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Preliminary data on the influence of rearing temperature
on the growth and reproductive status of fathead minnows
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An investigation into the influence of temperature on the growth and reproductive status of the
fathead minnow Pimephales promelas revealed that, while there was no clear effect of treatment
on sex differentiation, ovarian tissue from female fish reared under the highest temperature regime
contained large amounts of undefined tissue containing no germ cells. Furthermore, both male and
female fish exhibited differences in length mass, condition and somatic indices, and in the expression
of secondary sexual characteristics. The patterns observed are discussed in the context of climate
change. © 2011 The Authors
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INTRODUCTION

Climate change has important implications for freshwater fishes, potentially exert-
ing effects at all levels of biological organization, from the cellular, individual and
population, through to the species, community and ecosystem levels (Graham &
Harrod, 2009). Although it is difficult to predict its effects due to the complexities
and uncertainties involved, it is fair to say that the primary effects on fishes will
be mediated via changes in water temperature. Most fishes are ectothermic, which
means that body temperature conforms to that of the surrounding environment. Water
temperature therefore dictates the rate of all physiological processes, from molecular
responses (e.g. the rate of vitellogenin gene expression; Brian et al., 2008; Korner
et al., 2008), through to the ecological (e.g. the timing of reproduction; Gillet &
Quétin, 2006).

Temperature also plays an important role in sex determination in some fish species
(>60 species have been identified, from very divergent orders; Baroiller et al., 2009).
There is growing evidence, however, to suggest that, even for species in which sex
is determined genetically (as opposed to environmentally), the processes involved
are somewhat sensitive to temperature. For example, recent studies on the medaka
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Oryzias latipes (Temminck & Schlegel 1846) have revealed that individuals that are
genetically female can be sex-reversed into the male phenotype by high temperature
treatment during the period of sex differentiation (Sato et al., 2005; Hattori et al.,
2009). This temperature-induced masculinization is thought to be mediated via the
elevation of cortisol level, which suppresses germ cell proliferation and follicle-
stimulating hormone receptor gene transcription (Hayashi et al., 2010).

While the evolutionary explanation for this developmental plasticity remains elu-
sive, the growing evidence of a continuum between genetic and temperature-
dependent sex determination begs the question as to whether the current rise in
water temperatures may affect the reproductive development of wild fish populations
(Johnson et al., 2009). In addition to leading to male-biased sex ratios, it is possible
that subtle, temperature-mediated effects on sex hormone levels could influence the
processes involved in sex differentiation, leading to an increase in the incidence of
intersex (i.e. the simultaneous presence of both male and female sex cells). This
phenomenon, which is not normal for gonochoristic (single sex) fishes, has signif-
icant implications, having been associated with reduced reproductive capacity and
population failure, in both the laboratory and the field (Lange et al., 2001; Kidd
et al., 2007).

The aim of this study was to generate some preliminary data concerning the
influence of rearing temperature on the reproductive development of a cyprinid fish
species. The fathead minnow Pimephales promelas Rafinesque 1820 provides an
ideal focus for this research, being widely used as an ecotoxicological model. The
natural geographical range of this species extends throughout much of North Amer-
ica and, as such, it experiences considerable variations in water temperature, both
on spatial and temporal scales (Page & Brooks, 1991). In the present study, lar-
val P. promelas were reared, through to sexual maturity, under varying thermal
conditions. Female fish were then examined for evidence of temperature-induced
masculinization. In addition, a suite of data pertaining to the growth and reproduc-
tive status of both males and females was collected and interrogated for evidence of
temperature-dependent effects.

MATERIALS AND METHODS

Several batches of eggs were collected from an in-house stock of P. promelas. All the
eggs were then placed into a single 30 l aquarium, which was well aerated and supplied with
dechlorinated water at a rate of 10 l h−1. This was maintained at a temperature of 26◦ C using
an aquarium heater (Visi-Therm 200 Watt Heater; www.aquariumsystems.eu). After 3–4 days,
the eggs began to hatch and, 1 week later, when all the viable larvae had emerged, the fry
were randomly allocated to one of eight experimental tanks (50 per tank), also maintained at
26◦ C. The temperatures in these tanks were then altered by either increasing or decreasing
the heater settings at a rate of 1◦ C per day, such that there were four treatments of 20, 24,
28 and 32◦ C, with a duplicate tank in each. All other conditions remained identical.

Initially, the larval fish were fed exclusively on Liquifry (Interpet; www.interpet.co.uk),
before graduating onto newly hatched brine shrimp Artemia sp. Once they were of a sufficient
size, the fry were fed to satiation on a diet of frozen adult Artemia sp. and flaked fish food,
three times each day. Temperature was measured daily to ensure that it stayed within 1◦ C of
the target and, simultaneously, the dissolved oxygen levels were monitored using an Oxi 340i
Digital Meter and CellOx 325 Probe (WTW; www.wtw.de). Water quality variables (i.e. pH,
ammonia, nitrite and nitrate) were monitored throughout. These conditions were maintained
for 6 months, at which point it was possible to discern the sex of the majority of fish by eye.
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At the end of the rearing period, the fish were sacrificed with an overdose of anaesthetic
(MS-222, Sigma-Aldrich; www.sigmaaldrich.com). Fork length (LF) and wet mass (MW)
were recorded and sex assigned on the basis of an external examination. The condition factor
(K) was determined from K = MWL−3

T . In females, the length of the ovipositor, which is a
tubular structure that is used in egg deposition, was measured using digital callipers (Mahr
16ES, Mahr; www.mahr.de). The trunk was then placed in Bouin’s fixative for subsequent
histological examination of the ovaries, which were scored, based on the developmental stage
of cells, in accordance with the criteria set out by the U.S. Environmental Protection Agency
(USEPA, 2006). Male fish were analysed in terms of the number and prominence of nuptial
tubercles (Smith, 1978), and the height of the mucous-secreting dorsal fatpad, which was
scored according to the following criteria: 0, no visible fatpad; 1, small fatpad, raised <1 mm
from body surface; 2, fatpad raised 2–5 mm; 3, fatpad raised >5 mm; 4, fatpad raised >5
mm, with folds (K. Thorpe, pers. comm.). As male tissues were not required for histological
analysis, livers and gonads were then collected for the determination of hepato-somatic and
gonado-somatic indices (IH and IG).

While many of the data generated were purely qualitative, it was possible to analyse the
biometric data using standard statistical techniques. Data sets that were normally distributed,
with homogeneous variances, were analysed using parametric methods: each pair of duplicate
tanks was compared using a t-test and, given that there was no difference between them,
the data were pooled. The pooled data for each treatment were then subject to ANOVA and
post hoc comparisons. Non-normal data sets were log10-transformed prior to analysis and,
where normality could not be achieved, the same approach was employed using the equivalent
non-parametric test (i.e. Mann–Whitney U -test followed by Kruskall–Wallis). The data from
each of the duplicate tanks are presented (as opposed to the pooled data for each treatment)
in order to show the degree of consistency between the patterns observed.

RESULTS

The results revealed that the survival rates at the end of the experiment were
variable, ranging between 22 and 62%, with the lowest and highest survival occurring
in the 24 and 20◦ C treatment groups, respectively. Sex was discernable in all but
three cases (two from the highest and one from the lowest temperature treatments).
Histological analysis revealed that the gonads of these fish were small and immature.
As such, they were classified as juveniles and omitted from subsequent analyses. The
sex ratios in each tank did not deviate significantly from parity, ranging between 35
and 60% male and no clear trends were observed in relation to temperature. In
addition, there was no evidence of abnormal gonad development in females reared
at elevated temperatures. Hence, the data do not support the initial hypothesis that
the processes responsible for sex determination and sex differentiation in P. promelas
are vulnerable to disruption due to differences in rearing temperature.

It may, however, be pertinent to note the abnormal presence of large amounts
of interstitial tissue, containing no germ cells, in the ovaries of female fish reared
in the higher temperature treatments (n = 5 at 32◦ C and n = 1 at 28◦ C). An
example is shown in Fig. 1. In addition, the incidence of external developmental
abnormalities (e.g. curvature of the spine, blindness in one or more eyes or abnor-
mal fin development) was higher at elevated temperatures, such that the frequency
of abnormalities was more than doubled in fish held at 32◦ C, relative to those
held at lower temperatures. While these observations are purely qualitative, the inci-
dence of the histological and morphological abnormalities outlined above suggests
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(a) (b)

Fig. 1. (a) Normal ovarian tissue sample from Pimephales promelas, with small quantities of interstitial tissue
interspersed between oocytes and (b) an abnormal ovary from a female reared at an elevated temperature,
which has a higher proportion of interstitial tissue and fewer germ cells (×100 magnification; H&E stain).

Table I. Mean ± s.e. fork length (LF) and body mass (MW) of male and female Pimephales
promelas within each treatment group

LF (mm) MW (g)
Treatment
temperature (◦ C) Male Female Male Female

20 49·2 ± 0·6α 41·1 ± 0·6α 1·89 ± 0·13α 1·03 ± 0·05α

24 50·0 ± 0·9α,β 44·7 ± 0·9β 2·12 ± 0·18α,β 1·46 ± 0·10β

28 54·1 ± 0·6β 44·1 ± 0·6β 2·31 ± 0·11β 1·18 ± 0·05α,β

32 49·6 ± 0·9α 42·4 ± 0·9α,β 1·68 ± 0·06α 1·02 ± 0·07α

Different symbols denote significant differences (P < 0·05) between treatment groups, based on ANOVA.
The data from the duplicate tanks were pooled.

temperature-mediated effects on normal developmental processes and, thus, warrants
further investigation.

The biometric data also revealed differences between treatment groups. The mean
LF and MW of fish in each treatment group are presented in Table I. There were
significant differences in the LF of females held at the lowest temperature and those in
the two intermediate treatments (ANOVA, F = 4·92, d.f. = 86,3, P < 0·01). Female
MW also differed with treatment, being greater in fish held at 24◦ C, relative to
those at both 20 and 32◦ C (ANOVA, F = 5·52, d.f. = 86,3, P < 0·01). Males
exhibited a similar pattern, with fish reared at 28◦ C achieving greater mean LT and
MW than those held at 20 or 32◦ C (ANOVA, F = 5·78, d.f. = 91,3, P < 0·01;
ANOVA, F = 6·60, d.f. = 91,3, P < 0·001, respectively). Significant differences
in K were also apparent (females: ANOVA, F = 11·29, d.f. = 86,3, P < 0·001;
males: ANOVA, F = 5·04, d.f. = 86,3, P < 0·01). This was consistently highest
and lowest at 24 and 32◦ C, respectively (Fig. 2).
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Fig. 2. Mean ± s.e. body condition (K) of (a) male and (b) female Pimephales promelas, which were held
within duplicate tanks ( , ), maintained under four different thermal regimes (20 to 32◦ C). Different
symbols denote significant differences (P < 0·05) between treatment groups, based on ANOVA of pooled
data. Sample sizes are given on the figure.

The analysis of secondary sexual characteristics also revealed differences between
treatments. The relative ovipositor length of female fish maintained at 32◦ C was
significantly lower than that of fish held at all other temperatures (ANOVA, F =
12·59, d.f. = 86,3, P < 0·001). Males differed in the appearance of their nuptial
tubercles (number: Kruskall–Wallis, H = 26·03, d.f. = 3, P < 0·01; prominence:
Kruskall–Wallis, H = 27·67, d.f. = 3, P < 0·01) and fatpad score (Kruskall–Wallis,
H = 28·23, d.f. = 3, P < 0·01). The expression of these characteristics also appeared
to be inhibited at 32◦ C (Fig. 3). In addition, it is interesting to note that the presence
of a fin spot, which is another male secondary sexual characteristic, was reported
at varying frequencies across the treatments (χ2 = 10·55, d.f. = 3, P < 0·05). This
characteristic was always present in males held at 24◦ C and was least common in
those at 32◦ C (present in only 15 of 23 males).

Differences in the IH and IG of male fish were also detected across treatments
(ANOVA, F = 17·23, d.f. = 88,3, P < 0·001; ANOVA, F = 4·74, d.f. = 88,3, P <

0·01, respectively; Fig. 4). Unlike the other variables measured, both indices exhib-
ited a linear relationship with temperature, declining as temperature increased. This
means that, while these data support the assertion that elevated temperatures are
sub-optimal in terms of growth and reproductive development, somatic indices were
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Fig. 3. Mean ± s.e. (a) tubercle count and (b) fatpad score exhibited by male Pimephales promelas, which
were held within duplicate tanks ( , ), maintained under four different thermal regimes (20 to 32◦ C).
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Fig. 4. Mean ± s.e. (a) gonado-somatic index (IG) and (b) hepato-somatic index (IH) of male Pimephales
promelas, which were held within the duplicate tanks ( , ) under each thermal regime (20 to 32◦ C).
Different symbols denote significant differences (P < 0·05) between treatment groups, based on ANOVA
of pooled data.

actually highest in males maintained at 20◦ C, rather than those held at an optimal
temperature of 24◦ C.

DISCUSSION

The data generated during this study indicate that female P. promelas are not
susceptible to temperature-induced masculinization under these experimental condi-
tions. Variations in the thermal regime during development, however, did appear to
influence growth and reproductive status in this species, such that the conditions in
the 24◦ C treatment appeared optimal, with fish in these tanks exhibiting the low-
est rate of deformity, having higher body condition and exhibiting well-developed
sexual characteristics. Fish held at 28◦ C were similar in size to those held at
24◦ C, but were poorer in quality, having lower condition and somatic indices. In
general, however, these fish were of good reproductive status, although fatpad size
was slightly reduced relative to males held at 24◦ C. By contrast, the fish held at 20◦

C were smaller and the males less well developed, but were of the highest quality
in terms of their somatic indices. The fish reared at 32◦ C were poor with respect to
their growth, condition and reproductive status, as well as having the highest rate of
deformities.

While there are clear differences between fish maintained under each thermal
regime, it is important to recognize that rearing temperature was not the only variable
that varied between treatment groups: differences in the rates of mortality during the
early stages of development meant that there were also variations in density through-
out the rearing period. Density-dependent effects, however, are likely to have been
mitigated by the fact that (1) the tanks were not stocked excessively (the densities
in all tanks were generally well below the maximum rate of one fish per litre recom-
mended by the USEPA; Denny, 1988) and (2) competition for food was limited as
fish were fed to excess. Furthermore, there was a remarkable consistency between
the data sets from each pair of duplicate tanks, despite some differences in their
densities. Hence, it is considered likely that the differences detected were, indeed,
primarily a reflection of the thermal regime.

The patterns observed are consistent with evidence from bioenergetic studies,
which show that the scope for growth in fishes is greatest in the middle of the
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temperature range and least at the extremes (Warren & Davis, 1967). In addition to
having lower rates of growth, fishes reared under cooler conditions appeared to have
delayed reproductive development, but invested more in their somatic development,
whereas fishes reared under optimal or warm conditions did the opposite, allowing
them to reproduce at a younger age. Presumably, these physiological trade-offs occur
as plastic responses, which enable individuals to adopt alternative strategies, depend-
ing on the conditions encountered, and thereby maximize their fitness under different
thermal regimes. It is interesting to note that the compensatory mechanisms appear
to break down at higher temperatures, with an apparent threshold of between 28 and
32◦ C for P. promelas.

The patterns observed in this laboratory-based study are consistent with the find-
ings of a meta-analysis of the life-history traits of 44 species of European freshwater
fishes, which revealed that, while species at lower latitudes are often smaller, they
grow faster and mature earlier than those at higher latitudes. They also have shorter
life spans and allocate less of their energy to reproduction (Blanck & Lamouroux,
2007). Latitudinal differences have been reported within species. For example, there
is evidence that Arctic charr Salvelinus alpinus (L. 1758) exhibit lower longevity,
lower age at maturity, lower maximum size and increased growth rate with decreas-
ing latitude, presumably in response to variations in water temperature (Jeppesen
et al., 2010).

In addition, the present data are consistent with the expectation that, while smaller
adults emerge if growth is limited by food availability, most animals grow more
slowly in cold conditions but reach a larger size than at high temperatures. Potential
explanations for this apparent paradox are outlined by Atkinson & Sibly (1997): it
may be that the response of adult size to temperature is adaptive, but is constrained
by a trade-off that can be understood in terms of von Bertalanffy’s classic theory of
growth or that the response may be the unavoidable consequence of a fundamental
relationship between cell size and temperature. In any case, it would appear that, in
addition to latitudinal differences in the size structure of fish populations, which are
indicative of long-term evolution and adaptation to the climatic conditions, changes
in size and age structure can also occur over relatively short time scales.

In this respect, Jeppesen et al. (2010) analysed monitoring data from 200 Danish
lakes, collected between 1989 and 2006, which revealed an increase in the proportion
of small perch Perca fluviatilis L. 1758 and bream Abramis brama (L. 1758) with
increasing summer temperature. This indicates that these species can respond rapidly
to changes in climate, possibly via the same mechanisms as those responsible for
the size differences reported here. In contrast, size structure in roach Rutilus rutilus
(L. 1758) did not vary over the same period, suggesting that this species may be less
able to respond to climate change. In addition to comparing how different species
respond to increasing temperatures, it may be pertinent to consider the extent to
which temperature influences the life history of populations within the same species,
as their plasticity in this respect may vary throughout their geographical range.

With regard to the present study, which provides only a snapshot of the effects of
temperature at one particular time point, it would be useful to repeat the experiment to
assess the influence of temperature on the timing of developmental events. Measuring
the time course of developmental changes would reveal whether the observed effects
on reproductive status are due to general effects on rates of growth, or are unique to
reproductive endpoints, or whether differences in temperature causes heterochronies
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in the various traits assessed. The experiment could also be extended to determine
whether the fish in each treatment ultimately varied in terms of additional life-history
characteristics, such as adult size, fecundity and longevity. Future studies should take
care to exclude density as a confounding factor and should minimize mortality during
early development, thereby ruling out the possibility of differences arising due to
selective mortality.

An improved understanding of these issues would help to reveal whether
temperature-mediated effects on growth and reproductive development are likely
to affect the lifetime reproductive potential of fishes: while faster growth and earlier
maturation may have a positive effect on fitness and fecundity in warmer waters,
these benefits may be negated by the smaller body size attained, combined with
reduced longevity (Jeppesen et al., 2010). As such, the overall effect of increas-
ing water temperature on recruitment may be negligible. The data presented here,
however, indicates that there is a critical thermal threshold, above which growth
and reproductive development are impaired, with likely consequences for population
sustainability.

It is therefore concluded that, while P. promelas appears to be relatively thermo-
tolerant and is able to survive and reproduce across a wide range of temperatures,
variations in thermal conditions during development can affect a wide range of
life-history characteristics. At high temperatures, the effects were profound, with
the fish exhibiting poorer condition and reproductive status, as well as having an
increased rate of histological and developmental abnormalities, but even at lower
temperatures, there was evidence of subtle effects on rates of growth and reproduc-
tive development, which may potentially affect fitness and fecundity. These subtle,
temperature-dependent effects on population-level variables may be of ecological
significance, particularly in habitats that are already under pressure from pollution
and overexploitation. For example, Jeppesen et al. (2010) predicted that climate-
mediated effects on lake fish community structure, occurring, in part, via changes in
life history, may increase the risk of eutrophication. Thus, further research is required
to improve the understanding of how climate change influences life-history traits and
to elucidate the consequences at the population and ecosystem level.
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