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Abstract

Clinical trials are typically conducted over a population within a defined time period

in order to illuminate certain characteristics of a health issue or disease process. These

cross-sectional studies provide a snapshot of these disease processes over a large num-

ber of people but do not allow us to model the temporal nature of disease, which is

essential for modeling detailed prognostic predictions. Longitudinal studies, on the

other hand, are used to explore how these processes develop over time in a number

of people but can be expensive and time-consuming, and many studies only cover a

relatively small window within the disease process. This thesis describes the applica-

tion of intelligent data analysis techniques for extracting information from time series

generated by different diseases. The aim of this thesis is to identify intermediate stages

in a disease process and sub-categories of the disease exhibiting subtly different symp-

toms. It explores the use of a bootstrap technique that fits trajectories through the data

generating “pseudo time-series”. It addresses issues including: how clinical variables

interact as a disease progresses along the trajectories in the data; and how to automati-

cally identify different disease states along these trajectories, as well as the transitions

between them. The thesis documents how reliable time-series models can be creat-

ed from large amounts of historical cross-sectional data and a novel relabling/latent

variable approach has enabled the exploration of the temporal nature of disease pro-

gression. The proposed algorithms are tested extensively on simulated data and on

three real clinical datasets. Finally, a study is carried out to explore whether we can

“calibrate” pseudo time-series models with real longitudinal data in order to improve

them. Plausible directions for future research are discussed at the end of the thesis.

xii



Acknowledgements

Firstly I would like to thank my supervisor Dr Allan Tucker for constructive supervi-

sion throughout my PhD study. Without his support, encouragement and guidance, this

thesis would have never been completed. I have learned a great deal under his direction

not only academically but also philosophically in terms of dealing with challenges in

both work and life. It has been a true privilege and a pleasure to work with him.

I am also very grateful to my second supervisor Dr Stephen Swift for all of his

invaluable advice and feedback, which are instrumental in My PhD research and all of

my publications.

I would also like to thank my colleagues (past and present) in the CIDA (Centre

of Intelligent Data Analysis) at Brunel for their help, support, as well as interesting

discussions, which made the lab fun and pleasurable to work in.

I own a big gratitude to my family for their love, encouragement and support

throughout my PhD study.

Finally, I would like to express my sincere gratitude to everyone who has helped

and encouraged me in many ways throughout the four years of my research life.

xiii



Publications

The following publications have resulted from the research presented in this thesis

include:

1. X. Li, D. Garway-Heath and A. Tucker. (2009). Using pseudo time-series tra-

jectories to explore disease regions in glaucoma, Fourteenth Workshop on Intel-

ligent Data Analysis in bioMedicine and Pharmacology (IDAMAP 2009), IEEE.

2. Y. Li and A. Tucker (2010). Uncovering disease regions using pseudo time-series

trajectories on clinical trial data, 3rd International Conference on BioMedical

Engineering and Informatics (BMEI 2010)

3. Y. Li and S. Swift and A. Tucker (2013). Modelling and analysing the dynam-

ics of disease progression from cross-sectional studies, Journal of Biomedical

Informatics, Volume 46, Issue 2, Pages 266-274.

4. Y. Li and A. Tucker (2014). How much time do we need to learn disease pro-

gression, 27th International Symposium on Computer-based Medical Systems

(CBMS 2014), IEEE.

xiv



Chapter 1

Introduction

1.1 Motivation

Clinical trials are typically conducted over a population within a defined time peri-

od in order to illuminate certain characteristics of a health issue or disease process.

These cross-sectional studies give us a snapshot of such disease processes over a large

number of people but do not allow us to model the temporal nature of disease. Lon-

gitudinal studies on the other hand, are used to explore how these processes develop

over time in a number of people but can be expensive and time-consuming, and of-

ten only cover a relatively small window within the disease process. Thus, there is

a need for effective computational techniques that can help people to gather informa-

tion from those unknown datasets in order to enhance the knowledge of the underly-

ing processes. In the biomedical domain, computational methods have become more

and more important for the evaluation and analysis of experimentally generated data.

There is already a large amount of work that explores data mining from cross-sectional

biomedical data in order to make predictions or understand the relationships between

1
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variables ([SSPGH06], [BZ08], [SS11]). Whilst some studies involve learning compu-

tational and statistical time-series models of progression from longitudinal data such as

([TVLGH05], [SL02], [HXW+10]), many datasets are cross-sectional and the time di-

mension is not measured, despite the inherently temporal nature of disease. This is due

to the expensive nature of these studies across an entire population. Disease progres-

sion can take different forms with different trajectories starting from healthy condition

and developing different symptoms, depending on the individual, before progressing

to advanced stages of a disease. Figure 1.1 shows two examples of disease progression

in breast cancer and glaucoma where possible trajectories (marked as arrows) denote

progression from healthy (light blue circles) to diseased stages (red crosses). Data has

been visualised using multi-dimensional scaling.

Expert clinicians generally believe that degenerative diseases are characterised by

a continuing deterioration of organs or tissues over time. However, this monotonic

increase in severity of symptoms is not always straightforward. The rate can vary in a

single patient during the course of their disease so that sometimes rapid deterioration is

observed while other times the symptoms of the sufferer may stabilise or even improve,

when medication is used. Interventions such as medication or surgery can make a huge

difference to quality of life and slow the process of disease progression, but they rarely

change the long term prognosis. The characteristic of many degenerative diseases is

therefore a general transition from healthy to early onset to advanced stages. There-

fore, clinicians need an ‘indicator’ to identify diseases and their progression for more

accurate medical prognosis. Medical prognosis (the prediction of the outcome of a dis-

ease) can be used to improve quality of life, slowing the tempo of disease progression
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Figure 1.1: Trends in progression of degenerative disease. An example from glaucoma
(top) and breast cancer (bottom).

as it can lead to early interventions. Furthermore, timely diagnosis can be extremely

beneficial as it can reduce the potential risk for patients. Notably disease onset may

take place before the first symptoms occur ([BSDP01], [BH05], [MMM+00]). Marcel

et al. [vGTL08] depicts an interaction to represent how the current patient state may

influence the next patient state (see as Figure 1.2). As Visweswaran said [Sav12] “if

you build a model from a group of people who are kind of similar to the current patient,
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you might do better”.

Figure 1.2: A clinical decision making in terms of a physician model and a patient
model.

The aim of this thesis is to learn disease trajectories as well as to identify inter-

mediate stages in the disease process by using a combination of bootstrapping, hidden

Markov models (HMMs) and unsupervised machine learning. Thus, this thesis focuss-

es on Machine learning [DRK04] methodologies for modelling disease progression,

dealing with a number of issues inherent with this. It uses a combination of bootstrap-

ping ([TGH10], [ET94]) and specialised hidden Markov models in order to model

disease and identify important regions in the disease trajectories. The approach of

relabeling trajectories has enabled the exploration of the temporal nature of disease

progression, and has been tested on both real and simulated biomedical data.

1.2 Research contributions

Main contributions of this research include:

• A full formal definition of a pseudo-time-series is derived, along with the asso-

ciated temporal bootstrap.
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• Identified of key regions in disease processes learnt from cross-sectional data.

An extension of the temporal bootstrap is explored, which can be used to identify

intermediate stages in a disease process and sub-categories of known diseases

with subtly different symptoms.

• Validation of the Pseudo-Times-Series model on a number of real-world biomed-

ical datasets. The reliable time-series models have been created from large

amounts of historical cross-sectional data from three very different diseases:

Glaucoma, Cancer and Parkinson’s disease using the temporal bootstrap tech-

nique and tested on real and simulated data.

• Exploration of the characteristics of the proposed algorithms, which is to demon-

strate the effectiveness of the proposed method, the performance of the approach

is explored on a number of simulated time-series generated from autoregressive

hidden Markov models (HMMs).

• The new approach to analyse, visualise and model checking, which is compared

with a clustering method for identifying key stages in disease progression based

on the ability to explain the underlying dynamics.

• Integration of cross-sectional and time-series data within the Pseudo-Times-

Series framework, which is includes exploring what degree pseudo time series

model can be improved and finding out how many or how few time-series data

is sufficient when cross-sectional data is abundant.



6

1.3 Organization of this thesis

Apart from this chapter, the remainder of this thesis is organised as follows:

• Chapter 2 presents the background knowledge and its role in disease progression

modelling for the research conducted for this thesis. It reviews the state of the art

methods, techniques and their performance. Gaps in the research area are also

identified, some of which will form the basis for the objectives of this study.

• Chapter 3 focuses on a variety of key concepts including hidden Markov models,

the temporal bootstrap developed using different methods and algorithms rele-

vant to this research. The process of application of the new relabelling technique

for extracting key stages in disease from both cross-sectional and longitudinal

studies to build reliable models of disease progression, is demonstrated and ex-

plained. Finally, the real-world clinical datasets are introduced.

• In Chapter 4, results produced by using the proposed relabelling algorithm on

the three different clinical datasets are presented and analysed. These results are

used for exploring disease trajectories as well as simulated data. A comparison

of the trajectories within a medical context is discussed.

• Chapter 5 explores the calibration of models learnt from cross-sectional data, the

results using small samples of longitudinal data are presented.

• Chapter 6 summarises all key achievements and contributions towards the iden-

tified aim and objectives of this research project. Research limitations for further

research and development in this area of research are discussed.



Chapter 2

Literature Review

This chapter reviews previous and current studies concerning the application of ma-

chine learning in medicine. Firstly, the nature of data associated with clinical trials

is discussed with a focus on cross-sectional and longitudinal studies. This is to gain

an insight into the advantages and disadvantages of these commonly used approach-

es when building predictive models. Next, different state-of-the-art machine learning

techniques are introduced within a clinical data perspective discussing examples of

their use and how the different techniques perform at predicting and understanding

disease outcome. This review covers the subjects of machine learning, time-series

modelling, classification and clustering using different techniques common in biomed-

ical data analysis. Through this survey, gaps in this research area are identified, in par-

ticular concerning the weaknesses of cross-sectional and longitudinal data, on which

the objectives for this thesis are centred.

7
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2.1 Clinical Trials

Clinical trials are sets of tests taken from a wide range of medical areas that are typi-

cally conducted over a population, within a defined time period, in order to illuminate

certain characteristics of a health issue or disease process. They can vary in size con-

siderably. Clinical trials can be effectively used for identifying responses to interven-

tions such as patients’ response to drugs, the side effects of drugs and their concurrent

diseases [SMB+03]. They can also be used to explore the variation in disease symp-

toms by applying clinical metrics to a large population exhibiting varying symptoms

from the healthy through to the advanced disease stages, such as the use of multiple

endpoints in interim analyses for disease treatments [SNA87].

A typical example of clinical data that is commonly used in large-scale clinical

trials is the data obtained by Heidelberg Retinal Tomography (HRT) [GHFH00] which

consists of measurements associated with the three dimensional shapes of the optic

nerve head. Another test which will be used later in this thesis measures vocal im-

pairment as early indicators for the onset of the Parkinson’s disease (PD). A number

of voice measurements have drawn significant attention for detecting and tracking the

progression of symptoms of PD [LMR+07]. The final dataset that is used in this study

concerns cancer [RSMJ85], [CYYK05], [PWM+99]. These studies are often based

upon tumour examinations where characteristics of tumours are measured to explore

the effect of a medical treatment.

Whilst many clinical trials are cross-sectional where only one measurement is made

per individual, some involve longitudinal studies where a (relatively smaller) number

of people are followed over a period of time. Albert [Alb99] discussed five different
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clinical trials where the primary outcome is observed over time, allowing longitudinal

data analysis. This study highlights that sequential monitoring is an important issue in

clinical trials identifying sequence of events in individuals directly.

It is also worth noting that clinical trial data is often used in combination with

historical data in order to improve the statistical validity of the conclusions. For ex-

ample, randomised clinical trials with 6-12 months of clinical follow-up were used in

[MLP+04] comparing different clinical interventions (here the insertion of a small tube

- stent - into arteries for introducing drugs in a controlled manner). The study involved

a large scale meta-analysis of 11 trials in order to quantify more accurately their effect

on blood vessel narrowing (restenosis).

2.2 Cross-sectional and Longitudinal Studies

Cross-sectional studies are methods of clinical observation that only record informa-

tion (such as clinical test results and demographics) across a sample of the population

from subjects without modifying the environment. They do not consider past or future

behaviour [Wor09] (a particular disease process but without any measurement of pro-

gression of the process over time), and all measurements on each subject are made at a

single point in time [Man03]. For example, one may choose to measure insulin levels

in diabetes patients across two age groups, over 40 and under 40, and compare them

to insulin levels among controls. However, they do not normally consider the past or

future insulin levels of diabetes patients. Cross-sectional studies can also be used to

create subgroups for family diseases, for example gender or body mass index (BMI).

A main advantage of cross-sectional studies is that they can compare many different
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variables at the same time with fewer resources. They typically include people who

are healthy as well as people at all stages of a particular disease process (if the sample

is large enough) in the analysis. They are also relatively cheap and simple to perform

[Man03], [Wor09], [JLTL81] in comparison to longitudinal studies. Cross-sectional

studies give us a ‘snapshot’ of disease processes over a large number of people but do

not allow us to model the temporal nature of disease, because the time dimension is not

captured. For example, subgroups may exist that depend on temporal behaviour. Mann

[Man03] indicates that “it is better to study a cross-sectional sample of patients who

already have the disease” by employing longitudinal studies. This does however mean

that many patients who are displaying early signs of disease onset may be missed.

Longitudinal studies [Dig02] are another observational approach that is used to

explore how disease processes develop over time in a number of people. In clinical

trials, longitudinal data are collected for three reasons [Alb99]: first, to obtain a more

precise estimate of the outcome and hence the treatment effect; Second, to monitor

clinical variables at a particular time; third, to evaluate the effect of treatment over

time. Clinical test results are recorded, often without manipulating the study envi-

ronment. Although the trial has the potential to provide definite information about

“cause-end-effect” relationships, it may require monitoring the same subjects, over a

long period of time [Wor09]. The results of multiple tests are recorded, generating

Multivariate Time-Series data. This is common for patients who have high risk indica-

tors of disease where they are monitored regularly prior to diagnosis. Cross-sectional

studies cannot serve this purpose. For example, it may be chosen to look at the change

in insulin levels among men over 40 who have been smoking for a period of more than
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20 years. The longitudinal study design would account for insulin levels at the onset

of a smoking regime and as the smoking behaviour continued over time. The advan-

tages of a longitudinal study are that researchers can distinguish the individual level

changes in the characteristics of the target subject [Dig02], and capture the temporal

details of the disease progression beyond a single moment in time [Wor09]. However,

the data is often limited in terms of the cohort size, due to the expensive nature of the

studies. Albert [Alb99] proposed that “extensions of multiple endpoint methodology

to the analysis of longitudinal data is another interesting area”. For example, where

similar early symptoms may end up following one of a number of potential disease

trajectories. Such studies can be expensive and time-consuming, and many only cover

a relatively small window within the disease process [YSA13].

Regardless of the advantages and disadvantages of cross-sectional and longitudinal

studies, it seems that both have weaknesses when used on their own. Hence, there is

an on-going effort to combine and use both approaches in conjunction ([LMH+88],

[AZP06], [RPK+03], [AFS+04]). Cross-sectional studies are the best way to deter-

mine prevalence and variation in a wide population but do not provide an explana-

tion for the findings [WDL+90], while longitudinal studies could provide “cause-end-

effect” relationships but only under limited samples.

2.3 Machine Learning in Medicine

Machine learning (ML) [MBK98], [Mit97] belongs to the field of artificial intelligence

[LCS+06], [Kon01]. It is used to extract useful and meaningful information from

complex data. The aim of ML is to provide computational methods to learn from
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data. This can be anything from the identification of patterns of similar behaviour to

complex mappings between symptoms and diagnoses.

There are two major types of machine learning: supervised and unsupervised learn-

ing. Supervised learning is used to classify datasets by learning a mapping between

the data (usually the results of some clinical test) and some predefined class label

(representing some disease outcome) determined by an expert in the field. It involves

learning a function from a set of training data and using this to predict the class for

new input data (the test set). In contrast, unsupervised learning involves learning from

data that has no class information by identifying similar data regions (or clusters). For

example, it can be used to identify patients with similar symptoms.

Computational methods are becoming more and more important for the evaluation

and analysis of experimental data, assisting us to extract useful information in as an

automated as possible manner, especially when there are 98 large amounts of data. M-

L has been widely applied in many areas: a natural language system was successfully

developed for various tasks involving text processing and an automated script for data

collection [HDA01]; Larranaga et al. [LCS+06] used ML techniques to deal with gene

identification problems. ML is also used to make predictions for experiments, such as

Chen and Xu[CX04] applied ML for protein dispensability prediction. Furthermore,

ML is often used to find the relationships between observed variables within datasets

in a medical context, improving the efficiency and quality of medical decision making

[KKG+99] [MP01a]. A major research effort in this field is to automatically classify

disease [Org] and predict future outcomes for patients [Sav12]. Clinicians may use
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ML methods to generate new hypotheses to enhance their basic diagnostic and prog-

nostic processes [MP01a], [BGP99], [Jan99], [RRL99]. Based on the number of ML

publications and the increasing use of ML techniques in medicine, it appears that ML

will play an ever more important role in clinical medicine. The next section documents

some examples of successful machine learning applications in medicine.

2.3.1 Analysis of Time-series Focusing on Clinical Data

Time-series can be simply defined as a sequence of data points that is character-

ized by its continuous nature. This kind of data is widely used in various domains,

such as econometrics, finance, earthquake prediction, weather forecasting, as well as

biomedicine (in longitudinal data analysis). In general, time-series analysis is applied

to experimental data measured over a period of time, in order to extract meaningful

information from uncertain data, and to predict future values of variables ([LAR03],

[Cha96]). Sometimes, data is also available on several related variables of interest,

which can be defined as Multivariate Time-series (MTS) (more details in Section 3.1).

MTS can be used to study the dynamic relationships between variables over time in

order to predict the progression of degenerative diseases, such as Parkinson’s disease,

glaucoma or cancer. MTS often give better predictions than univariate time-series

models. Specialists in medicine are interested in how a disease progresses across the

time-series. Clearly these trends will depend upon a number of factors such as which

clinical variables are selected, how much data there is available in the sample, and

whether the disease process is generally monotonic. According to [Fu11]: the way to

represent the time series data is the fundamental problem in the context of time series

data mining. In order to infer the process of disease progression, an appropriate use of
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a modelling approach is needed.

A time-series model can be built when time stamps (discrete or continuous) are

available. These models can be used to try and predict future values of the data or the

disease outcome. Tiao et al. [CMJ98] suggest two reasons for analyzing and modelling

time-series data: first, to understand the dynamic relationships among variables (one

series may lead the others), and second, to improve accuracy of forecasts. Linden

et al. [LAR03] listed three basic steps for the development of a time-series model:

(1) graphing the data; (2) choosing the appropriate model and fitting the data; (3)

evaluating the model. There are a number of popular approaches to modelling time-

series. For example, the Box-Jenkins method [BJR13] is known as the Autoregressive

Integrated Moving Average (ARIMA) as it combines the autoregressive and moving

average processes to model past observations and errors. It handles trends and cycles

through differencing the data. The approach is attractive due to its ability to capture

a diverse set of time-series behaviour. However, as a result of its flexibility it can risk

overfitting data. Another very common time-series modelling approach is the hidden

Markov model (HMM) [Rab89] (See section 3.4.1 for more details). It is a popular

model for modelling sequential and time-series data which can deal with uncertainty

and noise. A correct model is essential to predict future values based on previous

observations and this can include forecasting, regression analysis and classification.

Regression techniques aim to fit a model (linear or polynomial) through the data where

time is used to predict the rate of change in some set of clinical variables [VFH97].

Linear regression attempts to find a straight line that best ‘fits’ the data. See Figure 2.1

for an example.
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Figure 2.1: The example of clinical linear regression. Adapted from [KFD+10].

As well as classification methods can be regarded as types of data mining approach-

es to modelling time-series data in medicine (see section 2.3.2), however, care must be

taken as observations are not independent of one another (symptoms at time t are typ-

ically dependent on the symptoms at t − 1). Previous observations play an important

role in time-series analysis, since they can be used as basis for future behaviour pre-

diction [LAR03].

There has been some preliminary work conducted in an effort to create reliable

time-series models from large amounts of historical cross-sectional data. For exam-

ple, Broman et al. [BQW+08] attempts to estimate the rate of glaucoma progression

from cross-sectional studies by using the mean damage in the eye and the mean age of

disease onset. In [TGH10], a combination of distance metrics, graph theoretical opera-

tions and resampling is used to build trajectories through the dataspace. Bellazzi et al.
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[BLM+99] combined time-series analysis and temporal abstraction techniques to the

analysis of time-series data of Blood Glucose Levels, from insulin dependent diabetes

patients. Diggle[Dig02] explored three certain longitudinal data sets from the biomed-

ical domain, which present the challenges for analysis: First, in HIV, an immune cell

called CD4+ is attacked by the virus, and its numbers decrease with time following

infection, thus it can be used to monitor disease progression; Second, a three-period

crossover trial of primary dysmenorrhoea produced data was used to examine the ef-

fectiveness of pain killers; the last, a dataset from a clinical trial of drug therapies for

schizophrenia. Other studies involve learning computational and statistical time-series

models of progression from longitudinal data ([TVLGH05], [SL02], [HXW+10]).

In conclusion, time-series analysis methods are important tools for analysis of med-

ical data to anticipate disease [RM03]. Time-series analysis lies in the heart of the work

presented in this thesis and we will explore probabilistic models like hidden Markov

models (HMMs) in more detail in Chapter 3.

2.3.2 Intelligent Data Analysis in Medicine: Classification Meth-
ods

A set of data with known structure can be divided into classes. For example, if in-

formation about some labelling of the data is available then supervised classification

algorithms can induce the rules from the data [LCS+06] in order to predict new cas-

es. More formally, classification tasks involve learning a mapping from a vector of

measurements to a categorical variable. The variable to be predicted (the class vari-

able), takes values in the set C = {c1, ..., cm}. The observed variables d1, ..., di are

referred to as the features. Classification takes are becoming increasingly popular due
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to dramatic increases in the availability of large collections of medical data [PSS+09],

[ZL10], [VPR+07]. Any improvements in prediction will result in better medical de-

cision making which, can be very valuable for diagnosing future patients [VAH+10],

[RKM09]. For example ML classification was explored in the study of breast can-

cer [BHK]. Here, Bontempi and Haibe-Kains used classification techniques to divide

breast cancer patients into groups for different clinical therapy. Classification was

based on tumours with similar histopathological appearance. The study examined var-

ious clinical sources and responses to therapy. The results revealed that biologists often

failed to accurately classify breast cancer due to tumour metastasis, thus highlighting

the ability of ML methods to assist clinical experts in making diagnoses. One other

popular biomedical application of ML classification concerns the use gene expression

data to classify disease. Many databases containing gene expression information for

patients can be used to classify cohorts with different diseases from control group-

s. For example, in a study of tumours [vVDVDV+02], which applied classification

techniques to identify a gene expression signature. This is known as feature selection

where a small number of variables are identified as most informative in a classification

task.

There are a number of approaches and methodologies used in classification in the

clinical data analysis area. The main ones are discussed in the following section (based

on a combination of predictive performance and their ability to explain the underlying

relationships in a dataset): Bayesian Networks (BNs), Naı̈ve Bayes (NBs), Neural Net-

works (NNs) and Decision Tree (DTree).
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2.3.2.1 Bayesian Networks in Medicine

Bayesian Networks (BNs) (See Figure 2.2) are probabilistic graph-based models that

represent the probabilistic interdependencies between variables. They are simple, com-

monly used and less prone to overfitting the data as they are biased towards simple

networks (the data source can be stationary and not vary with time). BNs typically

consist of two components: a directed acyclic graph (DAG) with nodes representing

any variance of variables that exists in the real world, and a set of conditional interde-

pendencies associated with each node (see Figure 3.2).

The networks can be used to represent the network qualitatively and quantitative-

ly using a graphical structure involving nodes that have an associated conditional

probability distribution. BNs can also be used to answer probabilistic queries about

networks. BNs have become more and more popular, being used for the computa-

tional modelling of knowledge in many areas such as bioinformatics, medicine, and

decision-making systems. They are particularly powerful in transparently modelling

the relationship between variables and capturing the uncertainty in knowledge and data

[LCS+06].

One of the key advantages of Bayesian networks is their ability to integrate data

with human expertise. This can be achieved using the notion of an informative pri-

or [CS00], where a model is constructed and then updated when more data becomes

available using Bayesian updating techniques, resulting in a posterior model.

Microarray data analysis methods often fail to correctly deal with uncertainty, thus

BNs have advantages for analyzing gene microarray data, especially for un-normalised

cDNA microarray data [Wil07]. BN classifiers can also be used to analyze differential
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gene expression, to provide useful information about biological pathways [Slo02].

BNs not only work on very different types of data but they have also proven very

popular for modelling combinations of different types of data in a single model (such as

gene expression and clinical data). For example, Gevaert et al. [GDST+06] learnt BNs

on breast cancer patients data treating clinical and microarray data on an equal footing.

Visweswaran et al. showed that patient-specific models could be improved through the

use of a Bayesian model. Elsewhere, BNs were applied to the diagnosis and prognosis

of first cerebral paroxysm [ZLNRP99]. In an effort to avoid a “wrong blood in tube”

error (‘a specimen of blood collected on Patient A, but for which the accompanying

requisition and label is for Patient B’), which can kill people more often than another

accidents or diseases, a BN was used to predict the mismatches of Glucose and HbA1c

in two experiments [DS10].

Figure 2.2: Example architecture of a Bayesian Network. The diagram adopted from
[Coo99], which is hypothetically about the medical domain with 5 variables.

Dynamic Bayesian Networks (DBNs) (See Figure 2.3 [PdKJ+10]) can be defined

as a special case of Bayesian Networks that can model sequential data or time-series

[FGW99]. They are known as time-series analysis, which consist of a set of observa-

tions from the data source (a sequence of variables) dynamically changing over time.
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Unlike BNs, DBNs can provide direct mechanisms for representing temporal depen-

dencies. Therefore, DBNs enable users to update the system and also predict further

events. More recently, they have become popular for modelling disease [TVLGH05]

and are useful as both prognostic and diagnostic tools. This is due to the fact that they

explicitly model temporal (dynamic) and non-temporal relationships among different

variables in the real world and are flexible enough to model latent variables.

Several applications of DBNs have been proposed in medicine. For example, in

monitoring the treatment of renal failure patients [CCC05], BNs are implemented to

represent relationships between Hydration and Dialysis Sessions on Dry Weight. DB-

Ns are used to model dynamic processes of the treatment in order to explore whether

past events have an effect on the present state of the patient. Watt et al. [WB08]

used DBNs to help predict early presence of Osteoarthritis (a knee disease that can

cause knee pain, disability and decreased bone mass) and analyse the progression of

the condition over time. Van Gerven et al. [vGTL08] used three individual patientś

case to construct DBNs for prognosis. They demonstrated that DBNs not only serve

for modelling disease progression, but can also identify the effect of treatment and the

development of complications. In [CGHCT12] a form of DBN, that clusters sections

of time series whilst simultaneously learning DBN structure and parameters, was used

to model glaucoma progression. Furthermore, DBNs are also used to model Neuronal

Interactivity for brain activation patterns [ZSAK+05], and to optimise treatment in

intensive care unit (ICU) [CVDGV+09].
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Figure 2.3: A Dynamic Bayesian Networks (Predicting Attacks). Possible transitions
between variables at the same time-slice. The Figure shows an example of DBN with
number of variables over time lags where each node represents a variable at a certain
time slice and each link represents a conditional dependency between organ systems.
Adapted from [PdKJ+10].
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It is a non-trivial problem to create DBNs from data. Table 2.1 lists four different

stratums of creating DBNs. ‘Complete data’ means all variables are known, while ‘in-

complete data’ means some variables cannot be measured in some situations, referred

to as missing variables. ‘Unknown structure and full observability’ refers to finding

a way to learn the structure of DBNs from observable data. In this thesis, we focus

on the ‘unknown structure and partial observability’ because some variables cannot be

observed in the real world and it is hard to distinguish the structure when learning DB-

Ns from real data. The EM algorithm (see 3.4.1 for more details) is a powerful method

to tackle this problem, and it can improve the likelihood of the data given the model.

Structure/Observability Method
Known/Full (complete data) Simple statistics

Known/Partial (incomplete data) EM or gradient ascent
Unknown/Full Search through model space

Unknown/Partial Structural EM

Table 2.1: Methods for creating DBNs structure and determining their parameters.
Adapted from [MP01b].

2.3.2.2 The Naı̈ve Bayes in Medicine

Naı̈ve Bayes (NBs) (See Figure 2.4) is a simple probabilistic classifier using Bayes the-

orem with strong naı̈ve independence assumptions [Zha04], where no hidden attributes

influence the prediction process [GP95]. This classifier requires a small amount of

training data to estimate the parameters necessary for classification, and is fast to train.

It is also called an optimum classifier, because this classifier can minimize the cost of

total misclassification. It has been successfully used in many applications, such as the



23

Rainbow program which employs a NBs classifier to perform statistical text classifi-

cation [A.K96]. Yousef et al. [YJK+07] used the Rainbow program to train the NBs

classifier for microRNA target gene prediction. Palaniappan et al. [PA08] used NBs

along with another two predictive models, in order to discover the hidden patterns and

relationships between different medical profiles and to develop an intelligent predic-

tion system for heart disease. Although the NBs classifier is generally an effective

and versatile classification approach, sometimes false predictions may occur because

NBs can not gives appropriate descriptions for the relationships between the variables

and the outcomes. The positional independence assumption of the NBs makes the

computation of the joint probability value easier at the expense of the accuracy or the

underlying reality (it is the strength as well as the weakness [PLV02]). NBs are the

simplest form of Bayesian Network, too simple to model complex domains, where all

attributes are independent. Therefore, only the variances of the variables for each class

need to be determined.

Figure 2.4: Example architecture of The Naı̈ve Bayes. In the diagram, theQ represents
a parent of theA,B,C,D andE. It is assumed that all the variables are independent for
a given class Q. Given the values of A,B,C,D and E we can estimate the probability
of the class, Q using the Bayes rule.
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2.3.2.3 Neural Networks in Medicine

Neural Networks (NNs) (see Figure 2.5 [Hel13]) constitute a set of machine learn-

ing methodologies inspired by the structure of neurons in the brain [ZB08]. They are

good at dealing with the complexity of experimentally generated data, which consists

of nodes (neurons) that receive, process and transmit signals. The perceptron is the

simplest neural network structure. It has the ability to learn from examples, that is a

distinctive aspect of NNs over other classifiers. It contains two layers: the first lay-

er is input layer and the second layer is the output layer. Both layers can have many

nodes and units. NNs have the ability to give straightforward theoretical prediction-

s on DNA sequence level, protein sequence level and protein structure level [BA06].

Odewahn et al. [OSP+92] pointed out that NNs are good at managing problems with

a large amount of parameters, and at classifying objects distributed in complex high-

dimensional space. For example, Nagl [Nag01] successfully applied NNs in a protein

study, which were used to analyse the emergence of drug resistance in HIV-1 (human

immunodeficiency virus 1). In another case, Lisboa and Taktak [LT06] explored the

benefits of NNs as decision making tools (diagnosis and prognosis). Using 396 clinical

trials (cancer), most of the studies showed an increase in benefit to healthcare provi-

sion. Furthermore, NNs are used to estimate medical outcomes and resource utilization

in intensive care unit environments (ICUs)[FEST01].

NNs also have their limitations. For example, Satish and Gururaj [SG93]

demonstrated the limitations of the NNs with a single layer NNs. The NNs could only

classify linearly separable signals, and proved inadequate to achieve the required tasks.
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Multilayer Neural Networks (MNNs), also known as the Multilayer Perceptron,

have layers between the input and output layers. A MNN is a fully connected network

where all nodes from one layer are connected to the next layer and can be extend-

ed to any number of hidden and output layers. This type of NN can learn complex

functions. The MNN deals with non-linearly classifiable data by employing hidden

layers (neurons are not directly connected to the output) and essentially linking nu-

merous perceptrons (which are the individual neural network units) together. The big

advantage of MNNs lies in the fact that all nodes from one layer are fully connected to

the next layer and can be extended to any number of hidden and output layers. Back

propagation is the main algorithm utilised in multilayer neural networks. The main

drawback to back propagation is that it is susceptible to overfitting the training data at

the cost of decreasing generalization accuracy over other new data [Mit97]. In the med-

ical domain, some authors ([JAGRRJ+03], [FWIB95], [Kiy11] have modelled systems

for prognosis in breast cancer patients using MNNs. Chen et al. [CLKW97] imple-

mented MNNs for the purpose of designing the dynamics of the mean arterial blood

pressure system, in order to meet specified clinical constraints. Yan et al. [YJZ+06]

developed a decision support system to support the diagnosis of heart diseases based

on MNNs. In order to achieve high diagnosis accuracy they used five different kinds of

heart diseases from 352 clinical records to train and test the system. Li et al. [LLCJ00]

demonstrated MNNs are appropriate for non-linear medical decision support system

in traumatic brain injury (cause of death and disability that include falls or vehicle

accidents). MNNs have also been used to classify low back pain [VCT+00].

Whilst, artificial neural networks (See Figure 2.5 for an example) have good
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predictive performance, they are quite slow in both the training phase and application

phases [BZ08], compared to simpler modelling methods such as BNs. They are also

very prone to overfitting, where a classifier has focussed on a small area of data that

may be irrelevant to the classification task. This is often due to too many parameters.

Figure 2.5: Example architecture of a Simple Neural Network. In the diagram, the
inputs are separately transformed into a 3-dimensional vector hidden layer, which is
finally transformed into the Drug (forward propagation). The output ‘Drug’ depends
upon the random variables of the vector hidden layer, which depends upon the random
variable inputs (back propagation). These two stages are independent of each other.
Adapted from [Hel13].
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2.3.2.4 Decision Tree in Medicine

A Decision Tree (see Figure 2.6 [WLH+09]) is a well documented machine learning

method for classification, which is very easy to understand and widely used in clas-

sification problems, such as disease classification[Mit97]. In the traditional decision

tree, the nodes represent decisions, arcs represent possible answers, and terminal nodes

represent classification. The root node is located at the top of the tree and the tree is

traversed starting at the root node. At each decision node, the different links represent

the possible answers. This process is repeated from a root node until a terminal node

(leaf node) is reached, where a class is allocated ([LKZ00], [BB01]). Links must be

mutually distinct and exhaustive. In other words one and only one link will be fol-

lowed [LCS+06]. Thus, all the decision nodes are working together, following along

the path of the decision tree from root node to the leaf nodes [BZ08]. However when

the training set is small, the terminal node of a decision tree is defined by chance if no

one class can be identified clearly [Ber03].

The Alternating Decision Tree (ADTree) is a special case of a decision tree. It is

a majority-weighted vote over very simple prediction rules, which deploys a type of

machine learning method based on boosting for classification [FM99]. The ADTree

is smaller and easier to interpret than other classifiers. The structure of an ADTree is

similar to the standard decision tree, but can sometimes achieve better performance.

One special feature of ADTree classifiers is that they give the classification margin

as a measure of confidence. For example, Takada et al. [TSN+12] used an ADTree

as a prediction model for predicting axillary lymph node metastasis in breast cancer

patients (the node is examined for diagnosis of breast cancer). Using various clinical
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Figure 2.6: Example architecture of a Decision Tree, which is being used for deter-
mining disease progression based on the number of capillaries classified. From the
diagram, it can be seen that there might be 4 types of symptoms that have been classi-
fied. Adapted from [WLH+09].

variables, they were able to achieve 95% accuracy on all the resulting values. The

ADTree based approach has also been implemented for prediction of dengue fever

(an infectious tropical disease that is transmitted by mosquito) with high accuracy

[Kum13]. One special feature of ADTree classifiers is that they give the classification

margin as a measure of confidence and each partition can be split multiple times. “The

alternating tree maps each instance to a real valued prediction with the sum of the

predictions of the base rules in its set. The classification of an instance is the sign

of the prediction” [FM99]. ADTree has been used to predict survival of heart failure

patients, by classifying them into groups that are expected to survive over a certain

period of time or not [JKD13]. Experiments on a collection of datasets taken from

the UCI machine-learning repository [NHBM], showed that the ADTree method is
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efficient with small data sets, and is much easier to interpret than a standard decision

tree with the same number of decision nodes.

Although decision trees are effective at solving classification problems, they also

have limitations given that the typical top-down partitioning through a greedy split

evaluation may result in quality loss [BBdC+09] and may be sub-optimal. Classifiers

such as decision trees, NBs and MNNs clearly have a role in medical informatics and

in particular modelling disease when a diagnosis has been identified within a dataset.

We will explore how the ‘class data’ (whether data has been labelled as healthy or

diseased) can be used to build trajectories in the chapter 3.

2.3.3 Application of Machine Learning Methods to Medical Data
Analysis: Clustering Methods

Clustering is a common technique for data analysis. It is an unsupervised machine

learning method which deals with finding meaningful groups (the members are similar

in some way) in a collection of unlabeled data. More formally, clustering can be de-

fined as by given a representation ofN objectsD = d1, ..., dn, find k clustersC1, ..., Ck

based on a measure of similarity. Each data point di is assigned to a unique cluster Ck.

It has been extensively used in a variety of fields, including: marketing (finding groups

of customers [HTO07]), biology (grouping gene expression data [CTC+05]), medicine

(evaluation of data from clinical trial [FSN+00]) etc.. An important component of a

clustering algorithm is the distance measure or similarity measure between data points.

Data points that are close to each other according to a given metric or that have similar

descriptive concepts belong to the same cluster. The efficiency of clustering algorithms

and their application in a wide range of scientific fields is an area of active research.
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The four most popular clustering algorithms for high dimensional data used in the

biomedical domain are:

• K-means which is used to cluster the observations into k clusters, based upon

distance of observations to k centroids (the allocation of data points and the cen-

troids are iteratively updated). In gene expression data analysis [Slo02]. Bushel

et al. [BWG07] explored an extension of the k-means algorithm, called mode

k-prototypes for clustering heart disease samples.

• Fuzzy C-means clustering, where observations can belong to more than one clus-

ter (centroid) with different degrees. It has been implemented for classification

of oral cancer cell data [WGO03]). A modified fuzzy c-means algorithm has

been utilised for bias field estimation and segmentation of magnetic resonance

imaging data [AYM+02].

• Hierarchical clustering which has two approaches: the first is ‘bottom up’, which

starts at each observation, merging together data points or clusters, and then

moves up the hierarchy; the other is ‘top down’, starting with one large cluster,

then moving down the hierarchy, splitting clusters until all data is in its own

cluster. Veer et al. [vVDVDV+02] implemented hierarchical clustering for the

purpose of clustering tumours on the basis of their similarities, to predict clinical

outcome of breast cancer.

• Gaussian Mixture clustering, which uses a mixture model to represent the prob-

ability distribution of observations, and therefore cluster the data. For example,

Gaussian Mixture Model-based segmentation has been applied in lung tumor
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clinical studies [APMP07].

Despite the fact that the extensive research has been conducted to extend and im-

prove clustering algorithms, they still have a number of limitations. Karypis et al.

indicated that many advanced algorithms do not follow a preconceived model because

they cannot faultlessly deal with highly variable clusters [KHK99]. For example, the

K-means algorithm does not perform well with high dimensional data, when clusters

in the data have different sizes, shapes and densities such as commonly in many clini-

cal datasets. Hierarchial clustering also has limitations due to problems with defining

a distance metric in high dimensional data [ESK02].

Clustering is clearly relevant to identifying regions of interest in a disease pro-

cess. Therefore chapter 3 of this thesis will examine a method that involves using the

Expectation Maximisation (EM) algorithm.

2.4 Summary

This chapter reviewed previous and current research work in the field of machine learn-

ing for biomedical data analysis. It discussed subjects including clinical trials, cross-

sectional and longitudinal studies, machine learning, classification methods, clustering

methods and time-series modelling. Four major models of classification and clustering

were examined in a biomedical context.

The major conclusions arising from this review are:

(1) Cross-sectional studies do not allow us to model the temporal nature of disease

and the time dimension is not captured as observations are taken at only one fixed point

in time;
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(2) Longitudinal studies are expensive due to their nature as individuals must be

followed over time. In addition many studies only cover a relatively small window

within the disease process, often missing the vital early stages.

(3) Building sequences through cross-sectional data is relatively unexplored,

though Broman et al. [BQW+08] have recently investigated estimating rates of pro-

gression in glaucoma from cross-sectional studies and Tucker [TGH10] has explored

building trajectories through cross-sectional data - which is to be further explored in

Chapter 4.

(4) Multiple endpoints were highlighted as an important issue (Albert [Alb99])

which again are relatively unexplored and will be further investigated in Chapter 4.

(5) Clustering data can help in understanding subcategories of disease such as d-

ifferent subpopulation of cancer sufferers as well as identifying important stages in a

disease process (where data points in a series are clustered - for example into early,

mid and late stages).

Based on the points above, the research in this thesis focuses on the use of

sequence-building through cross-sectional data (including trajectories with multiple

endpoints) by formalising and extending the pseudo time-series introduced by Tucker

[TGH10]. It deals with clustering trajectories to identify important stages in a disease;

and exploring how cross-sectional and longitudinal data can both be used to build more

reliable models. The details of the methods undertaken, along with some preliminary

results, are presented in the next chapter.



Chapter 3

Identifying Key Stages in a Disease
Process from Cross-Sectional Data -
Methods and Algorithms

This chapter deals with the different methods undertaken in this thesis as well as a

formal definition of a Pseudo-Time-Series (PTS) is introduced for the first time. Mul-

tivariate Time-Series (MTS) modelling is explored in detail. The Floyd-Warshall al-

gorithm [Flo62], a well-established algorithm that used to find the shortest path in a

weighted graph (and therefore trajectories through data) will be described. In order

to build more robust time-series models, the concept of a pseudo-time-series is in-

troduced based upon the work in [TGH10], and a formal definition of this is further

derived (as published in [LST12]). The details of the temporal bootstrap are illustrated

with respect to this new formal definition. This is followed by a description of the per-

formance of three typical models that are used for modelling time-series data: hidden

Markov models, Bayesian Networks and Dynamic Bayesian Networks. Finally, a new

algorithm for identifying key stages in pseudo-time-series is introduced (as published

in [LT10]) which is focussed on in this thesis.

33



34

3.1 Multivariate Time-series Modelling with Pseudo
Time-Series

A pseudo time-series is a sequence of observations measured over time, which aims to

build multiple trajectories through cross-sectional data in order to approximate genuine

longitudinal data. Building pseudo time-series involves plotting multiple trajectories

through cross-sectional data based upon distances between data points, using prior

knowledge of healthy and disease states to guide the trajectories. These trajectories

can then be used to build approximate temporal models to make forecasts. However,

models that can exploit multivariate time-series data can be very challenging to learn

reliably. The formal definition of MTS is the following.

Definition: Let a dataset D be defined as a real valued matrix where m (rows) is

the number of samples (here patients) - and n (columns) is the number of variables

in the clinical test data. We define D(i) as the ith row of matrix D. The vector C =

[c1, c2, ..., cm] represents defined classes, where each ci ∈ {0, 1} corresponds to the

sample i, ci = 0 represents that sample i is a healthy case, and ci = 1 represents that

sample i corresponds to a diseased case. These classifications are based upon expert

diagnoses.

A time-series is defined as a real valued T (row) by n (column) matrix where each

row corresponds to an observation measured over T time points. If T (i) was observed

before T (j) then i < j.

We define a set of pseudo time-series indices P = {p1, p2, ...pk} where each pi

is a T length vector where T > 0. We define pij as the jth element of pi and each

pij ∈ {1, ...,m}. We define the function F (pi) = [pi1, ..., piT ], creating a T by n
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matrix where each row of F (pi) = D(pij). Pseudo time-series can be constructed

from each pi using this operator. For example, if a pseudo time-series index vector

p1 = [3, 7, 2] then F (p1) is a matrix where the first row isD(3), the second row isD(7)

and the third row is D(2). The corresponding class vector of each pseudo time-series

generated by F (pi) is given by G(pi) = [C(pi1), ..., C(piT )].

To demonstrate this notation consider the following example:

Let the data matrix D be defined as:

D =


d11 d12 d13

d21 d22 d23

d31 d32 d33

d41 d42 d43

 , dij ∈ R

Let the corresponding class vector be C = [c1, c2, c3, c4]. If P = {p1, p2} where

p1 = [1, 3, 1] and p2 = [2, 3, 1] then:

F (p1) =


d11 d12 d13

d31 d32 d33

d11 d12 d13

 , G(p1) = [c1, c3, c1]
and

F (p2) =


d21 d22 d23

d31 d32 d33

d11 d12 d13

 , G(p2) = [c2, c3, c1]

To summarise, we defined a set of k pseudo time-series with their associated class

labels, sampled from the cross-sectional data D, indexed by the elements of pi.
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3.2 Floyd-Warshall Algorithm

We now briefly describe the Floyd-Warshall Algorithm [Flo62] which is used for the

generation of pseudo time-series. Graph-theoretical approaches such as this are com-

monly used to find the shortest paths between all nodes for a weighted graph G. A

weight matrix wij is an edge between node i and node j in graph G. An m×m matrix

representing the edge weights of an n-node graph, where W = (wij). This algorithm

is based upon a distance matrix D(k) which represents distance between data points

d(i) and d(j), where Dk = (dkij). A matrix dkij is generated and represents the weight

of the shortest path from i to j using a set of nodes {1,2,...k} as intermediate nodes at

iteration k. If k is not a node on the path, the shortest path has length dk−1ij , otherwise,

the path is dk−1ik + dk−1kj . See Algorithm 1 for the full details.

Algorithm 1 The Pseudo code of Floyd-Warshall Algorithm.

Input: An m×m matrix W ;

1: D0 = W ;
2: for k = 1, ...,m do
3: Dk = dkij;
4: for i = 1, ...,m do
5: for j = 1, ...,m do
6: dkij = min(dk−1ij , dk−1ik + dk−1kj );
7: end for
8: end for
9: end for

Output: Dn
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We will use this algorithm within the pseudo time-series construction in order to

build trajectories between samples of cross-sectional data as detailed in the next sec-

tion. We use Euclidean distance between data points to build the matrix W .

3.3 The Temporal Bootstrap

The temporal bootstrap is a resampling approach for building pseudo time-series as

defined in Section 3.1. It involves resampling data from a cross-sectional study and

repeatedly building trajectories through the samples in order to build more robust time-

series models. Each trajectory begins at a randomly selected datum from a healthy

individual and ends at a random datum classified as diseased. An extension of the

temporal bootstrap is explored in this research, which allows us to identify intermediate

stages in a disease process and sub-categories of known diseases with subtly different

symptoms.

This method is compared to a strawman approach and its ability to inform us about

the dynamics of the disease is examined. In particular, the ability of the method to

explain the dynamics of disease progression, that results in trajectories through the

data space starting at healthy data regions and ending at cases of advanced disease,

is investigated. The hypothesis underlying the extended bootstrap approach is tested

on biomedical data from three diseases in order to identify automatically the disease

regions of interest at key junctions and the ‘extreme’ end of the trajectories. We use

HMMs in conjunction with the EM algorithm for the identification of disease regions.

The data is firstly standardised to a mean µ of zero and a standard deviation σ of

one as we found that this led to better HMM models. The elements of pi (as described
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in Section 3.1) are determined based upon a uniform random sampling procedure with

replacement. The ordering of the elements in pi is based upon randomly selecting a

start and an end in pi such that the associated classifications are cstart = 0 and cend = 1.

This means that the time-series will progress from a healthy state to a disease state.

The ordering is then determined by the shortest path, calculated based upon the Floyd

Warshall algorithm [Flo62] (Algorithm 1) applied to the Euclidean distance matrix,

Rij between samples in F (pi). See Algorithm 2 for the full details.

Algorithm 2 The Temporal Bootstrap for Learning Pseudo Time-Series Models from
Cross-Sectional data.

Input: Cross-section data D; class labels C, sample size T; number of pseudo
time-series k;

1: Standardise dataset D to µ = 0 and σ = 1;
2: for i=1 to k do
3: Uniformly randomly sample (with replacement) T row indices from D to create

di such that there is at least one healthy and one diseased class (in C) corre-
sponding to any of the indices in di;

4: Uniformly randomly select a row index from di, start, from where 1 ≤ start ≤
T and an endpoint, end, where 1 ≤ end ≤ T where C(di, start) represents a
healthy class and C(di, end) represents a diseased class;

5: Construct a T × T matrix, Wi, of Euclidean distances between each D(dia) and
D(dib) for all combinations of indices in di;

6: Order di to create d∗i based upon the shortest path between D(di, start) and
D(di, end) given the weighted graph Wi using the Floyd-Warshall algorithm
constrained so that every index in di is included in the path;

7: Add the ordered d∗i to the set of pseudo time-series P ;
8: end for
9: Use the set P of k pseudo time-series to train a time-series model

Output: Pseudo Time-Series Model

As an example we can explore how well multivariate time-series models can be

reverse-engineered from cross-sectional data by simulating the cross-sectional study
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process. Figure 3.1 shows the result of simulating a varying number of time-series

from an autoregressive hidden Markov model (ARHMM) with two disease states and

one healthy state. The data shown is a result of sampling a single point from each series

randomly (essentially generating a cross section of the population of time-series).

Figure 3.1: Scatter plot of the first two components using multidimensional scaling on
simulated data (generated from an Auto-regressive hidden Markov model (ARHMM)
with 3 states, one representing healthy control patients - red dots, and two representing
different disease symptoms - green and blue dots). Two of the original MTS are plotted
along with the full cross sectional data (one sampled form each MTS).

We can then use the temporal bootstrap to learn pseudo time-series prior to building

a pseudo temporal model. The error rate (Table 3.1) and classification accuracy (Table

3.2) resulting from the pseudo time-series models by using Temporal Bootstrap (TBS)

are shown, compared with the statistics generated from a model learnt from the original
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multivariate time-series (Full MTS). It should be noticed that the TBS results actually

appear to be better than the model inferred from the full MTS. This is because the

resampling process in the TBS procedure smooths the data and also shown the results

of the full MTS after smoothing, which are the most accurate (as would be expected -

it is highly unlikely that the pseudo time-series will generate more accurate models).

However, as the sample size increases and approaches 500, the statistics appear to

almost converge (results taken form [TGH10]).

We have been testing this approach on real cross-sectional datasets (VF, BC and

PD’s), where we can validate the outcome using longitudinal data, revealed similar

results. The next section illustrates the sample pseudo time-series generated from those

three cross-sectional datasets.

Length Full MTS TBS MTS smoothed
50 0.129± 0.039 0.251± 0.228 0.095± 0.055

100 0.126± 0.023 0.158± 0.121 0.086± 0.012

250 0.126± 0.013 0.079± 0.034 0.084± 0.014

500 0.125± 0.015 0.067± 0.023 0.084± 0.014

Table 3.1: Mean Forecast Sum Squared Error and 95% Confidence for Model Learnt
using the Temporal Bootstrap on Cross-Sectional Data (TBS), the Original Time-Series
with smoothing (MTS smoothed) and without (MTS).

Length Full MTS TBS MTS smoothed
50 0.907± 0.047 0.897± 0.092 0.903± 0.055

100 0.905± 0.045 0.912± 0.044 0.905± 0.048

250 0.905± 0.046 0.910± 0.046 0.905± 0.048

500 0.905± 0.046 0.912± 0.044 0.904± 0.049

Table 3.2: Mean Classification Forecast Accuracy and 95% Confidence for Model
Learnt using the Temporal Bootstrap on Cross-Sectional Data (TBS), the Original
Time-Series with smoothing (MTS smoothed) and without (MTS).
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3.4 Predictive Models and Their Mathematical De-
scription

Having built trajectories from cross-sectional data using pseudo time-series approach-

es, we then explored different techniques to model these sequences. As discussed in

Section 2.3.1, statistical approaches such as the Box Jenkins model [BJR13] are data

intensive and can be problematic when modelling uncertain and noisy data. Proba-

bilistic graphical models, however, have the natural ability to deal with this sort of data

and also allow for combining data with expert knowledge or, in case there are no data,

rely entirely on expert knowledge. This makes probabilistic graphical models such as

hidden Markov models (HMMs) and dynamic Bayesian networks (DBNs) particularly

attractive and popular in practice.

3.4.1 Mathematical Description of Hidden Markov Model (HMM)

A popular probabilistic model for modelling sequential and time-series data is known

as the Hidden Markov Model (HMM)[Rab89], which assumes a single discrete hidden

state,H and a continuous observed process,X . HMMs have widespread application in

a variety of tracking scenarios, from speech recognition to clinical analysis ([Rab89],

[WP02], [ZOM99], [Edd98], [LKBJ08], [SBR07]). Two characteristics of HMMs

provide [Rab89] strong support for the choice to use them in this research: firstly, the

models have a ‘complete’ mathematical architecture and refer to a wide range of appli-

cations; Secondly, they are a very accurate approach for some important applications

when applied properly. See Figure 3.2 shows the general architecture of HMMs, where

directed links determine conditional probability distributions. It involves one hidden
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variable that is conditioned on the hidden variable at the previous time point and n ob-

served variables that are conditioned upon the hidden variable at the same time point.

The transition equation is modelled using a discrete distribution of the state H at time

t, H t conditioned upon the state at t− 1. This is written as p(H t|H t−1) (and gives rise

to the link H t−1 → H t in Figure 3.2). The measurement equation is captured using

the distribution of each variable at time t conditioned upon the hidden state at time t,

written as p(X t|H t) (giving rise to the links, H t → X t
1, H

t → X t
2, ..., H t → X t

N ).

The forward algorithm allows the probability of the hidden state at time t, H t to be es-

timated from the previous and current values of measured variables, X1...t. To predict

p(H t|X1...t), H t represents the hidden state at time t and X t represents the variables

in the time series. This process is known as filtering and can be used to estimate future

probabilities of disease states from historical longitudinal data.

There are three basic problems associated with learning HMMs which are useful

in real-world applications [Rab89]:

• Problem 1: Given the observation sequence and a model, how to efficiently com-

pute the probability of the observation sequence, given the model?

• Problem 2: Given the observation sequence and the model, how to choose a

corresponding state sequence which is optimal in some meaningful sense?

• Problem 3: How to adjust the model parameters to maximize the probability of

the observation sequence, given the model?

Predictive models such as HMMs contain unknown parameters, known observed

data and latent variables. The forward or backward procedure of HMMs enable to be
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Figure 3.2: Architectures of Hidden Markov Models (top) and Dynamic Bayesian Ne-
towrks (bottom).

used because it is more efficient than direct evaluation. In order to find optimal or

the best state sequences in continuous nature, the sources are non-stationary vary over

time. The Baum-Welch algorithm can be used to solve the three problems where are

listed above in the learning process of HMMs. The Baum-Welch algorithm [Bag01]

is basically the application of expectation-maximization (EM) algorithm [B+98] to H-

MMs. EM is an iterative method, which can be used to find the maximum likelihood
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of parameters in statistical model with unobserved latent variables. Implementing the

EM algorithm for HMMs is straightforward and consists of two steps: first, the esti-

mate of the parameters for a HMM given a set of observed data (expectation step -

E step), is used to allow the evaluation of expectation of the log-likelihood; then the

maximum likelihood is estimated (maximization step - M step), in order to maximize

the expected log-likelihood found in the E step. The particular application of the EM

algorithm for this work can be described as ([Wik13],[Bor09]):

Expectation Step: Calculate the expected value of the log-likelihood function.

Q(θ | θt) = EZ|X,θt [logL (θ;X,Z)] (3.4.1)

Maximization Step: Maximize the quantity of the parameter.

θ(t+1) = argmax
θ

Q(θ | θt) (3.4.2)

where,

• X is a set of observed data associated with each data point.

• Z is a set of unknown latent variables, extract from a fixed number of values and

each observed data point has a latent variable.

• θ is a continuous vector of unknown parameters, which are associated with all

data points, and also with a particular value of a latent variable.

• Q(θ | θt) represents the conditional distribution of Z given X under the current

estimate of the parameters θ.
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3.4.2 Mathematical Description of Bayesian Networks (BNs)

Bayesian Networks [Bar12] are probabilistic networks that provide a way to represent

the independence assumptions made in a distribution. A Bayesian Networks defined

as follows [MP01b]:

P (X1, ..., Xt) =
N∏
i=1

P (Xi | Pa(Xi)) (3.4.3)

where Pa(Xi) is the parent set of a node Xi.

The three elements of DAG (the conditional probabilities, the structure and joint

probability distribution) can be used to estimate the probability or likelihood of each

variable or state. Mihajlovic [MP01b] points out three rationales why BNs are useful:

• From known causes to unknown effects (causal reasoning)(e.g we know the dis-

ease exist and the current state, and aim to explore and predict the end state of

the disease - longitudinal studies.), and

• From known effects to unknown causes (diagnostic reasoning) (e.g we known

the several end states of disease, but we aim to explore the causes of the disease

and the progression - cross-sectional studies.), or

• For any combination of these two.

If we want to know all of the conditional probabilities throughout the network we

need to adjust the parameters of the network, so that ‘Learning’ plays an importan-

t role to enable us to overcome the problems. Many different approaches have been

used to learn good BNs structures, such as the K2/K3 algorithms ([CH92], [Bou93]),
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the Branch and Bound technique [Suz93], and evolutionary methods ([LPY+96],

[WLL99]). K2/K3 can be described as greedy search which explores the effect of

adding each of the possible links to the current structure based on an empty structure

with no links and the one that finishes with the best score is selected. K2/K3 use this al-

gorithm with a log likelihood metric and a description length metric, respectively. The

Branch and Bound technique is used to perform an effective thoroughgoing search by

stopping any further exploration along a search route found on an edge which is delib-

erate on the scoring metric. When evolutionary methods are applied to static BNs the

application of various operators is compulsory to prevent the generation of recurrent

event within the network.

Learning BNs is the process of scoring candidate network structures. The log

likelihood ([CH92], [Gei92]) and the Description Length (DL) ([LB94], [Suz93]) are

two scoring metrics. The log likelihood is calculated by using expression 3.4.4, and

the higher score indicates the best structure that can be obtained to fit the dataset.

The Description Length metric is constructed from the summation of the description

length of a network structure (expression 3.4.5) and the description length of encoding

the dataset given that model (expression 3.4.6). In contrast to the log likelihood, the

lower this score is, the better the structure fits the dataset.

log

n∏
i=1

qi∏
j=1

(ri − 1)!

(Fij + ri − 1)!

ri∏
k=1

Fijk (3.4.4)

n∑
i=1

|πi| log(n) +

(
(ri − 1)

∏
j∈πi

rj

)
(3.4.5)
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n∑
i=1

qi∑
j=1

ri∑
k=1

−Fijk × log
(
Fijk
Fij

)
(3.4.6)

where,

• n is the number of nodes.

• Fijk is the frequency of occurrences in the dataset that the node xi takes on the

value vik (where there are ri possible instantiations).

• the parent nodes take on the instantiation wij (where there are qi possible instan-

tiations) and the parent nodes πi take on the instantiation wij (where there are qi

possible instantiations).

• and Fij =
∑ri

k=1 Fijk.

3.4.3 Mathematical Description of Dynamic Bayesian Networks
(DBNs)

Dynamic Bayesian networks (DBNs) ([FMR98], [Gha98]) are an extension of the s-

tandard Bayes network as discussed in the Section 2.3.2.1, which are used to model

probability distributions of random variables. DBNs have similar hidden process as

hidden Markov models, but they are more general than hidden Markov models, which

assume a single discrete variable representing a hidden state and possible multiple ob-

servation variables. Each state at time t depends on its past given state at time t − 1.

For complex structure, it may also depends on more past states in the same time occur-

rence. A Dynamic Bayesian network is defined as follows[vGTL08]:
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P (X1...t) =
T∏
t=1

N∏
i=1

P (X i
t) | Pa(X i

t)) (3.4.7)

where,

• X i
t is the ith node representing the variable at time slice twith nodes correspond-

ing to a set of random hidden-state variables X(t),

• Pa(X i
t) are the parent of X i

t in the graph,

• P is the joint probability distribution (JPD) of variables in X(t).

DBNs are the probabilistic directed graphical models in which each node repre-

sents a variable at a particular time-slice. Each arc in the graph represents a probabilis-

tic relationship. The lack of arcs between nodes represents conditional independence

assumptions. The arcs connect parent nodes to child nodes and form a directed acyclic

graph (DAG), i.e. no directed cycles are admitted. Links can occur both in the same

time slice and between different time slices. Each node is associated with a conditional

probability distribution (CPD), which describes the probability of each possible value

of the variables given their parents. Once the structure of the network and the CPDs

are obtained, it is possible to infer the value of any node. In fact, all the CPDs of the

DBN provide an efficient factorization of the joint probability of the variables in the

model. A simple example is shown in Fig 3.2. To build a DBN, the structure of the

network and the three set of parameters (state transition, observation probability distri-

bution function and initial state distribution) (i.e. the CPDs) of all the variables must

be obtained. Typically, the CPDs are learned from data by maximizing the posterior

probability of the parameters given the data [HGC95]. When the structure is fixed and
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the prior distribution of the parameters is uniform, this corresponds to maximizing the

likelihood function.

In the learning process of DBNs, a similar approach to standard BNs can be adopt-

ed (such as a search and score with an appropriate metric e.g. log likelihood). For

example, the REVEAL algorithm [LFS+98] is a modified equivalent of the K2 algo-

rithm. In [TLOS01], a number of existing BN learning algorithms were adapted for

DBNs. However, in many time-series, there are changes in the underlying distributions

and standard DBNs cannot take this into account as they are time-invariant. More re-

cently, non-stationary DBNs have been explored where both a model parametrisation

and a segmentation process are performed to identify these changes in structure. How-

ever, the search space is usually limited by constraining one or more degrees of free-

dom, i.e. the segmentation points of the time series, the parameters of the variables,

the dependencies between the variables and the number of segments for the model.

Among the most recent and complete work, Talin and Hengartner [TH05] used a M-

CMC approach to estimate the variance structure of the data, but the search space was

limited to a fixed number of segments and for learning undirected edges only. Xuan

and Murphy [XM07] proposed an approach to model changing dependency structures

from multivariate time series, but also in this case the search was limited to undirect-

ed edges. Robinson and Hartemink [RH10] formalized the concept and proposed a

solution that tackles all the degrees of freedom described except for the parameters.

Grzegorczyk and Husmeier [GH09] instead retained the stationarity of the structure

in favour of the parameters flexibility, arguing that structure changes lead almost cer-

tainly to over-flexibility of the model with short time-series. While the first approach
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may only capture parameter changes that are strong enough to give rise to a struc-

tural change, the latter may not model correctly underlying conditional dependencies

over the stages. The ability to assess both weak and strong changes in variable distri-

butions and explicitly model the evolution of their relationships would be extremely

useful from an informative point of view, especially in unknown processes such as

glaucoma. In [CGHCT12] a form of DBN that clusters sections of time series whilst

simultaneously learning DBN structure and parameters was used to model glaucoma

patients. The Bayesian Information Criterion (BIC) [Sch78] was used in conjunction

with Simulated Annealing (SA)[KJV83] for learning both the BNs and the clusters.

BIC incorporates a penalizing factor that is proportional to the number of parameters

in the model and the number of cases in the data, and helps to prevent overfitting.

3.4.4 A proposed Algorithm for Identifying Key Stages in a Dis-
ease Process

An algorithm is proposed in this PhD study for identifying key stages in a disease

process. A key novelty of this work is the use of the temporal bootstrap in conjunc-

tion with Algorithm 3 described, below, to generate and explore the transitions of the

different states within the trajectories that are discovered from the selected data. As

shown in the algorithm, essentially, it starts by searching for hidden states h = 3 (one

more than the original ‘healthy’ and ‘disease’), whilst learning a HMM. The HMM is

chosen here in conjunction with the Expectation Maximisation algorithm for its ability

to learn hidden underlying states in a temporal process.

The Expectation Maximisation (EM) algorithm [B+98] can be used to cluster a

sequence of data into different sections. It consists of two steps:
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• The E step becomes the sum of expectations of sufficient statistics

• the M step involves maximizing a linear function.

In order to cluster the data into increasingly fine-grain regions using the EM algorithm,

the EM model fitting process is repeated for increasing values of h and the transition

matrix of the HMM is explored manually each time for interesting features. Thus, this

iterative interactive approach is a good way to ensure interesting features are identified.

In addition, it is can be used to minimize the cost function of the network. The process

is detailed in Algorithm 3 below:

Algorithm 3 An iterative algorithm for identifying key stages in a disease process.

Input: A set of pseudo time-series, P generated from cross section data D and
associated labels C;

1: Remove the class labels C from P ;
2: Set h = max(C) (the number of classes) + 1;
3: repeat
4: Train a HMM on the P with h hidden states using the EM algorithm [B+98];
5: h = h+ 1;
6: until
7: Transition table in the parameterised HMM captures disease features of interest

(e.g. it features more than one clear end state);

Output: HMM with new intermediate or end states

By applying this approach we aim to identify different key stages in a disease pro-

cess [LT10]. Furthermore, the ordering of the discovered sequences (i.e. the pseudo

time-series) should lead to more informative clusters and transitions than simply clus-

tering the unordered cross-sectional data using, for example, standard clustering such

as K-means [HW79].
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3.5 Summary

In this chapter, different approaches to modelling trajectories through clinical data have

been examined. Firstly, two methods to infer time-series from data are discussed. This

includes hidden Markov models and dynamic Bayesian networks which are especially

good at dealing with uncertainty and noise. Secondly, some new techniques for build-

ing trajectories through cross-sectional data are explored with a focus on sequence re-

construction. It is clear that many of the longstanding approaches to modelling disease

progression are proving inadequate to deal with issues of uncertainty in the dynam-

ic and measurement processes and the ability to integrate cross-sectional studies with

longitudinal studies. The approaches and techniques discussed in this chapter will

be further discussed in the next two chapters. Examples of real cross-sectional data

and simulated data that are designed to mimic the cross-sectional study data collection

process will be described with analyses of pros and cons in the next chapter.



Chapter 4

Identifying Key Stages in a Disease
Process from Cross-Sectional Data:
Experiments and Results

This chapter presents the results from the experiments of using methods and algorithms

described in chapter 3, utilising both simulated data and the three clinical datasets are

discussed in this chapter. The simulated results consist of time-series generated by an

autoregressive HMM. The sample trajectories are constructed using the temporal boot-

strap on each dataset, plotting the first two components, following multi-dimensional

scaling. The comparison of the trajectories within a medical context is illustrated.

Following that, the State-End diagrams used to represent the transition probabilities

between the different states are discovered. The mean values of the clinical data are

presented for both healthy and diseased patients for comparative purposes. Addition-

ally, the expected data values for each state associated with the state-end diagrams are

also discussed, based upon the HMM learnt from the unlabelled pseudo time-series.

All the results in this chapter have been published on number 2 [LT10] and 3 [YSA13]

publications.
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4.1 Simulated Data and Experiment Setups

In order to assess the performance of the different approaches explored in this section,

a number of simulated datasets are used which are now described. In power analysis,

simulation is a simplified imitation of the operation of a real-world process through

time, that follow a particular distribution and calculating the test statistic from each

sample. So that the significance level and power of the procedure may be investigated.

In this research, a number of simulated time-series are generated from an autoregres-

sive HMM (ARHMM) ([HDA01], [KIM03], [KT02]) with two variables for ease of

visualisation (essentially it is a bivariate Gaussian). 200 time-series datasets are gener-

ated with four or five discrete states in order to determine the trajectory of each time-

series. The number of samples was chosen to reflect the typical sample sizes from the

available clinical data. An autoregressive hidden Markov model (ARHMM) was used

as to capture the relatively smooth transition from healthy to disease states through

autoregressive dependencies. This smooth transition is typical in many medical data

and particularly in progressive diseases such as glaucoma. For some diseases, this may

not hold if their symptoms fluctuate, appearing and disappearing over the course of the

disease.

The states and the transitions between ‘healthy’ and ‘diseases’ are based upon the

discussion on multiple end points in Chapter 2 (Albert [Alb99]). The states in the first

simulated dataset represent a starting healthy region and one diseased region with two

intermediate states, whilst the second dataset involves one starting state, two end states

and two intermediate states. The observed variables are Gaussian and conditioned

upon the hidden state and the same variable at the previous time point. The length of
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each multivariate time-series is set to 30, as this reflects common longitudinal studies in

the biological and medical literature. The hidden variable always starts in the healthy

state and has a probability distribution that determines the probability of change to

the intermediate and end states. One point from each time-series is then sampled to

form a cross-sectional dataset. This process is similar to that used in [CK02] and an

example of the cross-sectional data is plotted in Figure 4.1 including some time-series

examples.
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Figure 4.1: Two simulated datasets generated using autoregressive HMMs with two
variables to model disease processes. The plots show a single sampled point from each
time-series (dots) along with some of the original time-series (lines). One dataset has
1 healthy state, 1 disease state and 2 intermediate states (top); the second dataset has 1
healthy state, 2 disease states and 2 intermediate states (bottom).
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4.2 Simulated Results

To demonstrate the power of the proposed methods, the two simulated time-series

datasets are generated (see Figure 4.1) using an autoregressive HMM with two vari-

ables to model a disease process with both healthy state and different disease states.

The plots show a single sampled point from each time-series (dots) along with some of

the original time-series (lines). One of the datasets has 1 healthy state, 1 disease state

and 2 intermediate states; the other one has 1 healthy state, 2 disease states and 2 in-

termediate states. The underlying reason for that choice is to capture complex advance

disease scenarios as highlighted in the literature (specifically [Alb99]). We sample one

point from each time-series generated in this data to represent cross-sectional data and

use it to generate Multivariate Pseudo Time-series (MPTS).

The resulting transition matrices generated from applying Algorithm 2 (see Section

3.3 in Chapter 3) to the two simulated datasets are shown in Tables 4.2 and 4.4, and

the visualisation of transition matrix are shown in Figure 4.3 and 4.5. By comparing

with the original matrices in Tables 4.1 and 4.3, it can be seen that although the precise

probabilities are not discovered, the general characteristics of many of the states are

actually found (see the visualisation of original matrix from Figure 4.2 and 4.4). The

stable end states (state 4 in Table 4.2, and states 4 and 5 in Table 4.4) with spurious

dynamics are the examples for this. Testing the discovered model using the original

(unseen) full time-series data gives a mean accuracy of 95% (see Section 3.3 in Chapter

3), indicating that a very reliable time-series model can indeed be learnt from cross-

sectional data if the sample is sufficiently large enough. For example, states marked

with an asterisk correspond to zero probabilities in the original model. Although these
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spurious correlations are small, it is found though that as the sample size of the original

data is reduced (to 50 or less), they become more of an issue. They are likely to

have occurred because the learnt HMM overfitted spurious relationships in the MPTS

through implicit correlations. In summary, the main characteristics of the transitions

are preserved when the sample size is appropriately high. A small number of spurious

correlations between impossible transitions were generally observed but these were

always very low values. This gives a confidence in exploring the real-world clinical

datasets with similar sample sizes.

Ht−1 \ ht 1 2 3 4
1 0.800 0.100 0.100 0.000
2 0.050 0.900 0.000 0.050
3 0.050 0.000 0.900 0.050
4 0.000 0.000 0.000 1.000

Table 4.1: Transition matrix for hand-coded simulated data with 4 states.

Ht−1 \ ht 1 2 3 4
1 0.833 0.061 0.091 0.015∗

2 0.277 0.566 0.000 0.157
3 0.213 0.000 0.729 0.058
4 0.000 0.025∗ 0.077∗ 0.898

Table 4.2: Transition matrix learnt from PTS discovered from cross-sectional sample
of simulated time-series with 4 states.
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Figure 4.2: The visualisation of transition matrix for hand-coded simulated data with 4 states.

Figure 4.3: The visualisation of transition matrix learnt from PTS discovered from cross-sectional sample of simulated
time-series with 4 states.
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Ht−1 \ ht 1 2 3 4 5

1 0.800 0.050 0.050 0.050 0.050
2 0.050 0.900 0.000 0.050 0.000
3 0.050 0.000 0.900 0.000 0.050
4 0.000 0.000 0.000 1.000 0.000
5 0.000 0.000 0.000 0.000 1.000

Table 4.3: Transition matrix for hand-coded simulated data with 5 states.

Ht−1 \ ht 1 2 3 4 5
1 0.892 0.028 0.046 0.015 0.020
2 0.076 0.686 0.000 0.238 0.000
3 0.119 0.000 0.577 0.000 0.304
4 0.002∗ 0.016∗ 0.000 0.951 0.031∗

5 0.086 0.000 0.070∗ 0.004∗ 0.841

Table 4.4: Transition matrix learnt from PTS discovered from cross-sectional sample of simulated time-series with 5 states.
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Figure 4.4: The visualisation of transition matrix for hand-coded simulated data with 5 states.

Figure 4.5: The visualisation of transition matrix learnt from PTS discovered from cross-sectional sample of simulated
time-series with 5 states.
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4.3 Real-World Cross-sectional Datasets

The three datasets used in this study are named after the disease conditions.The first

dataset - Visual Field (VF) and Heidelberg Retina Tomography (HRT) data is from

glaucoma sufferers. Glaucoma is an eye disease, characterised by progressive loss

of vision and is the second major cause of blindness worldwide. The dataset is built

based upon two kinds of medical tests for glaucoma. The second dataset - Breast Can-

cer (BC) data is from breast cancer sufferers. Breast Cancer is a kind of cancer from

breast tissue that supply the ducts with milk. The majority of disease cases occur in

women, the incidence of breast cancer is rising among women in many European coun-

tries, profoundly affecting up to 1 in 16 women [Org10]. The dataset is set upbased

upon tumour examinations for breast cancer. The last dataset - Parkinson’s disease

(PD) is from a Parkinson’s disease sufferers. Parkinson’s disease is idiopathic disease,

characterised by a degenerative of the central nervous system and having no known

cause, most of cases occurring in the old people. Because of the ageing of the world,

parkinson’s disease has become an increasing public health issue due to the ageing of

the world’s population [Org98]. The dataset is built based on speech pattern data for

Parkinson’s disease. Although, these diseases are very different, the datasets share a

similarity in terms of how data has been collected, as all of them come from cross-

sectional studies over a relatively large population. These sampled cross-sectional data

are used to generate the Pseudo Time-Series. The three clinical datasets are described

individually in the next sections. Table 4.5 gives a summary of the datasets:
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Dataset Number of Variables Number of Cases %age of Healthy Controls
Visual Field 12 163 51.9

Breast Cancer 10 565 62.7
Parkinson Disease 22 195 24.6

Table 4.5: Summary table of the 3 datasets.

4.3.1 Visual Field Test and Heidelberg Retina Tomography Data

The Visual Field (VF) test assesses the sensitivity of the retina to light. It is typically

measured by automated perimetry, a technique in which the subject views a dim back-

ground as brighter spots of light are shone onto the background at various locations

in a regular grid pattern. The brightness at which the subject sees the spots of light

is related to the retinal sensitivity. There are many diseases and conditions that affect

the VF, the most common being neurological disease and glaucoma. For this study,

the data are aggregated into average values based upon their association with one of 6

nerve fibre bundles based upon the mappings in [KCO02]. The other type of data that

we explore are obtained by Heidelberg Retinal Tomography (HRT) [LCS+06] which

involves generating images of the retina in order to calculate certain measurements

associated with the three dimensional shape of the optic nerve head. These include

neuro-retinal rim area measurements, which are used for the experiments in this study.

The measurements are calculated for 6 different segments of the retina: nasal (n), nasal

inferior (ni) and superior (s), temporal (t), temporal inferior (ti) and temporal superior

(ts). For the experiments in this study, we combine the VF and HRT datasets to see

if trajectories that are identified capture the interaction between the two data types as

glaucoma progresses. The VF and HRT data are taken from a study of approximately

163 people [Log05] and each patient is classified into healthy or glaucomatous based
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upon the VF data, using a pre-defined algorithm (AGIS). This may result in a bias to-

wards the VF data for the building of the pseudo time-series, however as the relabelling

algorithm involves learning the states from scratch we do not envisage it biasing our

final disease stages.

4.3.2 Breast Cancer Data

The 565 Breast Cancer data (BC) are classified into 212 malignant and 357 benign

cases. Ten real-valued features are computed for each cell nucleus: radius, texture,

perimeter, area, smoothness, compactness, concavity, concave points, symmetry, and

fractal dimension. The original dataset is described in more detail in Wolberg and

Mangasarian and is available from the UCI machine-learning repository [A.K96].

4.3.3 Parkinson’s Disease Data

Parkinson’s disease (PD) affects movement and motor-related symptoms including

speech. Vocal impairment can be the earliest indicator for the onset of PD. There-

fore, a number of voice measurements have drawn significant attention for detecting

and tracking the progression of symptoms of PD [Mit97]:

• The average vocal fundamental frequency (MDVP:Fo(Hz))

• The maximum vocal fundamental frequency (MDVP:Fhi(Hz))

• The minimum vocal fundamental frequency (MDVP:Flo(Hz))

• Several measures of variation in fundamental frequency (MDVP: Jitter(%), MD-

VP:Jitter(Abs), MDVP:RAP, MDVP:PPQ, Jitter:DDP)
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• Several measures of variation in amplitude (MDVP:Shimmer, MD-

VP:Shimmer(dB), Shimmer:APQ3, Shimmer:APQ5, MDVP:APQ, Shim-

mer:DDA)

• Two measures of ratio of noise to tonal components in the voice status (NHR,

HNR)

• Two nonlinear dynamical complexity measures (RPDE,D2)

• The signal fractal scaling exponent (DFA)

• Three nonlinear measures of fundamental frequency variation (spread1, spread2,

PPE)

The PD dataset is composed of 195 biomedical voice measurements, 147 of which

are from Parkinsons disease patients and 48 from controls. The original dataset was ob-

tained by McSharry and Roberts and is available on the UCI machine-learning reposi-

tory [MSP05].
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4.4 Biomedical Experiments and Results

In this research, the disease region identification is compared with standard clustering

techniques on real-world medical cross-sectional data. For the real world data, the true

underlying state transitions are unknown. However, the discovered transitions can be

explored in the medical context. The biomedical results provide some sample trajecto-

ries when using the temporal bootstrap on each dataset. Points are identified as healthy

and diseased using red/dark grey and blue/light grey respectively. These figures are

generated using multidimensional scaling (calculated with Euclidean distances). This

enables us to visualise many more variables in two dimensions. The ‘state diagrams’

(it is not a graphical model, it displays the non-zero entries of the transition matrix) are

given to represent the transition probabilities (p) between the different states discov-

ered. Associated with these diagrams, the expected values and clustering values for

the data for each state are produced, based upon the HMM learnt from the unlabelled

pseudo time-series. The mean values for the data for healthy patients and diseased

patients are shown for comparison. Note that Algorithm 2 given in Chapter 3 involves

increasing values for the hidden state h. Results provided here are only for the models

with the number of states that are the best compromise between finding new interesting

end and intermediate states, but not with trivial states that are simply side-effects of the

data. For the glaucoma data, 4 states were found which best met this balance; similarly

for the breast cancer, 5 states were gained; and for the Parkinson’s data with 3 states.

A larger value for h led to the splitting of interpretable states into ones with less clear

significance.
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4.4.1 Glaucoma
4.4.1.1 The Trajectories - Glaucoma

Figure 4.6: Typical trajectories learnt from the combined VF and HRT data plotted
using multidimensional scaling with Euclidean distance. Normal VFs are marked in
red and glaucomatous in blue.

Figure 4.6 shows sample trajectories that are discovered when building the pseudo

time-series from healthy to disease regions. It also highlights that there could be two

distinct regions of diseased state (in the top-right and bottom-right of the plot, marked

with two dashed ellipses). Although this is may not be shown the states properly at

this stage, the analysis below will confirm it through the relabelling scheme which is

used to identify the sequence transitions and their medical context.
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4.4.1.2 End-State Analysis - Glaucoma

The glaucoma state transition diagram generated from the transition matrix of the

learnt HMM is displayed in Figure 4.7. The figure shows transitions with a p > 0.15

as solid lines and p > 0.05 as dashed. The full transition matrix is given in Table 4.6

where ht represents the hidden state h at time t.

Figure 4.7: State Transitions for Glaucoma data. State 4 coincides with the starting
healthy state, 1 and 2 appear to represent relatively stable end states and 3 appears a
transitory state (a p > 0.15 is shown as a solid line and p > 0.05 as dashed).

Ht−1 \ ht 1 2 3 4
1 0.975 0.025 0.000 0.000
2 0.051 0.746 0.090 0.113
3 0.275 0.000 0.682 0.042
4 0.000 0.070 0.099 0.831

Table 4.6: Transition matrix for discovered VF states.

The table and the diagram show that there appear to be three relatively stable states:

1, 2 and 4. State 4 coincides with the starting healthy state, 1 and 2 appear to represent

relatively stable end states and 3 a transitory state. These states are further explored by

calculating the expected values of the variables associated with each state (see Figure
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4.9). The clustering values of the variables discovered using k-Means clustering (see

Figure 4.10) and compared with the mean values for normal and glaucomatous data

in Figure 4.8. All values were standardised to have a mean = 0 and sd = 1, to

void one of large data dominating the model. Expected state 4 in Figure 4.9 shows a

normal rim width and VF sensitivity (similar values to the control in Figure 4.8 with

high NFB sensitivity and low rim-associated variables), whereas state 1 shows marked

diffuse rim narrowing (high values for the rim-associated variables), and moderate loss

of retinal sensitivity (low values for the NFB sensitivities) similar to the glaucomatous

in Figure 4.7.

This is what would be expected, based on known anatomical relationships. State

3 (an apparently transitory state) displays narrowing of the rim but little reduction of

retinal sensitivity, whilst state 2 (a relatively stable state) shows some narrowing of

rim, but no loss of retinal sensitivity. This characteristic progression in the field but

not in the optic disc (as displayed in the HRT rim data) and vice versa is known to

occur and it is interesting that these have been identified by the algorithm as precursors

to full disease progression. More informative clusters are discovered using our ap-

proach. Furthermore the pseudo-temporal models will further assist in understanding

the progression of Glaucoma.
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Figure 4.8: The mean data for the VF (top) and HRT (bottom) data as pre-classified
using clinical analysis. NFB represent the sensitivity of a specifier Never Fibre Bundle
with the VF, and Diff rim represents the rime narrowing regions.
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Figure 4.9: The expected data for VF and HRT discovered using Algorithm 2.

Figure 4.10: The mean cluster profiles for VF and HRT discovered using k-means
clustering.
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4.4.2 Breast Cancer
4.4.2.1 The Trajectories - Breast Cancer

Figure 4.11: Typical trajectories learnt from the BC data. Benign are marked in red
and Malignant in blue.

Figure 4.11 shows sample trajectories for the BC data. There is a clear cluster of

benign tumours in red and those classified as malignant in blue. We use the relabelling

scheme to see if we can identify the state transitions from healthy/benign to malignant.

4.4.2.2 End-State analysis - Breast Cancer

The BC state transition diagram generated from the transition matrix of the learnt H-

MM is illustrated in Figure 4.12 (the figure shows transitions with a p > 0.15 as solid

lines and p > 0.05 as dashed). The full transition matrix is given in Table 4.7. This

table and diagram show that there appear to be four relatively stable states: 2, 3, 4 and
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5. State 3 appears to coincide with the starting benign state, whilst state 2 represents a

relatively stable malignant state. States 1, 4 and 5 appear to be transitory states, with

state 5 being a key stage in the progression to advanced malignant tumour. The states

are further explored by comparing the mean data for the pre-classified benign and ma-

lignant states (Figure 4.13) with the expected values of the variables, associated with

each discovered state as shown in Figure 4.14. The clustering values of the variables

discovered for the BC data using k-means clustering, as shown in Figure 4.15.

Figure 4.12: State transitions for the BC data. State 3 appears to coincide with the
starting benign state, whilst 2 appears to represent a relatively stable malignant state,
and 1, 4 and 5 to be transitory states, with state 5 being a key stage in the progression
to advanced malignant tumour (a p > 0.15 is shown as a solid line and p > 0.05 as
dashed).

Ht−1 \ ht 1 2 3 4 5
1 0.6963 0.0000 0.0403 0.0541 0.2093
2 0.0000 1.0000 0.0000 0.0000 0.0000
3 0.0959 0.0000 0.8929 0.0112 0.0000
4 0.0417 0.0377 0.1021 0.7764 0.0422
5 0.0000 0.1464 0.0000 0.0629 0.7907

Table 4.7: Transition matrix for discovered BC states.
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State 3 does indeed seem to represent people with benign tumours (with generally

low values for all metrics as seen in the benign cases in Figure 4.13), whereas state 2

represents cases of malignant BC (with generally high values as seen in the malignant

cases in Figure 4.13). Interestingly, state 5, which looks like an intermediate stage in a

trajectory will ultimately be in a state characterized as a malignant tumour. This shows

characteristics of a malignant tumour but only in some variables such as high values

for radius, perimeter and concave points. Other variables such as fractal complexity

appear normal.

Figure 4.13: The mean data values for the pre-classified benign and malignant cases.

Here, the expected values from our approach are not really more informative than

k-Means. However, our approach still offers the advantage of building transition mod-

els which help to understand the progression of the disease.
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Figure 4.14: The expected values of data for each state discovered from the relabelling
scheme on the BC data.

Figure 4.15: The mean cluster profiles for the BC data using k-Means clustering.
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4.4.3 Parkinson’s Disease
4.4.3.1 The Trajectories - Parkinson’s Disease

Figure 4.16: Typical trajectories learnt from the PD data. Healthy are marked in red
and Parkinsonism in blue.

Figure 4.16 shows a curved trajectory from healthy to Parkinsonism. Note that the

small cluster of healthy patients that appear to sit halfway through this trajectory after

many other patients have been classified as sufferers (marked with a dashed circle).

This is due to demonstrating a subset of symptoms and we explore this hypothesis by

using the relabelling scheme.

4.4.3.2 End-State analysis - Parkinson’s Disease

The PD state transition diagram generated from the transition matrix of the learnt HM-

M is shown in Figure 4.17 (The figure shows transitions with a p > 0.15 as solid lines
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and p > 0.05 as dashed).The full transition matrix is given in Table 4.8. This table

and diagram show that there appear to be two relatively stable states: 1 and 2. State 1

coincides with the starting healthy state and 2 appears to represent a stable end state

with 3 being a transitory state.

Figure 4.17: State transitions for the PD data. State 1 coincides with the starting
healthy state, state 2 appears to represent a stable end state, with 3 representing a
transitory state (a p > 0.15 is shown as a solid line and p > 0.05 as dashed).

Ht−1 \ ht 1 2 3
1 0.8860 0.0000 0.1140
2 0.0000 1.0000 0.0000
3 0.0771 0.0482 0.8748

Table 4.8: Transition matrix for discovered VF states.

The expected values of the variables associated with each state are shown in Fig-

ure 4.19, the clustering values using k-Means is shown in Figure 4.20 and the mean

values for the pre-classified Parkinsonism patients and controls are shown in Figure

4.18. State 1 in Figure 4.19 shows people with a healthy profile very similar to the

control profile in Figure 4.17. State 2 appears to resemble people with PD, especially

in the measurements of HNR (higher) and the three MDVP-related metrics (higher).

HNR represents Harmonics to Noise Ratio and is one of the most popular approaches
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to measuring voice function [PT07]. The three MDVP metrics capture the average,

maximum and minimum vocal fundamental frequency. In addition, DFA is one of the

parameters currently used to distinguish healthy people and people from PD sufferers,

since the scaling exponent of DFA is larger in PD than healthy people. It is positive

to see that the scale of this for state 2 is larger than the state 1 and 3. PEE is a new

measure of PD dysphonia, F0 is the natural pitch of healthy voices. State 2 seems to

be characterised by a much larger vibrato and micro tremor than State 1. Jitter is an-

other feature of PD and control measure values should be close to 0, as we see in the

State 1. State3 appears to be a transition state somewhere between the control and PD

stages, where certain key features seem to show characteristics of PD (such as RPDE

and DFA), whilst others resemble those of the controls. This state could account for

the cluster of apparently healthy individuals that look as if they are part way along

the trajectory in Figure 4.16. The expected results using our approach have more in-

formative clusters than static clustering of the original cross-sectional data, due to the

explicit modeling of the dynamics of the disease.

Figure 4.18: Mean PD data for pre-classified control and Parkinsons Disease.
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Figure 4.19: The expected data for each discovered state in the Parkinsonism Data.

Figure 4.20: Mean cluster profiles using k-Means.



80

4.5 Summary

The results of the experiments utilising the approaches and techniques are discussed in

this chapter. For the real world clinical data, the true underlying state transitions along

a disease process are unknown. However, the discovered transitions can be explored

in the medical context. This chapter has empirically demonstrated the advantages of

the relabelling algorithm when applied to pseudo-time-series. The details are given

to show how key intermediate stages of disease can be identified and evaluated using

simulated data with complex multiple disease stages endpoints, as well as real clinical

data from three very different diseases.

The next chapter will address how to overcome some of the current weaknesses of

the pseudo time-series approach, namely the lack of genuine temporal information as

the trajectories are only built as sequences through the data without any time stamps. It

will explore how pseudo time-series can be calibrated using a small number of longitu-

dinal datasets in order to inject real time stamps into the models of disease progression.



Chapter 5

Calibrating Pseudo Time-Series

In chapter 3, a resampling approach known as the Pseudo Temporal Bootstrap (TBS)

[TGH10] was introduced. It aims to build multiple trajectories through cross sectional

data, in order to approximate genuine longitudinal data. These Pseudo Time-Series

(PTS) can then be used to build approximate temporal models for prediction. This

approach has been extended to cluster important stages in disease progression using

hidden Markov models and the EM algorithm [B+98] as discussed in Section 3.4.1.

However, the use of cross-sectional data to build these models will always be limited

by the fact that no genuine time stamps have been used to infer the models. This chap-

ter investigates the effect of incorporating genuine longitudinal data into the pseudo

temporal models in order to calibrate them. This part of the work explores how to best

balance combining the cross-sectional data with longitudinal data in order to minimise

the need for too many expensive longitudinal data samples whilst being able to learn

genuine temporal models.

81
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5.1 Integrating data

In this chapter, we discuss the integration of cross-sectional and longitudinal data. The

process of data integration normally involves combining data from different sources

and providing users with a consolidated data view. Many data integration techniques

address representation heterogeneity where similar data is stored in many different

forms, as commonly seen in bioinformatics data [AMMM07]. Data Warehousing

[Inm96] is key to many data integration projects (though still rare in biology and

medicine) as it involves restructuring multiple databases in order to allow rapid access

for analysis and data-mining through multidimensional modelling [CNF+07]. Meta

Analysis is also popular for data integration, particularly in ecological research where

data can be expensive to obtain [CGGW05]. It works by supplying a statistical

framework for identifying significant results over a number of independent published

studies, and calculating the significance of all of the studies when they are brought

together. It can be prone to publication bias where positive results are more likely

to be published and therefore skewing the statistics [JM02]. Here we are combining

data that contains the same essential variables (the clinical tests) the difference being

that some are generated over time from the same patient and others are only recorded

once per patient. Both types of data offer essential information, for example, disease

variation in the general population are normally from cross-sectional studies while

genuine temporal information of the disease from longitudinal data.
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5.2 Experiments and Results

For this study, we explore the effect of adding relatively small numbers of time series

to pseudo time-series generated from cross-sectional data, to see if the resulting mod-

els can be improved. Essentially it is to see if the limitations of pseudo time-series can

be overcome (due to the lack of time-element in the trajectories which are in reality se-

quences of data) by calibrating them with real time-series. We explore this calibration

on both simulated and real VF data.

5.2.1 Calibrating PTS on Simulated Data

For the simulated data, we generate time-series of length 30 from an autoregressive

hidden Markov model (ARHMM (original) in Figure 5.1) to mimic typical biomedical

longitudinal data (MTS). We then randomly sample a single point from these series to

mimic the cross-sectional sampling of a population (CS DATA) but reserve 50 for the

calibration.

Figure 5.1: The scheme of the experiments: non calibrated.
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Figure 5.2: The scheme of the experiments: calibrated.

The experiment starts with 500 cross-sectional samples, as this was found to be a

suitably large size to generate good pseudo time-series and models in [TGH10], and

increment by 100 up to 1500 (the size of some increasingly large biomedical studies

such as [GHLB+12]). The Kulbaeck Leibler (KL) distance [Kul87] is used to explore

how close a model learnt from the cross-sectional data using the temporal bootstrap is

to the original generating model. Figure 5.1 illustrates the general scheme.

A number of the reserved original time-series (Reserved MTS) generated by the

same ARHMM were then added to the pseudo time-series, and calibrated models are

learnt from this (Callibrated ARHMM in Figure 5.2). We explore how close these new

calibrated models are to the original model. Increments of 10 time-series were used as

these seem to differentiate between the KL distances significantly. We also include how

good the model is when learnt solely from the time-series used to calibrate the models

to check that it is not simply using these small longitudinal samples to parameterise
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(see Figure 5.2)

A similar experiment was performed using real VF longitudinal of 91 patient time-

series. The data taken from a study of patients with Ocular Hypertension (often a

precursor to Glaucoma). Each patient undergoes VF examination on a 4 monthly basis,

hence the obtained time-series can be used to explore progression of the disease. The

full study is documented in [KGHR+03] and 91 patients were selected in this study

based upon a minimum number of visits. One VF test is sampled from each of these

selected patient’s time-series to generate a cross-sectional sample and generate PTS

data for learning models from. We then compare these models, as well as those learnt

from a combination of PTS and real time-series to see how close the resulting models

are to the one that is generated from the original longitudinal study. Figure 5.3 shows

the results for all experiments, including learning PTS from cross-sectional samples of

varying sizes and either not calibrating, calibrating with 10 time-series, or calibrating

with 20 time-series.

The first obvious characteristic of these graphs is that calibrating does indeed im-

prove the quality of the models with the KL distances that are closer to the original

generating ARHMM. This is not surprising seeing that there is no genuine “time”

in the PTS generated from the cross-sectional data. What is surprising, is that only

a relatively small number of time-series are needed to improve these models, espe-

cially when there are lots of samples used from the cross-sectional data. This well

supports the results from previous studies (Chapter 4) that the PTS does find good-but-

not-perfect models (limited by the lack of real time-series) and that a small number
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Figure 5.3: KL distance for varying cross-sectional study sample sizes with increasing
number of longitudinal data for calibration.

of genuine time-series can calibrate these models. These findings provides good sup-

porting evidence that expensive longitudinal studies can be relatively small in size if

combined with larger cross-sectional studies to capture the general trajectories and the

variability of disease progression within a population.

Figure 5.4 shows the confidence intervals of the KL distances generated from the

study. From the one with no calibration and with calibration from 10 time-series, it can

be seen that there is a steady decrease in KL distance as cross-sectional sample size

increases where more and more reliable PTS are constructed. When the sample size

is 1500, the KL distance mean becomes 1.70 +- 0.16. Note that when 10 time-series

alone are used to learn the model, a mean KL distance of 2.08 +- 0.26 is obtained. This

shows that the PTS generated from the cross-sectional data improves on models learnt

from the time-series only by incorporating the variability within a larger population

captured in the cross-sectional data. With calibration from 20 time-series, we see a
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similar story, where increasing the cross-sectional sample size, builds better PTS and

results in models that are closer to the original. For 1500 in the cross-sectional sample

we see a KL distance of 1.48 +- 0.12. Note that when 20 time-series alone are used to

learn the model we get a mean KL distance of 1.78 +- 0.15. Again, it proves that the

PTS improves on time-series alone, but that the integration of both seems to generate

the models that best reflect the underlying model.

We also explored the statistical significance of the differences between these KL

distances using the Wilcoxon Rank comparison. Table 5.1 shows the Wicoxon Rank

statistics comparing the KL distance between different models learnt using the different

approaches. An asterisk is used to denote significant p values. First of all we notice that

there are many significant values implying that the difference between models learnt

using the two different approaches are significant. The most important statistics are

those that show the models learnt with no calibration and only 500 cross-sectional data

points are significantly different from most other models (row 1), but when 1500 cross-

sectional data points are used the resulting model becomes much closer, only being

significantly different from the model learnt from 50 full time-series (row 4). However,

by calibrating these models we see a little improvement for 500 cross-sectional (CS)

data points but for 1500 datapoints calibrated with 20 time-series, there is no significant

difference between the models learnt from the full time-series. This implies that when

the CS sample size is large enough and the resulting PTS models are calibrated with a

relatively small number of real time-series, then a model can be learnt that is as good

as one learnt from all time-series data.
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Figure 5.4: Confidence Intervals for the KL Distance to the original model generating
the data for increasing sample sizes of cross-sectional data. i) with the non-calibrated
model (top) ii) with the model calibrated with 10 time-series (middle) and iii) with the
model calibrated with 20 time-series (bottom).
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Wilcoxon Rank cs500calib10 cs500calib20 cs1500nocalib cs1500calib10 cs1500calib20 csfull30 csfull50
cs500nocalib 0.196 0.047∗ 0.000∗ 0.000∗ 0.000∗ 0.000∗ 0.000∗

cs500calib10 - 0.455 0.062∗ 0.036∗ 0.000∗ 0.010∗ 0.000∗

cs500calib20 - - 0.077∗ 0.130 0.001∗ 0.023∗ 0.001∗

cs1500nocalib - - - 0.947 0.119 0.395 0.064∗

cs1500calib10 - - - - 0.052∗ 0.277 0.047∗

cs1500calib20 - - - - - 0.395 0.728
csfull30 - - - - - - 0.291
csfull50 - - - - - - -

Table 5.1: Wilcoxon Rank Comparison between KL distances to original (significant p values are marked with an asterisk).
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5.2.2 Calibrating PTS on Real Visual-Field Data

We now explore the effect of calibrating PTS using the real Visual Field time-series

data described earlier. As there is no knowledge of the true underlying model, we

firstly compare the KL distance between models that are repeatedly learnt from the

original 91 patient time-series (91 MTS VF DATA in Figure 5.5) in order to get an

idea of the general variance between models (MEAN VARIANCE) and to use this as

a base-line. Essentially, if a model can be generated using PTS approaches with a KL

distance that is not significantly greater than the general variance between different

builds of the model on the full data, then we can be confident that the PTS models are

of a suitably similar quality to those learnt from the full time-series.

Based on the consideration alone, the KL distance is calculated between a model

learnt from the sampled cross-section using the PTS approach (PTS on 91 SAMPLED

CS) and models learnt from the original 91 time-series. We then incrementally add a

number of randomly selected real time-series (RANDOM 10/20 MTS) to calibrate the

PTS model to see if this improves the KL distance.

Finally the KL distance is calculated between learning models using only the cali-

brated time-series to confirm that the PTS are indeed improving the resulting models.

The experiments are repeated 100 times to derive confidence intervals on the KL

distances. Figure 5.5 shows the overall scheme for all experiments and Figure 5.6

shows the results.

One observation is that the KL distance between models that have been learnt on

the full 91 time-series are in the region of 50 with a small confidence interval denoting

a relatively small variance from one model learning to the next. The models that are
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Figure 5.5: The overall scheme for all calibration experiments.

learnt from the sampled cross-section using the PTS approach are impressively close

to the time-series models but distinctly higher in KL distance - approximate distance of

120 - (likely to be because we are lacking real temporal information). When 10 and 20

real time-series are used to calibrate the model, however, we see further improvement

in the KL distance resulting in models that are demonstrably closer to the models

learnt from all 91 time-series (mean distances of 100 and 80 for the models calibrated

with 10 and 20 series respectively). Finally, models that are learnt from using the

relatively small number of calibrating time-series only are clearly worse with much

higher distance and very large confidence intervals (mean distances of 290 and 210 for
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Figure 5.6: KL results for VF data with confidence intervals.

the 10 series and 20 series respectively).

To find out if these distances between models are significantly different, the

Wilcoxon rank test is used again. Table 5.2 shows the result of applying this test

to all combinations of models from Figure 5.4. An important thing to notice here is

that nearly all of the models are indeed significantly worse than the variation between

models learnt on the full longitudinal dataset (significant differences are marked with

an asterisk) except for the PTS model calibrated with 20 real time-series. This shows

that we can learn models that are as good as the natural variation between model build-

ing on the full longitudinal dataset by building PTS and calibrating with only 20 real

longitudinal samples. It can also be seen that many of the inferior models are similar

in terms of their distances except for the very worst models (learnt from only 10 time-

series) which are different from the superior models which are both PTS models that

have been calibrated.
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Mean variance Rand 10 Rand 20 PTS PTS Cal(10) PTS Cal(20)
Mean variance (full 91 MTS) - 0.000∗ 0.001∗ 0.001∗ 0.005∗ 0.011

Random 10 MTS - - 0.975 0.023 0.002∗ 0.001∗

Random 20 MTS - - - 0.042 0.014 0.010
PTS on 91 sampled CS - - - - 0.452 0.327

PTS Calibrated with 10 MTS - - - - - 0.773
PTS Calibrated with 20 MTS - - - - - -

Table 5.2: Wilcoxon Rank significance.
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5.3 Summary

In this chapter, we explored combining cross-sectional and longitudinal studies to build

more robust models by simply aggregating PTS with real time-series. Although the PT-

S approach alone does indeed learn very good models, by adding a small number of

real time-series it is possible to get models that are considerably closer to the models

learnt using all the time-series data that is available. We have shown that this is the

case with significance on both the simulated data (where we know the true underlying

model) and on VF data where we compare the distances to the general variation be-

tween models that are learnt from different repeats of the same model-building process

on the full longitudinal data.



Chapter 6

Conclusions and Future Work

This chapter draws together the conclusions reached based on the research presented in

this thesis. First, the main contributions are summarised, followed by a discussion of

the limitations of the research presented. Finally, potential avenues for further research

are presented, which are based on addressing the research limitations discussed in the

previous section, and extending the applicability of the techniques presented in this

thesis.

95
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6.1 Conclusions

This thesis documented the application of intelligent data analysis techniques for ex-

tracting information from time series generated by different diseases. The results p-

resented in this work relate to two major issues in this area of research: how clinical

variables interact as a disease progresses along the trajectories in the data; and how

to automatically identify different disease states along these trajectories, as well as

the transitions between them. A combination of simulated data and three real-world

biomedical cross-sectional datasets (Visual Field, Breast Cancer and Parkinson’s Dis-

ease) were used to demonstrate and validate the new approaches introduced here. Be-

ing able to model trajectories and the temporal aspect of disease from these datasets is

not trivial.

This thesis started with a review of previous and current research concerning the

application of machine learning for biomedical data analysis in Chapter 2. Clinical

trials were briefly discussed. The advantages and disadvantages of cross-sectional s-

tudies and longitudinal studies were also analysed. In the literature review, four typi-

cal models of classification and clustering were particularly examined in a biomedical

context. The research in this thesis focused on the use of sequence-building through

cross-sectional data (including trajectories with multiple endpoints).

The major work and achievements of this PhD thesis were presented in a logi-

cal sequence. Firstly, a formalisation of the pseudo time-series introduced by Tucker

[TGH10] was explored. In addition it was investigated how cross-sectional and longi-

tudinal data can both be better used to build more reliable models.

Different approaches to modelling trajectories through clinical data were identified
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and hidden Markov models implemented given that they are effective at dealing with

uncertainty and noise.

Secondly, an extension of the pseudo time-series approach, previously introduced

in [LST12], involving the implementation of relabelling the hidden state to identify in-

termediate stages in the disease process. The extended approach allows us to identify

the temporal nature of diseases, which is one of the major achievements of this study.

Other similar studies have previously explored the progression of disease through la-

tent variables, using longitudinal data. For example, studies that model non-stationary

time-series using state-space models have been developed that simultaneously fit dy-

namic time-series model parameters whilst identifying changes in the underlying state

([TL04], [RH10]). However, none of these attempt to exploit the smoothness of dis-

ease progression to fit trajectories through cross-sectional data, which is much more

abundant in clinical applications, in order to build time-series models and understand

progression. This is what we present here. It is clear that many of the longstanding

approaches as discussed in Chapter 3 to modelling disease progression are proving

inadequate to dealing with issues of uncertainty in the dynamic and measurement pro-

cesses and the ability to integrate cross-sectional studies with longitudinal studies.

Thirdly, as earlier, to demonstrate the effectiveness of the proposed approach, a

number of real disease studies were utilised. This allowed any characteristics of the

disease process that were discovered to be placed in a real medical context. Utilised

real disease studies included: glaucoma using visual field test data, breast cancer using

tumour image data and parkinson’s disease using speech data and discussed in Chapter

3. The rather promising results based on the approaches and techniques mentioned
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above are documented in Chapter 4. Regarding the glaucoma data, this study was able

to identify:

1. stable states with abnormal VF sensitivity and marked rim narrowing;

2. transitory states with moderate narrowing of rim;

3. subtle loss of retinal sensitivity in the central macula.

Those results fit well with current knowledge of the progression of glaucoma of which

initial symptoms can appear in the rim but not the visual field and vice versa.

By using the cancer data, the proposed approach also successfully identified:

1. stable states that reflect the benign and malignant tumour states;

2. an intermediate state that is characterised by a subset of the symptoms of malig-

nant tumours.

With the Parkinson’s disease data, a transitory state was discovered which has

certain characteristics of Parkinsonism despite being pre-classified as symptoms of

controls.

Chapter 4 empirically demonstrated the advantages of applying the proposed rela-

belling algorithm, to pseudo time-series. It highlights how key intermediate stages of

disease can be identified and evaluated using simulated data (with complex multiple

disease stages endpoints), and real clinical data from three very different diseases.

Finally, due to identified limitations of using cross-sectional data alone to build

these models (the fact that no genuine time-stamps have been used to infer the models),

in Chapter 5, we investigated the effect of incorporating genuine longitudinal data into
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the pseudo temporal models in order to calibrate the models. This work particularly

examined how to best balance the utilisation of cross-sectional and longitudinal data

in order to minimise the cost of longitudinal data collection, a process which is quite

expensive. This is essentially a matter of integrating cross-sectional and longitudinal

data. The overall aim is to exploit the advantages of both types of studies - population

diversity of cross-sectional data and temporal information in longitudinal data. We

explored to what degree pseudo time-series models, learnt from building trajectories

through a cross-sectional study, can be calibrated by a relatively small number of real

time-series data form a clinical longitudinal study. The results show that almost all

models are significantly different from the general variance when learning the model

from the full 91 time-series. The only model that is not significantly different at the

1% level is the model that is learnt from the PTS and calibrated with 20 time-series.

6.2 Caveats and Future Work

There are a number of limitations in the research presented in this thesis. Firstly, the

techniques presented have only been tested with the structure imposed by the HMM

architecture. The utilised models are intended for stationary processes meaning that

parameters and relations between variables are considered stable over time. However,

extension of the techniques for the stationary HMMs has provided a solid foundation

from which they can be further extended for modelling changing structure within a

clinical time-series.

Secondly, when calibrating the pseudo time-series models, a simple process of

concatenating the datasets was used. This may cause some difficulties in balancing



100

the influence of the pseudo time-series and the calibrating time-series. In other words,

if there are too many pseudo time-series, the relatively smaller number of calibrating

time-series may have little effect. Though this was not the case in our experiments,

another more structured approach to combining them could be explored such as tak-

ing the pseudo time-series model as a prior model and updating it within a Bayesian

framework using the calibrating data. That is, a suitable balance could be identified

between the two sources of data

Additionally, for the simulated data, the number of variables was kept very small.

Therefore, the applicability of the proposed techniques to a broader range of types of

data and larger networks has not been considered. However, the utilisation of mod-

els such as dynamic Bayesian networks for data with more variables would be worth

exploring.

As part of further work, the modelling techniques could be extended in a number of

ways. As discussed in chapter 4, the techniques presented in this thesis have only been

used with HMMs, although modelling temporal behaviour plays an important role in i-

dentifying key stages in a disease process. In particular, to improve the directionality of

the learnt interactions, temporal information may be incorporated through time nodes

and DBNs. As already mentioned in Section 3.4.1, a limitation of HMMs, concerns

the fact that parameters and relations between variables cannot change over time. In

many medical contexts, however, dependency relations between variables can change

over time. For example in glaucoma, the Optic Nerve Head, which carries the visual

functional signal, structurally changes during the progression of the disease, resulting

in non-stationary series [YD03]. To overcome the stationarity in time series modelling
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with graphical models, non-stationary DBNs have been recently introduced ([GH09],

[RH10], [TH05]), which attempt to learn when the changes in structure occur.

Furthermore, Chapter 5 of this thesis explored the combination of data from cross-

sectional and longitudinal studies to build more robust models of disease progression,

by simply aggregating PTS with real time-series. However, some of the methods de-

scribed in this thesis can be further extended that could be explored would be to take

a Bayesian approach that uses informative priors [CS00]. By adopting a Bayesian ap-

proach using informative priors to integration, cross-sectional studies can be used to

learn prior models [CS00]. This can be performed either directly on the data, resulting

in static Bayesian networks, or via the pseudo time-series approach, described in this

thesis, to produce DBNs models.

These priors can then be updated with the real time-series from longitudinal studies

in order to ‘calibrate’ the temporal models. For example, The PTS models could be

built and used as priors which then could be updated with the real time-series. In this

way, we could control the influence of each type of data more carefully. If we have

more reasons to trust the fidelity of the cross-sectional data more, we could bias the

Bayesian updating process to the prior models, whereas if we want the longitudinal

data to have more influence we could weaken the effect of the priors. This approach

overcomes some of the issues concerning the models generated from the sequence

reconstruction models such as the lack of genuine temporal information.

Integrating both longitudinal and cross-sectional data offers the advantage of mod-

elling diverse populations, which incorporate samples of all stages of disease, whilst

also encoding the genuine temporal characteristics of disease processes. The models
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explored and extended in this thesis make important steps in this integration through

the use of pseudo-temporal resampling and the produced results demonstrate their a-

bility to identify important stages in disease progression.
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Appendix A

A.1 Math Notation

C defined classes labels
Ci = 0 sample i corresponds to a healthy case
Ci = 1 sample i corresponds to a disease case
D a real valued cross-sectional data
D(i) ith row of matrix D
Dk a distance matrix
dij shortest path from i to j
G weighted graph
h hidden states
k number of pseudo time-series
m the number of samples (patients)
n the number of variables in the clinical test data
P a set of pseudo time pseudo time-series
Pa(xi) the parent set of a node Xi

Q a continuous vector of unknown parameters
T sample size
wij weight matrix
X t the variables in the time series
X observed data
Z a set of unknown latent variables
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A.2 Abbreviation

ARHMM Auto-regressive hidden Markov model
ADTree Alternating Decision Tree
BC Breast Cancer
BN Bayesian Network
CPD Conditional Probability Distribution
DAG Directed Acyclic Graph
DBN Dynamic Bayesian Network
DTree Decision Tree
EM Expectation Maximisation
HMM hidden Markov model
HRT Heidelberg Retina Tomography
KL Kulbaeck Leibler
ML Machine Learning
MNN Multilayer Neural Network
MPTS Multivariate Pseudo Time-Series
MTS Multivariate Time-Series
NBs Naı̈ve Bayes
NN Neural Network
PD Parkinson’s disease
PTS Pseudo Time-Series
TBS Temporal Bootstrap
VF Visual Field
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