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Abstract

The forced water entry and exit of two-dimensional bodies through a free surface is

computed for various 2D bodies (symmetric wedges, asymmetric wedges, truncated

wedges and boxes). These bodies enter or exit water with constant velocity or

constant acceleration. The calculations are based on the fully non-linear time-

stepping complex-variable method of Vinje and Brevig.

The model was formulated as an initial boundary-value problem with boundary

conditions specified on the boundaries (dynamic and kinematic free-surface bound-

ary conditions) and initial conditions at time zero (initial velocity and position of

the body and free-surface particles). The formulated problem was solved by means

of a boundary-element method using collocation points on the boundary of the do-

main and solutions at each time were calculated using time stepping (Runge-Kutta

and Hamming predictor corrector) methods.

Numerical results for the deformed free-surface profile, the speed of the point at

the intersection of the body and free surface, the pressure along the wetted region

of the bodies and force experienced by the bodies, are given for the entry and exit.

To verify the results, various tests such as convergence checks, self-similarity for

entry (gravity-free solutions) and Froude number effect for constant velocity entry

and exit (half-wedge angles 5 up to 55 degrees) are investigated. The numerical

results are compared with Mackie’s analytical theory for water entry and exit with

constant velocities, and the analytical added mass force computed for water entry

and exit of symmetric wedges and boxes with constant acceleration and velocity

using conformal mapping. Finally, numerical results showing the effect of finite

depth are investigated for entry and exit.
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Chapter 1

Introduction

1.1 Research motivation

The study of hydrodynamic effects due to the interaction between fluid (water)

and offshore structures (ships, very large floating structures (VLFS), etc.) has

attracted many researchers in recent years. It is a well-studied problem and has

various applications in the field of coastal and marine engineering, where most of

the studies are concerned with two-dimensional bodies.

The interaction may be in the form of wave loading upon a fixed structure (seawall,

bulkheads, breakwaters, etc.) or floating offshore structures (VLFS, wind farms,

oil platforms, etc.). The direct impact of bodies (with sharp corners or curved

shapes) in forced motion of constant velocity or constant acceleration has appli-

cations for e.g. free-fall lifeboats. Bodies moving from the free surface or below it

(partially or totally submerged) have applications for various marine operations.

The deadrise angle between the free surface and the body surface (ship hull) is

also a crucial parameter in the forward motion of ship in rough sea conditions.

The impact pressure load increases as the deadrise angle decreases.

Normal ship motions can be predicted by the linear theory of seakeeping. This

splits the problem into two categories: wave loading on a fixed body (diffraction)

and the body executing motion, giving radiation. Motions may happen in three

modes (sway, heave and roll) for 2D analysis or in additional three modes to the

2D case (surge, yaw and pitch) for 3D analysis. Given the usual assumptions

of linearity, the underlying velocity potential for the problems can be computed

1
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by summing the six modes, or three modes depending on the dimension of the

problem, and the diffraction problem. Then the flow around the body moving in

waves can be studied using potential flow theory, see Newman (1977). For the

extreme situations described in this thesis, linear theory does not apply, so, no

such simplifications are possible.

After the impact of the body, the fluid particles near to the impact region are

accelerated and consequently there is some amount of fluid mass moving with

the body as an additional mass (added mass) to the system which opposes the

motion of the body. The added mass theory is available at time t=0 to compute

the forces analytically which can be used to compare with the numerical force

computed using the non-linear theory of Vinje and Brevig (1981a; 1981b).

Important applications of the extreme fluid-body interaction problems considered

here are the impact force upon a moving ship by waves (slamming), sloshing

causing impacts upon LNG- carrier walls, roof baffles and cooling pipes, planing

of V-form fast hulls, free-fall life boat designing, crane operations at sea (there one

needs to avoid snatching in the cables) and landing and taking off of sea planes.

Slamming impact on offshore structures

One of the major goals in ship design is to increase the forward speed of a ship

and maintain the speed while moving in extreme weather conditions (rough seas).

In this situation, the ship experiences a great deal of force at the impact part of

the hull (bow-flare) due to the wave loading upon it. The impact load excited by

the water wave on the ship hull is called slamming. Green-water on deck can also

happen as a consequence of large relative vertical motion (heave) between the ship

and water wave.

It may also happen that while trying to reduce speed in extreme sea conditions

(large waves) the encounter frequency becomes small, and water can then enter as

plunging breaker causing slamming load on the deck (wheelhouse). This may lead

to structural damage to the ship (see for more details, Faltinsen (2004)).

Bottom slamming may occur when the amplitude of the attacking wave on the

bow of a ship is significantly larger than the draft of the ship or very large floating

structures (VLFS). The free surface moves along the bow to the bottom of the

hull and then turns rapidly back to the bow point where local impact is created.
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This sort of local impact force may badly damage the impact region of the hull

structure and the impact loads may propagate throughout entire hull of the ship

causing it to vibrate (whipping, springing) for a certain time period. This event

may lead to severe structural damage by fatigue, see Faltinsen (2004).

During bottom slamming, it can be noticed that the bow of the ship emerges out

of the water (water EXIT phenomena) and then the bow falls down through the

water (water ENTRY phenomena). As a result of the water entry and exit, it is

possible that air may be entrapped between the bottom part of the hull and the

free surface. This could lead to another direction of study with an air cavity (air-

cushion model) causing effects upon the pressure distribution along the wetted

part of the hull (for more details, see Faltinsen (2004)).

(a) Bottom slamming (b) Slamming loads upon VLFS

(c) Waves loading upon a structure (d) Green-water on deck slamming

Figure 1.1: Water waves loading upon ships and coastal structures: (http:
//www.scribd.com/doc/24727159/Storm-Op-Zee?autodown=pdf)

http://www.scribd.com/doc/24727159/Storm-Op-Zee?autodown=pdf
http://www.scribd.com/doc/24727159/Storm-Op-Zee?autodown=pdf
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Floating structures in finite water depth

Numerical calculations of hydrodynamic coefficients and wave exciting forces on a

VLFS for transporting crude oil show very significant shallow water effects (finite

water depth), especially upon added mass forces, see Oliver (2002) and Korobkin

(1999). The bottom of the body in the finite-depth case becomes more significant

than for ordinary floating structures since the structural length to vertical scale

(depth) is less than that for the infinite depth. Thus the proximity change of the

bottom should be considered in estimating hydrodynamic loads, including those

of slamming.

By considering all the above physical phenomena, it is therefore necessary to

investigate the effects of finite depth on the hydrodynamic loads during the entry

and exit phases analytically, numerically and experimentally to understand and

develop a well-formulated mathematical model.

1.2 Literature review

Various theoretical, numerical and experimental approaches have been used to

study interactions of fluid and structure (and air) by means of suitable assump-

tions about the fluid and the structure. Water entry and exit problems have been

studied by mathematical modelling since the research on water entry of 2D bodies

was begun by von Karman (1929), Wagner (1932) and many other researchers (for

a complete review, see Korobkin and Pukhnachov (1988)). Initially, the research

started with the intention of investigating the effects caused by landing seaplanes in

sea water based on simplified analytical theories of expanding thin-plate approxi-

mations. Apart from seaplane landing, one of the most important and well-studied

problems is slamming, causing local and global damage on ships, which was stud-

ied by many researchers, especially Greenhow and Li (1987), Faltinsen (2004) and

Greco et al. (2009).

Earlier researchers mostly focused on the impact of the early stage of water entry

which causes high impact load pressure distribution on the body. Following the

initial impact, it is possible that air may be entrapped between the free-surface

piercing bodies and the fluid. This affects the pressure distribution due to the

interaction between air, fluid and structure, which depends on the shape of the
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body (sharp corners and edges: symmetric wedges, asymmetric wedges or boxes;

flat-bottom bodies (small dead-rise angles): elliptic or parabolic bodies) and the

speed of entry and exit (for the air-cushioning effect, see Verhagen (1967); Lewison

and Maclean (1968) ). The another possibility is that high-speed entry causes

the fluid particles in motion around the body to be accelerated by the entry and

consequently splash-up the fluid which leads to a very thin fast-moving jets. These

may break up into spray under the action of surface tension (Greenhow and Lin

(1983)). The splash jet break-up into spray causes complicated physical problems

in the mathematical and numerical solutions because of the spray moving as a free

projectiles and falling into the underlying free surface (see also, Greenhow (1987)).

The solutions to the formulated problems are based on potential flow theory and

a complex variable method (Greenhow (1993; 1983); Hughes (1973); John (1953))

with the usual modelling assumptions (inviscid, incompressible and irrotational

flow). In practice, it may be possible to extend the modelling to include that

each structure is an elastic body with complex shape (see Korobkin and Malenica

(2005); Xu et al. (1998); Zhao et al. (1997)), the fluid is compressible (see Ko-

robkin (1992)), the flow is rotational, the effect of gravity is considerable, and the

entrapped air cavity. In such cases, despite the present high level of development

of Computational Fluid Dynamics (CFD) methods, solutions based on analytical

theories or numerical methods are very difficult or impossible because of the com-

plex phenomena (see, Tassin et al. (2013)). Therefore, the study of the problem

should use experimental techniques, but there may then be additional difficulties

(for more details, see Tassin et al. (2013; 2010)).

In the water entry case, a considerable amount of progress has been made using

self-similarity solutions (for more details, see Dobrovol’skaya (1966); Garabedian

(1953)) which requires zero gravity of entry of an infinite body. This implies

high speed in experimental results (see Greenhow (1987; 1983); Yettou et al.

(2006)). Based on the Wagner theory and utilised the self-similarity solutions,

many theories exist such as non-linear slamming theory (Dobrovolskaya (1969)),

slamming theory with air trapped (see for more information Lewison and Maclean

(1968), Bagnold (1939) and Verhagen (1967)), hydroelastic effect in slamming by

(Kavaalsvold (1994); Kavaalsvold and Faltinsen (1995)) and statistical approach to

slamming by Tick (1958) and Ochi (1964). These have been developed to improve

the existing theories and present modified theories to study water entry problems.
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An explicit analytical solution to water entry and exit of slender bodies based

on linearised boundary conditions was given by Mackie (1962, 1965 and 1969).

For wedges, numerical solutions of Dobrovol’skya (1969) and Hughes (1972; 1973)

utilised self-similarity based on fully nonlinear and exact boundary conditions.

Dobrovol’skya (1966) presented a numerical method based on nonlinear singular

integral equations and used the theory to compute results for deadrise angles larger

than 30o. Thereafter, Zhao and Faltinsen (1993) presented results for dead-rise

angles between 4o and 81o utilising the method of Dobrovol’skya (1969).

The very thin splash jet flow causes numerical issues for the computation of pres-

sure which may lead to the free-surface instability (Greenhow et al. (1983)). To

avoid the numerical issues and compute the pressure, Zhao and Faltinsen (1993)

used nonlinear boundary element method (NBEM) and truncated the jet (cut-off)

when a certain critical angle was reached, introducing a new panel at the spray

root that was perpendicular to the body surface (for similar approaches, see Ki-

hara (2004); Battistin and Iafran (2004); Sun and Faltinsen (2007); Tsai and Yue

(1993) and for a horizontally moving surface-piercing plate; Needham, Billing-

ham, and King (2007)). The pressure distribution was computed by Zhao et al.

(1997) using the nonlinear Bernoulli equation and the exact kinematic boundary

condition was satisfied in the computation of the velocity potential based on a

generalised Wagner model.

Korobkin (2004) developed the Modified Logvinovich Model (MLM) to compute

the pressure on the body using the nonlinear Bernoulli equation and the velocity

potential on the body by means of a Taylor expansion of the velocity potential

of the original Wagner model. The computational cost of the MLM model is

lower than that of the generalised Wagner model (more details, see Tassin et al.

(2010)). The MLM was also used to study asymmetric body shapes by Korobkin

and Malenica (2005), a 3D analytical model of water impact by Korobkin (2005)

and further development by Tassin et al. (2012).

In the recent paper by Tassin et al. (2013), a 2D analytical method and numerical

modelling of the partial water entry and subsequent partial exit of a body was

considered, with the limitation of relatively small penetration depths compared

with the wetted width. They assumed that there is no air cavity behind the body

and the upper part of the body remains dry.

Compared to the study of water entry related problems, very little work has been

published for water exit problems (see Greenhow (1990); Tassin et al. (2013)).
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Greenhow (1990) pointed out some difficulties; for high enough constant speed

of wedge entry (see Greenhow (1987)), the gravity-free solution agreed well with

numerical calculations, but for exit Greenhow conjectured that gravity is essential

for the fluid particles to be in contact with the body at all points and to avoid

the formation of triangular deformation in the free-surface (see Greenhow (1990).

It is certainly far from clear that the infinite Froude number (g=0) solution is

unique or that this solution is approached as the Froude number increases from a

finite value. In any case, self-similarity solution is not possible for exit because of

the characteristic length scale introduced by the initial submerged depth. Other

difficulties to do with stability of the solution were pointed out by Howison et al.

(1991). Greenhow (1990) also presented some water exit calculations based on the

fully non-linear time-stepping method of Vinje and Brevig (1981b) and compared

his slender body calculations with Mackie’s (1965) analytical time-dependent wave

maker theory by linearising the free-surface elevation and including gravity.

This thesis presents some 2D calculations for water entry with constant speed or

constant acceleration based on the formulation of the theory of Vinje and Bre-

vig (1981a; 1981b) and computations for 2D water exit with constant speed or

constant acceleration by modifying the model used by Greenhow to study water

exit of symmetric (wedges, truncated wedges and boxes) and asymmetric bodies

(asymmetric wedges). More details on the derivation of the equations and model

can be found in Barringer (1996) and Moyo (1996).

1.3 Thesis structure

A very useful and relatively simple non-linear time stepping theory was developed

by Vinje and Brevig (1981a; 1981b) to study non-linear ship motion and the

effect of breaking waves. Then the theory was modified by Greenhow and other

researchers (see Barringer (1996); Moyo (1996)) to study water entry problems,

where they made some progress which agreed with the experimental results of

Greenhow and Lin (1983). The aim of this study is to extend the existing theory

of Vinje and Brevig to study water exit problems and carry out extensive numerical

computations on forced water entry and exit with constant velocities and constant

accelerations. However, in this thesis, more attention is given to the computation

of water exit problems which is not yet well-studied numerically or experimentally

(see Greenhow (1990); Tassin et al. (2013)).



Chapter 1. Introduction 8

In chapter 2, the detailed explanation is given of the formulation of the two-

dimensional initial boundary-value problem (IBVP) using a mixed Eulerian and

Lagrangian formulation (see Vinje and Brevig (1981a; 1981b), Barringer (1996)

and Greenhow (1193)) . The model assumptions, boundary conditions and ini-

tial conditions are clearly explained. The solution method for the IBVP using a

boundary-element method (BEM) to give integral equation is precisely specified.

In chapter 3, the numerical formulation of the IBVP which is used to implement the

equations in Matlab is explained. The time-stepping algorithms (Runge-Kutta and

Hamming predictor-corrector methods) commonly used in the numerical methods

of ordinary differential equations (ODE) are also given for the Matlab implemen-

tation.

In chapter 4, non-dimensional parameters and computed dimensionless numerical

results using the numerical formulation of the IBVP are presented for water entry

of symmetric wedges, asymmetric wedges, truncated wedges and boxes with con-

stant velocities and constants accelerations. In particular, the added mass effects,

finite depth effect and velocity of the intersection points are investigated numeri-

cally. Moreover, the numerical results computed using the IBVP is compared with

the analytical theory developed by Mackie (1965).

The chapter 5 for water exit is very similar to the previous chapter on water entry

with some additional calculations on the combined body of both wedge and box-

shaped bodies but with the exception of some test cases such as self-similarity

solutions (this does not apply for exit, see Greenhow (1990)).

The conclusions based on the numerical results computed for the forced water entry

and exit of the 2D bodies and the future directions on the study are outlined in

chapter 6.

In Appendix A, a useful graphical user interface (GUI), which was developed in

Matlab to study water entry or exit, is presented. Implementation of the GUI

showing one example for entry of a symmetric wedge is presented.



Chapter 2

Mathematical Theory

In general, most of the real world problems are formulated as mathematical equa-

tions by means of physical theories. To simplify the formulated equations, appro-

priate assumptions are made on the real problems. Then the modelled problems

are solved by suitable mathematical methods. In this chapter, we explain a com-

plete formulation of mathematical equations to study water entry and exit prob-

lems based on T. Vinje and P. Brevig’s research on numerical study of breaking

waves on finite water depths. Section (2.1) gives the basic concepts of mixed Euler

and Lagrangian representation of fluid particles in the two-dimensional plane. The

formulation of initial boundary value problem, model assumptions, and boundary

and initial conditions are described in section (2.2). The solution method for the

problem based on complex potential theory is explained in section (2.3).

2.1 Fluid particle motion

We can describe the motion of the system of fluid particles and the moving body

in a two-dimensional complex Cartesian coordinate system. The particles on the

body surface and the free surface can be considered by a mixed Eulerian and

Lagrangian description. The Euler description is given in section (2.1.2), whereas

the Lagrangian description is explained in section (2.1.1).

9
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Figure 2.1: Definition sketch for motion of a particle A in complex plane

2.1.1 Lagrangian description

We now consider a particle with complex material position vector −→z 0 in the com-

plex plane at a time t = 0 as shown in Fig. (2.1). The material position is used to

identify the particular particle A in the domain Ω(t) in which we are interested in

solving the problem. The particle has moved to a spatial position vector −→z (t) at

time t. Velocity of the particle
−→
V z is equal to time rate of change of the spatial

position vector −→z (t) which is a function of time t and material position z0. It can

be expressed as −→z (t) = −→z (−→z 0, t). We can now define the velocity by holding the

material coordinate z0 fixed as

−→
V z =

(
d−→z
dt

)
z0

≡ D−→z
Dt

, (2.1)

where D−→z
Dt

is called as material derivative of the particle A. This approach describes

the particle motion as if one is moving with the fluid particle. It is called the

Lagrangian description of the particle.
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2.1.2 Eulerian description

In general, a fluid property (temperature, density, pressure, etc.) Q(z0, t) for the

material particle can be described as discussed in the previous section. However, it

can also be measured by holding by the spatial coordinate fixed asQ(z, t). The rate

of change at fixed z is given by
(
dQ(−→z (t),t)

dt

)
z
. This representation is called the Euler

description of the fluid. The relationship between two descriptions can be given

by Q = Q(−→z (t), t) = Q(−→z (−→z 0, t), t) where the vector −→z = x(−→z 0, t)̂i + y(−→z 0, t)ĵ

and complex position z = x(−→z 0, t) + iy(−→z 0, t). The time rate of change of the

fluid property for the material can be defined as(
dQ

dt

)
z0

=

(
∂Q

∂x

)(
dx

dt

)
z0

+

(
∂Q

∂y

)(
dy

dt

)
z0

+
∂Q

∂t
, (2.2)(

dQ

dt

)
z0

=

(
dQ

dt

)
z

+
−→
V z.∇Q, (2.3)

which we can write in the form

DQ

Dt
=
∂Q

∂t
+
−→
V z.∇Q. (2.4)

The Lagrangian derivative of any property of a fluid can be related to its Eulerian

derivative by the material derivative

D
()
Dt

=
∂
()
∂t

+
−→
V z.∇

()
. (2.5)

2.2 Initial-boundary-value problem

The initial boundary value problem (IBVP) is formulated to study the motion

executed by an object moving into and out of a fluid. We can derive the math-

ematical governing equation for the problem based on a system of fluid and the

object in a time-dependent domain Ω(t) as shown in Fig. (2.2). The kinematic

and dynamic boundary conditions for the flow are specified. Moreover, the initial

conditions are given to solve the IBVP.
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Figure 2.2: Definition sketch for the domain representation of the fluid and
its boundary

2.2.1 Governing equation

Motion of the particles on the boundary of the domain as shown in Fig. (2.1)

is described by a mixed Lagrangian and Eulerian description as discussed in the

previous sections (2.1.1) and (2.1.2). The domain of the problem is varying as the

body and free surface moves. It consists of fluid and interacting fluid and body

boundaries. The particle position is represented with respect to its origin in the

still water level (SWL). The Euler’s field representation of velocity of the particles

is given by the velocity field
−→
V z = u(rz, t)̂i + v(rz, t)ĵ where u is the velocity

component in x direction and v is the velocity component in y direction and î and

ĵ are unit vectors along the directions x and y respectively.

The fluid is assumed to be homogeneous, incompressible and irrotational. The

density ρw of the fluid is constant since we are considering the fluid to be incom-

pressible. This incompressible condition states that the mass for the fluid within

any volume will remain constant. This principle of conservation of mass is then

expressed for incompressible fluid flow by the following equation

∇.
−→
V z = 0. (2.6)
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This states that the divergence of the velocity field
−→
V z = 0 for the incompressible

fluid flow at every point must be zero.

We further assume that the fluid flowing around the body is irrotational. The flow

is then a flow in which the vorticity is equal to zero at every point of the fluid

domain. This can be written as

∇×
−→
V z = 0. (2.7)

This assumption requires that the fluid is inviscid so there are no shear forces

on the body. It follows that the flow velocity field for the potential flow can be

expressed in terms of a scalar velocity potential function φ(z, t). It is the gradient

of the scalar potential function φ such that V = ∇φ(z, t). We can now obtain the

relation as

∇×∇φ = 0. (2.8)

The governing equation for the flow around the object can be described by the

Laplace equation in two independent variables in the simply connected domain

Ω(t) at a instant time t

∇2φ(z, t) = 0, z = x+ iy. (2.9)

This equation is extensively applied to solve many potential flow problems. The

solutions to the equation are harmonic functions. The sum of the particular so-

lutions to the linear second-order partial differential equation is also a solution

(superposition). However, as we shall see, the boundary conditions are non-linear

so we can not superpose solutions for our problems. We can compute the 2D

stream function ψ, from the scalar velocity potential φ, and vice versa using the

Cauchy-Riemann equations

u =
∂φ

∂x
=
∂ψ

∂y
,

v =
∂φ

∂y
= −∂ψ

∂x
. (2.10)

These equations show that equipotential lines represented by the velocity potential

and the stream lines given by the stream function are perpendicular at each point.



Chapter 2. Mathematical Theory 14

2.2.2 Boundary conditions

The boundary of the domain Ω(t) is represented by a simply-connected closed

contour C(t) as shown in Fig. (2.3). The boundary C(t) and domain Ω(t) are

assumed to be dependent on time representing the deformation of the free surface

and displacement of the body. The C(t) consists of three kinds of boundaries.

The first part represents the boundary Cd(t) where the mixed boundary conditions

(dynamic and kinematic boundary conditions) are specified, while the other parts

Cn(t) and Cp(t) describe the boundaries where Neuman boundary conditions (body

and seabed boundary conditions) and periodic boundary conditions (see, Chapter

3 for the mathematical formulation to the periodic boundary conditions) are given

respectively.

Cd:Cф

      di
∂ф/ ∂n=0

∂ф/ ∂n=v.n

Cp:Cψф

Cn:Cψ

Cn:CψCn:Cψ Cd:Cф

C=CnUCdUCp

Cp:Cψф
∆ф=0

Figure 2.3: Geometrical representation of the contour

2.2.2.1 Free-surface boundary conditions

We can impose the kinematics and dynamic boundary conditions on the free sur-

face Fs(t) which is a part of Cd(t), see Newman (1977). The kinematic free-surface

boundary condition states that the fluid particles on the free surface will remain

on the free surface. The free-surface elevation can be denoted by y = η(x, t) at a

instant time t. It can be written in terms of material derivative as

D(y − η(x, t))

Dt
= 0. (2.11)
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The dynamic boundary condition on the free surface Fs(t) can be now obtained

from the Bernoulli’s equation by assuming that the pressure varies continuously

across the free surface, ie. there is no surface tension:

∂φ(z, t)

∂t
+

1

2
ωω + gy +

Pa
ρw

= 0, ∀z ∈ Fs(t), (2.12)

where Pa is the atmospheric pressure, ρw is the density of the fluid, ω = u − iv
is the complex velocity and g is the gravitational acceleration. We can further

assume that the pressure along the free surface is atmospheric which can be taken

to be zero. We can rewrite the boundary condition for the representation in the

Eulerian description as

∂φ(z, t)

∂t
+

1

2
ωω + gy = 0, z ∈ Fs(t). (2.13)

2.2.2.2 Neumann boundary conditions

We assume that the fluid particles along the wetted part Ws(t) of the boundary

can not cross into the body or move away from it, leaving a void. Thus the normal

velocity of the flow around the submerged body is equal to the normal velocity of

the body in contact with the fluid, mathematically described as

∂φ(z, t)

∂n
= φn = Vz.n, ∀z ∈ Ws(t). (2.14)

2.2.2.3 Initial conditions

The free surface Fs(t) is a part of the contour Cd(t), whereas the wetted surface

Ws(t), and the bottom surface Bs(t) are a part of the Cn(t). The position vector,

velocity and stream function are given along Ws(t), while the initial position and

velocity potential of the free surface particles are assumed to be known along

Fs(t) at a time t=0. The vertical surface Vs(t) is a part of the Cp where the

stream function and the velocity potential are unknown, but these are computed

using the periodic-boundary condition (see Vinje and Brevig (1981a; 1981b)).
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2.3 Solution to the IBVP

The formulated initial boundary-value problem (IBVP) is a Laplace equation in

two variables. The velocity potential φ(z, t) and the stream function ψ(z, t) are

solutions to the governing equation. The complex coordinate point z is defined as

z = x+iy and the region R(t) is defined as a region comprising of both points on the

boundary C(t) and the domain Ω(t) at an instant time t. The complex potential

theory is applicable to solve the problem. The analytical complex potential β(z, t)

can be defined as

β(z, t) = φ(z, t) + iψ(z, t), ∀z ∈ R(t). (2.15)

We can compute the solutions for the problem by time-stepping forward the kine-

matic and dynamic boundary condition. From the kinematic free surface boundary

condition, we have

Dz

Dt
= u+ iv ≡ ω. (2.16)

From the dynamic free surface boundary condition, we have

Dφ

Dt
− 1

2
ωω + gy +

Pa
ρw

= 0. (2.17)

The velocity can be computed by differentiating the complex potential with respect

to z. It gives,

ω(z, t) =
dβ(z, t)

dz
= u(z, t)− iv(z, t). (2.18)

Cauchy’s integral theorem is valid for the analytic function β(z, t), so that for any

z0 outside of any closed contour C(t) lying within the fluid region R(t) we have∮
C(t)

β(z, t)

z − z0

dz = 0. (2.19)

Here the closed contour C(t) consists of the free surface in which the velocity

potential φ is assumed to be zero initially which is denoted as the Cφ where φ

is known, the wetted part of the body in which the stream function ψ can be

computed using Eq. (2.12) which is denoted as Cψ where ψ is known and the
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vertical boundaries in which velocity potential φ and stream function ψ are not

known which is denoted as Cψφ where both ψ and φ are unknown, see Fig. (2.3).

2.3.1 Solution technique

We can now explain the techniques to compute the complex potential and its time

derivative by formulating Eq. (2.19) as Fredholm’s integral equation of second

kind which, in general, has a solution.

Fig. (2.4) shows a part of the contour C consisting of two elements between zk and

zk−1, where αk is an angle between the lines connecting the point zk from both

sides of the points zk+1 and zk−1. Mathematically, but not numerically, this is π

for a smooth part of the surface.

Figure 2.4: Geometrical representation of the angle αk for the numerical
computation

The closed contour C includes the free surface (Fs), the wetted surface of the body

(Ws), the bottom surface (Bs) and the vertical surfaces (Vs) of the domain. We

assume that the point z0 is initially outside the contour approaching the point zk

on the contour.

We can now divide the contour integral of Eq. (2.19) into two parts. The first part

integrates over the indented contour Ck of the contour Cε with radius ε centered

on the zk from contour C. The second part integrates along the contour Cε. By

letting z0 to approach from the outside of the contour to the point zk, the Eq.

(2.19) can be written as∮
C

β

z − z0

dz =

∮
Ck+Cε

β

z − zk
dz =

∫
Ck

β

z − zk
dz +

∫
Cε

β

z − zk
dz = 0. (2.20)

The complex representation of points on the semicircle can be given by

z = zk + εeiα and dz = εieiαdα = (z − zk)idα, (2.21)
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where we denote the angle αk as α. Using Laurent expansion of the complex

potential about zk and the residue theorem, we get

β(z) = β(zk) +
dβ(zk)

dz
eiαε+O(ε2) + ...

∫
Cε

β

z − zk
dz =

∮ αk

0

β(zk) + dβ(zk)
dz

eiαε+O(ε2) + ...

z − zk
(z − zk)idα

= iβ(zk)αk +
dβ(zk)

dz
iε(eiαk − 1) +O(ε2) + ...

Finally, we take the limit of the integral as ε tends to zero

lim
ε→0

∫
Cε

β

z − zk
dz = iαkβ(zk). (2.22)

Using Eq. (2.20) and (2.22), we get

−i
∮
C

β(z)

z − zk
dz = αkβ(zk)− i

∫
Ck

β(z)

z − zk
eiθds, (2.23)

where ds is a line element of the contour and θ is denoted as α. Using Eq. (2.19)

and (2.21), we can write the line element as

ds = εidα. (2.24)

We note that real or imaginary part of Eq. (2.23) can be equated to zero. However,

this is chosen according to the point lying on the contour where the Cφ or Cψ

is known and the existence of the solution to the integral equation formed by

equating the real or imaginary part of Eq. (2.23) to zero, see Vinje and Brevig

(1981a; 1981b).

To compute the complex potential, we need to know φ and ψ which are known

along Cφ and Cψ respectively. By considering that zk is on Cψ where φ is unknown
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and equating the real part of Eq. (2.23) to be zero, we get

Re

{
− i
∮
C

β(z)

z − zk
dz

}
= αkφ(zk)−Re

{
i

∫
Ck

(φ(s) + iψ(s))
eiθ

z − zk
ds

}
= αkφ(zk)−Re

{∫
Ck

(φ(s) + iψ(s))
ieiθ

z − zk
ds

}
= αkφ(zk)−

∫
Ck

Re

{
φ(s)

ieiθ

z − zk
− iψ(s)

ieiθ

z − zk

}
ds

= αkφ(zk) +

∫
Ck

φ(s)Im

{
eiθ

z − zk

}
ds+

∫
Ck

ψ(s)Re

{
eiθ

z − zk

}
ds

= 0,

which we can write in the form

−Re
{
i

∮
C

β(z)

z − zk
dz

}
= αkφ(zk) + h(zk) +

∫
Ck

φ(s)g(zk, s)ds = 0. (2.25)

Similarly, by assuming that zk is on Cφ where ψ is unknown and equating the

imaginary part of Eq. (2.23) to be zero, we get

Im

{
− i
∮
C

β(z)

z − zk
dz

}
= αkψ(zk) + Im

{
− i
∫
Ck

β(zk)

z − zk
eiθds

}
= αkψ(zk) + Im

{∫
Ck

(φ(s) + iψ(s))

z − zk
− ieiθds

}
= αkψ(zk) + Im

{∫
Ck

φ(s)

z − zk
− ieiθds+

∫
Ck

ψ(s)

z − zk
eiθds

}
= αkψ(zk)−

∫
Ck

φ(s)Re

{
eiθ

z − zk

}
ds+

∫
Ck

ψ(s)Im

{
eiθ

z − zk

}
ds

= 0,

which can be written as

Re

{∮
C

β(z)

z − zk
dz

}
= −αkψ(zk) + j(zk)−

∫
Ck

ψ(s)l(zk, s)ds = 0, (2.26)

where the functions g h, j and l are known. The Eq. (2.25) and (2.26) are

inhomogeneous Fredholm integral equations of the second kind, see Polyanin and

Manzhirov (1998). We can also take the imaginary parts of Eq. (2.23) for the

points on Cψ and real part of the Eq. (2.23) for the points on Cφ, but it gives

inhomogeneous Fredholm integral equations of first kind which do not have unique

solutions (see Vinje and Brevig (1981; 1981)). With zk on a smooth part of the
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contour C and C0 is the deleted contour of C avoiding the singular point z0, we

have

πψ(z0) +Re

{∫
C0

φ+ iψ

z − z0

dz

}
= 0, ∀ zk ∈ Cφ, (2.27)

πφ(z0) +Re

{
i

∫
C0

φ+ iψ

z − z0

dz

}
= 0, ∀ zk ∈ Cψ. (2.28)

Eq. (2.27) and (2.28) are simply Eq. (2.25) and Eq. (2.26), which are used

to compute the complex potential. Similarly, we can state, as we did for the

computation of the complex potential, that the time derivative of the complex

potential is also an analytical function of z in the domain. We can derive the

following equations ∮
C

∂φ
∂t

+ i∂ψ
∂t

z − z0

dz = 0, ∀ z ∈ Ω, (2.29)

π
∂ψ(z0)

∂t
+Re

{∫
C0

∂φ
∂t

+ i∂ψ
∂t

z − z0

dz

}
= 0, ∀ zk ∈ Cφ, (2.30)

π
∂φ(z0)

∂t
+Re

{
i

∫
C0

∂φ
∂t

+ i∂ψ
∂t

z − z0

dz

}
= 0, ∀ zk ∈ Cψ. (2.31)

These equations are of the same form as Eq. (2.27) and (2.28) and hence lead to

identical equations to Eq. (2.27) and (2.28) in the time derivative.

We now know the complex potential and its time derivative on the closed contour

C. However, it can also be noted that we can compute the values for β(z) and
∂β(z)
∂t

inside the domain using the Cauchy’s integral formula. The derivation can

be given by

β(z0, t) =
1

2πi

∮
C

β(z, t)

z − z0

dz, (2.32)

and differentiating with respect to t, we get

∂β(z0, t)

∂t
=

1

2πi

∮
C

∂β(z,t)
∂t

z − z0

dz. (2.33)
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Higher-order derivatives can also be computed by extending the Cauchy’s integral

formula as

f (n)(z0) =
n!

2πi

∮
C

f(z)

(z − z0)(n+1)
. (2.34)

This approach was taken by Cooker (1990) and allows larger time steps to be

taken. However, this would be very complicated to implement in the present case

when the number of body, and sometimes free-surface, points changes throughout

time.

The complex velocity ω can be computed by differentiating the complex potential

with respect to z as

ω(z0, t) =
1

2πi

∮
C

β(z, t)

(z − z0)2
dz, (2.35)

∂ω(z0, t)

∂t
=

1

2πi

∮
C

∂β(z,t)
∂t

(z − z0)2
dz, (2.36)

dω(z0, t)

dz
=

1

πi

∮
C

β(z, t)

(z − z0)3
dz. (2.37)

The pressure at the free surface is assumed to be zero and the pressure inside the

contour can be found by a rearrangement of Bernoulli’s equation as

−P (x, y, t)

ρ
=
∂φ

∂t
+

1

2
ωω + gy.

We can define the acceleration from the kinematic boundary condition as

Dω(z, t)

Dt
= ax(rz, t) + iax(z, t), ∀z ∈ C(t). (2.38)

The acceleration inside the contour can be calculated using

ax(x, y, t) + iay(x, y, t) =
∂ω

∂t
+ ω.

dω

dt
. (2.39)
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Numerical Formulation

In the previous chapter, we defined the equations to compute values of the complex

potential, velocity, pressure and acceleration mathematically. In this chapter, we

explain a numerical formulation to compute the values based on the derivations

given by Vinje and Brevig (1981a; 1982b), and Barringer (1996). Section (3.1)

describes the collocation method using points on the boundary of the domain.

The numerical formulation to the compute complex potential, stream function,

pressure, force and complex velocity are given in sections (3.2), (3.3), (3.4), (3.5)

and (3.6), respectively. Finally, a mathematical formulation of the periodic bound-

ary condition, numerical algorithms for time-stepping and implementation of the

equations are explained in sections (3.7), (3.8) and (3.9) respectively.

3.1 Collocation method

The collocation method is used to solve Eq. (2.27), (2.28), (2.29) and (2.30). The

nodal points are generated by dividing the contour C into finite number of elements

as shown in Fig. (3.1). To generate points on the free surface and the body surface,

we choose appropriate point-spacing ratios by considering the fact that the points

close to the body in motion are affected much more than points far from the body.

We can also note that the point-spacing ratios and the time-step size play a very

important role in the computation of the solution and need to be chosen carefully

to compute the numerical results without breaking the computation and to achieve

long runs of the codes.

22
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      di

zN2 zN1

z1

zN

zN3

zN4 zN5

Figure 3.1: Geometrical representation of the collocation points along the
contour C

3.2 Computation of complex potential

We know either the real or imaginary part of the complex potential β(z) and its

time derivative ∂β
∂t

on every nodal point of the contour C. By assuming that the

complex potential and its time derivative vary linearly in the complex variable z,

we can write the complex potential for all z on the contour C as follows

β(z) =


z − zj
zj−1 − zj

βj−1 +
z − zj−1

zj − zj−1

βj ∀z ∈ [zj−1, zj],

z − zj
zj+1 − zj

βj+1 +
z − zj+1

zj − zj+1

βj ∀z ∈ [zj, zj+1],

(3.1)

where zj−1, zj and zj+1 are three consecutive nodes on the contour, and the com-

plex potential βj−1, βj and βj+1 are known values on the points zj−1, zj and zj+1

respectively. Hence, the complex potential and its time derivative can be expressed

as a linear combination of the complex potential at all nodes along the contour as

follows

β(z) =
∑
j

∧jβj, (3.2)

∂β(z)

∂t
=
∑
j

∧j
∂βj
∂t

, (3.3)
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where ∧j(z) is the influence function at node zj which can be computed by using

∧j(z) =



z − zj+1

zj − zj+1

∀z ∈ [zj, zj+1],

z − zj−1

zj − zj−1

∀z ∈ [zj−1, zj],

0 otherwise.

(3.4)

Now, the contour integral can be numerically approximated by

∮
C

β(z)

z − zk
dz =

∮
C

∑
j

∧jβj

z − zk
dz =

∑
j

(I1
k,j + I2

k,j)βj, (3.5)

where

I1
k,j =

zj∫
zj−1

z − zj−1

zj − zj−1

.
1

z − zk
dz =

1

zj − zj−1

[
z + zk ln(z − zk)− zj−1 ln(z − zk)

]zj
zj−1

=
zk − zj−1

zj − zj−1

ln

[
zj−1 − zk
zj−1 − zk

]
+ 1, (3.6)

I2
k,j =

zj+1∫
zj

z − zj+1

zj − zj+1

.
1

z − zk
dz =

1

zj − zj+1

[
z + zk ln(z − zk)− zj+1 ln(z − zk)

]zj+1

zj

=
zk − zj+1

zj − zj+1

ln

[
zj+1 − zk
zj − zk

]
− 1. (3.7)

The function Γk,j denotes the sum of the terms I1
k,j and I2

k,j as

Γk,j = I1
k,j + I2

k,j =
zk − zj−1

zj − zj−1

ln

[
zj − zk
zj−1 − zk

]
+
zk − zj+1

zj − zj+1

ln

[
zj+1 − zk
zj − zk

]
. (3.8)
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However, we note that the lim
z→0

(
z ln

1

z

)
goes to zero. To avoid the singularity, the

function can be explicitly expressed as

Γk,j =



zj−1 − zj+1

zj − zj+1

ln
zj+1 − zj−1

zj − zj−1

for k = j − 1,

zj+1 − zj−1

zj − zj−1

ln
zj − zj+1

zj−1 − zj+1

for k = j + 1,

ln
zj+1 − zj
zj−1 − zj

for k = j.

(3.9)

Finally, we note that the closed contour begins with the node z1 and ends with

the node zN . We need to choose the values of zj−1 = z0 at j=1 and zj+1 = zN+1 at

j=N+1 when we evaluate the function Γk,j which depends on the values of zj−1,

zj and zj+1. The values are given by assuming a periodic domain and setting the

index j when j = 1⇒ j−1 = N and when j = N ⇒ j+1 = 1. N is the maximum

number of collocation points on the contour.

Therefore, we can numerically compute the contour integral by expressing the Eq.

(2.19) as ∮
C

β(z)

z − zk
dz ≈

∑
j

Γj(zj−1, zj, zj+1, zk)βj, (3.10)

and similarly, the derivative of the contour integral can be written as

∮
C

∂β(z)
∂t

z − zk
dz ≈

∑
j

Γj(zj−1, zj, zj+1, zk)
∂βj
∂t

. (3.11)

We know φ on the free surface which is the part of Cφ and take the real and

imaginary parts according to the existence of solution using the Eq. (2.27), (2.28),

(2.29) and (2.30) while solving Eq. (3.10) and Eq. (3.11).

3.3 Computation of stream function

In this section, we explain the numerical computation of the stream function,

the derivative of the stream function and computation of the material derivative.

Fig. (3.2) shows the definition sketch of the wetted surface of the body which

is a part of the Cψ where φ is unknown. By applying the kinematic boundary
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(x,y)

(x0,y0)

R
CG

sn

Free surface

Body surface

CG

θ 

CG is centre of gravity of the body.

i

j

Figure 3.2: Definition sketch of the wetted part of the body and the vectors
acting along the body surface

condition along the surface, we can get

∂ψ

∂s
= ~Vb.~n, (3.12)

where ~Vb is the body velocity at the point in question which can be expressed in

terms of the velocity Vc of the center of gravity (CG) and the rotational velocity

of the body θ̇ as

~Vb = ~Vc + θ̇k̂ × ~p, (3.13)

where ~p = (x − x0)̂i + (y − y0)ĵ is the radius from the center of gravity CG

(ie., zc = x0 + iy0) to the point z = x + iy and k̂ is a vector perpendicular to the

unit vectors î and ĵ.

By defining the normal vector ~n = k̂ × ~s, we can obtain

dψ = (~Vb · ~n)d~s = ~Vb · (k̂ × d~s) = −(~Vb × k̂) · d~s = −(~Vb × k̂ + θ̇~ρ) · d~s. (3.14)
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By transforming the line segment coordinate s to Cartesian co-ordinates system,

we get

dψ = −ẏ0dx+ ẋ0dy − θ̇[(x− x0)dx+ (y − y0)dy], (3.15)

where the velocity of CG is ~Vc = ẋ0î+ ẏ0ĵ.

By integrating Eq. (3.15), the stream function can be computed by

ψ = ẋ0(y − y0)− ẏ0(x− x0)− 1

2
θ̇d2 + ψ0(t), (3.16)

where d is the distance between the points zc and z (ie., d2 = |z − zc|2 = (x −
x0)2 − (y − y0)2 ) and ψ0(t) is an arbitrary time dependent constant which may

be set equal to zero.

The derivative of the stream function can be computed by differentiating the Eq.

(3.16) with respect to t as

∂ψ

∂t
= −∂ẏ0

∂t
(x− x0)− ẏ0

∂(x− x0)

∂t
+
∂ẋ0

∂t
(y − y0) + ẋ0

∂(y − y0)

∂t
− 1

2
d2∂θ̇

∂t
− 1

2
θ̇
∂d2

∂t

= −ÿ0(x− x0)− ẏ0(ẋ− ẋ0) + ẍ0(y − y0) + ẋ0(ẏ − ẏ0)− 1

2
d2θ̈ − θ̇[(x− x0)(ẋ− ẋ0)

+ (y − y0)(ẏ − ẏ0)]

∂ψ

∂t
= −ÿ0(x− x0)− ẏ0ẋ+ ẍ(y − y0) + ẋ0ẏ −

1

2
d2θ̈ − θ̇[(x− x0)(ẋ− ẋ0)

+ (y − y0)(ẏ − ẏ0)], (3.17)

and the gradient of the stream function is

∇ψ =
∂ψ

∂x
î+

∂ψ

∂y
ĵ

= (−ẏ0 − θ̇(x− x0))̂i+ (ẋ0 − θ̇(y − y0))ĵ. (3.18)

The velocity of the point along the body is

~Vb = ẋî+ ẏĵ

= (ẋ0 − θ̇(y − y0))̂i+ (ẏ0 + θ̇(x− x0))ĵ. (3.19)
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We can obtain the following equations

∇ψ = −yî+ xĵ, (3.20)

~Vb · ∇ψ = −ẋ0ẏ + ẏ0ẋ+ ((x− x0)ẋ+ (y − y0)ẏ)θ̇. (3.21)

Finally, the material derivative can be obtained explicitly from the definition as

Dψ

Dt
=
∂ψ

∂t
+ ~Vb · ∇ψ, (3.22)

Dψ(x, y, t)

Dt
= ẍ0(y − y0)− ÿ0(x− x0)− 1

2
d2θ̈ + θ̇[(x− x0)ẋ0 + (y − y0)ẏ0].

(3.23)

Along the bottom surface Bs, we assume that the particles in motion form a

streamline where ψ and ∂ψ
∂t

are constant. The Bs can be denoted as the part of

Cψ where φ is unknown.

The vertical surface Vs is the part of Cφψ where φ and ψ are unknown. However,

by assuming that the problem is periodic in space, i.e. the vertical boundaries are

chosen far from the body without affecting the calculations, we can compute φ

and ∂φ
∂t

or ψ and ∂ψ
∂t

by adding and subtracting pairs of equations, see Vinje and

Brevig (1981a; 1981b).

For every node along the contour, we can rearrange the equations Eq. (2.27),

(2.28), (2.29) and (2.30) to compute the unknown parts of the contour integral

and solve the system of linear equations to obtain β and
∂β

∂t
at all nodes on the

contour C.

3.4 Computation of pressure

The pressure at each point along the wetted surface is computed using Bernoulli’s

equation as

Pj
ρw

= −ωjωj
2
− gyj −

∂φj
∂t

. (3.24)

Along the wetted surface, we know the complex velocity ω, complex conjugate

ω, the ψ and ∂ψ
∂t

, but the ∂φ
∂t

is unknown. It can be computed using the contour
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integral of the derivative of the complex potential as

∮
C

∂φ
∂t

+ i∂ψ
∂t

z−k
dz ∼=

N∑
j=1

Γk,j(zj−1, zj, zj+1, zk)
∂βj
∂t

= 0. (3.25)

We note that we know φ along the free surface and ω =
dφ

dz
. To compute ∂φ

∂t
along

the free surface, we can use

∂φj
∂t

= −wjwj
2
− gyj −

Pa
ρw
. (3.26)

The vertical ends of the contour we again assume periodicity: in practice for the

transient motion considered here, no fluid motion occurs at these distant bound-

aries anyway.

We assume that along the bottom ψ is unknown but it is constant. The derivative

of the ψ (ie.,
∂ψ

∂t
= 0.) can be set to be zero.

By splitting Eq. (3.17), we can compute the unknown acceleration terms (ẍ,ÿ and

θ̈) as follows

∂ψj
∂t

=
∂ψj1
∂t

+ ẍ
∂ψj2
∂t

+ ÿ
∂ψj3
∂t

+ θ̈
∂ψj4
∂t

, (3.27)

where

∂ψj1
∂t

= −ẏ0ẋj + ẋ0ẏj − θ̇[(xj − x0)(ẋj − ẋ0) + (yj − y0)(ẏj − ẏ0)], (3.28)

∂ψj2
∂t

= (yj − y0), (3.29)

∂ψj3
∂t

= −(xj − x0), (3.30)

∂ψj4
∂t

= −1

2
d2
j . (3.31)

The linear system of four equations can be formulated as

N∑
j=1

Γk,j

(
∂φjn
∂t

+ i
∂ψjn
∂t

)
= 0 for n = 1, ..., 4; (3.32)

i.e. Axn = bn for n = 1, ..., 4. We can note that the coefficient matrix A is same

as the matrix used in Eq. (3.11). Therefore, the pressure can be computed using

the following equations by assuming that we only consider the vertical motion of
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the body (the rotational velocity θ̇ = 0) while solving the sub-equations:

Pj1 = −xj1 −
1

2
wjwj − gyj for j = N1, ..., N2; (3.33)

Pjn = −xjn for n = 2, ..., 4. (3.34)

3.5 Computation of force

The total numerical force experienced by the body is computed by integrating

the pressures along the wetted surface of the body. The hydrodynamic forces and

moments related to the pressures (Fxn, Fyn,Mn) can be defined by

mẍ0 = Fx1 + Fx2ẍ0 + Fx3ÿ0 + Fx4θ̈, (3.35)

mÿ0 = Fy1 + Fy2ẍ0 + Fy3ÿ0 + Fy4θ̈ −mg, (3.36)

Iθ̈ = M1 +M2ẍ0 +M3ÿ0 +M4θ̈. (3.37)

Using the system of equation for the force and moment, we can compute the

translational and rotational accelerations of the body. Finally, the total solution

xj (i.e., the complex potential βj at each point) to Eq. (3.32) can be given by

xj = xj1 + ẍ0xj2 + ÿ0xj3 + θ̈xj4 for j = 1, ..., N. (3.38)

The pressure can be computed by

Pj = Pj1 + ẍ0Pj2 + ÿ0Pj3 + θ̈Pj4 for j = N1, ..., N2. (3.39)

3.6 Computation of complex velocity

We assume that the complex potential (and its derivative) vary linearly in complex

variable z between the nodal points. It can be computed using
dω

dz
. However, the

solution using Eq. (2.18) is singular at the nodes. To avoid the difficulty, we use a

central differentiation method to compute the derivative of the complex potential

along the contour. At a point zj, we can define the derivative of the complex
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potential as (
∂β

∂z

)
j

= aj−1βj−1 + ajβj + aj+1βj+1 − E. (3.40)

where E is an error term. Using Taylor’s theorem to expand the complex potential

about zj, we get

βj−1 =
∞∑
n=0

β
(n)
j

n!
(zj−1 − zj)n, (3.41)

βj+1 =
∞∑
n=0

β
(n)
j

n!
(zj+1 − zj)n. (3.42)

Using Eq. (3.40), (3.41) and (3.42), we get(
∂β

∂z

)
j

=(aj−1 + aj + aj+1)βj + {aj−1(zj−1 − zj) + aj+1(zj+1 − zj)}
(
∂β

∂z

)
j

+
1

2
{aj−1(zj−1 − zj)2 + aj+1(zj+1 − zj)2}

(
∂2β

∂z2

)
j

+
∞∑
n=3

β
(n)
j

n!
{aj−1(zj−1 − zj)n + aj+1(zj+1 − zj)n}. (3.43)

We can formulate the following system of equations

aj−1 + aj + aj+1 =0, (3.44)

aj−1(zj−1 − zj) + aj+1(zj+1 − zj) =1, (3.45)

aj−1(zj−1 − zj)2 + aj+1(zj+1 − zj)2 =0, (3.46)

−
∞∑
n=3

β
(n)
j

n!
{aj−1(zj−1 − zj)n + aj+1(zj+1 − zj)n} =E. (3.47)

By solving the equations, we can calculate the coefficients as follows

aj−1 =
zj+1 − zj

(zj+1 − zj)(zj+1 − zj)− (zj−1 − zj)2
, (3.48)

aj+1 =
zj−1 − zj

(zj−1 − zj)(zj+1 − zj)− (zj+1 − zj)2
, (3.49)

aj = −aj−1 − aj+1. (3.50)

By assuming the periodicity of the system, we can also use the central differenti-

ation scheme at the endpoints of the free surface. We allow the points to join up
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such that the last free surface point in one domain is the first free surface point in

the next by setting the points zp and zm as

zp = z1 + (zN3−1 − zN3), (3.51)

zm = zN3 + (z1 − z2). (3.52)

We can conclude that the coefficients can be computed as

a1−1 =
z2 − z1

(z2 − z1)(zp − z1)− (zp − z1)2
, (3.53)

a1+1 =
zp − z1

(zp − z1)(z2 − z1)− (z2 − z1)2
, (3.54)

aN3−1 =
zm − zN3

(zm − zN3)(zN3−1 − zN3)− (zN3−1 − zN3)2
, (3.55)

aN3+1 =
zN3−1 − zN3

(zN3−1 − zN3)(zm − zN3)− (zm − zN3)2
. (3.56)

where N3 is the point on the left-vertical side of the contour (see Fig. (3.1)).

3.7 Matrix formulation and the periodic bound-

ary condition

To compute the complex potential along the contour, we need to calculate the

following integral ∮
C

β(z, t)

z − zk
dz = 0, 1 ≤ k ≤ N. (3.57)

The numerical solution to the problem is computed using the solution technique

(see section (2.3.1) for more details) as

Re

{∮
C

β(z, t)

z − zk
dz

}
∼= Re

{ N∑
j=1

Γk,jβj

}
= 0, (3.58)
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when zk is on along the boundary Cφ where the velocity potential φ is known from

the free surface boundary condition at a time t=0 and

Re

{
i

∮
C

β(z, t)

z − zk
dz

}
∼= Re

{
i

N∑
j=1

Γk,jβj

}
= 0, (3.59)

when zk is on along the boundary Cψ where the stream function ψ is known from

the matching boundary condition of body and fluid. Along the vertical bound-

aries, we do not know the φ and ψ. However, we compute the unknown parts of

the complex potential along the vertical boundaries using the periodic boundary

condition by assuming φ is the unknown variable at the left-side vertical control

surface while evaluating the sums of Eq. (3.60) for the index j running from N3

to N4 and N5 to N , see Fig. (3.1).

For zk on Cφ, we then get the sums as

Re

{N1−1∑
j=1

Γk,j(φj + iXj) +

N2∑
j=N1

Γk,j(Xj + iψj) +

N3∑
j=N2+1

Γk,j(φj + iXj)

+

j2=N5
j1=N4∑
j1=N3+1
j2=N

Γk,j1(Xj1 + iXj2) +

N5−1∑
j=N4+1

Γk,j(Xj + iXN5) +

j1=N3+1
j2=N∑
j2=N5
j1=N4

Γk,j2(Xj1 + iXj2)

}
= 0,

(3.60)

where X1, X2, Xj1 and Xj2 are the unknown parts of the complex potential

βz = φ+ iψ along the contour changing with the boundary conditions.

Consider the following terms in Eq. (3.60):

j2=N5
j1=N4∑
j1=N3+1
j2=N

Γk,j1(Xj1 + iXj2), (3.61)

and

j1=N3+1
j2=N∑
j2=N5
j1=N4

Γk,j2(Xj1 + iXj2), (3.62)
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where Xj1 is the unknown velocity potential along the left-vertical boundary and

Xj2 is the unknown stream function along the right-vertical boundary. To evaluate

the sums along the vertical boundaries, we use the periodic condition (for the case

of the φ is unknown) as given in Eq. (3.61) and Eq. (3.62) by taking the Xj1

along the left side and corresponding Xj2 along the right side while computing the

sums.

By collecting the known to the left side of Eq. (3.60) and unknown to the right

side of Eq. (3.60), we get

−
N1−1∑
j=1

ImΓk,jXj +

N2∑
j=N1

ReΓk,jXj −
N3∑

j=N2+1

ImΓk,jXj

+

j2=N5
j1=N4∑
j1=N3+1
j2=N

Re

{
Γk,j1 + Γk,j2

}
Xj1 +

N5−1∑
j=N4+1

ReΓk,jXj −
N5−1∑
j=N4+1

ImΓk,jXN5

−

j1=N3+1
j2=N∑
j2=N5
j1=N4

Im

{
Γk,j1 + Γk,j2

}
Xj2 = −

N1−1∑
j=1

ReΓk,jφj +

N2∑
j=N1

ImΓk,jψj −
N3∑

j=N2+1

ReΓk,jφj.

(3.63)

For zk on Cψ, we get

−Im
{N1−1∑

j=1

Γk,j(φj + iXj) +

N2∑
j=N1

Γk,j(Xj + iψj) +

N3∑
j=N2+1

Γk,j(φj + iXj)

+

j2=N5
j1=N4∑
j1=N3+1
j2=N

Γk,j1(Xj1 + iXj2) +

N5−1∑
j=N4+1

Γk,j(Xj + iXN5) +

j1=N3+1
j2=N∑
j2=N5
j1=N4

Γk,j2(Xj1 + iXj2)

}
= 0.

(3.64)



Chapter 3. Numerical formulation 35

By collecting the known to the left side of Eq. (3.64) and unknown to the right

side of Eq. (3.64), we get

−
N1−1∑
j=1

ReΓk,jXj −
N2∑
j=N1

ImΓk,jXj −
N3∑

j=N2+1

ReΓk,jXj

−

j2=N5
j1=N4∑
j1=N3+1
j2=N

Im

{
Γk,j1 + Γk,j2

}
Xj1 −

N5−1∑
j=N4+1

ImΓk,jXj −
N5−1∑
j=N4+1

ReΓk,jXN5

−

j1=N3+1
j2=N∑
j2=N5
j1=N4

Im

{
Γk,j1 + Γk,j2

}
Xj2 =

N1−1∑
j=1

ImΓk,jφj +

N2∑
j=N1

ReΓk,jψj +

N3∑
j=N2+1

ImΓk,jφj.

(3.65)

Alternatively, we could assume ψ is the unknown variable at the left side vertical

control surface. This gives a set of equations similar to Eq. (3.63) and (3.65).

The numerical solution has shown to be improved when take the sum of these

equations and Eq. (3.63) and (3.65) when zk is on the vertical surfaces, see Vinje

and Brevig (1981b).

3.8 Time-stepping schemes

Second-order Runge-Kutta and fourth-order Hamming predictor-corrector meth-

ods are used to solve the differential Eq. (3.66) and (3.67) by time-stepping forward

with respect to time, see Ralston and Rabinowitz (2001). The initial conditions to

the fourth-order Hamming predictor-corrector method are given by computing the

four starting values for y and f(y) using the Runge-Kutta method where f(y)=dy
dt

.

The following equations are used to step forward in time.

Dz

Dt
= u+ iv, (3.66)

Dφ

Dt
=

1

2
w · w − gy − Pa

ρ
. (3.67)
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3.8.1 Runge-Kutta method

The solution to the differential equation of the form

ẏ(t) =
dy(t)

dt
= f(y(t)) (3.68)

can be computed as

yn+1 = yn +
1

2
4t(k1 + k2), (3.69)

where

yn = y(tn), (3.70)

4t = tn+1 − tn, (3.71)

k1 = f(yn) = ẏn, (3.72)

k2 = f(yn +4t · k1) = f(yn+1) = ẏn+1. (3.73)

Here, the Euler’s method is used to predict a value of yn+1. The truncation error is

given by et = K4t3 +O(4t4), where K depends upon f(y(t)) and its higher-order

derivatives.

3.8.2 Hamming predictor-corrector method

This multi-step method requires four starting values for y and f(y). These values

are calculated from the Runge-Kutta method explained above. The algorithm can

be given as

Step 1 : calculate the starling values yn and fn for n = 0, ..., 3.

Step 2 : calculate the predictor

Pn+1 = yn−3 +
4

3
4t(2ẏn − ẏn−1 + 2ẏn−2).

Step 3 : calculate the modifier

Mn+1 = Pn+1 −
112

121
(Pn − Cn) where (P4 − C4) = 0.
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Step 4 : calculate the time derivative of the modified predictor

ẏn+1 = f(Mn+1).

Step 5 : calculate the corrector

Cn+1 =
1

8

[
9yn − yn−2 + 34t(ẏn+1 + 2ẏn − ẏn−1)

]
.

Step 6 : calculate the final value at tn +4t

yn+1 = Cn+1 +
9

121
(Pn+1 − Cn+1).

We can note that the method has a local truncation error O(4t5). The numerical

formulation of Eq. (2.29) and (2.33) to compute solution for the points inside the

contour are obtained by

β(z0, t) =
1

2πi

∮
C

β(z, t)

z − z0

dz ∼=
∑
j

Γj(zj−1, zj, zj+1, z0)βj(zj, t), (3.74)

∂β(z0, t)

∂t
=

1

2πi

∮
C

∂β(z,t)
∂t

z − z0

dz ∼=
∑
j

Γj(zj−1, zj, zj+1, z0)
∂βj
∂t

(zj, t), (3.75)

w(z0, t) =
1

2πi

∮
C

β(z, t)

(z − z0)2
dz ∼=

∑
j

Γ2j(zj−1, zj, zj+1, z0)βj(zj, t), (3.76)

∂w(z0, t)

∂t
=

1

2πi

∮
C

∂β(z,t)
∂t

(z − z0)2
dz ∼=

∑
j

Γ2j(zj−1, zj, zj+1, z0)
∂βj
∂t

(zj, t), (3.77)

dw(z0, t)

dt
=

1

πi

∮
C

β(z, t)

(z − z0)3
dz ∼=

∑
j

Γ3j(zj−1, zj, zj+1, z0)βj(zj, t). (3.78)

3.9 Implementation

Vinje and Brevig (1981a; 1981b) developed a very useful program code in Fortran

77 to study non-linear ship motion (and impact of entry and exit of a wedge

moving into and leaving out of water initially at rest) based on the fully non-linear

time-stepping method. Then the code was developed by Greenhow to compute

results for entry and exit of different shaped bodies. In addition to that, Barringer
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(1996) and Moyo (1996) successfully studied various aspects of water entry and

exit problems using the code.

The developed code consists of several variables involved in the computation pro-

cess. Some of them are physically and numerically very significant. The variables

are selected very carefully for the numerical accuracy of solution. The first part of

the program is to generate the collocation points on the control volume on which

the problem is formulated. The control volume consists of two vertical boundaries,

body surface and the free surface. The point distribution depends on the ratio

distance on the body and the surfaces. The ratios play very significant role in the

solution of the problem.

The final part of the program is to step forward in time to predict the fluid

(and body) motion. The time step size also plays a significant role in the solution.

Suitable ratios and time stepping size can be selected to resolve the particle motion

and compute the forces experienced by the body.

In Fortran 77, the code was much more complicated and not well suited to use

for further development to study various applications of the problem due to the

complex structure of the code. For example, the common block is not compu-

tationally efficient method. The main program is designed in a way of sharing

several variables by other subroutines. In addition to that, other variables are

passed between subroutines. Moreover, control structures such as one dimensional

and two dimensional arrays were defined by assigning the size at beginning of the

declaration of the program.

In general, the static memory allocation is not a good way of declaring arrays

because the size is changing with time stepping forward. In that case, the size

limit may increase beyond the initial declaration size. As a result, the program

terminates without completing the full task of the run. Furthermore, it is very

difficult to obtain and analyse graphical results in as simple a manner as the latest

generation languages.

Considering all the facts, the code has been translated to Matlab with some mod-

ification to the original code. Matlab is a script language and very user friendly

to implement mathematical equations, produce and analyse results in an efficient

way. It is not necessary to define a common block. The array size dynamically

changes during the run time. Also Matlab has very well defined graphic handling

tools and built-in numerical methods to solve a system of equations in an efficient
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way. It can also be noted that Matlab is more efficient in memory allocation size

and is less complicated than the earlier version of Fortran 77.



Chapter 4

Water Entry of Different Shaped

Bodies

We discussed the non-linear time-stepping method and the numerical formulation

of study water entry and exit of a body in previous chapters. We now apply the

formulated equations for a symmetric wedge-shaped body to compute results for

the free surface profile, pressure distribution along the submerged part of the body

and the vertical upward force exerted on the body due to the forced motion ex-

ecuted by the body in heave mode. However, it can be used to study any other

shape (asymmetric wedges, truncated wedges or boxes) entering or leaving the

fluid with further modifications to the original equations. The formulation can

also be used for other modes of two-dimensional motion (sway and roll).

In this chapter, we present a set of selected results for water entry of symmetric

wedges, asymmetric wedges, truncated wedges and boxes moving with constant

velocity and constant acceleration into water initially at rest. To verify the com-

puted results, we carry out a set of different tests such as convergence checks,

Froude number effect for the constant velocity cases, time effect on the stages

of the motion, an added mass model for the force for constant acceleration and

velocity cases and a self-similarity check for a symmetric wedge (similarly the

asymmetric wedge at high Froude number (Fr) (i.e. gravity g=0) will also be

self-similar). The two-dimensional shapes used to compute results for water entry

and exit and the non-dimensionalisation method are described in sections (4.1)

and (4.2), respectively. Constant velocity entry and constant acceleration entry

are considered in sections (4.3) and (4.4), respectively. We also give some results

40
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showing the finite depth effect on entry problems for each shape and consider the

speed of the intersection points varying with Froude numbers and finite depths for

the symmetric wedges.

4.1 Shapes

We consider the following shapes with various angles to compute results for water

entry cases with constant velocity or acceleration. The symmetric wedge is well

studied, the other shapes less so, but they also have significant practical applica-

tions.

αh

      Di

S(t)
αh

vi

(a) Symmetric wedge

αh

βh 

Vi

Di 
S(t) 

(b) Asymmetric wedge

αh

      Di

S(t)
βh

vi

h

b

(c) Truncated wedge

      Di S(t)

vi

h

b

(d) Box

Figure 4.1: Geometrical representation of the different shaped bodies for water
entry cases

For the symmetric wedge, vortex shedding from the vertex is not considered. How-

ever for the asymmetric wedge, if the left-half wedge angle βh < 0 (see Fig. (4.1))

then vortex shedding from the sharp edge will certainly shed strong vortices. We

do not consider this here. Neither do we consider the possibility of vortex shed-

ding from the edges of the truncated wedge or the box (this will be discussed in
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the Recommendation section). We note that Barringer (1996) also ignored vortex

shedding from the knuckle-shaped body he considered. This is not to say that

vortex shedding will be unimportant: shed vortices will certainly affect the fluid

motion and hence forces and interact with the free surface. For wedges, these

effects are likely to be much weaker and hence this thesis focuses mostly on them.

4.2 Non-dimensionalisation

We give computed results for the physical quantities (free-surface elevation, pres-

sure distribution and force) in non-dimensional form. In this section, we outline a

brief explanation of the process of non-dimensionalisation.

The dimensional characteristic time ct is defined by

ct =

√
Di

g
,

where Di is the initial submergence depth of the body below the free-surface at

rest (see Fig. (4.1)) and gravitational field is denoted by g.

The dimension-less time τ is given by dividing time t by the characteristic time ct

as follows

τ =
t

ct
.

In the mathematical formulation of the problem, the spatial coordinate of the

free-surface profile is formulated as complex variable z which consists of the x

coordinate and y coordinate in the Cartesian coordinate system. We then do the

non-dimensionalisation of z by dividing its real and imaginary parts by the initial

submergence depth Di as

ẑ =
z

Di

=
x+ iy

Di

= x̂+ iŷ,

where x̂ = x
Di

and ŷ = y
Di

are the non-dimensional forms of the coordinate of x

and y respectively. The total pressure (static and dynamic) P computed by the

Bernoulli’s equation is divided by the initial hydrostatic pressure at y = −Di to

get the non-dimensional pressure P̂ as below

P̂ =
P

Diρwg
,



Chapter 4. Water Entry of Different Shaped Bodies 43

where ρw is density of water. The vertical force f experienced by the body is com-

puted using the fully non-linear numerical method which is non-dimensionalised

by dividing the force by the initial buoyancy force and can be expressed as

f̂ =
f

ρwg∀
,

where ∀ is the initial submerged volume (per unit length of the wedge prism). For

the constant velocity case, we take account into the dimensionless Froude number

Fr which is given by

Fr =
v2
b

gDi

,

where vb is the speed of the body executing motion in the fluid (vb = |Vb|, where Vb

is the velocity of the body). For the constant acceleration case, we are concerned

with the dimensionless acceleration parameter which can be defined by dividing

the original acceleration of the body by the gravity g as

Gτ =
a

g
.

Finally, the dimensionless speed of the intersection point vi is given by dividing

the speed of the intersection point by the initial speed of the body as

v̂i =
vi
vb
.

4.3 Constant velocity entry

This section, for constant velocity entry of symmetric wedges, asymmetric wedges,

truncated wedges and box bodies, reviews the application of the non-linear theory

and concerns numerical results computed using the implementation of the equa-

tions formulated to study water entry and exit problems in Matlab. For each shape

shown in Fig. (4.1), we present the computed free-surface profile, pressure distri-

bution along the wetted part of the body and total force experienced by the body

as it moves through the free surface with constant velocity. To verify the results

computed for the bodies, we carry out a set of test cases such as convergency check,

Froude number effect, time effect on motion, self-similarity solution for symmetric

wedges (it is also possible for asymmetric wedges), finite depth effect, comparison
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of the free-surface profile with the Mackie’s analytical theory for constant velocity

entry of symmetric wedges and speed of intersection points between the symmetric

wedges and the free surface changing with depths of fluid and Froude number of

entry. The symmetric wedges, asymmetric wedges, truncated wedges and boxes

entering with constant velocity are presented in sections (4.3.1), (4.3.2), (4.3.3)

and (4.3.4) respectively.

4.3.1 Symmetric wedge entry

The main parameter of the problem of symmetric wedge entry is the vertical half

wedge angle αh and the initial submerged depth Di, see Fig. (4.1(a)). We can

compute numerical results for various symmetric wedges, which can be obtained

by changing the main parameter of the problem, entering with different Froude

numbers which can be chosen by changing values of the submerged depth and the

speed of entry. However, the maximum of the half-wedge angle for larger entry

speed is 55o beyond which the calculations are unreliable due to the fast moving

spray jets. In the symmetric-wedge entry case, we present results for various half-

wedge angles, avoiding breaking the numerical computations by carefully selecting

the number of points on the boundaries and the velocity of entry. Table (4.1)

shows the symmetric wedges (for example, SW30 is a wedge of vertical half-wedge

angle 300) selected to present results for constant velocity entry and constant

acceleration entry. Many results are written on a CD as soft-copy for the future

studies using this mathematical model, see Appendix (B). In section (4.3.1.1),

we present results showing good agreement with the convergence check for the

symmetric wedge SW30. The results for different Froude numbers are given in

section (4.3.1.2). The computed numerical results showing the time effect and

self-similarity solution are presented in sections (4.3.1.3) and (4.3.1.4) respectively.

Finite depth effects and speed of the intersection points for constant velocity are

presented in sections (4.3.1.5) and (4.3.1.6) respectively. Finally, a comparison of

free-surface profile with Mackie’s analytical results for constant velocity of entry

is given in section (4.3.1.7).
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Symmetric wedge Half wedge angle
(SW) (αh)
SW5 5o

SW20 20o

SW30 30o

SW45 45o

SW55 55o

Table 4.1: Symmetric wedges considered for water entry cases

4.3.1.1 Convergence check

To validate the computed numerical results of the free surface profile, pressure

and force for symmetric wedges entering with constant velocity, we perform a set

of tests that ensure other results can be relied upon. Having completed the tests,

we can choose an appropriate set of input variables for long runs of the program.

The following sections explain the test procedure carried out and give graphical

results for wedge entry into initially calm water.

To check convergence of the numerical results, we consider the wedge SW30 en-

tering with constant velocity. For the wedge, free-surface profile and pressure dis-

tribution are computed for different non-dimensional time step size Dτ which is

the only input variable changing for the run of the program and all other variables

are the same. The results for entry of the wedge are plotted at a particular non-

dimensional time τ for different non-dimensional time step size Dτ . For example,

Fig. (4.2) shows the free-surface profile and pressure distribution computed for the

wedge SW30 entering with Froude number Fr = 0.5 which is plotted for different

non-dimensional time step size Dτ of 0.1, 0.01 and 0.001 at a non-dimensional

time τ of 1.3.

We see in Fig. (4.2) that the results show a good agreement in this conver-

gence test. Results for the free surface and pressure at different time step sizes

coincide for different time step sizes. From these convergence results, we use the

non-dimensional time step size of 0.1 to do the most of the calculations of all

other shapes for entry with constant velocity and constant acceleration. We also

use different time step sizes for some cases. We notice that as we increase non-

dimensional time step size from 0.001 to 0.1, we can see only a small deviation in

the convergence of the results.
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Figure 4.2: Convergence of the symmetric wedge SW30 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant velocity of Froude
number Fr = .5: (a) and (b) are plotted for different non-dimensional time step

size Dτ at a non-dimensional time τ = 1.3.
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4.3.1.2 Froude number effect

In the study of water entry related problems, the Froude number defined in section

(4.2) is a crucial dimensionless physical parameter. To study the effect of Froude

number on the results, we carry out a set of test cases. For a particular wedge,

the test process is to keep all the input variables of a specific run of the program

constant, and obtain the Froude numbers by varying the velocity of the entry

for the wedge. We plot the results for the free-surface profile, pressure and force

at the same distance traveled by the wedge for different entry speeds as time

progresses. The same process is repeated for the data sets and for the symmetric

wedges considered. As we increase velocity of the entry, we notice much more

deformation on the free surface and consequently in the pressure distribution and

force as shown in Fig. (4.3) and (4.4) for the symmetric wedge SW30.

(a)

Figure 4.3: Froude number effect of the symmetric wedge SW30 submerged
at a non-dimensional initial depth d̂i = −1 entering with constant velocity of
different Froude numbers Fr: plotted at different non-dimensional times τ =

4, 3, 2.4 and distance d̂ = −2.22.
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Figure 4.4: Froude number effect of the symmetric wedge SW30 submerged
at a non-dimensional initial depth d̂i = −1 entering with constant velocity of
different Froude numbers Fr: (a), (b) and (c) are plotted at different non-

dimensional times τ = 4, 3, 2.4 and distance d̂ = −2.22.
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4.3.1.3 Time effect

The motion of the fluid changes as time progresses. We compute the deformed

free-surface profile, pressure along the wetted part of the body and the upward

force experienced by the body. The computed results showing the time effect

on free surface, pressure and force at different stages of the entry with constant

velocity are presented in this section. Fig. (4.5) and (4.6) show time effect of the

symmetric wedge SW30 entering with Froude number of 0.5.
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Figure 4.5: Time effect of the symmetric wedge SW30 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant velocity of Froude

number Fr = 0.5: plotted at different non-dimensional times τ .
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Figure 4.6: Time effect of the symmetric wedge SW30 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant velocity of Froude
number Fr = 0.5: (a), (b) and (c) are plotted at different non-dimensional

times τ .
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4.3.1.4 Self-similarity solution

A very important verification test in the study of water entry problem is self-

similarity which requires a gravity-free condition in the numerical calculation of

the results. Here we outline the main equations of the self-similar theory developed

by Garabedian (1953) (also see Dobrovol’skaya (1969)).

S=0

S=1

S=2

S=3

S=4
S=5

S=6

S=0

S=-1

S=-2

S=-3

S=-4
S=-5S=-6

Figure 4.7: Definition sketch for the flow mapping in the plane

Using Garabedian’s notation, we describe the free surface z(s, t) as

λz(s, t) = z(λs, λt) = z(ς, τ), (4.1)

where s is a real parameter (Lagrangian marker) on the free surface (see Fig.

(4.7)), t is time, ς = λs and τ = λt where λ is a constant. Differentiating with

respect to λ, we get

z(s, t) = szς + tzτ . (4.2)

If λ = 1, we have

z(s, t) = szs + tzt. (4.3)
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Differentiating with respect to t, we have

zt = szst + tztt + zt. (4.4)

Now when g = 0, we have John’s (1953) equation (see Barringer (1996) for a more

detail derivation):

ztt = irzs, where r is a real function. (4.5)

Then zttz̄tt = irzsz̄tt is a real:

i.e., Re(zsz̄tt) = 0.

So, Re(zsz̄st) = 0,

i.e.,
∂|zs|2

∂t
= 0. (4.6)

This means that the arc length |zs| between any two free-surface particles is con-

stant with respect to time t.

We now give graphical results showing good agreement with the self-similarity

test for the wedges entering with different deadrise angles (angle between the free

surface and the body) by setting gravity to zero as required for the similarity. For

a particular wedge entering with different velocity, the gravity-free numerical re-

sults for the free-surface profile are depicted at the same distance attained by the

wedge. Fig. (4.9), (4.11) and (4.13) show a good agreement with the self-similarity

check for the SW5, SW20 and SW30, respectively, except at the free surface/body

intersection where the numerical resolution is not fully adequate.
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Figure 4.8: Computed free-surface profile showing self-similarity for the wedge
SW5 submerged at a non-dimensional initial depth d̂i = −1 entering with dif-
ferent velocities (v1, v2 and v3) and zero gravity: a) v1 = 2.5, (b) v2 = 5 and

(c) v3 = 7.5 and plotted at a non-dimensional distance d̂ = −25.3 .
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Figure 4.9: Computed free-surface profile showing self-similarity for the wedge
SW5 submerged at a non-dimensional initial depth d̂i = −1 entering with zero

gravity: plotted at a non-dimensional distance d̂ = −25.3.

To check self similarity of the results for the wedge SW5, we plot the three Fig.

4.8(a), 4.8(b) and 4.8(c) in Fig. (4.9).
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Figure 4.10: Computed free-surface profile showing self-similarity for the
wedge SW5 submerged at a non-dimensional initial depth d̂i = −1 entering
with different velocities (v1, v2 and v3) and zero gravity: a) v1 = 1, (b) v2 = 2.5

and (c) v3 = 5 and plotted at a non-dimensional distance d̂ = −8.64.
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Figure 4.11: Computed free-surface profile showing self-similarity for the
wedge SW20 submerged at a non-dimensional initial depth d̂i = −1 entering

with zero gravity: plotted at a non-dimensional distance d̂ = −8.64.

To check self similarity of the results for the wedge SW20, we plot the three Fig.

4.10(a), 4.10(b) and 4.10(c) in Fig. (4.11).



Chapter 4. Water Entry of Different Shaped Bodies 57

0 2 4 6 8 10 12

−5

−4

−3

−2

−1

0

1

2

3

4

Non-dimensional Free Surface Profile

Y D
i

X

Di

(a)

0 2 4 6 8 10 12

−5

−4

−3

−2

−1

0

1

2

3

4

Non-dimensional Free Surface Profile

Y D
i

X

Di

(b)

0 2 4 6 8 10 12

−4

−3

−2

−1

0

1

2

3

4

5

Non-dimensional Free Surface Profile

Y D
i

X

Di

(c)

Figure 4.12: Computed free-surface profile showing self-similarity for the
wedge SW30 submerged at a non-dimensional initial depth d̂i = −1 entering
with different velocities (v1, v2 and v3) and zero gravity: a) v1 = 0.9, (b)
v2 = 1.8 and (c) v3 = 2.7 and plotted at a non-dimensional distance d̂ = −2.38.
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Figure 4.13: Computed free-surface profile showing self-similarity for the
wedge SW30 submerged at a non-dimensional initial depth d̂i = −1 entering

with zero gravity: plotted at a non-dimensional distance d̂ = −2.38.

To check self similarity of the results for the wedge SW30, we plot the three Fig.

4.12(a), 4.12(b) and 4.12(c) in Fig. (4.13).

We can see from the Fig. (4.9), (4.11) and (4.13) that the computed free-surface

profiles for the wedges show a good agreement with the self-similarity check. We

can also notice that the shape of jet formed by the deformation of the free sur-

face after the transient motion decays remains unchanged as we required for the

self similarity (constancy of the arc length of the free surface). We require the

condition of zero gravity for the results to be self similar. We defined the Froude

number which depends on gravity and tends to infinity as gravity goes to zero,

but the results for free surface is valid numerically. However, the pressure at the

vertex of the wedge and the force need to be resolved better for the higher Froude

number cases.
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4.3.1.5 Finite depth effect

It is very important to predict the motion due to marine vehicle operations near

to the shore (shallow water) because it may be badly affected (hitting the seabed,

snatching in the crane cables or instability due to broaching the free surface) by the

unsteady forces, see Oliver (2002) for other effects. We present results showing the

effect on the free-surface profile, pressure and force due to the change in depth of

the entry with constant velocity using the non-linear time-stepping method. The

results are plotted at the same distance close to the bottom surface (seabed) moved

by the body for different depths of entry with the same velocity as it moves with

time. Fig. (4.14) shows the computed free-surface profile, pressure distribution

and force for the symmetric wedge SW30 entering with Froude number 0.5 showing

finite depth effect on the motion. We notice that, as we expected for entering of

the wedge SW30, the non-dimensional depth Nd below 1.53 experiences greater

amount of free-surface deformation, pressure and force than that of other depths.



Chapter 4. Water Entry of Different Shaped Bodies 60

0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

X

Di

Y D
i

Non-dimensional Free Surface Profile

 

 

Nd = 1.53

Nd = 5.10

Nd = 25.48

Nd = 38.23

(a)

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Non-dimensional distance
X

Di
from the vertex along x axis

Non-dimensional Pressure Distribution Along the Wetted Surface

 

 

Nd = 1.53

Nd = 5.10

Nd = 25.48

Nd = 38.23

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Non-dimensional time τ

Non-dimensional Force versus Time τ

 

 

Nd = 1.53

Nd = 5.10

Nd = 25.48

Nd = 38.23

(c)

Figure 4.14: Finite depth effect of the symmetric wedge SW30 submerged at a
non-dimensional initial depth d̂i = −1 entering with constant velocity of Froude
number Fr = 0.5: (a), (b) and (c) are plotted for different non-dimensional

depths Nd at a non-dimensional time τ = 1.
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4.3.1.6 Speed of intersection point

A very thin jet is formed along each side of the body surface as it moves through a

free surface between fluid and air. The formation of the jet depends on the dead-

rise angle of the moving body and the velocity of the moving body. We initially

define the points N1 and N2 (see Fig. (3.1)) to be the locations where the fluid

particles on the both sides of the free surfaces first meet the body surfaces. Then

the intersection points are computed by time stepping the kinematic boundary

condition on the free surface at a later time. It is a very complicated to tackle the

intersection points as time progresses. Numerical calculations will break down if

the intersection points move to other side of the body surface (see, Sun and Faltin-

sen (2007)). So a special treatment can be used to control the errors caused by the

movement of the intersection points (see, Iafrati and Korobkin (2001; 2000)). One

way is to cut-off the jet flow near the intersection points, see Zhao and Faltinsen

(1993). To study the local flow around the intersection points and avoid the nu-

merical problem, it is very useful to compute the speed of the intersection points

as the body moving with time. This section presents some results for the speed

of intersection points of moving different symmetric wedges, but it can also be

computed for all other shapes using this mathematical model. In this section,

the computed speed of intersection points varying with Froude numbers and finite

depths are considered for the symmetric wedges.

Speed effect with Froude number

Here we give the computed speed of the intersection points for the symmetric

wedges considered showing the effect due to the change in Froude number of the

entry. The plots are obtained for each shape entering with different Froude num-

bers at the same distance traveled by the symmetric wedge as it moves. Fig.

(4.15) shows the Froude number effect on the speed of the intersection point of

the symmetric wedge SW30. We can see that the initial speed at time zero is the

same for any velocity of entry. This is not surprising because we are solving the

same (non-dimensional) problem at t=0. However, for t > 0, wave effects are dif-

ferent at different Froude numbers and hence affect the motion of the intersection

point. Results for higher Froude numbers are also possible for small time, but the

calculations soon break down and hence are not shown here.
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Figure 4.15: Effect of Froude number on the speed of intersection point for
the wedge SW30 entering with constant velocity.

The speed of the intersection points depends on the free-surface point spacing

and the time-step size. The intersection points move more rapidly as the point

spacing and/or time step size decreases. Away from this point, we have estab-

lished convergence of the free surface and hence use the same discretisation here

for the intersection point speed. Thus Fig. (4.15) shows the computed speed of

the intersection point for a particular free-surface point spacing and time-step size

and may be used to inform future work, especially along the lines of Korobkin

(2014) who has to assume this speed as an input to his analytical model of exit.
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Speed effect with depth

Here we present the computed speed of the intersection points of the symmetric

wedges as given in Table (4.1) showing effect due to the change in depth of the

domain. The plots are obtained for each shape entering with constant velocity at

a same distance, close to the bottom surface, traveled by the symmetric wedge as

it moves. Fig. (4.16) shows the computed speeds for the symmetric wedge SW30

entering into the fluid of different depths. Here, we can note that starting values

of the speed at time zero vary with depth of the fluid. We note that the plots for

non-dimensional depths (Nd) 25.48 and 38.23 coincide.
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Figure 4.16: Effect of depth on the speed of intersection point for the wedge
SW30 entering with constant velocity of Froude number Fr = 0.5.
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4.3.1.7 Comparison with Mackie’s theory

We compare the results for free surface elevation computed using the fully non-

linear time-stepping method with the Mackie’s (1969, 1965 and 1962) theory based

on time-dependent wave-maker theory for a slender body using the method of

Fourier series. The velocity along the vertical line (x=0) of the piston-type wave-

maker is transferred to the body boundary condition for the slender body. Then

the velocity is computed by using linearised Taylor series approximation with re-

spect the vertical angle αh. The linearised free surface profile can be expressed,

see Greenhow (1990), as

η(x, t) =
2

π

∫ ∞
0

η̄(λ, t) cosλxdλ. (4.7)

For entry, we have

η̄(λ, t) =
αhU

2

λ(λU2 + g)

[
cos(

√
λgt)− U

√
λ

g
sin(
√
λgt)− e−λUt

]
, (4.8)

where αh is the wedge half-angle.

Based on the formulation, we present computed results showing rather poor agree-

ment with the non-linear time-stepping theory of Vinje and Brevig (1981a; 1981b)

for some symmetric wedges entering with constant velocities. Fig. (4.17) shows the

comparison for the symmetric wedge SW5 entering with Froude number Fr = 1.

Evidently the free-surface slope local to the wedge is not sufficiently small for

linear theory to apply (later we will find better agreement with the wedge exit

cases, where the free-surface slopes are smaller). At best we can say that Mackie’s

theory gives qualitatively correct behaviour, predicting an initial rise up wedge

followed by wave propagation. Results for larger wedge angles (see Appendix B)

show similar effects.
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Figure 4.17: Comparison of computed free-surface profile with Mackie’s resuls
for the wedge SW5 entering with constant velocity of Fr = 1.
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Figure 4.17: Comparison of computed free-surface profile with Mackie’s resuls
for the wedge SW5 entering with constant velocity of Fr = 1.
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4.3.2 Asymmetric wedge entry

It is important to study the motion of a ship in all modes of motions (transla-

tion and rotation) in order to predict the global response of the ship due to the

slamming loads. In the case of rotation motions (e.g., roll motion), the entry and

exit problems become asymmetric. In addition to that, to design propellers for

ships in ballast, where the propeller blades exit and enter the water with each

revolution, we need to consider the motion of the propeller which is asymmet-

ric and has negative left-vertical angle (βh). We consider the asymmetric wedges

given in Table (4.2). The parameters for an asymmetric wedge are same as those

for a symmetric wedge except for the left angle βh as shown in Fig.(4.1(b)), see

page 41. Table (4.2) gives the details for the test cases carried out for the wedge.

The results for different Froude numbers of entry with constant velocity are given

in section (4.3.2.1). The computed numerical results for the asymmetric wedges

showing the time effect and finite depth effect are given in sections (4.3.2.3) and

(4.3.2.4) respectively. The convergence of the asymmetric wedge was also checked

and results are given in the CD as specified in Appendix (B).

Asymmetric wedge Half wedge angle
(AW) (βh) (αh)
AW1 5o 10
AW2 0o 15
AW3 −10o 25
AW4 −10o 30

Table 4.2: Asymmetric wedges considered for water entry cases

For asymmetric wedges we note that the fluid flow becomes singular at the vertex.

In reality, vortices will shed from the vertex and this will affect the flow, especially

on the left-hand side of the wedge (for negative angles). On the right-hand side,

the flow may be much more realistic. However, further calculations with with

vortex shedding and experiments would be highly desirable: comparison with the

results below would then indicate how important vortex shedding is.
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4.3.2.1 Froude number effect

To study the effect of Froude number on the results of the asymmetric wedges

considered, we carry out a set of test cases. For a particular asymmetric wedge,

the test process is to keep all the input variables of a specific run of the program

constant, and obtain the Froude numbers by varying the velocity of the entry for

the wedge. We plot the results for the free surface profile, pressure and force at the

same distance traveled by the asymmetric wedge for different entry speeds as time

progresses. The same process is repeated for the data sets and asymmetric wedges

as shown in Table (4.2). As we increase velocity of the entry, we can notice much

more deformation on the free surface and consequently in the pressure distribution

and force as shown in Fig. (4.18) and (4.19) for the asymmetric wedge AW4.
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Figure 4.18: Froude number effect of the asymmetric wedge AW4 submerged
at a non-dimensional initial depth d̂i = −1 entering with constant velocity
of different Froude numbers: plotted at different non-dimensional times τ =

2.49, 2.7, 1.68 and distance d̂ = −1.51.
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Figure 4.19: Froude number effect of the asymmetric wedge AW4 submerged
at a non-dimensional initial depth d̂i = −1 entering with constant velocity
of different Froude numbers: plotted at different non-dimensional times τ =

2.49, 2.7, 1.68 and distance d̂ = −1.51.
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4.3.2.2 Time effect

The motion of the asymmetric wedge and the free-surface profile change as time

progresses. We can compute the deformed free-surface profile, pressure along the

wetted part of the body and the upward force experienced by the body using the

non-linear theory. The computed results showing the time effect on free surface,

pressure and force at different stages of the entry with constant velocity are pre-

sented in this section. Figs. (4.20) to (4.23) show the time effect of the asymmetric

wedge AW4 entering with a Froude number of 0.3 at each time interval.
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Figure 4.20: Time effect of the asymmetric wedge AW4 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant velocity of Froude

number Fr = 0.3: plotted at different non-dimensional times τ .
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Figure 4.21: Time effect of the asymmetric wedge AW4 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant velocity of Froude

number Fr = 0.3: plotted at different non-dimensional times τ .
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Figure 4.22: Time effect of the asymmetric wedge AW4 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant velocity of Froude

number Fr = 0.3: plotted at different non-dimensional times τ .
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Figure 4.23: Time effect of the asymmetric wedge AW4 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant velocity of Froude

number Fr = 0.3: plotted at different non-dimensional times τ .
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4.3.2.3 Finite depth effect

We present results showing the effect on the free-surface profile, pressure and force

due to the change in depth for asymmetric wedges with constant velocity. The

results are plotted at the same distance moved by the body for different depths of

entry with the same velocity as it moves with time. Fig. (4.24) and (4.25) show the

computed free-surface profile, pressure distribution and force for the asymmetric

wedge AW4 entering with Froude number 0.3, showing the finite depth effect on

the motion. We notice, as expected, that for entry of the asymmetric wedge

AW4 a non-dimensional depth Nd below 1.4 experiences a greater difference in

the free-surface deformation, pressure and force than that of other depths. Fig.

4.25(c) shows that the force is actually reduced in small depths. This is somewhat

unexpected but we note an increased pressure on the left-hand side of the wedge,

which would push the wedge down more.
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Figure 4.24: Finite depth effect of the asymmetric wedge AW4 submerged
at a non-dimensional initial depth d̂i = −1 entering with constant velocity of
Froude number Fr = 0.3: (a) and (b) are plotted for different non-dimensional

depths Nd at a non-dimensional time τ = 1.35.
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Figure 4.25: Finite depth effect of the asymmetric wedge AW4 submerged
at a non-dimensional initial depth d̂i = −1 entering with constant velocity of
Froude number Fr = 0.3: (a) and (b) are plotted for different non-dimensional

depths Nd at a non-dimensional time τ = 1.35.
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4.3.3 Truncated wedge entry

Control parameters for the truncated wedge shown on Fig.(4.1(c)) are the left

half angle βh, right half angle αh, height of the wedge h, bottom width of the

wedge b and the aspect ratio Ta. We produce results for the test cases given in

the Table (4.3) by considering various aspect ratios Ta and wedge angles. The

results for different Froude numbers of entry with constant velocity are given

in section (4.3.3.1). The computed numerical results for the truncated wedges

showing the time effect and finite depth effect are given in sections (4.3.3.2) and

(4.3.3.3) respectively. Although vortex shedding from the corners of the body

is a possibility, the results here indicate that it is less significant than for the

asymmetric wedge or box (see later).

Truncated wedge Left angle Right angle
(TW) βh (αh)
TW1 10o 10o

TW2 20o 20o

TW3 30o 30o

Table 4.3: Truncated wedges for entry cases

4.3.3.1 Froude number effect

To study the effect of Froude number on the results for entry of truncated wedges,

we carry out a set of test cases. For a particular truncated wedge, the test process

is to keep all the input variables of a specific run of the program constant, and

obtain the Froude numbers by varying the velocity of the entry for the truncated

wedge. We plot the results for the free-surface profile, pressure and force at the

same distance traveled by the truncated wedge TW3 for different entry speeds

as time progresses. The same process is repeated for the other truncated wedges

considered. As we increase velocity of the entry, we can notice much more defor-

mation on the free surface and consequently in the pressure distribution and force

as shown in Fig. (4.26) for the truncated wedge TW3.

In reality for entry of bodies with a flat bottom (as in the truncated wedge and

box shaped bodies - see later), compressibility effects are likely to be important

in the marine context. Thus the peak pressure will be limited by the acoustic

pressure ρwcwv where ρw is the density of the fluid, cw is the speed of the sound in

the fluid and v is the entry velocity of the body, see von Karman (1929). In unavi-

ated water, the velocity of sound is approximately 800ms−1 but falls dramatically
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in water with small bubble content which further reduces the maximum pressure

that is possible for the flat bottom case, see Lundgern (1969).
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Figure 4.26: Froude number effect of the truncated wedge TW3 submerged
at a non-dimensional initial depth d̂i = −1 entering with constant velocity of
different Froude numbers: (a) and (b) are plotted at a non-dimensional time

τ = 2.5, 2, 1.5 and distance d̂ = −1.76.
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4.3.3.2 Time effect

The motion of the truncated wedge changes as time progresses. We can compute

the deformed free-surface profile, pressure along the wetted part of the body and

the upward force experienced by the body using the non-linear theory. The com-

puted results showing time effect on free surface, pressure and force at different

stages of the entry of the truncated wedges with constant velocity are presented

in this section. Figs. (4.27) to (4.28) show the time effect of the truncated wedge

TW3 entering with Froude number of 0.5.
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Figure 4.27: Time effect of the truncated wedge TW3 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant velocity of Froude
number Fr = 0.5: (a) and (b) are plotted at different non-dimensional times τ .
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Figure 4.28: Time effect of the truncated wedge TW3 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant velocity of Froude
number Fr = 0.5: (a) and (b) are plotted at different non-dimensional times τ .
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4.3.3.3 Finite depth effect

We present results showing finite depth effect on the free-surface profile, pressure

and force due to the change in depth of the entry of truncated wedges with constant

velocity using the non-linear time-stepping method. The results are plotted at

the same distance close to the bottom surface (seabed) moved by the truncated

wedge for different depths of entry with the same velocity as it moves with time.

Fig. (4.29) represents the computed free-surface profile, pressure distribution and

force for the truncated wedge TW3 entering with Froude number 0.5 showing

the finite depth effect on the motion. We notice, as expected, that for entry of

the truncated wedge TW3 a non-dimensional depth Nd below 2.55 experiences a

greater difference in the free-surface deformation, pressure and force than that of

other depths.
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Figure 4.29: Finite depth effect of the truncated wedge TW3 submerged at a
non-dimensional initial depth d̂i = −1 entering with constant velocity of Froude
number Fr = 0.5: (a) and (b) are plotted for different non-dimensional depths

Nd at a non-dimensional time τ = 1.6.
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4.3.4 Box entry

As in the previous sections, the control parameter for a box body as geometrically

sketched in Fig.(4.1(d)) is the aspect ratio Ra which is the ratio of the initial

depth to the width of the box. We can produce more results, but, for simplicity,

we present some results showing Froude number effect and time effect on the

motion of the box BX1 with the aspect ratio 0.5 as explained in the previous

sections for other shapes. The results for different Froude numbers of entry with

constant velocity are given in section (4.3.4.1). The computed numerical results

for the box body showing the time effect and finite depth effect in sections (4.3.4.2)

and (4.3.4.3) respectively. As for the asymmetric wedge we can expect vortices to

be shed from the sharp corners. Hence the pressures near those corners are not

reliable in these calculations, but may form a basis for comparisons with future

work.

4.3.4.1 Froude number effect

To study the effect of Froude number on the results for the entry of the box, we

carry out a set of test cases. For a particular box, the test process is to keep all the

input variables of a specific run of the program constant, and obtain the Froude

numbers by varying the velocity of the entry for the box. We plot the results for

the free-surface profile, pressure and force at the same distance traveled by the

box for different entry speeds as time progresses. The same process is repeated

for the data sets and for the box considered. As we increase velocity of the entry,

we can notice much more deformation on the free surface and consequently in the

pressure distribution and force as shown in Fig. (4.30) and (4.31) for the box BX1.
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Figure 4.30: This figure shows the Froude number effect of the box BX1
submerged at a non-dimensional initial depth d̂i = −1 entering with constant
velocity of different Froude numbers: (a) and (b) are plotted at different non-

dimensional times τ = 3.38, 263, 2.25 and distance d̂ = −2.51.
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Figure 4.31: Froude number effect of the box BX1 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant velocity of differ-
ent Froude numbers: (a) is plotted at different non-dimensional time τ =

3.38, 263, 2.25 and distance d̂ = −2.51.
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4.3.4.2 Time effect

The motion of the box changes as time progresses. We can compute the deformed

free-surface profile, pressure along the wetted part of the box and the upward force

experienced by the box using the non-linear theory. The computed results showing

time effect on free surface, pressure and force at different stages of the entry of the

box with constant velocity are presented in this section. Fig. (4.32) and (4.33)

show time effect of the box BX1 entering with Froude number of 0.7.
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Figure 4.32: Time effect of the box BX1 submerged at a non-dimensional
initial depth d̂i = −1 entering with constant velocity of Froude number Fr = 0.7:

(a) and (b) are plotted at different non-dimensional times τ .
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Figure 4.33: Time effect of the box BX1 submerged at a non-dimensional
initial depth d̂i = −1 entering with constant velocity of Froude number Fr = 0.7:

(a) is plotted at different non-dimensional times τ .
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4.3.4.3 Finite depth effect

We present results showing the effect on the free-surface profile, pressure and

force due to the change in depth of the entry of the box with constant velocity.

The results are plotted at the same distance close to the bottom surface (seabed)

for different depths of entry with the same velocity as it moves with time. Fig.

(4.34) and (4.35) present the computed free-surface profile, pressure distribution

and force for the box BX1 entering with Froude number 0.7 showing finite depth

effect on the motion. We notice, as expected, that for entry of the box BX1 a

non-dimensional depth Nd below 1.5 experiences a greater difference in the free-

surface deformation, and a very much greater difference in the pressure and force

than that of other depths. Such effects are likely to be real but their accurate

computation would need to include vortex shedding at the box corners, so we do

not pursue this further here.
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Figure 4.34: Finite depth effect of the box BX1 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant velocity of Froude
number Fr = 0.7: (a) and (b) are plotted for different non-dimensional depths

Nd at a non-dimensional time τ = 0.63.
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Figure 4.35: Finite depth effect of the box BX1 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant velocity of Froude
number Fr = 0.7: (a) is plotted for different non-dimensional depths Nd at a

non-dimensional time τ = 0.63.
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4.4 Constant acceleration entry

This section, for constant acceleration entry of symmetric wedges, asymmetric

wedges, truncated wedges and box bodies, reviews the application of the non-

linear theory and shows numerical results. For each shape shown in Fig. (4.1), we

present computed free-surface profile, pressure distribution along the wetted part

of the body and total force experienced by the body as it enters through the free

surface with constant acceleration. The symmetric wedges, asymmetric wedges,

truncated wedges and boxes entering with constant acceleration are presented in

section (4.3.1), (4.3.2), (4.3.2) and (4.3.4) respectively. We note that the comments

about vortex shedding given in section (4.3) for constant velocity entry will still

apply. However, for small time the velocity is small. So at least then, vortex

shedding will be less significant.

4.4.1 Symmetric wedge entry

We present numerical results computed using the non-linear time-stepping method

for the each symmetric wedge, as considered in the constant velocity entry. The

test cases considered for the symmetric wedges entering with constant acceleration

are explained in this section. For the symmetric wedges entering with constant

acceleration, results showing time effect on the stages of the motion with constant

acceleration are presented in section (4.4.1.1). The result of changing acceleration

and the comparison of numerical force with the analytical added mass force is

given in section (4.4.1.2) and (4.4.1.3) respectively.

4.4.1.1 Time effect

The time effects on free-surface profile, pressure distribution and total force are

computed for the symmetric wedges considered, as for the constant velocity cases.

The plots are obtained for different time intervals of entry with constant accel-

eration. The length of time interval for each symmetric wedge depends on the

angle of the symmetric wedges and the acceleration of the entry. For each specific

interval, the results are plotted at different times. Fig. (4.36) and (4.37) show

the time effect of the symmetric wedge SW3 entering with the non-dimensional

constant acceleration Gτ=1, whereas Fig. (4.38) and (4.39), and Fig. (4.40) and
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Figure 4.36: Time effect of the symmetric wedge SW30 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant acceleration Gτ = 1:

plotted at different non-dimensional times τ .

(4.41) are for the wedge entering with the non-dimensional constant acceleration

Gτ=0.5 and 0.2 respectively.
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Figure 4.37: Time effect of the symmetric wedge SW30 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant acceleration Gτ = 1:

(a) and (b) are plotted at different non-dimensional times τ .
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Figure 4.38: Time effect of the symmetric wedge SW30 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant acceleration Gτ = 0.5:

plotted at different non-dimensional times τ .
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Figure 4.39: Time effect of the symmetric wedge SW30 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant acceleration Gτ = 0.5:

(a) and (b) are plotted at different non-dimensional times τ .



Chapter 4. Water Entry of Different Shaped Bodies 101

0 1 2 3 4 5 6 7 8 9 10

−0.5

0

0.5

Non-dimensional Free Surface Profile

 

 

τ = 0

0 1 2 3 4 5 6 7 8 9 10

−0.5

0

0.5

Y D
i

 

 

τ = 1.8

0 1 2 3 4 5 6 7 8 9 10

−0.5

0

0.5

 

 

τ = 2.8

0 1 2 3 4 5 6 7 8 9 10

−0.5

0

0.5

X

Di

 

 

τ = 3.8

(a)

Figure 4.40: Time effect of the symmetric wedge SW30 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant acceleration Gτ = 0.2:

plotted at different non-dimensional times τ .
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Figure 4.41: Time effect of the symmetric wedge SW30 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant acceleration Gτ = 0.2:

(a) and (b) are plotted at different non-dimensional times τ .
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4.4.1.2 Acceleration effect

This section for constant acceleration entry of the symmetric wedges presents

computed numerical results for free-surface profile, pressure distribution and total

force. The results are obtained by running the program with different constant

accelerations while attaining the same distance traveled by the symmetric wedges.

Fig. (4.42) shows the acceleration effect of the symmetric wedge SW30 entering

with different accelerations.
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Figure 4.42: Acceleration effect of the symmetric wedge SW30 submerged at
a non-dimensional initial depth d̂i = −1 entering with different constant accel-
erations Gτ : (a) and (b) are plotted at a non-dimensional time τ = 5.4, 3.6, 1.8

and distance d̂ = −2.62.
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4.4.1.3 Added mass effect

In an unbounded fluid, particles near to a moving body are accelerated due to

the motion executed by the body. The body experiences a great amount of hy-

drostatic and hydrodynamic pressure on it due to the interaction between the

fluid and the body which oppose the motion of the body. These are integrated

to calculate total hydrostatic and hydrodynamic forces. The hydrodynamic forces

can be thought of in terms of some amount of fluid mass that moves with the

body as an added mass (ma). The motion of the system of the fluid and body

can be predicted using Lagrangian dynamics, see Barringer (1996) for more details.

The model we use here takes advantage of the fact that at t=0, the flat free

surface is a line of equipotential φ = 0. Thus for heave motion, the fluid flow is

initially that in the lower half plane of a double body i.e. a diamond shape of

the wedge and it is reflected the free surface, see Newman (1977). This makes it

possible to deduce the added masses of the various body shapes moving in heave.

In the usual seakeeping theories, this added mass is simply the high-frequency

limit of the radiation problem.

In this section, we derive the equation of the system of the fluid and body, the an-

alytical added-mass force for a symmetric wedge and a box body, as explained by

Barringer (1996). Then the analytical force is compared with the force difference

between the total numerical force computed using the nonlinear theory of Vinje

and Bervig (1981a; 1981b) and the buoyancy force, to verify that the forces agree

at initial time t=0. The buoyancy force is simply that of the body below the still

water line y=0, not the instantaneous water line which is not known a priori.

The equation for the motion of the system of water and the body consists of

the hydrostatic force (Fb, buoyancy force) and the hydrodynamic force (Fa, added

mass force). The buoyancy force is given by

Fb = ρwg∀(t), (4.9)

where ρw is the fluid density, g is gravitational acceleration, and ∀(t) is submerged

volume of the instantaneous portion of the body below the undisturbed free sur-

face level at y = 0 and a time t .
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The added mass force can be defined from the energy of the system of the fluid

and body. The kinetic energy is written as

T =
1

2
(ma +mb)v

2. (4.10)

The potential energy can be given as

V =

0∫
−y

(ρwg∀ −mbg)dy = (ρwg∀ −mbg)y. (4.11)

The total energy L of the system is simply sum of the kinetic energy T and the

potential energy V:

L = T + V =
1

2
(ma +mb)ẏ

2 + (ρwg∀ −mbg)y. (4.12)

Now we can apply the Lagrange’s equation for the motion of the system in a single

degree of freedom (vertical motion of the body in heave mode):

∂L

∂y
− d

dt

(
∂L

∂y

)
= 0. (4.13)

By using Eq. (4.12) and Eq. (4.13), we get

∂L

∂y
− d

dt

(
∂L

∂y

)
=

1

2

dma

dz
ẏ2 + (ρwg∀ −mbg)− d

dt

(
1

2
(ma +mb)2ẏ

)
, (4.14)

and

d

dt

(
1

2
(ma +mb)2ẏ

)
= (ma +mb)ÿ +

dma

dy

dy

dt
ẏ = (ma +mb)ÿ +

dma

dy
ẏ2. (4.15)

We find

∂L

∂y
− d

dt

(
∂L

∂y

)
= −1

2

dma

dy
ẏ2 + (ρwg∀ −mbg)− (ma +mb)ÿ = 0. (4.16)

Hence the equation for the motion of the system is

mbÿ +mbg − ρwg∀ = −maÿ −
1

2

dma

dy
ẏ2, (4.17)
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where the left-hand side is the equation of motion and the right-hand side is the

added mass force Fa which can be stated as

Fa =
1

2

dma

dy
v2 +mav̇, (4.18)

where ma is the added mass, y is the vertical axis, and ẏ and ÿ are replaced by v

and v̇ (the heave velocity and acceleration), respectively. This is exact, but one

can not calculate the energy in the fluid easily except at time t = 0. In general the

added mass would depend on the entire history of motion (i.e. memory), due to

wave radiation. Wagner (1932) gives the added mass force for a symmetric wedge

as

ma = ρb2G tanα, (4.19)

and the derivative of the added mass is

dma

dy
=

d

dy

{
ρb2G tanα

}
, (4.20)

where the function G is given in terms of Gamma functions by

G =
Γ
(
1 + α

π

)
Γ
(

1
2
− α

π

)
Γ
(
1− α

π

)
Γ
(

1
2

+ α
π

) − 1, (4.21)

and b = Di− y is the submerged depth of the wedge, where Di is initial draft and

y is change in depth. The Γ(..) are Gamma functions, the evaluation of which is

performed using the following identities (see Abramowitz and Stegun (1965)):

Γ(1 + x) = xΓ(x), (4.22)

Γ(x)Γ(1− x) =
π

sin πx
, (4.23)

Γ(1 + x) = 1 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5, (4.24)
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where Eq. (4.24) is valid for |x| < 1 and the coefficients are given by

a1 = −0.5748646,

a2 = 0.9512363,

a3 = −0.6998588,

a4 = 0.4245549,

a5 = −0.1010678.

Wagner (1932) states his results for ma without explanation, and it is worth de-

riving the result here for comparison with the more complicated body geometry

considered later. We consider the Schwartz-Christoffel mapping, see e.g. Milne-

Thomson (1968). From the Schwartz-Christoffel theorem, we can state

· · 

z - plane ς - plane

· · · 

A∞ A∞ E∞ E∞ B DBD

Flow past a wedge in the 
upper-half plane

Uniform flow in the upper-
half plane

C· 

C

Figure 4.43: Definition sketch for the flow mapping in the plane
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z = K ′
ζ∫

0

(ζ + 1)
π−α
π
−1(ζ)

π+2α
π
−1(ζ − 1)

π−α
π
−1dζ + L (4.25)

z = K

ζ∫
0

(ζ)
2α
π

(1− ζ2)
α
π

dζ + L. (4.26)

At point C: ζ = 0, z = ai⇒ L = ai.

At point D: ζ = 1, z = b⇒ b = K

1∫
0

(ζ)
2α
π

(1− ζ2)
α
π

dζ + ai.

Using the identity, we get

Γ(q)Γ(p)

Γ(q + p)
=

1∫
0

tq−1(1− t)p−1dt. (4.27)

From Abramowitz & Stegun (1965), and the substitution ζ =
√
t, we can derive

b = K
Γ
(
α
π
− 1

2

)
Γ
(
1− α

π

)
√
π

+ ai⇒ K =
(b− ai)

√
π

Γ
(
α
π
− 1

2

)
Γ
(
1− α

π

) . (4.28)

We now set K = |K|e−ia where

|K| = b

cosα

√
π

Γ
(
α
π
− 1

2

)
Γ
(
1− α

π

) . (4.29)

So we can express

z = |K|
ζ∫

0

(
1− 1

ζ2

)−α
π

dζ + ai = |K|
ζ∫

1

(
1 +

α

π

1

ζ2
+ ...

)
dζ + b, (4.30)

since

|K|
1∫

0

(
1− 1

ζ2

)−α
π

dζ = b− ai. (4.31)

Integrating gives

z = |K|
(
ζ − α

π

1

ζ
+ ...

)
. (4.32)
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Thus

ζ = z′ +
α

π

1

z′
+ ..., (4.33)

where

z′ =
z

|K|

by series reversion.

We require β(z)→ z as z →∞ for unit velocity at ∞. So

β(z) = |K|ζ = z + |K|2α
π

1

z
+ ... (4.34)

The added mass can be derived from the dipole coefficient as explained in Newman

(1977) and Appendix B. So taking the coefficient of 1/z we can conclude(
ma

ρ
+ ∀
)

= |K|2α =
(a2 + b2)πα[

Γ
(
α
π
− 1

2

)
Γ
(
1− α

π

)]2 , (4.35)

where ∀ = b2 tanα is the body volume. Using further identities defined in Abramowitz

and Stegun (1965) we obtain the equation(
ma

ρ
+ ∀
)

= b2 tanα
α
π
Γ
(
α
π

)
Γ
(

1
2
− α

π

)
Γ
(
α
π

+ 1
2

)
Γ
(
α
π

+ 1
2

) . (4.36)

With minor manipulation we finally obtain equations as stated by Wagner (1932).

Fig. (4.44) shows the relationship between the added mass, ma. and the wedge

half angle, α. The added mass is non-dimensionalised in two different manners.

On the left we non-dimensionalise with respect to the submerged body depth, b.

Now we get

ma

ρπb2
=

tanα

π
G. (4.37)

On the right we non-dimensionalise with respect to the body half width, a2 =

b2tanα. We non-dimensionalise with respect to body half width to allow for com-

parisons with other body cross sections presented in later sections. We can write
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as

ma

ρπa2
=
G

π
. (4.38)

We note that the added mass for the wedge approaches ρπa2/2 as α approaches

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

Wedge angle Α

N
on

-
di

m
en

si
on

al
A

dd
ed

M
as

s
w

rt
b

N
on

-
di

m
en

si
on

al
A

dd
ed

M
as

s
w

rt
a

Figure 4.44: Non-dimensional added mass (with respect to the depth b and
half width a) vs vertical half-wedge angle α

90 degrees. We expect this result since it is the added mass for a flat plate of half

width a (equivalent to the displaced mass of a cylinder radius a).

Differentiating the added mass with respect to y and noting that b is a function

of y, we get

dma

dy
= −2ρbG tanα. (4.39)

Hence, by substitution we can obtain the added mass force in a form suitable for

comparison with the numerical calculations.

We compare the force difference (Fd = Fn − Fb) with the analytic added mass

force (Fa) because the numerical force (Fn) which we compute using the numeri-

cal method consists of the buoyant force (Fb) and the force due to the pressure on

the body (dynamic force), but the computation of the added-mass force does not

include the buoyancy force.

Fig. (4.45) and Fig. (4.46) show comparisons of the computed force difference

and the analytical added mass force computed for the symmetric wedge SW30

entering water with constant accelerations (Gτ ) of 1 and 0.5 respectively. It can

be noted that both forces are close to each other at time zero. The added-mass
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force (Fa) computed using Eq. (4.18) is positive and increasing as time goes up for

entry cases with constant acceleration (see Fig. (4.45) and (4.46)) and constant

velocity (see Fig. (4.47)).
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Figure 4.45: Computed numerical force difference and added mass force show-
ing added mass effect for the wedge SW30 entering with constant acceleration

Gτ = 1.
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Figure 4.46: Computed numerical force difference and added mass force show-
ing added mass effect for the wedge SW30 entering with constant acceleration

Gτ = 0.5.
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We also computed the added mass force for the symmetric wedges of various half

angles entering water with constant velocity. Fig. (4.47) shows comparison of the

computed force difference and the analytical added mass force computed for the

symmetric wedge SW30 entering water with a Froude number Fr of 0.5. Results

for other wedge angles are given in the CD, see Appendix B.
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Figure 4.47: Computed numerical force difference and added mass force show-
ing added mass effect for the wedge SW30 entering with constant velocity of

Froude number Fr = 0.5.



Chapter 4. Water Entry of Different Shaped Bodies 115

4.4.2 Asymmetric wedge entry

We present numerical results computed using the non-linear time-stepping method

for the each asymmetric wedge same as considered in the constant velocity entry.

The test cases considered for the asymmetric wedges entering with constant ac-

celeration are explained in this section. For the asymmetric wedges entering with

constant acceleration, the results showing the time effect on the stages of the

motion with constant acceleration are presented in section (4.4.2.1), whereas the

result of changing acceleration is given in section (4.4.2.2).

4.4.2.1 Time effect

As for the constant velocity entry, here we repeat the process for constant acceler-

ation entry of asymmetric wedges. The time effect on free-surface profile, pressure

distribution and total force are computed for the asymmetric wedges entering

with constant acceleration. The plots are obtained for different time intervals.

The length of interval for each asymmetric wedge depends on the angle of the

asymmetric wedges and the acceleration of the entry. For each specific interval,

the results are plotted at different times. Fig. (4.48) and (4.49) show the time

effect of the asymmetric wedge AW4 entering with constant acceleration of 0.5,

whereas Figs. (4.50) to (4.53) show the effect for the constant acceleration of 0.25.
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Figure 4.48: Time effect of the asymmetric wedge AW4 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant acceleration Gτ = 0.5:

(a) and (b) are plotted at different non-dimensional times τ .
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Figure 4.49: Time effect of the asymmetric wedge AW4 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant acceleration Gτ = 0.5:

(a) and (b) are plotted at different non-dimensional times τ .
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Figure 4.50: Time effect of the asymmetric wedge AW4 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant accelerationGτ = 0.25:

(a) and (b) are plotted at different non-dimensional times τ .
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Figure 4.51: Time effect of the asymmetric wedge AW4 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant accelerationGτ = 0.25:

(a) and (b) are plotted at different non-dimensional times τ .
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Figure 4.52: Time effect of the asymmetric wedge AW4 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant accelerationGτ = 0.25:

(a) and (b) are plotted at different non-dimensional times τ .
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Figure 4.53: Time effect of the asymmetric wedge AW4 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant accelerationGτ = 0.25:

(a) and (b) are plotted at different non-dimensional times τ .
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4.4.2.2 Acceleration effect

This section for constant acceleration entry of the asymmetric wedges presents

computed numerical results for the free-surface profile, pressure distribution and

total force. The results are obtained by running the program with different con-

stant accelerations while attaining the same distance traveled by the asymmetric

wedges. Fig. (4.54) and (4.55) show the acceleration of the asymmetric wedge

AW4 entering with different accelerations.
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Figure 4.54: Acceleration effect of the asymmetric wedge AW4 submerged
at a non-dimensional initial depth d̂i = −1 entering with different constant
accelerations Gτ : (a) and (b) are plotted at different non-dimensional times

τ = 1.35, 2.67 and distance d̂ = −1.45.
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Figure 4.55: Acceleration effect of the asymmetric wedge AW4 submerged
at a non-dimensional initial depth d̂i = −1 entering with different constant
accelerations Gτ : (a), (b) and (c) are plotted at different non-dimensional times

τ = 1.35, 2.67 and distance d̂ = −1.45.
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4.4.3 Truncated wedge entry

We present numerical results computed using the non-linear time-stepping method

for the same truncated wedges considered in section (4.3.3) for constant velocity

entry of the truncated wedges. The test cases considered for the truncated wedges

entering with constant acceleration are explained in this section. For the truncated

wedge entering with constant acceleration, the results showing time effect are

presented in section (4.4.3.1), while the results of changing in acceleration are

given in section (4.4.3.2).

4.4.3.1 Time effect

As for the constant velocity entry of the truncated wedges, here we repeat the

process for constant acceleration entry of the truncated wedges. The time effect

on free-surface profile, pressure distribution and total force are computed for the

truncated wedges entering with constant acceleration. The plots are obtained

for different time intervals. The length of interval for each truncated wedge de-

pends on the angle of the truncated wedges and the acceleration of the entry. For

each specific interval, the results are plotted at different times. Fig. (4.56) and

(4.57) show the time effect of the truncated wedge TW3 entering with constant

acceleration of 1, whereas Fig. (4.58) and (4.59) show the effect for the constant

acceleration of 0.5.
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Figure 4.56: Time effect of the truncated wedge TW3 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant acceleration Gτ = 1:

(a) and (b) are plotted at different non-dimensional times τ .
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Figure 4.57: Time effect of the truncated wedge TW3 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant acceleration Gτ = 1:

(a) and (b) are plotted at different non-dimensional times τ .
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Figure 4.58: Time effect of the truncated wedge TW3 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant acceleration Gτ = 0.5:

(a) and (b) are plotted at at different non-dimensional times τ .
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Figure 4.59: Time effect of the truncated wedge TW3 submerged at a non-
dimensional initial depth d̂i = −1 entering with constant acceleration Gτ = 0.5:

(a) and (b) are plotted at at different non-dimensional times τ .
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4.4.3.2 Acceleration effect

This section for constant acceleration entry of the truncated wedges presents com-

puted numerical results for free-surface profile, pressure distribution and total

force. The results are obtained by running the program with different constant

accelerations while attaining the same distance traveled by the truncated wedges.

Fig. (4.60) shows the acceleration of the truncated wedge TW3 entering with

different accelerations.
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Figure 4.60: Acceleration effect of the truncated wedge TW3 submerged at a
non-dimensional initial depth d̂i = −1 entering with different constant acceler-
ations Gτ : (a) and (b) are plotted at different non-dimensional times τ = 1.5, 3

and distance d̂ = −2.12.
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4.4.4 Box body entry

We present numerical results computed using the non-linear time-stepping method

for the box body same as considered in the constant velocity entry. The test cases

considered for the box body entering with constant acceleration are explained in

this section. For the box body entering with constant acceleration, the results

showing time effect on the stages of the motion with constant acceleration is

presented in section (4.4.4.1). The results of changing in acceleration and the

comparison of numerical force with the analytical added mass force is given in

section (4.4.4.2) and (4.4.4.3) respectively.

4.4.4.1 Time effect

As for the constant velocity entry of the box body, here we repeat the process for

constant acceleration entry of the box body. The time effect on free-surface profile,

pressure distribution and total force are computed for the box body entering with

constant acceleration. The plots are obtained for different time intervals. The

length of interval for each box body depends on the aspect ratio of the box body

and the acceleration of the entry. For each specific interval, the results are plotted

at different times. Fig. (4.61) and (4.62) show the time effect of the box body

BX1 entering with constant acceleration of 1, whereas Fig. (4.63) and (4.64) show

the effect for the constant acceleration of 0.25.
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Figure 4.61: Time effect of the box BX1 submerged at a non-dimensional
initial depth d̂i = −1 entering with constant acceleration Gτ = 1: (a) and (b)

are plotted at different non-dimensional times τ .
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Figure 4.62: Time effect of the box BX1 submerged at a non-dimensional
initial depth d̂i = −1 entering with constant acceleration Gτ = 1: (a) is plotted

at different non-dimensional times τ .
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Figure 4.63: Time effect of the box BX1 submerged at a non-dimensional
initial depth d̂i = −1 entering with constant acceleration Gτ = 0.25: (a) and

(b) are plotted at different non-dimensional times τ .
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Figure 4.64: Time effect of the box BX1 submerged at a non-dimensional
initial depth d̂i = −1 entering with constant acceleration Gτ = 0.25: (a) is

plotted at different non-dimensional times τ .
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4.4.4.2 Acceleration effect

This section for constant acceleration entry of the box body presents computed

numerical results for free-surface profile, pressure distribution and total force. The

results are obtained by running the program with different constant accelerations

while attaining the same distance traveled by the box body. Fig. (4.65) and (4.66)

show the acceleration of the box body BX1 entering with different accelerations.
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Figure 4.65: Acceleration effect of the box BX1 submerged at a non-
dimensional initial depth d̂i = −1 entering with different constant accelerations
Gτ : plotted at different non-dimensional times τ = 1.88, 3.76, 5.64 and distance

d̂ = −2.77.
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Figure 4.66: Acceleration effect of the box BX1 submerged at a non-
dimensional initial depth d̂i = entering with different constant acceleration
Gτ : plotted at different non-dimensional times τ = 1.88, 3.76, 5.64 and distance

d̂ = −2.77.
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4.4.4.3 Added mass effect

As for symmetric wedges, the added mass of the box body can also be found by

conformal mapping, see Barringer (1996). The equation for the analytical added

mass and the added mass for a box body taken from the Barringer’s derivation is

explained.

The force equation of the box body motion is given by complete elliptic integral,

giving a curve that can be fitted by the empirical formula:

Fa =
1

2

dma

dy
ẏ2 +maÿ. (4.40)

The added mass force is given by

ma

ρπa2
= 0.50589 + 0.26405

√
y

a
− 0.00104839(

y

a
)( 3

2
) − 0.000014487(

y

a
)2, (4.41)

where a is the bottom half-width of the box and the derivative of the added mass

with respect to the depth variable y is given by

1

ρπa2

dma

dy
= 0.132025

1
√
ay

+
0.0251687

a
+ 0.001572585

y

a
− 0.000028974

y

a2
.(4.42)

These are compared for the box body with the force difference computed numeri-

cally. Fig. (4.67) shows the comparison of the computed force difference and the

analytical added mass force computed for the box body BX1. It can be noted that

both forces are fairly close to each other at time zero, but here we have resolution

problems at the box corners as well as the intersection points.
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Figure 4.67: Computed numerical force difference and added mass force show-
ing added mass effect for the box BX1 entering with constant acceleration

Gτ = 1.
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Figure 4.68: Computed numerical force difference and added mass force show-
ing added mass effect for the box BX1 entering with constant velocity of Froude

number Fr = 0.6.

We also computed the added mass force for the box BX1 entering water with

constant velocity. Fig. (4.68) shows comparison of the computed force difference

and the analytical added mass force computed for the box BX1 entering water

with a Froude number Fr of 0.6. Clearly the added mass theory gives accurate

results for small time only for the constant acceleration case. Thus while the value

of the added mass given by the simplified added mass model is adequate for small

time, its derivative is not. In reality the motion of the free surface will have an

effect here.
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4.5 Comparison of entry for different wedge an-

gles

In this section, we give a comparison of the computed results for the entry cases

with constant velocity and constant acceleration with various angles and shapes.

For the constant velocity entry, we present a graph showing the limit of the Froude

number which can be used to produce results for a particular shape without break-

ing the numerical computations. The reason for the breakdown of the numerical

computations is the rapid flow created by entry/exit at high Froude number. This

causes the fluid particles move fast and creates numerical instability in the com-

putation of the results. This is especially true for the intersection points and also

in the derivative of the complex potential at the vertex or corners of the body.

4.5.1 Constant velocity

We numerically studied the entry problem of symmetric wedges, asymmetric wedges,

truncated wedges and box by producing extensive results. However, we can only

present some results here. Other results are also very useful for future studies of

water entry and are included on the CD and explained in Appendix B.

Symmetric wedges

For entry of symmetric wedges, we consider the vertical-half angle varying from

5o to 550. Whilst we selected the angle 30o to present the computed numerical

results, the results for entry of other angles are documented in the CD. As we

increase the angles of symmetric wedges for a particular Froude number entry, we

can see a significant difference in the results for free-surface profile, pressure and

force. We also notice that the change in Froude number for a particular wedge

will give noticeable effects on the results. The maximum Froude number that can

be used for entry of the symmetric wedges is plotted in Fig. (4.69).

By comparing the computed results for entry given in the CD showing the finite-

depth effect, we can see much more effects in the force. It means that the contact

surface becomes flatter, which more strongly affects the motion of the particles as

we increase the angle of entry.
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Figure 4.69: Froude numbers for the symmetric wedges entering with constant
velocity.

The following Table. (4.4) shows the computed value of speed of the intersec-

tion point for entry of the symmetric wedges which was computed for the Froude

number of 0.4 that is the maximum Froude number that can be used to compute

results for the entry of all the symmetric wedges.

Symmetric wedge Speed of intersection point
(SW) (vi)
SW5 0.276
SW20 0.590
SW30 0.963
SW45 1.071
SW55 1.244

Table 4.4: Speed of the intersection points for symmetric wedges considered
for water entry cases at t=0

We note that at t=0 this non-dimensional speed is independent of the Froude

number, suggesting that some sort of extension of Wagner’s model for flat wedges

(small deadrise angles) might be appropriate. However, Wagner’s outer solution

relies on the very simple flow around a flat plate; for the diamond-shaped double

body here, the corresponding outer solution is far more complicated and so has

not been attempted. Finally, by comparing the results for entry using Mackie’s

theory, we do not see good agreement. It does not work either for entry of slender

wedge cases or flatter wedges.
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Asymmetric wedges

For entry of asymmetric wedges, we considered three different asymmetric wedges

and presented results for asymmetric wedge (AW4) with left-half-wedge angle−10o

and right-half-wedge angle 30o entering water in section (4.3.2). By comparing the

results in the CD for other asymmetric wedges, we notice that the Froude numbers

that can be used for asymmetric wedges are not same as for the symmetric wedges.

It means that we need low Froude numbers to obtain better numerical results due

to the complex flow involving for high Froude number entry of asymmetric wedges.

We can also notice that we can see much more effect in the results as we increase

the wedge angles. The Froude numbers that can be used to run entry of the

asymmetric wedges are given in Fig. (4.70).
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Figure 4.70: This figure shows the Froude numbers for the asymmetric wedges
entering with constant velocity.

Finally, we can see a significant effect in the finite depth cases of asymmetric

wedges compared with the symmetric wedge cases, see the CD for more details.

Truncated wedges

For entry of truncated wedges, we considered three different symmetric wedges of

left and right half-wedge angles 10o, 20o and 30o entering with different Froude

numbers. We can produce more results by considering different aspect ratios
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and asymmetric truncated wedges. However, we only considered some cases for

simplicity of the study in this thesis. Similar effects as entry of other wedges can

be noticed for the test cases as the angle increases. By comparing with the results

for the finite depth effect of entry of symmetric wedges and truncated wedges of

same angles, it can be noticed that a small difference in the results of the truncated

wedges can be seen due to the flatted bottom surface of the truncated wedges.
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Figure 4.71: This figure shows the Froude numbers for the truncated wedges
entering with constant velocity.

Box

For entry of box, we only considered one box BX1 because the computed results

do not show very significant effects. However, there is a noticeable effect in the

finite depth case as it has a flat bottom surface, making it very hard to push the

water under it.

4.5.2 Constant acceleration

We considered similar shapes as for constant velocity entry to compute and present

numerical results for constant acceleration. The considered test cases for the entry

with constant accelerations examine the time effect, acceleration effect and added

mass effect for symmetric wedges and box. By increasing the angle of the wedges
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Figure 4.72: This figure shows the Froude numbers for the boxes entering
with constant velocity.

and accelerations, it is not possible to run the code because the intersection points

move rapidly and causes numerical break down.

We presented results by choosing appropriate entry accelerations which vary with

the angle of the wedges. By comparing the results for each shape (see the CD),

we can see much more effect on the free-surface profile, the pressure distribution

and the force as the angles and the constant acceleration of the entry increase for

entry of each shape.

For entry of the symmetric wedges and box body, we computed analytical added

mass force and compared with the numerical force difference. The results for

entry of the symmetric wedge SW30 were presented in section (4.4.1), whereas

others are given in the CD. By comparing the results for entry of each shape,

we notice that there is generally good agreement of the analytical result with the

numerical results initially for constant acceleration cases. However, the result for

entry with constant velocity does not give good agreement because the theory can

not simply cope when the free surface also moves, thereby affecting the effective

submerged volume of the body and hence the force. The added mass theory

in general underestimates the hydrodynamic forces, which we believe is to be

expected. In addition to that, for the box cases, this may be due to difficulties in

calculating the hydrodynamics pressure at corner points on the contour. On the

other hand, the added mass theory is generally good for acceleration cases.



Chapter 5

Water Exit of Different Shaped

Bodies

In this chapter, we present a set of selected results for water exit of symmetric

wedges, asymmetric wedges, truncated wedges and boxes exiting with constant

velocity and constant acceleration from water initially at rest. To verify the com-

puted results, we carry out a set of tests such as convergence checks, Froude

number effect for the constant velocity cases, time effect on the fluid motion and

added mass effect on force for constant acceleration cases. The two-dimensional

shapes selected to compute results for water exit are explained in section (5.1).

The constant velocity exit and constant acceleration exit are considered in sec-

tions (5.2) and (5.3), respectively. We also give some results showing the finite

depth effect on exit problems and consider the speed of the intersection points for

exit of symmetric wedges. Finally, we present results to compare analytic results

computed by using Mackie’s (1969, 1965 and 1962) theory (see Greenhow (1990))

for exit of symmetric wedges with the results produced by the present non-linear

time-stepping method of Vinje and Brevig (1981a and 1981b).

5.1 Shapes

In addition to the 2D shapes considered to study water entry problems, we con-

sider the following combined body of wedge and thin plate with various angles to

compute results for water exit cases with constant velocity or acceleration. The

fluid particles follow the bodies exiting water after some time steps. To study

148
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S(t)

Di

αh

Vi

Figure 5.1: Combined body of wedge and thin plate for water exit cases

the motion after that stage, we attached a very thin plate shaped body to the

symmetric wedge close to the vertex and present some results for the combined

body exiting water with constant velocity and constant acceleration. This then

allows us to calculate the fluid motion after the wedge has completely exited the

fluid. We also assume that there is no vortex shedding around the corners for the

combined shape considered as assumed for the symmetric wedge entering fluid in

the previous chapter. We do not consider possibility of vortex shedding from the

exiting symmetric wedges, the edges of the exiting truncated wedge or the exiting

box (where vortex shedding is likely to be important).

5.2 Constant velocity exit

This section, for constant velocity exit of symmetric wedges, asymmetric wedges,

truncated wedges and box bodies, reviews the application of the non-linear theory

and concerns numerical results computed using the implementation of the equa-

tions formulated to study water exit problems in Matlab. For each shape con-

sidered for entry cases and shown in Fig. (5.1), we present computed free-surface

profile, pressure distribution along the wetted part of the body and numerical total

force experienced by the body as it exits through the free surface with constant

velocity. To verify the results computed for the bodies, we carry out a set of con-

vergence checks. We examine the Froude number effect, the time effect on motion,
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the finite depth effect, and the speed of intersection points between the symmet-

ric wedges and the free surface changing with depths of fluid and Froude number

of entry. The symmetric wedges, combined body, asymmetric wedges, truncated

wedges and boxes exiting with constant velocity are presented in sections (5.2.1),

(5.2.2), (5.2.3), (5.2.4) and (5.2.5) respectively.

5.2.1 Symmetric wedge exit

The main parameters of the problem of symmetric wedge exit are the vertical half

wedge angle αh and the initial submerged depth Di, see Fig. (4.1(a)). We can

compute numerical results for various symmetric wedges, which can be obtained

by changing the main parameters of the problem, exiting with different Froude

numbers which can be chosen by changing values of the submerged depth and

the speed of exit. However, the maximum of the half-wedge angle for high speed

of exit is 85o. In the symmetric-wedge entry case, we present results for various

half-wedge angles without breaking numerical computations by carefully selecting

the number of points on the boundaries and the velocity of exit. Table (5.1) shows

the symmetric wedges (for example, SW30 is a wedge of vertical half-wedge angle

300) selected to present results for constant velocity exit and constant acceleration

exit. Other results are written on a CD for future studies, see Appendix (B).

The results for different Froude numbers are given in section (5.2.1.1). The com-

puted numerical results showing the time effect are presented in sections (5.2.1.2).

The finite depth effect and speed of the intersection points for constant velocity

exit of symmetric wedges are presented in sections (5.2.1.3) and (5.2.1.4) respec-

tively. Finally, comparison of free-surface profile with Mackie’s analytical results

for constant velocity of exit of the symmetric wedges is given in section (5.2.1.5).

Symmetric wedge Half wedge angle
(SW) (αh)
SW5 5o

SW10 10o

SW20 20o

SW30 30o

SW45 45o

SW85 85o

Table 5.1: Symmetric wedges considered for exit cases
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5.2.1.1 Froude number effect

In the study of water exit related problems, the Froude number defined in previous

chapter is also a crucial dimensionless physical parameter. To study the effect of

Froude number on the motion of exit, we carry out a set of test cases. For a

particular symmetric wedge, the test process is to keep all the input variables of a

specific run of the program constant, and obtain the Froude numbers by varying

the velocity of the exit for the symmetric wedge. We plot the results for the free

surface profile, pressure and force at the same distance traveled by the wedge for

different exit speeds as time progresses. As we increase the velocity of the exit, we

notice much more deformation on the free surface and consequently in the pressure

distribution and force as shown in Fig. (5.2) and (5.3) for the symmetric wedge

SW30.

(a)

Figure 5.2: Froude number effect of the symmetric wedge SW30 submerged at
a non-dimensional initial depth d̂i = −1 exiting with constant velocity of differ-
ent Froude numbers: plotted at different non-dimensional times τ = 1.8, 1.2, 0.9

and distance d̂ = −0.63.
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Figure 5.3: Froude number effect of the symmetric wedge SW30 submerged
at a non-dimensional initial depth d̂i = −1 exiting with constant velocity of dif-
ferent Froude numbers Fr: (a) and (b) are plotted at different non-dimensional

times τ = 1.8, 1.2, 0.9 and distance d̂i = −0.63.
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5.2.1.2 Time effect

The fluid motion caused by the body exiting water changes as time progresses.

We can compute the deformed free-surface profile, pressure along the wetted part

of the body and the upward force experienced by the body using the non-linear

theory. The computed results showing the time effect on free surface, pressure

and force at different stages of the exit with constant velocity are presented in this

section. Fig. (5.4) to (5.7) show the time effect of the symmetric wedge SW30

exiting with a Froude number of 0.4.
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Figure 5.4: Time effect of the symmetric wedge SW30 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant velocity of Froude

number Fr = 0.4: plotted at different non-dimensional times τ .
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Figure 5.5: Time effect of the symmetric wedge SW30 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant velocity of Froude
number Fr = 0.4: (a) and (b) are plotted at different non-dimensional times τ .
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Figure 5.6: Time effect of the symmetric wedge SW30 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant velocity of Froude

number Fr = 0.4: plotted at different non-dimensional times τ .
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Figure 5.7: Time effect of the symmetric wedge SW30 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant velocity of Froude
number Fr = 0.4: (a) and (b) are plotted at different non-dimensional times τ .
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5.2.1.3 Finite depth effect

It is very important to predict the motion due to the marine vehicle operations

near to the shore (shallow water), as for the water entry of bodies. We present

results showing effect on the free-surface profile, pressure and force due to the

change in depth of the entry with constant velocity using the non-linear time-

stepping method. The results are plotted at the same distance for different depths

with the same velocity as it moves with time. Fig. (5.8) represents the com-

puted free-surface profile, pressure distribution and force for the symmetric wedge

SW30 entering with a Froude number 0.4, showing the finite depth effect on the

motion. We notice, as expected, that for exit of the symmetric wedge SW30, a

non-dimensional depth Nd below 1 experiences greater variation of free-surface

deformation, pressure and force than that of other depths.
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Figure 5.8: Finite depth effect of the symmetric wedge SW30 submerged at a
non-dimensional initial depth d̂i = −1 exiting with constant velocity of Froude
number Fr = 0.4: (a) and (b) are plotted for different non-dimensional depths

Nd at a non-dimensional time τ = 1.4.
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5.2.1.4 Speed of intersection point

To study the local flow around the intersection points of exiting symmetric wedges,

it is very useful to compute the speed of the intersection points as the body exiting

with time. This section presents some results for the speed of intersection points

of exiting different symmetric wedges, but it can also be computed for all other

shapes.

Speed effect with Froude number

Here we give the computed speed of the intersection points for the symmetric

wedges considered showing the effect due to a change in Froude number. The

plots are obtained for each shape exiting with different Froude numbers while

attaining the same distance traveled by the symmetric wedge as it exits. Fig.

(5.9) shows the Froude number effect on the speed of the symmetric wedge SW30.

We can see that the initial speed at time zero is same for any velocity of exit,

as expected (see the discussion for the entry case, section (4.5)), but that it is

substantially higher for exit for the same spatial and temporal resolutions.
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Figure 5.9: Froude number in the speed of intersection point for the wedge
SW30 exiting with constant velocity.
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Speed effect with depth

Here we present the computed speed of the intersection points of the symmetric

wedges considered showing effect due to the change in depth of the domain. The

plots are obtained for each shape exiting with constant velocity while attaining the

same distance traveled by the symmetric wedge as it exits. Fig. (5.10) shows the

computed speeds for the symmetric wedge SW30 exiting from the fluid of different

depths. Here, we note that starting values of the speed at time zero vary with

depth of the fluid.
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Figure 5.10: Effect of depth in the speed of intersection point for the wedge
SW30 exiting with constant velocity of Froude number Fr = 0.4.
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5.2.1.5 Comparison with Mackie’s theory

We compare the results for free surface elevation computed using the fully nonlin-

ear time-stepping method with the Mackie’s (1969, 1965 and 1962) theory based

on time-dependent wave-maker theory for slender body. The linearised free surface

profile can be expressed as, see Greenhow (1990),

η(x, t) =
2

π

∫ ∞
0

η̄(λ, t) cosλxdλ. (5.1)

For exit, we have

η̄(λ, t) = αhU
2e−λD

[
cos(
√
λgt)− e−λUt

λ(λU2 + g)

]
− αhUe

−λD sin(
√
λgt)

λ(λU2 + g)
√
λg

[
λU2eλD + g(eλD − 1)

]
, (5.2)

where U is velocity, D is initial draft for exit and αh is the wedge half-angle.

Based on the formulation, we present computed results showing moderate agree-

ment with the non-linear time-stepping theory of Vinje and Brevig (1981a; 1981b)

for some symmetric wedges exiting with constant velocities. Fig. (5.11) shows

the comparison for the symmetric wedge SW5 exiting with Froude number 0.4.

However, for larger angles the agreement in free surface profiles (see Appendix B)

is not as good as expected.
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Figure 5.11: Comparison of computed free surface profile with Mackie’s resuls
for the wedge SW5 exiting with constant velocity of Fr = 0.5.
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5.2.2 Combined body exit

This section presents computed results for the combined body exiting with con-

stant velocity. Section (5.2.2.1), (5.2.2.2) and (5.2.2.3) give some results for the

combined body CW30 of half-wedge angle 30 attached to a thin plate showing

Froude number effect, time effect on the motion and finite depth effect, respec-

tively.

Fig. 5.12(a) and 5.12(b) show the comparison between the symmetric wedge

(SW30) and the combined body (CB30) plotted at the same non-dimensional time

intervals. From Fig. (5.12), we can see there is no difference in the free-surface

profile at different times. We also checked the results for the wedge SW30 com-

bined body CB30 exiting with different Froude numbers and noticed no changes

between the results of the two bodies.
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Figure 5.12: Time effect of the combined body CB30 and the symmetric
wedge SW30 submerged at a non-dimensional initial depth d̂i = −1 exiting
with constant velocity of Froude number Fr = 0.4: plotted at different non-

dimensional times τ .
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5.2.2.1 Froude number effect

To study the effect of Froude number on the results, we carry out a set of test

cases. For a particular combined wedge, the test process is to keep all the input

variables of a specific run of the program constant, and obtain the Froude numbers

by varying the velocity of the exit for the combined wedge. We plot the results

for the free-surface profile, pressure and force at the same distance traveled by

the combined wedge for different exit speeds as time progresses. As we increase

velocity of the exit, we notice much more deformation on the free surface and

consequently in the pressure distribution and force as shown in Fig. (5.13) and

(5.14) for the combined wedge CW30.
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Figure 5.13: Froude number effect of the combined body CB30 submerged
at a non-dimensional initial depth d̂i = −1 exiting with constant velocity of
different Froude numbers Fr: plotted at different non-dimensional times τ =

1.79, 1.19, 0.89 and distance d̂ = −0.639.
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Figure 5.14: Froude number effect of the combined body CB30 submerged
at a non-dimensional initial depth d̂i = −1 exiting with constant velocity of
different Froude numbers Fr: plotted at different non-dimensional times τ =

1.79, 1.19, 0.89 and distance d̂ = −0.639.
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5.2.2.2 Time effect

The computed results showing time effect on free surface, pressure and force at

different stages of the exit with constant velocity are presented in this section.

Figs. (5.15) to (5.18) show time effect of the combined wedge CW30 exiting with

Froude number of 0.4.
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Figure 5.15: Time effect of the combined body CB30 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant velocity of Froude

number Fr = 0.4: plotted at different non-dimensional times τ .
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Figure 5.16: Time effect of the combined body CB30 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant velocity of Froude

number Fr = 0.4: plotted at different non-dimensional times τ .
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Figure 5.17: Time effect of the combined body CB30 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant velocity of Froude

number Fr = 0.4: plotted at different non-dimensional times τ .
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Figure 5.18: Time effect of the combined body CB30 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant velocity of Froude

number Fr = 0.4: plotted at different non-dimensional times τ .
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5.2.2.3 Finite depth effect

We present results showing effect on the free-surface profile, pressure and force due

to the change in depth of the entry with constant velocity using the non-linear

time-stepping method. The results are plotted at the same distance moved by the

body for different depths of exit with the same velocity. Fig. (5.19) and (5.20)

represent the computed free-surface profile, pressure distribution and force for the

combined wedge CW30 exiting with Froude number 0.4 showing finite depth effect

on the motion. We notice, as expected, that for exiting of the combined wedge

CW30 the non-dimensional depth Nd below 1 experiences a greater difference in

free-surface deformation, pressure and force than that of other depths.
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Figure 5.19: Finite depth effect of the combined body CB30 submerged at a
non-dimensional initial depth d̂i = −1 exiting with constant velocity of Froude
number Fr = 0.4: (a) and (b) are plotted for different non-dimensional depths

Nd at a non-dimensional time τ = 1.4.
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Figure 5.20: Finite depth effect of the combined body CB30 submerged at a
non-dimensional initial depth d̂i = −1 exiting with constant velocity of Froude
number Fr = 0.4: (a) and (b) are plotted for different non-dimensional depths

Nd at a non-dimensional time τ = 1.4.
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5.2.3 Asymmetric wedge exit

The parameters for an asymmetric wedge is same as those for a symmetric wedge

except the left half angle βh. Tab. (5.2) gives the details for the test cases carried

out for the wedge. The results for different Froude numbers of exit with constant

velocity are given in section (5.2.3.1). The computed numerical results for the

asymmetric wedges show the time effect and finite depth effect in sections (5.2.3.2)

and (5.2.3.3) respectively. The convergence of the asymmetric wedge exit also

checked and results are given on the CD, see Appendix (B).

Asymmetric wedge Half wedge angle
(AW) (βh) (αh)
AW1 5o 10
AW2 0o 30
AW3 −20o 30
AW4 −10o 30

Table 5.2: Asymmetric wedges considered for water exit cases
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5.2.3.1 Froude number effect

To study the effect of Froude number on exiting asymmetric wedges, we carry out

a set of test cases. For a particular asymmetric wedge, the test process is to keep

all the input variables of a specific run of the program constant, and obtain the

Froude numbers by varying the velocity of the exit for the asymmetric wedge. We

plot the results for the free-surface profile, pressure and force at the same distance

traveled by the asymmetric wedge for different exit speeds as time progresses. The

same process is repeated for the asymmetric wedges shown in Table (5.2). As we

increase velocity of the exit, we can notice much more deformation on the free

surface and consequently in the pressure distribution and force as shown in Fig.

(5.21) and (5.22).
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Figure 5.21: Froude number effect of the asymmetric wedge AW4 submerged
at a non-dimensional initial depth d̂i = −1 exiting with constant velocity of
different Froude numbers Fr: plotted at different non-dimensional times τ =

4.2, 2.1, 1.4 and distance d̂ = −0.57.
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Figure 5.22: Froude number effect of the asymmetric wedge AW4 sub-
merged at a non-dimensional initial depth d̂i = −1 exiting with constant ve-
locity of different Froude numbers: plotted at different non-dimensional times

τ = 4.2, 2.1, 1.4 and distance d̂ = −0.57.
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5.2.3.2 Time effect

The motion of the asymmetric wedge changes as time progresses. We can compute

the deformed free-surface profile, pressure along the wetted part of the body and

the upward force experienced by the body using the non-linear theory. The com-

puted results showing time effect on free surface, pressure and force at different

stages of the exit with constant velocity are presented in this section. Fig. (5.23)

to (5.26) show the time effect of the asymmetric wedge AW4 exiting with a Froude

number of 0.3.
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Figure 5.23: Time effect of the asymmetric wedge AW4 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant velocity of Froude

number Fr = 0.3: plotted at different non-dimensional times τ .
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Figure 5.24: Time effect of the asymmetric wedge AW4 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant velocity of Froude

number Fr = 0.3: plotted at different non-dimensional times τ .
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Figure 5.25: Time effect of the asymmetric wedge AW4 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant velocity of Froude

number Fr = 0.3: plotted at different non-dimensional times τ .
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Figure 5.26: Time effect of the asymmetric wedge AW4 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant velocity of Froude

number Fr = 0.3: plotted at different non-dimensional times τ .



Chapter 5. Water Exit of Different Shaped Bodies 185

5.2.3.3 Finite depth effect

As for the computation for finite depth effect of symmetric wedges exiting with

constant velocity, we present computed results for the asymmetric wedges exiting

with constant velocity showing the finite depth effect on free surface, pressure

and force. Fig. (5.27) and (5.28) give the computed free-surface profile, pressure

distribution and force for the asymmetric wedge AW4 exiting with Froude number

0.3 showing the finite depth effect on the motion. We notice, as expected, that for

exiting of the asymmetric wedge AW4 that the non-dimensional depth Nd below

1 experiences a greater difference in free-surface deformation, pressure and force

than that of other depths.
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Figure 5.27: Finite depth effect of the asymmetric wedge AW4 submerged
at a non-dimensional initial depth d̂i = −1 exiting with constant velocity of
Froude number Fr = 0.3: (a) and (b) are plotted for different non-dimensional

depths Nd at a non-dimensional time τ = 1.4.
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Figure 5.28: Finite depth effect of the asymmetric wedge AW4 submerged
at a non-dimensional initial depth d̂i = −1 exiting with constant velocity of
Froude number Fr = 0.3: (a) and (b) are plotted for different non-dimensional

depths Nd at a non-dimensional time τ = 1.4.
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5.2.4 Truncated wedge exit

Control parameters on the truncated wedge shown on Fig.(4.1(c)) are left half

angle βh, right half angle αh, height of the wedge h, bottom width of the wedge b

and the aspect ratio Ta. We produce results for the test cases given in Table (5.3)

by considering various aspect ratios Ta and wedge angles. The results for different

Froude numbers of exit with constant velocity are given in section (5.2.4.1). The

computed numerical results for the truncated wedges show the time effect and

finite depth effect in sections (5.2.4.2) and (5.2.4.3) respectively.

Truncated wedge Left angle Right angle
(TW) (βh) (αh)
TW1 10o 10o

TW2 20o 20o

TW3 30o 30o

Table 5.3: Truncated wedges for exit cases

5.2.4.1 Froude number effect

To study the effect of Froude number on the results the truncated wedges, we carry

out a set of test cases. For a particular truncated wedge, the test process is to keep

all the input variables of a specific run of the program constant, and obtain the

Froude numbers by varying the velocity of the exit for the truncated wedge. We

plot the results for the free-surface profile, pressure and force at the same distance

traveled by the truncated wedge for different exit speeds as time progresses. The

same process is repeated for the truncated wedges as shown in Table (5.3). As

we increase velocity of the exit, we can notice much more deformation on the free

surface and consequently in the pressure distribution and force as shown in Fig.

(5.29).
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Figure 5.29: Froude number effect of the truncated wedge TW3 submerged
at a non-dimensional initial depth d̂i = −1 exiting with constant velocity of dif-
ferent Froude numbers Fr: (a) and (b) are plotted at different non-dimensional

times τ = 2, 1.6, 1 and distance d̂ = −0.592.
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5.2.4.2 Time effect

The computed results for the truncated wedges showing time effect on free surface,

pressure and force at a set of three different intervals of the exit with constant

velocity are presented in this section. Fig. (5.30) and (5.31) show the time effect

of the truncated wedge TW3 exiting with Froude number of 0.4.
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Figure 5.30: Time effect of the truncated wedge TW3 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant velocity of Froude

number Fr = 0.4: plotted at different non-dimensional times τ .
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Figure 5.31: Time effect of the truncated wedge TW3 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant velocity of Froude
number Fr = 0.4: (a) and (b) are plotted at different non-dimensional times τ .
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5.2.4.3 Finite depth effect

As for the computation for finite depth effect of truncated wedges exiting with

constant velocity, we present computed results for the truncated wedges exiting

with constant velocity showing finite depth effect on free surface, pressure and

force. Fig. (5.32) presents the computed free-surface profile, pressure distribution

and force for the truncated wedge TW3 exiting with Froude number 0.4 showing

the finite depth effect on the motion. We notice, as expected, for exiting of the

truncated wedge TW3 that the non-dimensional depth Nd below 1 experiences a

greater difference in the free-surface deformation, pressure and force than that of

other depths.
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Figure 5.32: Finite depth effect of the truncated wedge TW2 submerged at a
non-dimensional initial depth d̂i = −1 exiting with constant velocity of Froude
number Fr = 0.4: (a) and (b) are plotted for different non-dimensional depths

Nd at a non-dimensional time τ = 1.1.



Chapter 5. Water Exit of Different Shaped Bodies 194

5.2.5 Box exit

As in the previous sections, the main parameter for a box body as considered for

entry cases is the aspect ratio Ra which is the ratio of the initial depth to the

width of the box. As an example, we present some results showing Froude number

effect and time effect on the motion of the box BX2 with the aspect ratio 0.7.

The results for different Froude numbers of exit with constant velocity are given

in section (5.2.5.1). The computed numerical results for the box body show the

time effect and finite depth effect in sections (5.2.5.2) and (5.2.5.3) respectively.

Box Aspect ratio
(BX) (Ra)
BW1 1
BW2 0.5
BW3 0.25

Table 5.4: Box bodies considered for exit cases

5.2.5.1 Froude number effect

To study the effect of Froude number on the results the box body exit, we carry

out a set of test cases. For a particular box body, the test process is to keep all the

input variables of a specific run of the program constant, and obtain the Froude

numbers by varying the velocity of the exit for the box body. We plot the results

for the free-surface profile, pressure and force at the same distance traveled by

the box body for different exit speeds as time progresses. The same process is

repeated for the box body as shown in Table (5.4). As we increase velocity of the

exit, we notice much more deformation on the free surface and consequently in the

pressure distribution and force, as shown in Fig. (5.33) and (5.34).
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Figure 5.33: Froude number effect of the box BX2 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant velocity of different
Froude numbers Fr: (a) and (b) are plotted at different non-dimensional times

τ = 1.4, 1.2, 0.8 and distance d̂ = −0.572.
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Figure 5.34: Froude number effect of the box BX2 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant velocity of differ-
ent Froude numbers Fr: (a) is plotted at different non-dimensional times

τ = 1.4, 1.2, 0.8 and distance d̂ = −0.572.
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5.2.5.2 Time effect

The computed results for the box body showing time effect on free surface, pressure

and force at a set of three different intervals of the exit with constant velocity are

presented in this section. Fig. (5.35) and (5.36) show time effect of the box BX2

exiting with Froude number of 0.5.
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Figure 5.35: Time effect of the box BX2 submerged at a non-dimensional
initial depth d̂i = −1 exiting with constant velocity of Froude number Fr = 0.5:

(a) and (b) are plotted at different non-dimensional times τ .
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Figure 5.36: Time effect of the box BX2 submerged at a non-dimensional
initial depth d̂i = −1 exiting with constant velocity of Froude number Fr =0.5:

(a) is plotted at different non-dimensional times τ .
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5.2.5.3 Finite depth effect

We here present computed results for the box body entering with constant velocity

showing the finite depth effect on free surface, pressure and force in this section.

Fig. (5.37) and (5.38) represent the computed free-surface profile, pressure dis-

tribution and force for the box BX2 exiting with Froude number 0.5 showing

finite depth effect. We notice, as expected, for exiting of the box BX2 that the

non-dimensional depth Nd 1.1 experiences a greater difference in the free-surface

deformation, pressure and force than that of other depths. It is not possible to

compute results for the non-dimensional depth Nd below 1.1 due to numerical

problems.
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Figure 5.37: Finite depth effect of the box BX2 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant velocity of Froude
number Fr = 0.5: (a) and (b) are plotted for different non-dimensional depths

Nd at a non-dimensional time τ = 0.9.
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Figure 5.38: Finite depth effect of the box BX2 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant velocity of Froude
number Fr = 0.5: (a) is plotted for different non-dimensional depths Nd at a

non-dimensional time τ = 0.9.
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5.3 Constant acceleration exit

This section, for constant acceleration exit of symmetric wedges, asymmetric

wedges, truncated wedges and box bodies, reviews the application of the non-

linear theory and presents numerical results. For each shape considered in the

study of constant velocity exit, we present computed free-surface profile, pressure

distribution along the wetted part of the body and numerical total force experi-

enced by the body as it exits through the free surface with constant velocity. The

symmetric wedges, combined body, asymmetric wedges, truncated wedges and

boxes exiting with constant acceleration are presented in section (5.3.1), (5.3.2),

(5.3.3), (5.3.4) and (5.3.5) respectively.

5.3.1 Symmetric wedge exit

We present numerical results computed using the non-linear time-stepping method

for the each symmetric wedge, as in the constant velocity exit cases. The test

cases considered for the symmetric wedges exiting with constant acceleration are

explained in this section. For the symmetric wedges exiting with constant ac-

celeration, the results showing the time effect on the stages of the motion with

constant acceleration are presented in section (5.3.1.1). The results of changing

the acceleration and the comparison of numerical force with the analytical added

mass force is given in section (5.3.1.2) and (5.3.1.3) respectively.

5.3.1.1 Time effect

As we did for the constant velocity exit, here we repeat the process for constant

acceleration exit. The time effect on free-surface profile, pressure distribution

and total force are computed for the symmetric wedges considered exiting with

constant acceleration. The plots are obtained for different time intervals. The

length of interval for each symmetric wedge depends on the angle of the symmetric

wedges and the acceleration of the exit. For each specific interval, the results are

plotted at different times. Fig. (5.39) and (5.40) show the time effect over the

time intervals for the symmetric wedge SW30 exiting with constant acceleration

of 1, while Fig. (5.41) and (5.42) show plots for the wedge exiting with constant

acceleration of 0.5.
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Figure 5.39: Time effect of the symmetric wedge SW30 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant acceleration Gτ = 1:

plotted at different non-dimensional times τ =.
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Figure 5.40: Time effect of the symmetric wedge SW30 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant acceleration Gτ = 1:

(a) and (b) are plotted at a non-dimensional time τ .
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Figure 5.41: Time effect of the symmetric wedge SW30 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant acceleration Gτ = 0.5:

plotted at different non-dimensional times τ .
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Figure 5.42: Time effect of the symmetric wedge SW30 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant acceleration Gτ = 0.5:

(a) and (b) are plotted at different non-dimensional times τ .
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5.3.1.2 Acceleration effect

This section presents computed numerical results for free-surface profile, pressure

distribution and total force. The results are obtained by running the program

with different constant accelerations while attaining the same distance traveled by

the symmetric wedges. Fig. (5.43) shows the acceleration effect of the symmetric

wedge SW30 exiting with different accelerations.
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Figure 5.43: Acceleration effect of the symmetric wedge SW30 submerged at
a non-dimensional initial depth d̂i = −1 exiting with different constant acceler-
ations Gτ : (a) and (b) are plotted at different non-dimensional times τ = 1, 2, 3

and distance d̂ = −0.5.
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5.3.1.3 Added mass effect

As for entry cases, the analytical force computed for water exit of symmetric wedge

is compared with the force difference between the total numerical force computed

using the nonlinear theory of Vinje and Brevig and the buoyancy force to verify

whether the forces agree at initial time t=0.

Fig. (5.44) and (5.45) show comparison of the computed force difference and the

analytical added mass force computed for the symmetric wedge SW30 exiting with

constant accelerations of 1 and 0.5, respectively. The computed added-mass force

using Eq. (4.18) is negative and decreases in absolute magnitude as time increases

for exit with constant acceleration (see Fig. (5.44) and (5.45)), but it is positive

and decreases as time increases for exit with constant velocity (see Fig. (5.46)).
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Figure 5.44: Computed numerical force difference and added mass force show-
ing added mass effect for the wedge SW30 exiting with constant acceleration

Gτ = 1.
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Figure 5.45: Computed numerical force difference and added mass force show-
ing added mass effect for the wedge SW30 exiting with constant acceleration

Gτ = 0.5.
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Figure 5.46: Computed numerical force difference and added mass force show-
ing added mass effect for the wedge SW30 exiting with constant velocity of

Froude number Fr = 0.4.

We also computed the added mass force for the symmetric wedges of various half

angles exiting water with constant velocity. Fig. (5.46) shows comparison of the

computed force difference and the analytical added mass force computed for the

symmetric wedge SW30 exiting water with a Froude number Fr of 0.4. Results

for other wedge angles are given in the CD, see Appendix B.

It is perhaps surprising that the added mass force and force difference is posi-

tive for the constant velocity exit case since one would expect a negative force

when extracting a body from a fluid. However, in reality this would involve an

period of acceleration which is missing from these idealised calculations. The main

implication of the above results is that the upwards v2 force in the added mass

theory does in fact agree with the force difference, at least approximately, and is

in the correct direction. Hence it should be included in more general motions for

example those involving both acceleration and velocity terms, as in Fig. (5.45).
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5.3.2 Combined body exit

The test cases considered for the combined body exiting with constant accelera-

tion are explained in this section. For the combined body exiting with constant

acceleration, results showing time effect on the motion with constant acceleration

are presented in section (5.3.2.1), while the results of changing the acceleration

are given in section (5.3.2.2).

5.3.2.1 Time effect

As for the constant velocity exit of the combined body, here we repeat the process

for constant acceleration exit. The time effect on free-surface profile, pressure

distribution and total force are computed for the combined body exiting with

constant acceleration. The plots are obtained for different time intervals. For each

specific interval, the results are plotted at different time. Fig. (5.47) to (5.50) show

the time effect of the combined body CB30 exiting with constant acceleration of

0.5.
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Figure 5.47: Time effect of the combined body CB30 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant acceleration Gτ = 0.5:

(a) is plotted at different non-dimensional times τ .
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Figure 5.48: Time effect of the combined body CB30 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant acceleration Gτ = 0.5:

(a) and (b) are plotted at different non-dimensional times τ .
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Figure 5.49: Time effect of the combined body CB30 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant acceleration Gτ = 0.5:

(a) is plotted at different non-dimensional times τ .
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Figure 5.50: Time effect of the combined body CB30 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant acceleration Gτ = 0.5:

(a) and (b) are plotted at different non-dimensional times τ .
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5.3.2.2 Acceleration effect

This section for constant acceleration exit of the combined body presents numerical

results for free-surface profile, pressure distribution and total force. The results

are obtained by running the program with different constant accelerations while

attaining at a same distance traveled by the combined body. Fig. (5.51) shows the

acceleration effect of the combined body CB30 exiting with different accelerations.
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Figure 5.51: Acceleration effect of the combined body CB30 submerged at a
non-dimensional initial depth d̂i = −1 exiting with different constant accelera-
tions Gτ : (a) is plotted at different non-dimensional times τ = 1.09, 2.18 and

distance d̂ = −0.7.
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5.3.3 Asymmetric wedge exit

We here present numerical results for the same asymmetric wedges. The test

cases considered for the asymmetric wedges exiting with constant acceleration

are explained in this section. For the asymmetric wedges exiting with constant

acceleration, the results showing the time effect on the stages of the motion with

constant acceleration is presented in section (5.3.3.1), while the results of changes

in acceleration is given in section (5.3.3.2).

5.3.3.1 Time effect

As for the constant velocity exit, here we repeat the process for constant accelera-

tion entry of asymmetric wedges. The time effect on free-surface profile, pressure

distribution and total force are computed for the asymmetric wedges entering

with constant acceleration. The plots are obtained for different time intervals.

The length of interval for each asymmetric wedge depends on the angle of the

asymmetric wedges and the acceleration of the entry. For each specific interval,

the results are plotted at different time and it repeats with the intervals. Fig.

(5.52) and (5.53) show the time effect of the asymmetric wedge AW4 exiting with

constant acceleration of 0.5, whereas Fig. (5.54) to (5.55) show the effect for the

constant acceleration of 0.125.
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Figure 5.52: Time effect of the asymmetric wedge AW4 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant acceleration Gτ = 0.5:

(a) and (b) are plotted at different non-dimensional times τ .
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Figure 5.53: Time effect of the asymmetric wedge AW4 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant acceleration Gτ = 0.5:

(a) and (b) are plotted at different non-dimensional times τ .
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Figure 5.54: Time effect of the asymmetric wedge AW4 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant acceleration Gτ = 0.125:

(a) and (b) are plotted at different non-dimensional times τ .



Chapter 5. Water Exit of Different Shaped Bodies 224

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Non-dimensional distance from the vertex along x axis

Non-dimensional Pressure Distribution Along the Right Wetted Surface

 

 

τ = 0

τ = 0.7

τ = 1.4

τ = 1.9

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Non-dimensional distance from the vertex along x axis

Non-dimensional Pressure Distribution Along the Left Wetted Surface

 

 

τ = 0

τ = 0.7

τ = 1.4

τ = 1.9

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.4

0.5

0.6

0.7

0.8

0.9

1
Non-dimensional Force versus Time τ

Non-dimensional time τ

(c)

Figure 5.55: Time effect of the asymmetric wedge AW4 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant acceleration Gτ = 0.125:

(a) and (b) are plotted at different non-dimensional times τ .
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5.3.3.2 Acceleration effect

This section for constant acceleration exit of asymmetric wedges presents numeri-

cal results for free-surface profile, pressure distribution and total force. The results

are obtained by running the program with different constant accelerations while

attaining the same distance traveled by the asymmetric wedges. Fig. (5.56) and

(5.57) show the acceleration of the asymmetric wedge AW4 exiting with different

accelerations.
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Figure 5.56: Acceleration effect of the symmetric wedge AW4 submerged at a
non-dimensional initial depth d̂i = −1 exiting with different constant accelera-
tions Gτ : (a) and (b) are plotted at different non-dimensional times τ = 0.8, 1.6

and distance d̂ = −0.84.
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Figure 5.57: Acceleration effect of the symmetric wedge AW4 submerged at a
non-dimensional initial depth d̂i = −1 exiting with different constant accelera-
tions Gτ : (a) and (b) are plotted at different non-dimensional times τ = 0.8, 1.6

and distance d̂ = −0.84.



Chapter 5. Water Exit of Different Shaped Bodies 228

5.3.4 Truncated wedge exit

We present numerical results computed using the non-linear time-stepping method

for the truncated wedges as in the constant velocity exit of the truncated wedges.

For the truncated wedge exiting with constant acceleration, results showing the

time effect with constant acceleration are presented in section (5.3.4.1), while the

results of changes in acceleration are given in section (5.3.4.2).

5.3.4.1 Time effect

As for the constant velocity exit of the truncated wedges, here we repeat the

process for constant acceleration exit of the truncated wedges. The time effect

on free-surface profile, pressure distribution and total force are computed for the

truncated wedges exiting with constant acceleration. The plots are obtained for

different time intervals. The length of interval for each truncated wedge depends

on the angle of the truncated wedges and the acceleration of the exit. For each

specific interval, the results are plotted at different time. Fig. (5.58) shows the

time effect of the truncated wedge TW3 exiting with constant acceleration of 0.5.
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Figure 5.58: Time effect of the truncated wedge TW3 submerged at a non-
dimensional initial depth d̂i = −1 exiting with constant acceleration Gτ = 0.5:

(a) and (b) are plotted at different non-dimensional times τ .
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5.3.4.2 Acceleration effect

This section for constant acceleration exit of the truncated wedges presents nu-

merical results for free-surface profile, pressure distribution and total force. The

results are obtained by running the program with different constant accelerations

while attaining the same distance traveled by the truncated wedges. Fig. (5.59)

shows the acceleration of the truncated wedge TW3 exiting with different acceler-

ations.
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Figure 5.59: Acceleration effect of the truncated wedge TW3 submerged at a
non-dimensional initial depth d̂i = −1 exiting with different constant accelera-
tions Gτ : (a) and (b) are plotted at different non-dimensional times τ = 1.5, 3

and distance d̂ = −0.437.
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5.3.5 Box body exit

We present numerical results computed using the non-linear time-stepping method

for the box body same as considered in the constant velocity exit. For the box body

exiting with constant acceleration, the results showing time effect on the stages

of the motion with constant acceleration are presented in section (5.3.5.1). The

results of changes in acceleration and the comparison of numerical force with the

analytical added mass force are given in section (5.3.5.2) and (5.3.5.3) respectively.

5.3.5.1 Time effect

As for the constant velocity exit of the box body, here we repeat the process for

constant acceleration exit of the box body. The time effect on free-surface profile,

pressure distribution and total force are computed for the box body exiting with

constant acceleration. The plots are obtained for different time intervals. The

length of interval for each box body depends on the aspect ratio of the box body

and the acceleration of the exit. For each specific interval, the results are plotted

at different time. Fig. (5.60) and (5.61) show the time effect of the box body BX2

exiting with constant acceleration of 0.5, whereas Fig. (5.62) and (5.63) show the

effect for the constant acceleration of 0.125.
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Figure 5.60: Time effect of the box BX2 submerged at a non-dimensional
initial depth d̂i = −1 exiting with constant acceleration Gτ = 0.5: (a) and (b)

are plotted at different non-dimensional times τ .
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Figure 5.61: Time effect of the box BX2 submerged at a non-dimensional
initial depth d̂i = −1 exiting with constant acceleration Gτ = 0.5: (a) is plotted

at different non-dimensional times τ .
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Figure 5.62: Time effect of the box BX2 submerged at a non-dimensional
initial depth d̂i = −1 exiting with constant acceleration Gτ = 0.125: (a) and

(b) are plotted at different non-dimensional times τ .
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Figure 5.63: Time effect of the box BX2 submerged at a non-dimensional
initial depth d̂i = −1 exiting with constant acceleration Gτ = 0.125: (a) is

plotted at different non-dimensional times τ .
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5.3.5.2 Acceleration effect

This section for constant acceleration exit of the box body presents computed

numerical results for free-surface profile, pressure distribution and total force. The

results are obtained by running the program with different constant accelerations

while attaining the same distance traveled by the box body. Fig. (5.64) and (5.65)

show the box body BX2 exiting with different accelerations.
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Figure 5.64: Acceleration effect of the box BX2 submerged at a non-
dimensional initial depth d̂i = −1 exiting with different constant accelerations
Gτ : plotted at different non-dimensional τ = 1.3, 2.6 and distance d̂ = −0.577.
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Figure 5.65: Acceleration effect of the box BX2 submerged at a non-
dimensional initial depth d̂i = −1 exiting with different constant accelerations
Gτ : (a) is plotted at different non-dimensional times τ = 1.3, 2.6 and distance

d̂ = −0.577.
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5.3.5.3 Added mass effect

The analytical added mass force for box body exiting is compared with the force

difference computed numerically using the non-linear time-stepping method. Fig.

(5.66) shows the comparison of the computed force difference and the analytical

added mass force computed for the box body BX2 with constant accelerations.
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Figure 5.66: Computed numerical force difference and added mass force show-
ing added mass effect for the box BX2 exiting with constant acceleration Gτ = 1.
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We also computed the added mass force for the box BX2 exiting water with con-

stant velocity. Fig. (5.67) shows comparison of the computed force difference and

the analytical added mass force computed for the box BX2 exiting water with a

Froude number Fr of 0.5.
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Figure 5.67: Computed numerical force difference and added mass force show-
ing added mass effect for the box BX2 exiting with constant velocity of Froude

number Fr = 0.5.
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5.4 Comparison of exit for different wedge an-

gles

In this section, we give a comparison of the computed results for the exit cases with

constant velocity and constant acceleration varying with angles and shapes. For

the constant velocity exit, we present a graph showing the limit of the Froude num-

ber which can be used to produce results for a particular shape without breaking

the numerical computations.

5.4.1 Constant velocity

We numerically studied the exit problem of symmetric wedges, combined body,

asymmetric wedges, truncated wedges and box by producing extensive results.

However, we can only present some results here. Other results are also very useful

for future studies in this field of water exit and are specified in Appendix B.

Symmetric wedges

For exit of symmetric wedges, we take the vertical-half angle varying from 5o to

850. We selected the angle 30o to present the numerical results, but results for

other angles are documented on the CD. As we increase the angles of symmetric

wedges for a particular Froude number, we can see a significant difference in the

results for free-surface profile, pressure and force. We also notice that the change

in Froude number for a particular wedge will give noticeable effects on the results.

The maximum Froude number that can be used for exit of the symmetric wedges

is plotted in Fig. (5.68).

By comparing the computed results given in the CD for the finite-depth effect, we

can see much more the effects in the force as the contact surface becomes flatter

which affects the motion of the particles below the body more strongly.

Table (5.5) shows the computed value of speed of the intersection point for exit of

the symmetric wedges which was computed for the Froude number of 0.4. This is

the maximum Froude number (common for all shapes) that can be used to com-

pute results for the exit of the symmetric wedges.
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Figure 5.68: This figure shows the Froude numbers for symmetric wedges
exiting with constant velocity.

Symmetric wedge Speed of intersection point
(SW) (αh)
SW10 0.573
SW20 1.440
SW30 1.790
SW45 1.936

Table 5.5: Speed of the intersection points for symmetric wedges considered
for water exit cases at t=0

As for entry, we note that at t=0 this non-dimensional speed is independent of

Froude number. Here, however, no extension of Wagner’s theory is possible, even

in principle. Finally, by comparing the results for exit of Mackie’s theory, we can

see reasonable agreement between numerical and the analytical results for the free

surface.

Combined body

For exit of combined body CB30, we presented numerical results. By comparing

the results with the symmetric wedge SW30, we can see that the particles following

the combined wedge and the intersection points continue to move along the vertical

surface of the combined body until reaching last point close to the corner of the
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box extension. There is also a significant change in the finite depth effect with the

attached wedge compared with the symmetric wedge.

Asymmetric wedges

For exit of asymmetric wedges, we considered three different asymmetric wedges

and presented results for asymmetric wedge (AW4) with left-half-wedge angle−10o

and right-half-wedge angle 30o exiting water in section (5.2.3). By comparing the

results on the CD for exit of other asymmetric wedges, we notice that the Froude

numbers that can be used for asymmetric wedges are not same as for the symmetric

wedges. It means that we need low Froude numbers to obtain good numerical

results due to the rapid flow around the vertex for high Froude number exit of

asymmetric wedges. We also notice strong effects in the results as we increase the

wedge angles. The Froude numbers that can be used to run exit of the asymmetric

wedges are given in Fig. (5.69).
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Figure 5.69: This figure shows the Froude numbers for the asymmetric wedges
exiting with constant velocity.

Finally, we can see a significant effect in the finite depth cases of exit of asymmetric

wedges compared with exit of the symmetric wedge cases, see the CD.
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Truncated wedges

For exit of truncated wedges, we considered three different symmetric wedges of

left and right half-wedge angles 10o, 20o and 30o exiting with different Froude

numbers. We can produce more results by considering different aspect ratios and

asymmetric truncated wedges. However, we only considered some cases for this

thesis. Similar effects as other wedges can be noticed for the test cases as the

angle increases. By comparing with the results for the finite depth effect of exit

of symmetric wedges and truncated wedges of same angles, it can be noticed that

a small difference in the results of the truncated wedges can be seen due to the

flatted bottom surface of the truncated wedges.

TW1 TW2 TW3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

Truncated wedges (TW)

F
ro

ud
e 

nu
m

be
rs

 (
 F

r )

Figure 5.70: This figure shows the Froude numbers for the truncated wedges
exiting with constant velocity.

Box

We considered three different boxes and presented results for the exit of box BX2

in section (5.2.5). We can produce more results by considering different aspect

ratios of the box. However, we only considered some cases for simplicity of the

study in this thesis. As we increase aspect ratio and Froude number of exit, we

can notice much more effect on the results. There is a noticeable effect in the finite

depth case that has a flat bottom surface.
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5.4.2 Constant acceleration

We considered similar shapes as for constant velocity exit to compute and present

numerical results for constant acceleration exit. The considered test cases for exit

with constant accelerations are the time effect, acceleration effect and added mass

effect for symmetric wedges and boxes. By increasing the angle of the wedges and

accelerations, it is not possible to run the code because the intersection points

move rapidly as body leaves the water and this causes numerical break down in

the computations.

We presented results by choosing appropriate accelerations which vary with the

angle of the wedges. By comparing the results for exit of each shape (see the

CD), we can see strong effects on the free-surface profile, the pressure distribution

and the force as the angles and the value of the constant acceleration of the exit

increase for each shape.

As for entry of the symmetric wedges and box body, we computed analytical added

mass force and compared with the numerical force difference for exit cases. The

results for exit of the symmetric wedge SW30 were presented in section (5.3.1),

whereas others are given in the CD. By comparing the results for exit of each

shape, we notice that there is only moderate agreement of the analytical result

with the numerical results initially for constant acceleration cases. However, the

result for exit with constant velocity does not give better agreement because of

the difficulties in applying the theory when the free surface also moves and in

calculating the hydrodynamic pressure at corner points on the contour, see section

(5.5.2).



Chapter 6

Conclusion

This chapter briefly reviews the work done in this thesis to study forced water

entry and exit of symmetric, asymmetric, truncated wedges and boxes, and exit

of combined body through a free surface. A summary and main conclusions are

given in sections (6.1) and (6.2) respectively, while discussions of the results and

recommendations for future work are detailed in section (6.3).

6.1 Thesis Summary

We started by introducing some very important applications (slamming causing

effects in coastal and offshore structures) of structure-fluid interaction in the field of

coastal and marine engineering, and explained water entry and exit phases involved

in real problems. Earlier contributions to the study of water entry and exit and

the recent research relevant to this study of water entry and exit were reviewed. In

the literature review we looked at theoretical, numerical, and experimental aspects

of water entry and exit problems, especially noting few contributions exist for the

study of water exit related problems (see Greenhow (1990)).

In chapter 2, detailed explanation was given on the formulation of the two-dimensional

initial boundary-value problem (IBVP) using description of mixed Eulerian and

Lagrangian formulation of Vinje and Brevig (1981a; 1981b), which was further

developed by Greenhow (see also, Barringer (1996) and Moyo (1996)). The model

assumptions, boundary conditions and initial conditions were clearly explained.

247
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The solution method for the IBVP using the boundary element method (BEM)

giving integral equation was precisely specified.

In chapter 3, the numerical formulation to the IBVP which was used to implement

the equations in Matlab was explained. The time-stepping algorithms (Runge-

Kutta and Hamming predictor corrector methods) commonly used in the numerical

methods of ordinary differential equations (ODE) were also given for the Matlab

implementation.

In chapter 4, the method for derivation of non-dimensional parameters and com-

puted dimensionless numerical results using the numerical formulation of the IBVP

were presented for water entry of symmetric wedge of half-wedge angle 30o (SW30),

asymmetric wedge of half-left and right angles of −10o and 30o (AW4), truncated

wedge of half-left and right angles of 30o (TW3) and a box body (BX1) with

constant velocity and constant accelerations. For constant velocity entry, some

test cases examined the time effect, the Froude number effect, and speed of the

intersection points varying with depths and Froude numbers was investigated nu-

merically. Moreover, the numerical results computed for the symmetric wedges

using the IBVP were compared with the analytical theory developed by Mackie

(1965) and numerically formulated by Greenhow (1990).

For constant acceleration entry, derivation of added mass theory based on Bar-

ringer’s thesis (1996) and some test cases such as time effect on the motion, accel-

eration effect and comparison of added mass force with numerical force difference

for symmetric wedge (SW30) and box body (BX1) were presented.

In chapter 5, computed dimensionless numerical results using the numerical formu-

lation of the IBVP were presented for water exit of symmetric wedge of half-wedge

angle 30o (SW30), combined body (CB30), asymmetric wedge of half-left and right

angles of −10o and 30o (AW4) respectively, truncated wedge of half-left and right

angles of 30o (TW3) and a box body (BX1) with constant velocity and constant

accelerations. For constant velocity exit, some test cases examined the time effect

in entry, the Froude number effect, and speed of the intersection points varying

with depths and Froude numbers was investigated numerically. Moreover, the nu-

merical results computed for the symmetric wedges using the IBVP were compared

with the analytical theory developed by Mackie (1965) and applied by Greenhow

(1990).
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For constant acceleration exit, some test cases examining the time effect on the

motion, acceleration effect and comparison of added mass force with numerical

force difference for symmetric wedge (SW30) and box body (BX2) were presented.

6.2 Main conclusions

We noticed that the results obtained for both entry and exit which were presented

in the chapter 4 and 5 showed good agreement with the test cases explained

in the chapter 4 such as convergence checks for entry and exit, self-similarity

test for entry, time effect of initial and late stages of entry and exit and Froude

number effect for entry and exit. However, results obtained by Mackie’s theory for

entry of symmetric wedges did not show very good agreement for different Froude

numbers, but better agreement than that of the entry cases for exit of slender

wedges. Calculations on the speed of intersection points for entry and exit were

presented. It was observed that the increase or decrease in the initial velocity

of the body did not affect the non-dimensional initial velocity of the intersection

points as expected. It was also observed that there was a considerable effect on

the free surface, pressure and total force computation for entry and exit due to

the change in the depth of the fluid. It was also noticed that the analytical force

computed using the added mass theory and the force difference computed using

the nonlinear time-stepping method of Vinje and Brevig (1981a; 1981b) agreed

quite well at the initial stage of entry and exit with constant accelerations (time

τ=0).

6.3 Discussions and Recommendations

The problem of water entry and exit was formulated as mathematical equations

by assuming that the fluid is incompressible, irrotational and the potential theory

can be used to solve the problem. Moreover, for the simplification of the model, we

can avoid surface tension, air cushioning effects at initial stage, ventilation effect

for exit problems and the effect on the solution due to the vortex shedding near the

corners. However, in reality, we can not usually avoid these effects. As we pointed

out in Chapter 4 on water entry, the avoidance of the presence of vortex shedding

from the vertex of asymmetric wedges, truncated wedges and boxes makes the
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computation of water entry and exit easier. However, avoiding the vortex shedding

may consequently lead to inaccuracy of the results due to flow separation of the

vortex shedding. It should be taken into account to compute results for water entry

and exit of asymmetric wedges and box bodies accurately. The method presented

in this thesis based on the assumption of no vortex shedding along the vertex of

the wedge was explained by Barringer (1996) for a knuckle-shaped body. One can

further develop this model to include a mathematical formulation to study the

effects causing by vortex shedding, especially for the case of asymmetric and box

bodies.

For constant velocity entry and exit, we produced results for a limited range of

Froude numbers, but it was noticed that this model can not be used to compute

pressure and force for high Froude number cases due to the presence of the sin-

gularity in the computation of the pressure at the corner of the box and vertex of

the wedge. It is not clear if this model can be modified to tackle high speed entry

and exit cases too.

We also studied convergence of the results. The model can be used to compute

accurate results for the non-dimensional time-step size lower than 0.1 and the

point spacing should be chosen carefully to avoid numerical inaccuracies in the

results.

We did not consider shapes which are curved or have low deadrise angles (below

15o). For entry, we presented good results vertical half-wedge angle below 45o.

However, we tried to produce results for the angle of 55o entering with low Froude

number. The results did not show interesting effects because of the low Froude

number and rapid movement of the fluid particles and the body points. It may

be possible for one to resolve this problem by investigating the model further, and

possibly removing the jet flow as in Zhao and Faltinsen (1993).

Another possibility for further development is to do more calculations on curve-

shaped bodies (small dead-rise angle; parabolic or elliptic shapes) with a consid-

eration of the effects on the pressure load of the presence of air cushioning in the

initial stage of entry.

It is also possible to look into the computation of an upside-down-shaped wedge

in entry and exit with constant velocity and constant acceleration by considering

the strong effects due to the vortex shedding and flow separation from the trailing

corners. As for low deadrise angle cases, there may be strong effects due to a



Chapter 6. Conclusion 251

change in depth. For high-speed exit, we can possibly expect cavitation effects.

We did not consider this effect too.

Finally, from the literature, we can see that there has been considerable number

of contributions on the study of water entry related problems numerically and

experimentally. However, for exit, much more research needs to be carried out in

the future, numerically and experimentally. We have tried to present some results

to study exit problems numerically. However, we need experimental results to

validated the results computed numerically. Workers should produce experimental

results for exit problem which could be useful for future research.



Appendix A

Matlab Graphical User Interface

(GUI)

The water entry and exit problem was formulated as mathematical equations using

physical properties. It was then solved by formulating the mathematical equations

as numerical equations. The formulated problem was implemented in Matlab

package to produce numerical and graphical results. To verify the computed result

and produce more results by considering different test cases, the code was edited

manually for each run of the test cases. It is very difficult to modify the input

data each time. To avoid the complication of giving input manually by opening

each file of the test cases, we designed a graphical user interface in Matlab which

can be used to interact with the code directly through the windows by clicking

each button.

In this chapter, we explain the graphical user interface designed in Matlab to study

water entry and exit problem. The interface is called as Water Entry Exit Study

Tool (WEEST) which has been developed in an efficient manner to analyse the

results by changing the variables. In addition to that, WEEST can be installed as

a package on any computer even if Matlab is not installed. It is very user friendly

to use and speeds up user’s work. Moreover, it might be used as a teaching tool to

teach undergraduate students. Researchers in this field can use it for their studies.

The following sections clearly explain the structure of WEEST.

252
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A.1 WEEST windows

WEEST consists of several logically connected windows such as the WEEST main

window, the WEEST shape window, WEEST graph window and the WEEST

results window. It is easy to study exit and entry problems separately by se-

lecting different shaped objects. By running WEEST, we can first see the main

window which has two buttons named as Entry and Exit as shown in the Fig

(A.1).

Figure A.1: Main window of WEEST
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By clicking a button on the main window, we can go to another window as shown

in Fig. (A.2) in which we can choose a shape of the object such as wedge, box

and others interested in studying.

Figure A.2: Shape window of WEEST
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By clicking on a shape, we can see another window will appear as shown in Fig.

(A.3) where we can choose a button to compute the results for free-surface profile,

pressure distribution or force acting on the body.

Figure A.3: Graph window of WEEST
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Finally, another window (called WEEST input) will appear as in Fig (A.4) by

clicking on a button on the window shown in Fig. (A.3). Here we can give the

input values for which we want to compute results for the particular shape.

 

Title bar 
Menu bar 

Wedge parameters 
Grid variables 

Graphical window Output window 

Figure A.4: Input window of WEEST

A.2 Example for entry of a symmetric wedge

This section presents computed results using the WEEST tool for a symmetric

wedge of vertical half-wedge angle of 30o entering water with constant velocity.

Fig. (A.5) shows the free-surface profile changing with time, whereas Fig. (A.6)

and (A.7) represent the pressure along the wetted part of the wedge and the force

respectively.
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Figure A.5: Deformed free-surface profile of the symmetric wedge SW30 sub-
merged at a non-dimensional initial depth d̂i = −1 entering with constant ve-
locity of Froude number Fr = 0.5 plotted at different non-dimensional times

τ .

Figure A.6: Pressure distribution along the symmetric wedge SW30 sub-
merged at a non-dimensional initial depth d̂i = −1 entering with constant ve-
locity of Froude number Fr = 0.5 plotted at different non-dimensional times

τ .
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Figure A.7: Force experienced by the symmetric wedge SW30 submerged at a
non-dimensional initial depth d̂i = −1 entering with constant velocity of Froude

number Fr = 0.5 plotted at different non-dimensional times τ .



Appendix B

Documentation of Numerical

Results using Matlab

This appendix gives details about the contents of the CD which consists of all the

results produced for all the test cases of each shape entering and exiting water

with constant velocity and constant acceleration.

On opening the CD, we can see two main folders in the RESULTS folder, ENTRY

where the results for entry cases stored, and EXIT where the results for exit

cases stored. Each main folder has some subfolders such as asymmetricWedges,

symmetricWedges, boxes, truncatedWedges and combinedBody (clicking on the

main folder for Exit). By opening each folder, we can observe considered cases for

each shape. By opening the cases, we can see the folders for constant velocity and

constant acceleration entry or exit.

By double clicking on the constant velocity or constant acceleration, we can view

other folders which consist of the results for the test cases such as for constant

velocity (convergence check, time effect, Froude number effect, finite depth effect,

speed of intersection points varying with Froude numbers and depths and compar-

ison of Mackie’s theory for symmetric wedges) or for constant acceleration (time

effect, acceleration effect and added mass effect for symmetric wedges and boxes).

Take, for example, the result showing the Froude number effect of a symmetric

wedge (SW20) entering water with constant velocity. By opening the CD and then

double clicking on the Entry folder in the RESULTS folder to select the folder

of FroudeNumberEffect of the symmetric wedge (SW20) entering with constant

velocity, we can see the following window as shown in Fig. (B.1). By selecting

259
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Figure B.1: Folders for the entry case
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the folder for FroudeNumberEffect, we can view the results for free-surface profile,

pressure distribution along the body and numerical force experienced by the body.
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