Paleoearthquakes of the Düzcé fault (North Anatolian Fault Zone): Insights for large surface faulting earthquake recurrence

D. Pantosti,¹ S. Pucci,¹,² N. Palyvos,¹ P. M. De Martini,¹ G. D’Addezio,¹ P. E. F. Collins,³ and C. Zabci⁴

Received 4 August 2006; revised 4 September 2007; accepted 25 September 2007; published 25 January 2008.

[1] The 12 November 1999 M_w 7.1 earthquake ruptured the Düzcé segment of the North Anatolian Fault Zone and produced a ~40-km-long surface rupture. To improve knowledge about earthquake recurrence on this fault, we undertook paleoseismological trench investigations. We found evidence for repeated surface faulting paleoearthquakes predating the 1999 event during the past millennium. Dating was based on radiocarbon, 210Pb analyses, and archaeological considerations. In addition to the 1999 earthquake, prior surface faulting earthquakes are dated as follows: A.D. 1685–1900 (possibly end of 19th century), A.D. 1495–1700, and A.D. 685–1020 (possibly A.D. 890–1020). The A.D. 967 and A.D. 1878 historical earthquakes are good candidates to have ruptured the Düzcé fault correlating with the oldest and penultimate paleoearthquakes. No obvious correlation for the third paleoearthquake (A.D. 1495–1700) exists. These results show that the Düzcé fault considerably participates, along with the parallel Mudurnu fault sections, in the seismogenic deformation taking place along this part of the North Anatolian Fault. Four events since A.D. 685–1020 (possibly A.D. 890–1020) would yield an average recurrence time for the Düzcé fault of 330–430 years (possibly 330–370 years). The three most recent earthquakes, including 1999, occurred within 500 years. Merging results from other paleoseismological studies along the Düzcé fault show a consistency of results and yields average recurrence times for the past 2000 years of 320–390 years. Assuming that the 1999 slip (2.7 m average, 5 m maximum) is representative of the behavior of this fault, the above recurrence times yield a reference figure of fault slip rate in the range 6.9–15.6 mm/a.

1. Introduction

[2] The 12 November 1999 M_w 7.1 earthquake ruptured the Düzcé fault segment of the North Anatolian Fault Zone (NAFZ) (Figure 1a) producing a ~40-km-long surface rupture with up to 5 m of right-lateral offset (2.7 m average) and up to 2.5 m of vertical throw [Akyüz et al., 2000, 2002; Pucci et al., 2007a]. This earthquake is considered to have been triggered by the M_w 7.4 İzmit earthquake that occurred 3 months earlier (17 August) on the next fault segment to the west.

[3] At a regional scale, the Düzcé fault is located just west of the Bolu basin, where the NAFZ starts splaying into two main strands, the Düzcé/Karadere to the north and the Mudurnu to the south, to splay again into three major strands in the Marmara Sea (NNAF, CNAF, and SNAF in Figure 1a) [Wong et al., 1995; Armijo et al., 1999; Okay et al., 1999]. The northern and southern strands together accommodate most of the 2–3 cm/a present-day strain of the NAFZ [Straub et al., 1997; Reilinger et al., 1997, 2000; Ayhan et al., 1999, 2001]. The Mudurnu segment ruptured entirely during the 1957 and 1967 earthquakes, whereas high seismic potential of the Düzcé fault was recognized well before 1999 by A. A. Barka and M. Erdik (Site specific fault rupture hazard investigation for the viaduct n°1 and n°1A of the Gümuşova-Gerede motorway, unpublished report, 1993) that considered this fault the possible source of a near-future earthquake. The Düzcé fault has an average E-W trend and a clear geomorphic expression, being the boundary between the Quaternary Düzcé and Kaynaslı basins to the north and the Paleozoic-Eocene rocks of the Almacık block to the south (Figure 1b). The eastern and western boundaries of the 1999 earthquake rupture appear to be structurally controlled. To the west, the approximately E-W Düzcé fault forms a releasing fault junction [e.g., Christie-
Blick and Biddle, 1985] with the NE-SW trending Karadere section [Pucci et al., 2007a], which ruptured during the İzmit earthquake. To the east, the Düze fault joins the eastern single trace of the NAZ via an approximately 10- to 15-km-wide, right-releasing step over involving the WNW–ESE trending Bakacak and Elmalik faults (Figure 1a) [Altunel et al., 2000; Barka et al., 2001; Hitchcock et al., 2003; A. A. Barka and M. Erdik, Site specific fault rupture hazard investigation for the viaduct n°1 and 1A of the Gümüşova-Gerede motorway, unpublished report, 1993]. Both of these step overs appear unfavorable to rupture propagation and possibly represent persistent barriers to earthquake ruptures [Barka and Kadinsky-Cade, 1988; Sibson, 1985; Harris and Day, 1993].

Figure 1. (a) Simplified trace of the North Anatolian Fault Zone west of the Bolu basin (see lower right inset for location of the area). Portions of the fault zone that ruptured during the 1999 earthquakes are shown. The mezeosismal areas of the historical earthquakes occurred near the Düze fault segment are shown too [from Ambraseys and Finkel, 1995; Ambraseys, 2002; Atakan et al., 2002; King et al., 2001]. NNAF, North Branch of the North Anatolian Fault; CNAF, Central Branch of the North Anatolian Fault; SNAF, Southern Branch of the North Anatolian Fault. (b) Trace of the 1999 surface ruptures along the Düze fault (see dashed rectangle in Figure 1a for location) and location of the five trench sites discussed in this paper (rectangles; KAY, Kaynaslı; MEN, Mengencik; CH, Cakir Haci Ibrahim; CIN, Cinarlı; AK, Aksu). Numbered hexagons are locations where trenching from other authors was performed: 1, Hitchcock et al. [2003]; 2, Komut [2005]; 3, Emre et al. [2001, 2003a, 2003b]; and 4, Sugai et al. [2001]).

Although Turkey has one of the richer records of historical seismicity in the Mediterranean, no clear evidence for historical earthquakes produced by the Düze segment of the NAZ during the past centuries has been found. This is probably due to the scarce density of population and lack of cultural settlements in historical times in the Düze...
The only historical earthquakes that are known to be close enough to be potentially associated to the Dužce fault are A.D. 967, A.D. 1719, A.D. 1754, A.D. 1878, A.D. 1894 [Ambraseys and Finkel, 1995; Ambraseys, 2002, 2006] (Figure 1a). Because historical information is very limited, knowledge about recurrence of large earthquakes on the Dužce fault can be derived only from paleoseismology. Soon after the 1999 earthquakes several paleoseismological investigations were carried out at different locations along the fault (Figure 1b). On the basis of trenching, Hitchcock et al. [2003] (site 1 in Figure 1b) found evidence for three to five paleoearthquakes in the past 2100 years, with a recurrence interval ranging from 300 to 800 years, and the penultimate event occurring about 300 years ago. Komut [2005] recognized six paleoevents since 1750 B.C. with the one prior to 1999 occurring during the past 500 years (sites 2 in Figure 1b). Emre et al. [2001, 2003a, 2003b] found evidence for three paleoearthquakes since A.D. 665, the oldest and the youngest of which are dated at A.D. 665–1050 and A.D. 1650–1750, respectively (sites 3 in Figure 1b). Finally, by paleoseismological geoslicing (by a steel dustpan-like sampling box and its shutter plate) and coring investigations, Sugai et al. [2001] developed a surface faulting history for the past 2 millennia at a site in the western part of the fault (site 4 in Figure 1b). Here, these authors recognize four possible/probable paleoearthquakes.

Table 1. Measured and Dendrochronologically Corrected Radiocarbon Ages of Samples Collected in the Dužce Trenches

<table>
<thead>
<tr>
<th>Lab Sample</th>
<th>Radiocarbon Age, Ma B.P.</th>
<th>δ¹³C</th>
<th>Calibration</th>
<th>Probability 0.95 (2σ)</th>
<th>Type of Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poz-13745 KW-45</td>
<td>modern</td>
<td>−27.4</td>
<td>A.D. 1475–1640</td>
<td>1.000</td>
<td>charcoal</td>
</tr>
<tr>
<td>Poz-13711 KW-02</td>
<td>335 ± 30</td>
<td>−29.8</td>
<td>A.D. 1035–1220</td>
<td>1.000</td>
<td>charcoal</td>
</tr>
<tr>
<td>Beta 201526 KW-20</td>
<td>890 ± 40</td>
<td>−25.5</td>
<td>A.D. 685–890</td>
<td>1.000</td>
<td>charcoal</td>
</tr>
<tr>
<td>Beta 201525 KE-08</td>
<td>1220 ± 40</td>
<td>−23.3</td>
<td>A.D. 1445–1525</td>
<td>0.655; 0.012; 0.334</td>
<td>charcoal</td>
</tr>
<tr>
<td>KIA 22286 MAN1-W21</td>
<td>375 ± 25</td>
<td>−23.97</td>
<td>A.D. 1560–1565, AD1570–1630</td>
<td></td>
<td>charcoal</td>
</tr>
<tr>
<td>KIA 22285 MAN5-W20</td>
<td>297 ± 27</td>
<td>−26.79</td>
<td>A.D. 1495–1600, A.D. 1615–1655</td>
<td>0.717; 0.283</td>
<td>charcoal</td>
</tr>
<tr>
<td>KIA 22293 MAN5-W16</td>
<td>801 ± 27</td>
<td>−30.23</td>
<td>A.D. 1185–1200, A.D. 1205–1275</td>
<td>0.038; 0.962</td>
<td>charcoal</td>
</tr>
<tr>
<td>KIA 22296 MAN5-W13</td>
<td>1317 ± 37</td>
<td>−25.59</td>
<td>A.D. 650–770</td>
<td>1.000</td>
<td>charcoal</td>
</tr>
<tr>
<td>KIA 22295 MAN1-W23</td>
<td>36 ± 24</td>
<td>−22.87</td>
<td>A.D. 1700–1725, A.D. 1815–1835, A.D. 1880–1915, A.D. 1950–1955b</td>
<td>0.131; 0.088; 0.618; 0.164</td>
<td>charcoal</td>
</tr>
<tr>
<td>KIA 22288 MAN6-W18</td>
<td>modern</td>
<td>−34.79</td>
<td>—</td>
<td>0.274; 0.713; 0.013</td>
<td>charcoal</td>
</tr>
<tr>
<td>KIA 22290 MAN6-E35</td>
<td>200 ± 25</td>
<td>−26.51</td>
<td>A.D. 1650–1685, A.D. 1735–1805, A.D. 1930–1950</td>
<td>0.261; 0.564; 0.175</td>
<td>charcoal</td>
</tr>
<tr>
<td>KIA 22291 MAN6-E37</td>
<td>123 ± 20</td>
<td>−25.97</td>
<td>A.D. 1680–1740, A.D. 1755–1760, A.D. 1800–1895, A.D. 1905–1935, A.D. 1950–1955</td>
<td>0.290; 0.017; 0.541; 0.151; 0.002</td>
<td>charcoal</td>
</tr>
<tr>
<td>Beta 195101 CH-W01</td>
<td>60 ± 50</td>
<td>−24.5</td>
<td>A.D. 1680–1740, A.D. 1750–1760, A.D. 1800–1940, A.D. 1950–1955b</td>
<td>0.266; 0.013; 0.698; 0.023</td>
<td>charcoal</td>
</tr>
<tr>
<td>Beta 201522 CH-W02</td>
<td>240 ± 60</td>
<td>−25.6</td>
<td>A.D. 1480–1700, A.D. 1720–1820, A.D. 1830–1880, A.D. 1920–1950</td>
<td>0.573; 0.294; 0.038; 0.095</td>
<td>wood</td>
</tr>
<tr>
<td>Beta 201523 CH-W07</td>
<td>300 ± 40</td>
<td>−25.3</td>
<td>A.D. 1475–1660</td>
<td>1.000</td>
<td>charcoal</td>
</tr>
<tr>
<td>Beta 195103 CIN1-W500</td>
<td>630 ± 60</td>
<td>−26.9</td>
<td>A.D. 1280–1420</td>
<td>1.000</td>
<td>wood</td>
</tr>
<tr>
<td>Beta 195102 CIN1-W310</td>
<td>980 ± 40</td>
<td>−27.1</td>
<td>A.D. 990–1155</td>
<td>1.000</td>
<td>wood</td>
</tr>
<tr>
<td>KIA 22294 CIN1-W16</td>
<td>112 ± 42</td>
<td>−30.85</td>
<td>A.D. 1675–1770, A.D. 1770–1775, A.D. 1800–1940, AD1950–1955</td>
<td>0.343; 0.010; 0.638; 0.008</td>
<td>charcoal</td>
</tr>
<tr>
<td>KIA 22292 CIN1-W03</td>
<td>690 ± 28</td>
<td>−25.59</td>
<td>A.D. 1270–1310, A.D. 1360–1385</td>
<td>0.736; 0.264</td>
<td>charcoal</td>
</tr>
<tr>
<td>Beta 201519 AK-W06</td>
<td>1080 ± 40</td>
<td>−25.1</td>
<td>A.D. 890–1020</td>
<td>1.000</td>
<td>charcoal</td>
</tr>
<tr>
<td>Beta 201520 AK-W29</td>
<td>140 ± 40</td>
<td>−26.2</td>
<td>A.D. 1670–1780, A.D. 1795–1895, A.D. 1905–1915</td>
<td>0.448; 0.380; 0.172</td>
<td>charcoal</td>
</tr>
</tbody>
</table>

*Calibration program: Calib Rev 5.02 [Stuiver and Reimer, 2005]; calibration data set from Reimer et al. [2004].

Influence of nuclear testing ¹⁴C.
preceding 1999 and suggest an average recurrence time of 4–500 years.

[5] In the light of what is discussed above, the main objective of this paper is to provide more constraints for the evaluation of earthquake recurrence on the Düzce fault with particular attention to the dating of individual paleoearthquakes. A major goal is the recognition and dating of pre-1999 earthquakes and their possible correlation to known historical earthquakes.

[6] This paper presents the results of trenching at five sites performed during the European Union project Reliable Information on Earthquake Faulting (RELIEF). We compare them with results from previous studies, and discuss their implications for the seismic behavior of the Düzce segment of the NAFZ.

2. Trenching the Düzce Fault

[7] We excavated a total of 10 trenches at five different sites along the Düzce fault (Figure 1b). High water table and the lack of sites with slow and continuous sedimentation made the site selection and trench interpretation problematic. Because of the type of sediments and sedimentary structures crossed, no piercing points to measure individual or cumulative horizontal coseismic offset were found; thus, in the following, we report only about the seven fault perpendicular trenches. Dating of paleoearthquakes was based both on radiocarbon (AMS) and 210Pb analyses. Both dating approaches contain uncertainties. All the radiocarbon-dated samples were dendrochronologically corrected for the 12C/14C changes in the atmosphere according to Calib Rev 5.02 [Stuiver and Reimer, 2005] (Table 1). We have to take in account that all the samples are charcoal and wood fragments; they thus provide maximum-limiting ages for the hosting layers. Moreover, most of the trench deposits appear to be younger than 300 years. The past 300 years are a very problematic time interval for radiocarbon dating because of the “radiocarbon plateau” produced by fossil fuel combustion (Suess effect [Bradley, 1985]) and increasing solar activity following the Maunder minimum [Stuiver and Quay, 1980]. As a consequence of this, a precise age cannot be determined because measured radiocarbon ages in the plateau calibrate with almost equal probability to any age within it. For this reason we limited the number of samples for 14C dating from layers within this age range.

[8] In this work we also explored the use of 210Pb analyses for dating colluvial and marsh deposits, following the method used by Cundy et al. [1998]: 210Pb derives from the decay of 222Rn, and dating is based on the assumption that all the main sources for 210Pb (in situ, from the atmosphere, and from eroded material in the catchment) can be considered constant through time. If this is true, a near-exponential decline of activity with depth would be expected. Developing a precise geochronology using short-lived radionuclides in depositional settings where sediment texture is very variable and deposition has occurred in pulses is problematic [Cundy and Stewart, 2004]. However, by using the constant rate of supply model [Appleby, 2001] it is possible to derive an approximate chronology that can be used to test the results of 14C dating, and provide a first-order estimation of age. Furthermore, in this study, it was hypothesized that soil disturbance during a surface faulting earthquake could lead to the remobilization of “old” material. This material would be delivered to the zone of deposition adjacent to the fault scarp either during the earthquake or subsequently, until the disturbed surfaces had restabilized. In the following, we discuss the observations and interpretations from each trench site moving along the fault from east to west.

2.1. Kaynasli Trench

[9] The Kaynasli trench (KAY) was excavated across the 1999 rupture in the floodplain of the Asarsu river (KAY, Figure 1b) at the western edge of a sag pond that is artificially drained by a nearby man-made channel. In this area, the dextral and vertical offsets of the 1999 ruptures were 0.7–1.7 m and 0.3 m, respectively [Akyüz et al., 2000, 2002; Pucci et al., 2007a]. The trench was about 18 m long and 2 m deep and exposed a sequence of predominantly fine sediments (silt and clay), with intercalated layers of sand and pebbles. Fluvial gravel was exposed at the bottom of the central part of the trench. A description of all stratigraphic units is given in Figure 2. Four charcoal samples were dated by AMS from units d, e, f, and g (samples KW-45, KW-02, KW-20, KE-08, see Table 1 and Figure 2). They yielded ages ranging from modern to A.D. 685–890.

[10] Two main fault zones were exposed on both walls of the trench (1 and 2 in Figures 2a and 2b). They were composed of several splays, most of which ruptured in 1999. A third fault zone (3 in Figure 2a), that was not activated in 1999, was located in the southern part of the trench and it is also highlighted by a sharp change in color of units h and g.

[11] In 1999 the rupture reached the surface along at least one of the main branches of fault zones 1 and 2 and was subsequently capped by the postevent unit b in fault zone 1.

Figure 2. (a) Simplified log of the main fault zones of the Kaynasli trench (KAY in Figure 1b). Stars indicate event horizons, and triangles are dated charcoal samples (details in Table 1). Stratigraphic units are a, active brown silty soil; b, brown clayey-silty soil with clay patches (post-1999 earthquake deposit); c, clayey and sand from underlying layers, injected in 1999 along the fault plane?; d, granular, brown silty soil, organic-rich with sparse pebbles with injected sand and clay from unit a at the base in the northern end of the trench; e, dark brown clayey-silty soil with injection of sand and clay from unit e; f, big stones in silty clay matrix with layers (2 to 4 cm thick) of silt, clay, and sand at the bottom (interpreted as man-made feature postdating event Kay2); g, laminated fine sand with important oxidation, sand, and fine to medium gravel in silty matrix; h, laminated dark grey fine sand and fine gravel in clayey-silty matrix, lenses of clay, oxidation; i, light grey clay with sparse pebbles, penetration of roots; j, grey clay, fine to medium gravel in clay matrix, coarse pebbly layer at the base, roots penetration; k, medium to coarse pebbles in orange oxidized clay matrix; m, laminated coarse sand to coarse gravel with some silty matrix. Bluish dashed zones refers to coloration due to reduction. (b) View of the west wall of the trench. (c) Detail of fault zone 1 west wall. (d) Detail of fault zone 1 east wall.
Figure 2

A) Kaynaș trench - west wall

B) Kaynaș trench - east wall

Fault Zone 1
Fault Zone 2
Fault Zone 3

1 meter
During this event, silt and fine sand were injected along the rupture (fault zone 1, west wall, unit z) and at the c/e and d/e contacts. On the basis of stratigraphic and structural relations, we find evidence for three surface faulting paleoearthquakes before 1999 (Kay2 to Kay4 in the following and in Figure 2). Evidence for the penultimate earthquake, Kay2, are fault terminations below unit d as well as the presence in both fault zones of large cobbles and small boulders (unit k) completely unrelated to the surrounding stratigraphy and buried by unit d (see also Figures 2c and 2d). These cobbles were likely thrown by local people in the coseismic open fissures and cracks that because of the high water table at the site, were filled by water. This way the cobbles allowed people and herds to cross them. Alteration coatings on the cobbles and boulders of the unit k and by the presence of laminated fine sediment at the base of channel-like features seem to confirm this hypothesis. The prepenultimate event, Kay3, was recognized only in fault zone 1 of the western wall, where two fault splays deformed the trenched sequence up to unit f and the base of unit e. The top part of unit e has not been affected. Thus we place the event horizon somewhere near the base of unit e.

Figure 3. (a) Detailed topographic map of the Mengencik site (MEN site in Figure 1b) obtained by a 5000 point DGPS survey. The trace of the 1999 ruptures is still very clear (thick line with ticks); trenches and main natural and artificial features are shown, and black lines outline tectonic ridges. (b) Aerial view of the site.
Evidence for an older event, Kay4, was found at fault zones 2 and 3. On the western wall, the northern strand of fault zone 2 offset only g and older units. Similar features define Kay4 also in fault zone 3.

On the basis of the dated samples (Table 1), the timing of the above paleoearthquakes can be constrained as follows: Kay2 is younger than A.D. 1475, Kay3 occurred between A.D. 1035 and 1640, and Kay4 between A.D. 685 and 1220.

2.2. Mengencik Trench Site

A total of six trenches were excavated at Mengencik trench site (MEN) (Figure 4) across the 1999 ruptures (about 3.7 m dextral and 0.4 m vertical according to Akyüz et al. [2000, 2002] and Pucci et al. [2007a]). Five of the trenches were located in the western part of the site and one in the eastern. In the following, we present results only from the three fault-perpendicular trenches (Men1, Men5, and Men6, Figure 3b).

2.2.1. Eastern Trench: Men6

Trench Men6 was opened about 200 m east of the western trenches (Men1 and Men5) where the 1999 earthquake surface ruptures formed a 12-m-wide graben hosting an ephemeral drainage (Figure 3). The coseismic graben structure coincides with a larger morphological depression, which indicates that the same pattern of surface ruptures has repeated in the past at this location.

The sediments exposed in the trench walls form a monotonous alluvial fan aggradation sequence of silt, fine sand and clay with rare gravel intercalations (see Figure 4).
The organic component becomes important in the southern part of the trench, probably related to localized formation of a small marsh. The fault zone bounding the graben to the north was composed of several, subparallel, south dipping splays that reach the surface or the plow zone. Here, the stratigraphy was very homogeneous and contained too many ambiguities to be of use for individual paleoearthquake recognition. Conversely, the southern fault zone is more complex and is composed of several splays, some of which bound the main graben (E and D) and others (B and C), forming a small secondary graben (Figure 4).

In order to provide a chronology of the exposed sediments, we collected several charcoal samples for \(^{14}C\) analyses. Four of these samples were dated (see Table 1 and Figure 4). Three of them have overlapping ages younger than circa A.D. 1650 (samples MAN6-W11, MAN6-E35, MAN6-E37). Conversely, the forth, sampled from unit q yields a modern age (sample MAN6-W18). As a whole, we can conclude that the deposits filling the small secondary graben of the southern fault zone (units above n) are younger than A.D. 1685 (Figure 4).

The 1999 earthquake ruptures produced slip mainly on faults E, D and C of the southern fault zone with a clear down-to-the-north vertical component, indicated by free faces still visible at the surface. Paleoearthquake evidence is derived from stratigraphic and structural relations at the southern fault zone, where we found evidence for at least two paleoearthquakes predating 1999 (Figure 4). Evidence of the penultimate event Men6-2 is clear on both trench walls. On the W wall (Figure 4b) it is defined by a small graben between faults A and C, with faults sealed by the yellow silt of unit e filling it. On the E wall (Figure 4d) the event horizon is defined on the basis of (1) faulting of a burn layer (unit f), successive backward erosion of the free face and filling of a depression by unit e; (2) upward fault terminations at the top of unit i; and (3) possible paleoliquefactions within layer g. Thus the event horizon for Men6-2 is set at the base of unit e. Recognition of an additional event (Men6-3) is based on upward terminations of fault B capped by unit n on both walls and of fault zone E.
under unit u on the east wall. Also, the fact that unit n is organic-rich, in striking contrast to the surrounding units (r and s), may suggest that it was deposited in a fault-controlled depression with marsh vegetation.

With the presently available radiocarbon ages (Table 1), we can only conclude that event MAN6-2 occurred within the past \textasciitilde 300 years, whereas MAN6-3 occurred close to or before A.D. 1685 (because it triggered the formation of the pond containing the dated samples). The presence of a modern sample from the units predating the penultimate earthquake remains a problem; excluding it was wrongly sampled from a young carbonized root, we have to admit that sample pollution occurred, in the field or in the lab.

2.2.2. Western Trenches: Men1 and Men5

The 1999 earthquake surface fault at the western part of the Mengencik site crosses slope wash deposits and small coalesced fans composed mainly of silt. Overall, the fault trace produces relative subsidence of the southern side, where ponding is observed against the scarp, especially where the rupture forms small grabens. Repetition of surface faulting events produced the formation of fault-parallel ridges of various sizes, which clearly control the drainage pattern (Figure 3).

To provide a timeframe to the trenched sediments, we collected samples for 14C, and 210Pb analyses. Radiocarbon dating was quite difficult because of the extremely small size of the available samples. The dated samples (see Table 1 and Figures 5 and 6) suggest that the upper 60–70 cm of sediments, in the southern part of both trenches, was deposited in the past \textasciitilde 500 years (samples Men1-W21 and Men5-W20), with the upper 40 cm being younger than A.D. 1700. Sample Men5-W16 from the bottom of the sediments that were trapped in the shear zone indicates that these are \textasciitilde 800 years old. One additional sample dated from unit d of trench Men5 (Men5-W13) yielded an age indicating presence of reworked material in this environment.
Figure 7. (a) Geomorphological map of the Caki Haci Ibrahim trench area. Contours are every 10 m from 1:25,000 topographic maps. (b) View of the 1999 scarp looking north, dashed lines underline top and base of the scarp, trench in the left background. (c) Microtopographic map of the trenched scarp from a 860 point total station survey. Notice the small left-stepping scarps; rectangle outlines the trench, blue, dark line is an ephemeral drainage. (d) Simplified log of the main fault zone. Stars indicate event horizons, black triangles are sample locations (details in Table 1); the star next to the sample name indicates that the sample was located outside this panel and its position is thus based on stratigraphic correlation. Stratigraphy: a, coarse sand fining upward to sandy silt or silt, locally fine pebbles at the bottom; organic soil developed on the upper part; b, very coarse pebbles, cobbles and small boulders in a fine pebbles and coarse sand matrix; d, coarse sands interfinger with pebbles (up to coarse); e, medium to coarse pebbles, small and large cobbles in a fine pebbles and coarse sand matrix; f, silty sand and very fine pebbles, includes sparse very coarse pebbles; g, very coarse pebbles, cobbles and small boulders in granular loose matrix; h, silt and sand; i, alternating beds of coarse sands, fine pebbles and silt; j, silt and silty sand; k, silt, sand, fine pebbles and sparse coarse pebble; m, grey clay including large pieces of wood, with coarse sand and fine pebbles on top; n, silt including layers of sand and fine pebbles.
[23] 210Pb analysis was completed on the sequence to assess the validity of the radiocarbon chronology and to better constrain the age of the younger part of the stratigraphy in trench Men1. Sampling was performed in the southern part of the trench, from the surface to the bottom of the trench (Figure 5a); analyses were performed for the upper 1.24 m. The 210Pb activity shows a general decline with depth (column 1 in Figure 5d). The 210Pb activity is noticeably higher in the top 40 cm of the sediment sequence than lower in the sequence. By using the constant rate supply model [Appleby, 2001], we generate 210Pb age estimates for the upper 40 cm. and produce a reference chronology (column 2 in Figure 5d) which suggests that the upper 40 cm accumulated since the mid-20th century. The stratigraphic unit at 40 cm depth (unit e in Figure 5), which exhibits very low 210Pb activity, is characterized by a blocky pedogenic structure and is interpreted as a probable paleosol. The 210Pb activity increases below the paleosol, probably reflecting in situ 210Pb production. A single 14C date of A.D. 1450–1630 (sample Men1-W21) from below the paleosol unit e supports the hypothesis that this soil represented a phase of relative surface stability and pedogenesis between the 17th–19th centuries. After the paleosol formation a new phase of sediment deposition took place. In agreement with this, a 13C date from immediately above the paleosol yields a young age, possibly younger than A.D. 1880 (60% probability, sample Men1-W23). A small piece of aluminum foil, found within unit b, is also supportive of the youthfulness of these upper units.

[24] At the site of trench Men1 the 1999 earthquake formed a gentle south facing scarp, with the ruptures clearly reaching the surface at fault zones A and C. Evidence for at least 2 paleoearthquakes predating 1999 was found on the basis of stratigraphic and structural relations at both trenches (Figures 5a and 6b).

[25] The penultimate earthquake, Men1-2, was associated with intense deformation at fault zone B, where the grey organic silt units e, f and d (and k?) were taken into the fault zone, sheared, and buried by the yellow silt and clay and the organic grey silt layers of units b and c. A third event, Men1-3, can be inferred on the basis of the upper termination of the southern branch of fault zone B (U in Figure 5a) below unit f coupled to the presence and geometry of the grey organic silt units f and e, which can be interpreted as postearthquake ponding deposits that accumulated inside a depression in front of a coseismic scarp, similar to the one formed by the 1999 earthquake. At trench Men5 the 1999 earthquake rupture produced a graben-like structure at the surface (negative flower structure), with the free faces still clearly visible in 2004 (Figure 6). The determination of the penultimate event, Men5-2, is based only on the assumption that similar to what was observed after the 1999 earthquake, surface faulting earthquakes at this location produce fault-controlled ponding. On this basis and because of the peculiar thickening of the comparatively organic-rich unit e toward the fault zone, we assume that this unit deposited in a depression created by surface faulting; thus it buried (postdates) an event horizon (Men5-2). Older events produced intense shearing and slicing of the sediments, accompanied by deposition of organic-rich silt and sand within fault-controlled ponds in the fault zone.

[26] On the basis of the available dating (Table 1), we can conclude that the penultimate earthquake at the western trenches of Mengencik site (Men1 and Men5) is recognized only in Men1 and postdates the deposition of unit d: thus it occurred after the development of the pedogenic layer e. According to radiocarbon dating (Men1-W23) this event is younger than A.D. 1700, with a ~60% probability of being younger than 1880 that although with uncertainties, is in agreement with 210Pb modeling suggesting that this event occurred in recent times, possibly close to 1900. Paleoearthquake Men1-3 has a perfect stratigraphic and age correspondence with Men5-2 and is expected to have occurred in the past ~500 years.

2.3. Cakir Haci Ibrahim Trench

[27] The Cakir Haci Ibrahim (CH) trench was excavated in the floodplain of the Develi River, across a gentle and broad cumulative south facing scarp (Figures 1b and 7). In this area, the 1999 ruptures formed a 100 m wide left step over locally composed of smaller-scale left-stepping scarps (Figure 7). At this site the 1999 earthquake dextral and vertical offsets were about 3.8 and 1.0 m, respectively [Akyüz et al., 2000, 2002; Pucci et al., 2007a]. Because of their geometry and kinematics, the 1999 ruptures completely dammed an artificial channel probably built along a natural drainage flowing northward from the range toward the Develi River (Figures 1b and 7a).

[28] The trench exposed 5 fault zones, distributed within a 20-m-wide zone, displacing gravel-dominated alluvial plain deposits, including layers of sand and silt (see Figure 7d for description of stratigraphic units in the main fault zone). The main faults of this zone, A and B, are associated with the main flexural scarp, whereas the others with minor scarps (not included in the log of Figure 7d).

[29] In order to provide chronological constraints for the trench deposits, charcoal and wood samples were collected and three of them dated (Table 1). Although in a stratigraphically older or equivalent position, sample CH-W01 yielded ages younger (A.D. 1680–1940) than CH-W02 and CH-W07 (A.D. 1488–1950 and A.D. 1475–1660, respectively). This discrepancy may be due to inclusion of older charcoal in the sequence for sample CH-W07, which is a small fragment of detrital charcoal, or to pollution of one of the wooden samples CHW-02 and CH-W01. Because this issue cannot be solved with the present data we can conclude that the exposed sequence is younger than 500, possibly 300 years.

[30] The 1999 earthquake is recorded on various strands of the main and secondary fault zones, which either reach the surface, or deform the uppermost stratigraphic unit a, with or without discrete vertical displacements. A small scarplet with a free face, superimposed on the broader flexure, is still visible at fault zone A (Figure 7d).

[31] Evidence for one and possibly two paleoearthquakes predating 1999 was also found. On the basis of the intense deformation of units h to n and of fault strands that terminate in, or below unit g, a distinct event horizon CH-3 is defined at the top of unit j, or within g. Subtle upward fault terminations at the base or within the lower part of unit d are suggestive of a further paleoearthquake CH-2. This is supported also by the smaller deformation of unit d, with respect to e, f and g.
Given the controversial age results and the uncertain evidence of CH-2, we can only conclude that at least two paleoearthquakes are recognized in this trench and took place during the past 500, possibly 300, years.

2.4. Cinarli Trench

The Cinarli trench (CIN) is located in an area where repeated activity along the Düzce fault is testified by a series of tectonic ridges that have developed on Pleistocene and Holocene deposits of a bajada formed in front of the Almacik range front (Figures 1b and 8a). These ridges strongly control the drainage pattern and alluvial fan deposition, causing damming of streams and development of marsh areas. The trench was opened across a compound scarp along which one of the 1999 fault traces occurred with about 1 m vertical and 0.5 m dextral movements, producing the damming of a creek flowing toward the Düzce plain. A second rupture occurred a few meters to the south, almost parallel to the first but with only a horizontal slip component (~3 m) [Akyüzy et al., 2000, 2002; Pucci et al., 2006]. The deposits exposed in the trench walls can be subdivided into two groups (see caption of Figure 8 for stratigraphy):
those close to the compound normal scarp to the north, which are mainly fluvial channel and scarp-derived sediments, and those related to the stream floodplain to the south (q2, r, s, t) that are mainly silt, clay, and fine sand with important organic content. Deposition was clearly episodic and rootlet beds suggest some hiatuses. Two fault zones deform the entire sequence and coincide with the ruptures produced by the 1999 earthquake (Figures 8b, 8c, and 9). Fault zone A is very clear, shows an important vertical component and consists of a main trace splaying into several strands at about 1.5 m below the surface. The geometry of fault zone B was not documented in detail because instability caused continuous collapse of the walls at its location. [34] To provide a timeframe for the exposed sediments, we collected samples for 14C and 210Pb analyses (Table 1 and Figure 8c). Reworking of wood and charcoal fragments can explain the incongruous ages obtained from layer s (samples CIN1-W500 and CIN1-W310) and the stratigraphic inversion between CIN1-W16 and CIN1-W03. Because of this, in the following interpretation we use only the younger ages. Layers g, h, b and n to s were all deposited during the past ~700 years (A.D. 1280, sample CIN1-W500), unit q and those above it are younger than A.D. 1675, whereas sample CIN1-W03, likely derived from the erosion of the scarp, can be used to infer that the top layers of the gravel sequence north of the main fault zone are deposited circa A.D. 1270 or after. [35] 210Pb analysis was used to better constrain the age of the younger part of the stratigraphy. Sampling was performed in the southern part of the trench, from the surface to the top of the gravel unit t (Figure 9). The 210Pb activity shows a broadly exponential decline with depth. The 210Pb-derived chronology extends from the surface to around 40 cm depth (i.e., units n, p and q2 in Figure 8). Below this depth the modeled chronology is not considered reliable because the activity levels were at a background level, probably reflecting in situ 210Pb production. The mean accumulation rate over the last century has been approximately 0.4 cm/a since unit q2, with an increase in accumulation rates in the late 1990s (~0.6 cm/a). Although these “average” figures should be treated with caution as deposition likely occurred in pulses, these can provide good boundary values for the age of the sequence if no substantial changes of depositional environment occur. [36] The 1999 rupture was still clearly visible along the main fault zone. The portion of the rupture occurring close to the bottom of the compound scarp showed four closely spaced splays that produced a clear vertical offset of the surface, with the southern side down. Conversely, evidence for 1999 surface faulting was less clear at fault zone B, where important shearing up to the uppermost clay units is suggested by the absence of clear contacts in the deformation zone and instability of the trench wall. The 1999 coseismic deformation caused damming of the stream and consequent flooding of the area. This is also verified by the decline in 210Pb activity identified at 2 cm depth (layer n), probably reflecting the input of old material derived erosion of the newly formed fault scarp and intensification of human activities to clear the area. [37] Evidence for two paleoearthquakes predating the 1999 is found in this trench as well (Figure 8c). The penultimate event (CIN-2) is recognized on the basis of the presence of a wedge-shaped unit of scarp-derived colluvium (unit b), interfingering with recent marsh deposits to the south (unit m). The colluvium rests on top of a unit of grey clay (unit q) and a brown-orange silt close to the scarp (unit g). The presence of a paleosoil at the top of unit g suggests that the event horizon of CIN-2 is at the top of g and coincides with the abrupt change in depositional environment passing from a stable ground surface to fresh water inundation similar to the change following the 1999 earthquake. The possibility that CIN-2 occurred at the top of unit q cannot be excluded though. Evidence for a third earthquake back in time (CIN-3) is found at fault zone B. Faulting during this event juxtaposed the yellow-brown gravel (unit t) and black sandy silt (unit s) against the grey clay (unit i). Coseismic damming of the local stream resulted in deposition of drift wood (top of unit s) and a change from an intermittent infill of an abandoned channel to a low-energy overbank and back-swamp depositional environment (unit r and above). [38] By merging results from both 14C and 210Pb analyses, we tried to constrain the timing of paleoearthquakes.
Radiocarbon dating shows that unit q, which probably postdates event CIN-2, is younger than A.D. 1675 (CIN1-W16). Because this age derives from detrital charcoal, it provides a maximum age for the hosting sediments. Therefore, regardless of whether the event horizon is at the base or top of unit q (see above), we assume the age of sample CIN1-W16 to be a maximum age for CIN-2. By correlating layers on both sides of fault zone B, ^{210}Pb suggests that unit q2 and those above it were deposited during the past ~100 years. If this is correct, the penultimate event CIN-2 occurred near the end of the 19th century.

According to sample CIN1-W500 that was collected at the top of the sediments faulted by event CIN-3, this event is younger than A.D. 1280. If we use the rates of sedimentation extrapolated from ^{210}Pb for the upper 40 cm to the CIN-3 event horizon, event CIN-3 may be as young as A.D. 1700. However, given the intermittent type of sedimentation characterizing the site, this latter age estimate without further constraints appears too speculative.

2.5. Aksu Trench

The Aksu (AK) site is located near the western termination of the November 1999 earthquake rupture (Figure 1b). In this area the 1999 surface rupture zone generally runs at the base of the range front and has a predominantly vertical sense of displacement. Measured coseismic offsets were about 0.3 dextral and 0.7–1.7 m vertical [Akyüz et al., 2000, 2002; Pucci et al., 2007a]. At the trench site the 1999 rupture strikes about E–W, cutting through a major alluvial fan and the deposits of a younger fan developed on it. The rupture is composed of a primary north facing scarp and an antithetic fault that is nearly parallel to it, with both showing evidence of cumulative slip (Figure 10). For logistic reasons the trench was dug across the antithetic scarp.

The trench was excavated in a NNE–SSW direction and (Figure 10) and exposed a sequence of massive units that can be subdivided into three groups. The uppermost (units a–c) are soil horizons. The second group includes all the slope wash and colluvial deposits (units d to m). The third group includes the alluvial fan layers (units n and p). A description of all stratigraphic units is given in Figure 10.

We found a single fault zone in the northern part of the trench, coincident with the 1999 antithetic scarp (Figure 10), which separates the alluvial fan from the colluvial-slope wash units. The fault zone is formed by several subvertical splays which become more numerous at the trench bottom.

In order to constrain the age of the exposed sediments, we dated two charcoal samples. The radiocarbon age of a sample collected from the oldest of the colluvial/slope...
wash units (sample AK-W06) indicates that the postalluvial fan deposits are younger than A.D. 890. Sample AK-W29, collected at the top of unit g, indicates that the upper meter of sediments is younger than 300 years.

A broken piece of glass found ~80 cm below the surface within unit e (Figures 10a and 10c) is clearly transported material, and thus it provides a maximum age for the enclosing deposit. On the basis of its thickness, weight, color, type of fracture, inclusions, wall regularity, etc, an age of A.D. 1880–1950 is suggested (A. Delfino, personal communication, 2006).

The 1999 antithetic earthquake ruptures still appear at this site as a 30-cm-high free face. The same amount of offset can be measured at least at the base of soil b (Figure 10a). On the basis of stratigraphic and structural relations, and taking into consideration the fact that this trench was excavated across a secondary antithetic splay of the 1999 main ruptures, which may not necessarily record all the surface faulting earthquakes that have occurred at this location, we found evidence for a minimum of two paleo-earthquakes predating 1999 (Figure 10a).

<table>
<thead>
<tr>
<th>Trench KAY, 40.776095, 31.313858 (WGS84)</th>
<th>Earthquake Correlation</th>
<th>Age Interval</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most recent (KAY-1) DUZ-1</td>
<td>A.D. 1999</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Penultimate (KAY-2) DUZ-2</td>
<td>after A.D. 1475</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>Event KAY-3 DUZ-3</td>
<td>A.D. 1035–1640</td>
<td>medium</td>
<td></td>
</tr>
<tr>
<td>Event KAY-4 DUZ-4</td>
<td>A.D. 685–1220</td>
<td>high</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trench MEN6, 40.774718, 31.248849 (WGS84)</th>
<th>Earthquake Correlation</th>
<th>Age Interval</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most recent (MEN6-1) DUZ-1</td>
<td>A.D. 1999</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Penultimate (MEN6-2) DUZ-2</td>
<td>A.D. 1685–1900</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>Event MEN6-3 DUZ-3</td>
<td>close to or before A.D. 1685–1900</td>
<td>high</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trench MEN5, 40.774660, 31.246047 (WGS84)</th>
<th>Earthquake Correlation</th>
<th>Age Interval</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most recent (MEN5-1) DUZ-1</td>
<td>A.D. 1999</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Penultimate (MEN5-2) DUZ-2</td>
<td>A.D. 1495–1900</td>
<td>medium</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trench MEN1, 40.774660, 31.246047 (WGS84)</th>
<th>Earthquake Correlation</th>
<th>Age Interval</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most recent (MEN1-1) DUZ-1</td>
<td>A.D. 1999</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Penultimate (MEN1-2) DUZ-2</td>
<td>A.D. 1700–1900</td>
<td>medium-high</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trench CH, 40.766222, 31.131424 (WGS84)</th>
<th>Earthquake Correlation</th>
<th>Age Interval</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most recent (CH-1) DUZ-1</td>
<td>A.D. 1999</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Penultimate (CH-2) DUZ-2</td>
<td>A.D. 1488(1680)–1900</td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>Event CH-3 DUZ-3</td>
<td>A.D. 1488(1680)–1900</td>
<td>medium-high</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trench CIN, 40.765541, 31.111827 (WGS84)</th>
<th>Earthquake Correlation</th>
<th>Age Interval</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most recent (CIN-1) DUZ-1</td>
<td>A.D. 1999</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Penultimate (CIN-2) DUZ-2</td>
<td>A.D. 1675–1900</td>
<td>high</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trench Aksu 40.7569, 30.9562 (WGS84)</th>
<th>Earthquake Correlation</th>
<th>Age Interval</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most recent (Aksu-1) DUZ-1</td>
<td>A.D. 1999</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Penultimate (Aksu-2) DUZ-2</td>
<td>after A.D. 1670–1900 and before A.D. 1880–1900</td>
<td>low-medium</td>
<td></td>
</tr>
<tr>
<td>Event Aksu-3 DUZ-4</td>
<td>A.D. 685–1020, possibly A.D. 890–1020</td>
<td>low-medium</td>
<td></td>
</tr>
</tbody>
</table>

*The surface faulting events are those recognized at each trench; the earthquake correlation is that of paleoearthquakes at different locations along the fault naming them DUZ1 to DUZ4, where DUZ1 is the 1999 earthquake; the 2σ dendrococorrected age interval of occurrence of the event is given based both on radiocarbon, 210Pb dating, or archaeological evaluations, the confidence interval is the one that we attributed an arbitrary confidence level based on the constraints existing on the recognition and dating of the event itself.

The 210Pb dating.

Archaeological evaluations.
erosion of the main scarp immediately south of the trench. This strengthens the location of an event horizon at the contact between e and g.

[45] At least one previous paleoevent (Aksu-3) is responsible for the intense shearing of the alluvial fan deposits (unit p, completely missing in the hanging wall of the antithetic fault zone), and of the subsequent deposition of

Figure 11
the colluvial unit i. This latter unit is likely to have been deposited in a coseismic depression formed between the main and antithetic faults. The event horizon of Aksu-3 can be tentatively placed at the top of the alluvial fan deposits (unit p).

[46] With the available ages, we can constrain the age of the penultimate earthquake (Aksu-2) sometimes after the deposition of unit g and before the age of the glass, that is, after A.D. 1670 (AK-W29) and before A.D. 1880–1950 (AK-GLASS). If unit i represents a postevent deposit following the occurrence of Aksu-3 and the age of sample AK-W06 is not substantially older than the hosting unit, this paleoearthquake should have occurred before or close in time to A.D. 890–1020. In fact, the dated sample is a small piece of charcoal enclosed in a scarp-derived deposit and probably come from the erosion of the top of the scarp; thus it may represent the age of the ground surface at the time of the event and not necessarily the age of the colluvium postdating the event.

3. Paleoearthquakes of the Düzce Fault

[47] On the basis of sedimentary and structural relations, we found evidence for 2 to 3 surface faulting paleoearthquakes predating the 1999 event in all the trenches.

[48] Radiocarbon dating was rather problematic due to sample characteristics and their young ages, resulting in possible age ranges of occurrence of paleoearthquakes that are quite broad. In fact, as already mentioned, because most of the dates recovered from the trenches deposits fall within the radiocarbon plateau (see section 2), thereby preventing the determination of a precise age due to the fact that measured radiocarbon ages in the plateau calibrate with almost equal probability to any age within it, we decided not to invest in more radiocarbon dating but to integrate them with 210Pb analyses and archaeological information. On the other hand, according to historical documentation and instrumental seismicity compilations (given that the 1900s represent the beginning of the seismic instrumentation era), we can affirm that no large earthquakes occurred on the Düzce fault since then. Thus we trim all the paleoearthquakes max age to A.D. 1900 (Table 2).

[49] Under the assumption that similar to the 1999 event, paleoearthquakes on the Düzce fault ruptured the whole fault, we correlate events between different trenches on the basis of their age compatibility and the local sequence of the events. This assumption is considered likely because, as discussed in the initial part of this paper, the 40-km-long Düzce fault appears to be controlled by two persistent boundaries: the junction to the Karadere fault to the west, and the Bakacak-Elmalı releasing step over to the east. Merging the radiocarbon results obtained from all the trenches, it is possible to propose a seismic history for the Düzce fault for the past 1000–1200 years.

[50] Table 2 and Figure 11 summarize the age ranges of the paleoearthquakes recognized in each trench and their possible correlation. We named the correlated paleoearthquakes of the Düzce fault prior to 1999 event as DUZ2, DUZ3 etc. Evidence for each of them is derived from different trenches. As already stated, evidence for the 1999 surface ruptures are clear in all the trenches. On the contrary, evidence for the other Düzce events is not always found in every trench. As a first approach, in absence of clear stratigraphic constraints we assume that the same sequence of events is repeated in each trench, however, if no age compatibility exist we attempt a different correlation.

[51] Merging radiocarbon ages from different trenches to constrain the age of DUZ2 yields the occurrence of this event sometime in the past 300 years. Thus DUZ2 occurred between A.D. 1700 and 1900. The 210Pb analysis from Cinarlı trench (Figures 8 and 9) and the age estimate of the piece of glass from Aksu trench (Figures 10a and 10c) suggest that DUZ2 occurred close to A.D. 1900. Interestingly, local people living near trench MEN6, at Fendikli village, reported to us a family story about cracks at the same location of the 1999 ones, produced by an earthquake at the end of the 19th century. Unfortunately, no independent evidence for this has been found yet.

[52] On the basis of radiocarbon dating, the occurrence of DUZ3 is confined during the past 500 years. The youngest age for DUZ3 can be set to A.D. 1640 from trench KAY, and to circa A.D. 1700 from CIN and MEN6. Because the KAY and MEN6 constraints derive from charcoal dating that represents the maximum age for the hosting sediments, we take in consideration the wider range derived from 210Pb analysis in CIN trench. Controversial evidence from radiocarbon dating of CH trench and rates of sedimentation from 210Pb from CIN trench would set the occurrence of DUZ3 to

Figure 11. Correlation of paleoearthquakes along the Düzce fault and inferred age ranges. (top) Report on the radiocarbon age probability distribution (dark grey 1σ, light grey 2σ), as well as the 210Pb and the archaeological estimates (rectangles, lowercase letters indicate the stratigraphic unit for which the 210Pb refer to), used to set the age of an event horizon in each trench. Black arrows indicate whether the sample predates or postdates the event. Dashed gray lines indicate a preferred age for the event given the stratigraphic considerations discussed in the text. Names of the events are indicated and are the same used in the logs (Figures 4–10) and in Table 2. (middle) Correlations among trenches. In most cases events are correlated between trenches on the basis of their age compatibility and on the local sequence of the events. The event horizons from each trench that concurred to the recognition of the correlated events are reported in brackets. Grey horizontal lines represent the best age range for the event on the basis of radiocarbon dating and assuming, on a historical/instrumental basis, that the penultimate earthquake occurred before A.D. 1900. Black rectangles (with exception for the 1999 earthquake that is known) show preferred ages of events obtained by including also the other types of dating. Open rectangle for DUZ4 is indicative of the preferred part of the range obtained on the basis of stratigraphic considerations. Correlated events are renamed as DUZ2 to DUZ4; these represent pre-1999 surface faulting earthquakes that ruptured the same fault extent as in 1999 (see discussion in text). (bottom) Historical earthquakes (stars) known to have occurred in proximity of the Düzce fault.
4. Discussion

4.1. Comparison of Paleoearthuquakes With the Historical Record

[54] On the basis of paleoseismological investigation we found evidence for three surface faulting paleoearthquakes that ruptured the Düzce fault before the November 1999 event. The two most recent ones occurred during the past 500 years (DUZ2 or DUZ3) was not recognized before. Recent earthquakes appear to have occurred more closely spaced than previous ones.

[55] Limited evidence and age constraints exist for DUZ4 that falls in the interval A.D. 685–1020. On the basis of stratigraphic considerations from Aksu trench the age of occurrence of DUZ4 can be possibly limited to the range A.D. 890–1020.

4.2. Comparison With Results of Previous Paleoseismological Studies on the Düzce Fault

[56] Previous paleoseismological investigations [Sugai et al., 2001; Emre et al., 2001, 2003a, 2003b; Hitchcock et al., 2003; Komut, 2005] show evidence for surface faulting paleoearthquakes during the past 2000 years or more. In general, because of the location and type of depositional environment at trench sites, these works present a seismic history that is longer but with less control on the young events than that presented in this work. Figure 12 summarizes results from all previous works on the Düzce fault, together with those from this work. In order to make the data set homogeneous, we dendrochronologically corrected for the three most recent (1999 to DUZ3) can range between 360 and 560 years, whereas the three most recent events, including 1999, appear more closely spaced. Average recurrence for the four older events (DUZ3 to DUZ6) can range between 360 and 560 years, whereas for the three most recent (1999 to DUZ3) can range between 140 and 250 years.

4.3. Implications for Earthquake Recurrence

[57] On the basis of the results from this work, four events since A.D. 685–1020 (possibly A.D. 890–1020) yield an average recurrence for the Düzce fault of 330–430 years (possibly 330–370 years). If we include paleoearthquakes from previous studies, which reach farther back in time 2000 years, we obtain a similar figure for the average recurrence of 320–390 years. However, the three most recent events, including 1999, appear more closely spaced. Average recurrence for the four older events (DUZ3 to DUZ6) can range between 360 and 560 years, whereas for the three most recent (1999 to DUZ3) can range between 140 and 250 years.
We have to note that less frequent earthquakes as we move back in time may merely be the result of a lack of complete sedimentary sequences for paleoseismological interpretation. Should we consider the paleoseismic record to be complete, the sequence depicted in Figure 12 would be suggestive of a slight acceleration and earthquake clustering in time [Wallace, 1987].

It is interesting to note that similar results are also derived from paleoseismological trenching in the Mudurnu valley (southern splay of the NAFZ west of Bolu, see introduction, across the 1967 earthquake ruptures [Palyvos et al., 2007; Ikeda et al., 1991]. There, at least two paleoearthquakes preceding the 1967 event were recognized during the past ~600 years, with the penultimate possibly younger than A.D. 1700 or correlating with one of the 1668 events of the NAFZ. Although with the present data it is not possible to evaluate the coupling in time of events rupturing the Düzcė and Mudurnu sections, these results suggest a similarity in seismic moment release.

A 200- to 300-year average recurrence is obtained through paleoseismological works along other neighboring North Anatolian fault sections, namely, the Izmit section to the west and the Gerede section to the east [Okumura et al., 2002; Klinger et al., 2003; Rockwell and Meghraoui, 2003; Ferry et al., 2004]. The longer recurrence intervals of the Düzcė and Mudurnu sections may be the result of strain accumulation that, along this part of the NAFZ, is partitioned between the Mudurnu and the Düzcė parallel faults strands.

4.4. Insights on the Slip Rate of the Düzcė Fault

As already mentioned, no measurements of coseismic offset from trenches were possible. If we assume that the Düzcė fault is a segment of the NAFZ defined by persistent segment boundaries (see section 1) and that the 1999 coseismic slip is representative for the behavior of this fault, we may use the average recurrence time from our study coupled with the 2.7 m average and 5 m maximum surface coseismic slip, to obtain a first approximation figure of fault slip rate. If we take the most conservative average recurrence time, calculated including all the six events that have occurred during the past ~2 millennia (i.e., 320–390 years), the 2.7 m average and 5 m maximum surface coseismic slip yield a slip rate of ~6.9–8.4 and 12.8–15.6 mm/a, respectively. The short-term slip rate derived from the 1999 maximum slip compares well with that of 11.8–18.2 mm/a obtained for the past 60 ka from cumulative offset geomorphic markers [Pucci et al., 2007b], whereas that derived from the 1999 minimum slip appears substantially smaller. The ~10 mm/a slip rate derived from GPS measurements [Ayhan et al., 1999, 2001] falls in between the two extremes inferred from paleoseismological recurrence. All of this suggests that the Düzcė fault substantially accommodates, along with the Mudurnu section to the south, the ~2 cm/a of motion along the NAFZ in this area.

5. Conclusions

Trenching along the Düzcė fault has provided new data about the earthquake history of this part of the NAFZ, as well as new insights on earthquake recurrence.

Although with uncertainties in dating, we recognized the geological evidence of three surface faulting earth-

Acknowledgments. This work was supported by EU project RELIEF (EVGI-CT-2002-00069) and benefited of the field support and throughout discussion of M. Meghraoui, S. Akyüz, G. Uçarçus, A. Dikbas, D. Satir, and G. Sunal. We also wish to thank local authorities and land owners for letting us excavate trenches. We are indebted to Tom Rockwell, Isabelle Menighetti, and an anonymous reviewer for their reviews that substantially improved the paper.

References

Christie-Blick, N., and K. T. Biddle (1985), Deformation and basin formation along the Aegean strike-slip faults I. Menderes, Turkey, Tectonics, 4, 493–506.

Cundy, A. B., and I. S. Stewart (2004), Dating recent colluvial sequences with 18O and 13C as along an active fault scarp, the Eliki Fault, Gulf of Corinthis, Greece, Tectonophysics, 384, 273–288.

Reilinger, R. E., M. N. Toksoz, S. C. McClusky, and A. A. Barka (2000), 1999 İzmit, Turkey Earthquake was no surprise, GSA Today, 10, 1–6.

Rockwell, T., and M. Meghraoui (2003), Paleoseismology near the Sea of Marmara: Implications on the constancy of segment boundaries and multi-segment ruptures, paper presented at EGS-AGU-EUG Joint Assembly, Nice, France.

