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Lévy processes, which have stationary independent increments, are ideal for

modelling the various types of noise that can arise in communication channels.

If a Lévy process admits exponential moments, then there exists a parametric

family of measure changes called Esscher transformations. If the parameter is

replaced with an independent random variable, the true value of which represents

a “message”, then under the transformed measure the original Lévy process takes

on the character of an “information process”. In this paper we develop a theory

of such Lévy information processes. The underlying Lévy process, which we call

the fiducial process, represents the “noise type”. Each such noise type is capable

of carrying a message of a certain specification. A number of examples are worked

out in detail, including information processes of the Brownian, Poisson, gamma,

variance gamma, negative binomial, inverse Gaussian, and normal inverse Gaussian

type. Although in general there is no additive decomposition of information into

signal and noise, one is led nevertheless for each noise type to a well-defined scheme

for signal detection and enhancement relevant to a variety of practical situations.

Key Words: Signal processing; Lévy process; Esscher transformation; nonlinear

filtering; innovations process; information process; cybernetics.

I. INTRODUCTION

The idea of filtering the noise out of a noisy message as a way of increasing its information
content is illustrated by Norbert Wiener in his book Cybernetics (Wiener 1948) by means of
the following example. The true message is represented by a variable X which has a known
probability distribution. An agent wishes to determine as best as possible the value of X ,
but due to the presence of noise the agent can only observe a noisy version of the message
of the form ξ = X + ǫ, where ǫ is independent of X . Wiener shows how, given the observed
value of the noisy message ξ, the original distribution of X can be transformed into an
improved a posteriori distribution that has a higher information content. The a posteriori

distribution can then be used to determine a best estimate for the value of X .
The theory of filtering was developed in the 1940s when the inefficiency of anti-aircraft

fire made it imperative to introduce effective filtering-based devices (Wiener 1949, 1954).
A breakthrough came with the work of Kalman, who reformulated the theory in a manner
more well-suited for dynamical state-estimation problems (Kailath 1974, Davis 1977). This
period coincided with the emergence of the modern control theory of Bellman and Pontryagin
(Bellman 1961, Pontryagin et al. 1962). Owing to the importance of its applications,
much work has been carried out since then. According to an estimate of Kalman (1994),
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over 200,000 articles and monographs had been published on applications of the Kalman
filter alone. The theory of stochastic filtering, in its modern form, is not much different
conceptually from the elementary example described by Wiener in the 1940s. The message,
instead of being represented by a single variable, in the general setup can take the form
of a time series (the “signal” or “message” process). The information made available to
the agent also takes the form of a time series (the “observation” or “information” process),
typically given by the sum of two terms, the first being a functional of the signal process, and
the second being a noise process. The nature of the signal process can be rather general,
but in most applications the noise is chosen to be a Wiener process (see, e.g., Liptser &
Shiryaev 2000, Xiong 2008, Bain & Crisan 2010). There is no reason a priori, however, why
an information process should be “additive”, or even why it should be given as a functional
of a signal process and a noise process. From a mathematical perspective, it seems that
the often proposed ansatz of an additive decomposition of the observation process is well-
adapted to the situation where the noise is Gaussian, but is not so natural when the noise is
discontinuous. Thus while a good deal of recent research has been carried out on the problem
of filtering noisy information containing jumps (see, e.g., Rutkowski 1994, Ahn & Feldman
1999, Meyer-Brandis & Proske 2004, Poklukar 2006, Popa & Sritharan 2009, Grigelionis &
Mikulevicius 2011, and references cited therein), such work has usually been pursued under
the assumption of an additive relation between signal and noise, and it is not unreasonable
to ask whether a more systematic treatment of the problem might be available that involves
no presumption of additivity and that is more naturally adapted to the mathematics of the
situation.

The purpose of the present paper is to introduce a broad class of information processes
suitable for modelling situations involving discontinuous signals, discontinuous noise, and
discontinuous information. No assumption is made to the effect that information can be
expressed as a function of signal and noise. Instead, information processes are classified
according to their “noise type”. Information processes of the same noise type are then
distinguished from one another by the messages that they carry. Each noise type is associated
to a Lévy process, which we call the fiducial process. The fiducial process is the information
process that results for a given noise type in the case of a null message, and can be thought
of as a “pure noise” process of that noise type. Information processes can then be classified
by the characteristics of the associated fiducial processes. To keep the discussion elementary,
we consider the case of a one-dimension fiducial process and examine the situation where
the message is represented by a single random variable. The goal is to construct the optimal
filter for the class of information processes that we consider in the form of a map that takes
the a priori distribution of the message to an a posteriori distribution that depends on the
information that has been made available. A number of examples will be presented. The
results vary remarkably in detail and character for the different types of filters considered,
and yet there is an overriding unity in the general scheme, which allows for the construction
of a multitude of examples and applications.

A synopsis of the main ideas, which we develop more fully in the remainder of the paper,
can be presented as follows. We recall the idea of the Esscher transform as a change of
probability measure on a probability space (Ω ,F ,P0) that supports a Lévy process {ξt}t≥0

that possesses P0-exponential moments. The space of admissible moments is the set A =
{w ∈ R : EP0 [exp(wξt)] < ∞}. The associated Lévy exponent ψ(α) = t−1 lnEP0[exp(αξt)]
then exists for all α ∈ AC := {w ∈ C : Rew ∈ A}, and does not depend on t. A
parametric family of measure changes P0 → Pλ commonly called Esscher transformations
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can be constructed by use of the exponential martingale family {ρλt }t≥0, defined for each
λ ∈ A by ρλt = exp (λξt − ψ(λ)t). If {ξt} is a P0-Brownian motion, then {ξt} is Pλ-Brownian
with drift λ; if {ξt} is a P0-Poisson process with intensity m, then {ξt} is Pλ-Poisson with
intensity eλm; if {ξt} is a P0-gamma process with rate parameter m and scale parameter κ,
then {ξt} is Pλ-gamma with rate parameter m and scale parameter κ/(1 − λ). Each case
is different in character. A natural generalisation of the Esscher transform results when
the parameter λ in the measure change is replaced by a random variable X . From the
perspective of the new measure PX , the process {ξt} retains the “noisy” character of its P0-
Lévy origin, but also carries information about X . In particular, if one assumes that X and
{ξt} are P0-independent, and that the support of X lies in A, then we say that {ξt} defines
a Lévy information process under PX carrying the message X . Thus, the change of measure
inextricably intertwines signal and noise. More abstractly, we say that on a probability space
(Ω ,F ,P) a random process {ξt} is a Lévy information process with message (or “signal”)
X and noise type (or “fiducial exponent”) ψ0(α) if {ξt} is conditionally a P-Lévy given X ,
with Lévy exponent ψ0(α+X)−ψ0(X) for α ∈ CI := {w ∈ C : Rew = 0}. We are thus able
to classify Lévy information processes by their noise type, and for each noise type we can
specify the class of random variables that are admissible as signals that can be carried in
the environment of such noise. We consider a number of different noise types, and construct
explicit representations of the associated information processes. We also derive an expression
for the optimal filter in the general situation, which transforms the a priori distribution of
the signal to the improved a posteriori distribution that can be inferred on the basis of
received information.

The plan of the paper is as follows. In Section II, after recalling some facts about
processes with stationary and independent increments, we define Lévy information, and in
Proposition 1 we show that the signal carried by a Lévy information process is effectively
“revealed” after the passage of sufficient time. In Section III we present in Proposition 2
an explicit construction using a change of measure technique that ensures the existence of
Lévy information processes, and in Proposition 3 we prove a converse to the effect that
any Lévy information process can be obtained in this way. In Proposition 4 we construct
the optimal filter for general Lévy information processes, and in Proposition 5 we show
that such processes have the Markov property. In Proposition 6 we establish a result that
indicates in more detail how the information content of the signal is coded into the structure
of an information process. Then in Proposition 7 we present a general construction of the
so-called innovations process associated with Lévy information. Finally in Section IV we
proceed to examine a number of specific examples of Lévy information processes, for which
explicit representations are constructed in Propositions 8–15.

II. LÉVY INFORMATION

We assume that the reader is familiar with the theory of Lévy processes (Bingham 1975,
Sato 1999, Appelbaum 2004, Bertoin 2004, Protter 2005, Kyprianou 2006). For an overview
of some of the specific Lévy processes considered later in this paper we refer the reader to
Schoutens (2003). A real-valued process {ξt}t≥0 on a probability space (Ω ,F ,P) is a Lévy
process if: (i) P(ξ0 = 0) = 1, (ii) {ξt} has stationary and independent increments, (iii)
limt→s P(|ξt− ξs| > ǫ) = 0, and (iv) {ξt} is almost surely càdlàg. For a Lévy process {ξt} to
give rise to a class of information processes, we require that it should possess exponential
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moments. Let us consider the set defined for some (equivalently for all) t > 0 by

A =
{

w ∈ R : EP[exp(wξt)] <∞
}

. (1)

If A contains points other than w = 0, then we say that {ξt} possesses exponential moments.
We define a function ψ : A→ R called the Lévy exponent (or cumulant function), such that

E
P [exp(α ξt)] = exp(ψ(α) t) (2)

for α ∈ A. If a Lévy process possesses exponential moments, then an exercise shows that
ψ(α) is convex on A, that the mean and variance of ξt are given respectively by ψ′(0) t and
ψ′′(0) t, and that as a consequence of the convexity of ψ(α) the marginal exponent ψ′(α)
possesses a unique inverse I(y) such that I(ψ′(α)) = α for α ∈ A. The Lévy exponent
extends to a function ψ : AC → C where AC = {w ∈ C : Rew ∈ A}, and it can be shown
(Sato 1999, Theorem 25.17) that ψ(α) admits a Lévy-Khintchine representation of the form

ψ(α) = pα +
1

2
qα2 +

∫

R\{0}

(eαz − 1− αz1{|z| < 1})ν(dz) (3)

with the property that (2) holds for for all α ∈ AC. Here 1{·} denotes the indicator function,
p ∈ R and q ≥ 0 are constants, and the so-called Lévy measure ν(dz) is a positive measure
defined on R\{0} satisfying

∫

R\{0}

(1 ∧ z2)ν(dz) <∞. (4)

If the Lévy process possesses exponential moments, then for α ∈ A we also have
∫

R\{0}

eαz 1{|z| ≥ 1} ν(dz) <∞. (5)

The Lévy measure has the following interpretation: if B is a measurable subset of R\{0},
then ν(B) is the rate at which jumps arrive for which the jump size lies in B. Consider
the sets defined for n ∈ N by Bn = {z ∈ R | 1/n ≤ |z| ≤ 1}. If ν(Bn) tends to infinity for
large n we say that {ξt} is a process of infinite activity, meaning that the rate of arrival of
small jumps is unbounded. If ν(R\{0}) <∞ one says that {ξt} has finite activity. We refer
to the data K = (p, q, ν) as the characteristic triplet (or “characteristic”) of the associated
Lévy process. Thus we can classify a Lévy process abstractly by its characteristic K, or,
equivalently, its exponent ψ(α). This means one can speak of a “type” of Lévy noise by
reference to the associated characteristic or exponent.

Now suppose we fix a measure P0 on a measurable space (Ω ,F), and let {ξt} be P0-Lévy,
with exponent ψ0(α). There exists a parametric family of probability measures {Pλ}λ∈A on
(Ω ,F) such that for each choice of λ the process {ξt} is Pλ-Lévy. The changes of measure
arising in this way are called Esscher transformations (Esscher 1932, Gerber & Shiu 1994,
Chan 1999, Kallsen & Shiryaev 2002, Hubalek & Sgarra 2006). Under an Esscher transfor-
mation the characteristics of a Lévy process are transformed from one type to another, and
one can speak of a “family” of Lévy processes interrelated by Esscher transformations. The
relevant change of measure can be specified by use of the process {ρλt } defined for λ ∈ A by

ρλt :=
dPλ
dP0

∣

∣

∣

∣

Ft

= exp (λξt − ψ0(λ)t) , (6)
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where Ft = σ [{ξs}0≤s≤t ]. One can check that {ρλt } is an ({Ft},P0)-martingale: indeed, as
a consequence of the fact that {ξt} has stationary and independent increments we have

E
P0

s [ρλt ] = E
P0

s [eλ(ξt−ξs)] eλξs−tψ0(λ) = ρλs (7)

for s ≤ t, where E
P0

t [ · ] denotes conditional expectation under P0 with respect to Ft. It is
straightforward to show that {ξt} has Pλ-stationary and independent increments, and that
the Pλ-exponent of {ξt}, which is defined on the set Aλ

C
:= {w ∈ C |Rew+ λ ∈ A}, is given

by

ψλ(α) := t−1 lnEPλ [exp(αξt)] = ψ0(α+ λ)− ψ0(λ), (8)

from which by use of the Lévy-Khintchine representation (3) one can work out the character-
istic tripletKλ of {ξt} under Pλ. We observe that if the Esscher martingale (6) is expanded as
a power series in λ, then the resulting coefficients, which are given by polynomials in ξt and
t, form a so-called Sheffer set (Schoutens & Teugels 1998), each element of which defines an
({Ft},P0)-martingale. The first three of these polynomials take the form Q1(x, t) = x−ψ′t,
Q2(x, t) = 1

2
[(x − ψ′t)2 − ψ′′t], and Q3(x, t) = 1

6
[(x − ψ′t)3 − 3ψ′′t(x − ψ′t) − ψ′′′t], where

ψ′ = ψ′
0(0), ψ

′′ = ψ′′
0(0), and ψ′′′ = ψ′′′

0 (0). The corresponding polynomial Lévy-Sheffer
martingales are given by Q1

t = Q1(ξt, t), Q
2
t = Q2(ξt, t), and Q

3
t = Q3(ξt, t).

In what follows we use the terms “signal” and “message” interchangeably. We write
CI = {w ∈ C : Rew = 0}. For any random variable Z on (Ω ,F ,P) we write FZ = σ[Z],
and when it is convenient we write E

P[ · |Z] for EP[ · |FZ]. For processes we use both of the
notations {Zt} and {Z(t)}, depending on the context.

With these background remarks in mind, we are in a position to define a Lévy information

process. We confine the discussion to the case of a “simple” message, represented by a
random variable X . In the situation when the noise is Brownian motion, the information
admits a linear decomposition into signal and noise. In the general situation the relation
between signal and noise is more subtle, and has the character of a fibre space, where one
thinks of the points of the base space as representing the different noise types, and the points
of the fibres as corresponding to the different information processes that one can construct
in association with a given noise type. Alternatively, one can think of the base as being
the convex space of Lévy characteristics, and the fibre over a given point of the base as the
convex space of messages that are compatible with the associated noise type.

We fix a probability space (Ω ,F ,P), and an Esscher family of Lévy characteristics Kλ,
λ ∈ A, with associated Lévy exponents ψλ(α), α ∈ Aλ

C
. We refer to K0 as the fiducial

characteristic, and ψ0(α) as the fiducial exponent. The intuition here is that the abstract
Lévy process of characteristic K0 and exponent ψ0(α), which we call the “fiducial” process,
represents the noise type of the associated information process. Thus we can use K0, or
equivalently ψ0(α), to label the noise type.

Definition 1 By a Lévy information process with fiducial characteristic K0, carrying the

message X, we mean a random process {ξt}, together with a random variable X, such that

{ξt} is conditionally KX-Lévy given FX .

Thus, given FX we require {ξt} to have conditionally independent and stationary increments
under P, and to possess a conditional exponent of the form

ψX(α) := t−1 lnEP[exp(αξt) | FX] = ψ0(α +X)− ψ0(X) (9)
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for α ∈ CI, where ψ0(α) is the fiducial exponent of the specified noise type. It is implicit
in the statement of Definition 1 that a certain compatibility condition holds between the
message and the noise type. For any random variable X we define its support SX to be
the smallest closed set F with the property that P(X ∈ F ) = 1. Then we say that X is
compatible with the fiducial exponent ψ0(α) if SX ⊂ A. Intuitively speaking, the compat-
ibility condition ensures that we can use X to make a random Esscher transformation. In
the theory of signal processing, it is advantageous to require that the variables to be esti-
mated should be square integrable. This condition ensures that the conditional expectation
exists and admits the interpretation as a best estimate in the sense of least squares. For
our purpose it will suffice to assume throughout the paper that the information process is
square integrable under P. This in turn implies that ψ′(X) is square integrable, and that
ψ′′(X) is integrable. Note that we do not require that the Lévy information process should
possess exponential moments under P, but a sufficient condition for this to be the case is
that there should exist a nonvanishing real number ǫ such that λ+ ǫ ∈ A for all λ ∈ SX .

To gain a better understanding of the sense in which the information process {ξt} actually
“carries” the message X , it will be useful to investigate its asymptotic behaviour. We write
I0(y) for the inverse marginal fiducial exponent.

Proposition 1 Let {ξt} be a Lévy information process with fiducial exponent ψ0(α) and

message X. Then for every ǫ > 0 we have

lim
t→∞

P
[

|I0(t−1ξt)−X| ≥ ǫ
]

= 0. (10)

Proof. It follows from (9) that ψ′
X(0) = ψ′

0(X), and hence that at any time t the conditional
mean of the random variable t−1ξt is given by

E
P
[

t−1ξt | FX
]

= ψ′
0(X). (11)

A calculation then shows that the conditional variance of t−1ξt takes the form

VarP
[

t−1ξt | FX
]

:= E
P

[

(

t−1ξt − ψ′
0(X)

)2
∣

∣

∣
FX
]

=
1

t
ψ′′
0 (X), (12)

which allows us to conclude that

E
P

[

(

t−1ξt − ψ′
0(X)

)2
]

=
1

t
E
P [ψ′′

0(X)] , (13)

and hence that

lim
t→∞

E
P

[

(

t−1ξt − ψ′
0(X)

)2
]

= 0. (14)

On the other hand for all ǫ > 0 we have

P[ |t−1ξt − ψ′
0(X)| ≥ ǫ ] ≤ 1

ǫ2
E
P

[

(

t−1ξt − ψ′
0(X)

)2
]

(15)

by Chebychev’s inequality, from which we deduce that

lim
t→∞

P[ |t−1ξt − ψ′
0(X)| ≥ ǫ ] = 0, (16)

and it follows that I0(t
−1ξt) converges to X in probability. �

Thus we see that the information process does indeed carry information about the mes-
sage, and in the long run “reveals” it. The intuition here is that as more information is
gained we improve our estimate of X to the point that the value of X eventually becomes
known with near certainty.
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III. PROPERTIES OF LÉVY INFORMATION

It will be useful if we present a construction that ensures the existence of Lévy information
processes. First we select a noise type by specification of a fiducial characteristic K0. Next
we introduce a probability space (Ω ,F ,P0) that supports the existence of a P0-Lévy process
{ξt} with the given fiducial characteristic, together with an independent random variable X
that is compatible with K0.

Write {Ft} for the filtration generated by {ξt}, and {Gt} for the filtration generated by
{ξt} and X jointly: Gt = σ[{ξt}0≤s≤t, X ]. Let ψ0(α) be the fiducial exponent associated with
K0. One can check that the process {ρXt } defined by

ρXt = exp (Xξt − ψ0(X) t) (17)

is a ({Gt},P0)-martingale. We are thus able to introduce a change of measure P0 → PX on
(Ω ,F ,P0) by setting

dPX
dP0

∣

∣

∣

∣

Gt

= ρXt . (18)

It should be evident that {ξt} is conditionally PX -Lévy given FX , since for fixed X the
measure change is an Esscher transformation. In particular, a calculation shows that the
conditional exponent of ξt under PX is given by

t−1 lnEPX

[

exp(αξt) | FX
]

= ψ0(α+X)− ψ0(X) (19)

for α ∈ CI, which shows that the conditions of Definition 1 are satisfied, allowing us to
conclude the following:

Proposition 2 The P0-Lévy process {ξt} is a PX-Lévy information process, with message

X and noise type ψ0(α).

In fact, the converse also holds: if we are given a Lévy information process, then by a
change of measure we can find a Lévy process and an independent “message” variable. Here
follows a more precise statement.

Proposition 3 Let {ξt} be a Lévy information process on a probability space (Ω ,F ,P) with
message X and noise type ψ0(α). Then there exists a change of measure P → P0 such that

{ξt} and X are P0-independent, {ξt} is P0-Lévy with exponent ψ0(α), and the probability law

of X under P0 is the same as probability law of X under P.

Proof. First we establish that the process {ρ̃Xt } defined by the expression ρ̃Xt = exp(−Xξt+
ψ0(X)t) is a ({Gt},P)-martingale. We have

E
P[ρ̃Xt |Gs] = E

P [exp(−Xξt + ψ0(X)t) | Gs]
= E

P[exp(−X(ξt − ξs))|Gs] exp(−Xξs + ψ0(X)t)

= exp(ψX(−X)(t− s)) exp(−Xξs + ψ0(X)t) (20)

by virtue of the fact that {ξt} is FX-conditionally Lévy under P. By use of (9) we deduce
that ψX(−X) = −ψ0(X), and hence that EP[ρ̃Xt |Gs] = ρ̃Xs , as required. Then we use {ρ̃Xt }
to define a change of measure P → P0 on (Ω ,F ,P) by setting

dP0

dP

∣

∣

∣

∣

Gt

= ρ̃Xt . (21)
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To show that ξt and X are P0-independent for all t, it suffices to show that their joint
characteristic function under P0 factorises. Letting α, β ∈ CI, we have

E
P0 [exp(αξt + βX)] = E

P [exp(−Xξt + ψ0(X)t) exp(αξt + βX)]

= E
P
[

E
P[exp((−X + α)ξt + ψ0(X)t+ βX)|FX]

]

= E
P[exp(ψX(−X + α)t+ ψ0(X)t+ βX)]

= exp(ψ0(α)t)E
P[exp(βX)], (22)

where the last step follows from (9). This argument can be extended to show that {ξt} and
X are P0-independent. Next we observe that

E
P0 [exp(α(ξu − ξt) + βξt)]

= E
P [ exp(−Xξu + ψ0(X)u+ α(ξu − ξt) + βξt) ]

= E
P
[

E
P[exp(−Xξu + ψ0(X)u+ α(ξu − ξt) + βξt) |FX]

]

= E
P
[

E
P[exp(ψ0(X)u+ (α−X)(ξu − ξt) + (β −X)ξt) |FX]

]

= E
P[exp(ψ0(X)u+ ψX(α−X)(u− t) + ψX(β −X)t) ]

= exp(ψ0(α)(u− t)) exp(ψ0(β)t) (23)

for u ≥ t ≥ 0, and it follows that ξu − ξt and ξt are independent. This argument can be
extended to show that {ξt} has P0-independent increments. Finally, if we set α = 0 in (22)
it follows that the probability laws of X under P0 and P are identical; if we set β = 0 in
(22) it follows that the P0 exponent of {ξt} is ψ0(α); and if we set β = 0 in (23) it follows
that {ξt} is P0-stationary. �

Going forward, we adopt the convention that P always denotes the “physical” measure
in relation to which an information process with message X is defined, and that P0 denotes
the transformed measure with respect to which the information process and the message
decouple. Therefore, henceforth we write P rather than PX . In addition to establishing the
existence of Lévy information processes, the results of Proposition 3 provide useful tools
for calculations, allowing us to work out properties of information processes by referring
the calculations back to P0. We consider as an example the problem of working out the
Ft-conditional expectation under P of a Gt-measurable integrable random variable Z. The
P-expectation of Z can be written in terms of P0-expectations, and is given by a “generalised
Bayes formula” (Kallianpur & Striebel 1968) of the form

E
P[Z | Ft] =

E
P0

[

ρXt Z | Ft

]

EP0 [ρXt | Ft]
. (24)

This formula can be used to obtain the Ft-conditional probability distribution function for
X , defined for y ∈ R by

FX
t (y) = P(X ≤ y | Ft). (25)

In the Bayes formula we set Z = 1{X ≤ y}, and the result is

FX
t (y) =

∫

1{x ≤ y} exp (xξt − ψ0(x)t) dF
X(x)

∫

exp (xξt − ψ0(x)t) dFX(x)
, (26)
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where FX(y) = P(X < y) is the a priori distribution function. It is useful for some purposes
to work directly with the conditional probability measure πt(dx) induced on R defined by
dFX

t (x) = πt(dx). In particular, when X is a continuous random variable with a density
function p(x) one can write πt(dx) = pt(x)dx, where pt(x) is the conditional density function.

Proposition 4 Let {ξt} be a Lévy information process under P with noise type ψ0(α), and
let the a priori distribution of the associated message X be π(dx). Then the Ft-conditional

a posteriori distribution of X is

πt(dx) =
exp (xξt − ψ0(x)t)

∫

exp (xξt − ψ0(x)t)π(dx)
π(dx). (27)

It is straightforward to establish by use of a variational argument that for any function
f : R → R such that the random variable Y = f(X) is integrable, the best estimate for Y
conditional on the information Ft is given by

Ŷt := E
P[Y | Ft] =

∫

f(x) πt(dx). (28)

By the “best estimate” for Y we mean the Ft-measurable random variable Ŷt that minimises
the quadratic error EP[(Y − Ŷt)

2|Ft].
It will be observed that at any given time t the best estimate can be expressed as a

function of ξt and t, and does not involve values of the information process at times earlier
than t. That this should be the case can be seen as a consequence of the following:

Proposition 5 The Lévy information process {ξt} has the Markov property.

Proof. For the Markov property it suffices to establish that for a ∈ R we have

P (ξt ≤ a | Fs) = P
(

ξt ≤ a | F ξs
)

, (29)

where Ft = σ[ {ξs}0≤s≤t ] and F ξt = σ[ ξt ]. We write

Φt := E
P0

[

ρXt |Ft

]

=

∫

exp (xξt − ψ0(x)t) π(dx), (30)

where ρXt is defined as in equation (17). It follows that

P (ξt ≤ a | Fs) = E
P[1{ξt ≤ a} | Fs] =

E
P0 [Φt1{ξt ≤ a} | Fs]

EP0 [Φt | Fs]

=
E
P0 [Φt1{ξt ≤ a} | F ξs]

EP0[Φt | F ξs]
= E

P[1{ξt ≤ a} | F ξs] = P
(

ξt ≤ a | F ξs
)

, (31)

since {ξt} has the Markov property under the transformed measure P0. �

We note that since X is F∞-measurable, which follows from Proposition 1, the Markov
property implies that if Y = f(X) is integrable we have

E
P[Y |Ft] = E

P[Y | F ξt]. (32)
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This identity allows one to work out the optimal filter for a Lévy information process by
direct use of the Bayes formula. It should be apparent that simulation of the dynamics of
the filter is readily approachable on account of this property.

We remark briefly on what might appropriately be called a “time consistency” property
satisfied by Lévy information processes. It follows from (27) that, given the conditional
distribution πs(dx) at time s ≤ t, we can express πt(dx) in the form

πt(dx) =
exp

(

x(ξt − ξs)− ψ0(x)(t− s)
)

∫

exp
(

x(ξt − ξs)− ψ0(x)(t− s)
)

πs(dx)
πs(dx). (33)

Then if for fixed s ≥ 0 we introduce a new time variable u := t−s, and define ηu = ξu+s−ξs,
we find that {ηu}u≥0 is an information process with fiducial exponent ψ0(α) and message X
with a priori distribution πs(dx). Thus given up-to-date information we can “re-start” the
information process at that time to produce a new information process of the same type,
with an adjusted message distribution.

Further insight into the nature of Lévy information can be gained by examination of
expression (9) for the conditional exponent of an information process. In particular, as a
consequence of the Lévy-Khintchine representation (3) we are able to deduce that

ψ0(α +X)− ψ0(X)=

(

p+ qX +

∫

R\{0}

z(eXz − 1)1{|z| < 1})ν(dz)
)

α + 1
2
qα2

+

∫

R\{0}

(eαz − 1− αz1{|z| < 1})eXzν(dz), (34)

for α ∈ CI, which leads to the following:

Proposition 6 The randomisation of the P0-Lévy process {ξt} achieved through the change

of measure generated by the randomised Esscher martingale ρt = exp(Xξt−ψ0(X)t) induces
two effects on the characteristics of the process: (i) a random shift in the drift term, given

by

p→ p+ qX +

∫

R\{0}

z(eXz − 1)1{|z| < 1})ν(dz), (35)

and (ii) a random rescaling of the Lévy measure, given by ν(dz) → eXzν(dz).

The integral appearing in the shift in the drift term is well defined since the term z(eXz−1)
vanishes to second order at the origin. It follows from Proposition 6 that in sampling an
information process an agent is in effect trying to detect a random shift in the drift term,
and a random “tilt” and change of scale in the Lévy measure, altering the overall rate as
well as the relative rates at which jumps of various sizes occur. It is from these data, within
which the message is encoded, that the agent attempts to estimate the value of X . It is
interesting to note that randomised Esscher martingales arise in the construction of pricing
kernels in the theory of finance (see, e.g., Shefrin 2008, Macrina & Parbhoo 2011).

We turn to examine the properties of certain martingales associated with Lévy informa-
tion. We establish the existence of a so-called innovations representation for Lévy infor-
mation. In the case of the Brownian filter the ideas involved are rather well understood
(see, e.g., Liptser & Shiryaev 2000), and the matter has also been investigated in the case
of Poisson information (Segall & Kailath 1975). These examples arise as special cases in
the general theory of Lévy information. Throughout the discussion that follows we fix a
probability space (Ω ,F ,P).
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Proposition 7 Let {ξt} be a Lévy information process with fiducial exponent ψ0(α) and

message X, let {Ft} denote the filtration generated by {ξt}, let Y = ψ′
0(X), where ψ′

0(α) is

the marginal fiducial exponent, and set Ŷt = E
P [Y |Ft]. Then the process {Mt} defined by

ξt =

∫ t

0

Ŷu du+Mt (36)

is an ({Ft},P)-martingale.

Proof. We recall that {ξt} is by definition FX-conditionally P-Lévy. It follows therefore
from (11) that EP[ξt|X ] = Y t, where Y = ψ′

0(X). As before we let {Gt} denote the filtration
generated jointly by {ξt} and X . First we observe that the process defined for t ≥ 0 by
mt = ξt − Y t is a ({Gt},P)-martingale. This assertion can be checked by consideration of
the one-parameter family of ({Gt},P0)-martingales defined by

ρX+ǫ
t = exp

(

(X + ε)ξt − ψ0(X + ε)t
)

(37)

for ǫ ∈ C
I. Expanding this expression to first order in ǫ, we deduce that the process defined

for t ≥ 0 by ρXt (ξt − ψ′
0(X)t) is a ({Gt},P0)-martingale. Thus we have

E
P0

[

ρXt (ξt − ψ′
0(X)t) | Gs

]

= ρXs (ξs − ψ′
0(X)s). (38)

Then using {ρXt } to make a change of measure from P0 to P we obtain

E
P [ξt − ψ′

0(X)t | Gs] = ξs − ψ′
0(X)s, (39)

and the result follows if we set Y = ψ′
0(X). Next we introduce the “projected” process {m̂t}

defined by m̂t = E
P [mt | Ft]. We note that since {mt} is a ({Gt},P)-martingale we have

E
P[m̂t|Fs] = E

P[ξt − Y t | Fs]

= E
P
[

E
P[ξt − Y t | Gs]|Fs

]

= E
P[ξs − Y s | Fs]

= m̂s, (40)

and thus {m̂t} is an ({Ft},P)-martingale. Finally we observe that

E
P [Mt|Fs] = E

P

[

ξt −
∫ t

0

Ŷu du

∣

∣

∣

∣

Fs

]

= E
P[ξt|Fs]− E

P

[
∫ t

s

Ŷu du

∣

∣

∣

∣

Fs

]

−
∫ s

0

Ŷu du, (41)

where we have made use of the fact that the final term is Fs-measurable. The fact that
{m̂t} and {Ŷt} are both (Ft,P)-martingales implies that

E
P[ξt|Fs]− ξs = (t− s)Ŷs = E

P

[
∫ t

s

Ŷu du

∣

∣

∣

∣

Fs

]

, (42)

from which it follows that EP [Mt| Fs] =Ms, which is what we set out to prove. �

Although the general information process does not admit an additive decomposition into
signal and noise, it does admit a linear decomposition into terms representing (i) information
already received and (ii) new information. The random variable Y entering via its conditional
expectation into the first of these terms is itself in general a nonlinear function of the message
variable X . It follows on account of the convexity of the fiducial exponent that the marginal
fiducial exponent is invertible, which ensures that X can be expressed in terms of Y by the
relation X = I0(Y ), which is linear if and only if the information process is Brownian. Thus
signal and noise are deeply intertwined in the case of general Lévy information. Vestiges of
linearity remain, and these suffice to provide an overall element of tractability.
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IV. EXAMPLES OF LÉVY INFORMATION PROCESSES

In a number of situations one can construct explicit examples of information processes,
categorised by noise type. The Brownian and Poisson constructions, which are familiar in
other contexts, can be seen as belonging to a unified scheme that brings out their differences
and similarities. We then proceed to construct information processes of the gamma, the
variance gamma, the negative binomial, the inverse Gaussian, and the normal inverse
Gaussian type. It is interesting to take note of the diverse nature of noise, and to observe
the many different ways in which messages can be conveyed in a noisy environment.

Example 1: Brownian information. On a probability space (Ω ,F ,P), let {Bt} be a
Brownian motion, let X be an independent random variable, and set

ξt = Xt+Bt. (43)

The random process {ξt} thereby defined, which we call the Brownian information process, is
FX-conditionally KX -Lévy, with conditional characteristic KX = (X, 1, 0) and conditional
exponent ψX(α) = Xα + 1

2
α2. The fiducial characteristic is K0 = (0, 1, 0), the fiducial

exponent is ψ0(α) = 1
2
α2, and the associated fiducial process or “noise type” is standard

Brownian motion. In the case of Brownian information, there is a linear separation of the
process into signal and noise. This model, considered by Wonham (1965), is perhaps the
simplest continuous-time generalisation of the example described by Wiener (1948). The
message is given by the value of X , but X can only be observed indirectly, through {ξt}.
The observations of X are obscured by the noise represented by the Brownian motion {Bt}.
Since the signal term grows linearly in time, whereas |Bt| ∼

√
t, it is intuitively plausible that

observations of {ξt} will asymptotically reveal the value of X , and a direct calculation using
properties of the normal distribution function confirms that t−1ξt converges in probability
to X ; this is consistent with Proposition 1 if we note that ψ′

0(α) = α and I0(y) = y in the
Brownian case.

The best estimate for X conditional on Ft is given by (28), which can be derived by use
of the generalised Bayes formula (24). In the Brownian case there is an elementary method
leading to the same result, worth mentioning briefly since it is of interest. First we present
an alternative proof of Proposition 5 in the Brownian case that uses a Brownian bridge
argument.

We recall that if s > s1 > 0 then Bs and s−1Bs − s−1
1 Bs1 are independent. More

generally, we observe that if s > s1 > s2, then Bs , s
−1Bs− s−1

1 Bs1 , and s
−1
1 Bs1 − s−1

2 Bs2 are
independent, and that s−1ξs − s−1

1 ξs1 = s−1Bs − s−1
1 Bs1. Extending this line of reasoning,

we see that for any a ∈ R we have

P (ξt ≤ a | ξs, ξs1, . . . , ξsk) = P

(

ξt ≤ a
∣

∣

∣
ξs,

ξs
s
− ξs1
s1
, . . . ,

ξsk−1

sk−1
− ξsk
sk

)

= P

(

ξt ≤ a
∣

∣

∣
ξs

)

, (44)

since ξt and ξs are independent of s−1Bs − s−1
1 Bs1 , . . . , s

−1
k−1Bsk−1

− s−1
k Bsk , and that gives

us the Markov property (29). Since we have established that X is F∞-measurable, it follows
that (32) holds. As a consequence, the a posteriori distribution of X can be worked out by
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use of the standard Bayes formula, and for the best estimate of X we obtain

X̂t =

∫

x exp(xξt − 1
2
x2t) π(dx)

∫

exp(xξt − 1
2
x2t) π(dx)

. (45)

The innovations representation (36) in the case of a Brownian information process can be
derived by the following argument. We observe that the ({Ft},P0)-martingale {Φt} defined
in (30) is a “space-time” function of the form

Φt := E
P0[ρt | Ft] =

∫

exp

(

xξt −
1

2
x2t

)

π(dx). (46)

By use of the Ito calculus together with (45), we deduce that dΦt = X̂tΦt dξt, and thus by
integration we obtain

Φt = exp

(
∫ t

0

X̂sdξs −
1

2

∫ t

0

X̂2
sds

)

. (47)

Since {ξt} is an ({Ft},P0)-Brownian motion, it follows from (47) by the Girsanov theorem
that the process {Mt} defined by

ξt =

∫ t

0

X̂s ds+Mt (48)

is an ({Ft},P)-Brownian motion, which we call the innovations process (see, e.g., Heunis
2011). The increments of {Mt} represent the arrival of new information.

We conclude our discussion of Brownian information with the following remarks. In
problems involving prediction and valuation, it is not uncommon that the message is revealed
after the passage of a finite amount of time. This is often the case in applications to finance,
where the message takes the form of a random cash flow at some future date, or, more
generally, a random factor that affects such a cash flow. There are also numerous examples
coming from the physical sciences, economics and operations research where the goal of an
agent is to form a view concerning the outcome of a future event by monitoring the flow
of information relating to it. How does one handle problems involving the revelation of
information over finite time horizons?

One way of modelling finite time horizon scenarios in the present context is by use of a
time change. If {ξt} is a Lévy information process with message X and a specified fiducial
exponent, then a generalisation of Proposition 1 shows that the process {ξtT} defined over
the time interval 0 ≤ t < T by

ξtT =
T − t

T
ξ

(

tT

T − t

)

(49)

reveals the value of X in the limit as t→ T , and one can check that

Cov
[

ξsT , ξtT | FX
]

=
s(T − t)

T
ψ′′
0(X), (0 ≤ s ≤ t < T ). (50)

In the case where {ξt} is a Brownian information process represented as above in the form
ξt = Xt +Bt, the time-changed process (49) takes the form ξtT = Xt+ βtT , where {βtT} is
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a Brownian bridge over the interval [0, T ]. Such processes have had applications in physics
(Brody & Hughston 2005, 2006; see also Adler et al. 2001, Brody & Hughston 2002) and
in finance (Brody et al. 2007, 2008a, Rutkowski & Yu 2007, Brody et al. 2009, Filipović et

al. 2012). It seems reasonable to conjecture that time-changed Lévy information processes
of the more general type proposed above may be similarly applicable.

Example 2: Poisson information. Consider a situation in which an agent observes a
series of events taking place at a random rate, and the agent wishes to determine the rate as
best as possible since its value conveys an important piece of information. One can model the
information flow in this situation by a modulated Poisson process for which the jump rate is
an independent random variable. Such a scenario arises in many real-world situations, and
has been investigated in the literature (Segall & Kailath 1975, Segall et al. 1975, Brémaud
1981, Di Masi & Runggaldier 1983, Kailath & Poor 1998). The Segall-Kailath scheme can
be seen to emerge naturally as an example of our general model for Lévy information.

As in the Brownian case, one can construct the relevant information process directly. On
a probability space (Ω ,F ,P), let {N(t)}t≥0 be a standard Poisson process with jump rate
m > 0, let X be an independent random variable, and set

ξt = N(eXt). (51)

Thus {ξt} is a time-changed Poisson process, and the effect of the signal is to randomly
modulate the rate at which the process jumps. It is evident that {ξt} is FX-conditionally
Lévy and satisfies the conditions of Definition 1. In particular,

E
[

exp
(

αN(eXt)
)

| FX
]

= exp
(

meX(eα − 1) t
)

, (52)

and for fixed X one obtains a Poisson process with rate meX . It follows that (51) is an
information process. The fiducial characteristic is given by K0 = (0, 0, mδ1(dz)), that of a
Poisson process with unit jumps at the rate m, where δ1(dz) is the Dirac measure with unit
mass at z = 1, and the fiducial exponent is ψ0(α) = m(eα − 1). A calculation using (9)
shows that KX = (0, 0, meXδ1(dz)), and that ψX(α) = meX(eα − 1). The relation between
signal and noise in the case of Poisson information is rather subtle. The noise is associated
with the random fluctuations of the inter-arrival times of the jumps, whereas the message
determines the average rate at which the jumps occur.

It will be instructive in this example to work out the conditional distribution of X by
elementary methods. Since X is F∞-measurable and {ξt} has the Markov property, we have

FX
t (y) := P(X ≤ y | Ft) = P(X ≤ y | ξt) (53)

for y ∈ R. It follows then from the Bayes law for an information process taking values in
N0 that

P(X ≤ y | ξt = n) =

∫

1{x ≤ y}P(ξt = n |X = x) dFX(x)
∫

P(ξt = n |X = x) dFX(x)
. (54)

In the case of Poisson information the relevant conditional distribution is

P(ξt = n |X = x) = exp(−mtex)(mte
x)n

n!
. (55)
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After some cancellation we deduce that

P(X ≤ y | ξt = n) =

∫

1{x ≤ y} exp(xn−m(ex − 1)t) dFX(x)
∫

exp(xn−m(ex − 1)t) dFX(x)
, (56)

and hence

FX
t (y) =

∫

1{x ≤ y} exp(xξt −m(ex − 1)t) dFX(x)
∫

exp(xξt −m(ex − 1)t) dFX(x)
, (57)

and thus

πt(dx) =
exp(xξt −m(ex − 1)t)

∫

exp(xξt −m(ex − 1)t) π(dx)
π(dx), (58)

which we can see is consistent with (27) if we recall that in the case of noise of the Poisson
type the fiducial exponent is given by ψ0(α) = m(eα − 1).

If a Geiger counter is monitored continuously in time, the sound that it produces pro-
vides a nice example of a Poisson information process. The crucial message (proximity to
radioactivity) carried by the noisy sputter of the instrument is represented by the rate at
which the clicks occur.

Example 3: Gamma information. It will be convenient first to recall a few definitions
and conventions (cf. Yor 2007, Brody et al. 2008b, Brody et al. 2012). Let m and κ be
positive numbers. By a gamma process with rate m and scale κ on a probability space
(Ω ,F ,P) we mean a Lévy process {γt}t≥0 with exponent

t−1 lnEP [exp(αγt)] = −m ln(1− κα) (59)

for α ∈ AC = {w ∈ C |Rew < κ−1}. The probability density for γt is

P(γt ∈ dx) = 1{x > 0}κ
−mtxmt−1 exp (−x/κ)

Γ[mt]
dx, (60)

where Γ[a] is the gamma function. A short calculation making use of the functional equation
Γ[a + 1] = aΓ[a] shows that E

P [γt] = mκt and VarP [γt] = mκ2t. Clearly, the mean and
variance determine the rate and scale. If κ = 1 we say that {γt} is a standard gamma
process with rate m. If κ 6= 1 we say that {γt} is a scaled gamma process. The Lévy
measure associated with the gamma process is

ν(dz) = 1{z > 0}mz−1 exp(−κz) dz. (61)

It follows that ν(R\{0}) = ∞ and hence that the gamma process has infinite activity. Now
let {ξt} be a standard gamma process with rate m on a probability space (Ω ,F ,P0), and
let λ ∈ R satisfy λ < 1. Then the process {ρλt } defined by

ρλt = (1− λ)mteλγt (62)

is an ({Ft},P0)-martingale. If we let {ρλt } act as a change of measure density for the
transformation P0 → Pλ, then we find that {γt} is a scaled gamma process under Pλ, with
rate m and scale 1/(1 − λ). Thus we see that the effect of an Esscher transformation on a
gamma process is to alter its scale. With these facts in mind, one can establish the following:
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Proposition 8 Let {γt} be a standard gamma process with rate m on a probability space

(Ω ,F ,P), and let the independent random variable X satisfy X < 1 almost surely. Then

the process {ξt} defined by

ξt =
1

1−X
γt (63)

is a Lévy information process with message X and gamma noise, with fiducial exponent

ψ0(α) = −m ln(1− α) for α ∈ {w ∈ C |Rew < 1}.
Proof. It is evident that {ξt} is FX-conditionally a scaled gamma process. As a consequence
of (59) we have

1

t
lnEP [exp(αξt)|X ] =

1

t
lnEP

[

exp

(

αγt
1−X

)
∣

∣

∣

∣

X

]

= ln

(

1− α

1−X

)−m

(64)

for α ∈ CI. Then we note that

−m ln

(

1− α

1−X

)

= −m ln (1− (X + α)) + m ln (1−X) . (65)

It follows that the FX-conditional P exponent of {ξt} is ψ0(X + α)− ψ0(X). �

The gamma filter arises as follows. An agent observes a process of accumulation. Typi-
cally there are many small increments, but now and then there are large increments. The
rate at which the process is growing is the figure that the agent wishes to estimate as ac-
curately as possible. The accumulation can be modelled by gamma information, and the
associated filter can be used to estimate the growth rate. It has long been recognised that
the gamma process is useful in describing phenomena such as the water level of a dam or the
totality of the claims made in a large portfolio of insurance contracts (Gani 1957, Kendall
1957, Gani & Pyke 1960). Use of the gamma information process and related bridge pro-
cesses, with applications in finance and insurance, is pursued in Brody et al. (2008b), Hoyle
(2010), and Hoyle et al. (2011). We draw the reader’s attention to Yor (2007) and references
cited therein, where it is shown how certain additive properties of Brownian motion have
multiplicative analogues in the case of the gamma process. One notes in particular the
remarkable property that γt and γs/γt are independent for t ≥ s ≥ 0. Making use of this
relation, it will be instructive to present an alternative derivation of the optimal filter for
gamma noise. We begin by establishing that the process defined by (63) has the Markov
property. We observe first that for any times t ≥ s ≥ s1 ≥ s2 ≥ · · · ≥ sk the variables
γs1/γs, γs2/γs1, and so on, are independent of one another and are independent of γs and γt.
It follows that

P (ξt < a|ξs, ξs1, . . . , ξsk) = P
(

ξt < a|(1−X)−1γs, . . . , (1−X)−1γsk
)

= P

(

ξt < a

∣

∣

∣

∣

(1−X)−1γs,
γs1
γs
,
γs2
γs1

, . . . ,
γsk
γsk−1

)

= P (ξt < a |ξs ) , (66)

since {γt} and X are independent, and that gives us (29). In working out the distribution
of X given Ft it suffices therefore to work out the distribution of X given ξt. We note that
the Bayes formula implies that

πt(dx) =
ρ(ξt|X = x)

∫

ρ(ξt|X = x) π(dx)
π(dx), (67)
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where π(dx) is the unconditional distribution ofX , and ρ(ξ|X = x) is the conditional density
for the random variable ξt, which can be calculated as follows:

ρ(ξ|X = x) =
d

dξ
P(ξt ≤ ξ|X = x) =

d

dξ
P((1−X)−1γt ≤ ξ|X = x)

=
d

dξ
P (γt ≤ (1−X)ξ|X = x) =

ξmt−1(1− x)mte−(1−x)ξ

Γ [mt]
. (68)

It follows that the optimal filter in the case of gamma noise is given by

πt(dx) =
(1− x)mt exp(xξt)

∫ 1

−∞
(1− x)mt exp(xξt)π(dx)

π(dx), (69)

We conclude with the following observation. In the case of Brownian information, it is well
known (and implicit in the example of Wiener 1948) that if the signal is Gaussian, then the
optimal filter is a linear function of the observation ξt. One might therefore ask in the case
of a gamma information process if some special choice of the signal distribution gives rise
to a linear filter. The answer is affirmative. Let U be a gamma-distributed random variable
with the distribution

P(U ∈ du) = 1{u > 0} θ
rur−1 exp (−θu)

Γ[r]
du, (70)

where r > 1 and θ > 0 are parameters, and set X = 1−U . Let {ξt} be a gamma information
process carrying message X , let Y = ψ′

0(X) = m/(1−X), and set τ = (r− 1)/m. Then the
optimal filter for Y is given by

Ŷt := E
P[Y |Ft] =

ξt + θ

t+ τ
. (71)

Example 4: Variance-gamma information. The so-called variance-gamma or VG pro-
cess (Madan & Seneta 1990, Madan & Milne 1991, Madan et al. 1998) was introduced in the
theory of finance. The relevant definitions and conventions are as follows. By a VG process
with drift µ ∈ R, volatility σ ≥ 0, and rate m > 0, we mean a Lévy process with exponent

ψ(α) = −m ln

(

1− µ

m
α− σ2

2m
α2

)

. (72)

The VG process admits representations in terms of simpler Lévy processes. Let {γt} be a
standard gamma process on (Ω ,F ,P), with rate m, as defined in the previous example, and
let {Bt} be a standard Brownian motion, independent of {γt}. We call the scaled process
{Γt} defined by Γt = m−1γt a gamma subordinator with ratem. Note that Γt has dimensions
of time and that EP[Γt] = t. A calculation shows that the Lévy process {Vt} defined by

Vt = µΓt + σBΓt
(73)

has the exponent (72). The VG process thus takes the form of a Brownian motion with
drift, time-changed by a gamma subordinator. If µ = 0 and σ = 1, we say that {Vt} is a
“standard” VG process, with rate parameter m. If µ 6= 0, we say that {Vt} is a “drifted”
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VG process. One can always choose units of time such that m = 1, but for applications
it is better to choose conventional units of time (seconds for physics, years for economics),
and treat m as a model parameter. In the limit σ → 0 we obtain a gamma process with
rate m and scale µ/m. In the limit m→ ∞ we obtain a Brownian motion with drift µ and
volatility σ.

An alternative representation of the VG process results if we let {γ1t } and {γ2t } be inde-
pendent standard gamma processes on (Ω ,F ,P), with rate m, and set

Vt = κ1γ
1
t − κ2γ

2
t , (74)

where κ1 and κ2 are nonnegative constants. A calculation shows that the exponent is of the
form (72). In particular, we have

ψ(α) = −m ln
(

1− (κ1 − κ2)α− κ1κ2 α
2
)

, (75)

where µ = m(κ1 − κ2) and σ
2 = 2mκ1κ2 , or equivalently

κ1 =
1

2m

(

µ+
√

µ2 + 2mσ2
)

and κ2 =
1

2m

(

−µ+
√

µ2 + 2mσ2
)

, (76)

where α ∈ {w ∈ C : −1/κ2 < Rew < 1/κ1}. Now let {ξt} be a standard VG process on
(Ω ,F ,P0), with exponent ψ0(α) = −m ln(1 − (2m)−1α2) for α ∈ {w ∈ C : |Rew| <

√
2m}.

Under the transformed measure Pλ defined by the change-of-measure martingale (6), one
finds that {ξt} is a drifted VG process, with

µ = λ

(

1− 1

2m
λ2
)−1

and σ =

(

1− 1

2m
λ2
)−

1
2

(77)

for |λ| <
√
2m. Thus in the case of the VG process an Esscher transformation affects both

the drift and the volatility. Note that for large m the effect on the volatility is insignificant,
whereas the effect on the drift reduces to that of an ordinary Girsanov transformation.

With these facts in hand, we are now in a position to construct the VG information
process. We fix a probability space (Ω ,F ,P) and a number m > 0.

Proposition 9 Let {Γt} be a standard gamma subordinator with rate m, let {Bt} be an

independent Brownian motion, and let the independent random variable X satisfy |X| <√
2m almost surely. Then the process {ξt} defined by

ξt = X

(

1− 1

2m
X2

)−1

Γt +

(

1− 1

2m
X2

)− 1

2

B(Γt) (78)

is a Lévy information process with message X and VG noise, with fiducial exponent

ψ0(α) = −m ln

(

1− 1

2m
α2

)

(79)

for α ∈ {w ∈ C : Rew <
√
2m}.



19

Proof. Observe that {ξt} is FX-conditionally a drifted VG process of the form

ξt = µXΓt + σXB(Γt), (80)

where the drift and volatility coefficients are

µX = X

(

1− 1

2m
X2

)−1

and σX =

(

1− 1

2m
X2

)− 1

2

. (81)

The FX-conditional P-exponent of {ξt} is by (72) thus given for α ∈ C
I by

ψX(α) = −m ln

(

1− 1

m
µX α− 1

2m
σ2
X α

2

)

= −m ln

(

1− 1

m
X

(

1− 1

2m
X2

)−1

α− 1

2m

(

1− 1

2m
X2

)−1

α2

)

= −m ln

(

1− 1

2m
(X + α)2

)

+m ln

(

1− 1

2m
X2

)

, (82)

which is evidently by (79) of the form ψ0(X + α)− ψ0(X), as required. �

An alternative representation for the VG information process can be established by the
same method if one randomly rescales the gamma subordinator appearing in the time-
changed Brownian motion. The result is as follows.

Proposition 10 Let {Γt} be a gamma subordinator with rate m, let {Bt} be an independent

standard Brownian motion, and let the independent random variable X satisfy |X| <
√
2m

almost surely. Write {ΓX
t } for the subordinator:

ΓX
t =

(

1− 1

2m
X2

)−1

Γt . (83)

Then the process {ξt} defined by ξt = XΓX
t + B(ΓX

t ) is a VG information process with

message X.

A further representation of the VG information process arises as a consequence of the
representation of the VG process as the asymmetric difference between two independent
standard gamma processes. In particular, we have:

Proposition 11 Let {γ1t } and {γ2t } be independent standard gamma processes, each with

rate m, and let the independent random variable X satisfy |X| <
√
2m almost surely. Then

the process {ξt} defined by

ξt =
1√

2m−X
γ1t −

1√
2m+X

γ2t (84)

is a VG information process with message X.
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Example 5: Negative-binomial information. By a negative binomial process with rate
parameter m and probability parameter q, where m > 0 and 0 < q < 1, we mean a Lévy
process with exponent

ψ0(α) = m ln

(

1− q

1− qeα

)

(85)

for α ∈ {w ∈ C |Rew < − ln q}. There are two representations for the negative binomial
process (Kozubowski & Podgórski 2009; Brody at al. 2012). The first of these is a compound
Poisson process for which the jump size J ∈ N has a logarithmic distribution

P0(J = n) = − 1

ln(1− q)

1

n
qn , (86)

and the intensity of the Poisson process determining the timing of the jumps is given by
λ = −m ln(1− q). One finds that the characteristic function of J is

φ0(α) := E
P0 [exp(αJ)] =

ln(1− qeα)

ln(1− q)
(87)

for α ∈ {w ∈ C |Rew < − ln q}. Then if we set

nt =
∞
∑

k=1

1{k ≤ Nt} Jk, (88)

where {Nt} is a Poisson process with rate λ, and {Jk}k∈N denotes a collection of independent
identical copies of J , representing the jumps, one deduces that

P0(nt = k) =
Γ(k +mt)

Γ(mt)Γ(k + 1)
qk(1− q)mt, (89)

and that the resulting exponent is given by (85). The second representation of the negative
binomial process makes use of the method of subordination. We take a Poisson process
with rate Λ = mq/(1 − q), and time-change it using a gamma subordinator {Γt} with rate
parameter m. The moment generating function thus obtained, in agreement with (85), is

E
P0

[

exp
(

αN(Γt)
)]

= E
P0 [exp (Λ(eα − 1)Γt)] =

(

1− q

1− qeα

)mt

. (90)

With these results in mind, we fix a probability space (Ω ,F ,P) and find:

Proposition 12 Let {Γt} be a gamma subordinator with rate m, let {Nt} be an independent

Poisson process with ratem, let the independent random variableX satisfy X < − ln q almost

surely, and set

ΓX
t =

(

qeX

1− qeX

)

Γt. (91)

Then the process {ξt} defined by

ξt = N(ΓX
t ) (92)

is a Lévy information process with message X and negative binomial noise, with fiducial

exponent (85).
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Proof. This can be verified by direct calculation. For α ∈ CI we have:

E
P
[

eαξt |X
]

= E
P
[

exp(αN(ΓX
t ))
∣

∣X
]

= E
P

[

exp

(

m
qeX

1− qeX
(eα − 1)Γt

)
∣

∣

∣

∣

X

]

=

(

1− qeX (eα − 1)

1− qeX

)−mt

=

(

1− qeX

1− qeX+α

)mt

, (93)

which by (85) shows that the conditional exponent is ψ0(X + α)− ψ0(X). �

There is also a representation for negative binomial information based on the compound
Poisson process. This can be obtained by an application of Proposition 6, which shows
how the Lévy measure transforms under a random Esscher transformation. In the case of a
negative binomial process with parameters m and q, the Lévy measure is given by

ν(dz) = m
∞
∑

n=1

1

n
qn δn(dz), (94)

where δn(dz) denotes the Dirac measure with unit mass at the point z = n. The Lévy
measure is finite in this case, and we have ν(R) = −m ln(1− q), which is the overall rate at
which the compound Poisson process jumps. If one normalises the Lévy measure with the
overall jump rate, one obtains the probability measure (86) for the jump size. With these
facts in mind, we fix a probability space (Ω ,F ,P) and specify the constants m and q, where
m > 1 and 0 < q < 1. Then as a consequence of Proposition 6 we have the following:

Proposition 13 Let the random variable X satisfy X < − ln q almost surely, let the random

variable JX have the conditional distribution

P(JX = n |X) = − 1

ln(1− qeX)

1

n
(qeX)n , (95)

let {JXk }k∈N be a collection of conditionally independent identical copies of JX , and let {Nt}
be an independent Poisson process with rate m. Then the process {ξt} defined by

ξt =
∞
∑

k=1

1{k ≤ N(− ln(1− qeX)t)} JXk (96)

is a Lévy information process with message X and negative binomial noise, with fiducial

exponent (85).

Example 6: Inverse Gaussian information. The inverse Gaussian (IG) distribution
appears in the study of the first exit time of Brownian motion with drift (Schrödingier
1915). The name “inverse Gaussian” was introduced by Tweedie (1945), and a Lévy process
whose increments have the IG distribution was introduced in Wasan (1968). By an IG
process with parameters a > 0 and b > 0, we mean a Lévy process with exponent

ψ0(α) = a
(

b−
√
b2 − 2α

)

(97)
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for α ∈ {w ∈ C | 0 ≤ Rew < 1
2
b2}. Let us write {Gt} for the IG process. The probability

density function for Gt is

P0(Gt ∈ dx) = 1{x > 0} at√
2πx3

exp

(

−(bx− at)2

2x

)

dx, (98)

and we find that EP0 [Gt] = at/b and that VarP0[Gt] = at/b3. It is straightforward to check
that under the Esscher transformation P0 → Pλ induced by (6), where 0 < λ < 1

2
b2, the

parameter a is left unchanged, whereas b → (b2 − 2λ)1/2. With these facts in mind we are
in a position to introduce the associated information process. We fix a probability space
(Ω ,F ,P) and find the following:

Proposition 14 Let G(t) be an inverse Gaussian process with parameters a and b, let X
be an independent random variable satisfying 0 < X < 1

2
b2 almost surely, and set Z =

b−1(b2 − 2X)1/2. Then the process {ξt} defined by

ξt = Z−2G(Zt) (99)

is a Lévy information process with message X and inverse Gaussian noise, with fiducial

exponent (97).

Proof. It should be evident by inspection that {ξt} is FX-conditionally Lévy. Let us there-
fore work out the conditional exponent. For α ∈ C

I we have:

E
P [exp(α ξt)|X ]

= E
P

[

exp

(

α
b2

b2 − 2X
G
(

b−1
√
b2 − 2X t

)

)
∣

∣

∣

∣

X

]

= exp
(

at
(√

b2 − 2X −
√

b2 − 2(α +X)
))

= exp
(

at
(

b−
√

b2 − 2(α +X)
)

− at
(

b−
√
b2 − 2X

))

, (100)

which shows that the conditional exponent is of the form ψ0(α +X)− ψ0(X). �

Example 7: Normal inverse Gaussian information. By a normal inverse Gaussian
(NIG) process (Rydberg 1997, Barndorff-Nielsen 1998) with parameters a, b, and m, such
that a > 0, |b| < a, and m > 0, we mean a Lévy process with an exponent of the form

ψ0(α) = m
(√

a2 − b2 −
√

a2 − (b+ α)2
)

(101)

for α ∈ {w ∈ C : −a− b < Rew < a − b}. Let us write {It} for the NIG process. The
probability density for its value at time t is given by

P0(It ∈ dx) =
amtK1

(

a
√
m2t2 + x2

)

π
√
m2t2 + x2

exp
(

mt
√
a2 − b2 + bx

)

dx, (102)

where Kν is the modified Bessel function of third kind (Erdélyi 1953). The NIG process can
be represented as a Brownian motion subordinated by an IG process. In particular, let {Bt}
be a standard Brownian motion, let {Gt} be an independent IG process with parameters a′



23

and b′, and set a′ = 1 and b′ = m(a2− b2)1/2. Then the characteristic function of the process
{It} defined by

It = bm2Gt +mB(Gt) (103)

is given by (101). The associated information process is constructed as follows. We fix a
probability space (Ω ,F ,P) and the parameters a, b, and m.

Proposition 15 Let the random variable X satisfy −a − b < X < a− b almost surely, let

{GX
t } be FX-conditionally IG, with parameters a′ = 1 and b′ = m(a2 − (b+X)2)1/2, and let

Ft = m2GX
t . Then the process {ξt} defined by

ξt = (b+X)Ft +B(Ft) (104)

is a Lévy information process with message X and NIG noise, with fiducial exponent (101).

Proof. We observe that the condition on {GX
t } is that

1

t
lnEP

[

exp
(

αGX
t

)

|X
]

= δ
√

a2 − (b+X)2−
√

m2(a2 − (b+X)2)− 2α (105)

for α ∈ CI. Thus if we set ψX(α) = E
P [exp(αξt)|X ] for α ∈ CI it follows that

ψX(α) = E
P [exp (α(b+X)Ft + αB(Ft))|X ]

= E
P
[

exp
(

(α(b+X) + 1
2
α2)m2GX

t

)
∣

∣X
]

(106)

= E
P

[

exp

(

mt
√

a2 − (b+X)2 −mt
√

a2 − (b+X)2 − 2
(

α(b+X) + 1
2
α2
)

)]

,

which shows that the conditional exponent is of the required form. �

Similar arguments lead to the construction of information processes based on various
other Lévy processes related to the IG distribution, including for example the generalised
hyperbolic process (Barndorff-Nielsen 1977), for which the information process can be shown
to take the form

ξt = (b+X)G̃t +B(G̃t). (107)

Here the random variable X is taken to be P-independent of the standard Brownian motion
{B(t)}, and {G̃t} is FX-conditionally a generalised IG process with parameters (δ, (a2−(b+
X)2)1/2, ν). It would be of interest to determine whether explicit models can be obtained
for information processes based on the Meixner process (Schoutens & Teugels 1998) and the
CGMY process (Carr et al. 2002, Madan & Yor 2008).

We conclude this study of Lévy information with the following remarks. Recent devel-
opments in the phenomenological representation of physical (Brody & Hughston 2006) and
economic (Brody et al. 2008a) time series have highlighted the idea that signal processing
techniques may have far-reaching applications to the identification, characterisation and cat-
egorisation of phenomena, both in the natural and in the social sciences, and that beyond
the conventional remits of prediction, filtering, and smoothing there is a fourth and impor-
tant new domain of applicability: the description of phenomena in science and in society.
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It is our hope therefore that the theory of signal processing with Lévy information herein
outlined will find a variety of interesting and exciting applications.
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