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NEGATIVE VOLATILITY SPILLOVERS
IN THE UNRESTRICTED
ECCC-GARCH MODEL
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This paper considers a formulation of the extended constant or time-varying con-
ditional correlation GARCH model that allows for volatility feedback of either the
positive or negative sign. In the previous literature, negative volatility spillovers were
ruled out by the assumption that all the parameters of the model are nonnegative,
which is a sufficient condition for ensuring the positive definiteness of the condi-
tional covariance matrix. In order to allow for negative feedback, we show that the
positive definiteness of the conditional covariance matrix can be guaranteed even if
some of the parameters are negative. Thus, we extend the results of Nelson and Cao
(1992) and Tsai and Chan (2008) to a multivariate setting. For the bivariate case of
order one, we look into the consequences of adopting these less severe restrictions
and find that the flexibility of the process is substantially increased. Our results are
helpful for the model-builder, who can consider the unrestricted formulation as a
tool for testing various economic theories.

1. INTRODUCTION

The availability of multivariate GARCH models is essential for enhancing our
understanding of the relationships between the (co)volatilities of economic and
financial time series. For recent surveys on multivariate GARCH specifica-
tions and their practical importance in various areas such as asset pricing, portfolio
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selection, and risk management; see, e.g., Bauwens, Laurent, and Rombouts (2006)
and Silvennoinen and Teräsvirta (2007). There are two major problems in spec-
ifying a valid multivariate model. First, in many formulations the number of pa-
rameters increases quickly with the dimensionality of the model and hence there
is a need for parsimonious parameterizations. Second, multivariate specifications
have to be parameterized in a way that guarantees the positive definiteness of the
conditional covariance matrix almost surely at all points in time. In this article,
our focus is on the latter issue. In most of the currently available specifications,
positive definiteness is achieved by making rather restrictive assumptions. Either
feedback between the conditional variances is completely ruled out, or it is a priori
assumed to be positive. For a general class of multivariate GARCH formulations,
we derive the necessary and sufficient conditions for the positive definiteness of
the covariance matrix and show that these weaker conditions allow for negative
volatility feedback.

Bollerslev’s (1990) diagonal constant conditional correlation (CCC) GARCH
specification is among the most commonly employed multivariate models and
serves as a benchmark against which other formulations can be compared.1 The
diagonal structure implies that each variance behaves as a univariate GARCH
process. Hence, the positivity of each conditional variance can be achieved by
simply assuming that the parameters of each equation satisfy the conditions de-
rived in Nelson and Cao (1992). However, the main drawback of the diagonal
specification is that it rules out potential volatility feedback by assumption. As a
consequence, the autocorrelation function of each of the squared observations of
the multivariate formulation is no more flexible than that of a univariate GARCH
process.

A generalized version of the diagonal CCC model is defined by Jeantheau
(1998) and termed extended constant conditional correlation (ECCC)-GARCH
by He and Teräsvirta (2004).2 In this new formulation, the off-diagonal elements
of the matrices are allowed to take positive values (see also Ling and McAleer,
2003). Clearly, under this assumption positive volatility feedback is incorporated
into the model. The results of He and Teräsvirta (2004) show that the squared
observations of the extended specification have a remarkably richer correlation
structure than those of the diagonal one and, hence, are more suited for replicat-
ing the manifold features of empirical autocorrelation functions that are observed
in practice. The assumption that only positive feedback is allowed for is tempting
because positive constants and parameter matrices with nonnegative coefficients
are a sufficient condition for the positive definiteness of the conditional covari-
ance matrix in the extended formulation. Since Bollerslev (1986) was the first
to impose the nonnegativity restrictions on the parameters of the univariate
process, we will refer to the corresponding constraints for the multivariate
model as Bollerslev’s conditions. He and Teräsvirta (2004) point out that de-
spite the appealing theoretical properties of the extended formulation, more work
is needed to find out how useful it is in practice. Subsequently, Nakatani and
Teräsvirta (2009) suggest a procedure for testing the hypothesis of a diagonal
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structure against the hypothesis of volatility feedback (of either sign) within the
extended framework.

In summary, the currently available specifications are somewhat extreme. That
is, at the one extreme, the diagonal model assumes that there is no causal link
between the volatilities, whereas, at the other extreme, the extended version (in
which the parameters are restricted to being nonnegative) only allows for a positive
variance relationship. Leboit, Santa-Clara, and Wolf (2003) point out that “although
it can be useful to impose sensible restrictions for forecasting purposes, there is
also the danger of employing restrictions that are strongly violated by the data.”

At this point, one alternative process suggests itself. That is, we consider a
formulation of the extended model that allows for feedback effects between the
volatilities, which can be of either sign, positive or negative. We will term this
specification the unrestricted ECCC (UECCC)-GARCH. A crucial problem con-
cerns the identification of necessary and sufficient conditions for the unrestricted
model to have a positive definite conditional covariance matrix.

Nelson and Cao (1992) derived necessary and sufficient conditions for the pos-
itivity of the conditional variance of a univariate GARCH(p,q) model with p ≤ 2
and sufficient ones when p > 2. Recently, Tsai and Chan (2008) have shown that
the latter conditions are also necessary.3 In this paper we show that the method-
ologies developed in Nelson and Cao (1992) and Tsai and Chan (2008) can be
applied to the N -dimensional UECCC-GARCH. We do so by expressing each
of the N conditional variances as a “univariate” ARCH(∞) specification. That
is, each variance admits an infinite moving-average representation in terms of
the N convolutions of the GARCH kernels and the corresponding squared er-
rors. Hence, all the N conditional variances are always nonnegative if all the
N 2 kernels are nonnegative. Most importantly, we provide the necessary and suf-
ficient conditions in terms of the parameters of the original process. By checking
a finite number of inequality constraints, it can be verified that for a particular set
of estimated coefficients, the nonnegativity of all the N 2 kernels is guaranteed.
For practical implementation, we suggest estimating first the unrestricted model
and, in case some of the estimated parameters are negative, validating the nec-
essary and sufficient conditions ex-post.4 For example, in the bivariate case of
order (1,1), we show that at most two parameters of the GARCH matrix can be
negative, if and only if they belong to the same column. For this specific case,
Nakatani and Teräsvirta (2008) also derive analytical conditions but restrict the
two diagonal elements of the GARCH matrix to be positive and, therefore, pro-
vide sufficient but not necessary conditions. For the general model, Nakatani and
Teräsvirta (2008) suggest to check numerically whether the N 2 GARCH kernels
in the ARCH(∞) representation are nonnegative but do not elaborate on how to
obtain the necessary and sufficient conditions analytically.

He and Teräsvirta (2004) investigate the properties of the auto- and cross-
correlations of the squared errors in the extended model of order (2,2) under the
assumption that all the parameters are constrained to be positive. The results in
this research suggest that relaxing these constraints allows for more flexibility in
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the shape of the correlation functions. It thus appears that the unrestricted model
(the one with possibly negative parameters) may characterize some features of the
series that are not adequately captured by the restricted one.5

While empirical violations of the Bollerslev constraints might be thought of as
resulting either from sampling error or model misspecification, our results show
that this is not necessarily the case. Interestingly, they may be in line with eco-
nomic theory. For example, several theories predict either a positive or a nega-
tive association between the variability of inflation and output growth uncertainty
(for more details and a review of the literature, see Fountas, Karanasos, and Kim
2006).6 Similarly, Caporin (2007) argues that an increase in stock return volatil-
ity may lead to a reduction in the variance of volume (see also Karanasos and
Kartsaklas, 2009).7

The outline of the paper is as follows: Section 2 summarizes some basics con-
cerning the notation used throughout the paper and introduces the unrestricted
specification. The main results are stated in Section 3. Section 4 contains an
empirical example, and the conclusions can be found in Section 5. Appendix A
briefly discusses the second- and fourth-moment structure of the model;
Appendix B contains the proofs.

2. THE MODEL

2.1. Notation

Throughout the paper we will adhere to the following conventions: In order to dis-
tinguish matrices (vectors) from scalars, the former are denoted by upper(lower)-
case boldface symbols. HereX(L) = [Xi j (L)]i, j=1,...,N denotes an N × N matrix
polynomial in the lag operator L , i.e., with i j th element Xi j (L) being a polyno-
mial of order p. Using standard notation, det[X(L)] denotes the determinant,
X j i (L) the X(L) matrix without its j th row and i th column, and adj[X(L)] =
[X{a}

i j (L)]i, j=1,...,N denotes the adjoint of the X(L) matrix. That is, X{a}
i j (L) =

(−1)i+ j det[X j i (L)] is a scalar polynomial of order (N −1)× p.
Alternatively, we also write the pth order matrix polynomialX(L) as follows:
X(L) = ∑p

l=0X
(l)Ll , where the upper script with parenthesis denotes an index

and the elements ofX(l) are given by the scalars [x (l)
i j ]i, j=1,...,N .

Furthermore, for square matricesX= [xi j ]i, j=1,...,N ∈RN×N , we define vec(X)

as the N 2 ×1 vector in which the columns of the square matrixX are stacked one
underneath the other. The symbols � and ⊗ denote the Hadamard and Kronecker
products respectively.

Moreover, IN denotes the N × N identity matrix. The transpose and inverse
of a matrix are denoted by X′ and X−1 respectively. Column vectors will be
denoted by lower-case letters, i.e., x = [xi ]i=1,...,N (unless otherwise indicated)
and a diagonal matrix with elements {x1, . . . , xN } will be denoted by diag{x}.
Also, let ∧ andE denote the elementwise exponentiation and expectation operator,
respectively. That is, X∧k = [xk

i j ]i, j=1,...,N , and E(X) = [E(xi j )]i, j=1,...,N .
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Finally, the matrix (vector) inequality sign X > 0 (x > 0) represents element-
by-element inequality.

2.2. Conditional Variances

In this section we introduce the UECCC-GARCH(p,q) model. Consider the
N-dimensional weakly stationary vector process

yt = E(yt |Ft−1)+εεεt , (1)

where Ft−1 = σ(yt−1,yt−2, . . .) is the filtration generated by all the available
information through time t −1.

We assume that the noise vector εεεt is characterized by the relation

εεεt = zt �h∧1/2
t , (2)

where ht = [hit ]i=1,...,N is Ft−1 measurable and the stochastic vector zt =
[zit ]i=1,...,N is independent and identically distributed (i.i.d.) with mean zero and
positive definite covariance matrix R = [ρi j ]i, j=1,...,N with ρi j = 1 for i = j .
From the above equation, it follows thatE(εεεt |Ft−1) =0 andHt =E(εεεtεεε

′
t |Ft−1) =

diag
{
h

∧1/2
t
}
Rdiag

{
h

∧1/2
t
}

.
A major problem in specifying a valid multivariate process lies in choosing ap-

propriate parametric specifications for ht such thatHt is positive definite almost
surely for all t . Positive definiteness of Ht follows if, in addition to the constant
conditional correlation matrixR being positive definite, the conditional variances
hit , i = 1, . . . , N , are positive as well.

Next, we specify the parametric structure of ht . Letμ= [μi ]i=1,...,N be a column

vector with finite elements,B(L) = IN −∑p
l=1B

(l)Ll withB(l) = [b(l)
i j ]i, j=1,...,N

andA(L) = ∑q
r=1A

(r)Lr withA(r) = [a(r)
i j ]i, j=1,...,N .8

We define the vector GARCH(p,q) process as follows:

B(L)ht = μ+A(L)εεε∧2
t . (3)

Obviously, the above process nests Bollerslev’s diagonal specification as a spe-
cial case if we assume that A(L) and B(L) are diagonal matrices. Moreover, if
it is assumed that all the parameters in expression (3) are positive, then the pro-
cess corresponds to the ECCC-GARCH model. This assumption guarantees that
the conditional variances hit , i = 1, . . . , N , are positive almost surely for all t .
Although this condition is sufficient for ensuring the positivity of all the condi-
tional variances, the results of Nelson and Cao (1992) and Tsai and Chan (2008)
suggest that it is not necessary. In the following, we will investigate whether it is
possible to relax this condition by allowing some of the parameters in equation
(3) to take negative values while the positivity of all the conditional variances is
still ensured. As mentioned in the introduction, the resulting process is termed
UECCC-GARCH.
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Remark 1. Although in what follows we will focus our attention on the CCC
process, our results hold for the time-varying conditional correlation (TVCC)
specification as well. This model differs only in allowing the correlation matrix to
be time-varying: Rt = [ρi j,t ]i, j=1,...,N . For examples of such specifications, see
Engle (2002), Tse and Tsui (2002), Silvennoinen and Teräsvirta (2009), and Bai
and Chen (2008).

Assumption A1 (Identifiability). The formulation of the N -dimensional vec-
tor UECCC-GARCH(p,q) model at the true values of the parameters is minimal
ifA(L) and B(L) satisfy the following conditions:

1. det[A(L)] 
= 0 and det[B(L)] 
= 0.
2. A(L) and B(L) are coprime. That is, any of the greatest common left divi-

sors ofA(L) and B(L) are unimodular.
3. A(L) or B(L) is column reduced. That is, det[A(q)] 
= 0 or det[B(p)] 
= 0.

Assumption A1 guarantees that the model in equation (3) is identifiable (see
Prop. 3.4 in Jeantheau, 1998).

In order to provide a more complete description of the model given by equa-
tions (2)–(3) we state in Appendix A: (i) the covariance stationarity assumption,
(ii) expressions for the unconditional second moment of the squared errors, and
(iii) a condition for the existence of the fourth moment of the bivariate GARCH
(1,1) process. However, the results in Appendix A are not needed in the following
theoretical development.

3. NONNEGATIVITY CONSTRAINTS

We now derive the necessary and sufficient conditions for the positivity of the
conditional variances in the N -dimensional UECCC-GARCH(p,q) model. In the
first step, we show that each variance admits a “univariate” representation. From
this formulation, we obtain an ARCH(∞) expansion of each conditional variance
in terms of convolutions of GARCH kernels and corresponding squared errors.
The nonnegativity of the variances is guaranteed if and only if all the kernels are
nonnegative, i.e., if the infinite number of coefficients in the ARCH(∞) expan-
sions of the N 2 kernels are nonnegative. For this, we express these coefficients as
functions of the parameters of the original process. It is then shown that checking
a finite number of inequality constraints on these parameters ensures the nonnega-
tivity of all GARCH kernels. Special attention is given to the bivariate case, which
is relevant for many empirical applications.

3.1. Univariate Representations

In order to simplify the description of our analysis, we will introduce the fol-
lowing notation: Set β(L) = 1 − ∑N×p

l=1 βl Ll = det[B(L)]. Recall, that we have
assumed βN×p 
= 0, hence β(L) is a scalar polynomial of order N × p. Moreover,
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denote by φn , n = 1, . . . , N × p, the inverse of the roots of β(z). Define ω =
[ωi ]i=1,...,N = adj[B(L)]μ and α(L) = ∑(N−1)×p+q

r=1 α(r)Lr = adj[B(L)]A(L)

with α(r) = [α(r)
i j ]i, j=1,...,N , i.e., α(L) is a square matrix polynomial. We can

also express it as α(L) = [αi j (L)]i, j=1,...,N with αi j (L) = ∑(N−1)×p+q
r=1 α

(r)
i j Lr .

Since we have assumed that α
(N−1)×p+q
i j 
= 0 for all i, j = 1, . . . , N , the scalar

polynomials αi j (L) are of the order (N −1)× p +q.

Assumption A2 (Invertibility). The inverse roots φn , n = 1, . . . , N × p, of
β(z) lie inside the unit circle and without loss of generality are ordered as follows:
|φ1| ≥ |φ2| ≥ · · · ≥ |φN×p|.

LEMMA 1. Under Assumptions A1 and A2, the univariate representation of
the N-dimensional vector UECCC-GARCH(p,q) process ht is given by

β(L)ht = ω+α(L)εεε∧2
t . (4)

Lemma 1 states that we can write each conditional variance hit , i = 1, . . . , N , as
being linear in a constant ωi , its own lags hit−l , l = 1, . . . , N × p, its own lagged
squared residuals ε2

i t−r as well as the lagged squared errors ε2
j t−r from the other

equations, j 
= i , r = 1, . . . , (N − 1) × p + q. Most important, in the univariate
representation, hit no longer depends on lagged values of hjt .

Before presenting the general results, we will discuss a specific model in order
to make our analysis more concise. Consider the bivariate process of order (1,1):

[(
1 0

0 1

)
−
(

b11 b12

b21 b22

)
L

](
h1t

h2t

)
=
(

μ1

μ2

)
+
(

a11 a12

a21 a22

)
L

(
ε2

1t

ε2
2t

)
, (5)

where for typographical convenience we have set bi j = b(1)
i j , ai j = a(1)

i j , i, j = 1,2.

In matrix form, we have (I2 −BL)ht = μ+ALεεε2
t , with A = [ai j ]i, j=1,2 and

B= [bi j ]i, j=1,2.

COROLLARY 1. The univariate representation of the bivariate UECCC-
GARCH(1,1) process is given by

(1−β1L −β2L2)

(
h1t

h2t

)
=
(

ω1

ω2

)

+
⎡⎣⎛⎝α

(1)
11 α

(1)
12

α
(1)
21 α

(1)
22

⎞⎠ L +
⎛⎝α

(2)
11 α

(2)
12

α
(2)
21 α

(2)
22

⎞⎠ L2

⎤⎦(ε2
1t

ε2
2t

)
, (6)
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with β1 = b11 +b22, β2 = b12b21 −b11b22,

ω =
⎛⎜⎝(1−b22)μ1 +b12μ2

(1−b11)μ2 +b21μ1

⎞⎟⎠ , α(1) =
(

a11 a12

a21 a22

)

and α(2) =
⎛⎝a21b12 −a11b22 a22b12 −a12b22

a11b21 −a21b11 a12b21 −a22b11

⎞⎠ .

3.2. The N-Dimensional Process

Recall that Jeantheau (1998) assumes that all the coefficients of theA(r) andB(l),
(r = 1, . . . ,q, l = 1, . . . , p) matrices are positive. He and Teräsvirta (2004) point
out that a sufficient condition for ht > 0 for all t is that all elements in μ are
positive and all elements in the A(r) and B(l) matrices are nonnegative for each
r and l. In addition, by referring to the results of Nelson and Cao (1992), they
conjecture that this condition is not necessary, at least not if p > 1 and/or q > 1
(see Rmk. 1 in He and Teräsvirta, 2004). By investigating the ARCH(∞) repre-
sentation of the univariate GARCH(p,q) process, Nelson and Cao (1992) derive
necessary and sufficient conditions for the nonnegativity of the conditional
variances, which is ensured if and only if all the ARCH(∞) coefficients are non-
negative. This, however, does not necessarily mean that all the parameters of the
process have to be positive. Next, we derive the ARCH(∞) expansion of the
vector UECCC-GARCH(p,q) model.

LEMMA 2. Let Assumptions A1 and A2 be satisfied. Then, equation (4) can be
rewritten in the ARCH(∞) form:

ht = ω/β(1)+			(L)εεε∧2
t , (7)

where 			(L) = [	i j (L)]i, j=1,...,N = ααα(L)/β(L) with 	i j (L) = ∑∞
k=1 ψ

(k)
i j Lk =

αi j (L)/β(L).

Here, each 	i j (L) can be thought of as an ARCH(∞) kernel of a GARCH
model of the order (N × p, (N −1)× p +q).

For illustrative purposes, consider again the bivariate process of order (1,1). If
Assumptions A1 and A2 hold, then from equation (6) it follows that the ARCH(∞)
representation of the process exists and is given by(

h1t

h2t

)
=
⎛⎝ω1/(1−β1 −β2)

ω2/(1−β1 −β2)

⎞⎠+
⎛⎝	11(L) 	12(L)

	21(L) 	22(L)

⎞⎠⎛⎝ε2
1t

ε2
2t

⎞⎠ , (8)
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where each of the four kernels 	i j (L) corresponds to an ARCH(∞) kernel of a
univariate GARCH(2,2) process:

	i j (L) = α
(1)
i j L +α

(2)
i j L2

(1−β1L −β2L2)
=

∞
∑
k=1

ψ
(k)
i j Lk for i, j = 1,2.

Following the proof of Proposition 1 in Conrad and Haag (2006), we can re-
cursively express each ψ

(k)
i j sequence as ψ

(k)
i j = β1ψ

(k−1)
i j +β2ψ

(k−2)
i j for k ≥ 3,

where ψ
(1)
i j = α

(1)
i j and ψ

(2)
i j = β1α

(1)
i j + α

(2)
i j . Obviously, the ψ

(k)
i j ’s can now be

expressed in terms of the a’s and b’s using Corollary 1. For example, ψ
(1)
11 = a11

and ψ
(2)
11 = a11b11 +a21b12.

Clearly, for the N -dimensional process in equation (3) to be well-defined and
the N conditional variances to be positive almost surely for all t , all the con-
stants ωi must be positive and all the ψ

(k)
i j coefficients in the ARCH(∞) repre-

sentation, that is equation (7), must be nonnegative: ψ
(k)
i j ≥ 0, i, j = 1, . . . , N , for

k = 1,2, . . ..
In practice, given a particular set of parameters, checking the nonnegativity of

{ψ(k)
i j }∞k=1, i, j = 1, . . . , N , may be a numerically infeasible task. In the following

theorem we show that under some conditions, the nonnegativity of {ψ(k)
i j }k∗

i j
k=1 for

some tractable integers k∗
i j is necessary and sufficient for the nonnegativity of

{ψ(k)
i j }∞k=1.

THEOREM 1. Consider the N-dimensional vector UECCC-GARCH(p,q)
model in equation (3) and let Assumptions A1 and A2 be satisfied and all the
inverse roots φn, n = 1, . . . , N × p, be distinct. Then the following conditions are
necessary and sufficient for hit > 0, i = 1, . . . , N, for all t:

(a) ωi > 0 for all i = 1, . . . , N.

(b) φ1 is real, and φ1 > 0, (C1)

αi j (φ
−1
1 ) > 0, for i, j = 1, . . . , N , (C2)

ψ
(k)
i j ≥ 0, for i, j = 1, . . . , N and k = 1, . . . ,k∗

i j , (C3)

where k∗
i j is the smallest integer greater than or equal to max{0,ϕ} with

ϕ = {log(η
(1)
i j )− log(N p −1)η∗

i j )
}
/{log(|φ2|)− log(φ1)},

η∗
i j = max

2≤n≤N×p
|η(n)

i j |, and η
(n)
i j = −αi j (φ

−1
n )

β ′(φ−1
n )

, 1 ≤ n ≤ N × p,

where β ′(z) denotes the first derivative of β(z).

The proof of Theorem 1 relies on the observation that the results of Tsai and
Chan (2008) can be applied separately to each of the N 2 GARCH kernels 	i j (L).
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Hence, we reduce an infinite number of inequality constraints on the ARCH(∞)
coefficients to a finite number of conditions on the parameters of the process.

For the general model, Nakatani and Teräsvirta (2008, Thm. 2) also argue that
all the {ψ(k)

i j }∞k=1 coefficients have to be nonnegative. However, their statement is
not ‘constructive’ in the sense of our Theorem 1, because they were not able to
reduce the infinite number of inequality constraints on the ψ

(k)
i j to a finite number

of constraints on the parameters of the underlying process.
As mentioned in Remark 1, the results for the UECCC model hold also for any

parametrization of the unrestricted extended TVCC formulation. In addition, it
is straightforward to see that they hold for the asymmetric power version of the
UECCC as well.9

3.3. The Bivariate Process of Order (1,1)

Because the bivariate model of order (1,1) is definitely the most often applied
specification, we intensively discuss the corresponding inequalities and their
interpretation.

PROPOSITION 1. Let Assumptions A1 and A2 be satisfied and φ1 
= φ2. The
following conditions are necessary and sufficient for hit > 0, i = 1,2, for all t in
the bivariate UECCC-GARCH(1,1) model:

(a) For the two constants, we require

ω1 = (1−b22)μ1 +b12μ2 > 0 and ω2 = (1−b11)μ2 +b21μ1 > 0. (9)

(b) Condition (C1) in Theorem 1 reduces to

(b11 −b22)
2 > −4b12b21 and φ1 > 0. (C1′)

Condition (C2) becomes

α11(φ
−1
1 ) = (b11 −φ2)a11 +b12a21 > 0,

α12(φ
−1
1 ) = (b11 −φ2)a12 +b12a22 > 0,

α21(φ
−1
1 ) = b21a11 + (b22 −φ2)a21 > 0,

α22(φ
−1
1 ) = b21a12 + (b22 −φ2)a22 > 0.

(C2′)

Since k∗
i j = 2, Condition (C3) amounts to

ψ
(1)
11 = a11 ≥ 0, ψ

(1)
12 = a12 ≥ 0,

ψ
(1)
21 = a21 ≥ 0, ψ

(1)
22 = a22 ≥ 0,

(C3′a)

and

ψ
(2)
11 = b11a11 +b12a21 ≥ 0, ψ

(2)
12 = b11a12 +b12a22 ≥ 0,

ψ
(2)
21 = b21a11 +b22a21 ≥ 0, ψ

(2)
22 = b21a12 +b22a22 ≥ 0.

(C3′b)
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Note that if φ2 > 0, then αi j (φ
−1
1 ) > 0, that is condition (C2′), directly im-

plies ψ
(2)
i j ≥ 0, that is condition (C3′b), and vice versa if φ2 < 0.

In the bivariate model, both conditional variances are always positive if the
two constants ω1 and ω2 are positive and all four GARCH(2,2) kernels are non-
negative. Note that the conditions that Proposition 1 places on each of the four
kernels are equivalent to the ones derived in Nelson and Cao (1992) and He
and Teräsvirta (1999) (see their Assump. (A23)) for the univariate GARCH(2,2)
model. However, the four kernels are functions of the same underlying parameters
of the bivariate process, and the conditions on the four kernels have to be satisfied
simultaneously. It is clear that the conditions of Proposition 1 are satisfied if all
parameters are assumed to be positive. Finally, it should be noted that conditions
(C3′a) and (C2′)–(C3′b) can be written compactly in a matrix form asA≥ 0 and
[B−max(φ2,0)I2]A> 0, respectively.

Nelson and Cao (1992) have shown that under the necessary and sufficient
conditions for the univariate GARCH(2,2) process with parameters ω, α1, α2,
β1, and β2, at most two out of the five parameters may be negative. These are
the second-order coefficients, i.e., α2 and β2. With the following corollaries, we
will investigate which restrictions Proposition 1 imposes on the parameters of the
bivariate model.

First, note from Condition (C3′a) that all four elements in A must be nonneg-
ative. This is not surprising, since the coefficients of A are the first-order ARCH
parameters, α

(1)
i j , of the GARCH(2,2) kernels in the univariate representations

(see Corollary 1) and, as proved in Nelson and Cao (1992), those should be non-
negative. Actually, this holds for the N -dimensional process of order (p,q) as
well (see also Nakatani and Teräsvirta, 2008). Hence, only coefficients in μ and
B may be allowed to be negative.

COROLLARY 2. In the bivariate UECCC-GARCH(1,1) model, both diago-
nal elements of B cannot be negative simultaneously.

Again, Corollary 2 does not come as a surprise, because β1 = b11 + b22 is the
first-order GARCH parameter of the four kernels in the univariate representations
and according to Nelson and Cao (1992), β1 has to be nonnegative.

It is worth noting that while a negative value of, say, b11 might suggest that the
higher h1t−1, the lower h1t , this is only a partial effect. The univariate representa-
tion implies β1 = b11 +b22 > 0 and hence an “overall” positive relation between
h1t−1 and h1t .

COROLLARY 3. In the bivariate UECCC-GARCH(1,1) process, both ele-
ments of one row of B cannot be negative simultaneously.

COROLLARY 4. In the bivariate UECCC-GARCH(1,1) specification, nega-
tive volatility feedback in both directions (b12 < 0 and b21 < 0) is ruled out.
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Corollary 4 states an important result, because it shows the model’s limitations:
Economic theories that imply negative volatility spillovers in both equations can-
not be tested within the bivariate framework.10

Example 1

Tsay (2002, p. 369) applied the model in equation (5) to monthly returns of IBM
stock and the S&P 500 index from January 1926 to December 1999. He obtained
the following estimates for the entries of theBmatrix: b11 = 0.873, b12 =−0.031,
b21 = −0.066, and b22 = 0.913. Since both off-diagonal elements are negative, the
estimated model does not guarantee the positive definiteness ofHt .

Suppose b12 and b21 were negative, while b11 and b22 as well as the elements in
A were positive. Such a constellation would imply that all second-order ARCH
coefficients in the four GARCH(2,2) kernels are negative; that is, α(2) < 0 in
Corollary 1, but it is ruled out by Corollary 4. However, the case that all four
second-order ARCH coefficients are negative simultaneously is not ruled out in
general, because it can arise even if all parameters are positive.

COROLLARY 5. In the bivariate UECCC-GARCH(1,1) model, at most two
elements of B can be negative, if and only if they belong to the same column.

More specifically, if either bi j < 0 or bj j < 0 or both, i, j = 1,2, i 
= j , then
under (C1′) and (C3′a), conditions (C2′) and (C3′b) reduce to

bii ≥ 0,
bji

|bj j −max(φ2,0)| ≥ max
(l=1,2)

(
ajl

ail

)
, i, j = 1,2, i 
= j. (10)

The result in equation (10) covers the case where one of the off-diagonal ele-
ments of B is negative while all other parameters are positive. This case is par-
ticularly interesting because it implies that β2 = b12b21 − b11b22 < 0 and both
second-order ARCH coefficients in one row of α(2) are negative. E.g., if b12 < 0,
this implies that α

(2)
11 and α

(2)
12 in equation (6) are negative. This special case is

examined by Nakatani and Teräsvirta (2008, Cor. 4), who restrict the diagonal
GARCH parameters to be positive.

Example 2

Bai and Chen (2008) apply the bivariate unrestricted extended TVCC-GARCH
(1,1) model to the data set used in Tsay (2002, p. 374). They use the following

Cholesky decomposition:Ht =LtGtL
′
t , whereLt =

(
1 0
qt 1

)
,Gt =

(
h1t 0
0 g2t

)
,

with qt = ρ12,t
√

h2t/
√

h1t and g2t = h2t (1 −ρ2
12,t ). Then the bivariate process:

[I2 −BL]gt = μ+Aηηη∧2
t−1, where gt = (h1t g2t )

′, η′
t = (ε1t η2t ) with η2t =

ε2t − qtε1t is estimated.11 The following estimates for the entries of the A and

B matrices are obtained: A =
(

0.113 −
0.021 0.052

)
, B =

(
0.804 −

−0.040 0.937

)
. Since

b12 = 0, we have φ1 = b22 = 0.937 and φ2 = b11 = 0.804 > 0. Most important,
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condition (C2′) is violated because b21a11 + (b22 −φ2)a21 = −0.115 < 0. There-
fore, the estimated model does not guarantee the positive definiteness of eitherGt

orHt .

Example 3

Nakatani and Teräsvirta (2008) assume that the conditional variances of two
Japanese stock return series can be characterized by a bivariate ECCC-GARCH
(1,1) process and obtain the following result:

ht =
(

0.1288

0.0541

)
+
(

0.1018 0.0350

0.0341 0.0394

)
εεε∧2

t−1 +
(

0.8093 0.0353

−0.0467 0.9627

)
ht−1,

with ρ12 = 0.6109. Most importantly, the estimated value of the parameter b21 is
negative and highly significant (standard errors can be found in Nakatani and
Teräsvirta, 2008). Clearly, this parameter combination satisfies the conditions
of Proposition 1 and highlights the empirical relevance of negative volatility
feedback.

To summarize our results concerning the elements of B figuratively, we may
say that at most two out of the four coefficients of the B matrix can be negative
as long as they are elements of the same column.

Further, unlike the univariate GARCH(2,2) model, the bivariate GARCH(1,1)
can produce, under some conditions, negative values for the constants. The case
that one of the two is negative is straightforward and requires no further discus-
sion. We now consider the case of both constants being negative. First note that
the condition φi < 1 for i = 1,2 implies that b11 and b22 cannot be greater than
one simultaneously, because b11 +b22 = φ1 +φ2.

COROLLARY 6. In the bivariate UECCC-GARCH(1,1) model, the constants
μ1 and μ2 can be negative simultaneously if and only if one of the two diagonal
elements of B is greater than one.

Finally, we should emphasize that the set of conditions provided by the above
Proposition 1 is weaker than those in Jeantheau (1998), He and Teräsvirta (2004),
and Nakatani and Teräsvirta (2008, 2009). That is, although all four ARCH coef-
ficients must be nonnegative, the two constants and two out of the four GARCH
parameters, under some conditions, can be negative.

These results require more discussion. For illustrative purposes in the next sub-
section we examine a few numerical examples.

3.4. Numerical Examples

In what follows we graphically illustrate the necessary and sufficient parameter
set for the bivariate UECCC-GARCH(1,1) model. This will provide a better un-
derstanding of the results presented in the previous subsection. We discuss four
examples.
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In the first example, we allow the two off-diagonal elements of B to vary.
The parameters chosen for Example 1 are rather standard, except that we assume
a21 = 0.20, which implies that the squared innovations ε2

1t−1 have a strong impact
on h2t . In Example 2 we examine the situation where b11 and b21 (i.e., two coef-
ficients in the first column of B) vary. In Example 3 the two constants μ1 and μ2
vary freely, while the two off-diagonal elements ofA vary in Example 4.

In the following figures, the bold solid lines show which combinations of the
two freely varying parameters satisfy the necessary and sufficient conditions
of Proposition 1 when the other parameters are fixed as in the examples of
Table 1. Additionally, they show which combinations satisfy the conditions for the
existence of the unconditional second (dotted lines) and fourth moments (dashed
lines), which are discussed in Appendix A.

We begin by discussing the implications of Example 1, which is presented in
Figure 1a. First, all combinations of b12 and b21 that are bounded by the three
bold solid lines satisfy the conditions of Proposition 1. The line in quadrant
one represents the invertibility Assumption A2, which is satisfied when b12 <
(1−b11)(1−b22)/b21 = 0.14/b21. In quadrant four, the line stands for the condi-
tion that φ1 is real: b12 < −(b11 − b22)

2/(4b21) = −0.062/b21. The requirement
that b12 is nonnegative is triggered by condition (C2′): b12 > a11|b11 −φ2|/a21 =
|0.30−φ2|/6.67. In line with Corollary 4, this ensures that not both off-diagonal
elements ofB can be negative simultaneously. Finally, it is evident that the Boller-
slev conditions that would restrict both b12 and b21 to being positive are too strong,
since they exclude the area below the bold solid line in quadrant four where
b21 < 0. Second, the combinations of b12 and b21, which are bounded by the
dotted lines, satisfy the conditions for the existence of the second moments. The
dotted lines in quadrant one and four represent the covariance stationarity condi-
tion (see Assumption A3 in Appendix A), while the straight dotted line in quad-
rants two and three is triggered by the restriction that the unconditional variances
are nonnegative (see equation (A.2) in Appendix A). Similarly, the constraints
for the existence of the fourth moments imply the dashed lines (see equations
(A.3) and (A.4) in Appendix A). In the first quadrant, the restrictions implied
by the conditions for the existence of the second and fourth moments are more

TABLE 1. Data generating processes (DGP) for Examples 1 to 4

DGP Ex. 1 DGP Ex. 2 DGP Ex. 3 DGP Ex. 4

μ′ (0.10 0.20) (0.10 0.20) (μ1 μ2)
(
0.20 0.10

)
A

(
0.03 0.02
0.20 0.05

) (
0.03 0.02
0.40 0.05

) (
0.07 0.03
0.01 0.002

) (
0.03 a12
a21 0.05

)
B

(
0.30 b12
b21 0.80

) (
b11 0.30
b21 0.80

) (
1.20 −0.50
0.50 0.15

) (
0.10 0.30

−0.35 0.80

)
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FIGURE 1. Necessary and sufficient parameter sets for bivariate UECCC-GARCH(1,1)
from Examples 1 (panel a) and 2 (panel b). Bold solid lines represent the restrictions im-
plied by Proposition 1; dotted and dashed lines stand for the restrictions for the existence
of the unconditional second and fourth moments.

restrictive than the one implied by the invertibility Assumption A2. In summary,
the parameter set that satisfies all conditions simultaneously is given by the area
that is below the dashed line in the first and fourth quadrant and below the bold
solid line in the fourth quadrant.

Next, we consider the case where both elements of the first column of B vary.
The bold solid lines in Figure 1b show the necessary and sufficient set for Exam-
ple 2. As suggested by Corollary 5, we can now have both elements in a column
being negative. The line in quadrants one and two represents the invertibility As-
sumption A2: b11 < 1 − b12b21/(1 − b22) = 1 − 1.50b21; while the one in quad-
rants two and three is triggered by condition (C3′b): b11 ≥ −b12a22/a12 = −0.75.
The line in quadrant four represents condition (C2′): b21 > −(b22 −φ2)a22/a12 =
−2.50(0.80−φ2).

Figure 2a shows that, for the parameters in Example 3, both constants can be
negative. All parameter combinations above the bold solid lines in quadrants one
and three are valid: μ1 > |b12|μ2/(1−b22) = 0.59μ2 and μ1 > |1−b11|μ2/b21 =
0.40μ2, respectively. Interestingly, combinations with μ1 < 0, μ2 > 0 are ruled
out, whereas, in sharp contrast, all possible combinations with μ1 > 0, μ2 < 0
are permitted. Example 3 is in line with Corollary 6, which requires, for the case
μ1 < 0, μ2 < 0, that one of the diagonal elements of B must be greater than one
(b11 = 1.2). Example 4 is visualized in Figure 2b. The conditions of Proposition 1
allow for negative volatility feedback from h1t to h2t only if a12 takes rather
small values. In particular, since φ2 = 0.32 > 0, the two off-diagonal elements
of A should satisfy condition (C2′): a21 > a11|b11 − φ2|/b12 = 0.02 and a12 <
a22b12/|b11 −φ2| = 0.07.

The examples above impressively show that the weaker conditions of Propo-
sition 1 substantially enlarge the necessary and sufficient parameter set in com-
parison to the Bollerslev conditions. Having a wider admissible parameter set
should increase the flexibility of the UECCC-GARCH(1,1) model. Assuming
conditional normality and ρ12 = 0.2, we illustrate this for Example 2 by plotting
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FIGURE 2. Necessary and sufficient parameter sets for bivariate UECCC-GARCH(1,1)
from Examples 3 (panel a) and 4 (panel b). The bold solid lines represent the restrictions
implied by Proposition 1. The dotted and dashed lines stand for the restrictions for the
existence of the unconditional second and fourth moments.

the auto- and cross-correlations of the squared errors.12 For this, we set b21 =
−0.10 and vary b11 from −0.70 to 0 by steps of 0.10. Since b22 = 0.80, the
restriction that β1 = b11 +b22 > 0 is always satisfied. When b11 takes large nega-
tive values, we observe an oscillating behavior in the auto- and cross-correlations
r11(m) and r12(m), m = 1,2, . . ., which disappears as b11 gets close to zero.

4. TESTING ECONOMIC THEORY

The debate about the inflation-growth interaction is linked to another ongoing
dispute, that of the existence or absence of a variance relationship. As Fuhrer
(1997) puts it: “It is difficult to imagine a policy that embraces targets for the
level of inflation or output growth without caring about their variability around
their target levels. The more concerned the monetary policy is about maintaining
the level of an objective at its target, the more it will care about the variability of
that objective around its target.”

There are many controversies in the theoretical literature on the relationship
between the four variables (see Fountas, Karanasos, and Kim, 2006, and the
references therein). The extent to which there is an interaction of either sign
between the two variances is an issue that cannot be resolved on merely theo-
retical grounds. Furthermore, the models regarding the “uncertainty link” that do
exist are often ambiguous in their predictions. These considerations reinforce a
widespread awareness of the need for more empirical evidence, but they also make
clear that a good empirical framework is lacking. In what follows, we will em-
ploy the bivariate process to examine how U.S. nominal and real uncertainties are
interrelated.

Monthly U.S. data for the period 1960:01 to 2007:11 are obtained from Data-
stream to provide a reasonable number of observations. The inflation rate ( y1t )
and output growth ( y2t ) series are calculated as the monthly difference in the
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FIGURE 3. The figure shows the mth order auto- and cross-correlations, ri j (m), between

ε2
i t and ε2

j t−m for the bivariate UECCC-GARCH(1,1) from Example 2. We set b21 =
−0.10 and vary b11 from -0.70 (lowest, dotted line) to 0 (highest, solid line) by steps of
0.10.

natural log of the Consumer Price Index and Industrial Production Index,
respectively.

Assuming conditional normality, we estimate an ARMA(12,0)-UECCC-
GARCH(1,1) specification. For reasons of brevity, we omit the results for the
mean equation. The estimation results for the conditional variances are:

ht =
⎛⎝0.482

(0.140)

5.028
(3.262)

⎞⎠+
⎛⎝0.086

(0.018)
0.009
(0.002)

− 0.257
(0.054)

⎞⎠εεε∧2
t−1 +

⎛⎝0.888
(0.042)

−0.010
(0.004)

1.296
(0.491)

0.512
(0.065)

⎞⎠ht−1, (11)

with ρ12 = −0.026 (0.045). The numbers in parentheses are robust standard
errors.

The parameter a21 was set to zero because it turned out to be insignificant.
Interestingly, there is a bidirectional feedback between the two variabilities. In
particular, there is strong evidence supporting the Logue and Sweeney (1981)
theory that inflation uncertainty has a positive impact on the volatility of growth.
In sharp contrast, real variability affects nominal uncertainty negatively, as pre-
dicted by, among others, Fuhrer (1997). Clearly, the negative coefficient b12 would
have been ruled out by the sufficient Bollerslev conditions. It is easy to check that
the conditions of Proposition 1 are satisfied for the given parameter combination.



NEGATIVE VOLATILITY SPILLOVERS 855

FIGURE 4. The figure shows the mth order auto- and cross-correlations, ri j (m), between

ε2
i t and ε2

j t−m for a bivariate process of order (1,1) with parameter estimates as presented
in equation (11).

Moreover, the conditions for the existence of the unconditional second and fourth
moments are satisfied as well. Finally, it is interesting to note that within the
unrestricted extended framework, there exists an intertemporal relation between
the two variances whenever the off-diagonal elements of B are significant. Most
importantly, this intertemporal relation implies that the two volatilities are also
contemporaneously correlated. This is the case even if the constant conditional
correlation coefficient ρ12 is insignificant (as in our example).13

Figure 4 shows the auto- and cross-correlations of the squared errors. As ex-
pected, we observe first an increase in the cross-correlation, r21(m), between the
squared residuals of output and inflation before it starts to decline to zero. This is
driven by the strong positive effect from inflation uncertainty to output variability
captured by the coefficient b21.

5. CONCLUSIONS

We have derived necessary and sufficient conditions that ensure the positive
definiteness of the conditional covariance matrix in the N -dimensional UECCC-
GARCH model almost surely for all t . For this, we have shown that each vari-
ance admits an ARCH(∞) representation in terms of the N convolutions of the
GARCH kernels and the corresponding squared errors. All the N conditional
variances are almost surely nonnegative for all t if all the N 2 kernels are si-
multaneously nonnegative. It is then straightforward to apply the methodologies
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developed in Nelson and Cao (1992) and Tsai and Chan (2008) to each of these
kernels. In contrast to the sufficient Bollerslev conditions, the necessary and suf-
ficient conditions do not rule out the possibility that some of the parameters
of the model take negative values. In particular, negative volatility feedback is
allowed. We have shown that this substantially increases the permissible param-
eter space and thereby the flexibility of the model in capturing the stylized facts
of economic and financial data. For practical applications, our results suggest that
imposing the sufficient Bollerslev conditions on the estimation routine may lead
to severe model misspecification. Instead, one should start by estimating the un-
restricted model and then check the necessary and sufficient conditions ex post.
Alternatively, our conditions can be directly imposed in the maximization pro-
cedure. In models of low order, e.g., the bivariate UECCC-GARCH(1,1), this
can be done in a straightforward way. However, as shown in Iglesias and Linton
(2007), such constraint maximization procedures create bias terms when one or
more of the restrictions are binding, i.e., when the parameter combination lies on
the boundary. It would be interesting to investigate whether their bias correction
mechanism for univariate GARCH models could be extended to our multivariate
framework.14

The availability of the necessary and sufficient conditions allows us to test eco-
nomic theories within the unrestricted framework that were, by construction, ex-
cluded in the restricted version. On the other hand, our results also highlight the
limitations of the model; e.g., within the bivariate process of order (1,1) it is not
possible to test theories that imply negative volatility spillovers in both directions.

We should highlight that our results do not only hold for the CCC process
but also for the various parameterizations of the time-varying conditional correla-
tion formulation. Finally, we would like to point to another interesting avenue for
future research. Ling and McAleer (2003) derive an asymptotic theory for vector
ARMA-GARCH processes under the sufficient Bollerslev conditions. Our results
suggest that it would be worthwhile to investigate whether the Ling and McAleer
(2003) theory also holds under the necessary and sufficient conditions derived in
this paper.

NOTES

1. Other multivariate GARCH models are the CCC-ARCH process that appears in Cecchetti,
Cumby, and Figlewski (1988) or the VECH model of Bollerslev, Engle, and Wooldridge (1988).
A multivariate specification that can be viewed as a restricted version of the VECH model is the
BEKK formulation defined in Engle and Kroner (1995). Scherrer and Ribaritis (2007) deal with
issues of structure and parameterization of VECH and BEKK models.

2. For empirical applications of the extended version, see Nakatani and Teräsvirta (2009).
3. Nonnegativity conditions for the fractionally integrated GARCH (FIGARCH) and the hyper-

bolic GARCH model can be found in Conrad and Haag (2006) and Conrad (2007), respectively.
Finally, nonnegativity conditions for ARMA processes are provided by Tsai and Chan (2007).

4. In a recent article, Gourieroux (2007) also deals with the problem of deriving positivity con-
ditions for multivariate volatility processes. However, his results apply to bivariate autoregressive
volatility specifications only.
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5. Similar results were obtained by He and Teräsvirta (1999) and Conrad and Haag (2006) for the
univariate GARCH and FIGARCH models, respectively. Both show that the potential shapes of the
autocorrelation functions are considerably more flexible under the necessary and sufficient conditions
than under the ones that impose nonnegative parameters.

6. We will use the terms variance, variability, uncertainty, and volatility interchangeably in the
remainder of the text.

7. Caporin (2007) suggests the exponential causality GARCH model, which allows for negative
volatility feedback.

8. For simplicity and without loss of generality, we assume that b(p)
i j 
= 0 and a(q)

i j 
= 0 for i, j =
1, . . . , N .

9. This version can be obtained from equation (3) as follows: Replace ht by h∗
t = [h

δi /2
i t ]i=1,...,N

and εεε∧2
t by εεε∗

t = z∗t �h∗
t , where z∗t = [(zit −γi |zi t |)δi ]i=1,...,N with |γi | < 1 and δi ∈ (0,∞). For

the asymmetric power model, Lemma 2 holds with h∗
t = ω/β(1)+			(L)εεε∗

t , where the ARCH(∞)
polynomial 			(L) is now multiplied by the nonnegative innovations εεε∗

t and, hence, Theorem 1 can be
directly applied.

10. However, in the trivariate UECCC-GARCH(1,1) model, it is easy to find parameter combina-
tions that satisfy the necessary and sufficient conditions but at the same time imply negative volatility
spillovers between two of the three conditional variances.

11. For the time-varying conditional correlation, they employ the equation (1 − γ1 L)qt = γ0 +
γ2 Lε2t (see also Tsay, 2002, p. 374).

12. The analytic forms for the auto- and cross-correlations of the squared errors of the UECCC-
GARCH(1,1) model are given in Corollary 3 in He and Teräsvirta (2004). It is interesting to note that
one can express the N -dimensional vector UECCC-GARCH(p,q) model in an ARMA representation
and then apply the methodology in Karanasos (1999a, 1999b, 2007) to obtain the correlation structure
of the squared errors (see Conrad and Karanasos, 2008).

13. In sharp contrast, an insignificant ρ12 in the diagonal CCC model would imply the complete
absence of a relation between the variances of inflation and output growth. Studies such as, e.g.,
Grier and Perry (2000) and Wilson (2006) that employ this formulation tend to find insignificant
constant correlations and, hence, miss the link between the two volatilities. Finally, it should be noted
that an insignificant constant conditional correlation does not imply the absence of a relationship
between the levels of inflation and output growth. Such a link could be at work via cross-effects in the
mean equations (economic theories that predict either positive or negative relations are discussed in,
e.g., Fountas et al., 2006).

14. Alternatively, if the unrestricted model is estimated and one or several positivity conditions are
violated, it may be appropriate to estimate a restricted model by imposing that those inequality con-
straints that were previously violated hold with equality. If the remaining conditions are satisfied for
the restricted model, one can test the restricted against the unrestricted specification. If the restrictions
are not rejected, the restricted model can be applied.
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APPENDIX A: Second and Fourth Moments

A.1. Unconditional Variances. Define p∗=max(p,q), and setC(l)
t =
[
c(l)

i j,t

]
i, j=1,...,N

=
A(l)Zt +B(l), l = 1, . . . , p∗, where Zt = diag{z∧2

t }, A(l) = 0 if l > q and B(l) = 0 if

l > p. Note that
{
C

(l)
t

}
is a sequence of i.i.d. random matrices (for A(l) 
= 0) such that

C
(l)
t is independent of ht .
By equation (2) we may rewrite equation (3) as

ht = μμμ+∑p∗
l=1C

(l)
t−lht−l . (A.1)

Next we shall make use of the following notation. Let ���(L) = IN −∑p∗
l=1���(l)Ll , where

���(l) =
[
γ

(l)
i j

]
i, j=1,...,N

=E
(
C

(l)
t

)
, with γ

(l)
i j = a(l)

i j E
(
z2

j t

)+b(l)
i j . Set γ (L) = 1−∑N×p∗

l=1

γl Ll = det[���(L)]. We have assumed γN×p∗ 
= 0, that is, γ (L) is a scalar polynomial of
order N × p∗. Define also ω̃ωω = [ω̃i ]i=1,...,N = adj[���(1)]μμμ.

Assumption A3 ((Stationarity). The roots of det[���(z)] lie outside the unit circle.

Notice that whenA(r) ≥ 0, r = 1, . . . ,q, the stationarity assumption implies the invert-
ibility condition.

LEMMA 3. When Assumption A3 holds, the unconditional variances of the elements of
εεεt , μμμ2 = [μ2,i ]i=1,...,N = E(ht ), exist if ω̃ωω > 0, and are given by

μμμ2 = 1

γ (1)
ω̃ωω. (A.2)

Let ω̃ωω > 0 hold. Then, under Assumption A3, the vector UECCC-GARCH(p,q) model
has a weakly stationary solution. Moreover, this solution is unique and is also strictly sta-
tionary and ergodic (see Prop. 3.1 in Jeantheau, 1998).
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Remark 2. Recall that He and Teräsvirta (2004) assume all the parameters in μμμ to be
positive, and all inA(L) andB(L) to be nonnegative. In this situation and under Assump-
tion A3, the positivity of ω̃ωω is guaranteed by construction (see Rmk. 3 in their paper). In
sharp contrast, in the unrestricted model we allow some of these parameters to be negative
and, hence, the condition ω̃ωω > 0 has to be checked.

A.2. Fourth-Moment Structure of the Process of Order (1,1). To keep this article rel-
atively self-contained, we briefly review the main theoretical results of He and Teräsvirta
(2004) on the fourth-moment structure of the bivariate UECCC-GARCH(1,1) process de-
fined in equation (5). (The papers by Karanasos, 1990a, and Hafner, 2003, also contain
results on fourth moments of multivariate GARCH models.) Equation (A.1) becomes

ht = μμμ+Ct−1ht−1,

where for typographical convenience we have setCt−1 =C(1)
t−1.

Assume E(z2
i t z2

j t ) < ∞, i, j = 1,2, and let ���C = E(Ct ), ���Z⊗Z = E(Zt ⊗ Zt ), and
���C⊗C = E(Ct ⊗Ct ). Notice that under the assumption of conditional normality, we have
���C =A+B and ���Z⊗Z =diag{3,1+2ρ2

12,1+2ρ2
12,3}.

Moreover, let λ(���C⊗C ) denote the modulus of the largest eigenvalue of ���C⊗C . Then
the matrix E[εεε∧2

t (εεε∧2
t )′] of the fourth moments of {εεεt } exists if

λ(���C⊗C ) < 1 (A.3)

and

adj(�̃��C⊗C )
[
vec(μμμμμμ′)+���

μ
C

]
> 0, (A.4)

where

�̃��C⊗C = I4 −���C⊗C ,

���
μ
C = (���C ⊗μ+μμ+μμ+μ⊗���C )(μμμ′ ⊗ I2)vec(I2 −���C )−1.

Denote μμμ4 = [μ4,i j ]i, j=1,2 = E[εεε∧2
t (εεε∧2

t )′]. Notice that μμμ4 is a square matrix. Under
equations (A.3)–(A.4),

μμμ4 = ���Z⊗Z {(�̃��C⊗C )−1[vec(μμμμμμ′)+���
μ
C ]}.

(see Cor. 2 in He and Teräsvirta, 2004).

Remark 3. Condition (A.4) is needed because by Proposition 1 we allow some of the
parameters in the vector μμμ and the matrix B to take negative values. Under the stricter
assumption made by He and Teräsvirta (2004), namely, that all parameters of the process
are nonnegative, condition (A.4) is directly satisfied.

APPENDIX B: Proofs

Proof of Lemma 1. Multiply both sides of equation (3) by adj[B(L)] = β(L)
[B(L)]−1. n

Proof of Corollary 1. The proof follows immediately from Lemma 1. n

Proof of Lemma 2. Simply divide equation (4) by β(L). n
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Proof of Theorem 1. From the ARCH(∞) expansion, that is, equation (7), it follows
that each conditional variance, hit, admits an infinite moving-average representation in
terms of the N convolutions of the GARCH kernels (	i j (L), j = 1, . . . , N ) and the corre-
sponding squared errors. Thus, the proof follows by applying Theorem 1 in Tsai and Chan
(2008) to each of the N 2 kernels. n

Proof of Proposition 1. Initially, we obtain the conditions in terms of the ω’s, α’s,

and β’s. That is, (C2′): φ1α
(1)
i j +α

(2)
i j > 0; (C3′a): ψ

(1)
i j = α

(1)
i j ≥ 0, and (C3′b): ψ

(2)
i j =

β1a(1)
i j +a(2)

i j ≥ 0. Note that since β1 = φ1 +φ2, if φ2 > 0, then α
(1)
i j φ1 +α

(2)
i j > 0 directly

implies ψ
(2)
i j ≥ 0 and vice versa if φ2 < 0. Finally, using the expressions in equation (6)

and the fact that φ1 = β1 −φ2 = b11 + b22 −φ2, the conditions are rewritten in terms of
the μ’s, a’s, and b’s. n

Proof of Corollary 2. The assumption that φ1 > |φ2| implies β1 = φ1 +φ2 = b11 +
b22 ≥ 0. Hence, b11 and b22 cannot be negative simultaneously. n

Proof of Corollary 3. Conditions (C3′a) and (C2′) (when φ2 > 0) or (C3′b) (when
φ2 < 0) imply that both elements of the same row (bi1, bi2, i = 1,2) cannot take negative
values. n

Proof of Corollary 4. Let the two off-diagonal elements of the B matrix be negative
and the other two positive. We will show that if conditions (C1′) and (C3′a) in Proposition 1
are satisfied, conditions (C2′) and (C3′b) are violated. First we will show that the case
φ2 < 0 or (since φ1 > 0) β2 = −φ1φ2 = b12b21 − b11b22 > 0 violates the constraints of
condition (C3′b). Under condition (C3′a), the latter condition amounts to

b11a11 ≥ |b12|a21, b11a12 ≥ |b12|a22,

b22a21 ≥ |b21|a11, b22a22 ≥ |b21|a12.

Then if we multiply the two inequalities of the first column, we get b11b22 ≥ b12b21,
which contradicts φ2 < 0. Next, we will focus our attention on the case φ2 > 0. Notice
that φ1, φ2 > 0 implies that β2 < 0 or b12b21 < b11b22. Since φ2 > 0, condition (C3′b)
is redundant. Under condition (C3′a) and the fact that φ2 < b11,b22 < φ1, condition (C2′)
amounts to

(b11 −φ2)a11 > |b12|a21, (b11 −φ2)a12 > |b12|a22,

(b22 −φ2)a21 > |b21|a11, (b22 −φ2)a22 > |b21|a12.

Notice that the two inequalities of the first column imply that |b12|/(b11 −φ2) < a11/a21<
(b22 −φ2)/|b21|, while those of the second column imply that |b21|/(b22 −φ2)<a22/a12<

(b11 −φ2)/|b12|. Since b21
(b11−φ2)

= (b22 −φ2)/b12, the four inequalities cannot be satis-
fied simultaneously. n

Proof of Corollary 5. From the previous corollaries, we know that at most two entries
in one column of B may be allowed to be negative. That is because neither the two diago-
nal, the two off-diagonal, nor the two entries in one row can be negative. Further, assume
that conditions (C1′) and (C3′a) hold. Also, without loss of generality, let b11,b21 > 0, and
let one or both elements in the second column of theB matrix be negative. We will exam-
ine the two cases where φ2 ≶ 0. Notice that when only b12 < 0 then φ2 > 0, whereas when
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only b22 < 0 then φ2 < 0. Moreover, when b12,b22 < 0 then φ2 ≷ 0 if |b12b21|≷ |b11b22|.
If φ2 < 0, condition (C2′) is redundant and condition (C3′b) becomes

a11b21 ≥ a21 |b22| , a12b21 ≥ a22 |b22| .
The above inequalities hold when i) only b22 < 0 and ii) b12,b22 < 0 and |b12b21| <
|b11b22|. Notice that the last inequality implies that |b12|/b11 < |b22|/b21. If φ2 > 0, we
only need to check condition (C2′). This condition reduces to a11b21 > a21|b22 − φ2|,
a12b21 > a22|b22 − φ2|, since b12/(b11 −φ2) = (b22 −φ2)/b21 and hence b22 < φ2.
The above inequalities hold when (i) only b12 < 0 and (ii) b12,b22 < 0 and |b12b21| >
|b11b22|. n

Proof of Corollary 6. Let condition (C1′) in Proposition 1 hold. Without loss of gener-
ality, we will examine the two cases where b11 ≶ 1 (with b22 < 1). First, assume b11 < 1. If
b12 < 0, b22 ≶ 0, and the other two parameters inB are positive, then the two inequalities
in equation (9) rule out the possibility that μ1 ≤ 0. Thus equation (9) becomes

μ1 > 0, μ2 ≤ 0, and
|μ2|
μ1

<
b21

(1−b11)
or

μ1 > 0, μ2 ≥ 0, and
μ2

μ1
<

(1−b22)

|b12| .

Note that the inequality in the first expression is more binding than the one in the second
expression since, from the invertibility condition, (1−b22)/|b12| > b21/(1−b11). Further,
if b22 ≶ 0 and the other three parameters in B are positive, then the two inequalities in
equation (9) rule out the possibility that μ1,μ2 ≤ 0. Thus, equation (9) reduces to

μ1 > 0, μ2 ≥ 0, or μ1 ≥ 0, μ2 > 0, or

μ1 ≤ 0, μ2 > 0, and
|μ1|
μ2

<
b12

(1−b22)
, or

μ1 > 0, μ2 ≤ 0, and
μ2

|μ1| <
b21

(1−b11)
,

since from the invertibility condition, b12/(1−b22) < (1−b11)/b21. Second, let b11 > 1.
If b12 < 0, b22 ≶ 0, and b21 > 0, then the two inequalities in equation (9) rule out the
possibility that μ1 ≤ 0 and μ2 ≥ 0. In this case, part (a) of Proposition 1 becomes

μ1 ≤ 0, μ2 < 0, and
|μ1|
|μ2| <

|1−b11|
b21

or

μ1 > 0, μ2 ≥ 0, and
μ2

μ1
<

(1−b22)

|b12| or

μ1 > 0, μ2 ≤ 0,

since from the invertibility condition, (1−b22)/|b12| < b21/|1−b11|. n

Proof of Lemma 3. Taking expectations on both sides of equation (A.1) yields ���(1)
E(ht ) = μμμ. Multiply both sides of this expression by adj[���(1)] = γ (1)[���(1)]−1 to get
equation (A.2). n


