tool in the world. 

During the development of VaR approaches that there are many methods developed to 

improve the efficiency and practicality of VaR tool such as the Variance-Covariance 

method, the Historical simulation method and the most famous Monte Carlo 

simulation method.  

 

In the early years, the Variance-Covariance approach has been widely used by the 

entire banks to calculate their risk exposure due to the easy calculation of this 

approach. But the Variance-Covariance method cannot be used for sensitive analysis 

and its calculation is based on the normal distributed assumption which causes to the 

calculated value of VaR is lower than the true value of risk.  It also misleads the VaR 

in case by using of wrong input data. For example, incorrect variances or covariance 

are used in the calculation.  

 

For some financial institutes or firms, the historical simulation method was used to 

calculate the VaR for their products such as securities or portfolios.  This method 
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concerns the products’ historical performance when expects the product development 

trend in future. Which means this method is highly depending on the historical data of 

a specified asset or product. The limitation of the historical simulation method is if a 

new asset which doesn’t have any historical data at all then the method basically is 

not working. So all VaR tool users are looking for a comprehensive approach which 

closer to reality.  

 

The Monte Carlo method is a comprehensive approach developed in the middle of last 

century, but it was widely used since 1990s due to the rapidly development of 

computers. The Monte Carlo simulation method uses the random variables as input 

data, so it does not need to consider the historical data or the performance of the 

specified asset. The calculated result of the Monte Carlo simulation method is a value 

of the probability of the event occurred. In other words, it is the approximation value 

of the event occurred in reality. Compare with other two methods, the Monte Carlo 

method is the most independent method to calculate the VaR without relying on 

relevant data. It repeats random samplings and statistical tests to calculate the 

probability, and then the value of probability is used as the result of VaR. From this 

point of view, more iterations can get a more accurate probability, this means the 

calculated value will closer to the reality. In other words, during the calculation 

process of VaR, the Monte Carlo method relies on large amount of computations. It 

means more time cost and more works to do. This is the reason of why it had not been 

widely used in decade’s years since the Monte Carlo method was developed. The 
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rapid development of computational ability in last twenty years lets Monte Carlo 

method ushered in the spring. Now, do more iterations in a possible shortest period of 

time to complete is a issue was overcame by users. To find a suitable way and 

platform for computing of the Monte Carlo algorithm was evaluated in this thesis.   

 

The Monte Carlo method completes a round of random sampling and statistic analysis 

can be concerned as once experiment. The whole process of Monte Carlo method 

repeats the experiments again and again. At last, all results will be analyzed together 

and provides an approximation which can be used as the final result of whole 

experiments. According to the characteristics of Monte Carlo method, parallelization 

is an efficient way to accelerate the process speed of the simulation.  Each thread 

completes one or more experiments, more threads means more experiments can be 

completed at the same time. In Monte Carlo simulation, in a fixed period of time, 

more iterations means more reliable results, so there is a large amount of data to be 

processed at the same time. From this point of view, in this thesis the MapReduce 

model was used to handle the parallel Monte Carlo simulation algorithm. The 

MapReduce was developed by Google for the purpose of processing their large-scale 

data sets such as web index in its business. In a MapReduce model, all data are 

divided into many small file chunks which are identified in the type of <key, value> 

pairs. Those chunks will be passed to the Map function where each Mapper will 

receive one chunk pair to process. After this step, the output of Mappers are called the 

intermediate data, which also in the format of <key, value> pairs. Then those pairs are 
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sorted in groups by key and sent to the Reduce function, where the Reducers will 

process those data and produce the output files. At last all output files will be mixed 

together into the final result file. For example, in the Monte Carlo algorithm, the 

process of repetitions of random samplings can be paralleled simulated by Mappers, 

then the output data will be processed and analyzed by Reducers.  

 

In the experimental environment, a small MapReduce Hadoop cluster was set up by 

using of four computers, and each computer can be seen as a node. The Monte Carlo 

algorithm was simulated in one node and four nodes, and then we compared the 

results differences in the sequential Monte Carlo environment and in the MapReduce 

parallel Monte Carlo environment. On each platform, there were 128,000 data 

samples simulated. The correctly computed calculation in sequential Monte Carlo 

environment was approximately to 96.23% and in MapReduce Monte Carlo 

environment the correctly computed calculation was approximately to 94.04%. The 

time cost of the sequential Monte Carlo was approximately to 532 seconds and the 

time cost of MapReduce Monte Carlo was approximately to 115 seconds. In the 

sequential Monte Carlo environment there was only one node in use, so it can be seen 

as only one Mapper was used. The experimental results showed that for the purpose 

of promise the same level of accuracy, more Mappers used, the better speedup 

achieved especially on a larger data set. In other words, more Mappers are used means 

the parallel Monte Carlo algorithm is more faster than sequential Monte Carlo 

algorithm.  
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In a large-scale data Hadoop cluster environment, we employed HSim to do further 

performance evaluation of the parallel Monte Carlo algorithm. The HSim is a Hadoop 

simulator developed by the research group at Brunel. The cluster contained 250 

simulation nodes, there were 4 Mappers and 1 or more Reducer in each node and the 

size of input data is 100,000 MB. We set different numbers of Reducers to evaluate 

their impactions on the performance of the parallel Monte Carlo algorithm. The 

evaluation results showed that the numbers of Reducers did not make more 

differences on the efficiency of the parallel Monte Carlo algorithm. However, the time 

cost of calculation had decreased with the increased of numbers of Mappers. Which 

means the speedup of computation of Monte Carlo is mainly carried by the Mappers. 

Because of more Mappers means more threads to repeat random samplings of Monte 

Carlo algorithm. Another evaluation focused on the sort factor in MapReduce. The 

sort factor is used to sort the output pairs of Mappers in groups before they sent them 

to Reducers. The test results showed that the higher the sort factor is, the better 

performance is achieved which means that a lower overhead in computation is 

incurred.  

 

To further improve the performance of parallel Monte Carlo algorithm in Hadoop 

MapReduce environment, we focused on the process of scheduling of Hadoop. A 

Hadoop cluster includes a few or a lot of nodes, each node contain Mappers and 

Reducers and the input data are stored in the local hard disks. So the performance of 
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the whole cluster is limited by location of data and network bandwidth. In other words, 

moving data to computation is more difficult than moving computation to the data. To 

solve this issue, we used the data locality to improve performance of data 

transmission. We evaluated a parallel Monte Carlo simulation in Hadoop cluster with 

and without the data locality strategy and set the sizes of input data from 10,000 MB 

to 100,000 MB. The results showed that the time cost of simulation with data locality 

strategy is average 25 seconds less than the time cost of simulation without data 

locality strategy. That means the data locality can efficiently improve the performance 

of the simulation. Within the data locality strategy, it also has some issues such as the 

sizes of chunk selection and numbers of replicas selection. In the simulation, we set 

the sizes of chunk from 10 MB to 500 MB and the numbers of replicas are three and 

six. The results showed that with large-scale input data when the size of chunk was 

very small such as 10 MB, the performance of six replicas was extremely poor due to 

the IO processing cost a lot of time. The performance of six replicas was better than 

the performance of three replicas when we increased the sizes of chunk, because of 

the data transmission delays had decreased. Then we set the size of chunk is fixed 

with different numbers of nodes, different sizes of data and different numbers of 

replicas such as three and twelve. The results showed that the performance of more 

replicas was better than the performance of fewer replicas. But the replicas cannot be 

used too more, otherwise, the performance of Hadoop cluster will decrease.  

 

All results of experimental test and simulation test showed that the parallel Monte 
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Carlo algorithm can visibly speed up the computation, their performances were much 

better than the performance of sequential Monte Carlo algorithm. And in a Hadoop 

MapReduce cluster, the data locality strategy can effectively further improve the 

performance of parallel Monte Carlo algorithm. 

 

6.2 Future Works 

Our future research will focus on the parallel Monte Carlo algorithm in variety 

distribution systems. In practice, the parallel Monte Carlo simulation can be used by 

various firms or financial institutes. They may only have a few personal computers 

which can be used to build up a small distribution system or have dedicated 

processing cluster or have a lot of different configurations of computers. How to adapt 

to different hardware environments is a future research direction.  

 

In our experimental or simulation environments, the size of input data is much smaller 

than that of being used in a large multi-national bank. This algorithm needs to be 

further improved to deal with huge amounts of data. On the other hand, those banks or 

financial institutes use Monte Carlo method to identify the VaR of their products or 

portfolios, usually those products or portfolios are mixed by a lot of different assets 

and securities. How to identify the relationship between different input data sets for 

MapReduce parallelization is another research direction.  
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