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The scattering of a fluid-structure coupled wave at a flanged junction between two flexible wave-

guides is investigated. The flange is assumed to be rigid on one side and soft on the other; this ena-

bles a solution to be formulated using mode-matching. It is shown that both the choice of the edge

conditions imposed on the plates at the junction and the choice of incident forcing significantly

affect the transmission of energy along the duct. In particular, the edge conditions crucially affect

the transmission of structure-borne vibration but have little effect on fluid-borne noise. Given the

singular nature of the velocity field at the flange tip, particular attention is paid to the validity of the

mode-matching method. It is demonstrated that the velocity field can be accurately reconstructed

by incorporating the Lanczos filter into the truncated modal expansions. The mode-matching

method is thus confirmed as an viable tool for this class of problem.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4817891]
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I. INTRODUCTION

Many problems involving the scattering of waves in ducts

or channels are amenable to solution using analytic mode-

matching techniques. Such methods were originally devel-

oped for canonical problems involving a governing equation

such as Laplace’s or Helmholtz’s and in which the duct/chan-

nel boundaries were described by soft, hard, or impedance

conditions. The underlying eigen-systems for this class of

boundary value problem are of Sturm–Liouville type and

have well defined orthogonality properties enabling the prob-

lem to be recast in terms of an infinite system of linear equa-

tions in which the unknowns are usually the scattered wave

amplitudes. A key feature is that such systems are diagonally

dominant and, off the diagonal, the elements decay suffi-

ciently quickly for an accurate solution to be obtained by trun-

cation and inversion. The standard approach fails, however,

for more complicated geometries and/or ducts bounded by

flexible surfaces (corresponding to high order boundary condi-

tions) and alternative solution methods1,2 were, until recently,

necessary. In recent years mode-matching methods have been

devised to deal with more complicated geometries3–6 and

problems involving propagation in ducts/channels with high

order boundary conditions.7–10

Heating, ventilation, and air-conditioning (HVAC) duct-

ing systems are a typical application area for mode-matching

techniques. Although these methods generally neglect the

effects of break-out, they do provide both physical insight

into the underlying scattering processes and benchmark

solutions for fully numerical approaches. HVAC noise is

generated by, for example, a fan and, at distance from the

source, propagates as fluid-structure coupled waves. A typi-

cal silencer comprises a section of duct which is lined with a

porous material that absorbs sound. In many cases the lining

is held in place by a flange which may be curved to ease the

flow of air. There is usually no change in duct height and

the adjacent duct sections may be welded or riveted to the

silencer.

The primary aim of this article is to explore the effects

of two different sets of edge conditions, and the presence of

a flange, on the propagation of a structural mode past a si-

lencer. A simple model of the “front end” of a flexible

walled silencer is considered. This comprises two semi-

infinite sections of flexible-walled duct and incorporates a

flange at their junction. For simplicity, instead of including a

porous material, the downstream face of the flange satisfies

the zero pressure condition; further, the effect of flow is

neglected. A common assumption, when modeling junctions

of this type, is that the duct walls are clamped at the joint. In

practice, however, the duct sections are more likely to be

welded together and the presence of a flange, either at the

junction or in close proximity, will stiffen the joint reducing

the wall displacement. Driven by these observations, this

article explores the different effects that arise when the edges

are (a) clamped and (b) pivoted at the junction. The former

edge conditions are characterized by zero plate displacement

and zero gradient, and the latter by zero displacement but

continuous plate gradient and bending moment. It is worth

commenting that a similar study has recently been executed

for a semi-infinite ice-covered water channel;11 though that

study involves different edge conditions and, of course, only

reflection.

The presence of a flange ensures that the velocity field is

singular in the vicinity of its tip. It is well known that many

mode-matching methods fail to represent such behavior

accurately. Yet mode-matching methods of the class used

herein are known to conserve power12 and match pressure
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and normal velocity flux even in the presence of a corner.13

Thus, an additional aim of this paper is to investigate the

accuracy of the mode-matching method in the presence of a

stronger singularity. A final aim is to assess the performance

of the low frequency approximation used successfully in

Ref. 13.

The article is organized as follows. In Sec. II, the

two-dimensional (2D) model problem is described: This

incorporates a flange and/or a change in height and is thus

more general than the application discussed above. The cor-

responding boundary value problem is stated and the singu-

larity in the velocity field at the tip of the flange is described.

The mode-matching solution is executed in Sec. III and, in

Sec. IV, the low frequency (LF) approximation is derived for

four geometric variations of the problem (of which, case 4

corresponds to the application discussed above). A selection

of numerical results are presented in Sec. V. Section VI

presents a validation of the mode-matching method. It is

shown that the correct velocity field can be recovered by

incorporating the Lanczos filter into the truncated modal

expansions. Section VII comprises a comprehensive

discussion.

II. THE BOUNDARY VALUE PROBLEM

The 2D waveguide under consideration comprises two

distinct sections, one occupying the region �x < 0; 0 � �y � �a
and the other �x > 0; 0 � �y � �b, �b � �a of a dimensional

Cartesian frame of reference. The base of the waveguide,

�y ¼ 0; �1 < �x <1; is rigid while the upper surfaces

(those at �y ¼ �a and �y ¼ �b, respectively) comprise thin elas-

tic plates. The two duct sections are closed by a vertical strip

lying along �x ¼ 0; �d � �y � �b; �d � �a which is assumed to be

rigid on �x ¼ 0� and to satisfy the zero pressure condition on

�x ¼ 0þ. The interior region of the duct is filled with a com-

pressible fluid of density qa and sound speed c. Harmonic

time dependence, e�ix�t , where x ¼ ck is the radian fre-

quency, is assumed. It is convenient to non-dimensionalize

the boundary value problem with respect to length and time

scales k�1 and x�1, respectively. Thus, the non-dimensional

variables are related to their dimensional counterparts

through x ¼ k�x and t ¼ x�t etc. The non-dimensional geome-

try is shown in Fig. 1.

The boundary value problem is expressed in terms of

the non-dimensional reduced velocity potential, and it is

appropriate to define separate potentials for x < 0 and x > 0,

thus,

/ðx; yÞ ¼
/1ðx; yÞ; x < 0; 0 � y � a

/2ðx; yÞ; x > 0; 0 � y � b:

�
(1)

These satisfy Helmholtz’s equation with unit non-

dimensional wave number, that is,

ðr2 þ 1Þ/j ¼ 0; j ¼ 1; 2 (2)

which holds throughout the fluid region and in which r2 is

the Laplacian. The boundary condition at the horizontal rigid

surface is

/jy ¼ 0; j ¼ 1; 2; y ¼ 0; �1 < x <1; (3)

where the subscript y indicates differentiation with respect to

this variable. The bounding elastic plates satisfy the

condition

@4

@x4
� l4

� �
/jy � a/j ¼ 0; (4)

where for j ¼ 1 the condition is applied at y ¼ a; x < 0 and

for j ¼ 2 it is applied at y ¼ b; x > 0. The non-dimensional

parameters l and a are the in vacuo plate wave number and

a fluid loading parameter defined by

l4 ¼
12ð1� �2Þc2qp

k2h2E
; a ¼ 12ð1� �2Þc2qa

k3h3E
; (5)

where E is Young’s modulus, qp is the density of the plate,

qa is the density of the compressible fluid, and � is Poisson’s

ratio. In this article it is assumed that the two sections of

plate have identical physical properties but the method is not

restricted to this case (see, for example, Ref. 12). At the

matching interface, x ¼ 0, the fluid pressure and the normal

component of velocity are continuous for 0 � y � d, while

the normal component of velocity vanishes on x ¼ 0�, d � y
� a and the fluid pressure vanishes on x ¼ 0þ, d < y � b.

That is, at x ¼ 0

@/1

@x
¼

@/2

@x
; 0 � y � d

0; d � y � a

8<
: (6)

and

/2 ¼
/1; 0 � y � d

0; d � y � b:

�
(7)

In addition to the governing equation and boundary condi-

tions outlined above, it is necessary to apply “edge con-

ditions” to describe how the plates are connected to the

vertical rigid surface which joins the two duct sections. A

comprehensive list of appropriate conditions can be found in

Refs. 14–16: The two options are considered here are

clamped and pivoted.

It is intended to use a mode-matching approach to

solve the boundary value problem. Before the solution is

presented, it is worthwhile commenting on the nature of the

velocity potential as r ! 0 where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy� dÞ2

q
is theFIG. 1. The duct geometry.

1940 J. Acoust. Soc. Am., Vol. 134, No. 3, September 2013 R. Nawaz and J. B. Lawrie: Scattering at a flanged junction

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  134.83.1.241 On: Tue, 08 Apr 2014 13:53:32



distance from the tip of the flange. For a > d it is easily

shown that, as r ! 0,

/ðr; hÞ � b0r1=4sin
1

4
h� p

2

� �� �

þ b1r5=4sin
5

4
h� p

2

� �� �
; (8)

where b0 and b1 are arbitrary constants and h is the usual 2D

polar angle. It is thus clear that for a > d the fluid velocity is

singular as r ! 0. It is worth noting that singular behavior

similar to that displayed in (8) can be modeled by using a

multi-term Galerkin approximation involving Gegenbauer

polynomials.17–19 Mode-matching methods are, however,

simpler to implement, known to conserve power12 and, for a

velocity field with singularity of Oðr�1=3Þ as r ! 0, they

conserve velocity flux.13 With these points in mind, it is pro-

posed to use this problem as a vehicle for testing the accu-

racy to which the mode-matching approach can model a

stronger singularity.

III. MODE-MATCHING SOLUTION

Any incident wave propagating in the positive x-direction

toward x ¼ 0 will be scattered at the discontinuity into a

potentially large number of reflected and transmitted waves.

The fluid velocity potentials /jðx; yÞ, j ¼ 1; 2 may be

expressed as eigenfunction expansions. Thus, for x < 0,

/1ðx; yÞ ¼ F‘Yðs‘; yÞeig‘x þ
X1
n¼0

AnYðsn; yÞe�ignx; (9)

and for x > 0

/2ðx; yÞ ¼
X1
n¼0

BnYðcn; yÞeisnx: (10)

Note that in Eq. (9) the forcing term comprises an arbitrary

duct mode with amplitude F‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=ðC‘g‘Þ

p
(chosen to

ensure that the incident power is unity), and that the coeffi-

cients An and Bn are the unknown, complex amplitudes of

the nth reflected and transmitted modes. The non-

dimensional modal wave numbers are gn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

n þ 1
p

and

sn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

n þ 1
p

; in both cases the branch is defined such that

the wave numbers are either positive real or have positive

imaginary part. Further, Yðf; yÞ ¼ coshðfyÞ with f ¼ sn for

x < 0 and f ¼ cn for x > 0, n ¼ 0; 1; 2;…. In expressions

(9) and (10), sn and cn, n ¼ 0; 1; 2; ::: are the roots of

Kðf; pÞ ¼ 0 where for the left hand duct f ¼ s and p ¼ a
while for the right hand duct f ¼ c and p ¼ b. The dispersion

function is

Kðf; pÞ ¼ ½ðf2þ 1Þ2�l4�f sinhðfpÞ� acoshðfpÞ: (11)

The roots of Kðf; pÞ ¼ 0 have the following properties: (1)

they occur in pairs, 6fn; (2) there is a finite number of real

roots (usually only one) but an infinite number of imaginary

roots; (3) complex roots 6fn and 6f�n occur for some fre-

quency ranges. It is assumed that no root is repeated.

Positive roots, þfn; are assumed to be either positive

real or have a positive imaginary part. They are ordered

sequentially, real roots first and then by increasing imaginary

part. Hence, f0 is always the largest real root and remaining

roots are ordered accordingly. Should a complex root, say

fn, lie in the upper half of the complex s-plane, then minus

the complex conjugate, �f�n will also lie in the same half-

plane. Such pairs are incorporated into the sequence of roots

according to the magnitude of their imaginary part, and in

the order fn followed by �f�n. Complex roots arise as the

imaginary plate mode approaches a “cut-off” duct mode,

thus a guide to the values of k for which these occur is

obtained by solving

il ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2p2

k2 �p2

s
; n ¼ 1; 2; 3…; (12)

where l is given in (5) and �p is the dimensional height of the

duct.

The generalized orthogonality relations for this class of

problem are well established7,8,12,13 and are quoted here as

a
ða

0

Yðsm; yÞYðsn; yÞdy

¼ dmnCn � ðs2
m þ s2

n þ 2ÞY0ðsm; aÞY0ðsn; aÞ; (13)

and

a
ðb

0

Yðcm; yÞYðcn; yÞdy

¼ dmnDn � ðc2
m þ c2

n þ 2ÞY0ðcm; bÞY0ðcn; bÞ; (14)

where, here and henceforth, the prime indicates differentia-

tion with respect to y. The quantities Cm and Dm are given

by

Cm ¼
aa

2
þ aYðsm; aÞY0ðsn; aÞ

2s2
m

þ 2g2
m½Y0ðsm; aÞ�2; (15)

and

Dm ¼
ab

2
þ aYðcm; bÞY0ðcn; bÞ

2c2
m

þ 2s2
m½Y0ðcm; bÞ�2: (16)

The complex amplitudes, An and Bn of Eqs. (9) and (10)

are, as yet undetermined and are found by appealing to conti-

nuity of pressure and normal component of velocity. On sub-

stituting (9) and (10) into (6), the velocity condition may be

expressed as

F‘g‘ coshðs‘yÞ �
X1
n¼0

Angn coshðsnyÞ

¼
X1
n¼0

Bnsn coshðcnyÞ; 0 � y � d

0; d � y � a:

8><
>: (17)

On multiplying (17) by a coshðsmyÞ; integrating with respect

to y, 0 � y � a, and using (13), it is found that
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Am¼F‘d‘mþ
smsinhðsmaÞ

gmCm
½E1þðs2

mþ2ÞE2�

� F‘g‘
gmCm

ðs2
‘þs2

mþ2Þs‘sinhðs‘aÞsmsinhðsmaÞ

� a
gmCm

X1
n¼0

BnsnRmn (18)

where

E1 ¼
X1
n¼0

Angns
3
n sinhðsnaÞ; (19)

E2 ¼
X1
n¼0

Angnsn sinhðsnaÞ (20)

and

Rmn ¼
ðd

0

coshðsmyÞcoshðcnyÞdy; (21)

which, for b 6¼ a, simplifies to

Rmn ¼
sm sinhðsmdÞ coshðcndÞ � cn sinhðcndÞ coshðsmdÞ

ðs2
m � c2

nÞ
:

(22)

To obtain a similar expression for Bn, n ¼ 0; 1; 2; :::
Eqs. (9) and (10) are substituted into (7). Thus the pressure

condition may be expressed as

X1
n¼0

Bn coshðcnyÞ

¼
F‘ coshðs‘yÞ þ

X1
n¼0

An coshðsnyÞ; 0 � y � d

0; d � y � b:

8><
>:

(23)

On multiplying (23) by acoshðcmyÞ; integrating with respect

to y, 0 � y � b and then using (14), it is found

Bm ¼
cm sinhðcmbÞ

Dm
½E3 þ ðc2

m þ 2ÞE4� þ
aF‘
Dm

R‘m

þ a
Dm

X1
n¼0

AnRnm; (24)

where

E3 ¼
X1
n¼0

Bnc
3
n sinhðcnbÞ; (25)

E4 ¼
X1
n¼0

Bncn sinhðcnbÞ: (26)

Note that the constants E1 � E4 are, as yet, unknown and are

specified by enforcing the plate edge conditions.

A. Clamped edges

For the case in which both plates are clamped along the

edges (i.e., at x ¼ 0, y ¼ a; b) the appropriate edge condi-

tions are zero displacement and zero gradient. That is,

/1yð0; aÞ ¼ 0; /1yxð0; aÞ ¼ 0; (27)

and

/2yð0; bÞ ¼ 0; /2yxð0; bÞ ¼ 0: (28)

On comparing (27) and (28) with (20) and (26), it is clear

that

E2 ¼ F‘g‘s‘ sinhðs‘aÞ and E4 ¼ 0: (29)

In order to apply /1yð0; aÞ ¼ 0, (18) is by multiplied by

smsinhðsmaÞ and, on summing over m, it is found that

X1
m¼0

Amsm sinhðsmaÞ

¼ F‘s‘ sinhðs‘aÞ þ E1S1 � F‘g‘s
3
‘ sinhðs‘aÞS1

þ½E2 � F‘g‘s‘ sinhðs‘aÞ�
X1
m¼0

ðs2
m þ 2Þ s

2
m sinh2ðsmaÞ

gmCm

�a
X1
m¼0

sm sinhðsmaÞ
gmCm

X1
n¼0

BnsnRmn: (30)

This may be simplified using (29) and (27); it is found that

E1 ¼�
2F‘
S1

s‘ sinhðs‘aÞ þ F‘g‘s
3
‘ sinhðs‘aÞ

þ a
S1

X1
m¼0

X1
n¼0

Bnsm sinhðsmaÞsnRmn

gmCm
(31)

where

S1 ¼
X1
m¼0

s2
m sinh2ðsmaÞ

gmCm
: (32)

On applying the same procedure for the remaining edge con-

dition, i.e., /2xyð0; bÞ ¼ 0; it is found that

E3 ¼�
a
S2

F‘
X1
m¼0

smcm sinhðcmbÞR0m

Dm

"

þ
X1
m¼0

X1
n¼0

Ansmcm sinhðcmbÞRnm

Dm

#
(33)

where

S2 ¼
X1
m¼0

smc2
m sinh2ðcmbÞ

Dm
: (34)

B. Pivoted edges

For the case in which the plate is pivoted along the

edges, the appropriate edge conditions are zero displacement,
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continuous gradient and continuous bending moment. That

is,

/1yð0; aÞ ¼ 0; /2yð0; bÞ ¼ 0; (35)

together with

/1yxð0; aÞ¼/2yxð0; bÞ; /1yxxð0; aÞ¼/2yxxð0; bÞ: (36)

Note that, while it is possible to apply these conditions

for the case a 6¼ b, they are physically realistic only when

a ¼ b. Application of these edge conditions gives E4 ¼ 0,

E1 ¼
1

S1

�
F‘g‘s‘ sinhðs‘aÞ½S3 þ ð2þ s2

‘ ÞS1�

�2F‘s‘ sinhðs‘aÞ � E2ðS3 þ 2S1Þ

þa
X1
m¼0

X1
n¼0

Bnsnsm sinhðsmaÞRmn

gmCm

�
; (37)

E2 ¼ F‘g‘s‘ sinhðs‘aÞ �
X1
n¼0

snBncn sinhðcnbÞ; (38)

and

E3 ¼ F‘g
2
‘s‘ sinhðs‘aÞ þ

X1
n¼0

Ang
2
nsn sinhðsnaÞ; (39)

where

S3 ¼
X1
m¼0

s4
m sinh2ðsmaÞ

gmCm
: (40)

Equations (18) and (24) together with the appropriate

expressions for E1 - E4 form an infinite system of linear alge-

braic equations from which the coefficients Am and Bm,

m ¼ 0; 1; 2;… may be determined.

IV. A LOW FREQUENCY APPROXIMATION

In the previous section the boundary value problem was

stated and reduced, using a mode-matching procedure, to a

system of equations that must be truncated and solved

numerically. A low frequency (LF) approximate solution is

outlined in Ref. 13, and one aim of this article is to establish

the validity of this approximation. The appropriate LF

expressions are thus derived here. The approximate poten-

tials are formed from (9) and (10) simply by truncating the

two eigenfunction expansions at n ¼ M and n ¼ N, respec-

tively. Thus, M þ 1 modes are taken in the reflected field

and N þ 1 in the transmitted field. Only fundamental forcing

is considered since the LF approximation is not expected to

be valid for higher-mode forcing. Instead of using the ortho-

gonality relations (13) and (14), the LF approximation is

based on matching integral quantities such as mean pressure

and velocity flux. For simplicity, the total number of modes,

M þ N þ 2, is chosen to be equal to the number of physical

conditions to be applied at x ¼ 0. This means that the actual

values of M and N depend on the relative values of a; b, and

d. Continuity of mean pressure and velocity flux, however,

apply in all cases.

Continuity of mean pressure is applied at x ¼ 0,

0 � y � d. That is,

ðd

0

/1 dy ¼
ðd

0

/2 dy; (41)

and it follows that

XN

n¼0

Bn sinhðcndÞ
cn

�
XM

n¼0

An sinhðsndÞ
sn

¼ F0 sinhðs0dÞ
s0

:

(42)

Continuity of velocity flux is applied at x ¼ 0, 0 � y � d,

ðd

0

/1x dy ¼
ðd

0

/2x dy: (43)

Thus,

XM

n¼0

Angn sinhðsndÞ
sn

þ
XN

n¼0

Bnsn sinhðcndÞ
cn

¼ F0g‘ sinhðs0dÞ
s0

: (44)

A. Case 1: a5d and b > a

For this geometric configuration there is a change in

height but no flange. Thus, in addition to (42) and (44), the

average pressure at x ¼ 0þ; a ¼ d � y � b must be zero.

That is

ðb

d

/2 dy ¼
XN

n¼0

Bn½sinhðcnbÞ � sinhðcndÞ�
cn

¼ 0: (45)

Further, the plate edge conditions must be applied. For

clamped edges, Eqs. (27) and (28), give

XM

n¼0

Ansn sinhðsnaÞ ¼ �F0s0 sinhðs0aÞ; (46)

XM

n¼0

Angnsn sinhðsnaÞ ¼ F0g‘s0 sinhðs0aÞ; (47)

XN

n¼0

Bncn sinhðcnbÞ ¼ 0; (48)

XN

n¼0

Bnsncn sinhðcnbÞ ¼ 0: (49)

In order to accommodate all seven of the conditions at

x ¼ 0, it is necessary to use three modes for x < 0 and four

for x > 0. Thus, M ¼ 2 and N ¼ 3. Note that the pivoted

edge conditions could be applied for b > a but, as mentioned

earlier, would be less physically realistic than clamped

edges.
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B. Case 2: b > a > d

This is the most general geometry comprising a change

in duct height and a flange. So in addition to Eqs. (42), (44),

(45), and (46)–(49), the velocity flux at x ¼ 0�; d � y � a
must also be zero, that is,ða

d

/1x dy ¼ 0: (50)

Hence,

XM

n¼0

Angn½sinhðsnaÞ � sinhðsndÞ�
sn

¼ F0g0½sinhðs0aÞ � sinhðs0dÞ�
s‘

: (51)

It follows that one more mode is needed for x < 0, so

M ¼ N ¼ 3. Thus, considering only clamped edges, the

coefficients for the low frequency approximation are given

by Eqs. (42), (44), (45), (46)–(49) and (51).

C. Case 3: b 5 a 5 d

When b ¼ a ¼ d there is no change in duct height and

also no flange. This is the simplest duct configuration and

M ¼ N ¼ 2. Since a ¼ b, both sets of edge conditions are

physically realistic. For clamped edges the appropriate low

frequency equations are Eqs. (42), (44), and (46)–(49), while

for the pivoted junction they are Eqs. (42), (44), (46), and

(47) together with

XN

n¼0

Angnsn sinhðsnaÞ þ
XM

n¼0

Bnsncn sinhðcnbÞ

¼ F0g0s0 sinhðs0aÞ (52)

and

XN

n¼0

Ang
2
nsn sinhðsnaÞ �

XM

n¼0

Bns2
ncn sinhðcnbÞ

¼ �F0g
2
0s0 sinhðs0aÞ: (53)

D. Case 4: a5b and a > d

In this case there is no change in duct height, but there

is a flange so, as in case 2, M ¼ N ¼ 3. Thus, for clamped

edges the appropriate low frequency equations are (42), (44),

(45), (51), and (46)–(49). For pivoted edges (47) and (49)

are replaced by (52) and (53).

V. NUMERICAL RESULTS

Given that the system of linear algebraic equations

defined by (18) and (24) is suitably convergent, the solution

to the physical problem can be obtained by truncating and

solving the reduced system. Note that (18) and (24) hold for

m ¼ 0; 1; 2;…, so truncating at m ¼ T corresponds to

retaining T þ 1 equations. For each graph presented in this

section, the value of T is stated in the figure caption. The

plates were taken to be aluminum, of thickness �h ¼ 0:0006

m and of density qp ¼ 2700 kg m�3. In addition, the values

of Young’s modulus and Poisson’s ratio were taken to be

E ¼ 7:2� 1010 Nm�2 and � ¼ 0:34; while c ¼ 344 ms�1

and qa ¼ 1:2 kg m�3, respectively.

For a duct of height �a, the dimensional energy flux in

the positive x direction per unit span in the z direction is

@ �E

@�t
¼ Bf�w�x�x�x �w�t � �w�x�x �w�x�tg þ

ð�a

0

�p
@ �U
@�x

d�y; (54)

where B ¼ Eh3=½12ð1� �2Þ�, �w is the plate displacement

defined by �w�t ¼ �U�y and �p is the fluid pressure defined by

�p ¼ �qa
�U�t . Note that �Uðx; y; tÞ is the total (time-dependent)

dimensional velocity potential. On non-dimensionalizing this

expression, averaging over one time period and expressing

the result in terms of the non-dimensional time independent

potentials it is found that

E ¼ @E

@t
¼< �i

ða

0

/�
@/
@x

dy� i

a
½/�yxxx/y�/�yxx/yx�y¼a

� �
:

(55)

Here the integral represents the energy flux in the fluid and

the remaining terms that in the plate. If /inc is substituted

into (55), where

/inc ¼ F‘Yðs‘; yÞeig‘x; (56)

it is easily shown (numerically) that, for the plate parameters

considered herein and for frequencies above 50 Hz, in excess

of 99% of the energy carried by the fundamental mode

(‘ ¼ 0) is in the plate whereas in excess of 99% of the

energy carried by the second mode (‘ ¼ 1) is in the fluid.

Thus, the fundamental mode is structure-borne while the sec-

ond mode is fluid-borne.

On substituting the reflected field of (9) into (55), and

using the orthogonality relation (13), a neat and convenient

expression for the (non-dimensional) reflected energy flux

across an arbitrary fictitious vertical surface in the region

x < 0 within the duct is obtained. Thus,

E1 ¼
1

a

XJ1�1

j¼0

jAjj2gjCj; x < 0; (57)

where J1 is the number of cut-on modes in the region x < 0.

This expression, which can be found in Ref. 8 and was uti-

lized by Warren et al.12 for a membrane bounded duct,

incorporates both the fluid and the structure-borne compo-

nents of the reflected energy flux. The analogous expression

for the transmitted field is

E2 ¼
1

a

XJ2�1

j¼0

jBjj2sjDj; x > 0; (58)

where J2 is the number of cut-on modes in the region x > 0.

The results presented in Figs. 2–5 comprise a compari-

son of the reflected and transmitted components of power,

1944 J. Acoust. Soc. Am., Vol. 134, No. 3, September 2013 R. Nawaz and J. B. Lawrie: Scattering at a flanged junction

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  134.83.1.241 On: Tue, 08 Apr 2014 13:53:32



plotted against frequency, for each of the four duct configu-

rations discussed in Sec. IV. Two different incident fields are

considered: The structural-borne fundamental mode and the

fluid-borne second mode. In each of Figs. 2–5 the solid

curves are obtained using the mode-matching method while

the dashed curves are obtained via the low frequency

approximation. The latter are included only for fundamental

forcing.

A. Case 1: a 5 d and b > a

Figure 2 has been computed using dimensional duct

heights: �a ¼ �d ¼ 0:06 m and �b ¼ 0:085 m. For this duct

configuration only clamped edges are considered. Figure

2(a) shows the reflected and transmitted power when the

forcing comprises the “structural” fundamental mode, and it

is clear that the energy is almost totally reflected at the dis-

continuity in duct height. For the most part, the LF approxi-

mation and the mode-matching solution are in good

agreement, however, the LF approximation fails for an iso-

lated frequency interval around 400 Hz. In this interval the

dispersion relation for the left hand duct has one real root

(s0), then an imaginary root (s1) which is followed by a pair

of complex roots (s3 and �s�3)—the presence of which is

accurately predicted by (12). The complex roots are of equal

physical importance, but for this duct configuration the low

frequency approximation uses only three modes for the left

hand duct (M ¼ 2) and thus only one of the complex modes

is included causing the method’s failure. Once the frequency

has risen to a point whereby the complex roots vanish, the

previous level of accuracy is resumed. Figure 2(b) shows the

reflected and transmitted power when the second mode

(which cuts on at 190 Hz) is incident. The incident energy is

now fluid-borne and, while at cut-on the energy is almost

totally reflected, the transmitted energy increases steadily

with increasing frequency.

B. Case 2: b > a > d

In Fig. 3, �a ¼ 0:06 m, �b ¼ 0:085 m, and �d ¼ 0:045 m.

As for the previous case, when the forcing comprises the fun-

damental mode [Fig. 3(a)] the incident energy undergoes

almost total reflection at the change in duct height. While not

quite over-lying, the low frequency approximation and the

mode-matching solution are in good agreement for the whole

of the frequency range. Figure 3(b) shows the reflected and

transmitted power when the incident mode is fluid-borne

(second-mode). As in case 1, the transmitted energy increases

steadily with increasing frequency. Comparison of Figs. 2(b)

and 3(b) suggests that the presence of the flange reduces

the rate at which the transmitted energy increases with

frequency.

C. Case 3: a 5 b 5 d

Case 3 corresponds to the simplest geometry in which

the two duct sections are of the same height and there is no

flange, thus �a ¼ �d ¼ �b ¼ 0:06 m. Eighty terms (T ¼ 79)

have been used to compute the graphs in Fig. 4 (this is more

than necessary for fundamental forcing for which excellent

results can be obtained using only 30 terms). Figures 4(a)

and 4(c) correspond to fundamental forcing with clamped

and pivoted edges, respectively. Both figures demonstrate a

sharp inversion of the reflected and transmitted powers at the

cut-on of the second duct mode. Otherwise the overall trend

is almost total reflection for clamped edges and significantly

more transmission for pivoted edges. For this case, the LF

approach uses only three modes in each duct region

(M ¼ N ¼ 2). Its failure in the region of 400 Hz (discussed

above) is clearly visible in both Figs. 4(a) and 4(c)—

although for the latter accuracy is not resumed at higher fre-

quencies. For second-mode forcing [see Figs. 4(b) and 4(d)]

the vast majority of the incident energy is in the fluid and,

FIG. 2. Case 1, clamped edges: Forcing

via (a) the fundamental mode (T ¼ 79);

(b) the second mode (T ¼ 199). (The

dashed curve is the low frequency

approximation.)

FIG. 3. Case 2, clamped edges: Forcing

via (a) the fundamental mode (T ¼ 79);

(b) the second mode (T ¼ 199). (The

dashed curve is the low frequency

approximation.)
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for frequencies above 300 Hz, very little is reflected at the

duct junction. Further, it is clear that the plate edge condi-

tions have little or no effect on the reflection/transmission of

energy.

D. Case 4: a 5 b and a > d

In Fig. 5 the dimensional height of both duct sections is

�a ¼ �b ¼ 0:06 m while �d ¼ 0:045 m. Figures 5(a) and 5(c)

compare the clamped and pivoted edge conditions for funda-

mental forcing. As above, when both plates are clamped

there is almost total reflection of the incident power with

only a small fraction being transmitted into the duct lying in

x > 0. In contrast Fig. 5(c) shows that when the plates are

pivoted the reflected and transmitted powers are almost

equal for frequencies above 400 Hz. Since this geometric

configuration includes a flange (so that M ¼ N ¼ 3), the loss

of accuracy in the LF approximation remarked upon above

does not occur around 400 Hz. There is, however, a small

but discernable discrepancy between the LF approach and

the mode-matching approach in the region of 200 Hz. This

coincides with the cut-on frequency for the second duct

mode. Figures 5(b) and 5(d) compare the clamped and piv-

oted edge conditions for second-mode forcing. As in case 3

[see Figs. 4(b) and 4(d)], the vast majority of the incident

energy is in the fluid. The effect of the flange is clear in that

the transmitted energy increases with frequency much more

slowly than in case 3. The plate edge conditions again have

no apparent effect on the reflection/transmission of energy.

VI. VALIDATION OF THE METHOD

The results presented in Sec. V focus on the reflected

and transmitted energies for two different incident waves

FIG. 4. Case 3: (a) Clamped edges,

fundamental forcing; (b) clamped

edges, second-mode forcing; (c) piv-

oted edges, fundamental forcing; (d)

pivoted edges, second-mode forcing.

In each case, T ¼ 79.

FIG. 5. Case 4: (a) Clamped edges,

fundamental forcing; (b) clamped

edges, second-mode forcing; (c) piv-

oted edges, fundamental forcing; (d)

pivoted edges, second-mode forcing.

In each case, T ¼ 199.
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and two different sets of edge conditions. Bearing in mind

the nature of the singularity in the velocity field, it is essen-

tial to validate the mode-matching method. This can be done

by confirming, first, that sufficient terms have been included

in the truncation of Eqs. (18) and (24) to ensure that the

modal coefficients have converged adequately and, second,

that the coefficients contain the correct information to enable

the matching conditions, (6) and (7), to be reconstructed.

The next three figures examine these issues for case 4 [the

singularity structure for which is given in (8)] with pivoted

edges.

Figure 6 shows the transmitted energy against the trunca-

tion parameter at 700 Hz. [Recall that (18) and (24) hold for

m ¼ 0; 1; 2;…, so truncating at m ¼ T corresponds to retain-

ing T þ 1 equations.] Clearly, the system converges more

slowly when the second-mode is incident and attention is

henceforth restricted to this forcing with T ¼ 199. Figure

7(a) shows the real parts of the non-dimensional pressures at

the matching interface, that is <f/1ð0; yÞg and <f/2ð0; yÞg,
0 � y � a, at 700 Hz. In the fluid region, 0 � y � d, there is

good agreement between the two curves and, furthermore,

<f/2ð0; yÞg 	 0 for d � y � a indicating that the real part

of pressure does satisfy condition (7) (the same level of accu-

racy is observed in the imaginary parts). Figure 7(b) shows

the imaginary parts of the normal components of velocity,

=f/1xð0; yÞg and =f/2xð0; yÞg, 0 � y � a. All useful infor-

mation is obscured by Gibb’s phenomenon.

Gibb’s phenomenon is caused by the abrupt truncation

of a poorly convergent series. Much research has been done

into the resolution of this phenomenon and, in particular,

how to accurately reconstruct a function given its Fourier

coefficients.20–22 The Lanczos filter provides a simple and

effective means of doing this. For the sake of completeness,

the pertinent properties of the filter are briefly summarized.

The results presented in Fig. 7 were obtained by truncat-

ing the modal expansions and plotting partial sums of the form

fTðyÞ ¼
XT

n¼0

An coshðsnyÞ; �a � y � a; (59)

where T þ 1 terms are have been retained. Consider instead

the quantity f r
T ðyÞ where

f r
T ðyÞ ¼

T

2a

ða=T

�a=T

fTðyþ vÞ dv: (60)

This is the convolution of the partial sum fTðyÞ with the

function

SðvÞ ¼
T=ð2aÞ; jvj < a=T

0; jvj > a=T:

�
(61)

Clearly as T !1, SðvÞ ! dðvÞ (Dirac’s delta function) and

f r
T ðyÞ ! fTðyÞ ! f ðyÞ. By direct integration of (60), it is

found that

f r
T ðyÞ ¼

XT

n¼0

Anrn coshðsnyÞ; (62)

where

rn ¼
sinhðsna=TÞ

sna=T
: (63)

The quantity rn is the Lanczos filter (also known as a sigma

factor). Its inclusion in the partial sum aids convergence and

smoothes out Gibb’s phenomenon thus providing a more

accurate approximation to f ðyÞ everywhere on ð�a; aÞ
except at the singularity. On noting that, for the parameters

and frequency ranges considered herein,

snþ2 �
inp
a
; n > 1; (64)

it is clear that r0 ! 1 while rn ! 0, as n! T !1. Thus,

the filter does not affect each term of the partial sum in the

same way. The first few terms are unaffected but as n increases

the sigma factor successively reduces the significance of each

term. It is also worth commenting this filter is generally used

FIG. 6. Case 4: Transmitted energy against truncation parameter, T, for piv-

oted edges at 700 Hz. The dashed line corresponds to fundamental forcing

and the solid line to second-mode forcing.

FIG. 7. Case 4, pivoted edges and

second-mode forcing at 700 Hz: (a)

The real parts of /jð0; yÞ; (b) the

imaginary parts of /jxð0; yÞ, j ¼ 1; 2.
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with standard Fourier series, however, its effectiveness for this

class of modal expansion is assured by (64). The reader is

referred to Ref. 21 and Ref. 22 for further details of this and

similar filters, including error bounds for jf r
T ðyÞ � f ðyÞj.

Figure 8 shows the imaginary parts of /1xð0; yÞ and

/2xð0; yÞ, 0 � y � a, computed using the filter, for case 4

(second-mode forcing) with pivoted edge conditions at

700 Hz and with T ¼ 199. This figure should be compared

with Fig. 7(b). While the filter has not completely removed

the oscillations, they are significantly smoothed. Further, the

velocities are in excellent agreement in the fluid region and

/1xð0; yÞ 	 0 for d � y � a as required. The curves could be

further smoothed by either increasing T or repeated applica-

tions of the filter, but this is not considered necessary for the

purposes of this article. It is clear that matching condition

(6) has been reconstructed using the modal coefficients

obtained by truncating Eqs. (18) and (24). This validates the

method and the numerical results presented in Sec. V.

VII. DISCUSSION

The scattering of fluid-coupled structural waves by a

geometric discontinuity, comprising a flange and/or a change

in height, in a 2D duct has been studied. The model problem

was solved using an established mode-matching method and

a range of numerical results have been presented for two sets

of edge conditions and two different incident modes. A num-

ber of interesting physical features have been illustrated.

When forcing is provided via the structure-borne funda-

mental mode, the transmission and reflection of energy is

significantly affected by the choice of edge conditions. If the

plates are clamped at x ¼ 0, the vast majority of the incident

energy is simply reflected, and very little is transmitted into

the region x > 0. In contrast, when a ¼ b and the plates are

pivoted at x ¼ 0 the proportion of energy transmitted is

much higher—approaching 50% of the total energy for fre-

quencies above 400 Hz. These observations hold with or

without a flange and are consistent with the energy being

structure borne. On the other hand, for second-mode forcing,

most of the energy is transported in the fluid and the edge

conditions have no apparent effect on the reflected and trans-

mitted fields. These findings have implications for the design

of ducting systems in which adjacent duct sections may be

riveted or welded together. Mathematically, a welded junc-

tion is characterized by continuity of plate displacement,

gradient, bending moment, and force which are ideal condi-

tions for a structure-borne mode to propagate with limited

reflection.

The results obtained using mode-matching have been

compared with those for a low frequency (LF) approxima-

tion. It has been shown that the latter method does surprising

well for the (small) ducts and moderate frequency ranges

used herein. The LF approach fails in situations where a pair

of complex roots cannot both be included in the approxima-

tion (see Figs. 2 and 4) and, of course, with increasing fre-

quency. Further, the LF method cannot impose the correct

continuity conditions at the matching interface. Instead, it

matches average pressure and velocity flux and thus the

approach should never be used for situations in which details

of the actual pressure or velocity are required. It is a poten-

tially useful tool, however, for an initial investigation and/or

for verifying numerical/analytic results in the low frequency

regime.

The choice of model problem facilitated an investigation

into the accuracy of the mode-matching solution given a sin-

gular velocity field. This method relies on the analytic prop-

erties of the eigenfunctions corresponding to acoustic

propagation in a uniform duct. It is well known that in the

absence of a singularity the pressure and normal velocity are

matched to a high level of accuracy, but mode-matching

methods of this type are not usually expected to model sin-

gularities accurately. The results presented herein, however,

show that the method copes well with the discontinuous

pressure condition caused by the presence of a flange [see

Fig. 7(a)] and, more surprisingly, that the correct velocity

field can be recovered with the aid of the Lanczos filter (see

Fig. 8). A disadvantage of the method is the large number of

terms required to ensure accuracy.

Finally, it is remarked that the model problem solved

herein features a “soft-backed” flange, that is, one which is

rigid on one side (x ¼ 0�) and soft on the other (x ¼ 0þ).

This configuration is amenable to the analytic solution

method presented herein. The case of a totally rigid flange is

a more challenging variation of the problem. (See, for exam-

ple, Ref. 23 in which the main problem is recast in terms of

a duct with a flange but in which the walls are not flexible.)

Nevertheless, given the surprisingly good results presented

in Sec. V, the LF method would seem a useful tool for a pre-

liminary investigation in the low frequency regime.
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