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Abstract

The focus of my research has been computationally efficient means of computing measures of

risk for portfolios of nonlinear financial instruments when the risk factors might be possibly

non-Gaussian. In particular, the measures of risk chosen have been Value-at-Risk (VaR)

and conditional Value-at-Risk (CVaR). I have studied the problem of computation of risk

in two types of financial portfolios with nonlinear instruments which depend on possibly

non-Gaussian risk factors:

1. Portfolios of European stock options when the stock return distribution may not be

Gaussian;

2. Portfolios of sovereign bonds (which are nonlinear in the underlying risk factor, i.e.

the short rate) when the risk factor may or may not be Gaussian.

Addressing both these problems need a wide array of mathematical tools both from the

field of applied statistics (Delta-Gamma-Normal models, characteristic function inversion,

probability conserving transformation) and systems theory (Vasicek stochastic differential

equation model, Kalman filter). A new heuristic is proposed for addressing the first problem,

while an empirical study is presented to support the use of filter-based models for addressing

the second problem. In addition to presenting a discussion of these underlying mathemati-

cal tools, the dissertation also presents comprehensive numerical experiments in both cases,

with simulated as well as real financial market data. Backtesting is used to confirm the

validity of the proposed methods.

Different parts of the work presented in this dissertation has been submitted to peer re-

viewed journals in terms of two papers:

• Chapter 2: “Measuring the risk of a nonlinear portfolio with fat tailed risk factors
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through probability conserving transformation” submitted to IMA Journal of Manage-

ment Mathematics;

• Chapter 3: “Value-at-Risk for fixed income portfolios: A Kalman filtering approach”

submitted to IMA Journal of Management Mathematics.
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Chapter 1

Introduction

This chapter provides motivation to address the problems discussed in the thesis. In the

first section, basic concepts about measuring risk for financial portfolios are introduced.

Next, a short history of Value-at-Risk is provided. This is followed by providing details

on the existing modeling paradigm and the proposed model on the two type of portfolios

considered.

1.1 Managing the risk for financial institutions

Financial institutions need to monitor and effectively manage market risk. Quantitative

risk measures have become crucial management instruments for portfolio managers. Risk

managers and market regulators have to control their risks or to appropriately allocate their

capital. Value-at-Risk (VaR) has been chosen by the Basel Committee on Banking Supervi-

sion in Basel II as the standard risk measure for financial risk managers (see Basel Committee

(2006) and Qian and Gerlach (2011) for details). It measures the worst expected loss under

normal market conditions over a specific time interval at a given confidence interval. It may

be seen as the “best of worst cases scenario” and it therefore systematically underestimates

the potential losses associated with the specified level of probability.

To define VaR, consider a real-valued random variable X on a probability space (Ω,A, P )

that expresses the random profit or loss of some asset or portfolio, its cumulative distribu-

tion function (cdf) FX (x) = Pr [X ≤ x] and set a confidence level α ∈ (0, 1). The quantity
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qα(X ) = inf{x|FX (x) ≥ α} is the α-quantile of X . Then VaR at a level α is given by:

V aRα = −q1−α(X ). (1.1)

VaR is one number that encapsulates the risk of the entire portfolio of financial assets. It

assesses the potential shortfall in a portfolio and can be valid for many different financial in-

struments to compute the total risk that is faced by an investor. Therefore senior managers

are able to make decisions based on Value-at-Risk. The Basel Accord and the market risk

amendments contain the international guidelines implemented by the national agencies, 1.

Value-at-Risk has become the industry yardstick for measuring market risk mainly because

it is endorsed in the Basel Accord and partly this is because of its insightful appeal.

For a given portfolio, VaR expresses the worst expected loss that a firm can experience

over a given time interval under normal market conditions, at a given confidence level. It

measures this risk by using statistical and simulation models designed to capture the volatil-

ity of assets in a financial portfolio. In statistical terms, it is a percentile of the distribution

for changes in portfolio value.

Suppose a portfolio were to remain untraded for a certain period of time. Let us mea-

sure time in trading days, and let t0 be the current time. The portfolio’s current market

value is Π(t0). Its market value Π(t1), in one trading day, is unknown. It is a random

variable and like with any random variable, a probability distribution can be associated to

this conditional to time t0. Furthermore, the portfolio’s market risk can be measured using

some parameter of that conditional distribution.

If we consider the portfolio variation ∆Π = Π(t1) − Π(t0) during the holding period, then

Value-at-Risk is the solution to a nonlinear equation:

Pr [∆Π ≤ −V aRα] = 1 − α, (1.2)

where α is the confidence level. An alternative understanding is that in the long term we

expect losses exceeding VaR with frequency 1−α. For α = 99%, we assume losses exceeding

1The Basel Accord and related documents are available from the Bank of International Settlements
(www.bis.org).
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VaR one out of every 100 days.

VaR has received criticism by Artzner et al. (1999), Acerbi and Tasche (2002) and Szegö

(2002) for not being a coherent measure of risk. This is because of the fact that it does not

generally fulfill the axiom of sub–additivity, apart from the case of linear portfolios with nor-

mally distributed risk factors and similar special cases. A coherent risk measure is defined

in Artzner et al. (1999) as follows: let us consider a set V of real-valued random variables.

A function ρ: V→ R is called a coherent risk measure if it is:

1. Translation invariant: X ∈ V , a ∈ R ⇒ ρ(X + a) = ρ(X) − a;

2. Sub-additive: X,Y, X + Y ∈ V ⇒ ρ(X + Y ) ≤ ρ(X) + ρ(Y );

3. Positively homogeneous: X ∈ V , h > 0, hX ∈ V ⇒ ρ(hX) = hρ(X);

4. Monotonous: X,Y ∈ V, Y ≥ X ⇒ ρ(Y ) ≤ ρ(X).

VaR is not a coherent risk measure because it does not generally fulfill the axiom of sub-

additivity. VaR is sub-additive (total VaR is always less or equal than the sum of partial

VaR’s) in the case of normal distributed returns of a portfolio and under similar special

cases, see Artzner et al. (1999). This property specifies the fact that a portfolio made of

subportfolios will risk an amount which is at most the sum of the divided amounts risked

by its subportfolios. This axiom captures the essence of how a risk measure should behave

under the composition/addition of portfolios.

A sub-additive alternative to VaR is the conditional Value-at-Risk (CVaR), defined as the

conditional expectation of loss for losses beyond the VaR level. CVaR and its minimization

formula were first developed in Rockafellar and Uryasev (2000), where the authors demon-

strated the numerical efficiency of their proposed procedure through several case studies,

including portfolio optimization and option hedging. The conditional Value-at-Risk at level

α can be defined as:

CV aRα = −E [X|X ≤ q1−α(X )] . (1.3)

The Expected Shortfall (ES) at level α is closely related but not coincident to the notion of

conditional Value-at-Risk, and it is defined (see, e.g. Acerbi (2002)) as:

3



ESα = − 1

1 − α

∫ 1−α

0

ql(X )dl.

Conditional Value-at-Risk is not a coherent measure in general; it coincides with ESα (and

it is therefore coherent) only under suitable conditions such as continuity of the probability

distribution function FX (x). Computation of CVaR, in effect, requires computing VaR at

several different confidence levels and hence is typically computationally more intensive.

The rest of this chapter is structured as follows. Section 1.2 includes a short history of

Value-at-Risk. In section 1.3, the four possible scenarios for the computation of VaR and

CVaR are listed. In section 1.4 some approaches for fitting the term structure of interest

rates and some approaches to VaR computation for fixed income portfolios are provided.

1.2 A short history of VaR

The expression “Value-at-Risk” was not broadly used before the mid 1990s but its foun-

dations lie further back in time (for a more substantial treatment refer to Holton (2002)).

The origins of VaR lie in the risk-return trade-off and optimization paradigm introduced

by Markowitz and others in 1950s. The spotlight on market risks and the outcomes of the

co-movements in these risks are crucial to how VaR is computed. The drive for the use

of VaR measures came from the crises that overwhelmed financial service firms over time

and the regulatory reactions to these crises. The first regulatory capital requirements for

banks were performed in the aftermath of the Great Depression and the bank crashes of

the era, when the Securities Exchange Act launched the Securities Exchange Commission

(SEC) and demanded banks to keep their borrowings under 2, 000% of their equity capital

(see, e.g. Damodaran (2007)).

In subsequent decades, banks developed risk measures and control devices to certify that

they met these capital requirements. In the early 1970s the advent of derivative markets

and floating exchange rates increased the market risk. Hence the capital constraints were

enhanced and expanded in the SEC’s Uniform Net Capital Rule (UNCR) that was circulated

in 1975, which classified the financial assets that banks held into twelve classes, based upon

risk, and entailed different capital requirements for each, spanning from 0% for short term
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treasuries to 30% for equities. Banks were demanded to report on their capital computa-

tions in quarterly statements, named Financial and Operating Combined Uniform Single

(FOCUS) reports.

In 1980 the SEC tied the capital requirements of financial service firms to the losses that

would be incurred, with 95% confidence, over a thirty-day interval in numerous security

classes; this marked the first regulatory measures using Value-at-Risk. Historical returns

were used to calculate the possibility of losses. It was obvious that SEC was insisting on

financial service organizations to start the process of estimating one month 95% VaR and

hold sufficient capital to cover potential losses. Around that period there was a growing

need for more complex and sensible risk control measures since trading portfolios of invest-

ment and commercial banks were becoming larger and more volatile. In internal documents,

Ken Garbade at Banker’s Trust, presented advanced measures of Value-at-Risk in 1986 for

the firm’s fixed income portfolios, based upon the covariance in yields on bonds of different

maturities.

During the late 1980s, J.P.Morgan elaborated a company-wide VaR system, that mod-

eled several hundred risk factors using a covariance matrix that was updated quarterly from

historical data. Every day, trading units would give details by e-mail about their positions’

deltas with respect to each of the risk factors. These were combined to express the whole

portfolio’s value as a linear polynomial of the risk factors. The portfolio’s standard devi-

ation value was computed. One of various VaR metrics employed was the one-day 95%

USD VaR, which was assessed assuming that the portfolio’s value was normally distributed.

J.P.Morgan’s first use of VaR was an attempt to replace a bulky system of notional market

risk limits with a simple system of VaR limits.

From 1990, VaR numbers and P&L’s list were brought together in a report for the 4:15

PM daily Treasury meeting in New York. Those documents, with comments from the Trea-

sury group, were forwarded to Chairman Weatherstone. Till Guldimann was one of the

architects of the new VaR measure; his career with J.P. Morgan had placed him to help

developing and encourage the use of VaR within the company. During the mid 1980’s, he

was in charge for the asset/liability analysis of the firm. He developed, together with other

professionals, notions that would be used in the VaR measure. Afterwards as chairman of
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the market risk committee of the company, he promoted the VaR measure internally and in

its next position he could promote the VaR measure outside the organization. Guldimann,

in 1990, took responsibility for Global Research, supervising research activities to support

marketing to institutional clients; here he managed an annual research conference for clients.

Guldimann during the conference in 1993, whose theme was the risk management, gave the

crucial address and arranged for a demonstration of J.P.Morgan’s VaR system. The interest

generated was significant: clients asked if they might buy or lease the system. After many

catastrophic losses related to the use of derivatives and leverage between 1993 and 1995,

ending with the collapse of Barings, the British investment bank, as a result of unautho-

rized trading in Nikkei futures and options by a young trader in Singapore, companies were

ready for more sophisticated risk measures.

In 1995 J.P.Morgan provided free public access over the internet to data (variances and

covariances across various security and asset classes) that was used internally to manage

risk for almost a decade and allowed software makers to develop software to measure risk. It

titled the service “RiskMetrics” and included an exhaustive technical document as well as a

covariance matrix for several hundred key factors, that was updated daily. The expression

Value-at-Risk was used to express the risk measure that emerged from the data: it found a

ready audience with commercial and investment banks, and the regulators supervising them,

who welcomed its intuitive appeal. The timing for RiskMetrics was optimal, given the time

of worldwide concerns about derivatives and leverage. In the last decade, VaR has turned

into the conventional measure of risk exposure in financial service companies and has even

started to find recognition in non-financial service business.

Following the issuing of RiskMetrics and the extensive adoption of VaR measures, there

was somewhat of a backlash against it. This has come to be called the “VaR debate”.

Criticisms followed three themes:

• that different VaR implementations produced inconsistent results;

• that, as a measure of risk, VaR is conceptually flawed;

• that widespread use of VaR entails systemic risks.

There are criticisms suggesting that VaR measures were conceptually flawed. One such critic

is Taleb (1997): “The condensation of complex factors naturally does not just affect the ac-

6



curacy of the measure. Critics of VaR (including the author) argue that simplification could

result in such distortions as to nullify the value of the measurement. Furthermore, it can

lead to charlatanism: lulling an innocent investor or business manager into a false sense of

security could be a serious breach of faith. Operators are dealing with unstable parameters,

unlike those of the physical sciences, and risk measurement should not just be understood to

be a vague and imprecise estimate. This approach can easily lead to distortions. The most

nefarious effect of the VaR is that it has allowed people who have never had any exposure to

market risks to express their opinion on the matter”.

Despite these criticisms, VaR remains an extremely popular and widely adapted measure of

risk, due to its conceptual simplicity and regulatory acceptance. Furthermore, while Basel

committee on banking supervision has recently proposed to replace VaR with CVaR, CVaR

is far harder to backtest properly.

1.3 Four scenarios for a financial portfolio

In general, the computation of VaR or CVaR for a financial portfolio leads to one of the four

possible scenarios:

1. The portfolio is linear in the underlying risk factors and the distribution of risk factors

can be approximated by a Gaussian distribution. This is a case when the portfolio

consists of stocks or stock futures, risk factors are stock returns only and the confi-

dence level is α = 0.95 or lower. For higher α values, distributional assumption of

Gaussianity is inappropriate, as has been proven time and again in literature. Never-

theless, Gaussian approach remains popular due to its simplicity and is often used as a

starting point or as benchmark; see, e.g. Albanese et al. (2004) and Alexander (2008).

2. The second scenario is the one which involves a linear portfolio with non-Gaussian risk

factors. This means that the distribution of the portfolio net worth may be different

from that of the underlying risk factors. Typically, this scenario requires a Monte Carlo

simulation to compute the quantiles of the portfolio value distribution. There are two

distinct choices of risk factor distributions followed in literature; the approach based

on extreme value theory is followed in Embrechts et al. (1999) and Gilli and Këllezi

(2006), among others. On the other hand, different thick tailed distributions which do
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not belong to the class of extreme value distributions have also been used, including

the use of mixture of normals in Zangari (1996a) and Duffie and Pan (1997), Student’s

t as outlined in Alexander (2008) and the use of mixture of elliptic distributions in

Kamdem (2003). An alternative approach is provided by the copula-based models

(see e.g. Nelsen (2006) for an introduction to copulas) in Rahman et al. (2011) and in

Sak and Haksöz (2011), among others.

3. The third scenario is when the portfolio has Gaussian risk factors but the portfolio

value is a nonlinear function of risk factors, e.g. due to presence of derivative instru-

ments such as options. A very common way of dealing with this scenario is using

a quadratic (or Delta-Gamma) approximation to the portfolio value, since quantiles

of a quadratic form of jointly Gaussian random variables can be efficiently computed

using Fourier inversion integral; see, e.g. Glasserman (2003) for a detailed treatment.

Other approaches include Cornish-Fisher expansion as discussed in Jaschke (2001)

and Zangari (1996c), Johnson transformation discussed in Zangari (1996b), Solomon-

Stephens approximations discussed in Britten-Jones and Schaefer (1999), saddle point

approximation outlined in Feuerverger and Wong (2000) and other Fourier inversion

based methods described in Albanese et al. (2004) and Rouvinez (1997). Monte Carlo

simulation with the quadratic approximation of the portfolio value (so-called partial

Monte Carlo simulation) is computationally typically simpler than full Monte Carlo,

as the computational load of pricing nonlinear instruments for given values of risk

factors may be far greater than computing quadratic forms of risk factors; see Pritsker

(1997) for an application of partial Monte Carlo. Comparisons of accuracy and ef-

ficiency among mentioned methodologies are carried out in Mina and Ulmer (1999)

and in Castellacci and Siclari (2003). Different methods for dealing with Gaussian

risk factors, nonlinear portfolio scenarios are compared in Britten-Jones and Schaefer

(1999) and in Pichler and Selitsch (1999).

4. The last and the most general scenario involves a portfolio with nonlinear instruments

which depend on non-Gaussian risk factors. Any financial portfolios involving deriva-

tive instruments on stocks (such as hedge funds or absolute return funds) fall under

this category when the stock return distribution cannot be satisfactorily approximated

with a Gaussian distribution. Unlike the normal distribution, the quadratic forms of

fat-tailed distributions are not amenable to easy evaluation in general. Apart from
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full Monte Carlo or partial Monte Carlo simulation (using quadratic approximation of

nonlinear functions), few computationally cheap alternatives currently exist for this

scenario; see Glasserman et al. (2000) and El-Jahel et al. (1999) for some approaches

to this problem.

The financial crisis of 2008 has brought back to researchers and managers the fact that nor-

mality assumption for risk factors is not realistic. Gaussian distribution-based models are ap-

pealing because of their simple implementation, but they fail to explain real world risk factor

characteristics such as fat-tailedness and skewness. In Nozari et al. (2010), Sheikh and Qiao

(2010) and Stoyanov et al. (2011) authors highlight the fact that empirical research on fi-

nancial returns carried out since 1950s leads to the need to consider several phenomena

including fat tails, skewness and serial correlation. Therefore models that rely on the as-

sumption of normal distributions need to be relaxed in order to avoid underestimating risk.

Parsimonious Gaussian-based models are often employed by practitioners despite empirical

evidence to the contrary. However, especially during periods of high turbulence in the finan-

cial markets, such as the one in the recent crisis, Gaussianity assumption can lead to severe

underestimation of risk.

The focus in this thesis is to provide heuristics to calculate VaR and CVaR for the last

scenario mentioned above, i.e. for nonlinear portfolios with non-normal risk factors. We

consider two different cases: stock portfolios and fixed income portfolios.

In the case of stock portfolios, the proposed heuristic is computationally cheaper than a

full or partial Monte Carlo with fat tailed distributions, yet has a potential to be far more

accurate than normal distribution-based evaluation. The novelty of our heuristic lies in offer-

ing an alternative with a potentially intermediate level of complexity and accuracy between

the two extremes: between carrying out a full Monte Carlo simulation by sampling from

fat tailed distributions followed by multiple pricing function evaluations on one hand and

evaluating a single, one dimensional integral assuming a normal distribution and a quadratic

approximation of the portfolio value on the other hand. This approach rests on transforming

the problem with non-Gaussian marginals into Gaussian ones via a probability conserving

transformation, as used in Sornette et al. (2000). Unlike mean-variance based Gaussian

approximation of marginal densities, probability conserving transformation retains the tail

behavior which is crucial in the computation of risk measures. This transformation is then
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followed by construction of a joint Gaussian density and construction of a quadratic form

in the jointly Gaussian transformed variables. One can then use the Delta-Gamma-Normal

method for nonlinear portfolios with Gaussian risk factors for the computation of risk mea-

sures. Further, one can re-use the existing code for the fast Fourier transform (FFT) based

evaluation of CVaR using Delta-Gamma-Normal method, by using the proposed heuristic

of transforming the risk factors into Gaussian factors.

In the case of fixed income portfolios, we concentrate on portfolios of sovereign (or de-

fault risk-free) zero coupon bonds, with the changes in the interest rate as the sole source

of risk. We model the interest rate changes via Kalman filter, which provides a highly par-

simonious and tractable model for Monte Carlo simulation using instantaneous short rate.

Bond prices are nonlinear functions of risk factors in this case, and the risk factors are

non-Gaussian when a non-Gaussian (and often more realistic) short rate model is used.

1.4 Fitting the term structure and computing VaR for

fixed income portfolios

Several mathematical tools have been applied to fit the term structure of interest rates. We

will provide a literature review of some of the mathematical tools here, although detailed dis-

cussion of Kalman filter is postponed to chapter 3. A first approach is using tools that smooth

the yield term structure. In his pioneering work, McCulloch (1975) used cubic splines, fol-

lowed by Vasicek and Fong (1982) that used exponential splines. Adams and Van Deventer

(1994) more recently suggested the maximum smoothing method and Fisher et al. (1995)

proposed a smoothing splines endowed with a penalty that reduced the effective number

of parameters. A different approach by Litterman and Scheinkman (1991) involving prin-

cipal component analysis (PCA) is able to explain up to 95% of bond yield variance em-

ploying only three factors. In this thesis we consider exponential affine term structure

models, which is a class of models often employed to understand the dynamics of interest

rates. Seminal work on this class has been provided by Vasicek (1977), Cox et al. (1985)

where, respectively, Gaussian and non-Gaussian single factor models are proposed. As

pointed out in Brigo and Mercurio (2006) there is evidence that the single factor models

fail to explain accurately some features of the term structure and it became necessary to
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extend it. A generalization of the single-factor models to higher dimensions have been pre-

sented e.g. in Chaplin and Sharp (1993), Chen (1995) and Duffie and Kan (1996), while

Jegadeesh and Pennacchi (1996), Babbs and Nowman (1999) and De Rossi (2004) focused

on Gaussian multi-factor models. Babbs and Nowman (1999) found that the two-factor

model performed better for the term structure of interest rates in bond market in the US and

other nine countries. In Date and Wang (2009) the authors state that two-factor Gaussian

model performs better than a single-factor model and a three-factor model when comparing

out-of-sample one-step ahead forecasting. A two factor model seems to offer a good com-

promise between the difficulty of calibrating a three factor model and poor accuracy of a

one factor model. Hence a two factor model has been chosen for the current analysis.

Computation of Value-at-Risk for fixed income portfolios has attracted a lot of interest

and several approaches are available in literature. In Smith (2009) the author calculates

VaR for a three zero-coupon bond portfolio by focusing on yield volatilities and correlations.

The duration, usually linking changes in yield to maturity on an single bond to variations

in its market value, is combined to non-parallel yield curve shifts to provide VaR for each

individual bond. Using all the individual bond VaR with the respective correlations for the

changes in the yield between bonds one can obtain the VaR for the portfolio. Fixed-income

Brazilian portfolios performances are assessed in Carvalhal and Daumas (2010) computing

several measures including VaR and CVaR, which are calculated assuming normal distri-

bution of interest rate variations. The authors conclude that the choice criteria based on

minimum VaR and CVaR achieves satisfactory results. In Darbha (2001) VaR for fixed

income portfolios is computed through extreme value theory. The VaR estimates so ob-

tained are then compared to estimates found using the variance/covariance method and the

historical simulation method, concluding that the extreme value method provides the best

VaR estimates. A methodology often employed to assess VaR for fixed income portfolios is

scenario simulation from principal components of the yield curve. In Jamshidian and Zhu

(1997) the fixed income bond prices are modeled using a small number of risk factors, the

joint distribution is approximated using a multivariate discrete distribution and VaR is com-

puted by selecting the appropriate quantile of the discrete cumulative distribution function.

This implementation presents two shortcomings, mentioned in Gibson and Pritsker (2000):

a poor choice of risk factors could lead to an underestimation of VaR and a discrete ap-

proximation to the distribution of risk factors could provide an inadequate VaR based on a
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poorly modeled distribution of portfolio value. The author suggested two efficient solutions

to overcome these issues: select risk factors able to explain changes in portfolio value and

work with a continuous distribution of extracted risk factors. In Fiori and Iannotti (2007)

authors apply PCA to Monte Carlo simulation considering the non-normality of historical

observations. Another approach is suggested in Chen et al. (2007) where authors use inde-

pendent component analysis (ICA), a tool utilized in sound engineering, to calculate VaR

for foreign exchange rate portfolios.

An alternative way to the above mentioned works on VaR computation for fixed income

portfolios is presented in this thesis. The instantaneous interest rate is modeled using a two-

factor Vasicek model and a two-factor Cox-Ingersoll-Ross model. After calibration of the

models, the changes in bond prices are simulated by using a Kalman filter. The performance

of this methodology is demonstrated with calibration and backtesting on a real portfolio of

US government bonds.

1.5 Outline of the thesis

The rest of this thesis is organized as follows:

• Chapter 2 describes the mathematical tools utilized and/or useful to understand the

four envisaged scenarios for the first type of financial portfolio;

• Chapter 3 provides the mathematical tools we used for modeling the fixed income

portfolios;

• Chapter 4 presents the backtesting tools, including tests for unconditional and condi-

tional coverage in predicting tail losses;

• Chapters 5 and 6 report the results for nonlinear portfolios with fat-tailed risk fac-

tors and fixed income portfolios, respectively. Both these chapters contain numerical

experiments with simulated data as well as with real financial data;

• Chapter 7 presents a summary of the work done and comments on the future research

directions.
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Chapter 2

Mathematical tools for modeling

the risk in stock portfolios

2.1 Introduction

This chapter describes some models which are useful in understanding the behavior of the

four possible scenarios mentioned in the previous chapter:

• A portfolio which is linear in the risk factors and the risk factors are multivariate

normal;

• A portfolio which is linear in the risk factors, but the risk factors are non-normal. We

consider the use of extreme value theory, Student’s t distribution and copula functions

for modeling non-normality;

• A portfolio which is a nonlinear function of risk factors and the risk factors are mul-

tivariate normal. In this case, we discuss the use of second order Taylor series expan-

sion of the portfolio value function, which has a closed-form characteristic function,

combined with a fast Fourier transform inversion. This method is also called the

Delta-Gamma-Normal method;

• Portfolio which is a nonlinear function of risk factors, and the risk factors are non-

normal. We investigate a new heuristic which we term Delta-Gamma-Q method, which

combines the Delta-Gamma-Normal method along with the probability conserving
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transformation, described later in subsection 2.6.1.

We will use ‘returns’ and ‘risk factors’ interchangeably where there is no risk of confusion.

Each section of this chapter presents an introduction to the theory involved in the method

applied. Section 2.2 mentions the multivariate normal setting to model linear portfolio

with normal returns. Section 2.3 describes the historical simulation method and the vari-

ance/covariance method. Section 2.4 contains three methods to model linear portfolio with

non-normal returns. Section 2.5 introduces a very common method for modeling nonlin-

ear portfolio with normal returns. Section 2.6 presents our innovative method to model

nonlinear portfolios with fat-tailed risk factors: the Delta-Gamma-Q method.

2.2 Linear portfolio with normal returns

Under the assumptions of a linear portfolio and normal returns, the relative changes vector

in the market risk factors, F , are distributed as a multivariate normal random variable with

mean µ and covariance matrix C. Suppose now that the change in the portfolio’s value, as

described in Albanese et al. (2004) and in Wiberg (2002), can be approximated by:

∆Π ≈ Ξ + ∆TF ,

where Ξ and ∆ represent a constant and the proportion of the stocks in the portfolio, respec-

tively. The difference ∆Π − Ξ is then a sum of normal random variables and it is therefore

normal. Its mean and variance are given by:

µ(∆Π − Ξ) = E[∆Π − Ξ] = ∆Tµ,

var(∆Π − Ξ) = E[∆TFFT∆] − ∆TµµT∆ = ∆TC∆.

Hence, the VaR at level α for the considered portfolio is given by:

V aRα = Φ−1(α)
√

∆TC∆ − Ξ − ∆Tµ. (2.1)

where Φ−1(·) is the inverse cumulative distribution function (cdf) for a standard normal

random variable; Φ−1(α) assumes values of 1.282, 1.645 and 2.326 for corresponding values

of 90%, 95% and 99% V aR.
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Both the assumptions, viz. linearity of portfolio and normality of returns are often vio-

lated in practice:

• Real world returns have fatter tails than normal distributions. The model may lead

to too optimistic estimates of VaR since it underestimates the likelihood of extreme

returns;

• If a portfolio contains derivatives such as options, the value of the portfolio is no

longer a linear function of F and a linear approximation may be very inadequate.

An example of this will be provided later in chapter 5 while considering portfolios

involving European call options.

2.3 Historical simulation method and variance/covariance

method for finding the Value-at-Risk

Before exploring the remaining three scenarios for calculating VaR and CVaR in more details,

we will first look at the two most common methods to find VaR which are most relevant to

the first scenario described above. The historical simulation is a nonparametric procedure

for computing Value-at-Risk where no specific assumptions about the distribution of risk

factors are made. It considers the lower quantile of the distribution of the actual historical

returns and assumes that history will repeat itself. Let us consider the time series of rates

of return Rn = Πn−Πn−1

Πn−1
at any time tn, for n = 1, 2, . . . , N1. Let R be the random variable

gathering all the computed rates of returns. Regardless of the distribution of R, the following

statements holds true:

Pr [Rn > q1−α] = α, (2.2)

where q1−α represents the (1 − α) quantile of the random variable R, and α represents the

level of confidence of VaR. We now assume that the lower quantiles of R will remain constant

in future samples of Rn for n = N1 +1, N1 +2, . . . , N2. Hence, using the provided definition

of Rn and rearranging terms in (2.2), we can write:

Pr [Πn − Πn−1 > q1−αΠn−1] = α,
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that can be interpreted as “the probability of a change in portfolio value to be larger than

the VaRα = q1−αΠn−1 is α”.

Similarly to the HS method, the variance/covariance method considers the lower quan-

tile of the distribution of the actual historical returns and assumes that history will re-

peat itself. However VC methods assumes that rates of return are normally distributed:

R ∼ N (µR, σ2
R). Hence:

Pr
[
Rn > µR − qN1−ασR

]
= α, (2.3)

where qN1−α represents the (1−α) quantile of the normal random variable R (i.e. 1.645 and

2.326 for the 95% and 99% VaR, respectively), and α represents the level of confidence of

VaR. Again, we assume that the lower quantiles of R will remain constant in future samples

of Rn for n = N1 + 1, N1 + 2, . . . , N2. Hence, using the provided definition of Rn and

rearranging terms in (2.3), we can write:

Pr
[
Πn − Πn−1 > qN1−αΠn−1

]
= α,

that can be interpreted as “the probability of a change in portfolio value to be larger than

the VaRα = qN1−αΠn−1 is α”.

Computing unbiased VaR for the methods included in this section would require:

• Normality of risk factors and linearity for the VC method;

• Sufficient past data for the HS method.

One might notice that in portfolios of derivative instruments none of these requirements will

be satisfied.

2.4 Linear portfolio with non-normal returns

This section contains three types of models that play an important role in describing linear

portfolio with non-normal returns. Subsection 2.4.1 includes extreme value theory based

models, subsection 2.4.2 describes modeling fat tails with Student’s t distributions and

finally subsection 2.4.3 introduces copula functions.
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2.4.1 Extreme value theory and risk measures

Modeling rare phenomena that sit outside the range of available observations can be handled

by extreme value theory (EVT). It provides a concrete theoretical foundation on which we

can build statistical models describing extreme events. There are two related methods to

identify extremes in real data. The first method considers the maximum the variable takes in

successive batches. These particular observations constitute the extreme events, also called

block maxima. The second method concentrates on the realizations going beyond a given

(high) threshold; when the realizations exceed u they constitute extreme events. The former

method is traditionally used to analyze data with seasonality, e.g. hydrological data. The

latter uses data more efficiently and seems, for this reason, to become the most chosen one

in modern finance related applications. Several authors have used this approach including

McNeil (1998), Embrechts et al. (1999), Gilli and Këllezi (2006) and Fernández (2003).

The limit law for the block maxima, which we denote Mn with n the size of the sub-

sample (block), is given by the following theorem (see Fisher and Tippett (1928) for further

details):

Theorem 2.4.1. Let (Xn) be a sequence of i.i.d. random variables. If there exist constants

bn > 0, an ∈ R and some non-degenerate distribution function H such that:

Mn − an
bn

d−→H,

then H belongs to one of the three standard extreme value distributions (EVD):

Gumbel (type I):

Λ(x) = e−e
−x

, x ∈ R;

Fréchet (type II):

Φα(x) =





0 x ≤ 0

α > 0;

e−x
−α

x > 0
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Weibull (type III):

Ψα(x) =





e−(−x)α

x ≤ 0

α > 0.

1 x > 0

The Fréchet distribution has a polynomially decaying tail and therefore suits well heavy

tailed distributions.

The EVD families can be generalized with the incorporation of the location (λ ∈ R) and

scale (δ > 0) parameters, leading to:

Λ(x;λ, δ) = Λ((x− λ)/δ), Φα(x;λ, δ) = Φα((x − λ)/δ)), Ψα(x;λ, δ) = Ψα((x− λ)/δ)).

The mean, variance and mode of the EVD are (as reported in Fraga Alves and Neves (2011)),

respectively :

Λ : E [X ] = γ (Euler’s constant) ≃ 0.57721; var(X ) = π2/6;Mode(X ) = 0;

Φα : E [X ] = Γ(1 − 1/α), for α > 1; var(X ) = Γ(1 − 2/α), for α > 2;

Mode(X ) = (1 + 1/α)−1/α;

Ψα : E [X ] = −Γ(1 + 1/α); var(X ) = Γ(1 + 2/α) − Γ2(1 + 1/α);

Mode(X ) = −(1 − 1/α)−1/α, for α > 1, and Mode(X ) = 0, for 0 < α ≤ 1;

where Γ denotes the gamma function Γ(s) :=
∫∞
0 xs−1e−xdx, s > 0.

Jenkinson (1955) and von Mises (1954) proposed the following one-parameter representation:

Hξ(x) =





e−(1+ξx)−1/ξ

if ξ 6= 0

e−e
−x

if ξ = 0

(2.4)

of these standard distributions, with x such that 1 + ξx > 0. This distribution, a gener-

alization of the previous classification, is known as the generalized extreme value (GEV)
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distribution. It is obtained by setting ξ = α−1 for the Fréchet distribution, ξ = −α−1 for

the Weibull distribution and by interpreting the Gumbel distribution as the limit case for

ξ = 0.

The mean, variance and mode of the GEV are (as reported in Fraga Alves and Neves (2011)),

respectively:

E [X ] = − 1
ξ [1 − ξ(1 − ξ)], for ξ < 1;

var(X ) = 1
ξ2 [Γ(1 − 2ξ) − Γ2(1 − ξ)], for ξ < 1/2;

Mode(X ) = 1
ξ [(1 + ξ)−ξ − 1], for ξ 6= 0.

Furthermore the skewness coefficients of the GEV distribution, defined as skewGξ
:= E[(X −

E [X ])3]/(var(X ))3/2 , is equal to 0 at ξ0 ≃ −2.8. Moreover, skewGξ
> 0, for ξ > ξ0, and

skewGξ
< 0 for ξ < ξ0. Additionally, for the Gumbel distribution, skewG0 ≃ 1.14.

Since we do not generally know in advance the type of limiting distribution of the sam-

ple maxima, the generalized representation is particularly useful when maximum likelihood

estimates have to be computed. Additionally the standard GEV defined in (2.4) is the limit-

ing distribution of normalized extrema. Since we do not know the true returns’ distribution

in practice, therefore we do not have any idea about constants an and bn, we use three

parameter specification:

Hξ,σ,µ(x) = Hξ

(
x− µ

σ

)
x ∈ D, D =





(−∞, µ− σ
ξ ) ξ < 0

(−∞,∞) ξ = 0

(µ− σ
ξ ,∞) ξ > 0

(2.5)

of the GEV, which is the limiting distribution of the unnormalized maxima. The two ad-

ditional parameters µ and σ are the location and the scale parameters representing the

unknown norming constants.
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There is another approach, called peak over threshold (POT) method, which considers the

distribution of exceedances over a certain threshold. The problem is, given an unknown

distribution F of a random variable X , to estimate the distribution function Fu of values of

x above a certain threshold u. The distribution function Fu is called the conditional excess

distribution function and is defined as:

Fu(y) = Pr [X − u ≤ y|X > u] , 0 ≤ y ≤ xF − u, (2.6)

where X is a random variable, u is a given threshold, y = x−u are the excesses and xF ≤ ∞
is the right endpoint of F . Fu can be written as:

Fu(y) =
F (u+ y) − F (u)

1 − F (u)
=
F (x) − F (u)

1 − F (u)
, (2.7)

Given that in general very little observation are located in this area the estimation of the

portion Fu could be difficult.

EVT can then prove very useful as it offers us with a powerful result about the conditional

excess distribution function which is stated in the following theorem (for further details see

Pickands (1975) and Balkema and De Haan (1974)):

Theorem 2.4.2. For a large class1 of underlying distribution functions F , the conditional

excess distribution function Fu(y), for u large, is well approximated by

Fu(y) ≈ Gξ,σ(y), u→ ∞,

where

Gξ,σ =





1 −
(

1 + ξ
σ y

)−1/ξ

if ξ 6= 0

1 − e−y/σ if ξ = 0

(2.8)

for y ∈ [0, (xF − u)] if ξ ≥ 0 and y ∈ [0,−σ
ξ ] if ξ < 0. Gξ,σ is the so called generalized Pareto

distribution (GPD).

1Please see chapter 1 of Kotz and Nadarajah (2000) for exact conditions defining the class of distributions
in each case.
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If x is defined as x = u + y, the GPD can also be expressed as a function of x, i.e.

Gξ,σ = 1 −
(
1 + ξ(x− u)/σ

)−1/ξ
.

The parameter ξ is the shape parameter (or tail index) and gives an indication of the tail’s

heaviness, the larger ξ the heavier the tail. Only distributions with shape parameter ξ ≥ 0

are suited to model financial return distributions because in general, one cannot establish

an upper bound for financial losses.

Taking a GPD function for the tail distribution, the analytical expression for V aRα and

ESα can be defined as a function of GPD parameters. Obtaining F (x) from equation (2.7):

F (x) = (1 − F (u))Fu(y) + F (u),

and replacing Fu by the GPD and F (u) by the estimate (n − Nu)/n, where n is the total

number of observations andNu the number of observations above the threshold u, we obtain:

F̂ (x) =
Nu
n

(
1 −

(
1 +

ξ̂

σ̂
(x− u)

)−1/ξ̂
)

+

(
1 − Nu

n

)
,

which simplifies to:

F̂ (x) = 1 − Nu
n

(
1 +

ξ̂

σ̂
(x− u)

)−1/ξ̂

. (2.9)

Inverting equation (2.9) for a given probability α gives

V̂ aRα = u+
σ̂

ξ̂

(( n
Nu

α
)−ξ̂ − 1

)
. (2.10)

Expected shortfall can be written as

ĈV aRα = V̂ aRα + E
[
X − V̂ aRα|X > V̂ aRα

]
,

where the second term on the right is the expected value of the exceedances over the threshold

V aRα. We can use the known result about the mean excess function for the GPD with
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parameter ξ < 1:

e(z) = E [X − z|X > z] =
σ + ξz

1 − ξ
, with σ + ξz > 0. (2.11)

This function gives the average of the excesses of X over varying values of a threshold z.

Another important result concerning the existence of moments is that if X follows a GPD

then, for all integers r such that r < 1/ξ, the r first moments exist (see Embrechts et al.

(1999) for details).

Likewise, given the definition ESα = E [X|X > V aRα] for the expected shortfall and us-

ing expression (2.11), for z = V aRα − u and X representing the excesses y over u we

obtain:

ĈV aRα = V̂ aRα +
σ̂ + ξ̂(V̂ aRα − u)

1 − ξ̂
=
V̂ aRα

1 − ξ̂
+
σ̂ − ξ̂u

1 − ξ̂
. (2.12)

A couple of limitations about POT methods is reported in McNeil (1998): “...However, we

note there are some practical problems with the use of threshold methods for unconditional

inference about financial return series. The asymptotical properties of tail index estimators

have not been extensively investigated for dependent samples of extreme values from depen-

dent processes and estimates may be heavily biased unless the number of upper order statistics

(or threshold) is chosen very carefully.”, “...In addition to the problem of threshold choice,

there is also the related unresolved problem of how to give reasonable errors and confidence

intervals for point estimates of tail indices or quantile based on dependent data.”.

2.4.2 Modeling fat tails with Student’s t distribution

The normal distribution is the most widespread used model of daily changes in market

variables. In practice, several studies ( Wilson (1993), Wilson (1998), Zangari (1996a),

Venkataraman (1997), Duffie and Pan (1997) and Hull and White (1998)) show that distri-

butions such as returns in equity, foreign exchanges, and commodity markets, are frequently

asymmetric with fat tails. Assuming normality seems therefore rather inappropriate. In

particular, Duffie and Pan (1997) and Hull and White (1998) show that daily changes in

many variables, such as S&P 500, NASDAQ, NYSE All Share, and particularly exchange

rates, exhibit significant amounts of positive kurtosis and negative skewness: these variables

reveal fat tails and are typically skewed to the left. The practical implications is that neg-
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ative returns are more probable than a normal distribution would expect when taking into

account the kurtosis and skewness. In order to capture these features we consider a portfo-

lio under the assumption of risk factor returns having a Student’s t distribution. Different

approaches involve skewed Student’s t distribution (Ngoussou (2004)), or mixture of normal

(Hull and White (1998), Wang (2001), and Zangari (1996a)) or Student’s t distributions

(Kamdem (2003)).

Skewness measures the asymmetry of a random variable and is found using its third central

moment. It determines the degree of difference between positive deviations from the mean

and negative deviation from the mean. Kurtosis measures how fat are the tails of a distri-

bution and is found from its fourth central moment. It is very sensitive to extremely large

market moves. Let X be a random variable with probability distribution function fX (x),

then its k-th central moment is the quantity µk = E[(X − E(X ))k ] =
∫

R
(x − µ)kfX (x)dx.

The first few central moments are:

µ1 = E(X ), µ2 = E[(X − µ)2], µ3 = E[(X − µ)3], µ4 = E[(X − µ)4].

Mean, variance, skewness and kurtosis are defined as:

µ = E(X ) = µ1;

σ2 = E[(X − µ)2] = µ2 − µ2
1;

τ = σ−3E[(X − µ)3] = σ−3(µ3 − 3µ1µ2 + 2µ3
1);

k∗ = σ−4E[(X − µ)4] = σ−4(µ4 − 4µ1µ3 + 6µ2
1µ2 − 3µ4

1).

Any normally distributed random variable has kurtosis of three and skewness of zero.

Probability density functions are usually defined by three parameters: a location parameter,

a scale parameter and a shape parameter. A very common measure of location parameter

is the mean; the variability of the probability density function (pdf) is provided by the

scale parameter, and the most commonly used is variance or standard deviation. Kurtosis

and/or skewness, modeled through the shape parameter, influences how the variations are

distributed around the location parameter. If data present heavy tails, the Value-at-Risk

calculated using normal assumption can present huge differences from the one assuming

Student’s t distribution.

Probability density function of noncentral Student’s t distribution, as discussed in Ngoussou
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(2004), Kanto (2004) and Rozga and Arnerić (2009), is given by:

f(x) =
Γ(ν+1

2 )

Γ(ν2 )
√
πνσ2

(
1 +

(x − µ)2/σ2

ν

)−(ν+1)/2

, x ∈ R, (2.13)

where µ is the location parameter, σ is the scale parameter and ν is the shape parameter

(degrees of freedom), and Γ(·) is the gamma function. Standard Student’s t distribution

assumes that µ = 0, σ2 = 1, with ν ∈ N0. However, degrees of freedom can be estimated as

non-integer, relating to kurtosis. The t distribution has tails heavier than the normal dis-

tribution when ν > 4. Kurtosis is undefined for ν ≤ 4. Thus, a more leptokurtic empirical

distribution would reflect in a smaller number of degrees of freedom.

The second and fourth central moments of function (2.13) are defined as:

µ2 = E
[
(X − µ)2

]
=

σ2ν

ν − 2
, (2.14)

µ4 = E
[
(X − µ)4

]
=

3σ4ν2

(ν − 2)(ν − 4)
, (2.15)

with standardized kurtosis:

k =
µ4

µ2
2

− 3 =
6

ν − 4
. (2.16)

Hence in order to obtain consistent estimators we could apply the method of moments,

giving:

ν̂ = 4 +
6

k̂
, (2.17)

σ̂2 =

(
3 + k̂

3 + 2k̂

)
µ̂2. (2.18)

where the sample variance is biased estimator of σ2.

Therefore the following correction factor must be introduced to achieve an unbiased es-

timator for the standard deviation:

√
3 + k̂

3 + 2k̂
=

√
ν̂ − 2

ν̂
.
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Practice suggests that kurtosis is often larger than six, heading to estimation of non-integer

degrees of freedom between four and five. However, kurtosis will depend on volatility per-

sistence.

When the assumption of Student’s t distribution is introduced V aRα can be calculated

as:

tνα · σ ·
√
ν − 2

ν
− µ, (2.19)

where tνα is the critical value of t distribution depending on the given probability and esti-

mated degrees of freedom, µ and σ are respectively the estimated mean and the estimated

standard deviation, while
√

ν−2
ν is the correction factor for unbiased standard deviation

from sample.

Despite providing a more accurate representation than models assuming Gaussian dis-

tributed returns, the Student’s t VaR models could present a possible source of error since

the return distribution is assumed to be symmetric. To overcome this shortcoming there

are skewed versions of the Student’s t distribution, but the nonlinear transformations that

support these distributions exclude an easy parametric linear VaR rule. On the other hand

skewness can be included using mixture of normal or Student’s t distributions; the resulting

parametric linear VaR analytical formula has an implicit solution that can be solved using

numerical methods (see Alexander (2008) for further details).

In general, changing the portfolio composition means varying the portfolio distribution in

an unpredictable way. If weights of the portfolio changed and the returns were normal, then

the portfolio returns would still be jointly normal and the VaR computation would involve

a simple matrix-vector multiplication. If, however, portfolio weights changed and returns

were not jointly normal, e.g. were Student’s t distributed, the distribution parameters would

need to be re-calibrated.

2.4.3 Copula functions

In general, the knowledge of the joint distribution of a set of random variables allows to

obtain both the marginal distributions and their correlation structure. On the other hand,
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given marginal distributions, a copula function is a function which maps the marginals into a

joint distribution function. Copula function is a method that models the dependence among

different random variables through a specified function. Often financial researchers possess

more information about marginal distributions rather than their joint distribution. Hence

the approach provided by copula functions is very useful, especially in cases where marginal

distributions are non-Gaussian, since the dependence can be parameterized independently

from the parameterization of the marginals.

A copula is a function which links a multivariate distribution function to its one-dimensional

marginal distribution functions. The concept of copula was introduced in Sklar (1973) in

the theorem which bears his name. A more detailed treatment of copulas can be found in

Nelsen (2006). Here we limit our attention to the bivariate case, but it is easy to gener-

alize to the m-dimensional case. Let us consider two continuous random variables X1 and

X2 with arbitrary cumulative distribution function (cdf) Fi = Pr[Xi ≤ xi], i = 1, 2, and

joint distribution F (x1, x2) = Pr[X1 ≤ x1,X2 ≤ x2]. Every pair (x1, x2) ∈ [−∞,+∞]2 can

be mapped into [0, 1]2, using the respective cdf. A (two-dimensional) copula is a function

C : [0, 1]2 → [0, 1] such that:

1. C(0, x) = C(x, 0) = 0 and C(1, x) = C(x, 1) = x for all x ∈ [0, 1];

2. C is 2-increasing: for x′1, x
′′
1 , x′2, x

′′
2 ∈ [0, 1] with x′1 ≤ x′′1 and x′2 ≤ x′′2 ,

VC
(
[x′1, x

′′
1 ] × [x′2, x

′′
2 ]
)

= C(x′′1 , x
′′
2 ) − C(x′1, x

′′
2 ) − C(x′′1 , x

′
2) + C(x′1, x

′
2) ≥ 0.

The function VC is the C-volume of the rectangle [x′1, x
′′
1 ] × [x′2, x

′′
2 ]. A copula C induces

a probability measure on [0, 1]2 via VC
(
[0, u1] × [0, u2]

)
= C(u1, u2). The definitions so far

introduced are linked together by the following theorem:

Sklar’s Theorem. Let F be a two-dimensional distribution function with marginal distribu-

tion functions F1 and F2. Then there exist a copula C such that F (x1, x2) = C(F1(x1), F2(x2)).

Conversely, for any distribution functions F1 and F2 and any copula C, the function F de-

fined above is a two-dimensional distribution function with marginals F1 and F2. Further-

more, if F1 and F2 are continuous, C is unique.

Given a joint distribution F with continuous marginals F1 and F2 it is possible to obtain

the corresponding copula C(u1, u2) = F (F−1
1 (u1), F

−1
2 (u2)), where F−1

i is the cadlag inverse

of Fi, given by F−1
i (w) = sup{x|Fi(x) ≤ w}. Furthermore, if X1 and X2 are continuous

26



random variables as defined earlier in this section, then C is the joint distribution function

for the random variables U1 = F1(X1) and U2 = F2(X2).

A large number of copulas are present in the literature. A few copula functions which

are important from a practical point of view are listed below:

• Product copula:

C(u1, u2) = u1u2;

• Farlie-Gumbel-Morgenstern copula:

C(u1, u2; θ) = u1u2(1 + θ(1 − u1)(1 − u2)),

where the dependence parameter θ ∈ [−1, 1];

• Gaussian copula:

C(u1, u2; ρ) = ΦG(Φ−1(u1),Φ
−1(u2); ρ),

where Φ is the cdf of the standard normal distribution, ΦG is the standard bivariate

normal distribution with correlation parameter ρ ∈ (−1, 1);

• Clayton copula:

C(u1, u2; θ) = (u−θ1 + u−θ2 − 1)−1/θ,

where the dependence parameter θ ∈ (0,∞);

• Frank copula: C(u1, u2; θ) = −θ−1 ln

(
1 + (e−θu1−1)(e−θu2−1)

e−θ−1

)
,

where the dependence parameter θ ∈ R.

Despite popularity in certain (especially bivariate) applications, copulas have attracted crit-

icism for their use in finance as well. Some critical opinions have been expressed in Mikosch

(2006), among them the author states that “Copulas do not contribute to a better under-

standing of multivariate extremes”, “Various copula models are mostly chosen because they

are mathematically convenient; the rationale for their applications is murky” and “There is

little statistical theory for copulas. Sensitivity studies of estimation procedures and goodness-

of-fit tests for copulas are unknown. It is unclear whether a good fit of the copula of the data

yields a good fit to the distribution of the data”.
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2.5 Nonlinear portfolio with normal returns

Evaluation of VaR for nonlinear functions of random risk factors can often be done efficiently

using characteristic function methods, which in turn rely on discrete Fourier transforms

(DFT) and fast Fourier transforms (FFT). Hence this section is organized as follows: firstly,

in subsection 2.5.1 we introduce the Delta-Gamma-Normal approximation and use of FFT

in order to deal with nonlinear portfolios with normal returns. Secondly, we provide the

theoretical background to FFT: subsection 2.5.2 explains the fundamentals of digital signal

processing which are relevant for this thesis; subsections 2.5.3 and 2.5.4 outline DFT and

FFT algorithms respectively; subsection 2.5.5 explains the characteristic function and the

inversion integral; subsection 2.5.6 regards the characteristic function inversion using FFT

and lists some numerical integration algorithms along with their respective approximation

errors.

2.5.1 Delta-Gamma-Normal model

In order to manage risk one needs in the first place to measure market risk, particularly the

risk of significant losses. For substantial portfolios involving complex financial securities,

this can be a major challenge. To achieve a good risk assessment there is an administrative

side – building a precise, centralized database of a company’s positions with a leg on each

side of several markets and asset classes – and a statistical and computational sides. As

mentioned in Glasserman (2003) processes to evaluate market risk must specifically answer

two questions:

• which statistical model correctly and opportunely describes individual risk sources of

risk movement and co-movements of multiple sources of risk having an effect on a

portfolio?

• How will the value of a portfolio vary in reply to variations in the underlying sources

of risk?

The first question involves the joint distribution of changes in various risk factors – interest

rates, stocks, exchange rates, and commodity prices that can affect a portfolio. The second

question requires a mapping from risk factors to portfolio value. Once both components are

provided, the distribution of the portfolio’s profit and loss is basically determined, and so it

is any risk measure that reviews this distribution.
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Answering these two questions unavoidably implies a trade-off between computational com-

plexity and modeling accuracy. For example, modeling market prices with a multivariate

normal distribution could be inadequate in terms of modeling the tail losses; however, it is

still extensively used due to its computational simplicity. We will concentrate on the com-

putational problems raised by the first, employing the model described in Glasserman (2003).

Let us recall the model described in Glasserman (2003) for computation of Value-at-Risk

with normally distributed stock returns, but for a portfolio which depends nonlinearly on

stock prices. We introduce the following notation:

S = vector of m market prices and rates;

∆t = risk-measurement horizon;

∆S = change in S over interval ∆t;

Π(S, t) = portfolio value at time t and market prices S;

L = loss over interval ∆t = −∆Π = Π(S, t) − Π(S + ∆S, t+ ∆t);

FL(x) = Pr [L < x] , the distribution of L.

The time interval ∆t is typically very short, while the number m of risk factors could reach

thousands. Regulators and rating agencies demand measurements over a two-week horizon,

which is often understood as the time that might be required in the case of an adverse

market move to unwind complicated positions.

Some implicit simplifying assumptions have been made. Only the net loss over the horizon

∆t is under consideration, for example paying no attention to the maximum and minimum

portfolio value with the horizon. The dynamics of the market prices are also neglected,

including all the details about the evolution of S in the vector of changes ∆S. Furthermore

the assumption that the composition of the portfolio does not change is made, but clearly

the value of its components may vary in reaction to the market movement ∆S and the

passage of time ∆t, which may bring assets closer to expiry or maturity.

We recall that the Value-at-Risk of a portfolio is a quantile of its loss distribution over
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a fixed horizon ∆t: Pr [L > xα] = α and, for simplicity, is assumed throughout that the pdf

of loss, FL, is continuous, so that such a point exists. A quantile supplies a simple system

of summarizing information about a distribution’s tail, and this specific value is often inter-

preted as a realistic worst-case loss level.

There are many ways to calculate or to approximate Value-at-Risk, each representing some

trade-off between realism and tractability. This compromise depends on the portfolio’s

complexity and on the accuracy needed. The two main approaches employed to compute

measures of risk such as VaR and CVaR for non-linear portfolios are the full Monte Carlo

simulation and the partial Monte Carlo simulation. The full Monte Carlo simulation in-

volves computation of the portfolio value, as a function of risk factors, for a large number

of possible values of the risk factors as sampled from their multivariate distribution. Par-

tial Monte Carlo simulation involves the same computation, apart from the fact that the

portfolio value function is approximated by its Taylor series expansion truncated up to sec-

ond order term. The partial Monte Carlo model is particularly appealing in the Gaussian

case, since inverting the characteristic function of its probability distribution provides an

approximation comparable with the one obtained through full Monte Carlo simulation, but

with a very competitive computational time. Next, we introduce the partial Monte Carlo

simulation.

A portfolio that includes options depends nonlinearly on the underlying asset prices and

many fixed-income securities have a nonlinear dependence on interest rates. The change in

portfolio value ∆Π(S, t) is defined as Π(S + ∆S, t + ∆t) − Π(S, t). Some nonlinearity can

be captured using Taylor expansion until the quadratic term:

∆Π(S, t) ≈ Θ∆t+ δT∆S +
1

2
∆STΓ∆S, (2.20)

where the vector ∆S denotes the change of the underlying value, while the scalar Θ =

∂Π(S,t)
∂t , the vector δ = ∂Π(S,t)

∂S and the matrix Γ = ∂2Π(S,t)
∂S2 represent the sensitivities of the

portfolio value to time and to the changes in the stock prices at time t. Given the portfolio

Π, all the sensitivities Θ, δ and Γ are assumed to be given exogenously for the purpose

of this paper. For individual derivative instruments such as options, δ values are provided

by commercial economic data providers such as Bloomberg. Depending on the nature of
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derivative instruments in the portfolio, these sensitivity values may be found using a variety

of methods from market data and from commonly used risk neutral models, including finite

differences, implied volatilities, Malliavin calculus (for use of Malliavin calculus in comput-

ing sensitivities of certain exotic options, see e.g. Montero and Kohatsu-Higa (2003)), etc;

see, e.g. Glasserman (2003) and Hull (2009). Sensitivities δ and Γ are regularly computed

for hedging purposes by single trading desks and can be combined (at the end of the day,

for example).

There are two ways to compute the change in portfolio value ∆Π through formula (2.20)

either directly using Monte Carlo simulation or employing FFT, which is described next.

Assuming ∆S ∼ N (0,ΣS), then we can write:

∆S = CZ with CCT = ΣS ,

where Z ∼ N (0, I) and C is a square root of ΣS . Square root matrices are not unique and

the exact choice of C is decided as follows. We can re-write (2.20) in terms of Z:

L ≈ a− (CT δ)TZ − 1

2
ZT (CTΓC)Z, (2.21)

with a = −Θ∆t deterministic.

Let us choose the matrix C to diagonalize the quadratic term in (2.21) in the following

way: choose Ĉ so that ĈĈT = ΣS , such as the one found by Cholesky factorization. Being

the matrix − 1
2 Ĉ

TΓĈ symmetric, it admits the representation

−1

2
ĈTΓĈ = UΛUT ,

where Λ = diag(λ1, λ2, . . . , λm) and U is an orthogonal matrix (UUT = I). Columns of the

matrix U are then eigenvectors of − 1
2 Ĉ

TΓĈ. The λj are eigenvalues of both this matrix

and − 1
2ΓΣS . Fixing C = ĈU , one can observe that

CCT = ĈUUT ĈT = ΣS
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and

−1

2
CTΓC = −1

2
UT (ĈTΓĈ)U = UT (UΛUT )U = Λ.

Then by setting b = −CT δ the approximation (2.21) becomes

L ≈ a+ bTZ + ZTΛZ = a+

m∑

i=1

(biZi + λiZ2
i ) ≡ Q. (2.22)

Since we approximated Pr [L > x] ≈ Pr [Q > x], now we have to derive the distribution of Q.

The distribution of Q is determined using its moment generating function and characteristic

function. The moment generating function is finite in a neighborhood of the origin and,

considering the independence of the summands in (2.22), can be factorized as:

E[eθQ] = eaθ
m∏

i=1

E[eθ(biZi+λiZ2
i )] ≡ eaθ

m∏

i=1

eψi(θ).

If λi = 0, then the moment generating function2 produces ψj(θ) = b2i θ
2/2. Otherwise, we

write:

biZi + λiZ2
i = λi

(
Zi +

bi
2λi

)2

− b2i
4λi

,

a linear transformation of a noncentral chi-square random variable3. Using the equation

(29.6) of Johnson et al. (1994), we obtain:

E[exp(θ(Zi + c)2)] = (1 − 2θ)−1/2 exp

(
θc2

1 − 2θ

)
,

for θ < 1/2, one can arrive at the expression (see Glasserman (2003)):

ψ(θ) ≡ aθ +

m∑

i=1

ψi(θ) = aθ +
1

2

m∑

i=1

(
θ2b2i

1 − 2θλi
− log(1 − 2θλi)

)
, (2.23)

2The moment generating function for a random variable X ∼ N (µ, Σ), with X d-dimensional, is given
by E[exp(θT X )] = exp(µT θ + 1

2
θT Σθ), for all θ ∈ Rd.

3For ν ∈ N0 and constants d1, d2, . . . , dν , the distribution of

ν∑

i=1

(Zi + di)
2

is noncentral chi-square with ν degrees of freedom and noncentral parameter λ =
∑ν

i=1 d2
i . This represen-

tation explains the term “noncentral”.
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where ψ(θ) = log E[exp(θQ)] is the cumulant generating function of Q; the equation (2.23)

holds for all θ such that maxi θλi < 1/2.

Let us consider a generic continuous random variable X with cumulative distribution func-

tion (cdf) FX (x) = Pr [X ≤ x]. Its characteristic function, ϕX : R → C, is defined as:

ϕX (t) = E[ejtX ] =

∫ ∞

−∞
ejtxdFX (x),

where j =
√
−1.

The characteristic function of the approximation Q as expressed by (2.22) is reported in

several articles (see, e.g. Feuerverger and Wong (2000) for further details) and is given by:

ϕQ(t) = E[ejtQ] = eψ(jt) = ejta
m∏

i=1

1√
1 − 2jλit

exp

(
− 1

2

m∑

i=1

b2i t
2

1 − 2jλit

)
. (2.24)

The loss distribution can be found using numerical inversion of the characteristic function.

The formula we employed for the computation of the numerical inversion of the characteristic

function is the following:

fQ(q) =
1

2π

∫ ∞

−∞
ϕQ(t)e−jtqdt.

More discussion on characteristic functions is postponed until subsection 2.5.5. The Delta-

Gamma-Normal algorithm combines the Delta-Gamma method with the characteristic func-

tion inversion using a numerically efficient procedure called Fast Fourier Transform (FFT).

Therefore once one computes coefficients a, bi, λi, for i = 1, 2, . . . ,m, as explained in sub-

section 2.5.1 it is possible to use formula (2.24) to calculate ϕQ for a N -length grid of rn

values in order to obtain x(n) values according to formula (2.54) given later in subsection

2.5.6. To obtain more accurate integration one can include one of the numerical integration

rules mentioned in subsection 2.5.6. Inverting these quantities using FFT will provide the

information necessary to compute both VaR and CVaR.

Note that there are two reasons for truncating Taylor’s series after two terms while approx-

imating portfolio loss. First reason is the computational simplicity of computing quantiles

of a quadratic form of a normal distribution (as outlined above). Secondly, widely reported
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empirical experience supports the use of second order approximation as adequate reflec-

tion of changes in portfolio value, especially over short time horizons as considered here. In

Glasserman et al. (2000), the authors relax the assumption that the risk factors are normally

distributed and demonstrate that the result can be extended to risk factors which have a

multivariate t distribution. In this thesis, we go a lot further in generalizing Delta-Gamma-

Normal method by using possibly non-parametric distributions. The key to our method is

a probability conserving transformation, which is described later in subsection 2.6.1.

2.5.2 Digital signal processing

First, we will have a look at some mathematical tools relevant in the characteristic function

inversion mentioned earlier. Signal processing concerns with the science of analyzing time-

varying natural processes (for further details, refer to digital signal processing textbooks

such Lynn and Fuerst (2000) and Lyons (2004)). Signal processing is partitioned into two

classes, analog signal processing and digital signal processing. A waveform that is continu-

ous in time and can assume a continuous range of amplitude values is also called analog; on

the other hand, a signal whose independent time variable is quantized, that means that the

value of the signal is known only at discrete instants in time, is called discrete or digital.

The representation of a discrete-time signal is not a continuous waveform but it is given by

a sequence of values. Not only the time is quantized, indeed a discrete-time signal quantizes

the signal amplitude, too.

For example a continuous cosine wave with a peak amplitude of 1 at a frequency f0 is

described by the equation

x(t) = cos(2πf0t). (2.25)

the frequency f0 is measured in hertz (Hz). With t in equation (2.25) representing time in

seconds, the factor f0t has dimensions of cycles, and the complete 2πf0t term is an angle

measured in radians. Sampling it once every ts seconds and representing it as a sequence of

discrete values, would give us its discrete version.

The discrete sequence x(n) can be expressed by

x(n) = cos(2πf0nts). (2.26)
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Equations (2.25) and (2.26) describe what are also referred to as time-domain signals be-

cause both the independent variables, the continuous time t and the discrete time nts, are

measure of time.

Given that an analog signal have to be represented by a set of equally-spaced samples,

then Shannon’s sampling theorem states how often it should be sampled:

Shannon’s Theorem. An analog signal containing components up to some maximum fre-

quency f1 Hz may be completely represented by regularly-spaced samples, provided that

the sampling rate is at least 2f1 samples per second.

Using the minimum rate indicated by the theorem, the sampling interval ts is clearly:

ts =
1

2f1
.

Conversely, if we have a digital signal with sampling interval ts, the maximum analog fre-

quency which can be represented is:

f1 =
1

2ts
Hz, or ω1 = 2πf1 radians/sec.

2.5.3 Discrete Fourier transform (DFT)

Aperiodic signals and data with a finite number of nonzero sample values are very frequent

– for example, the price of the copper or the temperature record.

The discrete Fourier transform (DFT) of a general signal x(n), defined over the set 0 ≤
n ≤ N − 1, is given by:

X(k) =

N−1∑

n=0

x(n)e−j2πkn/N =

N−1∑

n=0

x(n)W kn
N , (2.27)

where j =
√
−1, WN = e−j2π/N , and the spectral coefficients X(k) are calculated for

0 ≤ k ≤ N − 1.

Using Euler’s relationship e−jφ = cos(φ) − j sin(φ), the equation (2.27) can be expressed in
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the rectangular form:

X(k) =

N−1∑

n=0

x(n)[cos(2πnk/N) − j sin(2πnk/N)]. (2.28)

The real and imaginary parts of the their spectrum are then given by:

Xreal(k) = Re(X(k)) =

N−1∑

n=0

x(n) cos(2πkn/N) (2.29)

and

Ximag(k) = Im(X(k)) = −
N−1∑

n=0

x(n) sin(2πkn/N). (2.30)

Thus, an arbitrary DFT output value, X(k), can be represented by

X(k) = Xreal(k) + jXimag(k) = |X(k)| at an angle Xφ(k), (2.31)

where |X(k)| is the magnitude of X(k) and it is defined as

|X(k)| =
√
X2
real(k) +X2

imag(k),

while, the phase angle of X(k), Xφ(k) is

Xφ(k) = arctan

(
Ximag(k)

Xreal(k)

)
.

We are going to consider signals x(n)s that are real-valued, the real part of their correspond-

ing X(k) must be even while the imaginary part must be odd. Furthermore the magnitude

and phase of X(k) must be even and odd respectively, and X(k) = X̄(−k), where the bar

denotes the complex conjugate. The DFT can therefore be completely defined by just half

the total set of spectral coefficients, given the symmetry of the spectrum. As a result the

DFT of a real, N -valued, signal bears two real coefficients, X(0) and X(N/2), together

with N/2− 1 distinct complex coefficients (the other N/2− 1 complex coefficients are their

complex conjugates). Two real and N/2− 1 complex coefficients are for that reason needed

to define the whole spectrum.
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If x(n) is even, i.e. x(n) = x(−n), then its spectrum contains only cosines terms, therefore

the imaginary part of X(k) is zero; equally, when x(n) is odd, its spectrum contains only

sine terms and the real part of X(k) is zero.

The inverse DFT, or IDFT, which allows us to retrieve the signal from its spectrum, is

given by:

x(n) =
1

N

N−1∑

k=0

X(k)W−kn
N , (2.32)

where the values of x(n) are calculated for 0 ≤ n ≤ N − 1.

Both DFT and IDFT represent a finite-length sequence as one period of a periodic se-

quence: calculating additional values of X(n) outside the range 0 ≤ k ≤ N − 1 in equation

(2.27) will bear a periodic spectral sequence. Likewise, using equation (2.32) to calculate

additional values of x(n) outside the range 0 ≤ n ≤ N − 1 generates a periodic version

of the signal. In fact the DFT considers an aperiodic signal x(n) to be periodic for the

purposes of computation. It can be noticed that the only difference between the DFT and

the IDFT is the scaling factor of 1/N , and a sign change in the exponent: this is a direct

consequence between time and frequency domains. The DFT supplies us with N distinct

spectral coefficients X(k) for a signal with N distinct sample values; conversely, the IDFT

redevelops the N signal values from the N spectral coefficients.

An aperiodic signal x(n), defined for 0 ≤ n ≤ N − 1, has DFT coefficients X(k), defined

for 0 ≤ k ≤ N − 1. Then the sequence x(n) transforms into the sequence X(k); conversely

X(k) inverse transforms into x(n). We use a double-headed arrow to denote the relationship

between a signal and its spectrum: x(n) ↔ X(k).

Since both x(n) and X(k) are N-periodic:

x(n) = x(n+N) for all n,

X(k) = X(k +N) for all k.
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Important properties of the DFT are:

1) linearity

if x1(n) ↔ X1(k) and x2(n) ↔ X2(k)

then Ax1(n) +Bx2(n) ↔ AX1(k) +BX2(k);

2) time-shifting

if x(n) ↔ X(k)

then x(n− n0) ↔ X(k)e−j2πkn0/N = X(k)W kn0
n ;

3) convolution

if x1(n) ↔ X1(k) and x2(n) ↔ X2(k)

then
∑N−1

m=0 x1(n)x2(m− n) ↔ X1(k)X2(k).

The sampling theorem result holds in the frequency domain; it could be stated as follow:

“The continuous spectrum of a signal with limited duration T0 seconds may be completely

represented by regularly-spaced frequency-domain samples, provided the samples are spaced

not more than 1/T0 Hz apart”.

An aperiodic digital signal with N finite sample values having duration T0 = Nts sec-

onds, where ts is the sampling interval in the time domain, has a spectrum that can be fully

represented by frequency-domain samples spaced 1/Nts Hz, or 2π/Nts radians per second,

apart. Sampling must be done at intervals of 2π/N (or less).

The spectrum of a digital signal is always periodic, with period 2π: this is a consequence

of sampling. Since one period is clearly sufficient to define it, sampling at the minimum

interval of 2π/N provides us 2π
2π/N = N frequency-domain samples.
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2.5.4 The fast Fourier transform (FFT)

Despite being the most straightforward procedure to reveal the frequency content of a time-

domain sequence, DFT is computationally extremely inefficient. The execution of equations

(2.29)-(2.30) involves a huge number of floating point operations; both equations (2.29) and

(2.30) need 2N2 multiplications. Even in the presence of an even or odd signal still N2 are

required. In all of the mentioned cases there are analogous numbers of integer multiplica-

tions and floating-point additions/subtractions to be carried out. As a general rule, we may

expect the calculation to be approximately proportional to N2. One can easily realize that

as the number of points in the DFT is over 1, 000, the amount of necessary computation

become excessive. Highly cost-effective algorithms for computing the DFT were first devel-

oped in the 1960s. Collectively known as fast Fourier transforms (FFTs), they all linked to

the fact that the standard DFT involves redundant computation.

The DFT of an N -length signal is given by

X(k) =

N−1∑

n=0

x(n)e−j2πkn/N =

N−1∑

n=0

x(n)W kn
N ,

where WN = e−j2π/N , and X(k) is calculated for 0 ≤ k ≤ N − 1. It results that identical

values of x(n)W kn
N are calculated many times as the computation proceeds. This is given

by the periodic nature of W kn
N , that originates a limited number of distinct values. A sim-

ilar behavior applies to the IDFT equation (2.32). FFT algorithms aim to eliminate this

redundancy.

There is a collection of FFT algorithms with dissimilar characteristics, benefits, and weak-

nesses. An algorithm which is appropriate for programming in high-level language on a

general-purpose computer may not be the best for special-purpose DSP hardware. All of

these different algorithms share a general approach, they split each DFT into a number of

successively smaller, and easier to compute, DFTs.

This section will highlight why the most popular FFT algorithm (called the radix-2 FFT)

is a cut above the classical DFT algorithm. The radix-2 FFT algorithm is a very effective

procedure to carry out DFTs under the constraint that the number of points in the trans-
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form (commonly referred to the DFT size) is N = 2k, where k is some positive integer. The

needed number of complex multiplications for an N -point DFT is N2, while for an N -point

FFT is roughly N
2 log2N : a considerable reduction from the N2 complex multiplications

required by DFTs, particularly for large N .

When using the radix-2 FFT, if the length of the series x(n) is not an integral power of

two, we have two options: we could add enough zero-valued samples at the end of the data

sequence to reach the number of points of the next largest radix-2 FFT (this technique is

called zero-padding); alternatively one could get rid of enough data samples in order to

match that particular integral power of two. The second approach is not suggested since

ignoring data samples corrupt the resultant frequency-domain resolution.

Let us return to the equation for an N -point DFT:

X(k) =

N−1∑

n=0

x(n)e−j2πkn/N =

N−1∑

n=0

x(n)W kn
N , 0 ≤ k ≤ N − 1. (2.33)

A derivation of the FFT progresses with the division of the input data sequence x(n) in

equation (2.33) into two parts: its even elements, indexed by n = 2r, and its odd elements

indexed by n = 2r + 1 as:

X(k) =

N/2−1∑

r=0

x(2r)W 2rk
N +

N/2−1∑

r=0

x(2r + 1)W
(2r+1)k
N (2.34)

=

N/2−1∑

r=0

x(2r)(W 2
N )rk +W k

N

N/2−1∑

r=0

x(2r + 1)(W 2
N )rk. (2.35)

Because W 2
N = e−j2π2/N = e−j2π/(N/2) = WN/2 we may therefore write:

X(k) =

N/2−1∑

r=0

x(2r)W rk
N/2 +W k

N

N/2−1∑

r=0

x(2r + 1)W rk
N/2 (2.36)

= A(k) +W k
NB(k). (2.37)

40



The original N -point DFT is now expressed in terms of two N/2-point DFTs, A(k) and

B(k). A(k) is the transform of the even-indexed points in x(n), and B(k) is the transform

of the odd-indexed points. B(k) must be multiplied by the term W k
N before adding it to

A(k). The necessary computation is reduced in (2.36) relative to (2.33) because the W rk
N/2

terms in the two summations of (2.36) are exactly the same.

There is a further advantage in dividing the N -point DFT into two parts because the upper

half of the DFT outputs is simple to calculate. Consider the X(k+N/2) output. If we plug

k +N/2 in for k in (2.36), then

X(k +N/2) =

N/2−1∑

r=0

x(2r)W
r(k+N/2)
N/2 +W

(k+N/2)
N

N/2−1∑

r=0

x(2r + 1)W
r(k+N/2)
N/2 . (2.38)

The phase angle expressions inside the summations assumes the shape:

W
r(k+N/2)
N/2 = W rk

N/2W
rN/2
N/2 = W rk

N/2(e
−j2πr2N/2N ) = W rk

N/2 · 1 = W rk
N/2, (2.39)

for any integer r. Taking a look at the so-called twiddle factor, in front of the second sum-

mation in (2.38), it can be simplified as

W
(k+N/2)
N = W k

NW
N/2
N = W k

N (e−j2πN/2N ) = W k
N (−1) = −W k

N . (2.40)

Then equation (2.38) can be represented as:

X(k +N/2) =

N/2−1∑

r=0

x(2r)W rk
N/2 −W k

N

N/2−1∑

r=0

x(2r + 1)W rk
N/2. (2.41)

Consequently, comparing (2.36) to (2.41) one can note that there is no need to perform any

sine or cosine multiplications to get X(k + N/2). Simply changing the sign of the twid-

dle factor W k
N and using the results of the two summations from X(k) allows to obtain

X(k+N/2). Now k goes from 0 to N/2− 1 in (2.36) so, for an N -point DFT, an N/2-point

DFT is performed to get the first N/2 outputs and use those to calculate the last N/2
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outputs.

If we assume that the transform lengthN is an integer power of 2, it follows that N/2 is even.

Therefore we can take the decomposition further, by breaking each N/2-point subsequence

down into two shorter, N/4-point subsequences. The process can continue until, in the

limit, we are left with a series of 2-point subsequences, each of which requires a very simple

2-point DFT. A complete decomposition of this type gives rise to one of the commonly-used

radix-2, decimation-in-time, FFT algorithms. A generalization of radix-2 algorithms is given

by prime factor algorithms (PFA) which is applicable for any transform length of the form

N = 2p 3q 5r, where p, q, r ∈ N (see, e.g. Temperton (1992), Takahashi and Kanada (2000)

and Goedecker (1997)).

2.5.5 The characteristic function and the inversion integral

We will review the idea of characteristic function, mentioned earlier in subsection 2.5.1, in

more details here. The characteristic function of a continuous random variable X , can be

expressed as:

ϕX (t) =

∫ ∞

−∞
ejtxdFX (x)

=

∫ ∞

−∞
cos(tx)dFX (x) + j

∫ ∞

−∞
sin(tx)dFX (x)

= E[cos(tX )] + j E[sin(tX )].

Since cos(−α) = cos(α) and sin(−α) = − sin(α), then:

ϕX (−t) = ϕ̄X (t). (2.42)

Applying (2.42) and using the fact that z + z̄ = 2Re(z), one obtains:

ϕX (t) + ϕX (−t) = ϕX (t) + ϕ̄X (t) = 2Re(ϕX (t)).

Because |ejz | = 1, then:

|ϕX (t)| =

∣∣∣∣
∫ ∞

−∞
ejtxdFX (x)

∣∣∣∣ ≤
∫ ∞

−∞
|ejtx|dFX (x) =

∫ ∞

−∞
dFX (x) = 1,
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so the characteristic function always exist. The uniqueness theorem, proved in Lévy (1924),

asserts that given two random variables X and Y:

X
d

= Y ⇔ ϕX = ϕY .

In order to obtain the pdf or the cdf of a continuous random variable X using the charac-

teristic function one can make use of the inversion integral. There are different versions of

it, some of which are reported below:

let X be a continuous random variable with pdf fX (x) and
∫∞
−∞ |ϕX (t)|dt <∞, then:

fX (x) =
1

2π

∫ ∞

−∞
ϕX (t)e−jtxdt. (2.43)

Now, making the substitution u = −t, and using properties: z + z̄ = 2Re(z), ez̄ = ez,

z1 · z2 = z1 · z2, and (2.42) we obtain:

∫ 0

−∞
ϕX (t)e−jtxdt =

∫ ∞

0

ϕX (−u)ejuxdu =

∫ ∞

0

ϕ̄X (u)e−juxdu =

∫ ∞

0

ϕX (u)e−juxdu;

hence equation (2.43) can be rewritten as:

fX (x) =
1

2π

∫ ∞

−∞
ϕX (t)e−jtxdt =

1

2π

(∫ 0

−∞
ϕX (t)e−jtxdt+

∫ ∞

0

ϕX (t)e−jtxdt

)

=
1

2π

(∫ ∞

0

ϕX (u)e−juxdu+

∫ ∞

0

ϕX (t)e−jtxdt

)

=
1

π

∫ ∞

0

Re
(
ϕX (t)e−jtxdt

)
.

An expression for the inversion formula derived in Gil-Pelaez (1951) is:

FX (x) =
1

2
+

1

2π

∫ ∞

0

ϕX (−t)ejtx − ϕX (t)e−jtx

jt
dt, (2.44)

or, alternatively, the one reported in Wendel (1961) can be used:

FX (x) =
1

2
− 1

π

∫ ∞

0

Im
(
ϕX (t)e−jtx

)

t
dt, (2.45)
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another formulation is used in Glasserman (2003):

Pr [X ≤ x] − Pr [X ≤ x− y] =
1

π

∫ ∞

0

Re

(
ejty − 1

jt
ϕX (t)e−jtx

)
dt. (2.46)

2.5.6 Characteristic function inversion using FFT

The treatment of the discrete version of Fourier transform (DFT) below follows Section 2.5.3.

We recall that the DFT of a signal x(n) is given by:

X(k) =

N−1∑

n=0

x(n)e−j2πkn/N =

N−1∑

n=0

x(n)W kn
N , k = 0, 1, . . . , N − 1. (2.47)

Therefore given the vector x = (x0, x1, . . . , xN−1), we obtain the vector X = (X0, X1, . . . , XN−1) =

F(x). Conversely, the vector x can be obtained from the IDFT:

x(n) =
1

N

N−1∑

k=0

X(k)ej2πkn/N =
1

N

N−1∑

k=0

X(k)W−kn
N , n = 0, 1, . . . , N − 1, (2.48)

which can be written in a more compact way x = F−1(X).

The function F−1 is the inverse of F because given a vector g = (g0, g1, . . . , gN−1), g =

F−1(F(g)). Let G = F(g) and WN = ej2π/N , using (2.47) and (2.48) we get:

1

N

N−1∑

k=0

G(k)W−kn
N =

1

N

N−1∑

k=0

(N−1∑

m=0

g(m)W km
N

)
W−kn
N =

1

N

N−1∑

m=0

g(m)

(N−1∑

k=0

(Wm−n
N )k

)
.

Having (as reported in Paolella (2007)):

N−1∑

l=0

(W k
T )l =





N if k ∈ dZ = {0, d,−d, 2d,−2d, . . .}
0 otherwise

(2.49)

if m = n the inner sum is N , otherwise is 0, so the n-th component of F−1(G) = g(n) for

all n = 0, 1, . . . , N − 1. Therefore F−1(F(g)) = g.

The characteristic inversion using the FFT algorithm given a continuous random variable

X , with pdf fX and characteristic function ϕX , for l, u ∈ R and N ∈ N, can be carried out
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- as proposed in Paolella (2007) - recognizing that:

ϕX (t) =

∫ ∞

−∞
fX (x)ejtxdx ≈

∫ u

l

fX (x)ejtxdx ≈
N−1∑

k=0

fX (xk)∆xe
jtxk =

N−1∑

k=0

X(k)ejtxk ,

(2.50)

where xk = l + k∆x, with k = 0, 1, . . . , N − 1 and ∆x = (u− l)/N . This procedure creates

an even spaced grid of x’s values spanning between a lower (l) and a upper (u) bounds, with

an even increment between consecutive quantities of ∆x. The last equality holds once we

set X(k) = fX (xk)∆x.

Both approximations in (2.50) can be made arbitrarily accurate by choosing magnitudes

of l and u and N large enough. The first approximation is valid because, as an improper

integral, ϕX (x) exists, and we assume that limx→−∞ fX (x) = limx→∞ fX (x) = 0; while the

second approximation is valid from the definition of the Riemann integral. Assuming that

ϕX (r) is available for any r, we want to retrieve the quantities X(k) therefore, dividing both

sides of (2.50) by ejrl:

ϕX (r)e−jrl ≈
N−1∑

k=0

X(k)ejrk∆x. (2.51)

Equating rk∆x with 2πkn/N gives:

N−1∑

k=0

X(k)ejrk∆x =

N−1∑

k=0

X(k)ej2πkn/N . (2.52)

One can recognize that equation (2.52) is basically equal to equation (2.48), apart from the

coefficient 1/N . Therefore we obtain:

N−1∑

k=0

X(k)ej2πkn/N = Nx(n).

Now, let us create a N−length grid of r-values:

rn =
2πn

N∆x
, where n = −N

2
,−N

2
+ 1, . . . ,

N

2
− 1. (2.53)

It follows from (2.51), (2.52) and (3.17) that:

x(n) ≈ 1

N
ϕX (rn)e−jrnl. (2.54)
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Since X = F(x) applying the DFT, via FFT (that considerably reduces the number of

multiplications from O(N2) to O(N log2N)), to x(n) gives X(k) that provides quantities

fX (xk)∆x. Dividing these values by ∆x we are able to obtain the pdf of X . An appropriate

choice of the parameters l, u,∆x and N is essential to get a desired trade-off between accu-

racy and computational time.

An improved evaluation of the integral is possible using one of the quadrature formulae,

see e.g. Carr et al. (1999), Cerný (2004) and Menn and Rachev (2006). A detailed theoret-

ical treatment of numerical integration can be found in Kythe and Schäferkotter (2004) or

Phillips and Taylor (1996). Hereafter composite trapezoidal, Simpson’s and mid-point rules

are listed along with their respective approximation errors. Let us define h = (b − a)/N ,

where a and b represent the lower and upper limits of integration, respectively, and N is the

number of even subintervals in which the interval [a, b] is split.

The composite trapezoidal rule is given by:

∫ b

a

f(x)dx ≈ h

[
f(a) + f(b)

2
+
N−1∑

k=1

f

(
a+ k

b− a

N

)]

≈ h

2

(
f(x0) + 2f(x1) + 2f(x) + . . .+ 2f(xN−1) + f(xN )

)
,

where xk = a+ kh, k = 0, 1, . . . , N .

For a twice continuously differentiable function the approximation error committed by the

composite trapezoidal rule is:

− (b− a)3

12N2
f (2)(ξ),

for some ξ ∈ (a, b).

The composite Simpson’s rule is given by:

∫ b

a

f(x)dx ≈ h

3

[
f(x0) + 2

N/2−1∑

k=1

f(x2k) + 4

N/2∑

k=1

f(x2k−1) + f(xN )

]

≈ h

3

[
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + . . .+ 4f(xN−1) + f(xN )

]
,
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where xk = a+ kh, k = 0, 1, . . . , N .

For a four times continuously differentiable function the approximation error of the compos-

ite Simpson’s rule is bounded by:

h4

180
(b − a) max

ξ∈[a,b]
|f (4)(ξ)|.

The composite mid-point rule is given by:

∫ b

a

f(x)dx ≈ h
[
f(x1) + f(x3) + . . .+ f(xN−3) + f(xN−1)

]
,

where xk = a+ kh, k = 1, 3, . . . , N − 1.

For a twice continuously differentiable function the approximation error of the composite

mid-point rule is:
f (2)(ξ)

24

(b− a)3

N2
,

for some ξ ∈ (a, b).

We will use the composite trapezoidal rule to produce more accurate approximations for

x(n) in equation (2.54).

2.6 Nonlinear portfolio with non-normal returns

This section presents a new method to efficiently compute VaR and CVaR combining the

Delta-Gamma-Normal model with a probability conserving transformation. It is organized

as follows: subsection 2.6.1 introduces the probability conserving transformation and sub-

section 2.6.2 discusses the new Delta-Gamma-Q method for assets with non-normal returns,

which is the principal contribution of this chapter. Subsection 2.6.3 provides some important

features of the non parametric density estimation, for a more detailed treatment one can

refer e.g. to Bowman and Azzalini (1997), Fan and Gijbels (1996) and references within.

2.6.1 Probability conserving transformation

The idea of probability conserving transformation has been used in the context of analysis of

portfolio strategies in Sornette et al. (2000). We employ this idea in the current context of
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risk computation. Suppose that we have a set of dependent random variables X1,X2, . . . ,Xm
with arbitrary marginal cdfs Fi, i = 1, 2, . . . ,m. For each Xi, samples x

(i)
j , j = 1, 2, · · · , n

drawn from Fi(x) are available. In the present context, X might represent a vector of

asset returns or any other risk factors. Denoting the standard normal cdf by Φ(y), define a

function of Xi by

ψ(Xi) := Φ−1Fi(Xi),

and let y
(i)
j = ψ(x

(i)
j ). If we envisage y

(i)
j to be a sample of a random variable Yi with

standard normal distribution, then it is clear that Φ(y
(i)
j ) = Fi(x

(i)
j ). ψ is the so-called

probability conserving transformation. We can then find the sample covariance matrix of Y
using y

(i)
j . We don’t know a priori the joint distribution of the vector of transformed vector-

valued random variable, Y. However we can introduce an approximation using a standard

result from information theory (Rao (2001)): conditioned only on the knowledge of the

covariance matrix, the best representation of a multivariate distribution is the Gaussian

distribution, in the sense that it maximizes entropy, see e.g. Cover and Thomas (1991) for

details. Therefore, conditioned on the sole knowledge of the covariance matrix ΣY , the best

approximated parametric representation of the multivariate distribution of Y is given by:

fY(y) =
1

(2π)m/2
√

det(ΣY)
exp

(
− 1

2
y⊤Σ−1

Y y

)
.

Unlike a mean-variance based normal approximation of a multivariate density, the proposed

approximation heuristic preserves the fat-tailed nature of the original vector of risk factors

X . We use this method in the context of the VaR computation as follows.

If Fi(x
(i)
j ) are not normal or if Xi are not jointly normal, the VaR computation cannot

be reduced to a computation of a one dimensional integral as outlined in the previous sec-

tion, even after Delta-Gamma approximation of the nonlinearity. To remedy this, we carry

out a nonlinear transformation to normal distributions, as proposed in Sornette et al. (2000):

let φ be the standard normal pdf and Φ be the standard normal cdf. Let f(u) be a density,

F (u) be its corresponding cdf and define the function

Φ(w) = F (u), i.e.
1√
2π

∫ w

0

e−
z2

2 dz =

∫ u

0

f(z)dz,
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where the random variable W ∼ N (0, 1) by construction. It is therefore possible to map

each value xj into a new variable yj :

yj = ψ(xj) = Φ−1(F (xj)) =
√

2 erf −1(2F (xj) − 1),

where the error function operator, erf, is defined as:

erf(x) =
2√
π

∫ x

0

e−t
2

dt.

Referring back to notation introduced previously in this section since historic data is available

(i.e. x
(i)
j , with i = 1, 2, . . . ,m and j = 1, 2, . . . , n where m is the number of factors and n

is the number of data available for each factor), it is possible to compute y
(i)
j for all i and

j. The covariance matrix of the vector variable Y is defined as ΣY = E
[
yyT

]
, where each

element
[
ΣY
]
ab

is obtained by sample average approximation:

[
ΣY
]
ab

=
1

n

n∑

l=1

y
(a)
l y

(b)
l .

We need to find δ and Γ in terms of the transformed variables Yi (and their samples y
(i)
j ),

which will require finding the derivative dxi

dyi
. Having Φ(Yi) = Fi(Xi), we can write Xi =

F−1
i (Φ(Yi)), where Yi is a standard normal random variable and Xi is a random variable

with cdf Fi. Since Φ and Fi are both continuous with densities φ and fi, respectively, it

follows that the functional Xi = F−1
i (Φ(Yi)) is continuously differentiable such that:

dxi
dyi

=
φ(yi)

fi(F
−1
i (Φ(yi)))

. (2.55)

Now, remembering that Φ(Yi) = Fi(Xi), equation (2.55) can be simplified as:

dxi
dyi

=
φ(yi)

fi(xi)
. (2.56)

Nonparametric estimation of distribution of X allows to achieve maximum flexibility in

obtaining quantities Fi(x
(i)
j ) and fi(x

(i)
j ).
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2.6.2 Delta-Gamma-Q for assets with non-normal returns

Here, we bring together the material in subsections 2.5.1 and 2.6.1 to propose a novel heuris-

tic for risk computation for a nonlinear portfolio with possibly non-Gaussian risk factors.

Given a series of changes in risk factors (e.g. asset prices) ∆Si, we start by computing their

probability conserving transformation ∆Yi:

∆Yi = Φ−1(Fi(∆Si)), i = 1, 2, . . . ,m. (2.57)

Each ∆Yi ∼ N (0, 1), and the vector ∆Y ∼ N (0,ΣY), with diag(ΣY) = (1, 1, . . . , 1). We

emphasize the fact that the matrix ΣY is generally not an identity matrix and depends on

sample correlations between the elements of ∆Y. Since ∆Yi have been represented jointly

normal, VaR and CVaR computations can be estimated using an adapted version of (2.20):

∆Π(S, t) ≈ ΘY∆t+ δTY∆Y +
1

2
∆YTΓY∆Y, (2.58)

with ∆Y derived from ∆S using (2.57). Equation (2.58) can be converted to an one-

dimensional integral only provided we can find sensitivities δY and ΓY . Now, note that:

Θ = ΘY , (2.59)

[
δY
]
i
=
∂Π

∂Yi
=
∂Π

∂Si
dSi
dYi

=
[
δ
]
i

dSi
dYi

, and (2.60)

[
ΓY
]
ij

=
∂

∂Yj

( ∂Π

∂Yi

)
=

∂

∂Sj

( ∂Π

∂Si
dSi
dYi

) dSi
dYj

=
[
Γ
]
ij

( dSi
dYi

)( dSi
dYj

)
, (2.61)

where δ and Γ are sensitivities under normal conditions, while the derivatives dSk/dYk are

computed using formula (2.55). Equation (2.58) has got the same structure as of equa-

tion (2.20). Hence we can apply the characteristic function inversion using the fast Fourier

transform to find approximate VaR and CVaR of the portfolio using Delta-Gamma approxi-

mation. We will call this new method as Delta-Gamma-Q method for assets with non-normal

returns. The name for the novel method expresses a mix between the Delta-Gamma-Normal

modeling and the approximation Q of portfolio losses L provided by equation (2.22).

We summarize the steps for computation of VaR and CVaR using Delta-Gamma-Q method

below:
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• Find option sensitivities δ, Γ and Θ assuming normality for risk-factors;

• Apply nonparametric estimation to the distribution of the relevant risk-factors S;

• Map ∆S into ∆Y through probability conserving transformation;

• Determine the covariance matrix ΣY ;

• Find for each risk-factor the coefficient that expresses its non-normality by applying

equation (2.55) and by averaging values;

• Evaluate the coefficients δY and ΓY using equations (2.60) and (2.61) respectively;

• Calculate characteristic function coefficients aY = −ΘY∆t, bY = −CTY δY and ΛY =

− 1
2C

T
Y ΓYCY , where CY is a square root of ΣY as described in Section 2.5.1;

• Compute VaR and CVaR, either by evaluating the integral in equation (2.50) directly

with appropriate limits or by using FFT.

To re-emphasize the point of this exercise, we are trying to re-gain the simplicity of comput-

ing the quantiles of a quadratic form for a Gaussian distribution, while still preserving the

tail information in the marginal risk factor distributions. Approximating a distribution by a

normal distribution via probability preserving transformation can lead to far better quantile

estimates than a mean-variance based approximation, as the experiments in the subsequent

chapter show.

Note that our VaR evaluation is static, i.e. we are computing VaR over a single time-step. As

such, we are using nonparametric density estimation to model the distribution of risk factors

and will then map them into normally distributed risk factors. The underlying stochastic

process which generates the said nonparametric distribution is of no direct relevance in our

current framework. Linking the evolution through time of the risk factors (e.g. as a Lévy

process) to the evolution of quantiles of their multivariate nonlinear function (such as the

portfolio net worth) is an interesting topic which is outside the scope of this paper and is a

topic of current research.

2.6.3 Nonparametric density estimation

The notion of probability density function is crucial in statistical analysis and nonparametric

density estimation provides a good approximation to the probability density function given
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a sample drawn from a generic distribution. In parametric estimation the density is assumed

to come from a certain family of distributions (i.e. Gaussian, binomial, Poisson, etc.) and

the parameters are estimated using different statistical methods. In nonparametric estima-

tion no assumption about the kind of distribution from which the samples are drawn is made.

Having a large number of observations available {x1, x2, . . . , xn} on an unidimensional ran-

dom variable X having density fX (x), the simplest way to represent its distributional shape

is using a histogram. The range of the observed values is divided in a number n of intervals

and the number of samples that fall into each interval provides the frequency for that inter-

val. Denoting x the generic point at which the density fX (x) has to be assessed, then the

histogram can be described as:

f̄X (x) =
n∑

i=1

I(x−x̄i,h),

where xi, i = 1, 2, . . . , n are the sample data, I(z, h) is the indicator function of the interval

[−h, h] and x̄i is the center of the interval that contains xi. The function f̄X needs to be

scaled to integrate to one to be considered a density. The use of a histogram as a density

estimate has three flaws:

1. Replacement of xi with the central point of the interval x̄i cause loss of information;

2. The density function describing a random variable is usually assumed smooth and the

histogram is not a smooth estimator;

3. The choice of the interval width h affects the behavior of the estimator.

The kernel density estimator provides a solution to the first two problems. The kernel

density estimate of fX (x) is given by:

f̂X (x) =
1

nh

n∑

i=1

K

(
x− xi
h

)
,

where the kernel K(·) is a function centered over each observation and that smoothly redis-

tribute the probability mass at each datum point around its vicinity, and h is the smoothing

parameter or bandwidth. The kernel K(·) is a generally chosen to be a continuous unimodal
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probability density symmetric around zero such that:

∫

R

K(z) dz = 1,

∫

R

zK(z) dz = 0,

∫

R

z2K(z) dz > 0.

Popular choices of K(·) are:

• Gaussian: K(z) = 1√
2π
e−

1
2 z

2

;

• Uniform: K(z) = 1
2 I|z|≤1;

• Triangular: K(z) = (1 − |z|)I|z|≤1;

• Epanechnikov: K(z) = 3
4 (1 − z2)I|z|≤1.

The choice of the bandwidth h affects the kernel density estimates, hence has to be done

carefully. Choosing a small h leads to estimates that displays variation associated with in-

dividual observation while choosing a large h tends to provide an obscured structure of the

original data.

Some basic statistical properties of the kernel density estimators are:

E
[
f̂X (x)

]
= fX (x) + O(h2);

var
(
f̂X (x)

)
≈ fX (x)

nh

∫

R

K2(z) dz.

Therefore the bias of f̂X (x) decreases as h get smaller, while its variance tends to zero as

nh tends to infinity. There is a trade-off between undersmoothing (if the bandwidth is too

small, the variance becomes large) and oversmoothing (if the bandwidth is too large, the

bias becomes large). There is still much debate about choice of the optimal smoothing

parameter. The theory suggests that the bandwidth h should be proportional to n−1/5, but

the optimal constant of proportionality depends on the unknown density. A “rule of thumb”

frequently used is the one devised in Silverman (1986):

ĥopt = 1.06 min

(
σ̂,
IQR

1.34

)
n−1/5,
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where σ̂ and IQR are the sample standard deviation and the interquartile range (the differ-

ence between the 75th and the 25th percentile) of the considered random variable, respec-

tively.

The in-built MATLAB function ksdensity employed for the numerical experiments allows

to specify different parameters including the type of kernel smoother, the vector of values

where the density estimate is to be evaluated, the function type to estimate (e.g. pdf, cdf)

and the bandwidth. In particular, the default selected bandwidth is the optimal bandwidth

for estimating normal densities (see Bowman and Azzalini (1997)):

ĥN =

(
4

3n

)1/5

σ̂,

where σ̂ denotes the sample standard deviation of the considered random variable.

2.7 Summary

The first part of this chapter includes some methods to model four different scenarios for a

financial portfolio, which are:

• Linear portfolio with normal returns;

• Linear portfolio with non-normal returns;

• Nonlinear portfolio with normal returns;

• Nonlinear portfolio with non-normal returns.

Our novel method, the Delta-Gamma-Q method, is devised to model a nonlinear portfolio

with non-normal returns and provide its measure of risk. This method is described in sub-

section 2.6.2. The nonparametric density estimation is used to capture the features of the

risk factors included in the portfolio.

All the included methods are generic and are also applicable to bond portfolios. In particu-

lar, the historical simulation method and the variance/covariance method will be employed

later in chapter 6 for a comparison with our heuristic for measuring the risk of a fixed income

portfolio.
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Chapter 3

Mathematical tools for modeling

risk in fixed income portfolios

3.1 Introduction

We limit ourselves to the risk of losses for fixed income portfolios which arises solely due to

adverse movements of interest rates. Possible losses related to defaults are not considered,

i.e. the portfolios are considered to be default-free. Note that the models and tools to address

nonlinear portfolios of fixed income securities are completely different from those discussed

in the previous chapter and are hence discussed separately in this chapter. Bond prices are

function of the short rate r(t), which is a latent variable. We use the Kalman Filter to

derive the short rate using one linear model (the Vasicek model) and one nonlinear model

(the CIR model). For both linear and nonlinear models there are one-factor and multiple-

factors versions. One factor models prove inadequate to describe the term structure, that

is why researchers often prefer to rely on three-factor models. Our choice was to opt for

the more parsimonious two-factor models, based on some evidence that for one-step ahead

prediction using two-factor models can be more accurate than one-step ahead prediction

using three-factor models. A two factor model seems to offer a good compromise between

the difficulty of calibrating a three factor model and poor accuracy of a one factor model.

Hence a two factor model has been chosen for the current analysis. The chapter is organized

as follows: section 3.2 provides preliminary definitions for interest rate models, while section

3.3 introduces the version of Kalman filter adopted. Sections 3.4 and 3.5 present the Vasicek
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model and the CIR model, respectively, which will later be used in numerical experiments

in chapter 6.

3.2 Preliminary definitions for interest rate models

For clarity, some essential definitions are henceforth briefly introduced. A zero-coupon bond

is a contract that pays at its maturity, T , one unit of its currency. Its value at time t is

denoted by P (t, T ), with t < T . Given the price of a pure discount bond having maturity T ,

the bond yield (or spot rate or zero-coupon yield) associated to a particular date t is given

by:

y(t, T ) = − lnP (t, T )

T − t
, (3.1)

while the forward rate is defined1 by:

f(t, T ) = −∂ lnP (t, T )

∂T
. (3.2)

The instantaneous interest rate (or short rate) at time t is given by:

r(t) = f(t, t),

and the price of a zero-coupon bond with maturity T at time t is given by:

P (t, T ) = EQ

[
e−

∫
T
t
r(u)du

∣∣Ft
]
,

where Ft is the natural filtration for the process and the expectation is taken under a

risk neutral measure Q. Hence modeling variation of interest rate r over time affects the

evolution of bond prices and other derivative prices, and ultimately bond yields. Bond yields

are observable quantities, while r(t) is a latent variable. We need to predict r(t) if we want

arbitrage-free forecasts on bond yields. In exponential affine models, yields depend affinely

on the latent variable r(t). In such cases, it is possible to estimate latent variables recursively

in a computationally tractable fashion from observable bond yields using the Kalman filter,

which is described in section 3.3.

1Equations (3.1) and (3.2) can be equivalently rewritten as P (t, T ) = e−y(t,T )(T−t) and P (t, T ) =

e−
∫ T
t f(t,u)du, respectively.
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3.3 The Kalman filter

Bond prices are nonlinear functions of short rate, therefore representing their prices and pre-

dicting their future values require an adequate modeling and an accurate calibration of the

parameters. Short rates are latent quantities that can be derived from observable bond prices

P (tn, Tj) at discrete times tn, n = 1, 2, . . . , N and for discrete maturities j = 1, 2, . . . ,m. As

it will be clarified in later subsections 3.5.2 and 3.4.2 the short rate r(t) is here modeled as

sum of independent r1(t) and r2(t) both following a Vasicek and a CIR process, respectively.

Accordingly, bond yields are modeled as affine functions of r1(t) and r2(t). The Kalman filter

(KF), firstly proposed in Kalman (1960), is a recursive moment estimator often employed

to model affine state space systems to retrieve hidden values (short rates) from measurable

values (bond prices). We describe a general formulation of Kalman filter below.

Let us consider a discrete time, state space system:

rn+1 = Arn + b + wn+1, (3.3)

yn = Crn + d + zn, (3.4)

where wn and zn are zero mean, Gaussian and uncorrelated random variables at each time

tn. A, b, C, d, G = E
[
wnw

T
n

]
and H = E

[
znz

T
n

]
can form either:

• A linear system, if all of them are constants or are known functions of time;

• A nonlinear system, if one or more of them are a nonlinear function of rn and tn.

The variable yn is the only observable variable, while rn can not be directly observed and

needs to be estimated. Each time-step ∆t = tn− tn−1 is assumed to be constant. Equations

(3.3) and (3.4) are referred to as the transition equations and the measurement equations,

respectively. We have considered one linear model and one nonlinear model: the two-factor

Vasicek model and the two-factor Cox-Ingersoll-Ross (CIR), respectively.

There are several different versions of the KF equations including the ones reported e.g.

in Date and Ponomareva (2011) and in Date and Wang (2009). The KF consists in a set of
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recursive equations; the one employed in this paper involves the following:

vn = yn − Cr̂n|n−1 − d, (3.5)

Σn = CVn|n−1C
T +H, (3.6)

Kn = Vn|n−1C
TΣ−1

n , (3.7)

r̂n|n = r̂n|n−1 +Knvn, (3.8)

r̂n+1|n = Ar̂n|n + b, (3.9)

Vn+1|n = AVn|n−1A
T +G−AVn|n−1C

TΣ−1
n CVn|n−1A

T . (3.10)

The estimation of the variable of interest rn and the conditional variance of the estimate

Vn based on information up to time tn−1 are respectively denoted by r̂n|n−1 and Vn|n−1.

Initial estimates r̂0|0 and V1|0 are assumed to be known or can themselves be parame-

terized. Innovations vn and their covariance matrix Σn are expressed by equations (3.5)

and (3.6), while Kn, often referred to Kalman gain, is given by equation (3.7). Equation

(3.8) represents the filtered state vector. The state vector and the covariance matrix pre-

dictions are respectively provided by equations (3.9) and (3.10). The calibration of the

set of parameters which characterize matrices A, B, G, H and vectors b, d are obtained

through maximum likelihood. Having the set of observations Y = {y1,y2, . . . ,yN} and

since yn+1|n ∼ N (Cr̂n+1|n + d,Σn+1), we can express the loglikelihood function ignoring

the constant terms:

logL(Y ) = −1

2

N∑

i=1

(log |Σi| + vTi Σ−1
i vi). (3.11)

The expression (3.11) can be maximized using standard solvers, such as fminsearch from

MATLAB 7.9 used in this work. Once the optimal parameters are obtained, one can forecast

successive values for the latent variable r as long as new observations y become available.

This is implemented employing the recursive equations (3.5)-(3.10) with A, b, C, d, G and

H expressed as function of the optimized parameters.

3.4 A linear system: The Vasicek model

This section presents how to model the short rate r(t) initially using a single Gaussian source

of uncertainty as in Vasicek (1977) and then extends it to two sources of uncertainty.
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3.4.1 Single factor Vasicek model

Let us consider a short rate following an Ornstein-Uhlenbeck process under the risk neutral

measure Q:

dr(t) = k(θ − r(t))dt + σdW (t), r(0) = r0, (3.12)

where r0, k, θ and σ are positive constants, and W (t) is a Q-Wiener process. The coeffi-

cients k, θ and σ are often referred to as “speed of reversion”, “long term mean level” and

“instantaneous volatility”, respectively. Equation (3.12) captures the phenomenon of the

mean reversion: interest rates move in a limited range, displaying a tendency to revert to

the long term mean level θ, at a speed k. The short rate r(t) conditional to Fs is normally

distributed with mean and variance (see, e.g. Brigo and Mercurio (2006)):

E[r(t)|Fs] = r(s)e−k(t−s) + θ(1 − e−k(t−s)), (3.13)

var(r(t)|Fs) =
σ2

2k
(1 − e−2k(t−s)). (3.14)

Formulae (3.36) and (3.37) imply that, under the Vasicek dynamics, the interest rate r(t)

can assume negative values, although the probability of a negative value is extremely low for

realistic values of parameters. The bond price function for the single factor Vasicek model

has the following analytical form:

P (t, T, r(t)) = eE(t,T )−F (t,T ) r(t),

where

E(t, T ) =

(
k2(θ − σλ

k ) − σ2

2

)
(F (t, T ) − (T − t))

k2
− σ2F 2(t, T )

4k
, (3.15)

F (t, T ) =
1

k
(1 − e−k(T−t)), (3.16)

and λ is the market price of risk. It can be noticed that the bond yield y(t, T ), as defined

in (3.1), is an affine function of the short rate r(t). The relationship between the interest

rates and time to maturity is called term-structure of interest rates. Interest-rate models

having bond yield which can be written as an affine function of the short rate are referred

to as affine term-structure models.
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3.4.2 Two-factor Vasicek model

The assumption of two-factor Vasicek model is that the short term interest rates are given

by the sum of two state variables, each of them following an Ornstein-Uhlenbeck process. A

single factor model has only one source of uncertainty, and hence accounts only for parallel

shifts in yields. A two factor model can provide a better description of how term structure

changes through time. Let us consider two independent state variables that follow linear,

mean reverting Gaussian process under the risk neutral measure Q:

r(t) = r1(t) + r2(t), (3.17)

dri(t) = ki(θi − ri(t))dt+ σidWi(t), ri(0) = ri 0, i = 1, 2, (3.18)

where ri0, ki, θi and σi are positive constants, and Wi(t) is a Q-Wiener process. Each ri(t)

conditional to Fs is normally distributed with mean and variance:

E[ri(t)|Fs] = ri(s)e
−ki(t−s) + θi(1 − e−ki(t−s)), i = 1, 2, (3.19)

var(ri(t)|Fs) =
σ2
i

2ki
(1 − e−2ki(t−s)), i = 1, 2. (3.20)

We discretize equations (3.19) and (3.20) considering evenly spaced observation times t1 ≤
t2 ≤ . . . ≤ tN , with tn+1 − tn = ∆t, obtaining (see, e.g. Bolder (2001)) the following

transition equations in the same form as expressed in (3.3):


r1n+1

r2n+1


 =


e

−k1∆t 0

0 e−k2∆t




r1n
r2n


+


θ1(1 − e−k1∆t)

θ2(1 − e−k2∆t)


+


w1n+1

w2n+1


 , (3.21)

where wn+1|n ∼ N (0, G), with:

G =



σ2
1

2k1
(1 − e−2k1∆t) 0

0
σ2
2

2k2
(1 − e−2k2∆t)


 . (3.22)

Let us assume that the each state variable that makes up the short interest rate follows a

linear, mean reverting Gaussian process with the same volatility but a different drift function

under a measure P:

dri(t) = ki(θ̃i − ri(t))dt + σidW̃i(t), ri(0) = ri 0, i = 1, 2, (3.23)
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where W̃i(t) is a P-Wiener process. Our assumption of an arbitrage-free market indirectly

implies the existence of market price of risk processes λi,t such that θ̃i − θi = σiλi,t for

i = 1, 2 hold. It is common practice (see, e.g. De Rossi (2004) or Vasicek (1977)) to assume

λi,t to be constants, independent of t and ri(t).

The bond price function for the two-factor Vasicek model has the following analytical form:

P (t, T, r1(t), r2(t)) = eE(t,T )−F1(t,T ) r1(t)−F2(t,T ) r2(t),

where

E(t, T ) =

2∑

i=1

(
k2
i (θi − σiλi

ki
) − σ2

i

2

)
(Fi(t, T ) − (T − t))

k2
i

− σ2
i F

2
i (t, T )

4ki
, (3.24)

Fi(t, T ) =
1

ki
(1 − e−ki(T−t)), i = 1, 2, (3.25)

and λi is the market price of risk for the ith factor. Even though r1(t) and r2(t) are uncor-

related, the bond prices (and the yields) are correlated via r1(t), r2(t). The measurement

system we used involves the following relationship between zero-coupon yields and the price

of zero-coupon bonds:

y(t, T ) = − lnP (t, T )

T − t
=

−E(t, T ) +
∑2
i=1 Fi(t, T ) ri(t)

T − t
. (3.26)

Using this equation at each tn, for a set of m bonds with maturities T1, . . . , Tm leads to the

following vector valued equation:




y(tn, T1)

y(tn, T2)
...

y(tn, Tm)




=




F1(tn,T1)
T1−tn

F2(tn,T1)
T1−tn

F1(tn,T2)
T2−tn

F2(tn,T2)
T2−tn

...
...

F1(tn,Tm)
Tm−tn

F2(tn,Tm)
Tm−tn





r1(tn)

r2(tn)


+




−E(tn,T1)
T1−tn

−E(tn,T2)
T2−tn
...

−E(tn,Tm)
Tm−tn




+




z1(tn)

z2(tn)
...

zm(tn)



, (3.27)

where zi(tn) ∼ N (0, H) are noise variables which reflect deviation of bond prices from

the model price and H = diag(h2
1, h

2
2, . . . , h

2
m), where hi are positive constants. Equations

(3.19) and (3.20) provide the transition equation as in (3.3) and equations (3.27) supply

measurement equation as in (3.4). Hence they form a linear state space system with bond
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yields as observable variables, so that Kalman filtering equations described in the last section

can be applied for model calibration and forecasting. These forecasts will then be used for

predicting the tail losses of both simulated and real bond portfolios in sections 6.2 and 6.3,

respectively.

3.5 A nonlinear system: The CIR model

This section, similarly to what is introduced in the previous section, presents how to model

the short rate r initially using a single source of uncertainty as proposed in Cox et al. (1985)

and then extends it to two sources of uncertainty.

3.5.1 A single factor CIR model

Let us consider a short rate following a CIR process under the risk neutral measure Q:

dr(t) = k(θ − r(t))dt + σ
√
r(t)dW (t), r(0) = r0, (3.28)

where r0, k, θ and σ are positive constants, and W (t) is a Q-Wiener process. The CIR

model, like the Vasicek model, is mean reverting and the short rate remains positive if the

following condition is respected:

2kθ > σ2. (3.29)

The short rate r(t) conditional to Fs has mean and variance:

E[r(t)|Fs] = r(s)e−k(t−s) + θ(1 − e−k(t−s)), (3.30)

var(r(t)|Fs) = r(s)
σ2

k
(e−k(t−s) − e−2k(t−s)) + θ

σ2

2k

(
1 − e−k(t−s)

)2
. (3.31)

The bond price function for the single factor CIR model has the following analytical form:

P (t, T, r(t)) = eE
′(t,T )−F ′(t,T ) r(t),
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where

E′(t, T ) = ln

(
2γe

(γ+k+λ)(T−t)
2

(γ + k + λ)(eγ(T−t) − 1) + 2γ

) 2kθ
σ2

, (3.32)

F ′(t, T ) =
2(eγ(T−t) − 1)

(γ + k + λ)(eγ(T−t) − 1) + 2γ
, (3.33)

where

γ =
√

(k + λ)2 + 2σ2,

and λ is the market price of risk. Proof of this result can be found, for example, in Bolder

(2001).

3.5.2 Two-factor CIR model

The assumption of two-factor CIR model is that the short term interest rates are given

by the sum of two state variables. Both the state variables include a “square-root” term

in the diffusion coefficient of the instantaneous short-rate dynamics. Let us consider two

independent state variables that follow this mean reverting process under the risk neutral

measure Q:

r(t) = r1(t) + r2(t), (3.34)

dri(t) = ki(θi − ri(t))dt+ σi
√
ri(t)dWi(t), ri(0) = ri 0, i = 1, 2, (3.35)

where ri0, ki, θi and σi are positive constants, and Wi(t) is a Q-Wiener process. The mean

and the variance of each ri(t) conditional to Fs, for i = 1, 2, are given by:

E[ri(t)|Fs] = ri(s)e
−ki(t−s) + θi(1 − e−ki(t−s)), (3.36)

var(ri(t)|Fs) = ri(s)
σ2
i

ki
(e−ki(t−s) − e−2ki(t−s)) + θi

σ2
i

2ki

(
1 − e−ki(t−s))2. (3.37)

We discretize equations (3.36) and (3.37) considering evenly spaced observation times t1 ≤
t2 ≤ . . . ≤ tN , with tn+1 − tn = ∆t, obtaining the following transition equations in the same

form as expressed in (3.3):


r1n+1

r2n+1


 =


e

−k1∆t 0

0 e−k2∆t




r1n
r2n


+


θ1(1 − e−k1∆t)

θ2(1 − e−k2∆t)


+


w1n+1

w2n+1


 , (3.38)
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where wn+1|n ∼ N (0, G′), with:

G′ =


ζ1 0

0 ζ2


 , (3.39)

where

ζi =
θiσ

2
i

2ki
(1 − e−ki∆t)2 +

σ2
i

ki

(
e−ki∆t − e−2ki∆t

)
ri n, i = 1, 2.

Let us assume that each state variable that makes up the short interest rate follows a CIR

process with the same volatility but a different drift function under a measure P:

dri(t) = ki(θ̃i − ri(t))dt+ σi
√
ri(t)dW̃i(t), ri(0) = ri 0, i = 1, 2, (3.40)

where W̃i(t) is a P-Wiener process. Our assumption of an arbitrage-free market indirectly

implies the existence of processes λi,t such that θ̃i − θi = σiλi,t for i = 1, 2 hold. It is

common practice to assume λi,t to be constants, independent of t and ri(t).

The bond price function for the two-factor CIR model has the following analytical form:

P (t, T, r1(t), r2(t)) = e
∑ 2

i=1

(
E′

i(t,T )−F ′

i (t,T ) ri(t)
)
,

where

E′
i(t, T ) = ln

(
2γie

(γi+ki+λi)(T−t)

2

(γi + ki + λi)(eγi(T−t) − 1) + 2γi

) 2kiθi
σ2

i
, i = 1, 2, (3.41)

F ′
i (t, T ) =

2(eγi(T−t) − 1)

(γi + ki + λi)(eγi(T−t) − 1) + 2γi
, i = 1, 2, (3.42)

where

γi =
√

(ki + λi)2 + 2σ2
i , i = 1, 2,

and λi is the market price of risk for the ith factor. Even though r1(t) and r2(t) are inde-

pendent, the bond prices (and the yields) are correlated via r1(t), r2(t). The measurement

system we used involves the following relationship between zero-coupon yields and the price

of zero-coupon bonds:

y(t, T ) = − lnP (t, T )

T − t
=

∑2
i=1

(
F ′
i (t, T ) ri(t) − E′

i(t, T )
)

T − t
. (3.43)

64



Using this equation at each tn, for a set of m bonds with maturities T1, . . . , Tm leads to the

following vector valued equation:




y(tn, T1)

y(tn, T2)

...

y(tn, Tm)




=




F ′

1(tn,T1)
T1−tn

F ′

2(tn,T1)
T1−tn

F ′

1(tn,T2)
T2−tn

F ′

2(tn,T2)
T2−tn

...
...

F ′

1(tn,Tm)
Tm−tn

F ′

2(tn,Tm)
Tm−tn





r1(tn)
r2(tn)


+




−
∑2

i=1 E
′

i(tn,T1)

T1−tn
−
∑2

i=1 E
′

i(tn,T2)

T2−tn
...

−
∑ 2

i=1 E
′

i(tn,Tm)

Tm−tn




+




z1(tn)

z2(tn)

...

zm(tn)



, (3.44)

where zi(tn) ∼ N (0, H ′) are noise variables which reflects deviation of bond prices from the

model price and H ′ = diag(h
′2
1 , h

′2
2 , . . . , h

′2
m), where h

′2
i are positive constants. Equations

(3.36) and (3.37) provide the transition equation as in (3.3) and equations (3.44) supply

measurement equation as in (3.4). Hence they form a nonlinear state space system with

bond yields as observable variables, so that approximate Kalman filtering can be applied for

model calibration and forecasting. These forecasts will then be used for predicting the tail

losses of both simulated and real bond portfolios in sections 6.2 and 6.3, respectively.

3.6 Summary

The first part of this chapter provides some preliminary definitions for interest rate models,

followed by an introduction of Kalman filtering in the context of bond yields modeling.

The single factor and two-factor representations for both Vasicek model and CIR model

are then included along with some key features and mathematical relationships. As yield

forecasting with one factor models tends to be far worse than that with two factor models

(see, e.g. Date and Wang (2009)), only the two-factor versions of the presented models will

be employed later in chapter 6 for the numerical experiments with simulated data and real

data.
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Chapter 4

Backtesting: Methodology

4.1 Introduction

Backtesting is a statistical tool to verify whether a model is adequate for its purpose. In the

case of VaR models, it consists in checking that actual losses are in line with projected ones.

It is crucial to check if predicted values of the measure of risk are reliable. If that is not

the case one should reassess assumptions, include a different - and valid - set of parameters

or provide an improved modeling methodology. In general, any VaR backtesting procedure

follows the following steps:

1. The model is calibrated from one dataset, e.g. over time horizon ranging from t1 to tN .

For example, this may involve finding the covariance matrix for variance/covariance

method from historical data.

2. VaR is computed over another dataset, using the model parameters found in step 1.

Typically, the second dataset will span the period tN+1, tN+2, . . . , tN+m, where the

entire period t1 to tN+m is in the past, i.e. data is already available. Since the actual

losses during each period tN+i−tN+i−1 are known for i = 1, 2, . . . ,m, one can compare

the actual losses and the predicted losses and test statistically whether the model is

acceptable.

We outline commonly used tests for VaR backtesting next.
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4.2 The unconditional coverage test

Several authors recommend backtesting VaR models including Jorion (2007), Kupiec (1995)

and Christoffersen (2003). The most common method to test a VaR model has been sug-

gested in Kupiec (1995), where the author developed a 95% confidence region for the uncon-

ditional coverage test. The unconditional coverage test is the standard tool for backtesting

models and is also recommended by Basel II. Hence this has been employed throughout the

rest of the thesis. According to this procedure, a model is correctly calibrated when the

number of exceptions (i.e. the portfolio losses exceeding VaR) is in line with the confidence

level. If backtesting reveals too many exceptions then the risk is underestimated by the

current model, hence one could reserve an insufficient required capital and suffer critical

losses under extreme market movements. On the other hand too few exceptions signals an

overestimated risk and that would lead to an inefficient allocation of capital, this situation

is also not ideal for institutions that look for maximizing profits. Let’s define In as:

In =





0 if Ln ≤ V aRα,n|n−1

1 if Ln > V aRα,n|n−1

where Ln = −∆Πn and V aRα,n|n−1 represent respectively the loss at time tn and the α

confidence level Value-at-Risk computed at time tn given the information at time tn−1. The

number of exceptions is given by X =
∑N

n=1 In, where N is the total number of observations.

Since each weekly outcome could lead to an exception or not, the random variable X follows

a binomial distribution:

Pr [X = x] =

(
N

x

)
px(1 − p)N−x,

where p = 1 − α, and α is the level for the selected VaR. Let us consider the number of

exceptions in the sample, x̃, and define the failure rate as x̃/N . The null and the alternative

hypothesis are in Kupiec’s test (Kupiec (1995)) are as follows:





H0 : α = 1 − x̃
N

H1 : α 6= 1 − x̃
N
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so we test whether the observed failure rate differs significantly from the given confidence

level p. The test statistic used is:

LRuc = −2 ln

(
(1 − p)N−x̃px̃

[
1 − x̃

N

]N−x̃( x̃
N

)x̃

)
∼ χ2

1. (4.1)

Using a 95% confidence interval this likelihood ratio test rejects the null hypothesis if LRuc >

3.841. Table 4.1 displays 95% confidence regions of non rejection for the Kupiec’s test:

α N=250 N=500 N=1000

95% 7 ≤ x̃ ≤ 19 17 ≤ x̃ ≤ 35 38 ≤ x̃ ≤ 64

99% 1 ≤ x̃ ≤ 6 2 ≤ x̃ ≤ 9 5 ≤ x̃ ≤ 16

Table 4.1: Non rejection regions for Kupiec’s test.

4.3 The independence test

The unconditional coverage test, on its own, focusses on the number of exceptions, but

it does not consider whether they are clustered. Since large losses bunched in a small

amount of time are more likely to cause disastrous events than single exceptions showing

up occasionally (see Campbell (2005) for further details), it is crucial that the VaR model

satisfies the independence property. The independence test, developed in Christoffersen

(2003), is capable to reject a VaR with clustered exceptions. Let us define the indicator

variable:

Jn =





1 if an exception occurs

0 otherwise

and then define the transition probabilities πij = Pr [Jn = i and Jn+1 = j] so, as an exam-

ple, π01 provides the probability of having an exception tomorrow given that today there

were no exception. The first-order Markov sequence with transition probability matrix is

given by:

Π =


π00 π01

π10 π11


 =


1 − π01 π01

1 − π11 π11


 .

If the exceptions sequence is independent over time then the probability of an exception

tomorrow does not depend on today’s outcome, i.e. π01 = π11 = π. In this case the null
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and the alternative hypothesis are:





H0 : π01 = π11

H1 : π01 6= π11

To test it we use the following likelihood ratio test:

LRind = −2 ln

(
(1 − π̂)N00+N10 π̂N01+N11

(1 − π̂01)N00 π̂N01
01 (1 − π̂11)N10 π̂N11

11

)
∼ χ2

1, (4.2)

where π̂ = N01+N11

N00+N01+N10+N11
, π̂01 = N01

N00+N01
and π̂11 = N11

N10+N11
. Nij represents the number

of days when state j follows state i, and i, j can only assume values 0 and 1.

4.4 The conditional coverage test

Since we are interested in understanding whether simultaneously the number of exceptions

is correct and VaR exceptions are independent, we can test jointly this two features using

the conditional coverage test:

LRcc = LRuc + LRind ∼ χ2
2. (4.3)

Using a 95% confidence interval this likelihood ratio test rejects the null hypothesis if LRcc >

5.991. Hence, the 95% level critical values for LRuc, LRind and LRcc are 3.841, 3.841 and

5.991 respectively. Computation of statistics LRuc and LRind as respectively specified in

(4.1) and (4.2) provides the tool to accept or reject the model specification.

4.5 Summary

This chapter, after suggesting why backtesting is important and how a generic VaR back-

testing procedure is performed, outlines the commonly used tests for backtesting VaR. The

unconditional coverage test, the independence test and the conditional coverage test are

explained and the critical values for the corresponding statistics are reported.

We will utilize these tests to verify the validity of VaR estimates in chapters 5 and 6.
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Chapter 5

Nonlinear stock portfolios with

fat-tailed risk factors:

Numerical experiments

5.1 Introduction

In this chapter, we employ Delta-Gamma-Q method proposed in chapter 2 in simulation

experiments as well in measuring the risk of a real financial portfolio. The efficacy of this

method is tested against that of competing methods depending on normality. The chapter

is structured as follows: section 5.2 provides the simulation experiments, while section 5.3

presents the test for a real financial portfolio.

5.2 Numerical experiments with simulated data

We first evaluate the Delta-Gamma-Q model for assets with non-normal returns considering

a simple hypothetical portfolio π, in order to gain some insight in the performance of the

proposed heuristic as compared to the performance of standard methods such as the Delta-

Gamma Monte Carlo (also called partial Monte Carlo). The hypothetical portfolio is made

up of one share each of m correlated fat-tailed stocks S1,S2, . . . ,Sm and m European call

options C1, C2, . . . , Cm having S1,S2, . . . ,Sm as underlying assets, respectively. Therefore
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the portfolio value is Π =
∑m

i=1(Si + Ci). Each European call option has payoff (or value of

the call option at expiry) given by:

max(Si(T ) −Ki, 0), i = 1, 2, . . . ,m. (5.1)

Si(T ) is the price of the i-th underlying stock at time T (maturity), and Ki is the i-th option

strike price. Stocks Si have been simulated using:

Si(t) = Si(0)e(µi−σ2
i /2)t+

√
tvi , i = 1, 2, . . . ,m,

where v = [v1, v2, . . . , vm]T is obtained by first generating w ∼ [w1, w2, . . . , wm]T , then given

the correlation matrix H , we set v = CTw, where C is the Cholesky factor decomposition of

H . w is chosen to have a fat-tailed distribution, the exact choice of which is discussed later

in this section. Computation of each option value has been obtained using Black-Scholes

formulae:

C(S,K, σ, r, T − t) = SΦ(d1) −KΦ(d2)e
−r(T−t), (5.2)

where

d1 =
ln(S/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

, d2 =
ln(S/K) + (r − 1

2σ
2)(T − t)

σ
√
T − t

,

where T represents the maturity, T − t is the time to maturity and r is the interest rate and

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2y

2

dy.

Note that these formulae will not be valid unless w above is normally distributed, i.e. unless

the underlying continuous time process is not geometric Brownian motion. However, option

prices and sensitivities are often computed under assumption that Black-Scholes formula

holds true, irrespective of evidence to the contrary, see e.g. Shao et al. (2006). Sensitivities

of interest for a European call option C such as Delta, Gamma and Theta are given by:

δC =
∂C
∂S = Φ(d1), ΓC =

∂2C
∂S2

=
φ(d1)

Sσ
√
T − t

,

ΘC =
∂C
∂t

= −
[Sσφ(d1)

2
√
T − t

+ rKΦ(d2)e
−r(T−t)

]
, (5.3)
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where φ(x) = 1√
2π
e−x

2/2. In keeping with the standard market practice, we will use for-

mulae (5.1)-(5.3) for prices and sensitivities in our computation. However, we assume that

the real stock price dynamics are driven by fat tailed distributions rather than normal ones.

The actual distributions of wi and the parameters used are described later in this section.

Numerical experiments involved comparisons of five different methods:

• Empirical method is a Monte Carlo assessment of the chosen assets. Possible h day

ahead portfolio values are obtained simulating M trajectories for the m stocks and

adding their corresponding European call values, computed through (5.2). The simu-

lation is performed with distribution of risk factors specified later in this section. The

loss and profit distribution is achieved subtracting the stocks’ initial values and the

fair price of the call options from the simulated portfolio values;

• Delta-Gamma-dP method, also referred to as partial Monte Carlo earlier, is a com-

putation according to formula (2.20). This involves simulating M trials for each Si,
where ∆Si are obtained deducting Si(0) from the corresponding stock price Si while

δ and Γ are the ones provided in subsection 2.5.1;

• Delta-Gamma-Q method involves nonparametric estimation of pdf and cdf of m risk

factors. Nonparametric estimation is able to capture the features of risk factors such

as skewness and fat-tailedness. The probability conserving transformation (2.57) on

each ∆Si provides cdf and pdf values to apply formula (2.58). Coefficients [δY ]i in

(2.60) are computed approximately as [δY ]i ≈ E[dSi/dYi][δ]i, while elements [ΓY ]ij

are computed approximately as

[ΓY ]ij ≈ E[dSi/dYi]E[dSj/dYj ][Γ]ij ,

where coefficients dSk/dYk are calculated using formula (2.56). The approximation

E[dSi/dYi] is introduced to decrease the computational burden of the algorithm and,

simultaneously, to achieve VaR values close to those obtained through full Monte Carlo

simulation. Being ∆Yi ∼ N (0, 1) we are in a framework similar to the one described

by (2.21), it is therefore possible to find coefficients aY , bY and λY ’s. Using these

coefficients one can invert the related characteristic function via FFT;

• Delta-Gamma-dP Normal method applies formula (2.20), i.e. assuming Si and Ci to be
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jointly normally distributed and ignoring the functional dependence between Si and

Ci;

• Delta-Gamma-dP inversion method applies formula (2.24), i.e. uses a quadratic ap-

proximation assuming normal risk factors as in Delta-Gamma-dP above, but computes

VaR using an inversion integral.

The last two models use normal factors with mean and variance that match sampling the

mean and the variance of changes in the respective risk factor. This methodology allows a

fair comparison between the first batch of three models considered and the last two. Making

this assumption can be interpreted as follows: provided that a portfolio evolves as described

by the empirical model, what would be the VaR and CVaR that one would compute by em-

ploying the Delta-Gamma-Q model or a Delta-Gamma-Normal model?

Probability distributions of risk factors for empirical and Delta-Gamma-dP have to be as-

sessed. This can be done using either parametric (making use of a preselected model fitted

on the already available dataset) or nonparametric estimation. Once the probability distri-

bution is estimated, Monte Carlo simulation can be used to find VaR and CVaR for empirical

as well as Delta-Gamma-dP methods. For Delta-Gamma-dP Normal and Delta-Gamma-dP

inversion, VaR and CVaR are obtained by using formulae (1.1) and (1.3) for normal distri-

bution and given confidence level.

Once VaR is computed using different methods, we wish to compare their accuracy. Confi-

dence intervals and/or standard error estimates are usually used to perform this task. The

author in Pritsker (1997) stated “This is typically not done for Delta and Delta-Gamma

based estimates of VaR since there is no natural method for computing a standard error or

constructing a confidence interval.” about this issue. One can use the empirical distribu-

tion from a Monte Carlo simulation to obtain confidence intervals for VaR estimates (95%

confidence are typically calculated, but this can be easily generalized). The nonparametric

confidence intervals, based on finite sample theory, are easy to compute and are valid for any

continuous distribution of the random variable L. Varying the sample size, M , of the Monte

Carlo simulation changes the width of the confidence interval, according to the accuracy

of VaR needed. Table 5.1 displays the index of ordered statistics to build 95% confidence

intervals for 95% and 99% VaR for a different number of draws. Confidence intervals for
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CVaR can also be obtained using formula (1.3) and table 5.1, but are not reported here.

Number of Draws
95% VaR 99% VaR

Lower Bound Upper Bound Lower Bound Upper Bound

500 15 35 1 10

1,000 37 64 4 17

10,000 457 544 81 120

50,000 2,404 2,597 456 545

100,000 4,865 5,136 938 1,063

Table 5.1: 95% confidence intervals for Monte Carlo 95% and 99% VaR.

Our experiment considered a portfolio made up of fifty stocks and fifty European call options.

Stock prices were generated using wi distributed as Student’s t with different degrees of

freedom νi, ranging from 4 to 10. The values chosen for the simulation include: the time

horizon is h = 1 day, the number of simulations required is M = 104, the interest rate

r = 0.05, the maturities Ti = 1 year, for i = 1, 2, . . . , 50. The correlation matrices H are

randomly generated. Strike prices Ki and initial values Si(0) were chosen such that some

of the options were in the money, some were at the money and some were out of the money.

The parameters used in our simulation are in the range reported in table 5.2. The full table

of values is omitted for brevity.

Value Min Max

Ki 2 99

µi -4.3 4.1

Si(0) 12 123

νi 4 10

Table 5.2: Parameters range.

The proposed method provides a new covariance matrix which better reflects non-normality

in risk factor distributions. Computations of 95% and 99% VaR and CVaR have been

obtained keeping constant all the values except from the correlation matrix H which is

allowed to vary and reported in tables 5.3–5.4:
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Experiment 1 2 3 4

95% VaR

Empirical 90.4 72.6 82.1 160.1

(87.9,93.3) (71.1,74.7) (79.4,84.5) (151.8,167.7)

∆-Γ-dP 92.3 74.1 82.5 162.6

(89.4,94.7) (71.7,76.3) (79.2,85.4) (153.2,168.4)

∆-Γ-Q 91.0 71.9 81.9 164.1

∆-Γ-dP Normal 84.6 90.2 86.1 102.5

(81.6,87.5) (87.4,92.8) (83.8,89.9) (96.4,107.8)

∆-Γ-dP Inversion 84.0 91.0 85.4 104.4

99% VaR

Empirical 131.5 108.0 117.8 246.9

(127.3,135.0) (103.8,111.6) (110.8,124.3) (237.2,254.5)

∆-Γ-dP 136.0 109.1 119.8 244.9

(131.9,140.9) (106.6,112.6) (115.2,124.6) (238.1,253.2)

∆-Γ-Q 135.4 109.4 118.2 250.0

∆-Γ-dP Normal 127.4 135.6 126.8 152.0

(122.2,131.6) (132.2,140.8) (121.5,132.1) (146.5,157.7)

∆-Γ-dP Inversion 127.1 137.4 125.9 155.7

Table 5.3: Values of 95% and 99% VaR for the four experiments reported, with confidence

intervals in brackets.

Experiment 1 2 3 4

95% CVaR

Empirical 115.9 94.2 103.7 212.8

∆-Γ-dP 118.4 95.5 105.5 212.7

∆-Γ-Q 115.2 94.9 105.8 217.7

∆-Γ-dP Normal 110.0 117.5 110.8 132.4

∆-Γ-dP Inversion 110.8 119.1 111.2 134.8

99% CVaR

Empirical 150.9 127.5 132.9 292.5

∆-Γ-dP 155.6 125.3 141.0 288.5

∆-Γ-Q 153.4 127.0 131.5 285.7

∆-Γ-dP Normal 147.2 155.2 143.9 176.9

∆-Γ-dP Inversion 145.8 157.9 142.5 180.4

Table 5.4: Values of 95% and 99% CVaR over four combination of parameters.
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Confidence intervals for full and partial Monte Carlo methods are obtained using values in

correspondence of 10, 000 draws in table 5.1, while interval estimates are unavailable for

∆-Γ-Q and ∆-Γ-dP inversion since they are deterministic computations.

Percentage error is defined as |E −X |/E · 100, where E is the empirical value for a measure

of risk and represents the reference, while X is the alternative value for the same measure of

risk. Table 5.5 gathers percentage errors relative to tables 5.3 and 5.4 for ∆-Γ-dP, ∆-Γ-Q,

∆-Γ-dP Normal and ∆-Γ-dP inversion:

Percentage Errors

Experiment 1 2 3 4

95% VaR

∆-Γ-dP 2.10 2.07 0.49 1.56

∆-Γ-Q 0.66 0.96 0.24 2.50

∆-Γ-dP Normal 6.42 24.24 4.87 35.98

∆-Γ-dP Inversion 7.08 25.34 4.02 34.79

99% VaR

∆-Γ-dP 3.42 1.02 1.70 0.81

∆-Γ-Q 2.97 1.30 0.34 1.26

∆-Γ-dP Normal 3.12 25.56 7.64 38.44

∆-Γ-dP Inversion 3.35 27.22 6.88 36.94

95% CVaR

∆-Γ-dP 2.16 1.38 1.74 0.05

∆-Γ-Q 0.60 0.74 2.03 2.30

∆-Γ-dP Normal 5.09 24.73 6.85 37.78

∆-Γ-dP Inversion 4.40 26.43 7.23 36.65

99% CVaR

∆-Γ-dP 3.11 1.73 6.09 1.37

∆-Γ-Q 1.66 0.39 1.05 2.32

∆-Γ-dP Normal 2.45 21.73 8.28 39.52

∆-Γ-dP Inversion 3.38 23.84 7.22 38.32

Table 5.5: Percentage errors for the four experiments carried out.

The results indicate that, with varying covariance matrix H , while Delta-Gamma-dP and

Delta-Gamma-Q provide a reasonably good approximation to the empirical value of VaR

and CVaR, the two remaining models (based on normality assumption) do not provide a
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consistent estimation of VaR and CVaR. In particular, using the empirical estimations as

references, we can state that:

• in the first experiment 95% and 99% VaR are underestimated of about 7% and 3%,

respectively and 95% and 99% CVaR are underestimated of about 5% and 3%, respec-

tively;

• in the second experiment 95% and 99% VaR are overestimated of about 25% and

26%, respectively and 95% and 99% CVaR are overestimated of about 25% and 23%,

respectively;

• in the third experiment 95% and 99% VaR are overestimated of about 4% and 7%,

respectively and 95% and 99% VaR are both overestimated of about 7%;

• in the fourth experiment 95% and 99% VaR are underestimated of about 35% and

37%, respectively and 95% and 99% CVaR are underestimated of about 37% and 38%,

respectively.

VaR and CVaR computed under the assumption of normal distributed risk factors are,

according to expectations, unreliable. Results for varying parameters other than H are

qualitatively similar. Portfolio composition changes such as the number of stocks included,

the number and/or kind of (puts or calls) options included also lead to similar qualitative

conclusions. Finally, the proposed methodology is quite general and works when some of the

risk factors are normally distributed and/or present a certain degree of skewness. This was

verified in simulation experiments with a few normal and centered skew-t distributions (see

e.g. Azzalini and Capitanio (2003) for details about skew-t distributions) with a skewness

absolute value greater than one components. Results in all these cases (varying other pa-

rameters, changing portfolio composition and changing distributional assumptions) do not

add any additional information and are hence omitted for brevity.

We express hereafter some considerations about accuracy and computational time of the

simulation for the three methods used for computation of VaR and CVaR: full Monte Carlo,

partial Monte Carlo (or Delta-Gamma-dP) and Delta-Gamma-Q method. A fair comparison

involves that all three methods require a nonparametric estimation. Let us recall that m

is the number of risky factors and M is the number of simulations required. The empirical

method or full Monte Carlo method is generally thought to give the most accurate estimates
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of VaR for large sample sizes but it tends to be very time consuming, specially when the ana-

lytical solutions for some assets are not available. Furthermore, closed-form pricing formulae

are not often available and options often need to be priced (and the sensitivities need to be

computed) numerically, e.g. by solving a partial differential equation. In these cases, the

time required will be several orders of magnitude higher, especially for Monte Carlo method.

The Delta-Gamma-dP method or partial Monte Carlo produces estimates less accurate than

full Monte Carlo but is less expensive in terms of time. As reported in Mina and Ulmer

(1999), the partial Monte Carlo requires O(Mm2) operations while the full Monte Carlo re-

quires additional time to assess all of the positions M times. The Delta-Gamma-Q method

demonstrates an accuracy which is comparable to the one of partial Monte Carlo and re-

quires O(m3) operations. Therefore, comparing computational costs it emerges that partial

Monte Carlo is slower than the Delta-Gamma-Q method unless m is very large depending

on the VaR confidence level α (e.g., about 1, 000 for 95% VaR and about 5, 000 for 99%

VaR, as chosen in Mina and Ulmer (1999)). Speed performances of a typical portfolio made

up of m stocks and m European call options with m = 1, 2, 3, 4, 5, 10, 20, 30, 40, 50 for the

empirical, Delta-Gamma-dP and Delta-Gamma-Q has been measured using an Intel dual

core i3 clocked at 2.66 GHz, with 3GB RAM and using MATLAB 7.9. Any computation

includes estimation of 95% and 99% VaR and CVaR. The computational times (expressed

in seconds) of the empirical, Delta-Gamma-dP and Delta-Gamma-Q methods are reported

in table 5.6:

m Empirical ∆-Γ-dP ∆-Γ-Q

1 0.090184 0.084911 0.025212

2 0.137924 0.103209 0.040598

3 0.158297 0.113802 0.043022

4 0.207286 0.137386 0.048445

5 0.233043 0.164483 0.051230

10 0.621080 0.206162 0.067723

20 0.832268 0.301063 0.163616

30 1.018157 0.373982 0.231480

40 1.288235 0.479643 0.288678

50 1.466571 0.563397 0.332650

Table 5.6: Net computational times for the computation of VaR and CVaR for the portfolio

made up of m stocks and m European call options, with m = 1, 2, 3, 4, 5, 10, 20, 30, 40, 50.
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The computational times in table 5.6 refer to computations with 10, 000 simulations and do

not include the time for nonparametric estimation of the risk factors. We set the full Monte

Carlo method as the reference in terms of values and computational times. It can be noticed

that both partial Monte Carlo and Delta-Gamma-Q are quantitatively comparable to the

reference, as shown in tables 5.3-5.4. Furthermore, our method requires a lower amount of

time than the other two methods considered for all the included values of m. As envisaged in

the study of computation costs the Delta-Gamma-Q method for the computation of results

is the quickest, since it exploits the computational speed of the FFT algorithm. Larger scale

computational tests tend to be portfolio-specific. However, the qualitative conclusion that

Delta-Gamma-Q method is comparable in its speed to Delta-Gamma-Normal method, but

outperforms it in accuracy for non-normal risk factors, holds true.

5.3 Numerical experiments with real data

Having seen the performance of our method with a simulated portfolio with up to 50 assets,

we now move to demonstrating it with a real financial portfolio and comparing it with

Delta-Gamma-Normal method in computing VaR and CVaR. This section is divided into

five subsections. Subsection 5.3.1 introduces the data employed and presents some of their

descriptive statistics. The portfolio analyzed is constituted of four European options on

FTSE100 index (which represents our single risk factor). A representative real portfolio with

a relatively small number of assets is chosen for demonstration since it is easier to visualize

data and report results with a small number of assets; it is also easy to reproduce our

experiments based on the information provided here, if desired. Subsection 5.3.2 illustrates

the choice and the features of the portfolio tested. Subsections 5.3.3 and 5.3.4 respectively

report the results of backtesting using the Delta-Gamma-dP Normal approach and the Delta-

Gamma-Q approach.

5.3.1 Data

For computing the VaR estimates and for backtesting, we use two sets of data:

1. A set of 501 daily closing prices for each of the four included European options on the

underlying index FTSE100, according to the portfolio composition specified in tables

5.8–5.9;
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2. A set of daily closing FTSE100 values which is used for estimating the parameters

related to non-normality as described in section 2.6.1.

The portfolio analyzed includes observations from 10/07/2009 to 10/06/2011. The whole

set of daily portfolio variations has been split in two 250-units subsets: an in-sample subset

that covers observations from 13/07/2009 to 25/06/2010, and an out-of-sample subset that

covers observations from 28/06/2010 to 10/06/2011. Summary statistics on FTSE100 daily

returns Rt for the considered period are reported in table 5.7:

Statistic Value

Mean 0.0722%

Standard Deviation 1.0349%

Minimum -3.1815%

Maximum 5.1610%

Skewness 0.0072

Kurtosis 4.3989

Table 5.7: Summary statistics of the FTSE100 returns for the period 10/07/2009 −
10/06/2011.

The empirical distribution of daily returns is leptokurtic (i.e., its kurtosis exceeds the value

3), that indicates fat-tailedness, and slightly skewed. The Lilliefors test, used to test the

null hypothesis that data come from a normal distribution when the sample is small (see

e.g. Lilliefors (1967) for details), also rejects normality at both 5% and 1% significance level

for the considered series. Figure 5.1 represents the returns histogram for FTSE100 for the

considered period.

5.3.2 Test portfolio

The portfolio tested includes four European options on the same underlying: the index

FTSE100. Its composition is changed periodically to mirror the variations occurring in

a typical, actively traded options portfolio. To be specific, the portfolio is made up of

two pairs of options, each pair consisting of a call option and one put option having com-

mon strike price K and maturity T . The daily portfolio πt is made up of C(1)
t , P(1)

t , C(2)
t

and P(2)
t , with t = 1, 2, . . . , 501. Therefore the daily portfolio values Πt are computed as

Πt = C(1)
t + P(1)

t + C(2)
t + P(2)

t and the daily changes in portfolio values are computed as
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Figure 5.1: FTSE100 returns histogram for the period 10/07/2009− 10/06/2011.

∆Πt−1 = Πt − Πt−1 for t = 2, 3, . . . , 501. We decided to change the portfolio composition

over time, including options having different characteristics (strike prices and maturities),

to highlight that the method does not depend on specific features of the portfolio. As men-

tioned earlier, nonlinear portfolios are rarely static over a long period of time. To generate

a large enough data sample, with the same underlying risk factor for backtesting, it makes

sense to use a portfolio of options which evolves over time. The whole length of time under

test is split in six different length intervals. Intervals with different lengths provide again a

more general framework. At every change of interval one of the two call-put pairs is dropped

and is alternately replaced by another call-put pair of options, with both the call and the

put having the same strike price and maturity. Table 5.8 displays the portfolio composition

chosen, whereas figure 5.2 provides a graphical representation of the portfolio composition

as a function of time.
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Figure 5.2: Graphical representation of portfolio composition in time. Options are included
in the portfolio in correspondence of the relative thick segment.

Note that most options have a life which is shorter than what one needs for a reasonably

large backtesting data sample, which makes the proposed changes in portfolio over time

(keeping the risk factor the same) a sensible alternative for backtesting VaR methodologies.

Interval from to Length C(1)
t P(1)

t C(2)
t P(2)

t

1 10/07/2009 10/11/2009 88 C(a) P(a) C(b) P(b)

2 11/11/2009 26/02/2010 78 C(a) P(a) C(c) P(c)

3 01/03/2010 30/07/2010 110 C(d) P(d) C(c) P(c)

4 02/08/2010 30/11/2010 87 C(d) P(d) C(e) P(e)

5 01/12/2010 15/03/2011 75 C(f) P(f) C(e) P(e)

6 16/03/2011 10/06/2011 63 C(f) P(f) C(g) P(g)

Table 5.8: Portfolio composition in the different intervals.

Strike prices and maturities of each pair of options C(l),P(l), l ∈ {a, b, c, d, e, f, g} are

reported in table 5.9:

Asset Label a b c d e f g

Strike Price 3,800 2,000 3,000 4,800 3,700 5,400 2,600

Maturity 18/06/10 18/06/10 17/09/10 17/12/10 18/03/11 17/06/11 17/06/11

Table 5.9: Considered strike prices and maturities.
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5.3.3 Applying the Delta-Gamma-dP Normal method: Results

The first experiment consists in computing 95% and 99% VaR of the considered portfolio

using Delta-Gamma-dP Normal model and assessing its reliability through unconditional

and conditional tests. The descriptive statistics of ∆S are gathered in table 5.10.

Statistic In-sample Out-of-sample

Mean 3.6772 2.8773

Standard Deviation 57.6257 53.3055

Minimum -170.8800 -157.4600

Maximum 264.4000 141.4700

Skewness -0.1112 -0.0386

Kurtosis 4.6705 3.3710

Table 5.10: Descriptive statistics of the ∆S.

A glance at the statistics reported in table 5.10 suggests that ∆S has a different type of dis-

tribution in the two different subsets: the in-sample subset appears not normally distributed

and its Lilliefors test rejects at levels 5% and 1% that ∆S comes from a distribution in the

normal family, while for the out-of-sample subset, the Lilliefors test does not reject at levels

5% and 1% that ∆S comes from a distribution in the normal family.

Sensitivities Θ
(i)
t , δ

(i)
t and Γ

(i)
t , with i ∈ {C(1),P(1), C(2),P(2)}, according to the portfolio

composition reported in table 5.8 are computed for both the in-sample data and out-of-

sample data using steps (1) and (2) from the procedure described in subsection 5.3.4. Θt,

δt and Γt are derived summing up the correspondent sensitivities of the options included at

time t. The Delta-Gamma-dP Normal approximation becomes therefore:

∆Πt = Θt∆t+ δt∆S +
1

2
Γt∆S2. (5.4)

Assuming that ∆S ∼ N (0, σ2), it is possible to use the transformation ∆S = σZ, where

Z ∼ N (0, 1). The equation (5.4) can be rewritten as:

∆Πt = Θt∆t+ δtσZ +
1

2
Γtσ

2Z2. (5.5)
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For each of the subsets one can utilize the standard deviation of ∆S and compute the Delta-

Gamma-dP Normal VaR. The time horizon h is set to 1 day. Unconditional and conditional

tests are reported in table 5.11:

Subset α x̃ N00 N01 N10 N11 LRuc LRind LRcc A/R

In-sample
95% 14 222 13 13 2 0.1827 1.1758 1.3385 A

99% 10 230 10 10 0 12.9555 0.8336 13.7891 R

Out-of-sample
95% 15 222 13 14 1 0.4961 0.0326 0.5286 A

99% 4 242 4 4 0 0.7691 0.1301 0.8992 A

Table 5.11: Summary of test results for the Delta-Gamma-dP Normal model.

The values in bold represents either values outside the non-rejection confidence intervals

or values above the corresponding critical value. In particular the last column of each

table indicates whether the VaR, at the specified level of confidence, estimated for the in-

sample subset and the out-of-sample subset is accepted (A) or rejected (R). Statistics for

the in-sample subset show that the 95% VaR estimate is acceptable being all the values

LRuc, LRind and LRcc below the respective critical values. Instead, the large number

of failures and relative statistics suggest that the estimation using the Delta-Gamma-dP

Normal method for the 99% VaR is not appropriate. This result confirms the insight that

just using the standard deviation of a risk factor, neglecting its fat-tailed behavior could

lead to an acceptable VaR for relative low levels of α (up to 95%), but could fail to provide

suitable VaR for higher values of α, underestimating its actual value. This might explain a

fraction of what has happened during the recent financial crisis: managers, having relied on

Gaussian-based models and ignoring the non-normality of risk factors, obtained VaR values

that were wrong (even catastrophically, in some cases). The statistics LRuc, LRind and

LRcc for the out-of-sample subset are all below the respective critical values for both the

α levels considered. This is not surprising since the out-of-sample dataset is close to being

normal; also see table 5.10.

5.3.4 Applying the Delta-Gamma-Q method: Results

The second experiment involves two phases:

• Calibrate the parameters of the Delta-Gamma-Q model for a non-normal factor using

in-sample data;
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• Assessing the model validity through conditional and unconditional tests using out-of-

sample data.

Daily 1-day horizon V aRt|t−1 estimates are obtained using the appropriate option prices

occurred on day t−1. The first 250-unit subset of losses, covering the period from 13/07/2009

to 25/06/2010, is used for parameter calibration while the second 250-unit subset of losses,

covering the period from 28/06/2010 to 10/06/2011 is used for model validation using the

parameter D = E[dS/dY] estimated in the in-sample subset. The following part describes

how the estimates V aRt|t−1 are computed. The payoff for an European call option is given

by (5.1), while the payoff for an European put option is given by:

max(K − S(T ), 0). (5.6)

The calibration step itself requires the following steps for each time interval considered:

1. finding the implied risk-free rates which are needed in finding δ and Γ;

2. determining sensitivities δ,Γ and Θ;

3. working out coefficients that capture the index FTSE100 non-normality;

4. calculating coefficients δY ,ΓY and ΘY ;

5. deriving coefficients aY , bY and λY .

Given that daily implied volatilities of the call and the put option in each pair, σC and

σP , are also available data, one can estimate the risk-free rate for each pair of options by

minimizing the quantity:

[(
Ci − C(S,K, σC , r, T − t)

)2
+
(
Pi − P(S,K, σP , r, T − t)

)2]
, i = 1, 2,

where r is the only unknown, since option values Ci and Pi, index value S, strike price K and

time to maturity T − t are all known. The function C(·) refers to the Black-Scholes formulae

to compute European call option prices and is provided by (5.2), while the function P(·)
refers to the Black-Scholes formulae to compute European put option and is given by:

P(S,K, σ, r, T − t) = Ke−r(T−t)Φ(−d2) − SΦ(−d1), (5.7)
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where d1 and d2 are the ones expressed in (5.2). Functional dependence of variables on t

is suppressed for notational brevity. Therefore two risk-free rates r1 and r2 are obtained

for the two call-put option pairs. This minimization was carried out in MATLAB 7.9 using

an inbuilt routine fminbnd, which uses golden section search and parabolic interpolation.

Sensitivities Delta, Gamma and Theta for European call options can be calculated using

(5.3), while corresponding sensitivities for European put options are given by:

δP =
∂P
∂S = Φ(d1) − 1, ΓP =

∂2P
∂S2

=
φ(d1)

Sσ
√
T − t

,

ΘP =
∂P
∂t

= −Sσφ(d1)

2
√
T − t

+ rKΦ(−d2)e
−r(T−t). (5.8)

Having two pairs of options in our test portfolio as described in subsection 5.3.2 we obtain

two sets of sensitivities applying the appropriate risk-free rate to the corresponding pair of

options.

A crucial role is played by the coefficient D = E[dS/dY] which is able to encapsulate the

possible non-normality of the risk factor S. Its value for the computation of V aRt would

be computed using a sample average over a “window” of FTSE100 data of length n. Using

trial and error in the in-sample subset we found that a suitable width for this risk factor

window n̄ is 150. We used three 150 wide rolling windows for the in-sample subset: the first

from 10/07/2009 to 04/02/2010, the second from 18/09/2009 to 15/04/2010, the third from

27/11/2009 to 25/06/2010. The value D has been computed for each rolling window using

formula (2.55) and their average value was used to verify whether the model is valid using

the conditional and unconditional coverage tests for the in-sample subset. This simple mov-

ing average heuristic with overlapping windows provides a smoothing effect. For assessment

of out-of-sample data, D is computed using a single window of width 150 from 27/11/2009

to 25/06/2010 (i.e., the in-sample data immediately prior to the start of out-of-sample data

set). The assessment of modeling for out-of-sample data is done using a window of width

150 from 27/11/2009 to 25/06/2010, for the computation of the value D needed for the

conditional and unconditional coverage tests.

Coefficients aY , bY and λY are calculated using formulae as reported in Section 2.6.2. Results

for the in-sample Delta-Gamma-Q and for the out-of-sample Delta-Gamma-Q are shown in

table 5.12.
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Subset α x̃ N00 N01 N10 N11 LRuc LRind LRcc A/R

In-sample
95% 14 223 13 13 1 0.1827 0.0620 0.2447 A

99% 5 240 5 5 0 1.9568 0.2041 2.1609 A

Out-of-sample
95% 14 223 14 13 0 0.1827 1.5400 1.7226 A

99% 2 246 2 2 0 0.1084 0.0323 0.1407 A

Table 5.12: Summary of test results for the Delta-Gamma-Q modeling of real data.

Results, computed using formulae mentioned earlier in this section, show that all tests for

both 95% VaR and 99% VaR are below the respective critical values, therefore cannot be

rejected. The proposed model hence seems to provide acceptable VaR estimates in both

the sub-samples considered and for both the confidence intervals, in contrast with Delta-

Gamma-Normal method outlined in subsection 5.3.3 earlier. The results using 5-day time

horizon were found to be consistent with these findings and are omitted for brevity.

5.4 Summary

In this chapter we carry out numerical experiments with both simulated data and real data

to test the behavior of the proposed new heuristic. In section 5.2 we compute measures of

risk of four simulated portfolios each made up of fifty fat-tailed stocks and fifty European call

options using five different methods: the empirical method, the Delta-Gamma-dP method,

the Delta-Gamma-Q method, the Delta-Gamma-dP Normal method and the Delta-Gamma-

dP inversion method. We compare the performance of the Delta-Gamma-Q method in terms

of VaR and CVaR percentage errors with the other methods, using the empirical method as

the reference. Furthermore, we compare the computational times of portfolios including m

stocks and m European call options for m = 1, 2, 3, 4, 5, 10, 20, 30, 40, 50 for computing

VaR using the empirical method, Delta-Gamma-dP and Delta-Gamma-Q.

In section 5.3 we measure the risk for a portfolio that includes four European options,

all having the same underlying: the FTSE100. We compute 95% and 99% VaR for an in-

sample subset and an out-of-sample subset using two models: the Delta-Gamma-dP Normal

method and the Delta-Gamma-Q method. The results indicate that relying on the assump-

tion of Gaussianity of ∆S can lead to wrong VaR estimates, while our method, which is able

to include effects such as fat-tailedness and skewness, can provide acceptable VaR estimates.
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Chapter 6

Nonlinear fixed income

portfolios: Numerical

experiments

6.1 Introduction

In this chapter, we use the mathematical tools described in chapters 3 and 4 to provide

backtesting results for simulated as well as real financial data for fixed income portfolios

of sovereign bonds. Results are presented for both normal (with Vasicek short rate model)

and non-normal (with CIR model) risk factors, while the portfolio value is nonlinear in

the risk factors in both the cases. The chapter is organized as follows: section 6.2 presents

experiments using simulated data, while section 6.3 provides results using real financial data.

6.2 Numerical experiments with simulated data

In this subsection we assess and compare Value-at-Risk for bond portfolios computed through

Monte Carlo (MC) simulation, historical simulation (HS) method and variance/covariance

(VC) method using simulated data. In subsection 6.2.1 the MC simulation is performed

using the two-factor Vasicek model and in subsection 6.2.2 a sensitivity analysis for the

same type of process is reported. In subsection 6.2.3 the MC simulation is performed using
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the two-factor CIR model and in subsection 6.2.4 a sensitivity analysis for the same type of

process is reported. This will help to gain some insight about the performances of both MC

simulations compared to the remaining considered methods. Subsection 6.2.5 comments on

the simulation experiments reported in the previous subsections.

In subsections 6.2.1 a short term interest rate path is generated using a two-factor Va-

sicek model as specified by formulae (3.17) and (3.18), while in subsection 6.2.3 a short term

interest rate is generated using a two-factor CIR model as specified by formulae (3.34) and

(3.35). As mentioned earlier in section 3.3, at any time tn the simulated bond yields yn are

given by:

yn = Crn + d + zn,

where C and d are explicitly expanded in equation (3.27) for the Vasicek model and in

equation (3.44) for the CIR model. The measurement data are given by simulating a set

of m bonds having different maturities whose prices are driven by the corresponding gener-

ated interest rate. The KF recursive equations (3.5) to (3.10) are allowed to change their

values according to the measurement data provided. In particular the state vector and the

covariance matrix predictions r̂n+1|n and Vn+1|n computed at any time tn are useful to ob-

tain the VaR at time tn+1 for a specified bond portfolio through full Monte Carlo simulation.

The bond portfolios under study consist of m bonds having each maturity Tj and price

Pn,j at time tn for j = 1, 2, . . . ,m. Each portfolio composition is not changing during the

period considered. At time n+ 1 the value of each bond portfolio is given by:

Πn+1 =

m∑

j=1

ωjPn+1,j , (6.1)

where Pn+1,j and Πn+1 are, respectively, the price of the jth bond and the portfolio net

worth at time tn+1 and ωj is the quantity of the jth bond held. We are interested in char-

acterizing the distribution of Πn.

Each Pn+1,j using the Vasicek model is given by:

Pn+1,j = eEn+1,j−F1 n+1,j r1 n+1−F2 n+1,j r2 n+1 , (6.2)
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where r1 and r2 are the factors, and E, F1 and F2 are the known functions depending on

Tj − tn+1 as specified in (3.24) and (3.25).

Each Pn+1,j using the CIR model is given by:

Pn+1,j = eE
′

1 n+1,j+E
′

2 n+1,j−F ′

1 n+1,j r1 n+1−F ′

2 n+1,j r2 n+1 , (6.3)

where r1 and r2 are the factors, and E′
1, E

′
2, F

′
1 and F ′

2 are the known functions depending

on Tj − tn+1 as specified in (3.41) and (3.42).

Since for the Vasicek model rn+1|n ∼ N (r̂n+1|n, Vn+1|n), one can perform a full Monte

Carlo simulation to obtain an approximation of the distribution of Πn+1. At any time tn,

Πn is exactly known, based on actual bond prices. We simulate the distribution of Πn+1,

find the distribution of predicted loss Πn+1 −Πn and obtain the Value-at-Risk at a specific

confidence level. For the CIR model, one can approximate the transitional distribution of

rn+1|n by a normal distribution, with a correct conditional mean and variance as given in

equations (3.38)-(3.39). We are going to apply the same methodology to compute VaR using

both Vasicek model and CIR model. The Value-at-Risk obtained from the distribution of

predicted losses will be compared with the actual losses to perform the backtesting. Once

computed 95% and 99% VaR it is also possible to obtain their nonparametric confidence

intervals which are based on finite sample theory (see Pritsker (1997) for more details on

finite sample theory). The number of Monte Carlo simulations determines the degree of

accuracy of VaR, since it affects the width of the confidence interval.

We consider an interest rate path for both Vasicek model and CIR model, compute bond

portfolio values and assess the reliability of 95% and 99% VaR estimates for MC method,

HS method and VC method using the backtesting procedure reported in chapter 4. Each

simulation has been run choosing ‘typical’ values (see Castellanos Pinzon (2008)) and it

involves computing a weekly interest rate using the Euler discretization of stochastic differ-

ential equations (3.17) and (3.18) for the Vasicek modeling and equations (3.34) and (3.35)

for the CIR modeling. The procedure for computing VaR using Monte Carlo simulation

consists of the following four steps:

• Considering a suitable number of yields obtained by simulating batches of bonds each
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having different maturities;

• Estimating KF parameters using an in-sample subset implementing equations (3.5)-

(3.10) and maximum likelihood as described earlier;

• Selecting the set of estimated parameters such that they suitably fit the in-sample

subset;

• Computing 95% and 99% VaR using Monte Carlo simulation as previously described.

The choice of the dataset is related to the standard of its desired backtesting. To achieve an

adequate level of reliability one requires to consider a sufficiently large number of values. We

opted for 250 values. The procedure adopted considers an in-sample subset consisting of 200

yields for each of the four batches of simulated bonds to estimate the vector of parameters

and then use the estimated values to calculate 50 one-step ahead yield predictions, that

will be compared with the corresponding out-of-sample actual values. The choice of em-

ploying 50 one-step ahead yield predictions comes from empirical evidence suggesting that

out-of-sample fitting using real data is rather good for a number of time steps in a range of

50–75 data, while outside this range results of fitting are poorer. Repeating five times this

procedure, shifting both in-sample and the out-of-sample of 50 values, as explained next,

allow us to compute the required 250 non-overlapping values:

In-sample Out-of-sample

1 − 200 201 − 250

51 − 250 251 − 300

101 − 300 301 − 350

151 − 350 351 − 400

201 − 400 401 − 450

The time-step ∆t = 1
52 (i.e. weekly data is used), while the whole interest rate path gener-

ated consists of 450 simulations.

The procedure for the HS method and the VC method involves using the in-sample subsets

to obtain the quantiles q1−α and qN1−α, respectively, that will be employed to compute 95%

and 99% VaR in the out-of-sample subset. Bond prices included in the considered portfolio

to compute the relevant statistics q1−α and qN1−α are computed using the formula:

Pn,j = e−yn,j(Tj−tn), j = 1, 2, . . . ,m,
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where yn,j represents the realization of the jth bond yield simulated at time tn.

6.2.1 Simulation using the two-factor Vasicek model

The values to simulate the two-factor Vasicek model described by equations (3.17) and (3.18)

are reported in the table 6.1:

i xi0 ki θi σi λi

1 0.015 0.375 0.044 0.015 -0.18

2 0.025 0.02 0.014 0.01 -0.0001

Table 6.1: Coefficients used for the simulation of the two-factor Vasicek model.

The starting values set for the initialization of the KF algorithm are:

r̂0|0 =


0.02

0.02


 and V1|0 = 3 · 10−5


1 0

0 1


 .

The observable measurements are supplied by five bonds whose features are reported in

table 6.2:

j Tj(years) h2
j

1 0.5 0.00092

2 1 0.00112

3 1.5 0.00102

4 2 0.00122

5 5 0.00062

Table 6.2: Features of the bonds providing the measurement values.

Tj and h2
j represent the maturity and the variance of the zero mean noise term that perturbs

the measured bond yield, respectively. The goodness of fit reached for both the in-sample

subset and the out-of-sample subset was assessed considering the relative absolute error

(RAE), defined as:

RAE =
|simulated rate - predicted rate|

simulated rate
.

The features of the bonds included in the portfolio under study are reported in table 6.3:

92



j Tj(years) ωj

1 1 15,000

2 2 35,000

3 5 30,000

Table 6.3: Features of the bonds included in the simulated portfolio.

where Tj are the maturities and ωj is the initial number of the jth bond held. Table 6.4

reports the parameter estimation for the five in-sample subset considered, and their corre-

sponding mean of the relative absolute error for both the in-sample (indicated as MRAE)

and the out-of-sample (indicated as MRAE∗):

Subset 1 2 3 4 5

k1 0.3127 0.2987 0.2942 0.3025 0.3211

θ1 0.0551 0.0335 0.0005 0.0229 0.0536

σ1 0.0161 0.0176 0.0177 0.0166 0.0145

λ1 -0.2821 -0.5838 -0.9375 -0.6707 -0.0944

k2 0.0586 0.0452 0.0222 0.0105 0.0733

θ2 0.0131 0.0005 0.0083 0.0062 0.0076

σ2 0.0109 0.0100 0.0093 0.0082 0.0110

λ2 -0.0002 -0.0014 -0.0014 -0.0001 -0.0014

h1 0.0006 0.0006 0.0007 0.0007 0.0007

h2 0.0011 0.0011 0.0010 0.0010 0.0011

h3 0.0009 0.0009 0.0009 0.0008 0.0008

h4 0.0011 0.0011 0.0011 0.0011 0.0011

h5 0.0009 0.0009 0.0010 0.0010 0.0010

MRAE(%) 0.89 0.91 1.13 1.36 1.40

MRAE∗(%) 1.28 1.46 1.15 1.09 0.83

Table 6.4: Estimated parameters for the subset considered, and their corresponding MRAE

and MRAE∗.

Local modeling of interest rate allows to obtain an overall good fitting as highlighted by low

MRAE and MRAE∗ values reported in table 6.4. Figure 6.1 displays an instance of the

simulation of the considered interest rate r and its prediction using Kalman filtering. We

used the estimated parameters to perform the Monte Carlo simulation as described earlier

in section 6.2 to obtain estimations of one-step ahead 95% and 99% VaR. We also computed

the 95% and 99% VaR using the HS method and VC method previously described. Uncon-

ditional and conditional tests using the considered simulation for Monte Carlo simulation,

historical simulation method and variance/covariance method are reported in table 6.5.
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Figure 6.1: An instance of the simulated interest rate r considered and its prediction using
Kalman filtering.

Method α x̃ N00 N01 N10 N11 LRuc LRind LRcc A/R

MC
95% 12 228 10 10 2 0.0213 2.5109 2.5322 A

99% 4 242 4 4 0 0.7691 0.1301 0.8992 A

HS
95% 13 225 12 12 1 0.0208 0.1528 0.1736 A

99% 7 236 7 7 0 5.4970 0.4033 5.9003 R

VC
95% 15 221 14 14 1 0.4961 0.0122 0.5082 A

99% 9 232 9 9 0 10.2290 0.6724 10.9014 R

Table 6.5: Summary of test results for the considered simulation.

Table 6.5 reports the 95% and 99% VaR backtesting outcomes for an instance of a process

described by equations (3.17) and (3.18) having values reported in table 6.1. The values in

bold represents either values outside the non-rejection confidence intervals or values above

the corresponding critical value. In particular the last column of each table indicates whether

the VaR, at the specified level of confidence, estimated using either MC simulation, HS

method or VC method is accepted (A) or rejected (R). In this instance while 95% and 99%

VaR estimates obtained using MC are both accepted, 95% VaR estimates using HS and VC

are accepted but the 99% VaR estimates using HS and VC estimates are both rejected. We
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will comment on these results later together with the results on CIR model, in subsection

6.2.5.

6.2.2 Sensitivity study for the two-factor Vasicek model

In this subsection we perform some sensitivity analysis on the Vasicek model adopted in

subsection 6.2.1. We consider the parameters included in table 6.1 and apply small changes

to a couple of them. Then we simulate a process using the new set of parameter values and

carry out the analysis reported in subsection 6.2.1 to understand whether little deviations

from the initial considered model lead to similar conclusions.

We chose to change θ1 = 0.46 and σ2 = 0.012. Therefore the new values to simulate

the two-factor Vasicek model described by equations (3.17) and (3.18) are reported in the

table 6.6:

i xi0 ki θi σi λi

1 0.015 0.375 0.046 0.015 -0.18

2 0.025 0.02 0.014 0.012 -0.0001

Table 6.6: New set of coefficients used for the simulation of the two-factor Vasicek model.

The starting values set for the initialization of the KF algorithm, the features of the five

bonds for the observable measurements and the features of the bonds included in the simu-

lated portfolio are kept constant. The goodness of fit is assessed using the RAE. Table 6.7

reports the new parameter estimation for the five in-sample subset considered, and their cor-

responding mean of the relative absolute error for both the in-sample (indicated as MRAE)

and the out-of-sample (indicated as MRAE∗):
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Subset 1 2 3 4 5

k1 0.3204 0.3530 0.3798 0.3491 0.3928

θ1 0.0534 0.0370 0.0468 0.0517 0.0338

σ1 0.0156 0.0133 0.0171 0.0144 0.0161

λ1 -0.3012 -0.2611 -0.4316 -0.2686 -0.6370

k2 0.0285 0.0594 0.0168 0.0393 0.0485

θ2 0.0111 0.0090 0.0158 0.0018 0.0101

σ2 0.0121 0.0122 0.0112 0.0105 0.0126

λ2 -0.0001 -0.0005 -0.0003 -0.0002 -0.0001

h1 0.0008 0.0014 0.0011 0.0009 0.0007

h2 0.0011 0.0010 0.0011 0.0014 0.0012

h3 0.0014 0.0011 0.0013 0.0009 0.0010

h4 0.0012 0.0010 0.0013 0.0011 0.0010

h5 0.0005 0.0005 0.0003 0.0008 0.0006

MRAE(%) 1.21 0.79 0.90 1.14 1.52

MRAE∗(%) 1.05 1.17 1.31 1.22 1.01

Table 6.7: Estimated parameters for the new subset considered, and their corresponding

MRAE and MRAE∗.

Local modeling of interest rate using the new set of values allows to obtain an overall good

fitting as highlighted by low MRAE and MRAE∗ values reported in table 6.7. We used the

estimated parameters to perform the Monte Carlo simulation as described earlier in subsec-

tion 6.2.1 to obtain estimations of one-step ahead 95% and 99% VaR. We also computed

the 95% and 99% VaR using the HS method and VC method previously described. Uncon-

ditional and conditional tests using the considered simulation for Monte Carlo simulation,

historical simulation method and variance/covariance method are reported in table 6.8.

Method α x̃ N00 N01 N10 N11 LRuc LRind LRcc A/R

MC
95% 13 225 12 12 1 0.0208 0.1528 0.1736 A

99% 3 244 3 3 0 0.0949 0.0729 0.1678 A

HS
95% 16 218 16 16 0 0.9514 2.1897 3.1411 A

99% 7 237 6 6 1 5.4970 1.8520 7.3490 R

VC
95% 17 217 16 16 1 1.5403 0.0252 1.5655 A

99% 9 233 8 8 1 10.2290 1.0122 11.2412 R

Table 6.8: Summary of test results for the considered new simulation.

Table 6.8 reports the 95% and 99% VaR backtesting outcomes for an instance of a process

described by equations (3.17) and (3.18) having values reported in table 6.6. The values in
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bold represents either values outside the non-rejection confidence intervals or values above

the corresponding critical value. Again, the last column of each table indicates whether the

VaR, at the specified level of confidence, estimated using either MC simulation, HS method

or VC method is accepted (A) or rejected (R). In this instance of the new process while

95% and 99% VaR estimates obtained using MC are both accepted, 95% VaR estimates

using HS and VC are accepted but the 99% VaR estimates using HS and VC estimates are

both rejected. These results are compatible with the ones obtained using the original set of

parameters.

6.2.3 Simulation using the two-factor CIR model

The values to simulate the two-factor CIR model described by equations (3.34) and (3.35)

are reported in the table 6.9:

i xi0 ki θi σi λi

1 0.015 0.6 0.025 0.075 -0.22

2 0.025 0.01 0.013 0.015 -0.05

Table 6.9: Coefficients used for the simulation of the two-factor CIR model.

The starting values set for the initialization of the KF algorithm are:

r̂0|0 =


0.02

0.02


 and V1|0 = 3 · 10−5


1 0

0 1


 .

The observable measurements are supplied by four bonds whose features are reported in

table 6.10:

j Tj(years) h
′2
j

1 0.5 0.00092

2 1 0.00112

3 2 0.00122

4 5 0.00062

Table 6.10: Features of the bonds providing the measurement values.

Tj and h
′2
j represent the maturity and the variance of the zero mean noise term that perturbs

the measured bond yield, respectively. The features of the bonds included in the portfolio
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under study in this subsection are the same used in subsection 6.2.1, reported in table 6.3.

Similarly, the goodness of fit reached for both the in-sample subset and the out-of-sample

subset was assessed considering the RAE. Table 6.11 reports the parameter estimation for

the five in-sample subsets considered, and their corresponding mean of the relative absolute

error for both the in-sample (indicated as MRAE) and the out-of-sample (indicated as

MRAE∗):

Subset 1 2 3 4 5

k1 0.6206 0.5998 0.6507 0.6368 0.6306

θ1 0.0343 0.0289 0.0361 0.0229 0.0203

σ1 0.0696 0.0634 0.0566 0.0730 0.0800

λ1 -0.2751 -0.1754 -0.2235 -0.2514 -0.2354

k2 0.0109 0.0121 0.0135 0.0140 0.0098

θ2 0.0063 0.0094 0.0156 0.0145 0.0130

σ2 0.0102 0.0112 0.0125 0.0136 0.0153

λ2 -0.0490 -0.0883 -0.0332 -0.0753 -0.0415

h′1 0.0001 0.0006 0.0007 0.0006 0.0006

h′2 0.0013 0.0011 0.0012 0.0010 0.0011

h′3 0.0013 0.0009 0.0009 0.0009 0.0008

h′4 0.0013 0.0011 0.0012 0.0009 0.0011

MRAE(%) 1.38 1.20 1.15 1.12 1.09

MRAE∗(%) 0.98 1.18 1.29 0.90 0.81

Table 6.11: Estimated parameters for the subset considered, and their correspondingMRAE

and MRAE∗.

We used the estimated parameters to perform the MC simulation as described earlier in

section 6.2 to obtain estimations of one-step ahead 95% and 99% VaR. We also computed

the 95% and 99% VaR using the HS method and VC method previously described. Uncon-

ditional and conditional tests using the considered simulation for Monte Carlo simulation,

historical simulation method and variance/covariance method are reported in table 6.12.

Method α x̃ N00 N01 N10 N11 LRuc LRind LRcc A/R

MC
95% 19 213 18 18 1 3.0905 0.1764 3.2669 A

99% 6 238 6 6 0 3.5554 0.2951 3.8505 A

HS
95% 24 204 22 22 2 8.8777 0.0509 8.9286 R

99% 5 240 5 5 0 1.9568 0.2041 2.1609 A

VC
95% 22 208 20 20 2 6.2590 0.0025 6.2615 R

99% 5 240 5 5 0 1.9568 0.2041 2.1609 A

Table 6.12: Summary of test results for the considered simulation.
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Table 6.12 reports the 95% and 99% VaR backtesting outcomes for an instance of a process

described by equations (3.34) and (3.35) having values reported in table 6.9. Again, the

values in bold represents either values outside the non-rejection confidence intervals or values

above the corresponding critical value. In particular the last column of each table indicates

whether the VaR, at the specified level of confidence, estimated using either MC simulation,

HS method or VC method is accepted (A) or rejected (R). In this instance while 95% and

99% VaR estimates obtained using MC are both accepted, 95% VaR estimates using HS and

VC are both rejected but the 99% VaR estimates using HS and VC estimates are accepted.

6.2.4 Sensitivity study for the two-factor CIR model

In this subsection we perform some sensitivity analysis on the CIR model adopted in sub-

section 6.2.3. We consider the parameters included in table 6.9 and apply small changes to

a couple of them. Then we simulate a process using the new set of parameter values and

carry out the analysis reported in subsection 6.2.3 to understand whether little deviations

from the initial considered model lead to similar conclusions.

We chose to change θ1 = 0.023 and σ2 = 0.0148. Therefore the new values to simulate

the two-factor CIR model described by equations (3.34) and (3.35) are reported in the table

6.13:

i xi0 ki θi σi λi

1 0.015 0.6 0.023 0.075 -0.22

2 0.025 0.01 0.013 0.0148 -0.05

Table 6.13: New set of coefficients used for the simulation of the two-factor CIR model.

The starting values set for the initialization of the KF algorithm, the features of the four

bonds for the observable measurements and the features of the bonds included in the sim-

ulated portfolio are kept constant. The goodness of fit is assessed using the RAE. Table

6.14 reports the new parameter estimation for the five in-sample subset considered, and

their corresponding mean of the relative absolute error for both the in-sample (indicated as

MRAE) and the out-of-sample (indicated as MRAE∗):
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Subset 1 2 3 4 5

k1 0.5967 0.5901 0.6086 0.6433 0.5681

θ1 0.0253 0.0263 0.0244 0.0251 0.0233

σ1 0.0792 0.0774 0.0819 0.0668 0.0685

λ1 -0.1786 -0.1521 -0.2539 -0.2472 -0.1994

k2 0.0110 0.0080 0.0094 0.0116 0.0099

θ2 0.0093 0.0160 0.0136 0.0129 0.0128

σ2 0.0153 0.0131 0.0178 0.0125 0.0156

λ2 -0.0704 -0.0678 -0.0502 -0.0401 -0.0422

h′1 0.0005 0.0012 0.0008 0.0005 0.0013

h′2 0.0009 0.0012 0.0009 0.0009 0.0007

h′3 0.0009 0.0015 0.0008 0.0014 0.0012

h′4 0.0008 0.0007 0.0005 0.0007 0.0003

MRAE(%) 0.99 0.84 0.93 1.19 0.98

MRAE∗(%) 1.31 1.44 1.08 1.26 0.95

Table 6.14: Estimated parameters for the new subset considered, and their corresponding

MRAE and MRAE∗.

Local modeling of interest rate using the new set of values allows to obtain an overall good

fitting as highlighted by low MRAE and MRAE∗ values reported in table 6.14. We used

the estimated parameters to perform the Monte Carlo simulation as described earlier in sub-

section 6.2.3 to obtain estimations of one-step ahead 95% and 99% VaR. We also computed

the 95% and 99% VaR using the HS method and VC method previously described. Uncon-

ditional and conditional tests using the considered simulation for Monte Carlo simulation,

historical simulation method and variance/covariance method are reported in table 6.15.

Method α x̃ N00 N01 N10 N11 LRuc LRind LRcc A/R

MC
95% 17 216 17 17 0 1.5403 2.4829 4.0232 A

99% 5 240 5 5 0 1.9568 0.02041 2.1609 A

HS
95% 20 212 18 18 2 4.0395 0.1108 4.1503 R

99% 4 242 4 4 0 0.7691 0.1301 0.8992 A

VC
95% 20 210 20 20 0 4.0395 3.4827 7.5222 R

99% 3 244 3 3 0 0.0949 0.0729 0.1678 A

Table 6.15: Summary of test results for the considered new simulation.

Table 6.15 reports the 95% and 99% VaR backtesting outcomes for an instance of a process

described by equations (3.34) and (3.35) having values reported in table 6.13. The values in

bold represents either values outside the non-rejection confidence intervals or values above
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the corresponding critical value. Again, the last column of each table indicates whether the

VaR, at the specified level of confidence, estimated using either MC simulation, HS method

or VC method is accepted (A) or rejected (R). In this instance of the new process while

95% and 99% VaR estimates obtained using MC are both accepted, 95% VaR estimates

using HS and VC are accepted but the 99% VaR estimates using HS and VC estimates are

both rejected. These results are compatible with the ones obtained using the original set of

parameters.

6.2.5 Comments on the simulation experiments

One can notice that the estimation for the two-factor Vasicek model uses five yields, while

the estimation for the two-factor CIR model only requires four yields. A higher number of

yields has been required by the Vasicek algorithm to achieve a goodness of fit comparable

to the one achieved by the CIR algorithm. Specifically, using only four yields we managed

to obtain a MRAE between 2% and 2.6%, which could result on its own acceptable unless

one considers the maximum RAE that could reach values in a range between 16% and 24%.

Employing these estimates could lead to a high number of biased VaR estimates, hence the

choice of a different number of yields. For both the estimations the MRAE is just above

1% and the maximum RAE ranges between 2% and 6%.

It might be worth noticing that even under substantial changes in the initialization val-

ues this KF algorithm setting seems to produce similar results.

Other instances (not reported here) of the considered interest rate simulation lead to the

conclusion that MC and VC methods, at least in this context, are not reliable for the esti-

mation of 95% and 99% VaR. As reported in the previous two subsections, their backtesting

fail to be accepted. The assumption that the past provides a fair representation of the

immediate future seems to be not always true. The ability to estimate VaR using MC and

VC methods seems to depend on the specific path simulated. This might also depend on

the (implicit) assumption of portfolio returns being independent and identically distributed,

which appears to be unrealistic. Furthermore all the rates of returns are given equal weights,

where it might be more appropriate to assign different weights according to the fact that

data further away from the present have a lower predicting influence compared to the closer

ones. Monte Carlo simulation, provided that the fitting is sufficiently good, leads to VaR
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estimates that are not rejected by the unconditional and conditional tests.

Varying the coefficients for the simulation of the interest rate as reported in subsections

6.2.2 and 6.2.4 leads to similar conclusions. Similarly, varying the features of the bonds

included in the considered portfolio leads to similar conclusions and are not reported here

for brevity.

Having seen the performance of our method with a simulated portfolio, we carry out the

same tests using real bond prices.

6.3 Numerical experiments with real data

The aim of this section is to compute 95% and 99% VaR using Vasicek and CIR Monte Carlo

simulations for an actual portfolio of bonds and to compare their performances against the

results obtained using the HS method and the VC method, as described in the subsection

6.2. This is achieved in three steps:

1. Calibrating the two-factor Vasicek term structure model and the two-factor CIR term

structure model using Kalman filter for the chosen dataset;

2. Computing the VaR at the required confidence level, as described in subsection 6.2;

3. Backtesting the one-step ahead forecasting, as described in section 4.1.

Unlike in the simulation experiments, the interest rate values are unknown. Hence we need

to compare bond yields. The goodness of fitness can be assessed considering the RAE, which

is defined for the experiments using real data as:

RAE =
|observed yield - predicted yield|

observed yield
.

Subsection 6.3.1 introduces the data employed and explains how it is used to calibrate the

parameters, while subsection 6.3.2 reports the results of backtesting the estimates obtained

with the proposed method.
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6.3.1 Data

The dataset employed for this experiment consists of 450 weekly yields computed on three

groups of US government bonds from 28/06/2001 to 11/10/2012: three batches of very short

term bonds (5 to 7 months maturity), two batches of short term bonds (4.5 to 5.5 years

maturity) and one batch of medium term bonds (10 years maturity). All the data was

retrieved from Datastream. This data was split into five in-sample and five out-of-sample

data sets using exactly the same procedure as used in subsection 6.2 for simulated data set of

same size. We calibrated five two-factor Vasicek models and five two-factor CIR models on

the six different in-sample yields data-sets mentioned above, each with 14 parameters. Each

in-sample estimation is used to produce one-step ahead forecasting of yields. The procedure

adopted for the experiments using real data is similar to the one chosen for the experiment

using simulated data. We used five in-sample subsets and follow the four steps described in

subsection 6.2. Computation of statistics q1−α and qN1−α to obtain VaR through HS and VC

methods are calculated using actual bond values.

6.3.2 Results

Tables 6.16 and 6.17 display the estimated parameters for the two-factor Vasicek model and

the two-factor CIR model obtained using the mentioned five in-sample data subsets.

103



Subset 1 2 3 4 5

k1 0.7030 0.7118 0.7095 0.07023 0.06891

θ1 0.0056 0.0047 0.0049 0.0048 0.0045

σ1 0.0321 0.0314 0.0332 0.0327 0.0288

λ1 -0.4591 -0.4606 -0.4842 -0.4751 -0.4553

k2 0.0255 0.0275 0.0231 0.0241 0.0219

θ2 0.0035 0.0035 0.0028 0.0030 0.0029

σ2 0.0142 0.0154 0.0138 0.0144 0.0127

λ2 -0.2652 -0.2639 -0.2528 -0.2509 -0.2629

h1 0.0009 0.0011 0.0010 0.0009 0.0013

h2 0.0012 0.0006 0.0011 0.0011 0.0011

h3 0.0013 0.0010 0.0006 0.0009 0.0009

h4 0.0007 0.0010 0.0007 0.0011 0.0007

h5 0.0009 0.0004 0.0012 0.0011 0.0009

h6 0.0010 0.0008 0.0009 0.0008 0.0009

MRAE(%) 1.22 1.34 1.18 1.36 1.15

MRAE∗(%) 1.16 1.09 1.29 1.12 1.20

Table 6.16: Estimated parameters for two-factor Vasicek model.

Subset 1 2 3 4 5

k1 0.6102 0.6089 0.6095 0.6064 0.5984

θ1 0.0201 0.0221 0.0223 0.0217 0.0206

σ1 0.0424 0.0411 0.0402 0.0408 0.0394

λ1 -0.3861 -0.3775 -0.3747 -0.3721 -0.3788

k2 0.0304 0.0315 0.321 0.0313 0.0308

θ2 0.0125 0.0131 0.0128 0.0127 0.0125

σ2 0.0134 0.0142 0.0138 0.0136 0.0133

λ2 -0.0192 -0.0208 -0.0205 -0.0201 -0.0189

h′1 0.0011 0.0012 0.0007 0.0009 0.0009

h′2 0.0009 0.0010 0.0011 0.0011 0.0012

h′3 0.0013 0.0010 0.0009 0.0008 0.0008

h′4 0.0008 0.0010 0.0011 0.0010 0.0008

h′5 0.0008 0.0009 0.0012 0.0011 0.0009

h′6 0.0001 0.0008 0.0010 0.0007 0.0010

MRAE(%) 1.19 1.32 1.24 1.25 1.21

MRAE∗(%) 1.06 1.22 1.31 1.23 1.17

Table 6.17: Estimated parameters for two-factor CIR model.
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The estimated values were used to calculate 50 one-step ahead interest rate prediction, and

used to carry out Monte Carlo simulations as described in subsection 6.2. Each Monte Carlo

simulation consists of 10, 000 trials. The portfolio considered includes an initial number of

50, 000 of each of the six bonds. Table 6.18 reports conditional and unconditional tests

using the considered simulation for Monte Carlo simulation, historical simulation method

and variance/covariance method using real data.

Method α x̃ N00 N01 N10 N11 LRuc LRind LRcc A/R

MC Vasicek
95% 16 219 15 15 1 0.9514 0.0006 0.9520 A

99% 5 240 5 5 0 1.9568 0.2041 2.1609 A

MC CIR
95% 15 220 15 15 0 0.4961 1.9162 2.4123 A

99% 4 242 4 4 0 0.7691 0.1301 0.8992 A

HS
95% 17 218 15 15 2 1.5403 0.5996 2.1399 A

99% 7 237 6 6 1 5.4970 1.8520 7.3490 R

VC
95% 16 220 14 14 2 0.9514 1.6762 2.6276 A

99% 6 238 6 6 0 3.5554 0.2952 3.8506 A

Table 6.18: Summary of test results for the experiments with real data.

Both Vasicek and CIR Monte Carlo simulations and variance/covariance method provide

acceptable estimations of both 95% and 99% VaR, while historical simulation method just

bears an acceptable 95% VaR but fail to provide a valid 99% VaR. As highlighted in the

previous section some assumptions such that the past provides a fair representation of the

immediate future and that rates of return are normally distributed might be not realistic. In

this instance, historical simulation method produce too many exceptions in estimates of 99%

VaR, therefore the evaluation of 99% VaR is rejected. The calibrated model seems accurate

enough for the purpose of estimating quantiles, since the conditional and unconditional tests

are non-rejected for both 95% and 99% VaR estimates.

In general, both Vasicek and CIR models are employed to fit the term structure using

real financial data. Empirical evidence suggests that the Vasicek model performs better

than the CIR model for pricing bonds in terms of MRAE and MRAE*, see Wang (2008).

One can also observe that having constraints on coefficients of CIR model for interest rate

positivity plus constraints on allowed correlation coefficients of risk factors may lead to poor

fits to bond prices, see e.g. Dai and Singleton (2000). For measuring the risk of portfolios

they seem to perform equally well.
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Both the models employed in the numerical experiments reported in this thesis seem to

provide an accurate goodness of fit. Furthermore, the summary test results confirm that

95% and 99% VaR estimates using the two-factor Vasicek model and the two-factor CIR

model are equally adequate.

6.4 Summary

In this chapter we carry out numerical experiments with both simulated data and real data

to test the behavior of the proposed methods. In subsections 6.2.1 and 6.2.3 we simulate

a path using a Vasicek model and a CIR model, respectively. In each of these subsections

we estimate the parameters of the respective simulated path and then perform Monte Carlo

simulation to obtain one-step ahead 95% and 99% VaR estimates for a generic portfolio.

We also computed the 95% and 99% VaR using the historical simulation method and the

variance/covariance method. Next, we backtested the results obtained using Monte Carlo

simulation, historical simulation method and variance covariance method and compare their

performances.

In section 6.3 we measure the risk for a portfolio that includes an initial number of 50, 000

of six batches of bonds. The employed bond batches consist of three batches of very short

term bonds, two batches of short term bonds and one batch of medium term bonds. We

estimate the parameters for both the Vasicek model and the CIR model, and then estimate

95% and 99% VaR. We also compute 95% and 99% VaR using historical simulation method

and variance/covariance method, backtest the results and compare their performances.

The results indicate that historical simulation method and variance/covariance method,

relying on the assumption that the past provides a fair representation of the immediate

future, could provide biased 95% and 99% VaR estimations. This fact suggests that the as-

sumption, at least in this context, is not realistic. Using Monte Carlo simulation employing

either the two-factor Vasicek model or the two-factor CIR model seem to provide acceptable

95% and 99% VaR estimations, as long as the relative parameters display a good degree of

fitness.
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Chapter 7

Summary of contributions and

future research

In this chapter the main contributions are summarized and some suggestions for further

research are reported. The main focus of the thesis was to investigate computationally

efficient ways of measuring the risk of portfolios whose values are nonlinear functions of pos-

sibly non-Gaussian risk factors. The research presented draws on mathematical tools from

a variety of fields such as applied statistics (probability conserving transformation), signal

processing (Fast Fourier Transforms) and systems theory (Kalman filtering). Specifically,

two methods for computation of Value-at-Risk were investigated:

1. Portfolios where both the risk factors and the nonlinearities have no specific struc-

ture. In this case, we developed a method, called Delta-Gamma-Q, which allows us

to compute VaR and CVaR through a combination of Delta-Gamma-Normal model in

Glasserman (2003) and probability conserving transformation in Sornette et al. (2000).

In this method, the marginal distributions of risk factors are mapped through non-

linear changes of variables onto Gaussian distributions. A new covariance matrix can

therefore be computed and it redefines the dependence among transformed risk fac-

tors. Delta-Gamma coefficients obtained under normal conditions are multiplied by

factors that take into account the shape of risk factors and then fast Fourier transform

allows us to perform a quick computation of VaR and CVaR values. This method

was described in chapter 2 and was demonstrated through comprehensive experiments
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on simulated as well as real data in chapter 5. These experiments show that using

Delta-Gamma-dP Normal method for non-normal risk factors leads to misleading re-

sults while our method corrects the bias to a significant extent. The numerical results

are shown to be consistent across a range of parameter values, across two different

confidence levels and across two different time horizons. The method presented here

emphasized the fact that using methods that do not recognize the lack of normality

can lead to rather biased estimates of both VaR and CVaR, especially in nonlinear

portfolios. The method presented features a good degree of flexibility since the use of

nonparametric estimation can capture the distribution characteristics of risk factors to

be analyzed and the computational effort is lower than partial Monte Carlo simulation.

This study focusses only on dealing with possible skewness and fat tails of the portfolio

distribution. As mentioned in subsection 2.6.2, it would be interesting to see if the

proposed framework can be extended to prediction of VaR in a dynamic setting, per-

haps including phenomena such as autoregressive behavior and clustering of volatility.

Further, the current work is limited to analysis of a given (or fixed) portfolio. The

use of probability conserving transformation and the subsequent transformed correla-

tions in selecting a portfolio which optimizes risk/return characteristics also indicates

a potentially interesting direction for future research.

2. The second method uses a specific nonlinearity (bond prices) and specific structure for

the risk factors (either Vasicek or CIR model for the short rate). This generates sce-

narios which are arbitrage-free and provides a parsimonious as well as realistic means

of generating scenarios for Monte Carlo based evaluation of VaR for fixed income port-

folios in a liquid (and hence arbitrage-free) market. The KF-based method requires

simulating only a vector of two random variables for one step ahead forecasts and is

hence computationally cheaper as compared to principal components analysis using

more than two principal components. Numerical experiments with simulated data as

well as real treasuries data confirm the utility of our method in measuring tail risk.

The analysis included here is limited to compute the Value-at-Risk of a bond port-

folio. A possible future research direction could be to extend portfolios composition

including other nonlinear interest instruments such as interest rate caps and floors.
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Appendix A

Function Documentation

A substantial amount of MATLAB-based re-useable code was produced during this project.

This Appendix provides a description of the code developed and used to compute the results.

Like.m

The function Like is in the form: [LRuc,LRind,LRcc]=Like(N,p,n,n00,n01,n10,n11).

The function takes as input arguments:

1. N is the total number of observations,

2. p is the VaR confidence level,

3. n is the number of exceptions in the sample,

4. n00 is the number of days where a state 0 is followed by a state 0,

5. n01 is the number of days where a state 0 is followed by a state 1,

6. n10 is the number of days where a state 1 is followed by a state 0,

7. n11 is the number of days where a state 1 is followed by a state 1.

The output arguments are:

1. LRuc is the unconditional coverage test,

2. LRind is the independence test,

3. LRcc is the conditional coverage test.
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Empirical50.m

The script used to simulate a portfolio made up of 50 correlated stocks and 50 options em-

ploying the empirical method with parameters as specified in section 5.2. It returns 95%

and 99% VaR & CVaR and confidence intervals for 95% and 99% VaR, as reported in tables

5.3–5.4.

RemainingSimulation50.m

The script used to simulate a portfolio made up of 50 correlated stocks and 50 options em-

ploying the Delta-Gamma-dP method, the Delta-Gamma-Q method, the Delta-Gamma-dP

Normal method and the Delta-Gamma-dP inversion method with parameters as specified

in section 5.2. It returns 95% and 99% VaR & CVaR and confidence intervals for 95% and

99% VaR (where relevant), as reported in tables 5.3–5.4.

BacktestingReal.m

The script used to compute the measures of risk for the real portfolio considered in section

5.3. It returns 95% and 99% VaR & CVaR using the Delta-Gamma-dP Normal method and

95% and 99% VaR & CVaR using the Delta-Gamma-Q method, employing the algorithms

mentioned in subsections 5.3.3 and 5.3.4, respectively.

SimV.m

The script used to simulate a sample of an interest rate path using the Vasicek process spec-

ified in subsection 6.2.1. For each maturity of the bond included it computes and visualizes

the corresponding yield.

SimCIR.m

The script used to simulate a sample of an interest rate path using the Cox-Ingersoll-Ross

process specified in subsection 6.2.3. For each maturity of the bond included it computes

and visualizes the corresponding yield.

EstimationAlgo.m

The script used to compute parameter estimations and MRAE for both Vasicek model and

CIR model, reported in tables 6.4 and 6.11, respectively. It requires simulations of yields

and their associated times to maturity generated using SimV and SimCIR, respectively, as an
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input. It returns the estimated parameters and MRAE of the corresponding model for the

subset considered. This script calls the functions KFV and KFCIR.

KFV.m

The function KFV is in the form:

[f,xP1,xP2,PP11,PP12,PP21,PP22]=KFV(x,y1,t1,y2,t2,y3,t3,y4,t4,y5,t5).

The function takes as input arguments:

1. x is the vector of parameters for the Vasicek Kalman filter,

2. y1 is the vector with the in-sample yields of the first simulated bond,

3. t1 is the vector with the in-sample times to maturity for the first simulated bond,

4. y2 is the vector with the in-sample yields of the second simulated bond,

5. t2 is the vector with the in-sample times to maturity for the second simulated bond,

6. y3 is the vector with the in-sample yields of the third simulated bond,

7. t3 is the vector with the in-sample times to maturity for the third simulated bond,

8. y4 is the vector with the in-sample yields of the fourth simulated bond,

9. t4 is the vector with the in-sample times to maturity for the fourth simulated bond.

10. y5 is the vector with the in-sample yields of the fourth simulated bond,

11. t5 is the vector with the in-sample times to maturity for the fourth simulated bond.

The output arguments are:

1. f is the value of the likelihood function,

2. xP1 is the value of the estimation r̂1n|n,

3. xP2 is the value of the estimation r̂2n|n,

4. PP11 is the value in the matrix Vn+1|n indexed as 11,

5. PP12 is the value in the matrix Vn+1|n indexed as 12,

6. PP21 is the value in the matrix Vn+1|n indexed as 21,
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7. PP22 is the value in the matrix Vn+1|n indexed as 22.

KFCIR.m

The function KFCIR is in the form:

[f,xP1,xP2,PP11,PP12,PP21,PP22]=KFCIR(x,y1,t1,y2,t2,y3,t3,y4,t4).

The function takes as input arguments:

1. x is the vector of parameters for the Cox-Ingersoll-Ross Kalman filter,

2. y1 is the vector with the in-sample yields of the first simulated bond,

3. t1 is the vector with the in-sample times to maturity for the first simulated bond,

4. y2 is the vector with the in-sample yields of the second simulated bond,

5. t2 is the vector with the in-sample times to maturity for the second simulated bond,

6. y3 is the vector with the in-sample yields of the third simulated bond,

7. t3 is the vector with the in-sample times to maturity for the third simulated bond,

8. y4 is the vector with the in-sample yields of the fourth simulated bond,

9. t4 is the vector with the in-sample times to maturity for the fourth simulated bond.

The output arguments are:

1. f is the value of the likelihood function,

2. xP1 is the value of the estimation r̂1n|n,

3. xP2 is the value of the estimation r̂2n|n,

4. PP11 is the value in the matrix Vn+1|n indexed as 11,

5. PP12 is the value in the matrix Vn+1|n indexed as 12,

6. PP21 is the value in the matrix Vn+1|n indexed as 21,

7. PP22 is the value in the matrix Vn+1|n indexed as 22.
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PredictV.m

The script used to compute MRAE∗ for the Vasicek simulation as described in subsection

6.2.1 and reported in table 6.4. It requires simulations of yields and their associated times

to maturity generated using SimV. It returns the MRAE∗ for the subset considered. This

script calls the functions KFV and ForeV.

ForeV.m

The function ForeV is in the form:

[X1,X2,PP11,PP12,PP21,PP22]=ForeV(x,xPe1,xPe2,Pe11,Pe12,Pe21,Pe22,

y1,t1,y2,t2,y3,t3,y4,t4,y5,t5).

The function takes as input arguments:

1. x is vector of the estimated parameters for the subset considered,

2. xPe1 is the initialization value r̂1 0|0,

3. xPe2 is the initialization value r̂2 0|0,

4. Pe11 is the value in the initialization matrix V1|0 indexed as 11,

5. Pe12 is the value in the initialization matrix V1|0 indexed as 12,

6. Pe21 is the value in the initialization matrix V1|0 indexed as 21,

7. Pe22 is the value in the initialization matrix V1|0 indexed as 22,

8. y1 is the vector with the out-of-sample yields of the first simulated bond,

9. t1 is the vector with the out-of-sample times to maturity for the first simulated bond,

10. y2 is the vector with the out-of-sample yields of the second simulated bond,

11. t2 is the vector with the out-of-sample times to maturity for the second simulated

bond,

12. y3 is the vector with the out-of-sample yields of the third simulated bond,

13. t3 is the vector with the out-of-sample times to maturity for the third simulated bond,

14. y4 is the vector with the out-of-sample yields of the fourth simulated bond,
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15. t4 is the vector with the out-of-sample times to maturity for the fourth simulated

bond,

16. y5 is the vector with the out-of-sample yields of the fifth simulated bond,

17. t5 is the vector with the out-of-sample times to maturity for the fifth simulated bond.

The output arguments are:

1. X1 is the out-of-sample estimation r̂1n|n,

2. X2 is the out-of-sample estimation r̂2n|n,

3. PP11 is the value in the matrix Vn+1|n indexed as 11,

4. PP12 is the value in the matrix Vn+1|n indexed as 12,

5. PP21 is the value in the matrix Vn+1|n indexed as 21,

6. PP22 is the value in the matrix Vn+1|n indexed as 22.

PredictCIR.m

The script used to compute MRAE∗ for the CIR simulation as described in 6.2.3 and re-

ported in table 6.11. It requires simulations of yields and their associated times to maturity

generated using SimCIR. It returns the MRAE∗ for the subset considered. This script calls

the functions KFCIR and ForeCIR.

ForeCIR.m

The function ForeCIR is in the form:

[X1,X2,PP11,PP12,PP21,PP22]=ForeCIR(x,xPe1,xPe2,Pe11,Pe12,Pe21,Pe22,

y1,t1,y2,t2,y3,t3,y4,t4).

The function takes as input arguments:

1. x is vector of the estimated parameters for the subset considered,

2. xPe1 is the initialization value r̂1 0|0,

3. xPe2 is the initialization value r̂2 0|0,

4. Pe11 is the value in the initialization matrix V1|0 indexed as 11,
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5. Pe12 is the value in the initialization matrix V1|0 indexed as 12,

6. Pe21 is the value in the initialization matrix V1|0 indexed as 21,

7. Pe22 is the value in the initialization matrix V1|0 indexed as 22,

8. y1 is the vector with the out-of-sample yields of the first simulated bond,

9. t1 is the vector with the out-of-sample times to maturity for the first simulated bond,

10. y2 is the vector with the out-of-sample yields of the second simulated bond,

11. t2 is the vector with the out-of-sample times to maturity for the second simulated

bond,

12. y3 is the vector with the out-of-sample yields of the third simulated bond,

13. t3 is the vector with the out-of-sample times to maturity for the third simulated bond,

14. y4 is the vector with the out-of-sample yields of the fourth simulated bond,

15. t4 is the vector with the out-of-sample times to maturity for the fourth simulated

bond.

The output arguments are:

1. X1 is the out-of-sample estimation r̂1n|n,

2. X2 is the out-of-sample estimation r̂2n|n,

3. PP11 is the value in the matrix Vn+1|n indexed as 11,

4. PP12 is the value in the matrix Vn+1|n indexed as 12,

5. PP21 is the value in the matrix Vn+1|n indexed as 21,

6. PP22 is the value in the matrix Vn+1|n indexed as 22.

HS & VC - V.m

The script used to simulate an interest rate using the two-factor Vasicek model using the

parameters specified in subsection 6.2.1 and to compute VaR employing historical simulation

method and variance/covariance method as described in section 2.3. It returns the values x̃,
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N00, N01, N10 and N11, which will provide the statistics for backtesting the VaR estimates

using the function Like.

HS & VC - CIR.m

The script used to simulate an interest rate using the two-factor CIR model using the pa-

rameters specified in subsection 6.2.3 and to compute VaR employing historical simulation

method and variance/covariance method as described in section 2.3. It returns the values x̃,

N00, N01, N10 and N11, which will provide the statistics for backtesting the VaR estimates

using the function Like.

CompuVaRV.m

The script used to compute the 95% and 99% VaR using the Vasicek simulation explained in

section 6.2. It requires bond yields simulations generated using SimV and calls the functions

KFV and ForeV.

CompuVarCIR.m

The script used to compute the 95% and 99% VaR using the CIR simulation in section 6.2.

It requires bond yields simulations generated using SimCIR and calls the functions KFCIR

and ForeCIR.

EstimationAlgo-r.m

The script used to compute parameter estimations and MRAE for both Vasicek model and

CIR model, reported in tables 6.16 and 6.17, respectively. It requires real bond yields and

their associated times to maturity as an input. It returns the estimated parameters and

MRAE of the corresponding model for the subset considered. This script calls the functions

KFVr and KFCIRr.

KFVr.m

The function KFVr is in the form:

[f,xP1,xP2,PP11,PP12,PP21,PP22]=KFVr(x,y1,t1,y2,t2,y3,t3,y4,t4,y5,t5,y6,t6).

The function takes as input arguments:

1. x is the vector of parameters for the Vasicek Kalman filter,
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2. y1 is the vector with the in-sample yields of the first bond,

3. t1 is the vector with the in-sample times to maturity for the first bond,

4. y2 is the vector with the in-sample yields of the second bond,

5. t2 is the vector with the in-sample times to maturity for the second bond,

6. y3 is the vector with the in-sample yields of the third bond,

7. t3 is the vector with the in-sample times to maturity for the third bond,

8. y4 is the vector with the in-sample yields of the fourth bond,

9. t4 is the vector with the in-sample times to maturity for the fourth bond,

10. y5 is the vector with the in-sample yields of the fifth bond,

11. t5 is the vector with the in-sample times to maturity for the fifth bond,

12. y6 is the vector with the in-sample yields of the sixth bond,

13. t6 is the vector with the in-sample times to maturity for the sixth bond.

The output arguments are:

1. f is the value of the likelihood function,

2. xP1 is the value of the estimation r̂1n|n,

3. xP2 is the value of the estimation r̂2n|n,

4. PP11 is the value in the matrix Vn+1|n indexed as 11,

5. PP12 is the value in the matrix Vn+1|n indexed as 12,

6. PP21 is the value in the matrix Vn+1|n indexed as 21,

7. PP22 is the value in the matrix Vn+1|n indexed as 22.

KFCIRr.m

The function KFCIRr is in the form:

[f,xP1,xP2,PP11,PP12,PP21,PP22]=KFCIRr(x,y1,t1,y2,t2,y3,t3,y4,t4,y5,t5,y6,t6).

The function takes as input arguments:
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1. x is the vector of parameters for the Cox-Ingersoll-Ross Kalman filter,

2. y1 is the vector with the in-sample yields of the first bond,

3. t1 is the vector with the in-sample times to maturity for the first bond,

4. y2 is the vector with the in-sample yields of the second bond,

5. t2 is the vector with the in-sample times to maturity for the second bond,

6. y3 is the vector with the in-sample yields of the third bond,

7. t3 is the vector with the in-sample times to maturity for the third bond,

8. y4 is the vector with the in-sample yields of the fourth bond,

9. t4 is the vector with the in-sample times to maturity for the fourth bond,

10. y5 is the vector with the in-sample yields of the fifth bond,

11. t5 is the vector with the in-sample times to maturity for the fifth bond,

12. y6 is the vector with the in-sample yields of the sixth bond,

13. t6 is the vector with the in-sample times to maturity for the sixth bond.

The output arguments are:

1. f is the value of the likelihood function,

2. xP1 is the value of the estimation r̂1n|n,

3. xP2 is the value of the estimation r̂2n|n,

4. PP11 is the value in the matrix Vn+1|n indexed as 11,

5. PP12 is the value in the matrix Vn+1|n indexed as 12,

6. PP21 is the value in the matrix Vn+1|n indexed as 21,

7. PP22 is the value in the matrix Vn+1|n indexed as 22.
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PredictVr.m

The script used to compute MRAE∗ for the Vasicek estimation using real data as described

in 6.3 and reported in table 6.16. It requires real bond yields and their associated times to

maturity as an input. It returns the MRAE∗ for the subset considered. This script calls

the functions KFVr and ForeVr.

ForeVr.m

The function ForeVr is in the form:

[yf1a,yf1b,yf1c,yf1d,yf1e,yf1f,xP1,xP2,PP11,PP12,PP21,PP22]=ForeVr(x,x1,x2,

Pe11,Pe12,Pe21,Pe22,y1,t1,y2,t2,y3,t3,y4,t4,y5,t5,y6,t6).

The function takes as input arguments:

1. x is vector of the estimated parameters for the subset considered,

2. x1 is the initialization value r̂1 0|0,

3. x2 is the initialization value r̂2 0|0,

4. Pe11 is the value in the initialization matrix V1|0 indexed as 11,

5. Pe12 is the value in the initialization matrix V1|0 indexed as 12,

6. Pe21 is the value in the initialization matrix V1|0 indexed as 21,

7. Pe22 is the value in the initialization matrix V1|0 indexed as 22,

8. y1 is the vector with the out-of-sample yields of the first real bond,

9. t1 is the vector with the out-of-sample times to maturity for the first real bond,

10. y2 is the vector with the out-of-sample yields of the second real bond,

11. t2 is the vector with the out-of-sample times to maturity for the second real bond,

12. y3 is the vector with the out-of-sample yields of the third real bond,

13. t3 is the vector with the out-of-sample times to maturity for the third real bond,

14. y4 is the vector with the out-of-sample yields of the fourth real bond,

15. t4 is the vector with the out-of-sample times to maturity for the fourth real bond,
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16. y5 is the vector with the out-of-sample yields of the fifth real bond,

17. t5 is the vector with the out-of-sample times to maturity for the fifth real bond,

18. y6 is the vector with the out-of-sample yields of the sixth real bond,

19. t6 is the vector with the out-of-sample times to maturity for the sixth real bond.

The output arguments are:

1. yf1a is the out-of-sample forecast of the first bond yield,

2. yf1b is the out-of-sample forecast of the second bond yield,

3. yf1c is the out-of-sample forecast of the third bond yield,

4. yf1d is the out-of-sample forecast of the fourth bond yield,

5. yf1e is the out-of-sample forecast of the fifth bond yield,

6. yf1f is the out-of-sample forecast of the sixth bond yield,

7. xP1 is the value of the estimation r̂1n|n,

8. xP2 is the value of the estimation r̂2n|n,

9. PP11 is the value in the matrix Vn+1|n indexed as 11,

10. PP12 is the value in the matrix Vn+1|n indexed as 12,

11. PP21 is the value in the matrix Vn+1|n indexed as 21,

12. PP22 is the value in the matrix Vn+1|n indexed as 22.

PredictCIRr.m

The script used to compute MRAE∗ for the CIR estimation using real data as described

in 6.3 and reported in table 6.17. It requires real bond yields and their associated times to

maturity as an input. It returns the MRAE∗ for the subset considered. This script calls

the functions KFCIRr and ForeCIRr.
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ForeCIRr.m

The function ForeCIRr is in the form:

[yf1a,yf1b,yf1c,yf1d,yf1e,yf1f,xP1,xP2,PP11,PP12,PP21,PP22]=ForeCIRr(x,x1,x2,

Pe11,Pe12,Pe21,Pe22,y1,t1,y2,t2,y3,t3,y4,t4,y5,t5,y6,t6).

The function takes as input arguments:

1. x is vector of the estimated parameters for the subset considered,

2. x1 is the initialization value r̂1 0|0,

3. x2 is the initialization value r̂2 0|0,

4. Pe11 is the value in the initialization matrix V1|0 indexed as 11,

5. Pe12 is the value in the initialization matrix V1|0 indexed as 12,

6. Pe21 is the value in the initialization matrix V1|0 indexed as 21,

7. Pe22 is the value in the initialization matrix V1|0 indexed as 22,

8. y1 is the vector with the out-of-sample yields of the first real bond,

9. t1 is the vector with the out-of-sample times to maturity for the first real bond,

10. y2 is the vector with the out-of-sample yields of the second real bond,

11. t2 is the vector with the out-of-sample times to maturity for the second real bond,

12. y3 is the vector with the out-of-sample yields of the third real bond,

13. t3 is the vector with the out-of-sample times to maturity for the third real bond,

14. y4 is the vector with the out-of-sample yields of the fourth real bond,

15. t4 is the vector with the out-of-sample times to maturity for the fourth real bond,

16. y5 is the vector with the out-of-sample yields of the fifth real bond,

17. t5 is the vector with the out-of-sample times to maturity for the fifth real bond,

18. y6 is the vector with the out-of-sample yields of the sixth real bond,

19. t6 is the vector with the out-of-sample times to maturity for the sixth real bond.

The output arguments are:
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1. yf1a is the out-of-sample forecast of the first bond yield,

2. yf1b is the out-of-sample forecast of the second bond yield,

3. yf1c is the out-of-sample forecast of the third bond yield,

4. yf1d is the out-of-sample forecast of the fourth bond yield,

5. yf1e is the out-of-sample forecast of the fifth bond yield,

6. yf1f is the out-of-sample forecast of the sixth bond yield,

7. xP1 is the value of the estimation r̂1n|n,

8. xP2 is the value of the estimation r̂2n|n,

9. PP11 is the value in the matrix Vn+1|n indexed as 11,

10. PP12 is the value in the matrix Vn+1|n indexed as 12,

11. PP21 is the value in the matrix Vn+1|n indexed as 21,

12. PP22 is the value in the matrix Vn+1|n indexed as 22.

HS & VC - r.m

The script used to compute 95% and 99% VaR employing historical simulation method and

variance/covariance method as described in section 6.3. It returns the values x̃, N00, N01,

N10 and N11, which will provide the statistics for backtesting the VaR estimates using the

function Like.

CompuVaRVr.m

The script used to compute the 95% and 99% VaR using the Vasicek simulation explained

in section 6.3. It requires real bond yields and calls the function ForeVr.

CompuVaRCIRr.m

The script used to compute the 95% and 99% VaR using the CIR simulation explained in

section 6.3. It requires real bond yields and calls the function ForeCIRr.
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Y. Chen, W. Härdle, and V. Spokoiny. Portfolio value at risk based on independent com-

ponent analysis. Journal of Computational and Applied Mathematics, 205(1):594–607,

2007.

P. F. Christoffersen. Elements of Financial Risk Management. Academic Press, 2003.

T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience, 1991.

J. C. Cox, J. E. Ingersoll, and S. A. Ross. A theory of the term structure of interest rates.

Econometrica, 53(2):385–407, 1985.

Q. Dai and K. J. Singleton. Specification analysis of affine term structure models. The

Journal of Finance, 55(5):1943–1978, 2000.

A. Damodaran. Value at Risk. Research and Papers - NYU Stern School of Business.

http://pages.stern.nyu.edu/~adamodar/pdfiles/papers/VAR.pdf, 2007. [Online;

accessed 12-June-2013].

G. Darbha. Value-at-Risk for fixed income portfolios. A comparison of alternative models.

National Stock Exchange, Mumbai, India, 2001.

P. Date and K. Ponomareva. Linear and non-linear filtering in mathematical finance: a

review. IMA Journal of Management Mathematics, 22(3):195–211, 2011.

P. Date and C. Wang. Linear Gaussian affine term structure models with unobservable

factors: Calibration and yield forecasting. European Journal of Operational Research, 195

(1):156–166, 2009.

G. De Rossi. Kalman filtering of consistent forward rate curves: a tool to estimate and model

dynamically the term structure. Journal of Empirical Finance, 11(2):277–308, 2004.

D. Duffie and R. Kan. A yield-factor model of interest rates. Mathematical Finance, 6(4):

379–406, 1996.

D. Duffie and J. Pan. An overview of Value-at-Risk. Journal of Derivatives, 4(3):7–49, 1997.

L. El-Jahel, W. Perraudin, and P. Sellin. Value-at-Risk for derivatives. The Journal of

Derivatives, 6(3):7–26, 1999.

P. Embrechts, S. I. Resnich, and G. Samorodnitsky. Extreme value theory as a risk man-

agement tool. North American Actuarial Journal, 3(2):30–41, 1999.

125

http://pages.stern.nyu.edu/~adamodar/pdfiles/papers/VAR.pdf


J. Fan and I. Gijbels. Local Polynomial Modelling and Its Applications. Chapman & Hall /

CRC, 1996.

V. Fernández. Extreme value theory: Value at Risk and returns dependence around the

world. Documentos de Trabajo 161, Centro de Economı́a Aplicada, Universidad de Chile,

2003.

A. Feuerverger and A. C. M. Wong. Computation of Value-at-Risk for nonlinear portfolios.

The Journal of Risk, 3(1):37–55, 2000.

R. Fiori and S. Iannotti. Scenario based principal component Value-at-Risk: an application

to Italian banks’ interest rate risk exposure. Journal of Risk, 9(3):63–99, 2007.

M. Fisher, D. Nychka, and D. Zervos. Fitting the term structure of interest rates with

smoothing splines. Board of Governors of the Federal Reserve System (U.S.), Finance

and Economics Discussion Series, 95(1):1–30, 1995.

R. A. Fisher and L. H. C. Tippett. Limiting forms of the frequency distribution of the

largest or smallest member of a sample. Mathematical Proceedings of The Cambridge

Philosophical Society, 24:180–190, 1928.

I. Fraga Alves and C. Neves. International Encyclopedia of Statistical Science - Extreme

value distributions (Chapter). Springer Berlin Heidelberg, 2011.

M. S. Gibson and M. Pritsker. Improving grid-based methods for estimating Value at Risk

of fixed-income portfolios. Board of Governors of the Federal Reserve System (U.S.).

Finance and Economics Discussion Series, 25:1–29, 2000.

J. Gil-Pelaez. Note on the inversion theorem. Biometrika, 38(3-4):481–482, 1951.
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A. Rozga and J. Arnerić. Dependence between volatility persistence, kurtosis and degrees

of freedom. Investigacion Operacional, 30(1):32–39, 2009.

H. Sak and C. Haksöz. A copula-based simulation model for supply portfolio risk. The

Journal of Operational Risk, 6(3):15–38, 2011.

Q. Shao, H. Wang, and H. Yu. A calibrated scenario generation model for heavy-tailed risk

factors. IMA Journal of Management Mathematics, 17:289–303, 2006.

A. Z. Sheikh and H. Qiao. Non-normality of market returns: A framework for asset allocation

decision-making. The Journal of Alternative Investments, 12(3):8–35, 2010.

B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall,

1986.

A. Sklar. Random variables, joint distribution functions, and copulas. Kybernetika, 9(6):

449–460, 1973.

D. J. Smith. A primer on bond portfolio value at risk. Advances in Financial Education :

Journal of the Financial Education Association, 7(1-2):1–14, 2009.

D. Sornette, P. Simonetti, and J. V. Andersen. φq-field theory for portfolio optimization:

“fat tails” and nonlinear correlations. Physics Reports, 335:19–92, 2000.

S. V. Stoyanov, S. T. Rachev, B. Racheva-Iotova, and F. J. Fabozzi. Fat-tailed models for

risk estimation. Department of Economics and Business Engineering, Karlsruhe Institute

of Technology (KIT). Working Paper Series in Economics, WP024-08, 30:1–22, 2011.

G. Szegö. Measures of risk. Journal of Banking & Finance, 26(7):1253–1272, 2002.

D. Takahashi and Y. Kanada. High-performance radix-2, 3 and 5 parallel 1-d complex FFT

algorithms for distributed-memory parallel computers. Journal of Supercomputing, 15:

207–228, 2000.

N. Taleb. Dynamic Hedging. Wiley, New York, 1997.

130



C. Temperton. A generalized prime factor FFT algorithm for any n = 2p3q5r. SIAM Journal

on Scientific and Statistical Computing, 13(3):676–686, 1992.

O. Vasicek. An equilibrium characterisation of the term structure. Journal of Financial

Economics, 5:177–188, 1977.

O. Vasicek and G. Fong. Term structure modeling using exponential splines. Journal of

Finance, 37(2):339–348, 1982.

S. Venkataraman. Value at Risk for a mixture of normal distributions: the use of quasi-

Bayesian estimation techniques. Economic Perspectives, pages 2–13, 1997.

R. von Mises. La distribution de la plus grande de n valeurs. Selected Papers - American

Mathematical Society, Providence, RI, 2:271–294, 1954.

I. C. Wang. Dynamic Interest Rate Models and Their Applications. PhD thesis, Brunel

University, 2008.

J. Wang. Generating daily changes in market variables using a multivariate mixture of nor-

mal distributions. http://www.informs-sim.org/wsc01papers/035.PDF, 2001. [Online;

accessed 12-June-2013].

J. G. Wendel. The non-absolute convergence of Gil-Pelaez’ inversion integral. The Annals

of Mathematical Statistics, 32(1):338–339, 1961.

P. Wiberg. Computation of Value-at-Risk: The fast convo-

lution method, dimension reduction and perturbation theory.

http://www.cs.toronto.edu/pub/reports/na/wiberg.phd.ps.gz, 2002. [Online;

accessed 12-June-2013].

T. C. Wilson. Infinite wisdom. Risk, 6:37–45, 1993.

T. C. Wilson. Value at risk. Risk Management and Analysis, 1:61–124, 1998.

P. Zangari. An improved methodology for measuring VaR. RiskMetrics Monitor, second

quarter 1996a.

P. Zangari. How accurate is the Delta-Gamma methodology? RiskMetrics Monitor, third

quarter 1996b.

131

http://www.informs-sim.org/wsc01papers/035.PDF
http://www.cs.toronto.edu/pub/reports/na/wiberg.phd.ps.gz


P. Zangari. A VaR methodology for portfolios that include options. RiskMetrics Monitor,

first quarter 1996c.

132


	Introduction
	Managing the risk for financial institutions
	A short history of VaR
	Four scenarios for a financial portfolio
	Fitting the term structure and computing VaR for fixed income portfolios
	Outline of the thesis

	Mathematical tools for modeling the risk in stock portfolios
	Introduction
	Linear portfolio with normal returns
	Historical simulation method and variance/covariance method
	Linear portfolio with non-normal returns
	Extreme value theory and risk measures
	Modeling fat tails with Student's t distribution
	Copula functions

	Nonlinear portfolio with normal returns
	Delta-Gamma-Normal model
	Digital signal processing
	Discrete Fourier transform (DFT)
	The fast Fourier transform (FFT)
	The characteristic function and the inversion integral
	Characteristic function inversion using FFT

	Nonlinear portfolio with non-normal returns
	Probability conserving transformation
	Delta-Gamma-Q for assets with non-normal returns
	Nonparametric density estimation

	Summary

	Mathematical tools for modeling risk in fixed income portfolios
	Introduction
	Preliminary definitions for interest rate models
	The Kalman filter
	A linear system: The Vasicek model
	Single factor Vasicek model
	Two-factor Vasicek model

	A nonlinear system: The CIR model
	A single factor CIR model
	Two-factor CIR model

	Summary

	Backtesting: Methodology
	Introduction
	The unconditional coverage test
	The independence test
	The conditional coverage test
	Summary

	Nonlinear stock portfolios with fat-tailed risk factors: Results
	Introduction
	Numerical experiments with simulated data
	Numerical experiments with real data
	Data
	Test portfolio
	Applying the Delta-Gamma-dP Normal method: Results
	Applying the Delta-Gamma-Q method: Results

	Summary

	Nonlinear fixed income portfolios: Results
	Introduction
	Numerical experiments with simulated data
	Simulation using the two-factor Vasicek model
	Sensitivity study for the two-factor Vasicek model
	Simulation using the two-factor CIR model
	Sensitivity study for the two-factor CIR model
	Comments on the simulation experiments

	Numerical experiments with real data
	Data
	Results

	Summary

	Summary of contributions and future research
	Appendix Function Documentation

