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Abstract
The thesis presents novel formulations of hereditary cohesive zone models able to

capture rate-dependent crack propagation along a defined interface. The formulations

rely on the assumption that the measured fracture energy is the sum of an intrinsic frac-

ture energy, related to the rupture of primary bonds at the atomic or molecular level,

and an additional dissipation caused by any irreversible mechanisms present in the ma-

terial and occurring simultaneously to fracture. The first contribution can be accounted

for by introducing damage-type internal variables, which are to be driven by a rate-

independent evolution law in order to be coherent with the definition as intrinsic energy.

It is then proposed that the additional dissipation can be satisfactorily characterised

by the same continuum-type material constitutive law obeyed by the interface mater-

ial considered as a continuum: it is postulated that the dimensional reduction whereby

a three-dimensional thin layer is idealized as a surface does not qualitatively alter the

functional description of the free energy.

The specific application considered is mode-I crack propagation along a rubber in-

terface. After focusing on viscoelasticity as a suitable candidate to reproduce rubber’s

behaviour, firstly the most common relaxation function, namely a single exponential

term, is considerd after which the attention is turned to the use of fractional calculus

and the related fractional integral kernel.

A comparison with experimental results is presented. A shortcoming of the proposed

approach is then noted, in that certain features of experimentally measured responses

(i.e.the non-monotonicity of the critical energy-release rate with respect to crack speed)

will be shown to be out of reach for the described modelling paradigm. A novel mi-

cromechanical formulation is then sketched in an attempt to qualitatively understand

the phenomenon. An additional interface damaging mode is introduced, physically in-

spired by the desire to reproduce the formation of fibrils in a neighbourhood of the crack

tip. Fibril formation is then driven by a variational argument applied to the whole of the

interface, yielding its non-local character. Upon the introduction of an anisotropic frac-

ture energy, motivated by experimental considerations, it is noted how the model can

predict a non-monotonic energy-release rate vs crack speed behaviour, at least for a

simple loading mode.
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Mathematical Notation
u Displacement vector

X Material point position in the undeformed configuration

E Elastic energy (Internal Energy in Equation (2.65))

E Green-Lagrange strain tensor

F Deformation Gradient

sym(·) Symmetrisation operator returning the symmetric part of the argument tensor

e Linearised strain tensor

e Strain (in the one-dimensional setting)

< Set of real numbers

<+ Set of non-negative real numbers

<++ Set of (strictly) positive real numbers

‖ · ‖k Fading-memory norm associated to an obliviator k

× Cartesian set-product

t1Λt2 Functional the argument of which are functions whose domain is (t1, t2]

G Boltzmann function

G Relaxation function, energy release rate (when no ambiguity is possible)

J Relaxation function

S Stress Tensor

σ Traction vector (at an interface)

t Traction vector (continuum description)

H Heaviside function

δ Displacement jump (Dirac Delta distribution in Chapter 2.1 only)

: Application of a fourth order tensor to a second-order tensor, C : e = Cijklekl

G0 Short-term relaxation modulus

G∞ Long-term relaxation modulus

aI
c
b Riemann-Liouville fractional operator of order c on the domain (a, b)

Γ (·) Euler’s Gamma function

◦ Composition operator
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aD
c
t Riemann-Liouville operator of order c on the domain (a, b)

∗
aD

c
t Caputo operator of order c on the domain (a, b)

Ea Mittag-Leffler function (single parameter) of order a

L(·) Laplace Transform operator

Aj j-th Grünwald coefficient(
n
k

)
Binomial coefficients

Gc Critical energy release rate

C Elastic stiffness tensor, S = C : e

W Elastic plus surface energy

F Elastic plus surface energy functional

W Elastic energy as a function of deformation gradient

Σ̃ Traction-displacement jump cohesive law

⊗ Dyadic tensor product, i.e. (A⊗B)ij = AiBj

∇(·) Gradient

div Divergence

uxy Partial derivative of the function u w.r.t to variables x and y

W 1,p(Ω) the space of Sobolev functions with p-summable derivatives on Ω

Dy Distributional derivative of the function y

Ln n-dimensional Lebesgue measure

Hn n-dimensional Hausdorff measure

b· Operator returning the restriction to its (set-valued) argument

[·] "Jump" operator

S(·) "Jump set" operator

DAv Variational derivative of the functional A in the direction of the test-function v

]· Cardinality operator returning the cardinality of its set-valued argument

Ψ Helmholtz Free Energy

t Traction (σ · n, n being the unit normal vector to the boundary) vector

D Tensorial damage variable⋃N
n=M Set-union operator over the range (M, M + 1, . . . , N − 1, N)
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P Set of real numbers characterising a partition

F Functional on the domain of piecewise-continuous functions

d(·, ·) Distance between its arguments

C2 Space of twice-continuously differentiable functions

γ Surface energy vector

N Set of natural numbers
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Chapter 1

Introduction

1.1 Background and Motivation

Polymeric materials rely on certain mechanisms in resisting externally applied loads

which are generally different from the ones characteristic of metallic materials. Their

structure is characterised by molecular constituents, monomers, forming an irregular,

aperiodic, network. Referring specifically to elastomers, their elasticity is not in general

related to internal energy stored at the level of molecular bonds, but has an entropic ori-

gin [1]. Moreover, their toughness is not a result of strong atomic/molecular bonds: it

is on the other hand related to the presence of additional dissipation mechanisms which

are necessarily present during any deformation process. Typically such mechanisms

are rate-dependent: as an example, the typical fracture toughness of rubber measured

at high temperature and low speed (conditions in which the effects of rate-dependent

dissipation is conjectured to be minimized) is in the region of∼ 50 J m−2, while values

at room temperature and high crack velocity can be 104 times higher [2,3]. The study of

such dissipative losses is of paramount importance not only theoretically but from the

applications point of view as well: the exceptional (and virtually unrivalled) toughness

of biological materials such as spider’s silk and nacre seems to originate from additional

dissipation mechanisms which would not be present in a regular, homogenous (at the

atomic scale) material [4–6]. The research presented in this thesis originates from the

interest manifested by the Industrial Sponsor in better understanding the fracture be-

haviour of certain laminated elastomeric composites not only to improve the modelling

and simulation accuracy, but also to ultimately gain knowledge of how the fracture per-
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formance is related to the material composition and its mechanical properties (other

than obviously fracture-related ones). As a result the research presented in this the-

sis focuses on the formulation of material models suitable to simulate rate-dependent

fracture. There is a vast range of tecniques capable of modelling crack propagation

(Stress Intensity Factors, J-Integral, Virtual Crack Closure, Cohesive-Zone Models etc.)

embedded within the most disparate numerical tecniques (Boundary Element Method,

other meshless methods, Finite Volume Method, Extended Finite Element Method, etc.).

The desire to deliver a versatile design tool to the Industrial Sponsor led to the choice of

cohesive-zone models within the classical Finite Element method, but it is remarked the

choice would not have been different in the lack of such constraints, for the cohesive-

zone method offers, in the author’s opinion, unique advantages in terms of material

definition and versatility. In other words, it is believed the cohesive-zone model is the

crack description more fundamentally based on the physical reality of the phenomena

occurring in the crack process zone; this topic will be dealt in detail in Section 2.2.1.

1.2 Aims and Objectives

The main aim of the present work is to develop a cohesive-zone model able to accurately

predict the fracture behaviour of thin layers of polymeric material subject to a realistic

range of applied external loadings. To achieve this main objective, various requirements

have been defined. Firstly, the need for the cohesive-zone model to be theoretically

sound was acknowledged. Secondly, it was established that the formulation had to

be as physically founded as possible, in a balanced compromise with computational

simplicity. This requirement was motivated by the desire to make the model as robust

as possible with respect to varying specimen sizes, geometries, material composition,

etc. The targets of the research can be summarised as follows:

• to develop a general cohesive-zone model "template" able to reproduce history-

dependence, for a vast range of inelastic material behaviours

• to specialise the cohesive-zone model to the case of an interface made of a thin

elastomeric layer

• to design and execute a testing plan suitable for the validation of numerical results
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Moreover, the ability to define the material parameters from routinely available lab-

scale test results was deemed a highly desirable feature.

1.3 Summary of Contents

The thesis is organized as follows. Chapter 2 provides a summary of key concepts em-

ployed in subsequent sections detailing the original contribution of this work: when

appropriate, a critical analysis in relation to the original subsequent elaborations is at-

tempted as well. Three subsections deal with:

• Linear viscoelasticity (Section 2.1): after describing the mathematical formalism,

some attention is given to thermodynamic requirements. The essentials of frac-

tional calculus are also presented, in order to make the presentation of fractional

viscoelasticity self-contained.

• Linear elastic fracture mechanics (Section 2.2): fundamental definitions as well

as the seminal contribution of Griffith [7] are reviewed.

• Cohesive zone models (Section 2.2.2): first, the cohesive-zone model of Baren-

blatt [8] is introduced and reviewed from the theoretical point of view. The topic

of rate-dependent cohesive-zone models is then introduced: a literature review on

the topic is presented.

• The variational approach to fracture (Section 2.3): the general aspects of the the-

ory are described in relation to the developments of Chapter 5.

Chapter 3 contains the novel formulation of a paradigm for rate-dependent cohesive-

zones. The formulation is presented in some generality in the context of thermodynam-

ics with internal variables. Later the model is specialised to a viscoelastic interface with

damage in order to target the behavior of rubber interfaces. A critical comparison of the

predictions to experimental results is presented, highlighting some deficiencies of the

proposed approach.

In Chapter 4 the formulation is improved by resorting to a refined viscoelasticity

description making use of fractional calculus. The comparison with experimental results

is revisited: the prediction is now more accurate over a wider range of applied loading

rates. A further limitation of the improved formulation is then evidenced, in that a
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typical behaviour of rubber fracture mechanics, i.e. the drop in critical energy release

rate above a threshold displacement rate, can not be reproduced. This is a result of the

fact the presented formulation resorts to a continuum-type description for the interface’s

material whereby increasing the rate of applied displacements cannot result in lower

stiffness, if linear viscoelasticity is employed.

A possible solution to the above problem is presented in Chapter 5. Firstly, a review

of existing hypotheses aiming at explaining such behaviour is presented in Section 5.1.

Then the model is introduced: the formulation is built on an admittedly extremely sim-

plified, yet effective micromechanical non-local approach mimicking certain structural

changes induced in the interface during the deformation process. Conclusions are then

drawn, followed by an outlook on future work.
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Chapter 2

Literature Review

2.1 Linear Viscoelasticity

Hereditary materials, or materials with memory, are characterised by the fact their me-

chanical response is not only a function of the actual deformation but accounts for

the previous deformation history, in a sense which will be clarified later. Their study

initiated in the XIX century by the hand of scientists such as L. Boltzmann and J.C.

Maxwell, while a very notable contribution is due to V. Volterra in the XX century. This

branch of continuum mechanics has been considered mainly of mathematical interest

until technological advances such as the large scale use of polymeric materials in engi-

neering structures led to the topic receiving more attention from applied scientists and

engineers.

Geometrically linear deformations only will be considered within this thesis, hence-

forth the attention is focused on deformations characterised by a displacement field

u = u(X, t), X being a point in the undeformed configuration and t standing for time,

such that the condition

sup
X,t

|∂u(X, t)

∂X
| � 1 (2.1)

holds, this being sufficient to satisfy the linearity assumption. Following a standard

procedure [9] any finite strain measure, such as for example the Green-Lagrange strain,

E =
1

2
(FTF− 1) (2.2)

F = 1 + ∂u/∂X being the deformation gradient, is approximated by the linearised
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strain

e = sym
∂u

∂X
(2.3)

sym standing for the operator returning the symmetric part of a tensor. The depen-

dence of the mechanical response at time t upon current and past deformation is math-

ematically modelled by the introduction of a suitable response functional −∞Λt, whose

domain consists of strain histories up to time t ∈ <

et(s) = e(t− s) s ∈ <+ (2.4)

where attention is restricted for simplicity to the one-dimensional case and <+ stands

for the set of positive reals.

The restriction of the strain history to strictly positive reals <++ will be called the

past history. The set of past histories can be given a Hilbert space structure through the

introduction of a suitable norm. Let us consider a function k, monotonically decreasing

to zero,

k : <+ → <++ , k(0) = 1 , ∃α > 1 : lim
s→∞

sαk(s) = 0 (2.5)

historically named obliviator [10]. Then let us define

‖et‖k =
(
e(t) · e(t) +

∫ ∞

0
|et(s)|2k(s)ds

) 1
2

< ∞ (2.6)

Such norm expresses the fact that events distant in the past bear less consequences to

the actual response than events closer in the past, which earned the concept the name of

"fading memory".

While the main interest, as far as this thesis is concerned, is placed on the physical

consequences of the fading memory principle, it is worth stressing how the definition of

a suitable norm for the strain history space is a fundamental point for the investigation of

the well-posedness of the initial value problem of viscoelasticity [11, 12]. If in addition

the assumption is made that the functional −∞Λt is

1) bounded, i.e. |−∞Λt(e
t)| ≤ C‖et‖k, C ∈ <+ a constant

2) linear,i.e. −∞Λt(c1e
t
1 + c2e

t
2) = c1−∞Λt(e

t
1) + c2−∞Λt(e

t
2)

then Riesz’s Representation Theorem indicates that the functional can be expressed in a

unique way as [11, 13]

σ(t) =−∞ Λt(e
t) = g(0)et(0) +

∫ ∞

0
g(s)et(s)k(s)ds (2.7)
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This conclusion is justified as follows. Riesz’s Representation Theorem states that given

a Hilbert space H and its dual H∗, i.e. the space of all continuous linear functionals from

H into <, any functional −∞Λt(e
t) ∈ H∗ can be written uniquely as −∞Λt(e

t) =<

g, et >, where g ∈ H and < •, • > stands for the inner product (related in this specific

instance to the norm expressed by equation (2.6)). The Boltzmann function G is then

defined as G = g(s)k(s). In the engineering literature another formulation equivalent

to equation 2.7 seems to be preferred, obtained by defining the relaxation function G by

the conditions G(0) = G(0) and G′(s) = G(s), equation 2.7 can be written as [14]

σ(t) = G(0)et(0) +
∫ ∞

0
G′(s)e(t− s)ds (2.8)

which can be integrated by parts and yields, assuming limt→−∞ e(t) = 0

σ(t) =
∫ ∞

0
G(s) ė(t− s)ds (2.9)

For later reference it is stressed that G′(0) is not necessarily finite, which indeed

is the case for certain relaxation functions obtained exploiting fractional calculus. For

completeness it is also noted that the case of G(0) being not finite can be covered by the

theory but is generally physically inappropriate.

It can be verified that the response functional described in equation (4.1) is continu-

ous with respect to the fading memory norm, as it is bounded and linear. While referring

to [11, 15] for a detailed exposition, it is noted that the continuity of the response func-

tional with respect to the "fading memory" norm is named as the weak principle of

fading memory [11]. The linearity (and continuity) of the response functional were as-

sumed a priori by Boltzmann himself who arrived at the same integral representation

of equation (4.1) by the following argument, [16]. He characterised the response to an

imposed step strain e(t) = ∆ H(t), H standing for the Heaviside function and ∆ being

a constant, using the function G(t) = σ(t)/∆. Then, the stress at time following an

imposed strain e1(t) = ∆1H(t− ζ1), ∆i ∈ <+ is

σ1(t) = G(t− ζ1)∆1 (2.10)

If at a successive instant ζ2 another strain step increment of magnitude ∆2 is imposed,

the stress due to this input only would equal

σ2(t) = G(t− ζ2)∆2 (2.11)
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Hence, assuming an imposed strain e1(t) = ∆1H(t−ζ1)+∆2H(t−ζ2), linearity allows

us to write

σ(t) = σ1(t) + σ2(t) = G(t− ζ1)∆1 + G(t− ζ2)∆2 (2.12)

If it is assumed the applied strain e(t) is smooth enough to be approximated with desired

accuracy by a piecewise constant function, then equation (2.12) in the general case will

reduce to equation (4.1) as ∆i → 0. This procedure underlines the direct physical

importance of the continuity assumption. It is to be noted that in an entirely similar way

the strain can be expressed as a function of the stress history, the integral kernel in this

case being referred to as creep function [14].

2.1.1 Rheological Models

An alternative approach to model viscoelastic behaviour is based on the so-called rhe-

ological models of viscoelasticity, i.e. mechanical analogues of viscoelastic behaviour

constructed by joining, in series and/or in parallel, springs and dashpots (the latter be-

ing material elements obeying a Newtonian viscosity law). Their importance, apart

from their essential role during the development of the theory, lies in their ease of vi-

sualisation which allows very effective physical reasoning. For example, the use of

springs and dashpots with positive material constants naturally prevents the formulation

of material constituive laws not complying with the Second Law of Thermodynamics,

and allows for a clear definition of free energy by identifying the latter with the elastic

energy stored in the springs. This is not possible in the general case as will be briefly re-

called later. In spite of these advantages, modern treatments of viscoelasticity attempt to

achieve full generality, in which case rheological models could prove restrictive. Indeed

the complete equivalence between Volterra-Boltzmann type integral representations and

rheological mechanical models has been proven in [17] under certain conditions on the

properties of the fading memory, answering an observation made in [18]. Under such

conditions the equivalence between integral and rheological representations is complete:

still the possibility of the fading memory principle being interpreted in a different, in-

tegral sense exists [19] and is possibly relevant for application on composites and in

general heterogenous materials [20]. A model characterised by an integral fading mem-

ory principle then does not need to exhibit a monotonic response in a relaxation test (this

being a striking difference from the class of models considered by Beris and Edwards
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in the previously cited work [17]), while complying with the Second Law of Thermo-

dynamics: the topic will be expanded upon in the next Section 2.1.2.

It is also mentioned, for later reference, that rheological models naturally lead to the

viscoelastic constitutive law being described through a differential equation of the type

s0σ(t) + s1
d

dt
σ(t) + . . . sn

dn

dtn
σ(t) = c0e(t) + c1

d

dt
e(t) + . . . cn

dn

dtn
e(t) (2.13)

s0, s1, . . . sn and c0, c1, . . . cn being material constants, which is often compactly ex-

pressed as

S(D) σ(t) = C(D) e(t) (2.14)

upon setting

S(D) =
n∑

k=0

skD
k C(D) =

n∑
k=0

ckD
k (2.15)

where Dk stands for the operator dk/dtk. Finally mention is given to a particular set of

viscoelastic material constitutive laws, named "differential" in [21], and characterised

by the constitutive functional depending on the current strain and its time derivatives

only:

σ(t) =−∞ Λt(e
t) = Λ̂(e(t), e(1)(t), e(2)(t) . . . e(k)(t)) (2.16)

where e(k)(t) denotes the k−th time derivative of e(t). Such models are characterised

by an "abruptly fading memory" [21] in that due to the local nature of the derivation

operation only a neighbourhood of the history around the current time is considered.

A functional dependence of such type is often invoked in fracture mechanics studies

of polymers [22], to which a later section is devoted. It is relevant to note that under

appropriate mathematical conditions [23] the differential representation (2.16) arises as

a first-order approximation for slow processes of the general functional representation,

equation (2.7).

An additional note concerns the concept of deformation history and state. It has been

noted that the stress at current time will depend in general on the whole past deformation

experienced by the material point under consideration. In general, all the past history

has to be known to characterise the actual state of the material. Consequently, in [24] the
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state is defined as a "pair whose entries are an equivalence class of histories and a defor-

mation" (it can be appreciated this definition considers separately the past history and

the current strain value). This fact does not exclude the possibility to express the state

more compactly. A notable example is given by materials whose relaxation function is

a linear combination of exponential functions. For such materials the state reduces to a

vector of suitably defined internal variables, in the framework of thermodynamics with

internal variables, whose knowledge completely characterises and "condenses" the past

history. Such approach will be used within Chapter 3.

The Section is closed by presenting the concept of complex modulus, which is useful

when characterising the mechanical response in terms of frequency rather than loading

rate. It is the complex function µ : ω 7→ C such that the steady-state stress response

σ(t) to a sinusoidal strain history Re[ε0e
iωt] can be computed as σ(t) = Re[µ(iω)εiωt

0 ],

Re[•] standing for operator returning the real part of its argument. The ratio between

real and imaginary part of the complex modulus is often referred to as loss tangent and

has a clear physical interpretation, for it is equal to the tangent of the phase lag angle

between stress and strain response during the harmonic excitation.

2.1.2 Thermodynamic Restrictions

So far the general form of the response functional has been characterised. It remains

to consider what limitations on the relaxation function G, if any, are imposed by ther-

modynamic consistency. A brief exposition of some essential results, whose knowledge

is essential to guarantee the formulation of physically realistic materials, is to be pre-

sented. The interested reader is referred to [11, 21, 25, 26] for an extensive treatment of

the subject. Attention will be given to the one-dimensional case, relevant to the work

presented later. Firstly, let us focus on the scalars G0 = G(0), named the istantaneous

elastic modulus and G∞ = lims→∞ G(s), named the equilibrium elastic modulus, re-

quired to be bounded away from zero for a solid [10, 14].

It can be proved [11] that compliance with the Second Law of thermodynamics re-

quires

G0 > G∞ (2.17)

It is important to note that a relaxation function need not to be monotonically decreas-

ing to comply with the Second Law of Thermodynamics, as demonstrated through a
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counter-example in [25]. On the other hand, it is shown in [26] that a sufficient condi-

tion for positive dissipation is the monotonicity and convexity of the relaxation function.

Interestingly the fact that there are no direct empirical examples of non-monotonic re-

laxation functions even pushed some authors [21] to question if the Second Law of

Thermodynamics is properly described in the current mathematical formalism.

A striking feature of materials with memory is that in general the free energy po-

tential turns out to be non-unique [15, 21, 24, 27]. As a consequence of great physical

importance it is noted then that the knowledge of the stress-strain behaviour of a material

does not allow its full energetic characterisation, i.e. the free energy and the dissipation

can not be uniquely determined. This observation bears relevance to the formulation of

the cohesive-zone presented in Chapter 3, where a cohesive-zone model will be formu-

lated making use of energetic arguments. In the case presented no ambiguity will arise

because the free-energy can be shown to be unique for a single-exponential relaxation

function [28], but in general (should for example the material description be improved

by adding one or more Maxwell arms) the exact definition of free energy and dissipated

power is required as an additional assumption that has to be made with a certain degree

of independency from the material constitutive law.

2.1.3 Fractional Calculus Viscoelasticity

Fractional Calculus is a branch of analysis dealing with the meaning and implications

of defining differential operators of real order, for example Dν
x = dν

dxν when ν /∈ N , N
standing for the set of natural numbers. The subject, whose historic origins are traced

back to a letter to G. L’ Hôpital from W. Leibniz in the year 1695 [29], has attracted

some attention in recent years from the viscoelasticity community as a result of some

significant advantages entailed by the use of fractional derivatives in the development

of viscoelastic models. The essential concepts only will be herein referred to, referring

the reader to [30, 31] for further details.

Firstly, the fractional integral is considered. Restricting the attention to scalar func-

tions f such that f(t) = 0 ∀t < a, the following notation is introduced

aI
n
t f = fn(t) =

∫ t

a

∫ ξ1

a
. . .
∫ ξn−1

a
f(ξn) dξn . . . dξ1 (2.18)

The R.H.S of equation (2.18) can be shown to satisfy
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∫ t

a

∫ ξ1

a
. . .
∫ ξn−1

a
f(ξn) dξn . . . dξ1 =

1

(n− 1)!

∫ t

a
(t− τ)n−1f(τ)dτ , n ∈ N

(2.19)

a result known as Cauchy’s formula for repeated integration. The meaning of equation

(2.19) is extended from the case n ∈ N to ν ∈ <+ by using the Gamma function Γ ,

which can be defined as

Γ (x) =
∫ ∞

0
sx−1e−sds (2.20)

The above definition is restricted to positive reals in order for the integral to be con-

vergent, but can be extended in the whole complex plane by analytical continuation. In

fact, integration by parts of equation (2.20) yields the relationship

Γ (x + 1) = xΓ (x) (2.21)

from which it can be appreciated how the Γ function interpolates the factorial on the

real line. This explains its ubiquitous presence (it appears for example in the formula

for the volume of a sphere in n-dimensions). The Riemann-Liouville fractional integral

of order ν > 0 is then:

aI
ν
t f(t) =

1

Γ (ν − 1)

∫ t

a
(t− τ)ν−1f(τ)dτ , t > a , ν ∈ <++ (2.22)

The fractional derivative definition is based on computing the result of left- and right-

composition of the classical derivative and integral operator just defined,

Dn
t ◦ aI

n
t f(t) = f(t) , t > a (2.23)

while

aI
n
t ◦Dn

t f(t) = f(t)−
n−1∑
k=0

f (k)(a+)
(t− a)k

k!
(2.24)

where the notation fk denotes the k-th derivative and fk(a+) indicates the right limit

of fk at a, allowing hence for jump-discontinuities. Then the fractional derivative 0D
ν
t

is defined, upon setting a = 0, as the left-inverse to 0I
n
t . In detail, after selecting an

integer m ∈ N such that m − 1 < ν < m the Riemann-Liouville fractional derivative

of order ν > 0 is defined as [31]:

0D
ν
t = Dm

t ◦ 0I
m−ν
t f(t) , m− 1 < ν < m (2.25)

or explicitly
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0D
ν
t =


1

Γ (m−ν)
dm

dtm

∫ t
0

f(τ)dτ
(t−τ)ν+1−m m− 1 < ν < m

dν

dtν
f(t) ν = m

(2.26)

An alternative definition leading to the so-called Caputo fractional derivative of order

ν can be obtained by considering the right inverse, as in equation (2.24). This yields

∗
0D

ν
t = 0I

m−ν
t ◦Dν

t f(t) , m− 1 < ν < m (2.27)

or explicitly

∗
0D

ν
t =


1

Γ (m−ν)

∫ t
0

f (m)(τ)dτ
(t−τ)ν+1−m m− 1 < ν < m

dν

dtν
f(t) ν = m

(2.28)

The problem of initial conditions in fractional differential formulations is avoided in

the present work by the physically plausible assumption of zero strain (and stress) for

negative times. In some cases such condition can be overly restrictive: the Caputo defi-

nition has the advantage that integer-order initial conditions are needed only [31], while

initial conditions of fractional type have to be considered for the Riemann-Liouville

formulation, whose physical interpretation is provided in [32] (see also [31, p.40] for

compatibility conditions for stress and strain in the most general case). Under such

initial conditions (which are hardly restrictive for the intended application) the total

equivalence of the Riemann-Liouville and Caputo definitions can be proved [31, 33].

Physical Meaning of Fractional Models

It is far from trivial to assign a physical meaning to the fractional operators just intro-

duced, a suggestive attempt being made in [34]. Much clearer are the specific benefits

that can be obtained applying this approach in viscoelasticity. For this purpose let us

consider the problem of determining the relaxation function G (3.17) for a specific ma-

terial of interest. It can be appreciated from equation (2.8) (with the aid of a formal

calculation or, more rigorously, using tools of distribution theory) that the function G

describes the stress reponse following the imposition of a step strain history, discontinu-

ous at the origin. Experimentally such a response could be approximately determined by

a relaxation test, in which a strain jump is applied as quickly as possible, and then kept

constant. The author is not aware of any engineering viscoelastic material exhibiting a
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response that could be reasonabably reproduced, over a realistic time horizon, by any

exponential function. Typically, at short time durations the stress will decrease more

rapidly than an exponential function, to switch to the opposite behaviour for longer time

durations. This phenomenon is a result of the presence of numerous dissipative mech-

anism with very different (and continuously distributed) characteristic relaxation times.

This observation goes back to the work of Nutting [35] in the early 1920s, when it was

noted that stress relaxation is naturally described by a power law-type function, whereby

the general response can be given by

σ(t) = A
∫ t

0
(t− s)−ν ė(s) ds (2.29)

Setting the constant A = c
Γ (1−ν)

yields

σ(t) = c · 0Dt
νε =

∫ t

0

c

Γ (1− ν))
(t− s)−ν ε̇(s) ds (2.30)

c being a positive scalar, which coincides with the Riemann-Liouville definition of frac-

tional derivative. Incidentally equation (2.30) is the first historic archetype of fractional

viscoelasticity, the Scott-Blair model from the English researcher who first introduced

it [36]. This model represents a mechanical behaviour which interpolates between a

fluid (for ν = 1) and a Hookean solid (for ν = 0). Interestingly the line of thought just

exposed seems to have been used in the monography by Rabotnov [30] to justify the use

of a specific type of kernel (given by the so-called Abelian functions), without explicitly

mentioning fractional derivatives.

The ability of fractional formulations to replicate real-world behaviours can be also

appreciated by considering the differential equation

∗
0D

ν
t u(t) + u(t) = 0 t ≥ 0 , u(0+) = 1 (2.31)

For ν = 1 the solution of equation (2.31) is the exponential function, u(t) = e−t. For

ν ∈ (0, 1) the solution can be shown to be u(z) = Eν(−zν), where Eν is the Mittag-

Leffler function of order ν, whose representation in series reads

Eα(z) =
∞∑

n=0

zn

Γ (αn + 1)
α > 0 , z ∈ C (2.32)

Evidently, E1(z) = ez. The advantage of using fractional calculus models can then be

once more appreciated by observing the behaviour of Mittag-Leffler functions of order
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α, 0 < α < 1, see Fig.2.1:

Figure 2.1: Various-order solutions to the relaxation fractional ODE.

It can be noted that at short times the relaxation is steeper than the exponential func-

tion, the opposite being true for longer times. This echoes the behaviour of real materi-

als [37, 38]. Of course the material characterisation achieved using relaxation functions

made by summing exponential functions can be improved by adding more terms. Ex-

ploiting the rheological analogy, this equals to adding dashpots with different relaxation

times, remembering that this approximation process is mathematically well-defined, in

the sense that the exponentials form a complete basis for continuous, monotonic func-

tions. However, such a procedure adds complexity to the problem of determining the

material constants, and is furthermore ill-posed in general [39], see also the discussion

in [33], Section 6.4. This makes intuitive sense, as a result of the fact the relaxation ker-

nel has "smoothing" properties (for the purposes of the actual discussion the term will be

assigned its intuitive meaning renouncing to a rigorous mathematical definition which

is anyhow available [39]). Given a "sharp" (not-differentiable in the classical sense)

impulse input (such a Heaviside or Dirac distributions) the output becomes more "reg-

ular" as time progresses: calculating the relaxation function from the measured output

then tries to go against the "smoothing" direction and causes ill-conditioning (in anal-

ogy with the difficulties in computing the gradient flow of a non-convex potential [40],
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a topic which will be touched upon in Section 2.3, or the problems incurred in trying

to solve the Heat Equation with a negative conductivity constant). For such reasons the

possibility of improving the description by adding more exponential terms is covered in

difficulties.

An alternative but equivalent way of appreciating the difference between fractional

and exponential kernels is given by the computation of the resulting spectrum of relax-

ation timesR, which can be defined for the present purpose, given a relaxation function

G, as the function such that

G(t) = G∞ +
∫ ∞

0
R(ξ)e−

t
ξ dξ (2.33)

The relaxation spectrum is hence a function R needed for the representation of the re-

laxation function G as in equation (2.33). In words, the relaxation spectrum describes

the distribution of relaxation times (physically describing how much weight is to be

given at a specific dissipation mechanism to which a range of relaxation times is as-

signed). For a classical rheological model R can be expressed as a discrete sum of

suitably shifted Dirac-delta generalised functions, one for every relaxation time, while

it can be shown [31] that in general the same is not valid for the spectrumR related to a

fractional calculus-based model, which in a sense encompasses an infinity of smoothly

varying relaxation times and is therefore represented by a continuous function.

There is an interesting remark to be made here with regards to the relaxation spec-

trum. Let us assume a material of interest is characterised by a discrete spectrum with

n components τ1, τ2, ...τn−1, τn. Then, G(t) =
∑j=N

j=1 e
−t
τj . The long-term asymptotic

behaviour of the material submitted to a relaxation test will be exponential,

G(t) ∼ e
−t

minj τj , t →∞ (2.34)

Fractional relaxation functions instead tend to exhibit algebraic instead of exponential

decay (in loose language often referred to as a "fat tail" in technical literature), for

example the kernel employed in Chapter 4 behaves asymptotically as

Eν(−tν) ∼ t−ν

Γ (1− ν)
, t →∞ (2.35)

The algebraic decay characteristic of many engineering materials (and often essential

in the modelling of engineering problems for which the long-term behaviour is of para-

mount importance) can not be captured then by summing exponential kernels (physi-

cally, Maxwell arms) regardless of their number. It is only in the limit of an "infinite"
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number of Maxwell arms that the algebraic decay is recovered. As neatly expressed

in [41], fractional calculus-based models incorporate complexity in themselves, while

radically simpler classical models are forced to resort to numerous material constants to

attempt the same achievement.

So far only a phenomenological justification for the use of fractional calculus has

been given. The question then arises about the existence of a deeper physical con-

nection. Apart from its academic interest, such a question is often essential for the

practising engineer as well. Indeed, regardless of the degree of success of the numeri-

cal fitting procedures oten employed to determine the required material costants, purely

phenomenological models should not be extended, in principle, outside the range of test

loading conditions over the results of which the mentioned fitting procedures had been

applied. Only a theoretical, physical basis can enhance the confidence with which such

extrapolations are made.

A fundamental contribution in this sense was provided by Bagley and Torvik [42].

They provided an explict link between Rouse’s theory [43], able to predict macroscopic

viscoelastic behaviour of a dilute solution of non-cross linked polymers in a Newtonian

fluid starting from molecular physics, and fractional calculus. This is achieved by not-

ing, in essence, that Rouse’s results can be concisely and naturally expressed using

fractional calculus formalism. It is interesting in this connection to underline that frac-

tional calculus formalism can arise in the description of classical phenomena, without

any need to invoke "fractality" (see incoming discussion) or otherwise equally "exotic"

properties of the continuum: as an example of historic relevance, please note the cele-

brated Tautochrone problem, solved in 1659, can be expressed as an integral equation

in the unknown s of the form

1√
2g

∫ y

0

1√
y − η

s(η)dη = t(y) (2.36)

g standing for the gravitational constant, or can be written using fractional formalism

by using directly the fractional derivative definition as

C0Dt

1
2 s(y) = t(y) (2.37)

C standing for a constant. Other examples from applications can be found in [33].

A micro-mechanically motivated model characterised by a power-law kernel was

proposed in [44]. The model assumes relaxation is a random-walk driven process and
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it is the conceptually most simple physically-based model the author is aware of, which

makes it very instructive.

Another connection between fractional calculus and physical reality deserves men-

tion. The question indeed can be posed of what would the rheological equivalent of a

fractional calculus-based model be. The answer was provided in [41] for the fractional

Maxwell model. This is obtained from the differential representation of the classical

Maxwell model (spring and dashpot in series)

σ(t) + λ
dσ(t)

dt
= η

de(t)

dt
(2.38)

λ being the relaxation time, η being the Newtonian viscosity coefficient, by generalizing

the differential to the fractional case

σ(t) + λ̂ 0Dt
ασ(t) = η̂ 0Dt

βe(t) (2.39)

Thermodynamic consistency was addressed in [45] and results in the condition 0 <

α ≤ β ≤ 1. Interestingly, the model "interpolates" between hookean (α = β = 0)

and classical Maxwell-model (α = β = 1) behaviour. The rheological analogue of

the generalized Maxwell model was found to be the hierarchical, self-similar (fractal),

model depicted in Fig.2.2.

The relation between fractional derivative and "fractal" rheological models is surpris-

ingly simple and can be appreciated readily in [46], see also [47], the key mathematical

step being an equation relating a continued fraction to a polynomial

x(x + 1)γ−1 =
x

1+

(1− γ)x

1+

1·(0−γ)
1·2
1+

1·(2−γ)x
2·3
1+

2·(3−γ)x
3·4
1+

. . . (2.40)

where a commonly used notation for continued fractions is employed [48], as exempli-

fied by the following:

a0 +
1

a1 + 1
a2+

a3
a4

= a0 +
1

a1+

1

a2+

a3

a4

(2.41)

Equation (2.40) shows how a continued fraction (physically originating from a fractal

rheological struture) leads to a power-law behaviour.

This rheological analogy also provides a direct visualization of the relaxation spec-

trum of the fractional model and justifies the fact the spectrum is continuous. It is very

fascinating in that it explains in a fully deterministic way how the microscopic structure
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Figure 2.2: Fractal-type rheological analogue.

yields the macroscopic, power-law type relaxation behaviour. This is in contrast with

statistical theories [49], possibly based on self-similarity, with various degrees of rigor-

ousness. It is very interesting to note that it has been recently proven rigorously [50]

that a logarithmic distribution arises as the statistical limit of sampling random samples

from randomly selected distributions (in a sense made rigourous in the given reference).

In this sense it is interesting to mention the possible connection, so far completely un-

explored, to Self-Organized Criticality (SOC), a physical theory explaining the origins

of universally present scale-free behaviours [51] in certain complex systems [52, 53]).

Another application of fractional calculus from which physical understanding can be

gained is presented in [54], where a mass balance equation for a heterogeneous medium

infringing the continuum-hypothesis is established. The fascinating relationship be-

tween fractional calculus and fractal structure can be appreciated also in other contexts.

For example, the paper [55] considers the differentiability of Cantor’s function [56],

also referred to as the Devil’s staircase in reference to the puzzling fact it grows con-

tinuously yet its derivative is zero almost everywhere. It is there shown that Cantor’s
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function admits a fractional derivative of order α if and only if α ≤ H, H = log2
log3

being

the Hausdorff dimension of the set over which the derivative of C is defined and null.

The proof is disarmingly straighforward and provides a certain insight in the fractional

derivative’s meaning, whose full understanding remains however elusive. The litera-

ture on fractals and fractional calculus in various fields of Physics is rapidly growing:

a "fractal" treatment of elasticity is sketched for example in [57] and references there

reported.

2.2 Fracture Mechanics

Fracture Mechanics is a relatively young discipline whose exceptional importance in

applications motivated a large interest and led to very significant improvements in the

last century. One of the major contributions is due to Griffith [7]. His attention was

attracted by the well known fact that estimates of the cohesive atomic force in a crystal

are up to four times [58] higher than measured fracture strengths. Fracture necessarily

involving the opening of an interatomic plane, the observed difference gained the status

of paradox. Numerous experiments on glass whiskers of different sizes allowed Griffith

to observe and quantify the dependence of the fracture strength upon a specimen’s char-

acteristic size (interestingly, similar observations have been made by Leonardo da Vinci

centuries before in the Codex Atlanticus, and Galileo too was very familiar with size-

effects in mechanics [59]). Griffith’s first groundbreaking intuition was to invoke the

presence of flaws in the material, hence justifying the discrepancy between estimated

cohesive force and measured fracture strength by evoking the stress concentration in-

duced by the flaws. Considering the flaws as elliptical holes in an unbounded plate, the

elastic solution of this problem due to Inglis [60] could be exploited, if a failure criterion

were introduced. The second fundamental idea then consisted in establishing a thermo-

dynamical balance between the decrease in potential energy due to crack advancement,

and the increase in surface energy [61]. Assuming the surface energy depends only on

the crack surface (hereafter such energy will be referred to as Griffith-type energy) he

established the celebrated, eponymous crack propagation criterion.

Consider a cracked body occupying a domain Ω in<2, made of a homogenous hyper-

elastic material whose energy density is characterised by a function W of the gradient

of the displacement field u, which we assume belongs to a space M sufficiently regular
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to justify the following developments. For simplicity, we consider only displacement

boundary conditions, i.e. time-dependent displacements are prescribed on the boundary

∂Ω of Ω, named ∂dΩ, such that u|∂dΩ = u0(t): the inclusion of mixed boundary

conditions is straightforward. Without loss of generality one single rectilinear crack is

considered, described in a suitable reference system by the set Γ = {(x, 0) : 0 ≤ x ≤
l}.

The elastic energy, dependent on the crack length is computed as:

E(u; l) =
∫

Ω\Γ
W (∇u) dΩ (2.42)

The equilibrium energy Ê is then solution of the variational problem

Ê(t, l) = inf
u∈M, u|∂DΩ=u0(t)

E(u; l) (2.43)

Upon defining the energy release rate G(t, l)

G(t, l) = − ∂

∂l
E(t, l) (2.44)

Griffith’s criterion can be stated as follows. Upon introducing a material property, the

fracture energy, denoted by Gc, the following holds:

1) A crack is in equilibrium at time t if

G(t, l) ≤ Gc (2.45)

2) A crack can advance if and only if

G(t, l) ≥ Gc (2.46)

It can be noted that, if the free energy W of the elastic body is defined as

W(t, l) = Ê(t, l) + Gcl (2.47)

Griffith’s criterion then reduces to the condition

∂

∂l
W(t, l) ≥ 0 (2.48)
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from which it is apparent how Griffith’s criterion entails meta-stability, for more details

see [62]. An alternative criterion for crack propagation based on global stability [63]

will be briefly considered in Section 2.3.

The case G ≥ Gc is not considered in the quasistatic framework as the energy bal-

ance could not hold without introducing dynamic terms [58].

Griffith’s contribution appears even more profound when compared to the use of

local stress/strain criteria, i.e. attempts to predict crack propagation based solely on

the local knowledge of the stress/strain fields. These criteria are not applicable in the

general case due to the appearance of stress/strain singularities in the presence of a

crack. The first fully general results in this respect were provided by Williams [64],

who demonstrated, using methods of complex analysis [65,66], the presence of a singu-

larity of order ∼ 1√
r

at the tip of a sharp crack in an elastic material, r being the radial

coordinate in a polar coordinate system centered at the crack tip. In fact, the stress field

for a 2D problem can be shown to satisfy the expression [58]:

σij =

(
k√
r

)
fij(θ) + A(r, θ) (2.49)

where k is a constant (the stress intensity factor), r and θ stand for the radial and angular

coordinates in a polar coordinate system centered at the crack tip, f is a dimensionless

function of θ in the leading term, and A is a function characterised by

lim
r→0

A(r, θ) = c , c ∈ <+ (2.50)

and hence inconsequential for the asymptotic behaviour of the stress field as r → 0. The

fact that the stress (hence the strain) diverges at the crack tip defines limitations for the

use of local criteria based on stress, strain or energy density [67,68]. Griffith’s approach

is immune from such issues, for the presence of this singularity does not prevent the

total energy from being bounded (mathematically this is equivalent to the fact the energy

density is integrable).

Griffith’s criterion on the other hand suffers in general from the inability to predict

cracking in an initially sound and undamaged body, for which the energy release rate

is null (for a counter-example see e.g. [69]). This can be verified by computing, for a

specific crack geometry, the energy release rate Gε considering the initial crack size ε as

a parameter , and then noting that

lim
ε→0

Gε = 0 (2.51)
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according to which cracks will never appear in a sound, flawless body, see [70,71]. This

is hardly a paradox in that the engineer will advocate that no such thing as a flawless

body exists in practice, yet it forces, at least in principle, the designer to assess the sizes

of flaws present in the material of interest. In Chapter 2.3 this issue will be re-visited

in more detail in relation to the so-called variational approach to fracture mechanics:

essentially by relaxing the smoothness requirements on the function describing the crack

length over time l(t) so-called "brutal" cracks can appear even from the uncracked initial

configuration [62, 72].

A remark on the size-effect deserves to be noted. As described above the fact that

the fracture strength is not a constant with respect to variations in the specimen charac-

teristic size has been known for long time. Griffith’s approach introduces a size-effect,

i.e. a typical scaling between the, say, maximum stress and a characteristic length of

the specimen, which can be shown to obey a power law relationship [73]. Griffith’s

approach seems to introduce a length-scale in the physical description (noting that the

stress at fracture σf , Young’s modulus E and surface energy Gc can be combined in the

parameter EGc/σf [73]): hence it might appear surprising that such theory scales with

a power -law, as power-law scaling relationships are expected for self-similar, scale-free

theories. While the reader is referred to [74] for a proof of the fact a theory will exhibit a

power law scaling for the size-effect if and only if there are no characteristic dimensions

in its description, it is noted that the explanation of the apparent contradiction lies in the

fact the internal length-scale in Griffith’s approach is "hidden", i.e. the process zone

is thought as collapsed to a point and in Bažant’s words "there is no change in failure

mechanism associated with the (characteristic) length" [73]. A different size-effect can

be exhibited by the variational theory of fracture where it originates from the competi-

tion between bulk-energy terms (related to volume) and surface energy terms (related to

area): more attention to this aspect will be given in Section 2.3.

Only a brief mention will be given to viscoelastic extensions of Griffith’s criterion:

in this case the energy balance has to be modified to introduce a term accounting for

dissipation. In general also the history-dependence of the surface energy might need to

be accounted for: assuming the surface energy per created crack unit area is constant

with respect to crack speed, one could write the energy balance for a self-similar crack
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moving through a body over which external forces do not perform work as in [75]

l̇Gc +
∫

Ω
ΛdΩ + Ẇ = 0 (2.52)

where l̇ is the crack speed, Λ is the specific dissipation (integrated over the body vol-

ume Ω) and Ẇ is the time derivative of the elastic energy. It was highlighted in Section

2.1.2 that in general the free energy for a viscoelastic material is not unique, in that

different free energies could correspond to the same mechanical material behaviour: it

will be then assumed the choice of the energy W is made on the basis of an improved

knowledge of the material, whether such knowledge can or cannot be obtained through

the experimental characterisation of the material. Interesting theoretical manipulations

could originate from balance (2.52) [75], but in general a number of difficulties arise in

computational applications. For example, if the stress field around the crack is modelled

via linear elasticity, it turns out the strain rate at the crack tip is infinite for any crack

speed! The problem was circumvented in [76, 77] by the introduction of an additional

material parameter lacking, in the author’s opinion, physical meaning: formulations

based on cohesive zone models [78], introduced in the next section, avoid this problem

but seem still unmanageable, as far as analytical computations are concerned, with the

exception of few simple geometries. A final note on the energy balance in viscoelastic

fracture mechanics: if the local form of energy balance is looked at instead of the inte-

gral form (2.52), a heat supply term has to be introduced if the deformation is supposed

isothermal. Neglecting this term is tantamount to neglecting dissipation [14] and leads

to fallacious paradoxes [79].

2.2.1 Equilibrium Cracks and the Contribution of G. I. Barenblatt

In the seminal work [8] Barenblatt starts by reviewing the state of art of the discipline at

his time. He notes that, as presented above, if "we assume the surface of the crack to be

free of stress < . . . > we obtain a paradoxical result; however we select the contour of

a crack, the tensile stress at its edge is always infinitely large. Consequently, there are

no equilibrium cracks: at as small a fraction stress as you please, a body having a crack

breaks in two!"

Barenblatt was of course perfectly aquainted with the work of Griffith, according

to which the singularity of tensile stresses is not sufficient for a crack to propagate.

Indeed in his review the deficiencies of the approach based on elasticity theory only,
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which had been overcome by Griffith’s contribution, are pointed at (for example the fact

that an elastic solution could be found for any crack length, given the same boundary

conditions), yet evidently the presence of infinite stresses is still deemed as physically

unacceptable ("It is clear that solutions in which infintely great stresses are obtained at

the edge of the crack are unsuitable for any physically tenable model of brittle fracture").

He claims the inconsistency stems from not accounting fully, in the linear elastic

solution considering traction-free crack surfaces, for all the forces acting on the body.

It is then necessary in his view to consider the molecular cohesive forces acting in the

vicinity of the crack tip where "the distance between the opposing faces is small and

they attract one another powerfully". Interestingly, Griffith is credited for first bring-

ing cohesive forces into consideration, stating that Griffith considers cohesive forces as

forces of surface tension which act only on the interior of the body, and not on the crack

faces. Moreover, Barenblatt notes how Griffith tried to improve the description of ten-

sile forces near the crack tip by considering the crack as an ellipse. However, the fact

that such procedure resulted in estimating the radius of curvature at the crack tip being

in the order of atomic distances is viewed by Barenblatt as a clear admission of failure.

Instead, Barenblatt considers a slit-shaped crack, on whose lips a given traction is

applied. Imposing the vanishing of the stress singularity a condition is determined,

according to which in an equilibrium crack the crack faces "unite smoothly", in typical

cusp-shaped geometry, see Fig.2.3. Following Barenblatt, credit must be given to [80]

for first suggesting such a possibility.

Figure 2.3: Left: deformed shape of the contour of a slit crack according to the linear

elastic solution without cohesive forces. Right: effect on the deformed shape of the

cohesive forces (indicated by the small arrows) acting in a neighbourhood of the crack

tips.

The dependence of the intensity of cohesive forces upon the distance between crack

faces is in general quantitatively unknown. From the qualitative point of view, Baren-
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blatt describes the cohesive forces in a crystal by stating that the maximum will be

reached for atomic distances in the order of one and a half the average interatomic dis-

tance, before dropping quickly. In relation to amorphous solids the same qualitative

behaviour is expected. These observations are justified by referring to experimental re-

sults regarding the strength of filaments and whiskers, which was known, as discussed

above, to exceed the strength of larger specimens of the same material and in some

cases even reach values very close to the theroretical value. As the latter is linked to

cohesive forces only and not, in the idealised limit, to the presence of structural defects

or instabilities, measurements on whiskers do provide an estimate of the magnitude of

cohesive forces. Direct measurements for quartz and glass were available too, but are

not sufficient to determine the relationship % = Σ(δ) between displacement jump across

the crack lips δ and cohesive forces %.

While in principle the knowledge of Σ would provide a well posed problem for an

equilibrium crack in a body acted upon by given forces, Barenblatt claims that the ana-

lytical solution of the resulting equation would be out of reach, and avoids the problem

by the introduction of suitable hypotheses. According to the first hypothesis the size

of the surface on which cohesive forces act is considered negligible compared to the

crack size. The second hypothesis assumes that in a small neighbourhood of the tip of

a crack at which cohesive forces reach their maximum the shape of the crack does not

depend upon the applied loads. Both assumptions are physically justified, for "large"

enough cracks i.e. sufficiently longer than the process zone, the latter being defined in

this context as the region over which the crack lips exchange mutual attraction forces),

by noting, as stated above, that the intensity of cohesive forces very steeply reaches

a maximum as the distance between crack faces increases, after which their intensity

drops quickly. The introduction of such hypotheses allows rigorous analytical solutions

to be derived.

Of course if a numerical solution is sought then there is no need for such assumptions,

and the cohesive forces can be introduced in the problem formulation once the traction-

displacement jump relationship % = Σ(δ) (which can be thought of as a constitutive

relationship for the interface along which the crack propagates) is known.
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2.2.2 Cohesive-Zone Models

Having in mind the application of finite-element computations using interface elements,

it will be assumed for the rest of the section that the crack path is known a priori by

explicitly describing the curve (in<2) or surface (in<3), later referred to as interface. In

general the interfacial traction might not depend only on the displacement jump δ across

the interface, whereby the traction might be for example described by a relationship as

% = Σ(δ,α), with α a vector of internal variables.

A cohesive-zone model (CZM) for the interface along which the crack is expected

to propagate is fully described by the knowledge of the function Σ. CZMs can be

classified as rate-independent and rate-dependent according to whether the crack prop-

agation is affected by varying the imposed loading rate. In mathematical terms rate-

independence entails invariance under an arbitrary time-rescaling of the external loading

process. In the framework of thermodynamics with internal variables rate-independence

can be shown to be necessarily related to the dissipation potential being positive and ho-

mogenous of order one (a function f : x → < is defined homogenous of degree n if

f(αx) = αnf(x)).

In the variational approach to fracture, see Section 2.3, the assumption of known

crack path can be relaxed but as a result in this case Σ has to be assumed monotone

decreasing in a neighbourhood of the origin, an explanation of the underlying reasons

being postponed until Section 2.3. This is not the case for the majority of constitu-

tive laws Σ proposed in the literature for use in finite-element schemes, e.g. bilinear,

exponential, trapezoidal, etc., which present a maximum for a certain δ = δ̄; such for-

mulations are still fully rigorous at the cost of imposing the crack path in advance. The

aforementioned cohesive-zone constitutive laws also possess the property of being in-

creasing in a right-neighbourhood of the origin, which greatly simplifies convergence

of the numerical solver in finite-element schemes where the interface is modelled via

interface elements.

The presence of a softening branch of Σ might suggest the explicit use of damage

mechanics to reproduce the interface behaviour, although it is not in general necessary to

introduce a damage process to justify the presence of a softening branch, for example see

[81, 82] for attempts to found the cohesive-zone formulation on inter-atomic potentials

of the Lennhard-Jones type.
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The accurate determination of Σ for an engineering material is a daunting task. Gen-

erally the relationship is assumed a priori to obey a certain functional law, and the

specific parameters are then numerically fitted based on experimental evidence. The

determination of the cohesive traction-displacement jump law is a complex matter even

relying on an extensive database of experimental results from fracture-mechanics spec-

imens. This is a direct consequence of the fact that, in general, material parameters per-

taining to a cohesive zone can be only indirectly evaluated from the overall specimen

behaviour, in contrast for example with the ease with which the stress-strain properties

can be measured. The possibility of estimating the cohesive law from classical tests

such as uniaxial tension, shear, etc would have a conspicuous practical impact, in that

such tests are generally easier, quicker and less expensive to perform. However, it seems

at the moment prohibitely complex, although for example in [83] Chaboche states that

"starting with the elastic, plastic and damage constitutive equations for an interphase,

written in terms of a bulk stress, strain, and damage, it is easy to formulate the cor-

responding "interface" constitutive equations". The statement is of course absolutely

correct from a theoretical point of view, but a close inspection of the proposed proce-

dure, originally presented in [84], in the author’s opinion reveals though that the results

have very little practical relevance. The first assumption made is that bulk strains are

uniform through the interface thickness, so that the following euqation characterises the

(infinitesimal) strain tensor e:

e = sym
1

h
(δ ⊗ n) (2.53)

n standing for the unitary vector normal to the interface, e for the linearised strain tensor,

δ for the displacement jump and h for the interface thickness. The question arises if this

is a reasonable assumption in practice, in other words if the complexity of the damaging

phenomena occuring at the interface allows the definition itself of a bulk strain: the

question whether it is acceptable or not to neglect surface stress effects [85–88], once

the behaviour of the interface is sought in the limit of vanishing thickness, might be

relevant. The reader is referred to the above mentioned sources and references therein

for a detailed exposition, of which here the conclusion only is presented. If the stress-

strain response of the finite-thickness interface material is described as σ = F (D)C0 :

e, where C0 is a material-dependent tensor and F (D) is a scalar function depending on

the damage state of the interphase, then the following expression for the elastic modulus
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Y can be shown to hold:

Y =
δmax

h
C0 (2.54)

where δmax is the maximum discontinuity jump for which cohesive forces do not vanish.

The conclusion is that in order to achive a finite stiffness in the limit h → 0, the tensor

C0 has to be singular with linear dependence on the thickness (C0 = C̃h, C̃ being a

constant tensor), which "does not seem to be realistic for the continuum properties of

the material" (see also [89,90] for similar conclusions obtained by asymptotic analysis).

As a result, Chaboche proposes two alternatives:

1) The interface is to be viewed as a finite thickness layer, and the interface model

could be found by integrating through the thickness, obtaining then a (thickness-

depending) constitutive law.

2) The interface is simply to be seen as a spatial regularisation of a classical fracture

mechanics model

Option 2 seems to preclude the option of estimating cohesive zone parameters by "bulk"

tests, while option 1 is reasonable, and will be our general choice for the interface model

presented in Chapters 3 and 4, although the "through the thickness" integration operation

again does not seem trivial at all.

For finite-element analyses using interface elements and interface constitutive laws

characterised by a maximum it can be shown [91] that generally the problem solution is

rather insensitive to the shape of the curve given that σmax, Gc and K are unvaried

K = Σ ′(0) Gc =
∫ ∞

0
Σ(δ) dδ (2.55)

where K represents the interface initial stiffness, Gc is the specific work needed to

achieve complete separation, i.e. the critical energy release rate and σmax is the maxi-

mum interfacial traction. This conclusion is challenged though by very stiff specimens

(for which the ratio of their stiffness over the interfacial stiffness is very high). Restrict-

ing the discussion to pure Mode-I, let us underline that while in the theory of Barenblatt

the case δ < 0 is not physically significant as it implies interpenetration, in most nu-

merical implementations this case has to be dealt with. The matter will be addressed in

Chapter 3: it is though noted that should Σ not be continuosly differentiable at the ori-

gin then the derivative in equation (2.55)1 is to be understood as a right-derivative [56].
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It is of interest to note that in analyses based on the finite-element method and interface

elements the initial stiffness K does introduce some spurious compliance in the model,

an issue which is especially delicate for dynamic analyses [92]. The magnitude of K is

in general critical in order to achieve numerical convergence [93, 94].

This section is ended by a brief exposition of the thermodynamics of the cohesive

zone, mainly following [95] but restricting the analysis to the isothermal case. For this

purpose, let us consider a two-dimensional body occupying the region Ω in <2, with

boundary ∂Ω, in the undeformed configuration. Without loss of generality the body is

assumed to contain a single crack originating from the boundary and generally varying

with time. Let the crack be parametrised by its arc-length l, 0 ≤ l ≤ β(t), l = 0

corresponding to the body boundary. The crack is characterised by two regions:

1) a free zone along which no cohesive forces are exchanged between the crack lips,

described by the condition 0 ≤ l ≤ α(t)

2) a cohesive zone along which cohesive forces are present, described by the condition

α(t) ≤ l ≤ β(t)

Then the power P exerted on the body by the outer world in the case of vanishing body

forces equals

P =
∫

∂Ω
Sn · u̇ ds−

∫ α(t)

0
[ST · u̇] ·m ds (2.56)

where S stands for a suitable stress tensor, u for the displacement field, n and m for the

normal vector to the boundary and the free zone respectively. The term

−[ST · u̇] = −S+m · u̇+ + S−m · u̇− (2.57)

quantifies the power expended on the free zone. Along the cohesive zone stress is de-

fined as

σ = S+m = S−m (2.58)

as a result of forces’ balance. Setting δ = [u] = u+ − u−, equations (2.56) and (2.57)

yield

S+m · u̇+ − S−m · u̇− = σ · δ̇ (2.59)

Consequently an application of the divergence theorem yields, keeping present Cauchy’s

equilibrium equation ∇ · S = 0∫
Ω

S · ∇u̇ dΩ =
∫

∂Ω
Sn · u̇ ds−

∫ β

α
[ST u̇] ·m dl (2.60)
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Equations (2.56, 2.59) allow to re-write the last result as

∫
Ω

S · ∇u̇ dΩ +
∫ β

α
σ · δ̇ dl = P (2.61)

which very neatly expresses how the power exterted by the rest of the world on the body

is spent to deform the bulk and to perform work of separation along the cohesive zone.

Coleman-Noll’s procedure suggests that (please also refer to Section 3.2)

S =
∂Ψ

∂∇u
(2.62)

where Ψ is the free energy of the elastic material. Then equation (2.61) can be seen to

be equivalent to
d

dt

∫
Ω

Ψ(∇u) dΩ +
∫ β

α
σ · δ̇ dl = P (2.63)

If the strain energy is the free energy of the elastic body, then equation (2.63) is a weak

form of Griffith’s criterion (written in rate form). It is worth noting that the balance

equation is only a necessary condition for crack propagation, hence it is not to be con-

sidered as a criterion for crack propagation (although it "might very well be", in Gurtin’s

own words [95]). With similar arguments and algebraic manipulations the following

forms of the First and Second Laws of Thermodynamics can be obtained:

Ė = P −
∫ β

α
σ · δ̇ dl (2.64)

σ · δ̇ − Ψ̇ ≥ 0 (2.65)

E standing for the internal energy.

To conclude this Section it is remarked that the cohesive-zone modelling approach

can be used in a wide range of numerical approaches, which might or might not require

a priori knowledge of the crack path. Classical finite element methods using interface

elements along the crack path belong to the first category, while extended finite-element

methods and methods based on discretisation and regularisation of non-convex function-

als incorporating the surface energy in the energy definition [96] belong to the second.

The cohesive-zone approach can also be enriched allowing the rate-dependent case to be

considered. This step requires the formulation of a rate-dependent traction-displacement

jump law.
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2.2.3 Rate-dependent Cohesive-Zone Models

The rate dependence of the mechanical response leading to crack initiation and/or growth

cannot be neglected for a wide class of engineering applications. The complexity of the

problem and the presence of numerous competing factors is evident from the fact the

fracture thoughness may not show a monotonic trend with respect to crack speed, even

when the latter is small enough not to consider inertial effects. Furthermore, even when

such trend is monotonic, fracture toughness can increase with crack speed for some

materials and decrease for others [97–99]. The importance of the problem has justified

numerous experimental investigations. For example, results for a DCB test on a rubber

modified epoxy show a decrease in fracture thoughness with increasing rate of applied

displacement [100], whilst for a DCB made of Al 6061-T6 adherends and polyethylene

as the adhesive the opposite trend has been reported [101].

Ancillary issues such as the possible sudden transition in some cases from stable

to unstable propagation, also known as "stick-slip" behaviour ( [102–104]), have been

suggested to depend on the rate dependence of the fracture mechanism in the process

zone [105–107].

In general, the overall rate dependence can arise as a consequence of rate dependence

of the bulk material’s behaviour, of the interface response itself, or of both. A number

of cohesive zone models and modelling strategies have been presented covering these

different assumptions.

Among the first group the work of Geers et al. [108] is mentioned, who analysed

peel testing of PET. They were able to capture the rate sensitivity of the test results by

only modelling the rate dependence of the bulk material. A similar approach is followed

in a study by Nguyen and Govindjee [109], who studied the propagation of a crack in

an infinitely long strip of visco-elastic material. To demonstrate how the total fracture

energy dissipated during crack propagation increases with the crack speed they use a

cohesive-zone model with an intrinsic fracture energy so that the rate-dependence orig-

inates from the bulk material only. As examples of the second approach a reference is

made to Xu et al. [101,110] who similarly constructed a rate-dependent model by adding

the contributions from a rate-independent and a rate-dependent element, the latter given

by a Maxwell element. This quite satisfactorily replicates a class of experimental re-

sults but suffers from some inconsistencies in the formulation such as the fact that the
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traction discontinuously goes to zero after reaching a threshold displacement given by

a critical separation. Corigliano et al. [111] also focus on the rate-dependence of the

interface to model a DCB carbon fibre-Poly-Ether-Imide (PEI) specimen. The interface

deterioration is reproduced using two alternative phenomenological approaches, one of

them based on softening plasticity and a second one in which a rate-dependent damage

evolution law is adopted. Another example of this type of approach is the model pro-

posed by Allen and Searcy [112], in which the interface element is conceived through a

homogenisation procedure conducted at the micromechanical scale.

Liechti et al. [113] introduced rate-dependent behaviour in both the bulk material

and the interface, motivating their decision by observing significant differences in crack

surface depending on test speed, which convinced them of the necessity of modelling

the viscous losses at the interface. They also assumed the interface strength could be

assimilated to a non-linear elastic response summed to a viscous contribution, given by a

non-Newtonian dashpot. Damage evolution is implicit in their formulation as the elastic

response is given by a bilinear elastic traction-separation law. Furthermore, the authors

suggest that the use of a non-Newtonian dashpot could possibly reproduce the rate-

dependent nature of void formation. The model proposed by Hutchinson et al. [114]

follows the same approach of introducing the rate-dependence in both the bulk and the

interface. They are able to investigate the competing effects and present an explanation

for the possible non-monotonic relationship between crack speed and toughness. The

rate dependence of the cohesive zone is taken to obey a functional form similar to the

elasto-viscoplastic formulation used to model the bulk material.

To the author’s knowledge a rigorous discussion on the merit and fallacies of each

of the above mentioned general approaches has not been tackled. It is evident that

the dissipation occurring in the bulk material has to be accounted for in any realistic

modelling attempt, so the problem eventually condenses to whether it is possible to

neglect the dissipation occurring at the interface, capturing the overall behaviour by

simply focusing on the bulk material (as for example attempted with analytical tools by

Xu et al. [115], Persson and Brener [3]) or Christensen [116]). In the author’s opinion

the answer is negative. In the cohesive-zone approach the zero-thickness interface is

assigned a mechanical behaviour which indeed originates from the interaction of the

crack with a process zone which is possibly very thin, yet of finite thickness. This

region of finite measure is "lumped" into a line (or a surface in 3D) and hence it seems
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to be necessary to account for its own time-dependence. It is interesting to compare this

observation with the experimental work of Hauch and Marder [117]. They observed how

the increase in fracture energy with crack speed was matched by the development of a

microstructure of branching transversal cracks whose length and density was increasing

too. They also noted though that below a certain speed the fracture energy was still

not constant in spite of the lack of any observable transversal crack pattern. Upon

dissection of the specimens it was found that the additional dissipation was likely to

be connected with some "subsurface activity", in their terminology. It is postulated

that these occurences can only be accounted for by introducing the rate-dependence

at the interface level. Also it is worth noting that this approach has a very significant

advantage for the practising engineer. In many structures elastic materials are bonded

using polymers, and the analysis could avoid modelling the polymeric layer altogether,

under certain restrictions, replacing it with interface elements.

As for the use of plasticity [111], it might be deemed not physically justified as it

can hardly be evoked to explain that tractions decrease to zero at incipient fracture.

It is possibly an effective numeric tool to reproduce softening but, as crack formation

and/or propagation ultimately involves breaking bonds at the molecular or atomic scale,

it seems to be better described by damage mechanics from the physical point of view.

The above presented considerations represent a point of departure for the develop-

ment of novel cohesive-zone models presented in Chapters 3 and 4 which aim at cap-

turing the history-dependence of the crack growth.

2.3 Variational Approach to Fracture

It has been already noted in Chapter 2.2 that Griffith’s criterion clarifies and disciplines

the competition between two energetic contributions: the bulk energy released by a

crack advance is to balance the amount of energy needed to create the new crack surface

(regardless of how this is accounted for, by a Griffith-type or a Barenblatt-type energy).

This is a cornerstone of Fracture Mechanics which was recently re-visited in a series of

papers [24, 63, 72, 118], originating the so-called variational approach to fracture. A

limitation of Griffith’s criterion is represented by the regularity required by the potential

energy, as this has to be differentiable for the energy release rate to be defined. Recalling

the discussion in Chapter 2.2, it was shown how Griffith’s criterion, equations (2.45),
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(2.46), derives from considering the stationarity of the potential energy, equation (2.48),

assuming there is sufficient regularity in W to allow the definition of the derivatives

involved. In the variational approach to fracture instead the starting point is directly a

potential energy functional W which in the case of a Griffith-type energy reads as:

W(t; u, l) =
∫

Ω \Γ (l)
W (∇u(t, l)) dx−A(t, u(t, l)) + Gcl (2.66)

with

A(t, y) =
∫

Ω
fb(t) · u dx +

∫
∂Ωs

fs(t) · u ds (2.67)

where fb and fs stand for body and surface forces respectively, while ∂sΩ is the portion

of the boundary of Ω, ∂Ω, on which surface forces fs are applied, whereas on the

portion ∂dΩ an imposed displacement g(t) is considered.

A stationary point for the functionalW can be sought under more general conditions

than required by the application of Griffith’s criterion in the form of equations (2.45)

and (2.46). As a result the variational formulation allows dealing with much "wilder"

crack geometries and evolutions, for example allowing for discontinuous crack growth,

a case clearly out of reach for the classical formulation, not to mention the fact that the

requirement for an a priori knowledge of the crack path can be relaxed.

The foundation of the variational approach to fracture consists in proving that the

energy W provides a variational principle [119] for a fractured elastic body. In the

presence of smooth fields the proof that a functional yields a variational principle usually

involves showing that the Euler-Lagrange equations coincide with the strong form of

the governing equations. In the present case some extra steps are required, after which

(the reader is referred to Proposition 2.1 of [72] for further details) it is shown that a

stationary point (l(t), u(t)) of the functional W in the class of admissible competitors

l̄ ≥ l(t) (necessary condition to ensure irreversibility of the cracking process) satisfies

the equilibrium equation, the displacement boundary condition, the traction boundary

condition and the traction-free condition at the crack lips respectively.

Different definition for the crack energy are available: should a cohesive-zone energy

be preferred to the Griffith-type energy Gcl, in [72] it was proposed to replace the latter

with a term as ∫
Γ

Σ( |[ u(ζ) ]|) dζ (2.68)

or, after defining the cumulated jump as χ(t) = supτ≤t[u(τ)] (for a pure Mode-I case),
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by ∫
Γ

Σ( |min([ y(ζ) ], χ(t)|) dζ (2.69)

The latter definition [120] is based on the physical consideration that once a discontinu-

ity jump is reached, further dissipation can occur only for increasing discontinuity jump

(the same physical reasoning will be employed in the formulation of the cohesive-zone

model presented in Chapter 3).

So far only stationarity has been considered, in the spirit of Griffith’s formulation.

The introduction of a minimality principle can be done in two ways. A local minimality

setting, pending the definition of a suitable topology, i.e. a well-defined definition of

neighbourhood of a solution, leads to seeking a local minimizer of W (t : u, l) among all

l ≥ l(t) and u = u0(t) on ∂dΩ \Γ (l). Alternatively a global minimizer could be sought.

Certain differences of the two approaches will be pinpointed in a later Section, the reader

is referred again to [72] for a more detailed discussion, as well as considerations on the

status of postulates of the aforementioned minimality criteria. The crack set Γ (t) will

be considered in more detail now. In the seminal paper [121] it was proposed to set

the minimization problem for the free discontinuity functional in a functional space

allowing for discontinuities, in such a way that the crack set is automatically defined

as the jump set S(u) of the argument function u, i.e. the set of points at which u is

discontinuous, and such set replaces Γ in previous definitions. The space first used by

De Giorgi was the SBV space of special functions of bounded variations. Denoting

with Ln the n-dimensional Lebesgue measure, a function z ∈ L1(Ω) belongs to the

space SBV of special functions of bounded variations if its distributional derivative can

be expressed as

Dz = ∇z(x)Ln + (z+ − z−)νHn−1bS(z) (2.70)

where ν indicates the normal vector to the jump set S(z) and the operator b· indicates

the restriction to its set-valued argument.

The term (z+−z−)νHn−1bS(z) is the jump part of the distributional derivative. The

definition could be appreciated operationally by calculating the distributional derivative

of a one-dimensional piecewise smooth function, verifying that on the jump set (in the

one-dimensional case, a set of points) the distributional derivative is given by the Dirac

measure multiplied by the magnitude of the jump.
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Attention is restricted from now to the one-dimensional case, which contains all the

physical richness needed in the sequel without the burden of significantly increased

mathematical complexity. In dimensions higher than one the method requires the abil-

ity to deal with possibly complicated sets and the associated topologies might be highly

non-trivial. In addition, any functional space must not only enjoy properties (such as

compactness, lower semicontinuity) necessary for the theory of Calculus of Variations

to be employed, but must also satisfy the requirements of mechanics such as quasicon-

vexity [122, 123], injectivity, etc. leading to additional complications. For example, a

vector-valued function whose components belong to SBV would not be acceptable in

the three-dimensional case [124]. In the one-dimensional setting the crack set is a count-

able collection of points, and considering piecewise-continuous functions as the space

for candidate minimizers is more than adequate for the purposes of this thesis. As far as

the numerical implementation of the above presented scheme for realistic applications,

it is worth mentioning the possibility of approximating the functional W , see equation

(2.66), by the introduction of suitable internal variables in order to smoothen possible

discontinuities, [82, 96]. Such approach is tightly related to the so-called phase-field

models [125, 126]. The chapter ends by presenting and discussing two examples which

are relevant for later developments.

2.3.1 A Cohesive Bar

Consider a constant cross-section bar of length L loaded in a displacement-controlled

test machine (the reader interested in the traction control case can refer to [72], [127]).

The displacement field of the bar is described by the map u : [0, L] → <. The function

u is assumed to be C1 with the exception of a countable set S(u) of jump points. For

simplicity the extremities of the bar are not allowed to belong to S(u). The admissible

space so defined will be denoted by Y(0, L). The bulk energy of the bar depends only on

the local gradient of u through the convex function ω = ω(u′) , with the usual conditions

ω(0) = ω′(0) = 0 (2.71)

The energy associated to a displacement jump is given by the function θ = θ([u]). θ

is assumed lower semicontinuous and monotonic non-decreasing over the real positive

line. Please note these assumptions do not exclude from consideration a Griffith type
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energy

θ([u]) =



0 if [u] = 0

Gc if [u] > 0

∞ if [u] < 0

(2.72)

It is easy in fact to see, at least heuristically, that the cohesive-zone approach converges

(in the sense of Γ -convergence, [82]) to Griffith’s crack model as the process zone

length tends to zero (a claim that has been rigorously proved by Giacomini [128], see

also equation 2.63 for an intuitive insight).

The total energy of the bar is then given by the functional

W =
∫ L

0
ω(u′(x))dx +

∑
S(u)

θ([u](x)) (2.73)

subject to the boundary conditions

u(0) = 0 , u(L) = L̄− L (2.74)

where L̄ is the imposed elongation. The same symbol W as before but it is made clear

that the functional W is now argument of the displacement field u only, following the

discussion in the previous section on how the crack is automatically defined as the jump

set of u. Boundary conditions can also be expressed in integral form (to within a rigid

translation) as ∫ L

o
u′(x) dx +

∑
S(u)

[u](x) = L̄ (2.75)

The non-convexity of the functional (2.73) is noted. Consider for example a Griffith

type energy. Let us take

u1 = I[0,a] , u2 = I[0,b] (2.76)

where IΩ stands for the indicator function over the set Ω, i.e the function

IΩ(x) =


0 if x /∈ Ω

1 if x ∈ Ω

(2.77)

For such displacement fields the elastic energy contribution vanishes and it can be ob-

served that

W(
u1 + u2

2
) = 2Gc >

1

2
[W(u1) +W(u2)] = Gc (2.78)

contradicting the definition of convexity of a functional.
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Define now Wη, the first variation of W in direction η as

DWη = limε→0+
W(u + εη)−W(u)

ε
(2.79)

Define an equilibrium configuration u ∈ Y at imposed elongation L̄ as a configuration

satisfying the inequality

DWη ≥ 0 (2.80)

for all perturbations η such that η(0) = η(L) = 0. The limit is understood to take the

value of +∞ for perturbations with newly created fracture points [127].

Please note as the functional is in general non-smooth it is not possible to follow the

classical derivation of the stationarity condition for a functional as this usually implies

a Taylor series development centered in u. As a result and as noted in the introductory

section, no classical Euler-Lagrange differential equations can be derived.

A local equilibrium configuration will require the definition of a norm, which can be

used to characterise a neighbourhood. The norm of the total variation

‖u‖ =
∫ L

0
|u′(x)|dx +

∑
S(u)

|[u](x)| (2.81)

is chosen in [118] based on physical grounds (a translation of a jump point is "felt" by

this norm as two configurations with same jumps but different jump sets), while the

sup-norm is chosen in [118]. The choice of a norm is inconsequential though in the

case the minimization is carried out in a finite-dimensional space, as for such spaces all

norms are equivalent. A local minimizer of W will then be defined as a function u ∈ Y
if there exists a β > 0 for which

W(u + η) ≥ W(u) ∀η : η(0) = η(L) = 0, ‖η‖ < β (2.82)

Appealing only to the stationarity condition, equation (2.80), the following statements

can be proven

u′(x) = c c ∈ < ∀x ∈ (0, L) \ S(u) (2.83)

θ′( [u](x)) = ω′(c) ∀x ∈ S(u) (2.84)

0 ≤ ω′(c) ≤ θ′(0+) (2.85)
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The proof relies on inserting suitable test perturbations in equation (2.80) and can be

found in [118]. Equations (2.83), (2.84), (2.85) have a direct physical meaning. Equa-

tion (2.85) bounds the stress in the bar, giving hence a condition for the apperance of

cracks. Equation (2.84) expresses the fact the strain has to be constant along the bar,

while equation (2.83) expresses the stress continuity condition on the jump set.

An essential role is played by the value θ′(0+), which dictates when initiation (ap-

perance of a cracked configuration) will occur. θ′(0+) = ∞ for a Griffith-type energy as

one described by equation (2.77). Hence, stationarity is satisfied for any homogeneous

deformation. This fact echoes equivalent statements in classical fracture mechanics,

please compare the discussion of Section 2.2. A similar result can be proven, within the

variational theory of fracture, in a two-dimensional context as well [129]. Under certain

assumptions on the bulk energy and using local minimality instead of stationarity, it

was proved that no crack can initiate from an uncracked configuration. Essentially, the

thereom proves that the bulk energy released by removing a ball of material of arbitrary

radius is more than the associated surface energy created by appearance of the circular

contour.

The case of a Griffith-type energy is considered now, which is solved using condi-

tions (2.83, 2.84, 2.85). As just noted, the use of stationarity alone does not allow much

progress, as the uncracked configuration satisfies such condition regardless of the load-

ing parameter L̄. The matter would not change if local minimality is employed [72].

Only global minimality brings some novel behaviour.

It is useful to write equation (2.73) as

W =
∫ L

0
ω(u′(x))dx + ] S(u)Gc (2.86)

where ](·) is an operator returning the cardinality of its set-valued argument. The global

minimality setting is considered. If S(u) = ∅ then

W =
∫ L

0
ω(u′(x))dx (2.87)

and as a result of the assumed convexity of ω the unique minimizer will be the linear

function u = L̄
L
x.

Incidentally, given any displacement field u ∈ Y(0, L), the displacement field ũ

ũ : S(u) = S(ũ), ũ is linear on [0, L] \ S(u) (2.88)
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can be seen to satisfy

W(u) ≥ W(ũ) (2.89)

If on the other hand ]S(u) = N 6= 0, as no cohesive forces are exchanged between two

fractured parts of the bar if a Griffith energy is employed then

W = NGc (2.90)

As a result, any configuration with more than one crack is energetically disadvanta-

geous. Given that the only admissible cracking process consists in the apperance of a

single crack from the pristine state, the condition

∫ L

0
ω(u′(x))dx = Gc (2.91)

allows the computation of the value of the loading parameter L̄ at which the crack

appears.

The analysis of a cohesive energy proper depends heavily on its convexity proper-

ties. While referring to [118] for a detailed analysis covering concave, convex-concave

and "bi-modal" energies, the presentation is limited here to some facts which will be

referred to in Chapter 5. From equations (2.83), (2.84), (2.85) it can be inferred that the

homogenous configuration satisfies stationarity as long as ω′(u′) ≤ θ′(0+), after which

the elastic stress ω′ can not increase any more and cracks have to appear. Incidentally,

note that if θ′(0+) = 0 the bar can sustain no elongation. Noting that θ′ = Σ , Σ having

been defined in section 2.2, it can be seen that the variational approach rejects the possi-

bility of a Σ such that Σ(0) = 0 , e.g.the bilinear traction-discontinuity jump, law, if the

crack path is assumed not known a priori. Having understood that at least a crack has

to appear once ω′(u′) > θ′(0+), the question arises of how many cracks will do so. The

answer depends on the convexity properties of θ. First consider the case of θ concave.

Concavity implies sub-additivity, a property according to which

θ(w + v) ≤ θ(w) + θ(v) (2.92)

Such property has a direct physical consequence, in that it will always be convenient

to replace two cracks with one crack whose opening is the sum of the two original

openings. As this can be done without altering the state in the elastic portion of the

bar, one can conclude that there can be at most one crack. If the cohesive energy
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θ is not sub-additive (over a set of its definition domain), then this line of reasoning

fails and the analysis must account for the possibility of multiple cracking. It is noted

that sub-additivity does not imply concavity, e.g. any function % : < → < such that

k < %(x) < 2k ∀x, k being a constant, is sub-additive. A convex function though is

not sub-additive. By reversing the argument above, if θ is convex then, given a cracked

configuration, a lower energy configuration could be found by "splitting" the cracks in

two, without altering the state in the elastic portion of the bar. Configurations charac-

terised by the appearance of multiple cracks with infinitesimal jumps occur, which do

not converge in the space SBV. As a result, no minimizer can be found (mathematically,

this is related to the fact the functional ceases to be compact). An attempt to define a

generalised solution and give it a physical meaning in terms of diffuse cracking (and

plasticity) can be found in [127].
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Chapter 3

A Novel Rate-Dependent CZM

3.1 Description of the Mathematical Problem

The two-dimensional setting will be considered only for simplicity’s sake. Let Ω be the

reference configuration of a two-dimensional body B with boundary Γ = ∂Ω. The body

is characterised by the presence of an interface ΓC , dividing the body in two subregions

ΩA and ΩB with boundaries ΓA and ΓB respectively, so that ΓC = ΓA ∩ ΓB, as Fig.

3.1 illustrates. Boundaries Γ j , j = A, B, are assumed regular so that normal unit vector

fields nj can be defined.

Figure 3.1: The body B, the two subregions ΩA and ΩB and the interface ΓC .

Time-varying displacements u are prescribed, u = ū over parts of the outer bound-

ary (which are labeled as Γ ξ
u depending on whether they belong to ΓA or ΓB) in order
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to model loading by a hard device. Time-varying tractions t are prescribed, t = t̄ over

parts Γ j
t , the same naming conventions applying. By necessity Γ j

t ∩ Γ j
u = ∅.

The material behaviour of the subregions Ωj is modelled by an appropriately cho-

sen continuum material constituive law. The main interest of the present work being

focused on the interface response, upon restricting the analysis to a kinematically linear

setting, elastic behaviour is assumed for the domains ΩA nd ΩB, characterised then by

a material law S = C : e, where C is the fourth-order stiffness tensor. The interface,

along which the two subregions Ωj can debond, is on the other hand to be assigned a

point-wise traction-separation law −∞Λt, depending (not necessarily linearly, in contrast

to the "bulk" constituive laws presented in Section 2.1) on the history of displacement

jumps at the interface, see Sections 2.2.2 and 3. Attention is restricted to the case where

debonding occurs in Mode I exclusively, i.e. the relative displacement at the interface

contains only a normal (to the interface) component. This condition entails a restriction

on the body geometry and its loading. In the numerical examples discussed in Sec-

tions 3.4 and 4.2 compliance to this conditions is guaranteed by appropriate symmetry

conditions.

The process is assumed isothermal and quasi-static.The mathematical problem is

then defined as follows:

Given:

1) Displacement boundary conditions u(t) = ū(X, t) on ΓA
u and ΓB

u

2) Traction boundary conditions t(X, t) = t̄(X, t) on ΓA
t and ΓB

t

3) The stiffness tensor C

4) The traction separation law σ =−∞ Λt(δ)

Find the time varying displacement field u (not necessarily continuous along ΓC), sat-

isfying Cauchy’s equilibrium equation and boundary conditions. This is in essence the

problem described in Section 2.2.1, solved analytically by Barenblatt upon establishing

a number of assumptions which are not necessary if a numerical solution is sought. The

main difference between the presented problem and Barenblatt’s problem described in

Section 2.2.1 lies in that in the latter the bonded, undamaged part of the interface is

not equipped with a traction-separation law and the continuum description applies. On

the other hand, in the problem just presented all the interface, even the bonded portion,
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is governed by the assigned traction-separation law. This difference clarifies the issue

of spurious compliance possibly caused by the implementation of a cohesive-zone via

interface elements, hinted at in Section 2.2.2.

It is noted that, as stress is not defined on the interface, the equilibrium equations can

be written separately for the two domains, paying attention to the fact that additional

boundary conditions (accounting for the interface response) are now to be imposed on

the bonded part of the interface, for each subregion, in order to correctly model the

interaction (given by interface tractions) of the two subregions. The following tasks are

now in order:

1) Identify a physically sound traction-separation law capable of simulating rate-dependent

debonding as experimentally observed (while special attention will be given to

elastomeric interfaces, but a formulation with the potential of being generalised

to other rate-dependent materials will be sought)

2) Formulate and implement a suitable algorithmic scheme for the numerical solution

of the presented problem

3) Validate the model against experimental data

The objectives will be achieved in two steps: in the rest of the Chapter a general

framework will be presented, later to be specialised in Chapter 4. The functional-based

description used for viscoelastic materials (see Section 2.1) is to be enriched introducing

an (irreversible) damage variable, effectively yielding a non-linear functional represen-

tation.

3.2 Formulation of the Interface Model

Based on the considerations expressed at the end of Chapter 2.2, the aim is to capture the

rate dependence within the process zone of the interface itself regardless of the behav-

iour of the surrounding material, resorting to first principles. It is clear that assumptions

will be necessary to model such a complex phenomenon as fracture, yet the intention

is to develop a general, physically well based cohesive model, without resorting to any

phenomenological law other than basic physical and engineering understanding.
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As a cornestone of our modelling approach the existence of an intrinsic,i.e. rate-

independent, fracture energy is acknowledged. This is related to an elastic energy

threshold needed to break bonds at the micro or possibly the atomistic scale [2]. A

damage-mechanics approach is employed following which a suitably defined damage

variable is introduced, whose evolution is related to the difference between the energy

threshold and the elastic energy. The rate-dependence of the overall dissipated energy

during crack propagation is a natural by-product of the visco-elastic dissipation lumped

on the zero-thickness interface. It is postulated that a reasonable characterisation of the

interface rate-dependence can be achieved by assuming that the interfaces behaves, in a

suitably defined way, as its constituent material considered as a continuum. The cohe-

sive model formulation is then enclosed in the general framework of thermodynamics.

To validate the concept (i) the formulation is specialised to the case of a rubber

interface, (ii) the simplest possible assumption is made by assuming a quadratic form for

the elastic energy and by choosing a linear viscoelastic law with exponential kernel and

one relaxation time only and (iii) a comparative analysis of numerical and experimental

results is presented.

It is postulated that the interface response can be described by resorting to the free

energy potential of the material considered as a continuum. Such decision stems from

the review of numerous experimental results, [22, 76, 130–137]. The functional depen-

dence of the free energy upon its arguments is then kept the same as in the continuum

case while the variables themselves are suitably adapted. This is a result of the dimen-

sion reduction implied by the use of a cohesive-zone model, whereby a thin layer is

modelled as a surface in 3D and a two dimensional slender region is "shrunk" into a line

in 2D. Accordingly, displacement discontinuity jumps at the interface replace contin-

uum strains as new deformation measures. Progressive degradation of the interface and

its ultimate failure is then reproduced naturally through a damage variable, see Fig.3.2.

No ad hoc phenomenon is invoked to explain the additional dissipation other than

the dissipative mechanisms inherent to the material. More specifically, the damage law

is assumed to be rate-independent and to be driven by the specific elastic energy. In

the following presentation lower-case letters will be employed for vectors while capital

bold letters stand for tensors, to underline the generality of the approach. This notational

convention will become redundant after the formulation is specialised to the pure Mode-

I case in a subsequent section. In general, the traction σ at time t at a point of an
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Functional dependence of the free energy upon its arguments kept the same as in
the continuum case while the variables themselves are suitably adapted.

Figure 3.2: Schematic explanation of the implicit "homogenisation" process implied by

the introduction of the damage variable: a) "micromechanical" view of an infinitesimal

portion of the finite-thickness damaged interface b) "mesomechanical" view of the same,

the detailed information on micro-cracks being exchanged for an "averaged" description

based on damage variables.

interface with memory is characterised by a functional −∞Σt defined on a suitable set

of displacement jump histories δ : ]−∞, t ] → <n:

σ(t) =−∞ Σt(δ) (3.1)

where n denotes the number of components of δ (and σ). In the framework of ther-

modynamics with internal variables, we consider all the past history as "condensed" in

suitably defined internal variables, which together with the so-called observable vari-

ables [106] fully define the state of the material.

The free energy Ψ is chosen as

Ψ = Ψ(δ, α,D) (3.2)

where δ represents the displacement discontinuity jump, α denotes internal variables
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associated with the rate-dependence of the mechanical response and D represents an in-

ternal variable too, which is grouped separately as it exclusively describes the damaging

process. In a general case, δ, α and D are vectors and therefore they have been denoted

with boldface characters.

Following the classic definition of damage due to Kachanov [138] it is suggested that

Ψ will depend linearly on D, which is assumed to be m-dimensional:

Ψ(δ, α,D) = (1−D) · Ψ̃(δ, α) (3.3)

where Ψ̃ denotes a suitably defined vector of free-energy, whose components are de-

noted Ψ̃i, i = 0, 1 . . . m, ‘·’ indicates the scalar product and 1 is the m-dimensional

vector 1 = [ 1 1 . . . 1 ].

The choice of the number and type of the internal variables depends of course on

the phenomenon being addressed. The great flexibility and power of the procedure lies

in that these variables can be chosen to represent a vast range of physical phenomena

occurring within the material.

In this thesis attention is devoted to mode-I crack propagation and therefore the dis-

placement jump specialises to a scalar δ. Next, the rheological model represented in

Figure 3.3 is introduced, commonly denominated as the Standard Linear Model (SLS)

or alternatively Zener model, from the first scientist to propose it based on a thermome-

chanical argument [139]. A single scalar α is used as internal variable, which denotes

the inelastic displacement jump in the viscous unit.

E1

E2η

σ , δ

δ

δeα

Figure 3.3: Rheological representation of the model.

The following relation between total (observable) displacement jump δ and the in-
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ternal variable α is stated

δ = δe + α (3.4)

where δe represents the internal elastic displacement jump within the inelastic arm.

The following expression for the free energy is chosen, upon introducing a (formally)

two-component damage vector D = [ D1 D2 ] (i.e. m = 2):

Ψ = Ψ(δ, α,D) = (1−D) ·


1
2
E1 < δ >2

+

1
2
E2 < δ − α >2

+

+ Kc1 ·


1
2
E1 < δ >2

−

1
2
E2 < δ >2

−

 (3.5)

where symbols < • >+ and < • >− represent the positive and negative parts of the

argument, respectively, while E1 and E2 are the elastic stiffness values in the elastic

and the inelastic arm of the rheological model in tension. The second term at the RHS

in the above equation reflects the further assumptions that damage does not influence

the response in compression due to crack closure, rate-dependence is negligible and

the interface stiffness is amplified by a scalar Kc. Notice that the last two assumptions

are physically justified by the typical behaviour of rubber under confined compression

[140].

3.3 Thermodynamical Consistency

The definition of evolution laws for the internal variables cannot be established without

ensuring such laws do not violate the Second Law of thermodynamics for any arbitrary

process; this can be achieved by following the rational mechanics approach introduced

by Coleman and Noll [10, 141, 142].

As the process is assumed to be isothermal the Second Law specialises [142] to the

following:

σδ̇ − Ψ̇ ≥ 0 (3.6)

neatly expressing the fact that dissipation has to be positive (as the rate at which energy

is supplied can at the most equal the rate of increase of the free energy). For the free

energy of our choice, given by equation (3.5), an application of the chain rule yields:
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Ψ̇ =

(1−D) ·

 E1 < δ >+

E2 < δ − α >+

+ Kc1 ·

 E1 < δ >−

E2 < δ >−


 δ̇

+

(1−D) ·

 0

−E2 < δ − α >+


 α̇

−


1
2
E1 < δ >2

+

1
2
E2 < δ − α >2

+

 · Ḋ

(3.7)

Upon inserting in Equation (3.6) and factorising δ̇

σ −

(1−D) ·

 E1 < δ >+

E2 < δ − α >+

+ Kc1 ·

 E1 < δ >−

E2 < δ >−



 δ̇+

+

(1−D) ·

 0

E2 < δ − α >+


 α̇+

+


1
2
E1 < δ >2

+

1
2
E2 < δ − α >2

+

 · Ḋ ≥ 0

(3.8)

Sufficient conditions for the above inequality to hold are as follows:



σ = (1−D) ·

 E1 < δ >+

E2 < δ − α >+

+ Kc1 ·

 E1 < δ >−

E2 < δ >−


∂Ψ̃2

∂α
α̇ = E2 α̇ < δ − α >+≥ 0

Ḋ1, Ḋ2 ≥ 0

D1, D2 ≤ 1

(3.9)

It is more difficult to prove that such conditions are necessary, if they are so at all.

Indeed, compared to the continuum case [141], the degree of independence with which

54



the fields δ and α̇ can be varied is less clear, see [95] for a similar discussion in the case

of a rate-independent cohesive-zone with heat conduction. Conditions 3.9 will have to

be considered and complied to during the selection of the relevant internal variables

evolution laws, task to which the next Section is devoted.

3.3.1 Internal Variables Evolution Law

Having established thermodynamical constraints for the internal variables, complying

evolution laws can be chosen. With regards to the internal variable α, a simple candidate

equation capable of fulfilling Equations (3.9) is then found in:

α̇ =
σ − σ1

η
(3.10)

where σ1 denotes the stress in the elastic arm of the rheological model and η is a positive

constant. With this choice linear visco-elasticity with an exponential kernel is recovered.

This law is considered sufficiently accurate to model the process zone in order to cap-

ture the essential aspects of the time-dependent response within an expected range of

validity.

As far as D is concerned, it has be noted that a characterisation of its evolution

should rely on the availability of a micromechanical argument. In more detail, once

attention is directed towards a specific material, micromechanics might suggest different

evolution laws to be tailored for the components of D. For the purposes of the algorithm

presentation it is assumed without loss of generality that D1 = D2, reducing hence D

to a scalar variable D.

For the evolution of D = D1 = D2 the law proposed in [143] is chosen, as a

result of the fact it reflects our assumption that damage is driven solely by local elastic

energy: such evolution law was derived via a thermodynamic argument. An energy

threshold for damage growth Yc = Yc(D) is introduced and the following Kuhn-Tucker

constraints [144] are then obtained (analogous to equations (2.45) and (2.46) expressing

Griffith’s criterion)

Y ≤ Yc Ḋ ≥ 0 (Y − Yc)Ḋ = 0 (3.11)

where

Y =
∂Ψ1

∂δ
(3.12)
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It is important to underline the choice made on the damage-driving function Y , which

does depend on the elastic energy stored in the elastic arm only, not the total stored

elastic energy. This decision is crucial for the model behaviour and is motivated by rub-

ber’s microstructure. In more detail, the attempt of using linear viscoelasticity to model

rubber could rely on assuming that its free energy is the sum of elastic (equilibrium)

and viscous (non-equilibrium) contributions. The former is thought to be related to

the stretch and distorsion of the load-bearing network, while the latter originates from

entanglements and motions of parts of the network that are deforming with the main

load-bearing network as a result of topological constraints (sulphur bonds as a first ex-

ample), more details can be found in [145]. Incidentally, it is acknowledged that rubber

elasticity is entropic in nature [1], i.e. the free energy of a volume of rubber is largely de-

pendent on the chains’ configuration: in other words the amount of elastic energy stored

in the load-bearing network is negligible when compared to the contribution given by

configurational entropy. It is on the other hand clear that appealing to micromechanical

energetical arguments such as the ones sketched above is not in contradictory terms with

the entropic origin of free energy in rubber.

Within this conceptual scheme it is remarked that the damage variable has to be

driven by its related energy exclusively, as fracture is caused by failure in the load-

bearing network, The following relationship between Yc and D is then assumed:

Yc =



G0 if D = 0

G0(
1− Gc −G0

Gc

D
)2 if 0 ≤ D ≤ 1

Y c if D = 1

(3.13)

where Gc is the intrinsic fracture energy, G0 the elastic energy threshold below which

there cannot be damage growth and Y c = maxτ≤t Y is the maximum of Y over the

previous history. Notice that equation (3.13)3 is introduced for completeness, so that

equation (3.11)1 continues to be satisfied, but it only has a formal importance, because

when D = 1 cohesion is lost and no more energy is dissipated. It was shown in [143]

that this relationship, when used in conjunction with a free energy of the form Ψ(δ,D) =

1
2
(1−D)Eδ2, results in the widely used bilinear traction-discontinuity jump law. Also,

it was shown in [143] how the proposed relationship between Yc and D is equivalent to

stating that
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D =


0 if δmax ≤ δ0

min

{
1,
(

Gc

Gc −G0

) (
1− δ0

δmax

)}
if δmax ≥ δ0

(3.14)

where δmax is defined as follows:

δmax = δmax(t) = max
τ≤t

δ(τ) (3.15)

and δ0 =
√

2 G0/E1 is the value of the displacement jump at which damage starts

growing in the elastic arm.

Notice that the damage-driving function Y is path independent because it only de-

pends on the current value of the relative displacement, whereby the energy eventually

dissipated in the elastic arm of the rheological model, after complete decohesion, is

always equal to Gc. Instead, the total energy dissipated does depend on the whole dis-

placement history δ :]−∞, t] → <, because it is the sum of Gc and of the the energies

dissipated in the inelastic arm. This introduces rate-dependence in the simulated dissi-

pative process within the process zone at the interface.

The proposed model reproduces a bilinear traction-separation law only in the ex-

treme cases of instantaneous and infinitely slow loading, in total analogy with how

linear viscoelasticity reduces to linear elasticity in the fast and slow rate limit [14].

The time-integration algorithm required to solve the obtained governing equations is

described in the next section.

3.4 Algorithmic Implementation

This section describes how the constitutive equations of the interface are solved dur-

ing an incremental step, in the context of a general displacement-based finite element

method.

Limiting the discussion for the sake of simplicity to a specific integration point, the

problem essentially consists of determining the traction σ(t) corresponding to a given

displacement-jump history δ : ]−∞, t ] → <. Without loss of generality it is assumed

that limt→−∞ δ(t) = 0, whereby the problem consists in solving the following system

of differential equations in the unknown functions σ(t), D(δmax):
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

σ(t) = [1−D(δmax(t))] <
∫ t

−∞
J (t− τ) δ̇(τ) dτ >+ +[1−D(δmax(t))] E1 < δ >+

+Kc (E1 + E2) < δ >−

D(δmax) =


0 if δmax ≤ δ0

min

{
1,
(

Gc

Gc −G0

) (
1− δ0

δmax

)}
if δmax ≥ δ0

δmax = maxτ≤t δ(τ)
(3.16)

where J is the relaxation function, defined by

J (s) = E2 e−
s
λ (3.17)

and λ is the relaxation time λ = η/E2. The first term in equation 3.16 refers to the

Maxwell arm, the second to the elastic arm.

Equations (3.16) cannot be solved by analytical means in the general case and a

numerical integration scheme has to be employed. Evidently all the difficulty arises

from equation (3.16)1, as equation (3.16)2 is an algebraic equation and equation (3.16)3

can be easily implemented.

Equation (3.16)1 is approximated by adapting a widely used recursive algorithm

[146, 147]. Assuming (again without loss of generality) that the displacement-jump

history is null before t = 0 the time interval over which the computation is to be carried

out, [0, T ], is discretized into a partition of N time increments:

[0, T ] =
N⋃

n=1

[tn, tn+1] tn+1 = tn + ∆tn (3.18)

In the n-th time step, the times at the start and the end of the increment are tn and tn+1,

respectively, the proposed algorithm yields the result

1

E2

∫ tn+1

−∞
J (tn+1 − τ) δ̇(τ) dτ ≈

∼= e−
∆tn

λ

∫ tn

−∞
e−

tn−τ
λ dτ +

δ(tn+1)− δ(tn)

∆tn

∫ tn+1

tn
e−

tn+1−τ

λ dτ

= e−
∆tn

λ δe(tn) + [δ(tn+1)− δ(tn)]
1− e−

∆tn
λ

∆tn
λ

(3.19)
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The solution scheme proceeds iteratively, so it sufficies to describe one iteration step.

At the beginning of a generic time step n the following quantities are known: δn = δ(tn),

δe,n = δe(tn), δmax,n = δmax(tn) and Dn = D(tn). Their knowledge completely defines

the state of the interface. Given a tentative relative displacement δn+1 = δ(tn+1) all the

pertinent quantities are then updated as follows



δmax,n+1 = max(δmax,n, δn+1)

Dn+1 = max

{
Dn, min

{
1,
(

Gc

Gc −G0

)(
1− δ0

δmax,n+1

)}}

σn+1 = (1−Dn+1) E2 <
[
e−

∆tn
λ δe,n + 1−e

−∆tn
λ

∆tn
λ

(δn+1 − δn)
]

>+ +

+(1−Dn+1) E1 < δn+1 >+ +Kc (E1 + E2) < δn+1 >−

(3.20)

The consistent tangent stiffness is computed through routine algebraic manipulations

as follows:

∂σ

∂δ
=



0 if D = 1∀δ

(1−D)[E1 + E2
λ

∆t
(1− e

−∆t
λ )]− ∂D

∂δ
σ if D 6= 0 and δ ≥ 0

Kc if D 6= 0 and δ ≤ 0

(3.21)

3.5 Analysis of Experimental and Numerical Results

The general geometry described in Section 3.1 is specialised to a common fracture me-

chanics test specimen, whose geometry is sketched in Fig.3.5. A 25mm wide double-

cantilever-beam (DCB) specimen made of 8mm thick steel arms separated by a 1mm

thick interface of filled SBR / NR blend rubber has been tested under displacement

control at nine different rates of the monotonically increasing prescribed cross-head

displacement, equal to 0.01, 0.1, 1, 10, 100, 500, 1000, 10000, 100000 mm min−1. A

summary of all test results is presented in Fig.3.4. A close-up of the delamination front

is presented in Fig.3.6.

The DCB specimen has been chosen as the most suitable test geometry because it

offers a unique advantage when compared to other possible Mode-I specimen geome-

tries such as the peel test, the pure-shear test or the notched tensile dumbell specimen.
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Indeed, sandwiching the interface of interest between two metallic arms guarantees that

no rate-dependent losses other than the ones occurring within the interface are present:

the modelling of the T-peel test geometry on the other hand would be dependent upon a

satisfactory description of the rate-dependent behaviour of the arms. This test geometry

is also interesting in that the energy release rate is not constant with respect to crack

length (as is the case for the peel test or the pure shear test piece, [75]): this generally

will lead to a non-constant crack speed, making the experimental validation more chal-

lenging. Another desirable feature of the test geometry is the fact it does adress both

crack inititiation (no sharp crack tip is introduced in the specimen prior to testing) and

crack propagation.

The cohesive-model has been implemented into a user subroutine (UMAT) for the

finite-element code ABAQUSTM , version 6.12.2, as a constitutive law of interface el-

ements, also called ’cohesive elements’ in the ABAQUS manual. The UMAT code is

included in the Appendix. The numerical model employs fully integrated 4-noded (lin-

ear) plane-strain elements with incompatible modes (CPE4I by Abaqus naming conven-

tions) for the steel arms, while 4-noded (linear) 2D interface elements (COH2D4) are

used for the rubber interface. Three uniform structured meshes have been used:

1) 4 x 100 solid elements (60 interface elements)

2) 6 x 133 solid elements (80 interface elements)

3) 8 x 200 solid elements (120 interface elements)

For the numerical analysis a Young’s modulus of 210 GPa and a Poisson’s ratio of

0.3 have been used for the steel arms. For the interface the constants reported in Table

3.1 have been used. The first three parameters in the table have been calibrated based

on the test speed of 100 min mm−1. For the relaxation time and the ratio between E2

and E1 the additional test speed of 10 min mm−1 has been used.

Due to symmetry with respect to the crack plane only the top half of the specimen

was modelled. The 2D approximation cannot of course capture the fact that the crack

front is not a straight line, but it was shown in [148] that in general this leads to reason-

ably accurate results for wide enough specimen, such as the one tested in our case.

Fig.3.7 shows the experimental and the numerical load-displacement curves for the

case of test speed of 100 min mm−1 and shows that the numerical model can correctly
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Figure 3.4: Summary of all test results.

Figure 3.5: Geometry and loading of the tested DCB specimen.

capture all aspects of the experimental behaviour, with good agreement both qualita-

tively and quantitatively. In this figure five points of the debonding process have been
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(a)

(b)

Figure 3.6: Experimental test: particular of the (a) undeformed and (b) deformed spec-

imen.

Gc (N mm−1) δc (mm) E1 (N mm−3) E2 (N mm−3) λ (s)

9.5 1.1875 18.5 15.1 148

Table 3.1: Input parameters used for the rubber interface.

marked with the letters a, b, c, d and e, to identify the following five essential parts or

moments of the debonding process: (a) elastic loading, (b) onset of fracture, (c) (approx-

imately) self-similar crack propagation, (d) disruption of approximate self-similarity

due to the crack-tip field reaching the specimen boundary and (e) almost-rigid rotation

following the almost complete propagation of the crack.

The direct stress in the vertical direction across the steel arm (σyy in the model ref-

erence system) has been chosen as a reasonable indicator of the process-zone activity

and Figs.3.8.a-e show the contour plots of Syy (S standing for the stress tensor) at the

points of the debonding process indicated in Fig.3.7. At point a (elastic loading), a

stress concentration is forming at the crack tip: the interface discontinuity-jump, albeit

non zero, is ‘small’, and the stress profile resembles the singularity field characteris-

tic of classical continuum elements. At point b, the crack has just started propagating,

causing the stress distribution to be more spread. At point c the crack is now moving
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Figure 3.7: Numerically and experimentally obtained load-displacement curves for the

test speed of 100 min mm−1, showing the points of the debonding process referred to in

Figure 3.8.

in an approximately self-similar way. This is happening on a rather limited length due

to the relatively large size of the process zone in relation to the sample. At point d the

compression distribution at the far left side is changing, as the lack of available space

and the need of maintaining the overall resultant bending moment lead to a narrower and

more intense stress distribution. Finally, at point e debonding is almost complete, the

arm can only sustain negligible bending and the total force has now reduced to almost

zero.

Fig.3.9 shows a comparison of the numerical and experimental load-displacement

curves for all the considered test speeds. Therefore, their analysis allows validating the

capability of the model to capture rate-dependence. The model prediction is satisfactory

only on a range of applied displacement rates. More in detail, it can be seen that the

model does not capture the change of the response when the applied rate is increased

from 100 min mm−1 to 500 min mm−1, in fact the numerical curve obtained at 500 min

mm−1 practically overlaps with the one obtained at 100 min mm−1. The same happens

at the low range of speed, indeed the computed response at 0.1 min mm−1 is rather close
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Figure 3.8: Contours plots of the direct stress in the vertical direction at the points of

the debonding process indicated in Figure 3.7.

to the computed response at 0.01 mm/min, while the experimental response is charac-

terized by lower global loads. This lack of ability to predict the rate dependence over

5 logarithmic decades of applied displacement rate is not surprising at all. The same

qualitative behaviour can be seen in similar viscoelastic analyses if the relaxation spec-

trum employed in the costituive model is too narrow with respect to the real material.

This is certainly our case, as a discrete spectrum with a single relaxation time is being

employed to model rubber behaviour, whose spectrum is not only continuous but rather

wide too, spanning certainly more than 5 logarithmic decades. Incidentally, it is also

interesting to note how the quality prediction degrades as the crack progresses towards

the end of the approximatedly self-similar propagation region: this might be a result

of the fact the crack is by then travelling at a speed for which dynamic effects on the

energy release rate might not be negligible [149, 150].

On the other hand, a viscoelastic model with one relaxation time is expected to cap-

ture relatively well the rate dependence roughly over three/four logarithmic decades.

64



This is indeed what happens in the presented model;this is a promising result as it in-

dicates that the use of a wider relaxation spectrum or of a more complex, possibly

nonlinear, viscoelastic law will be likely to improve the predictive capacity without

substantially altering the conceptual framework herein presented.

Figure 3.9: Experimental vs numerical load-deflection curves for the six considered test

speeds.

The section is closed by presenting some convergence tests, the results of which are

collated in Fig.3.10. Analyses related to one test rate only are presented, but analo-

gous convergence performance has been achieved at all rates employed during testing.

The convergence with respect to the mesh density was checked by comparing entire

load-deflection curves, as well as focusing on the response of one material point, in

the present case the tip of the initially present crack. Both approaches confirm mesh-

convergence. The convergence with respect to the algorithmic step ∆t was checked as

well and found satisfactory.
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(a)

(b)

(c)

Figure 3.10: Convergence analysis, test speed of 1 mm/min: (a) Load-deflection curves

and (b) traction at the initial crack tip, for increasing mesh density (c) Convergence of

the numerical response with respect to time step ∆t.
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Chapter 4

Fractional Calculus Formulation of a

Rate-Dependent CZM

The cohesive-zone model formulated in the previous Chapter will now be modified to

improve its predictive ability. Following the discussion in Section 2.1.3 it seems natural

to attempt to modify the presented model by exploiting certain features of fractional

calculus: to make the comparison more effective the rheologic structure of the model

presented in the previous Chapter is left unaltered, by considering a fractional Standard

Linear Model instead of the classical, integer-order derivative, version.

The stress response of the classical Standard Linear Solid (SLS) model is governed

by the following response functional

σ(t) =
∫ t

0

(
E1 + E2 e−

t−ζ
λ

)
ė(ζ) dζ (4.1)

where λ stands for the relaxation time, E∞ denotes the long-term (fully relaxed) elastic

constant and E0 is the short-term elastic constant, E1 = E∞ and E2 = E0 − E∞.

In the rheological representation of the SLS, depicted in Fig.4.1.a, E1 and E2 are the

stiffnesses of the two springs in the elastic arm and in the Maxwell arm, respectively,

while λ = η/E2, η being the viscosity constant of the Newtonian damper.

The representation provided by equation (4.1) is equivalent to the following ODE (to

which homogenous initial boundary conditions are appended)

σ + λ σ̇ = E1 e + γ ė (4.2)

where γ = λ (E1 + E2). The fractional SLS model is obtained by altering the order of
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Figure 4.1: Rheological representation of the (a) classic and (b) fractional Standard

Linear Solid model.

derivation, as follows

σ + λ̂ 0D
ν
t σ = E1 e + γ̂ 0D

ν
t e (4.3)

with ν ∈ (0, 1), whereby λ̂ = η̂/E2 and γ̂ = λ̂ (E1 + E2) have a physical meaning sim-

ilar to the classical case but are dimensionally different. The rheological representation

of the fractional SLS model is depicted in Fig.4.1.b by replacing the Newtonian damper

with a springpot element with constant η̂.

There is no reason a priori not to consider different fractional exponents for the

stress and strain time derivatives [45], the present choice being motivated by the phys-

ical interpretation through the rheological model of Fig.4.1.b: a more refined choice

would ideally derive from a deeper understanding of the related physical behaviour of

the material under scrutiny (generic numerical examples can be found in [151]).

Remark 4.0.1 It can be shown that the solution to equation (4.3) can be expressed

as [33],

σ(t) =
∫ t

0

(
γ̂

α

)
Eν

(
−t− τ

λ̂

)ν

ė dτ (4.4)

where Eν stands for the Mittag-Leffler function (see Section 2.1.3) of order ν. It is

remarked that E1(z) = ez. Mittag-Leffler functions for three values of ν have been

plotted in Fig.2.1, where the qualitative difference with an exponential function is made

tangible. Interestingly, the model "interpolates" between hookean (ν = 0) and classical

SLS model (ν = 1) behaviour.

Thermodynamic consistency for 0 ≤ ν ≤ 1 is proved immediately by considering

a Theorem in [26] stating that if the relaxation function is monotonic, decreasing, con-
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cave and tends to a non-negative asymptotic value, then the work done on any strain

path starting from equilibrium is non-negative, which is an alternative statement of the

Second Law [21]. The same result was proved by appealing to the rheological analogy

in [45].

Before considering the fractional formulation of the cohesive-zone model, it seems

appropriate to investigate the behaviour of the fractional SLS model in order to achieve

the basic understanding of its characteristics needed to later rationally calibrate the ma-

terial parameters. One property of the classical Standard Linear Solid SLS is of partic-

ular interest: it approaches the behaviour of an elastic material in the limit of infinite or

zero strain rate [14]. This can be seen analytically by considering suitable transforma-

tions of the time variable. In complete analogy the fractional counterpart exhibits the

same property: also, the ratio of the elastic moduli in the "fast" and "slow" limits does

not vary with respect to its classical counterpart. The difference between classical and

fractional case consists in that the transition from "soft" to "hard" elastic solid behaviour

occurs at a different pace: this is exemplified by Fig.4.2, which displays the analytical

solutions of ODEs (4.2) and (4.3) for constant strain-rate imposed histories, in a case for

which E1 = 0, hence recovering a Maxwell’s model, E2 = 1 and λ = 1. The surfaces

depicted are the envelope of the stress response as a function of time, at varying the

imposed strain rate.

The difference between the two surfaces is plotted in Fig.4.2.c: the plot is in line with

the discussion in Section 2.1.3 on the differences between fractional and exponential

behaviour (steeper relaxation at short times, but algebraic rather than exponential decay

for longer times).

4.1 Formulation of the Interface Model

Focusing on a mode-I problem, and making again the assumption that relative-displacements

at the interface are zero for negative times, the interface traction σ at time t at a point of

an interface with memory is characterised by a (generally non-linear) functional defined

on a suitable set of displacement jump histories δ : [0, t] → <.

The fractional SLS model is chosen as a reasonable representation of rubber vis-

coelasticity, and the rheological representation of its specialisation to a cohesive-zone

model is simply obtained by replacing the strain e with the relative displacement δ.
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The stress response at time t of the SLS model (i.e. without considering the damage

variable) due to a displacement jump history δ (without loss of generality assumed to

be null for non-positive times) will be denoted as Σt(δ) and, for what explained above,

is the solution of the following ODE, which is the CZM equivalent of ODE (4.3):

σ + λ̂ 0D
ν
t σ = E1 δ + γ̂ 0D

ν
t δ (4.5)

The damaging process is instead described as before through an internal damage

variable D, whereby the overall response is given as a product of a damage term and a

linear functional:

σ(t) = [1−D(t)] Σt(δ) (4.6)

As far as the evolution of the damage variable is concerned the same evolution equa-

tions presented in Section 3.3.1 is employed, as the physical assumptions on which it

has been based, see Section 3.2, are completely unrelated the specific choice of the vis-

coelastic relaxation function.The same argument is valid with regards to the modeling

of compression, see Section 3.2.

4.1.1 Algorithmic Solution of Fractional Models - Grünwaldian For-

malism

Numerical computations in the case of fractional models are more complicated than

in the case of an exponential relaxation function or, more generally, viscoelastic ma-

terial models formulated within the framework of thermodynamics with internal vari-

ables [106]. In the first case a recursive algorithm can be formulated using properties

of exponentials functions, as presented in the previous Chapter. In the second case in-

cremental variational schemes are available [152, 153]: such schemes do not apply in

general to fractional viscoelastic formulations (which are characterised, loosely speak-

ing, by an infinite number of internal variables, see Section 2.1.3).

Numerical fractional differentiation/integration algorithms can be classified into three

categories [154]. The first category comprises algorithms whose starting point is the

Riemann-Liouville definition, in Equation (2.22): the integral expression can be numer-

ically evaluated using various tecniques from numerical integration. The second cat-

egory relies instead on an alternative definition of fractional derivative/integral [155],

which was later shown to be equivalent to the Riemann-Liouville definition [156]. The
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third type of approach is based on exploiting the linearity of the viscoelastic functionals

by approximating the strain history as a piecewise constant function and superimpos-

ing the responses due to each increment: this is the approach historically introduced by

Boltzmann [16] and described in Section 2.1.

In this work the second of these strategies has been followed, based on the the

Grünwald-Letnikov definition of fractional derivative. Such a numerical approximation

strategy has been used in [157, 158], among others. To the best of the author’s knowl-

edge, this is the first application of a fractional calculus-based model in a non-linear

finite-element computation.

Grünwald-Letnikov fractional derivative

The Grünwald-Letnikov expression of the fractional derivative is derived from the ob-

servation that the usual, first integer order derivative can be approximated via a back-

ward difference scheme

df(t)

dt
= lim

∆t→0

1

∆t
[f(t)− f(t−∆t)] (4.7)

and iterated applications yield

d2f(t)

dt2
= lim

∆t→0

1

∆t2
[f(t)− 2f(t−∆t) + f(t− 2∆t)] (4.8)

d3f(t)

dt3
= lim

∆t→0

1

∆t3
[f(t)− 3f(t−∆t) + 3f(t− 2∆t)− f(t− 3∆t)] (4.9)

which can be generalised using induction to

dnf(t)

dtn
= lim

∆t→0

[
1

∆tn

n∑
j=0

(−1)j

(
n

j

)
f(t− j∆t)

]
(4.10)

After setting ∆t = t/N , Equation (4.10) can be written

dnf(t)

dtn
= lim

N→∞

[ (
t

N

)−n N−1∑
j=0

(−1)j

(
n

j

)
f
(
t− j

t

N

) ]
(4.11)

In order to allow the applicability of Equation (4.11) outside integer order derivation,

the binomial coefficient definition is extended, for ν ∈ < and j ∈ N as
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(
ν

j

)
=


ν(ν−1)(ν−2)...(ν−j+1)

j!
for j > 0

1 for j = 0

(4.12)

Then (−1)j
(

ν
j

)
can be expressed as

(−1)j

(
ν

j

)
= (−1)j ν(ν − 1)(ν − 2) . . . (ν − j + 2)(ν − j + 1)

j!
(4.13)

which leads to

(−1)j

(
ν

j

)
=

(
j − ν − 1

j

)
=

Γ (j − ν)

Γ (−ν)Γ (j + 1)
(4.14)

where Γ stands for the Γ function. Replacing expression (4.14) in Equation (4.11)

provides the following formula, in which ν is required only to belong to < (an extension

to the complex field C is possible too, [31])

dνf(t)

dtν
= lim

N→∞

( t

N

)−ν N−1∑
j=0

Γ (j − ν)

Γ (−ν)Γ (j + 1)
f
(
t− j

t

N

) (4.15)

It can be recognised how the given definition agrees with the usual integer-order deriva-

tion definition for ν = n, n ∈ N , in that only the first n + 1 of the so-called Grünwald-

Letnikov coefficients Aj

Aj+1 =
Γ (j − ν)

Γ (−ν)Γ (j + 1)
(4.16)

are nonzero due to properties of the inverse Γ function, which vanishes for negative

integers (the Γ function itself has simple poles for negative integers). If ν /∈ N then all

the Aj are different from 0, which underlines how in general the fractional derivative is

a non-local operator.

The Grünwald-Letnikov coefficients obey the useful recursive formula

Aj+1 =
Γ (j − ν)

Γ (−ν)Γ (j + 1)
=

j − 1− ν

j

Γ (j − 1− ν)

Γ (−ν)Γ (j)
=

j − 1− ν

j
Aj , A0 = 1 (4.17)

which is very useful in that definition (4.16) could lead to numerical problems if ν is

close to an integer or for large iteration index.
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Numerical approximation of the Grünwald-Letnikov derivative

In general the Grünwald-Letnikov definition requires handling an infinite series expan-

sion, the time step t/N tending to zero. To overcome the impracticality it is natural to

consider a truncation, i.e. to approximate

dνf(t)

dtν
= lim

N→∞

( t

N

)−ν N−1∑
j=0

Aj+1f
(
t− j

t

N

) (4.18)

by
dνf(t)

dtν
∼=

( t

N̊

)−ν N̊−1∑
j=0

Aj+1f
(
t− j

t

N̊

) (4.19)

The value of N̊ fixes the time step used for sampling the function in the Grünwald-

Letnikov and is to be chosen as a compromise between accuracy and computational

time. Its choice impacts the size of the integration time step (as well as the number

of addends in the series). The computability of the Grünwald-Letnikov at fixed N̊ can

further be improved by remembering the Grünwald-Letnikov coefficients are in absolute

value decreasing for fractional coefficients 0 < ν < 1, a manifestation of the fading-

memory principle, see Fig.4.3. The truncated sum (4.19) at fixed N̊can be written as(
t

N̊

)−ν N̊−L−1∑
j=0

Aj+1f
(
t− j

t

N̊

)
+ R(N̊ , L) (4.20)

where the truncation error term R is given by

R(N̊ , L) =
(

t

N̊

)−ν N̊−1∑
j=N̊−L

Aj+1f
(
t− j

t

N̊

)
(4.21)

An upper bound for R is obtained as follows

|R(N̊ , L)| =

∣∣∣∣∣∣
(

t

N̊

)−ν N̊−1∑
j=N̊−L

Aj+1f
(
t− j

t

N̊

)∣∣∣∣∣∣ ≤

≤
(

t

N̊

)−ν N̊−1∑
j=N̊−L

|Aj+1|
∣∣∣∣f (t− j

t

N̊

)∣∣∣∣ ≤

≤
(

t

N̊

)−ν N̊−1∑
j=N̊−L

max
j∈[N̊−L,N̊−1]

|Aj+1| max
j∈[N̊−L,N̊−1]

∣∣∣∣f (t− j
t

N̊

)∣∣∣∣ =

=
(

t

N̊

)−ν

L
∣∣∣AN̊−L

∣∣∣ max
j∈[N̊−L,N̊−1]

∣∣∣∣f (t− j
t

N̊

)∣∣∣∣

(4.22)
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It appears then that truncation error generally increases with decreasing ν, as a result

of the fact the Grünwald-Letnikov coefficients decrease more slowly. The entity of the

numerical error is graphically illustrated for a simple case in Fig.4.4 by displaying the

analytical and numerical derivatives for a power-law function, together with the two

different approximation tecniques described above.

Numerical solution of the fractional SLS cohesive model

By using equation (4.19) to obtain a numerical approximation of the two fractional

derivatives of σ and ε and observing that A1 = 1 one has:

0D
ν
t σ ∼=

(
t

N̊

)−ν

[σ(t) + Sσ] 0D
ν
t δ ∼=

(
t

N̊

)−ν

[δ(t) + Sδ] (4.23)

where:

Sσ =
N̊−1∑
j=1

Aj+1 σ
(
t− j

t

N̊

)
Sδ =

N̊−1∑
j=1

Aj+1 δ
(
t− j

t

N̊

)
(4.24)

Replacing the above expressions into equation (4.5), and making the dependence on

t explicit, the following expression is obtained:

σ(t) + λ̂
(

t

N̊

)−ν

[σ(t) + Sσ] = E1 δ(t) + γ̂
(

t

N̊

)−ν

[δ(t) + Sδ] (4.25)

Solving for σ(t) provides the following numerical (approximate) solution of the re-

sponse Σ of the cohesive SLS model in absence of damage:

Σ(δ, t) =

[
1 + λ̂

(
t

N̊

)−ν
]−1 {[

E1 + γ̂
(

t

N̊

)−ν
]

δ(t) +
(

t

N̊

)−ν (
γ̂ Sδ − λ̂ Sσ

)}
(4.26)

Finite-step solution of the cohesive-zone model

Having described the numerical approximation for the solution of the SLS cohesive

model in Section 4.1.1, this can be combined with the damage evolution law, see Section

3.3.1 to obtain the constitutive law (4.6). The time-integration algorithm to determine

the response of the CZM is now described.

Recalling that it has ben assumed the displacement-jump history to be nihil before

t = 0 the time interval over which the computation is to be carried out, [0, T ], is dis-

cretized into a partition of Ninc time increments:
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[0, T ] =
Ninc⋃
n=1

[tn, tn+1] tn+1 = tn + ∆tn (4.27)

In the n-th time increment, the times at the start and the end of the increment are tn

and tn+1, respectively. Setting σn+1 = σ(tn+1), δn+1 = δ(tn+1) and Dn+1 = D(tn+1),

in the framework of a non-linear, displacement-based finite-element solution scheme

the problem is relative-displacement driven, whereby δn+1 is assigned while σn+1 and

Dn+1 are computed as follows:

σn+1 =


(1−Dn+1) Σn+1 (δn+1) if δn+1 ≥ 0

Kc δn+1 if δn+1 < 0

(4.28)

where from Equation (4.26):

Σn+1 (δn+1) =

[
1 + λ̂

(
t

N̊

)−ν
]−1 {[

E1 + γ̂
(

t

N̊

)−ν
]

δ(t)+

+
(

t

N̊

)−ν (
γ̂ Sδ,n+1 − λ̂ Sσ,n+1

)} (4.29)

in which Sδ,n+1 and Sσ,n+1 are given by:

Sσ,n+1 =
N̊−1∑
j=1

Aj+1 σ
(
tn+1 − j

tn+1

N̊

)
Sδ,n+1 =

N̊−1∑
j=1

Aj+1 δ
(
tn+1 − j

tn+1

N̊

)
(4.30)

Dn+1 is given by, see equation (4.29) :

Dn+1 =


0 if δmax,n+1 ≤ δ0

min

{
1,
(

Gc

Gc −G0

) (
1− δ0

δmax,n+1

)}
if δmax,n+1 ≥ δ0

(4.31)

where the current maximum displacement δmax,n+1 is a history variable in the model

which is initialised as δmax,0 = 0 at the beginning of the first increment and is updated

at each increment as follows:

δmax,n+1 = max{δn+1, δmax,n} (4.32)

Remark 4.1.1 It is worth noting that, in general, the time increment ∆tn relevant for

the Newton-Raphson scheme are chosen using an automatic incrementation procedure

whereby ∆tn increases or decreases according to the rate of convergence in each incre-

ment, within user defined maximum and minimum thresholds. Instead, the time incre-

ment t/N̊ defining the sampling points of the Grünwald-Letnikov summation is fixed,
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Gc (N mm−1) δc (mm) E1 (N mm−3) E2 (N mm−3) λ̂ (sν) ν Kc

1.55 0.75 1.81 13.25 2.5 0.3 980

Table 4.1: Input parameters used for the rubber interface.

whereby the sampling points do not in general coincide with the time increments of the

analysis. This issue is circumvented by linearly interpolating the relative-displacement

and stress history between Newton-Raphson time steps.

Before presenting the results, it was verified that the fractional algorithm could re-

produce the results presented in Chapter 3, by using a fractional exponent ν equal to 1

(yielding then back the classical SLS model rheology employed in the previous Chap-

ter). The agreement is satisfactory and is presented in Fig.4.5.

4.2 Analysis of Experimental and Numerical Results

The fractional-calculus-based numerical model has been implemented into a user sub-

routine (UMAT) for the finite-element code ABAQUS, version 6.12.2, as constitutive

law of interface elements. The subroutine is included in the Appendix. Material prop-

erties of the steel arms are left unaltered (Young’s modulus of 200 GPa and a Poisson’s

ratio of 0.3) For the interface the constants reported in the Table 3.1 have been used.

The numerical algorithm requires the user-input parameter N̊ , i.e. the number of

terms in the Grünwald sumamtion: a value of 100 has been selected for the simulations

presented.

The identification of material parameters has ultimately been performed empirically

but it was possible to achieve remarkable good agreement between experimental and

numerical results as shown in Fig.4.6. It is interesting to compare the value of Gc in Ta-

bles 3.1 and 4.1: the fact that Gc for the fractional CZM is lower reveals how an artificial

cut-off is in a sense performed, when using an excessively narrow relaxation spectrum

as was the case in Chapter 3. In other words, the Gc value used for the exponential

model is higher because it has to incorporate all the viscoelastic dissipation that occurs

below its slow limit, and that hence is not able to reproduce. In the fractional case this

is not necessary at all.

76



Fig.4.7 also shows the excellent correlation between experimentally measured and

numerically computed load maxima. Plotting this curve during the identification proce-

dure has been extremely useful as it was found that the shape and the load of this curve

was extremely sensitive to λ̂ and to the fractional exponent ν. In particular, the slope

tends to increase with increasing values of ν, the other input parameters kept fixed. The

fact that the load maxima are almost perfectly aligned seems to reflect the fact that all

considered load speeds were sufficiently far from both the fast and the slow limit. Once

the load maxima were reasonably well captured successive iterations on the other pa-

rameters allowed to obtain a final set of values which led to the excellent correlation

shown in Fig.4.6.

Differences between the model presented in the previous Chapter and the fractional

CZM are highlighted in Fig.4.8, from which a further confirmation of the ability of the

fractional formulation to deal with a wider range of applied test rates can be obtained;

in this respect, see also Fig.4.2.c.

For future, more demanding, applications systematic approaches for material para-

meter identification as considered in [159, 160] could be taken into account.

One feature of the experimental response which is still not adequatey described is

the initial stiffness: experimental results display less rate-dependence in this respect

than the simulated response. It is conjectured that this shortcoming is caused by the

lack of accuracy incurred by describing the rubber compound as a linear material as far

as the elastic response is concerned (for tensile curves of the interface rubber compound

see Fig.5.4, note the highly non-linear behaviour). Fracture growth is on the other hand

modelled satisfactorily, in agreement with the fact that in general the dissipated energy

within the process zone is far more important than the detailed shape of the traction

-discontinuity jump law, see Section 2.2.2.
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(a)

(b)

(c)

Figure 4.2: Envelope of constant strain-rate uniaxial test curves for: a) a classical

Maxwell model b) a fractional Maxwell model. c) Plot of the difference between the

surfaces depicted in a) and b): please note the inverted axes with respect to the charts

above, in order for the surface in c) to be better visible.
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Figure 4.3: Absolute values of Grünwald-Letnikov coefficients for various fractional

exponents between 0 and 1
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Figure 4.4: Analytical fractional derivative (continuous line) of y(t) =
√

(t) with frac-

tional exponent ν = 0.75 of a power law function compared to different approximations

(dashed lines) obtained by a) varying N̊ b) varying the number of addends in the series

without varying N̊ , hence maintaining the time step unaltered.
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the fractional formulation with the fractional exponent set equal to 1 (dashed lines).
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Figure 4.6: Experimental vs numerical load-deflection curves computed with the frac-

tional CZM at different applied displacement rates.
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Figure 4.7: Experimental vs numerical load maxima at different load displacement rates:

it could be noticed how the "fast limit" of the viscoelastic spectrum is approached (de-

creasing slope for increasing values of the displacement rate).
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Figure 4.8: Error plot comparing the load maxima computed with the exponential kernel

formulation (Chapter 3) and the fractional kernel formulation.
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Chapter 5

Formulation of a Non-Local CZM

5.1 Non-monotonicity of the crack speed vs Gc relation-

ship

In the case of rate-dependent crack initiation and growth, it is experimentally observed

that for some materials the critical energy release rate is not monotonically increasing

with the crack speed [161], also consider Fig.5.1 for test results obtained by the author

on the same rubber used for the interface of the DCB specimen described in Sections

3.5 and 4.2.

Our interest in the phenomenon originates from its importance in applications. In-

deed failure of polymeric structures is often characterised by the crack speed "blowing-

up" once a certain crack speed range (over which the crack advances in stable fashion) is

abandoned. This could be related to the critical energy release rate not being an increas-

ing function of the crack speed: for example, the catastrophic failure of a load-controlled

specimen if the imposed load increases in time is easily explained in such context. The

importance of this aspect deserves a simple, yet revealing example. Let us consider a

peel-test specimen of width b, the related energy release being a linear function of the

applied load P and not depending on the crack length. It is assumed the fracture energy

Gc of the interface depends on the crack speed via the function G = G(l̇) which is as-

sumed to be Lipschitz-continuous, everywhere positive and monotonically increasing.

The function l(t) describing the evolution of crack length during crack propagation is a
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Figure 5.1: Load per unit width (twice the energy release rate) vs applied displacement

rate for a peel test on a rubber interface

solution of the ordinary differential equation [162] in the unknown l = l(t)

2P

b
= Gc(l̇) (5.1)

If a linearly increased load is applied, P (t) = αt, the resulting differential equation
2αt

b
= Gc(l̇) ; l(0) = l0 (5.2)

admits a unique solution, as follows directly from Picard-Lindelhof’s Theorem [163]

(the solution can also be shown to be monotonic by direct integration). An analysis

based on CZM models of the type described in Chapters 3, 4 would reach the same

conclusion because in these cases Gc is monotonic as a result of the use of linear vis-

coelasticity. On the other hand, if the experiment were performed it would be apparent

that upon reaching a critical crack speed, corresponding to the loss of monotonicity of

Gc, the crack speed would increase abruptly, and would have to be described by a dis-

continuity in the quasi-static approximation. The inability to predict such phenomenon,

for such a simple test geometry, justifies the need for further refinement of the models.

Another consequence is possibly stick-slip propagation behaviour [102–104, 164],

characterised by very fast, almost sudden propagation stages alternating with slower (if
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not stationary) ones. Such a phenomenon is extremely revealing and will be considered

in some detail as it could possibly furnish the basis for understanding other types of

instability-related cracking processes.

Non-convex Dissipation Potentials

The following example is taken from [106] and provides a description of how stick-

slip cracking could be interpreted in the framework of thermodynamics with internal

variables. Considering the unwinding of an adhesive tape, a double-well dissipation po-

tential D, positive but not convex in α, is introduced, for which an explicit computation

of the dissipated power Φ yields

Φ = a (
α̇2

α̇0
2 − 1) α̇2 (5.3)

Considering the thermodynamic requirement Φ ≥ 0 it is readily seen that the interval

(−α̇0, α̇0) is precluded to α̇ as it would entail negative dissipation, in contradiction to

the Second Law. The solution consisting in convexifyingD, while mathematically legit-

imate, is discarded by Maugin on physical grounds as he notes that along the resulting

Maxwell line [165] along the horizontal axis (see Fig.5.2) the dissipation would vanish,

which is not the case of the test during which dissipation occurs at all times. The alter-

native then is to avoid the forbidden region by jumps in the phase plane, as in Fig.5.2.

This example possibly clarifies the energetic structure causing stick-slip propagation,

Speed

Phase Plane

Po
si

tio
n

Speed

Force vs. Speed
Mawxell Line
"Slip"
"Slip"

Figure 5.2: Hysteretic cycle in the(α̇, α) phase plane.
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i.e. the fact that dissipative losses decrease, in a certain regime, with increased crack

speed. In the next section a very similar result is presented, which was obtained by a dif-

ferent route. While a study of the thermodynamic reasons underlying the phenomenon

is most useful, a micromechanical explanation, able to justify why dissipative losses

might be non monotonically increasing with respect to crack speed, has to be attempted

separately.

Introducing Dynamics

An attempt to explain the "stick-slip" behaviour commonly observed in fracture testing

of polymers was provided by Webb and Aifantis [105]. They assigned an "effective" or

"attached" mass to the crack tip as well as conjecturing that the critical energy release

rate Gc depends additively on the extent of the crack growth ∆a and crack velocity v =

ȧ and is not monotonic with respect to the latter. Such assumptions allow a differential

equation to be derived from which it is seen that crack propagation is characterised by

"jumps" (relaxation oscillations) from the stable low-velocity branch to the stable high

velocity branch. Useful heuristic understanding can be gained by comparing this system

with the Van der Pol oscillator in electrotechnics [166], which is governed by the system

of first- order differential equations in the unknowns x, y


ẋ = m(x− x3

3
− y)

ẏ =
x

m

(5.4)

The oscillations for such a system in the case 1
m
� 1 could be understood by consider-

ing, in the phase plane (y, x), the difference y− (x− x3

3
). If the latter is of order 1, then

the second equation in the system suggests that |ẋ| � |ẏ|. The motion is then charac-

terised by high velocity in the x - direction at almost constant y values. If y − (x− x3

3
)

is of order 1/m2 on the other hand, |ẋ| and |ẏ| are of the same order and (x, y) belongs

to a neighbourhood of the curve y = (x− x3

3
), until the first condition applies again.

The formal similarity of Webb and Aifantis’ formulation to the Van der Pol system

can be shown by algebraic manipulations.
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Introducing Gc Dependence on Temperature

The assumption of isothermal processes will be momentarily relaxed in this section

where the possible relationship between non-convex dissipation and temperature con-

duction and generation is considered. The topic has been considered in [167] (see

also [168] for interesting experimental measurements) by modelling a crack charac-

terised by a rate-dependent energy-release rate running through a viscoelastic rubber

body. Their aim is to enlighten the physical roots of the following empirical relation-

ship between energy release rate G, crack speed v and temperature T ,

G(v, T ) = G0[1 + f(v, T )] (5.5)

where the function f obeys f → 0 as v → 0. G0 represents the intrinsic fracture energy

of rubber, as it could be for example estimated by a high temperature test at very low

applied velocities. For many polymeric materials the dependence upon temperature can

be approximated by the inclusion of a multiplying factor, a shift factor aT

f(v, T ) = f̂(aT v) (5.6)

which can be satisfactorily computed through the Williams-Landel-Ferry method [169]

by relying on temperature vs relaxation/creep data. By analytically considering the

viscoelastic solution at the crack tip, heat conduction and assuming the effects of tem-

perature on the mechanical behaviour could be captured by the Williams-Landel-Ferry

approach their numerical computations show that the energy release rate ceases to be

a monotonic function of crack speed (as the analysis without considering temperature

effects would conclude, see for example [3]). Such non-monotonic behaviour is indi-

cated as a possible cause for instabilities. It is worth noting that the authors attribute

to thermal degradation in correspondence of the crack tip the fact that smooth fractured

surface are observed for high enough crack speeds [161], also consider Fig.5.9. An

alternative hypothesis will be put forward in Chapter 5.

The section is closed by an original observation according to which a crack moving at

a constant speed is, in general, an abstraction. Let us consider the problem of calculating

l(t), given an imposed loading to which an energy release rate Ḡ corresponds (this could

in general be time-dependent, but the present analysis will be limited to the constant

case). It is also assumed for simplicity that Ḡ > inf l̇,T̂ Gc, which forces l(t) to be
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strictly monotonically increasing.

Before formulating the problem in mathematical terms, let us cite [170], in which a

crack moving at constant speed v is modelled as a heat source (not necessarily point-

like): the conclusion is arrived at that the temperature field is constant in a reference

system attached to the crack tip. This result seems very counter-intuitive and an obser-

vation of the boundary conditions they employed suggests that the conclusion originates

from the fact there is no explicit mention of the time at which the crack propagation first

occurred. Physical intuition suggests the picture would be different if a stationary crack

is put in motion, as an interesting transient is expected.

The solution of the heat equation for a moving heat source starting its motion at time

t = 0 is presented next. Starting by noting the solution of the problem

ut − kuxx = 0 u(x, 0) = δ(x) (5.7)

is given by

u(x, t) =
1√

4kπt
e−

x2

4kt (5.8)

Expression (5.8) describes the temperature field in time after the application of a "Dirac-

delta" heat source at time 0. Linearity of the Heat PDE allows then to write the solution

to problem (5.7) of the moving heat source as

u(x, t) =
∫ t

0

1√
4kπ(t− ζ)

e−
[x−l(t−ζ)]2

4k(t−ζ) dζ (5.9)

It will be shown that for a crack energy as defined in Equation (5.5) the crack tip motion

is not linear in the general case. The claim is obtained by a contradiction argument. The

function l(t) is assumed linear, l(t) = vt, then

u(x, t) =
∫ t

0

1√
4kπ(t− ζ)

e−
[x−v(t−ζ]2

4k(t−ζ) dζ (5.10)

Only the temperature at the crack tip is relevant for the crack propagation, so use will

be made of the restriction to the crack tip of u, i.e. ucrack(t) = u(vt, t), from which

ucrack =
∫ t

0

1√
4kπ(t− ζ)

e−
[vζ]2

4k(t−ζ) dζ (5.11)

The function (5.11) is not in general constant, hence the temperature at the crack tip

varies in time. As it was assumed that l̇ was costant, the Griffith-energy balance can not
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hold for the process depicted (unless for very particular functions Gc, rather uninterest-

ing from the mechanical point of view). By contradiction, it is argued that l is not in

general a linear function.

This line of reasoning suggests that if the critical energy release rate depends upon

temperature (as it heavily does for the majority of polymers), then no steady crack

propagation can be generally observed, if not in the asymptotic sense.

Phase changes

Certain amorphous elastomers (most notably, natural rubber) undergo a strain-induced

phase transition to crystalline structure at sufficiently high strains. Close to the stress-

free state polymeric coils are strongly entangled and the contribution to the free-energy

is mainly entropic (which earned rubber the denomination of "entropic spring", or "ideal

gas among solids" [1]). Upon the application of sufficiently high stretch, chains progres-

sively disentagle and tend to orient themselves parallel to the load. During this process

adjacent chains get closer: if chains get close enough to be mutually in each other’s

Van der Waals forces domain of attraction, they might eventually form a crystallite.

This alters the mechanical behaviour as the internal energy of the inter-molecular bonds

has now to be taken into account. On a macroscopic change scale the most evident

manifestation of strain-crystallization is the sudden increase in stiffness after a critical

stretch (usually ≈ 6), as well as the hysteresis loop observed upon unloading (possibly

accompanied by the "inverse yielding phenomenon" [171]). Another consequence of

paramount importance in application is the impact on crack propagation characteristics.

Crystallisation occurring at the crack tip has a "reinforcing" effect, which results in re-

duced crack propagation rates [22, 172] , as well as motivating why for a crystallising

rubber the crack growth rate in cyclic loading conditions decreases when the minimum

load level is increased (while maintaing the maximum unvaried), [173].

Strain-crystallisation is not instantaneous. Its kinetics have been studied in [174]

where it was demonstrated that crystallinity during cyclic stretching is significantly

lower than during quasistatic stretching, unveiling the fact that crystallisation is a time-

dependent process with a characteristic time of the same order of magnitude as cycling

periods typically employed in dynamic/fatigue investigations. These measurements pro-

vided support for the experimental evidence showing that the crack propagation rate for

crystallising rubber is much higher for a cycling load than in creep conditions, main-
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taining constant the maximum energy release rate [175]. It is then natural to conjec-

ture that the phenomenon of strain-crystallisation could explain why the dissipated en-

ergy following crack propagation could decrease once the crack speed exceeds a cer-

tain threshold. Indeed, only for a sufficienlty slowly moving crack there is sufficient

time for the material around the crack tip to crystallize. Beyond a certain speed, the

material around the crack tip would not have time to crystallise and the dissipated en-

ergy would then be lower. This line of thought will not be pursued further here as

the non-monotonicity of the critical energy release rate vs crack speeds occurs also for

non-crystallizing rubbers (as the one used in the presented experimental work), which

suggests strain-crystallisation could certainly contribute, but cannot be the exclusive

reason. The phenomenology just sketched will be though revisited in the last chapter

in relation to another possible mechanism leading to non-monotonicity of the critical

energy release rate vs crack speed.

Cavitation

Cavitation is an important failure mode for rubber specimens. It consists in the appear-

ance of cavities (internal cracks of spherical shape) upon the application of negative

hydrostatic pressure. It was first investigated by Gent [176] by conducting tension tests

on thin rubber cylinders bonded to metal plates. The appearance of internal cracks is

revealed by a sudden, irreversible, change in the stress-strain characteristics (and by a

"popping sound" in Gent’s words as well). Their analysis starts by the observation that

for a thin cylinder the stress at the centre of the test specimen is approximately equal to

a negative (volume-increasing) hydrostatic pressure equal to the applied tensile stress.

Then, the conjecture is made that the specimen contains a "small" spherical cavity, in

such a way that the area of interest could be modelled as an infinitely thick spherical

shell. The elastic problem is then solved and a critical value σcrit is found at which the

cavity’s radius goes to infinity.

Cavitation is evoked in [177] to explain the the non-monotonicity of energy release

rates vs crack speed, as well as the differences in fracture sufaces related to "slow"

and "fast" propagation, the latter being significantly smoother. Their argument relies

on the fact rubber is almost incompressible at low deformation rates. As a result high

hydrostatic pressures could arise, yielding cavitation. For sufficiently high crack speeds

the material ceases to be incompressible, suppressing cavitation. Then two mechanisms
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are described to explain rubber fracture. In the low speed region fracture originates

from the nucleation, growth and coalescence of cavitation flaws. In the high speed

region fracture is almost brittle, as it involves mainly primary bonds. As such bonds

have to be broken anyhow, the energy dissipated in the first failing mode is higher than

the one implied by the second, which could explain the observed decrease in energy

release rate with increasing speed. The conceptual scheme which will be employed in

the formulation of the non-local CZM in Chapter 5 is analogous.

Interestingly, cavitation occurs also as a solution of the non-linear elastostatics prob-

lem modelling a ball on which surface tractions or displacements are imposed, without

the need to consider the infinitesimally small cavity (without renouncing to the strong-

ellipticity condition [9,122] on the energy density function, necessary for the variational

problem to be well posed in general, [122]). In [178] cavitation is shown to be an insta-

bility bifurcating from the homogeneous solution at a critical stress value. Its possibility

is related to the growth properties of the energy density function W for large strains. An

example is made by Ball of an energy density function, describing the deformation of

a body occupying a n-dimensional domain Ω, n = 2, 3 such that any deformation gra-

dient corresponding to a finite energy will belong, for p > n, to the Sobolev space

W 1,p(Ω,<n) and hence will be described by a continuous function (due to the Sobolev

Imbedding Theorem [179]): cavitation is hence excluded. These profound mathemat-

ical observations are very relevant for the practising engineer too and for this reason

have been reported herein: as noted by Ball himself, the fact that only a set of ho-

mogenous deformations can be reached prior to failure during testing is not sufficient

to conclude that the material is not elastic for a certain F outside the observable set of

deformation gradients, as an instability might be preventing the specimen to reach such

F (see [180] for a numerical analysis of an analogous "structural" failure in a concrete

tensile specimen). This observation poses a serious criticism to the common engineer-

ing use of uniaxial fracture parameters such as stress at break or elongation at break as

crack predictors.

De Gennes’ Viscoelastic Trumpet

This review is ended by presenting the celebrated "viscoelastic trumpet" argument of

De Gennes [181]. The analysis applies strictly only to weakly-crosslinked polymers

characterised by a ratio G∞/G0 = g̃ > 100, although the qualitative picture preserves
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its general validity even for a heavily cross-linked rubber compound as the one used for

the experimental validation of the models presented in this work (see [3] for a related

treatment where the assumption of weak-crosslinking is not necessary).

Considering, as an idealization of the real relaxation behaviour, the complex modulus

(see Section 2.1.1) of the Standard Linear Solid [14]

µ(ω) = µ0 + (µ∞ − µo)
iω

1 + iωλ
(5.12)

with µ0 and µ∞ standing for instantaneous and long-term complex moduli (with van-

ishing imaginary part as the response tends to the elastic one in both the limits of slow

and fast frequency, in analogy to the case of slow and fast loading rate). Three separate

regimes in the frequency domain are then considered. For ω < 1/λg̃ the approximation

µ ≈ µ0 applies. The complex modulus can be approximated as real and the material

can be considered as a soft solid, i.e. the material is relaxed. For 1/λg̃ < ω < 1/λ the

following approximation holds

µ(ω) ≈ (µ∞ − µ0)iωλ ≈ iωλ (5.13)

the last passage being motivated by the smallness of the ratio g̃, A purely imaginary

complex modulus is recovered: the material can be considered a liquid . For ω > 1/λ

the material behaves as a strong solid, µ ≈ µ∞; such state is often referred to as i.e.

glassy. Further, a simple scaling argument is put forward: the distance x from the tip of

a crack moving with speed V and the frequency at a point at distance x from the crack

tip are related via the scaling law

ω ∼=
V

x
(5.14)

Thanks to such relation, the three regions in the frequency domain highlighted above

acquire a spatial meaning, for they correspond to three different regions at increasing

distance from the crack tip, see Fig.5.3.

De Gennes then continues by exploiting this relationship to find the total energy

dissipated in the transition region as a function of crack speed, and to find the shape

of the crack profile (which turns out to be "trumpet-like", as succesively confirmed by

detailed experiments [182]). What is relevant for the present discussion is that with

the crack speed growing the specimen might not be sufficiently large to accomodate all

the three regions, which would cause the energy dissipated to reduce [181, 183], see

also [109] for a related numerical study. The loss of monotonicity of the fracture energy
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Figure 5.3: Different regions in a fracturing viscoelastic material (with a crack running

from left to right) following De Gennes’ analysis.

vs crack speed is then explained as a "structural" phenomenon, not intrinsically related

to interface material properties.

5.2 Model Formulation and Physical Justification

Non-monotonicity of the relationship between energy-release and crack speed could be

certainly captured by a phenomenological approach; an attempt to provide a simple mi-

cromechanical justification, alternative to the explanations summarised in the previous

Section, is made instead. In spite of its simplicity and coarseness, the micromechanical

model could possibly help in the formulation and justification of a phenomenological

model more suited for practical applications. It is noted that the cohesive-zone mod-

elling paradigm proposed in Chapters 3 and 4 cannot reproduce such behaviour for the

very simple reason that such behaviour is not present at the bulk-material level. In

other words, let us consider the peel specimen whose behaviour is described in Fig.5.1.

Uniaxial tensile testing conducted on the same rubber would not reveal any peculiarity,

in that the stress-strain curve relative to a certain testing speed would consistently fall

below any stress-strain curves obtained at higher testing speed, see Fig.5.4.

The central idea of the present contribution is a novel definition of crack energy,

motivated by the fact Barenblatt’s description might be insufficient for materials and/or

crack configurations characterised by process zones which are "long" when compared to
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Figure 5.4: Nominal Stress-strain curves for the rubber interface material at various

loading rates (strain calculated over a 25 mm long section).

a characteristic body length, see discussion in Section 2.2.1. Indeed in the case of rubber

the process zone is dominated by mechanisms acting at various length and time-scales

(flaws nucleation and propagation, crazing, diffuse damage, stringing, chain pull-out,

fibrillation or "bridging", to mention a few). It is conjectured that certain dissipating

mechanisms occur within too large an area to hope a local formulation (as in Baren-

blatt’s case) could be sufficiently descriptive.

The formation of fibrils, see Fig.5.5, is the main phenomenon the present analysis

is devoted to, but in general the approach could possibly be adapted to more complex

types of micro-structural re-arrangement (for example the study of microcracking pat-

tern studied in [184]).

The starting point is an energetic description of the formation of fibrils after agreeing

on a number of assumptions, including that the crack energy does not depend only on

the discontinuity jump but also on an additional internal non-local vectorial variable;

the latter describes, in a simplified manner, the microstructure originating from fibrils

formation. To the best of the author’s knowledge this idea has not been exploited yet.

Rate-dependency is introduced by postulating the (anisotropic) fracture energy evolves

as a result of conformational changes occurring in the material. The evolution of the
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Figure 5.5: Snapshots of a "fibrillated" process zone.

internal variable is governed by the solution of a variational problem, defined at the

interface level. Use will be made of some formalism characteristic to the so-called

"variational theory of fracture", whose fundamentals have been reviewed in Section 2.3.

It is remarked that often material constitutive laws with non-convex potentials arise

from a breach of the continuum hypothesis, i.e. the presence of a micro-scale structure

not sufficiently separated from the macro-scale. Evidence for this observation is offered

for example by polymeric foams [185], where the foam structure "buckles" at the micro-

level causing overall softening. Another example particularly relevant for the present

work is represented by shear-thinning in complex fluids (a phenomenon whereby the

viscosity of a fluid decreases with respect to increasing shear strain rate [186, 187]),

as a result of the interactions between fluid and particles at the meso-scale. A re-

lated instance is also given by phase transitions (strain-crystallization) in rubber [1],

see Section 5.1. Similar physical phenomena could explain the "drawing" (localized

necking) behaviour of nylon fibres, for which a gradient (hence, non-local, for not only

the strain state of the material point is considered in the material constitutive law, but
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its spatial gradient as well ) formulation was proposed [188]. Last, liquid crystals are

mentioned, whose peculiar behaviour originates as well from the mutual interactions of

fluid-immersed particles [189].

The phenomenon of fibrillation in glassy polymers has been explained as a crack-

front instability akin to the fluid meniscus Taylor instability, see Fig.5.6 [190, 191], see

also [192, 193] for a similar instability occurring in a solid, incompressible, thin film.

Figure 5.6: Schematic of fibrils formation by Taylor meniscus instability. Left, side

view of a crack propagating upwards. Right, section through the crack (plane normal to

the page): existing fibrils show as cylinders, three snapshot follow the instability of the

crack front [190, 191].

The above considerations might suggest that the lack of monotonicity of the Gc vs

crack speed relationship might arise from structural phenomena occurring at a scale

lower than the one employed to view and model the material as a continuum. Fol-

lowing these examples, the main idea is to consider the interface in more detail and

acknowledge that it might be necessary to consider additional variables other than the

displacement jump between material points on its sides, see Fig.5.7.

Moreover, the simplest explanation of the loss of monotonicity of the fracture energy

w.r.t. crack speed seems to be the presence of a dissipative mechanism which ceases to

occur at a certain speed. Armed with these two observations, an examination of test

samples seems to suggest that fibril formation could be such a phenomenon. Indeed,

the fracture surface of the samples tested at higher than critical speed seems to be much

smoother, see Fig.5.9, as mentioned in Section 5.1 and confirmed once more by the

experimental work presented in Chapters 3 and 4.

It is conjectured that fibrils form as a result of cracks running perpendicularly to the

crack path, within a damaged region in the neighbourhood of the crack tip, see Fig.5.8.
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Figure 5.7: Schematic view of the proposed approach: the interface is "zoomed in" in

an attempt to model additional mechanical features such as fibril formation, not dealt

with in the classic cohesive-zone approach.

Figure 5.8: Fibrils geometry idealisation employed in the model

The associated energy release is related to the radial contraction of the fibril, modelled

as a cylinder. To clarify this point, let us consider a right cylinder, made of an elastic
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(a)

(b)

Figure 5.9: a) Fracture surface of a DCB specimen tested at 0.1 mm/min b) Fracture

surface of a DCB specimen tested at 100 mm/min.

material with positive Poisson ratio. The specimen is then clamped in a hard device
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and loaded such that equal in magnitude and opposite in sign displacements parallel

to the axis are imposed on the two end surfaces, resulting in an increase in length. In

addition, any displacement perpendicular to the lateral surface is prohibited. Let us

assume now that the boundary conditions on the lateral surface are changed to a null-

traction boundary condition: the elastic energy in the cylinder will reduce (this is a result

of the fact the traction on the lateral surface is positive in the first configuration). One

could then idealise the change in boundary conditions as originating from a fracture

occurring along the lateral surface: the energetic convenice of such fracture could then

be assessed.

To simplify the discussion, the two-dimensional setting is considered, in which fibrils

appear as rectangles. The crack path is assumed to be of length l̂ known in advance and

is modelled as a curve Γ of the plane parametrized by its arc-length measured from an

origin. The presence of the fibrils is mathematically described by introducing a partition

P = {0, x1, ..., xn}, n being yet unknown, of the crack process zone. The analysis is

limited to the pure Mode-I case whereby the displacement jump is a scalar function δ

representing the opening displacement at the interface.

In principle the dissipated energy could be estimated using three-dimensional elastic-

ity, although an analytical calculation of the energy involved seems rather cumbersome

even for the simplest hyper-elastic energies. To overcome this difficulty an ad hoc rela-

tionship is introduced by postulating that the energy of a fibril of width l = xm− xm−1,

over which the displacement jump δ is prescribed, can be computed as

We(l, δ) =
∫ xm

xm−1

ϑ(δ(x))ϕ̃

(
l

h

)
dx (5.15)

where ϕ̃ : (0,∞) → (0, 1), is an assigned function describing the percentage of the

stored energy released by allowing lateral contraction, ϑ : <+ → <+ is the function

describing the energy associated to a displacement jump (without fibril formation) as in

original Barenblatt’s cohesive-zone formulation, see Section 2.2.2 and h is an internal

length scale mirroring the thickness of the process zone [81], which is assumed known,

or at least agreed on, a priori.

Remark 5.2.1 The definition above suits perfectly the case of a straight crack path

and a constant displacement δ(x) = δ̄. The case of non-constant δ(x) is dealt with

assuming that the gradient of δ(x) does not contribute significantly to the fibrill energy,
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which is described in a sufficiently accurate way by the value of l
h

. An alternative

description could be obtained by defining a suitable variation of δ(x) across the fibrill,

or by explicitly considering the gradient of δ. The extension to the curvilinear case

requires further sophistication and will be considered in future work.

The function ϑ is assumed continuous, convex and such that ϑ(0) = 0. Physical

intuition suggests that ϕ̃ is characterised by the conditions

ϕ̃ ∈ C2(<+) ϕ̃′(z) > 0 ∀z ∈ [0, l̂) (5.16)

∃z̃ ∈ <+ : ϕ̃′′(z) > 0 ∀z < z̃ ϕ̃′′(z) < 0 ∀z > z̃ (5.17)

lim
z→0+

ϕ̃(z) = ϕ̊ > 0 lim
z→∞

ϕ̃(z) = 1 (5.18)

lim
z→0+

ϕ̃′(z) = 0 lim
z→∞

ϕ̃′(z) = 0 (5.19)

z̃ being a costant.

The most interesting condition is expressed in equation 5.17, which characterises

ϕ̃’s "shape" as sigmoidal. Such a requirement is actually a consequence of conditions

(5.18) and (5.19), whose introduction is based on intuitive, physical grounds. Indeed,

let us consider again the simple thought-experiment just performed on a cylinder, by

changing boundary conditions on the lateral surface from null normal displacements to

null traction. If the aspect ratio, i.e. the ratio of the cylinder’s height and a character-

istic dimension of the base, is decreased, one expects the difference between the stored

energies before and after the change in boundary conditions to decrease as well (when

normalised to the initial stored energy): this requirement results in conditions (5.181)

and (5.192). Conditions (5.18a) and (5.19a) are imposed on similar grounds, at which

point the sigmoidal "shape" is a consequence of the continuity and monotonicity. In the

author’s opinion a similar line of reasoning is implicitly used very often in Mechanics.

For example, in Section 3.5 it was detailed how the plain strain assumption was used

to model the DCB specimen. This is equivalent to assuming the contraction of the lat-

eral free-surfaces of the rubber interface, as visible in Fig.3.6, is negligible as far as the

global response is concerned. If the DCB specimen were much narrower (let us say,

only 2 mm wide instead of 25 mm) certainly the plain stress assumption would have

102



been more adequate. Then, conditions (5.19) are analogous to expecting that the plain

strain (respectively, plane stress) approximation "converges" to the response of the ide-

alised body for which plane strain (respectively, plane stress) is an exact assumption, i.e

a DCB specimen of infinite width (respectively, infinitesimally thin).

The graph of a generic function ϕ̃ possessing such properties is sketched in Fig.5.10.

It will be assumed that such properties hold throughout the Chapter. At this stage the

possibility that ϕ̃ could depend on δ(x) is neglected.
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Figure 5.10: A typical function ϕ complying with properties (5.16), (5.17), (5.18),

(5.19): ϕ̊ = 0.2, z̃ = 5, marked by the vertical dotted line.

The surface energy gained in the process is then described by

Ws(P) =
∑
x∈P

γ̃(x)h (5.20)

where γ̃ is a Griffith-type energy.

Intuitively it can be argued that the energy release rate associated to the transversal

direction is lower than the energy release rate associated to the longitudinal direction:

in other words, among all the cracks of a specified length, the maximum energy release

rate is associated with the crack perpendicular to the principal strain direction. This

argument was made rigorous in [72] (Proposition 4.5, pag.51). This being the case,

i.e. as cracks in the transversal direction are characterised by lower energy release

rates than cracks associated to the longitudinal direction, the doubt is raised whether

fibrils are energetically convenient at all. A possible solution relies on considering an

anisotropic fracture energy. It is recognised though that molecular chains in rubber-
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like polymers are highly mobile and their re-orientation justifies the introduction of an

anisotropic fracture energy, which in the present context is sufficiently described by a

vector γ̃ = [γ̃1 γ̃2], where 1 and 2 denote the directions parallel and perpendicular

to the longitudinal (primary) crack path, respectively. Indeed fibrillation is likely to

be observed in lightly-reinforced and low crosslink-density rubbers, and is promoted

in uncured ("green", in the industry jargon) rubbers, as the absence of cross-sulphur

bonds and reinforcing particles in green rubbers greatly facilitates chain re-orientation

possibilities.

The exact measurement of the anisotropic, possibly rate-dependent fracture energy is

a formidable task, yet in the author’s opinion there is experimental qualitative evidence

justifying its introduction [194,195], see also [196] for an analogous example of fracture

energy anisotropy for cold-drawn steel wire (interestingly structural re-orientation is not

exclusive to polymers). Indeed it seems tempting to justify crack paths such as the ones

depicted in Fig.5.11 allowing for an anisotropic fracture energy. In other words, it seems

reasonable to assume the fracture energy in the transversal direction is lower than the

one in the longitudinal direction for the transversal crack (parallel to the tensile dumbell

length direction) to be more energetically favourable than a crack in the longitudinal

direction (across the tensile dumbell, see Fig.5.11) .

Time-dependency will be later introduced in the description by simply stating γ̃ fol-

lows an assigned evolution law. In the global solution scheme at a certain time step the

time-dependent parameters will be known (as well as the tentative imposed displace-

ment jump function δ(x)), and the fibrils formation pattern is given by the minima,

should they exist at all, of the energy described as a mapping W : P 7→ R ∪ {+∞},

given by the sum of elastic and surface energy terms such as represented in Equations

(5.15) and (5.20), yielding the following expression:

W(P) =
∑
n

∫ xn+1

xn

ϑ(δ(x))ϕ̃(
xn+1 − xn

h
)dx +

∑
x∈P

γ̃1(x)h (5.21)

Fibrils formation could interact with other dissipating mechanism in the process zone,

as the viscoelastic dissipation described in Chapter 3, possibly yielding complicated be-

haviour. Let us consider the total observed fracture energy as function of the crack speed

Gc(l̇). Gc can be viewed as the sum of the dissipation associated with the longitudinal

crack propagation and related viscoelastic mechanisms Gvisco(l̇) and the energy lost in

the formation of fibrils Gfibrill(l̇):
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(a)

(b)

Figure 5.11: Typical fracture path for a low-crosslink-density rubber tested at a low

applied strain rate (≈ 5%/min): a) general b) close up of the fracture surface, please

note the "hairy" appearance.

Gc(l̇) = Gvisco(l̇) + Gfibrill(l̇) (5.22)

It is clear that for the function Gc not to be monotonically increasing it is necessary for
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its first derivative

dGc

dl̇
=

dGvisco

dl̇
+

dGfibrill

dl̇
(5.23)

to be locally negative: indeed dGvisco/dl̇ → 0 as the crack speed approaches the upper

side of the viscous spectrum, hence if dGfibrill/dl̇ ≤ 0 the loss of monotonicity might

eventually occur. This is a result of the fact that dGfibrill/dl̇ = 0 for speeds at which fib-

rils do not form. The term Gvisco(l̇) has been discussed, and a suitable model presented,

in Chapter 4: the reminder of the present Chapter is devoted to illustrate, for the simplest

loading condition, the behaviour of a model whose aim is to qualitatively model the term

Gfibrill(l̇). Although unnecessary as far as the understanding of the physical mechanism

herein described is concerned, having in mind more complex applications it is relevant

to note that the problem of minimising the total (elastic + fracture) energy described by

equation (5.21) can be recast as a variational problem, consisting in the minimisation of

the following functional defined on the space PC of piecewise constant functions:

F(u) =


∫
Γ ϑ(δ)ϕ (u(x)) dx +

∑
x∈J(u) γ1(x) if u ∈ SPC

∞ if u /∈ SPC

(5.24)

where for notational simplicity the notation

ϕ (u(x)) = ϕ̃

(
u(x)

l̂

)
γ1 = γ̃1h (5.25)

is used. The set SPC ⊂ PC is defined in the Appendix: loosely speaking, it consists of

piecewise constant functions such that the length of the interval over which the function

is constant equals the value of the function over that interval. It can be appreciated

that the argument of ϑ in equation (5.24) is the value of the function, while in equation

(5.21) the argument is the interval’s length. The definition of the set SPC tantamounts

to a "trick", employed in order for the functional F in equation (5.24) to penalise any

function /∈ SPC, for which the functional is not physically meanigful (if the function

/∈ SPC, the connection to equation (5.21) is lost).

The existence of a minimising partition can then proven using the Direct Method

of Calculus of Variations: the interested reader is directed to the Appendix for more

mathematical details. It is necessary to address the existence of a solution. Indeed,

physical intuition alone suggests situations in which the energy minimisation process

could be badly posed: for example, given a configuration with one transversal crack at a
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location l̄, the case could occur that any competing configuration with the crack placed

by a "small" amount towards one end of the interface is energetically favourable. Then

the minimisation process would force the fibril to be placed closer and closer to the

end of the interface: keeping in mind that the configuration with no cracks might not in

general be minimising, it could be appreciated the problem would not have a solution.

The Direct Method of Calculus of Variations allows to determine the conditions under

which such instances are eliminated (see end of Section 2.3 and Appendix).

5.3 The Rate-Independent Case

The behaviour of the proposed cohesive-zone model will now be elucidated in a simple

case. As stated in the previous section the cohesive-zone behaviour is obtained as a

minimization of the energy W , equation (5.21) or equivalently F , equation (5.24). The

partitionP , or analogously the function u, encodes physical variables represented by the

number of transversal cracks and their location. In a realistic situation the displacement-

jump along the interface would not be prescribed: boundary conditions would usually

apply to the boundary of the body containing the interface. In this case the minimization

process could in principle be achieved in two stages (analogously to the stepwise min-

imization procedure proposed in [81], [197]). Firstly, at imposed δ the optimum fibril

pattern could be determined; then, total minimization could be achieved by comparing

configurations with different imposed displacement-jump δ. Restricting the attention

to the case of imposed interface displacement-jump, as done in the sequel, eliminates

the need for the second stage: only the interface behaviour will hence be investigated.

Furthermore, the displacement-jump will be assumed to be uniform along the length

l̂ of the interface. This is a further drastic semplification which allows a straightfor-

ward solution to be determined. It is in essence analogous to presenting the cohesive

traction-separation law for a point only of the interface.The main feature of the model’s

response, as far as monotonicity of the fracture energy w.r.t. crack speed is concerned,

can anyhow be appreciated.

Firstly, the analysis will be limited to the case where transversal cracks only form.

Let us assume that the evolution starts from the uncracked, undeformed state and the

interface is loaded in displacement-control by a device imposing a monotonically in-

creasing displacement δ(t), with δ(0) = 0. The interface energy in the absence of
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transversal cracks is characterised by the function F̆ , with F̆(0, N)|N=0 = 0,

F̆(t, N)|N=0 = l̂ϑ (δ(t)) (5.26)

which is continuous in the first argument and convex. Due to the convexity of F̆ there

exist times t0 and t1 such that

F̆(t0, 0) = γ F̆(t1, 0) = 2γ (5.27)

Evidently fracture is not energetically favourable for t ≤ t0 (as the total energy is less

than the minimum energy required for a transversal crack), while the appearance of one

single transversal crack can not be excluded for t0 ≤ t ≤ t1. For times t belonging to

the interval (t1, t2) the energy minimization reduces to the one-dimensional problem

min U(z) z ∈ (0, l̂) (5.28)

where

U(z) =


ϑ(δ(t))

[
(zϕ(z) + (l̂ − z)ϕ(l̂ − z)

]
+ γ1 if z ∈]0, l̂[

l̂ϑ (δ(t)) if z ∈ {0, l̂}
(5.29)

where dependence on t is omitted for notational simplicity. Equation (5.29) is the spe-

cialisation of the functional (5.24) to the case of uniform imposed displacement along

the interface: the first term in square brackets refers to the fibril whose base rests on the

interval (0, z) ((z, l̂ for the second term respectively). It is apparent U is continuous ex-

cept for x ∈ {0, l̂}, points in which it is lower semicontinuous (which can be verified by

directly applying the definition of lower semicontinuity, see the Appendix, and the fact

γ1 is strictly positive). U being also bounded away from zero, it admits a global mini-

mum by Weierstrass’s extreme value theorem, in its generalisation for semi-continuous

functions [56, 198].

The existence of local minimizers can now be addressed. The stationarity condition

dU

dz
= 0 (5.30)

yields

ϑ(δ)
[
ϕ(z) + zϕ′(z)− ϕ(l̂ − z)− (l̂ − z)ϕ′(l̂ − z)

]
= 0 (5.31)
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The minimum condition

d2U

dz2
> 0 (5.32)

yields

ϑ(δ)
[
2ϕ′(z) + 2ϕ′(l̂ − z) + zϕ′′(z) + (l̂ − z)ϕ′′(l̂ − z)

]
> 0 (5.33)

The value z̃ separating the convex from the concave domain of ϕ introduces an internal

length scale in the model.

The focus will be from now on put exclusively on the case of a "short" interface, i.e.

an interface such that l̂ ≤ z̃, as this suffices to exhibit the physical behaviour the model

is meant to reproduce. In such case d2U/dz2 ≥ 0 everywhere in (0, l̂) because ϕ′(z),

ϕ′(l̂ − z), ϕ′′(z) and ϕ′′(l̂ − z) are all positive for z ∈ (0, l̂) and in the case N = 1 a

unique global minimum exists, equal to U( l̂
2
) because U is symmetric about l̂

2
.

In the case of N transversal cracks it can be shown (see Proposition 5.5.1 in the

Appendix) that a countable infinity of local minima exist, and they are characterised by

the fibrils being equidistant, in a periodic pattern. It is also worth noting that in the case

of a "short" interface, the uncracked configuration can only evolve to a single-cracked

configuration: a proof of this statement is also included in the Appendix, see Proposition

5.5.1. Then, the interface will evolve as follows: starting from the configuration with

no transversal cracks, its elastic energy will grow during loading until the point when

it is energetically convenient to form a transversal crack, by paying the energetic cost

represented by the transversal surface energy term but gaining in terms of elastic energy

release.

The energy landscape resulting from the proposed model is illustrated in Fig.5.12.

The restriction of the surface to the set x = {x : applied displacement = 0} is a

stepwise constant function, as a result of the surface energy term in equation (5.21),

i.e. γ1 multiplied by the number of transversal cracks. The restrictions of the surface

to any set x = {x : number of transversal cracks = N}, N being an integer constant,

are convex curves characterised by the function ϑ (see equation (5.15)). Any evolution

along such curves is elastic only, and is in general interrupted by "switching" to another

elastic evolution characterised though by an increased number of transversal cracks. The

black continuous line exemplifies the equilibrium path in the [ applied displacement ]

× [ number of fibrils ] configuration space, made by alternating elastic evolution paths
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and jumps to configurations characterised by an increased number of transversal cracks.

Such path could be visualised by considering a material point whose coordinate [ applied

displacement ] is prescribed as a function of time, while the coordinate [ number of

transversal cracks ] is selected as the argument for which the height of the surface is

minimum along the same coordinate.

Figure 5.12: Energy Landscape of a "short", rate-independent interface under (uniform)

imposed displacement. It can be noticed how the restriction of the surface to the set

x = {x : applied displacement = 0} is a stepwise constant function, as a result of

the presence of the surface energy term in equation (5.21), i.e. the transversal fracture

energy γ1 multiplied by the number of transversal cracks.

It can be appreciated from Fig.5.12 how an important physical feature is missing,

i.e. irreversibility. Indeed once the uncracked configuration evolves to the configuration

with one transversal crack, further evolution to a configuration with two transversal

cracks entails crack healing by necessity. It was mentioned that transversal cracks have

to be equidistant (see Proposition 5.5.1 in the Appendix) , and this is incompatibe with

the previously attained configuration, unless cracks were allowed to heal. This option

is discarded and an irreversibility constraint transversal cracks have to be subject to is

hence introduced. More specifically, if at time t̃ the fibrils structure is characterized by
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a function ut̃ ∈ SPC(0, l̂), then the following condition can be imposed:

∀t > t̃ J(ut̃) ⊆ J(ut) (5.34)

This criterion, based on the physical assumption of not allowing cracks to heal, defines

an admissible class of energetic competitors based on the actual globally minimizing

configuration. After a crack appeared, the irreversibility condition would allow to con-

sider separately the intervals separated by the cracks. As Proposition 5.5.1 applies (upon

substituing l̂ with ∆z, future cracks interior to the fibril will be necessarily equispaced

and their number will evolve according to the sequence 2j − 1, j = 0, 1, 2, ....), in

period-halving fashion.

Considering again Fig.5.12, it is seen that the "jump" between the configuration with

one and two cracks is prohibited by irreversibility: the transition then is delayed until

the applied displacement reaches the value at which the transition from two to three

cracks appears, at which point the transition from one to three transversal cracks will

occur.

The results presented so far allow to define for each time t the globally minimizing

configuration among all the admissible competitors with transversal cracks.

5.3.1 Longitudinal Crack and Global Minimization

So far attention was only given to the formation of transversal cracks. A mechanism to

justify the formation of the primary, longitudinal, crack needs to be introduced. This is

to be achieved in the simplest possible way, postulating that a surface energy of Grif-

fith’s type [72] is assigned to the primary crack. Physically this means that the surface

energy is independent of the crack opening and equals a constant γ2 for any positive dis-

placement jump. It is also to be noticed that the formation of a primary crack releases

all the elastic energy stored in the fibrils. Referring again to Fig.5.12, this means that the

achievable energy is bounded above by l̂γ2: upon reaching this value the longitudinal

cracks appears and no further evolution in terms of transversal cracks is possible.

The solution then can be found by computing the global minimum, as a function

of time t, among configurations with transversal cracks (whose energy has been char-

acteried in the previous Section) and a longitudinal crack, to which an energy l̂γ2 is

assigned as detailed above.
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Remark 5.3.1 The fact that minimisers are characterised by equi-spaced fibrils if their

width belongs to an interval over which ϕ is convex is a feature which echoes other

models defined using convex functionals, [184, 199] (where also references to experi-

mental evidence are made). This is not surprising at all and it is echoed even in the

elastic one-dimensional setting (e.g. a rod under tension), where the convexity of the

free energy forces the strain to be equal on each material region [200] (the property of

quasiconvexity [122] guarantees analogous results in higher dimensions). It is then in-

teresting to remark that the functional F is not defined over a linear space, as the sum of

two functions u1, u2 ∈ SPC needs not belong to SPC. As a result, the usual definition

of convexity, see Section 2.3.1, can not be applied. On the other hand, suitable defini-

tions have been developed for a metric space setting [201]: for example, the notion of

convexity along curves [201] is applicable.

It is noted that the minimization is to be performed globally, to prevent the cohesive

zone from remaining locked in a locally minimizing configuration such as the uncracked

configuration. Heuristically it is immediate to verify that process-zone configurations

with a different number of equispaced cracks are separated by an energy barrier. Indeed,

immediately after the sudden, "brutal", formation of a transversal crack the bulk energy

will be the same, loosely speaking, while the surface energy will have increased.

Discussion

In the field of variational fracture there is a vivid debate about the merits and shortcom-

ings of global vs local minimization, for which the reader is referred to [72, 127, 202].

It will just briefly be mentioned that the global solution might be deemed physically

unacceptable as "jumping" over configurations separated by an energy barrier might

be considered unphysical in the lack of an external power input (see also [62] for the

quasistatic evolution case and the ability of global minimization to "see into the fu-

ture", in the authors’ own words). It is conjectured that the micromechanics mechanism

used herein to describe fibrillation is just an idealisation of a fibrils formation mecha-

nism possibly involving defects, by which transversal cracks grow smoothly, providing

a viable path between local minimizers. The fact that the latter is possibly the correct

physical description is supported by experimental observations, see Fig.5.13, in which

a micro-crack nucleating in a relatively long time compared to the almost instantaneous
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propagation across the interface is shown (pictures taken at 1 minute intervals).

The concept of energy barrier between two local minima is an essential ingredient

of kinetic theories (the most relevant and successful from the mechanical point of view

being Zhurkov’s kinetic theory on the strength of solids, [203], see also [137, 204–206]

for more recent approaches): within such theories the additional energy needed to jump

over the barrier is given by random thermal fluctuations, which are then seen to play

a role analogous to the defects invoked in the preceding paragraph to justify the use of

global minimization. The reader is referred to [207] for a variational model for plasticity

exploiting global minimization upon justifying overcoming energetic barriers via the use

of physical arguments, and for the related discussion about global vs local minimization.

5.4 The Rate-Dependent Case

So far both γ1 and γ2 have been considered given material properties. Now the case of

history-dependent γ1 is considered. In general, the time evolution of γ = [γ1 γ2] could

be described by micro-mechanical models, yielding an evolution law

γ̇ = f(δ, α,γ) (5.35)

It can be argued that physically it might be difficult to justify the fact the surface

energy varies without any macroscopic effect on the strain energy. If it is assumed that

the surface energy varies in relation to structural re-arrangements at the micro-scale,

it seems plausible to assume such re-arrangenments require a power input: hence it is

plausible to employ a history-dependent material formulation for the interface elasticity

as well.

Assuming a satisfactory evolution law is found, approximated solutions could be

sought using an incremental variational scheme. Let us consider a loading path, t 7→
δ(t), t ∈ [0, T ], assumed continuous. The loading path can be discretised by introducing

a sequence {ti}i∈N , ∆ti being defined as (ti+1 − ti).

Let us consider a loading path, t 7→ δ(t), t ∈ [0, T ], assumed continuous. The

loading path can be discretized by introducing a sequence {ti}i∈N , ∆ti being defined as

(ti+1 − ti).

The incremental procedure is then formalised as follows: for i ∈ N and δ0 =

δ(0), γ0 = γ1(0) = γ̃, u0 = u(0), find uti ∈ SPCti , such that
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Fti(uti) ≤ Fti(u) ∀u ∈ SPCti (5.36)

δti = δti−1
+ ∆ti (5.37)

γti = f(δti−1
, αti−1

, ~γti−1)∆ti + γti−1
(5.38)

where

SPCti = {p ∈ SPC(Ω) : J(pti−1
) ⊆ J(p)} (5.39)

For the purposes of the present, qualitative discussion, no effort will be spent in

identifying a plausible evolution law for the anisotropic surface energy γ. It will suf-

fice instead to require that the following conditions hold. Given a displacement jump

history δ1(t) let us assume that the corresponding surface energy evolution is given by

a function γ1
1(δ), γ2 being on the other hand constant. It is then required that, given a

parameter λ > 1, the following holds:

γλ
1 (δ) < γ1

1(δ) (5.40)

where γλ
1 is the evolution of γ1 associated to the accelerated displacement jump his-

tory δλ(t) = δ1(λt). The condition expresses the physically reasonable requirement

that the fracture energy for transversal cracks (fibrils) at any given displacement-jump

is a decreasing function of the applied deformation rate. This is a result of the fact any

re-orientation occurring within the molecular structure will be characterised by its own

characteristic time: analogously to the case of viscoelasticity, one then expect that in the

limit of slow deformation rate (respectively, fast deformation rate) the transversal frac-

ture energy γ1 reaches its minimum (respectively, maximum). Also, it is required that

limλ→∞ γλ
1 (δ) = γ̆1, γ̆1 being a positive constant. If γ̆1 is sufficiently smaller than γ2

then these conditions alone are sufficient to provide a mechanical mechanism by which

the energy required to fracture at a sufficiently low applied displacement rate is higher

than the energy needed at faster applied displacement rates, contrary to the models pre-

sented in Chapters 3 and 4. Attention is still restricted to a "short" interface in the sense

of Section 5.3: also, only the first transition to a fibrillated configuration is considered.
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Fig.5.14.a refers to a "fast" displacement history: the energy for a crackless configura-

tion is plotted together with the energetic threshold at which the primary, longitudinal

crack will appear. For the given displacement jump history the evolution of γ1 is plotted

as well: the energy pertaining to three different values of γ1, relative to three successive

times (and hence displacements) highlighted by the markers, is plotted. The chart shows

that for fast enough displacement jump histories the energy of the cracked configura-

tions is higher than the uncracked one: the uncracked configuration then evolves to the

longitudinally cracked one without the appearance of fibrils.

Decelerating the displacement jump history, the situation depicted in Fig.5.14.b could

occur. At the moment of time highlighted by the second marker γ1 is approaching a

value such that the energy of the configuration with one transversal crack is lower than

the energy of the uncracked configuration: the transition from uncracked to fibrillated

configuration is incipient (see Fig.5.15, where both the total energy, elastic plus surface

components, and elastic energy only are plotted). As elastic energy is the only available

for the transition to completely ruptured (longitudinally cracked) configuration, it ap-

pears that in order to reach fracture an additional energy of γ1(δ(t
∗)) is needed, where

t∗ denotes the time at which the transition from uncracked to fibrillated configuration oc-

curs: it is then confirmed that the total energy needed to fracture the interface increases

as the applied displacement rate is lowered.

It can be seen how the interface "resists", in a sense, to fracture by dissipating elas-

tic energy (the driving force for longitudinal cracking) in the formation of transversal

cracks. As a result, the elastic energy is lowered (as the surface energy is always pos-

itive, in any direction) and an increased applied displacement is needed to reach the

energy threshold required for longitudinal fracture. Nevertheless, at a sufficiently high

applied test rate, the conformational changes responsible for fracture anisotropy cannot

occur fast enough, and the energy threshold needed for longitudinal cracking is reached

prior to the formation of fibrils. This is a consequence of the fact that fibrils formation

is intrinsically less energetically convenient than longitudinal cracking, as detailed in

Section 5.2): in other words, if the anisotropicity of the fracture energy is not developed

enough (and sufficiently slow rates are needed for this to occur), longitudinal crack-

ing will occur first, as it is more favourable in itself (i.e. unless transversal cracking is

favoured by the anisotropic fracture energy). Total failure is then reached at a reduced

energetic cost compared to the case of fibrils formation; the fracture energy hence drops
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upon reaching the applied rate threshold, possibly leading to an instability as discussed

in Section 5.1. Similar dissipating mechanisms are present in many structures designed

to achieve optimum energy-absorption resistance, e.g epoxy-reinforced rubbers [22],

see also [208] for a numerical study of a one-dimensional, rate-independent, chain-like

structure exhibiting analogous behaviour in dynamic conditions.
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(a)

REPORT C2549-3 Rev A - TASK 3 – DELAMINATION TESTING - DRAFT

DCB with 8mm arms, sample #2, tested at 1mm/min

Load vs. displacement from DCB tests

Images of DCB test sample at selected displacement levels

(b)

REPORT C2549-3 Rev A - TASK 3 – DELAMINATION TESTING - DRAFT

(c)

REPORT C2549-3 Rev A - TASK 3 – DELAMINATION TESTING - DRAFT

Figure 5.13: (a) Close up of the process zone for a DCB under a displacement rate of 1

mm/min: a micro-crack is just visible. (b) The evolution of the vertical cracks from b)

can be appreciated. (c) The evolution of the vertical cracks continues.
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Figure 5.14: Energy for different cracked configurations at different applied displace-

ment rates (essentially a lateral view of Fig.5.12): (a) "fast" displacement jump history:

the fibrillated configuration is never energetically favourable. (b) "slow" displacement

jump history: the fibrillated configuration becomes energetically favourable shortly af-

ter the instant marked by the second marker.
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Figure 5.15: Plot of the total (elastic plus surface) energy for the uncracked configu-

ration, a configuration with one single transversal crack and the elastic energy of the

solution.
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Conclusions

The research work presented in this Thesis generally achieved its objectives as stated in

the Introduction. In more detail:

• to develop a general cohesive-zone model "template" able to reproduce rate-

dependence and in general, history dependence, for a vast range of inelastic

material behaviours: this has been been achieved to a good extent in Chapter

3. The key assumption on the existence of an intrinsic fracture energy, on top of

which further dissipated energy is accounted for by considering the same dissi-

pative properties pertinent to the continuum, bulk material, has been formalised

in the context of thermodynamics with internal variables and shown to be a vi-

able, practical approach in the case of a viscoelastic interface. Further research is

though required in practice to assess the ability to deal with material behaviours

other than viscoelasticity. Work on an application of the approach proposed in this

thesis to the case of a viscoplastic cohesive-zone model in the context of dynamic

fracture is currently under preparation.

• to specialise the cohesive-zone model to the case of an interface made of a thin

elastomeric layer: this has been achieved in Chapters 3 and 4 by successive re-

finements. In Chapter 3 a coarse viscoelastic description was assumed: it was

noted that while the predicted traction-deflection curves showed a satisfactory

qualitative behaviour in relation to the empiric data, the rate-dependency was ac-

curately predicted only over a limited range of applied displacement rates. This

observation suggested it was necessary to improve the rate-dependency descrip-

tion of the model rather than focus on an accurate elastic description of rubber’s

behaviour. As a result the choice was made to maintain the rheological struc-

ture employed in Chapter 3 unaltered, while improving only on the Newtonian

damper’s viscous behaviour characterisation. This was achieved in Chapter 4 by
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resorting to a fractional calculus formalism. The model so obtained is more ef-

fective in faithfully reproducing the materal behaviour over an extended range of

applied displacement rates but on the other hand is computationally burdensome

in that a significant portion of the previous history has to be stored. A completely

positive judgement is though subject to performing additional tests, possibily in-

volving long-term creep conditions as well as variable loading, in order to truly

assess the merits of the fractional formulation in a more demanding setting.

• to design and execute a testing plan suitable for a validation of numerical re-

sults: DCB samples have been designed (as well as the mould needed for their

manufacture), built and tested, providing a very useful set of experimental data.

The formulation of Chapter 5 was not planned at the beginning of the programme: it

was instead the studying itself that made the problem of somehow understanding the

mechanical origins of possible crack instabilities progressively interesting. The for-

mulation introduces rather unusual, yet physically well motivated, ingredients (such as

the rate-dependent, "conformational", anisotropic fracture energy) and has a simple yet

effective micromechanical foundation allowing it to explain the phenomenon under ob-

servation without resorting to additional physical complexity, as done by the models

reviewed in Section 5.1. While it is acknowledged that the formulation has at the mo-

ment only an academic value, if any, it might still be valuable in that it could provide a

paradigm for more realistic and detailed descriptions of the cracking process.

5.5 Outline of future work

First and foremost, the formulation will be enriched to include mode-mixity, which

is necessary to approach real-world problems. Such improvement is not foreseen to

present, in principle, conceptual difficulties: the adaptation to the scheme presented

in [209], physically rather appropriate for an elastomeric interface, seems almost imme-

diate. The experimental determination of the response under combined fracture modes

is on the other hand expected to be more challenging. Related to the last comment it

is worth mentioning the importance of studying the relationship between interface and

bulk properties of a given material, with a view on making the experimental character-

isation of the interface properties easier and clearer. Results presented in this thesis are
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encouraging in this respect: let us remark that the fractional coefficient ν = 0.3, see

Table 4.1, is in the range of the values expected for a cross-linked rubber [38]. Further

experimental work is needed though as the vast majority of data available in published

literature refers to thermoplastics.

The formulation of Chapter 5 has to be put to the test in a more realistic and challeng-

ing setting. At the moment the presented non-local cohesive-zone model seems difficult

to implement directly in a standard finite-element algorithm due to its non-locality. The

study of a dedicated solution algorithm for the general case could be the subject of future

work: on the other hand, the best approach might instead be the formulation of a phe-

nomenological law physically founded on the micromechanical model. In this sense it

could be interesting to investigate the possibility to replace the discrete internal variable,

detailing the number of transversal cracks, by a continuous fracture density variable, as

mentioned in a similar context in [199].

The next line of research the author intends to pursue is an investigation on the per-

formance of the cohesive-zone model of Chapter 4 under low-load, cyclic conditions,

i.e. fatigue. Fatigue has already been modeled using a cohesive-zone model in [120] us-

ing a particular definition of surface energy, see equation (2.69), which accounts for the

previous loading history. It seems to the author that the cohesive-zone model presented

in this thesis could reproduce a qualitatively similar behaviour as it stands, without any

further assumption or modification. This future attempt justifies the care that has been

put in this thesis to incorporate one of the most faithful class of models of viscoelasticity

available, as well as the related increased computational burden. Indeed, if a realistic fa-

tigue prediction is to be attempted it seems necessary to have the most reliable long-term

prediction of the material stiffness. This could mitigate the issues highlighted in [135]

while attempting to simulate the long-term response by employing an excessively nar-

row relaxation spectrum. The intriguing (and industrially very desirable) possibility that

fatigue behaviour of polymers could be deduced, with an engineering approximation, by

their relaxation spectrum might be within reach.

Finally, an idea of a more speculative nature is mentioned as well, which will cer-

tainly be investigated in future. It was noted in Section 2.1.3 how the "springpot",

governed by the constitutive law σ(t) = c · 0Dt
νε interpolates between a fluid and a

hookean solid as the fractional exponent ν is varied between 0 and 1. The choice of the

appropriate fractional exponent is performed as part of the material’s characterisation
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and does not change during the analysis. It seems then to the author that there might be

scope to introduce a novel type of fractional differential equation, whereby the order of

differentiation is prescribed by a function, and possibly varies in time with the solution

itself: in other words, could a sound mathematical meaning be appended to a differential

equation of the type

∗
0D

ζ(u(t))
t u(t) + u(t) = 0 t ≥ 0 , u(0+) = u0 (5.41)

where ζ(s) is a given function, and under what technical conditions? This approach

seems interesting in that one could rather naturally model the deformation of a material

undergoing structural changes during its deformation process (for example, viscoelastic

creep at low stretch, secondary liquid-type creep at higher stretch). It was noted during

the final correction stage that no originality for this idea could though be claimed, as the

concept of variable-order fractional differential equations had already been introduced

(see for example [210] and references therein).
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APPENDIX

ABAQUSTM UMAT subroutines

Exponential Kernel Viscoelastic Model

This computer code is property of Dunlop Oil and Marine, Division ContiTech of Con-

tinental AG. Licenses for its use might be granted by Dunlop Oil and Marine. Inquiries

concerning license rights should be forwarded to the attention of the Technical Man-

ager, Dunlop Oil and Marine, Moody Lane, Pyewipe, Grimsby, North East Lincolnshire,

DN31 2SY, England (website: www.dunlop-oil-marine.co.uk).

SUBROUTINE UMAT

A( STRESS ,STATEV ,DDSDDE ,SSE ,SPD ,

B SCD ,RPL ,DDSDDT ,DRPLDE ,DRPLDT ,

C STRAN ,DSTRAN ,TIME ,DTIME ,TEMP ,

D DTEMP ,PREDEF ,DPRED ,CMNAME ,NDI ,

E NSHR ,NTENS ,NSTATV ,PROPS ,NPROPS ,

F COORDS ,DROT ,PNEWDT ,CELENT ,DFCRD0 ,

G DFGRD1 ,NOEL ,NPT ,LAYER ,KSPT ,

H KSTEP ,KINC )

C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

c INCLUDE ’ABA_PARAM.INC’

C

CHARACTER*80 CMNAME

DIMENSION

A STRESS(NTENS) ,STATEV(NSTATV) ,DDSDDE(NTENS,NTENS),

B DDSDDT(NTENS) ,DRPLDE(NTENS) ,STRAN(NTENS) ,

C DSTRAN(NTENS) ,TIME(2) ,PREDEF(1) ,

D DPRED(1) ,PROPS(NPROPS) ,COORDS(3) ,
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E DROT(3,3) ,DFGRD0(3,3) ,DFGRD1(3,3)

LOGICAL

A DEBUG

C-------------------------------------------------------------------------

C Get the update relative dispalcements

SS=STRAN(1)+DSTRAN(1)

C Initialise

DDSDDE(2,2)=0.0D0

DDSDDE(1,2)=0.0D0

DDSDDE(2,1)=0.0D0

STRESS(2)=0.0D0

CALL CZMVEL

#( NPROPS ,PROPS ,SS ,DSTRAN(1) ,

# STATEV(1) ,STATEV(2) ,STATEV(3) ,STATEV(4) ,

# STRESS(1) ,DDSDDE(1,1) ,DTIME )

END

SUBROUTINE CZMVEL

#( NMPRPS ,DMPRPS ,SS ,DS ,

# SMAX ,HCUR ,DAM ,HPREV ,

# SIG ,TANG ,DT )

IMPLICIT NONE

C--------------------------------------------------------------------

INTEGER

# NMPRPS

REAL*8

# SS ,DS ,SMAX ,HCUR ,

# DAM ,HPREV ,SIG ,TANG ,

# DT ,XX ,DMPRPS(NMPRPS)

C--------------------------------------------------------------------

INTEGER

# I

REAL*8

# GF ,SIGMX ,BETA ,MU0 ,

# TAU ,SC ,S0 ,E0 ,

# DDAMDS ,MU1 ,SSPREV ,DELTAH ,

# DAMNEW ,KCOMP

C-------------------Get input parameters

GF=DMPRPS(1)
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SIGMX=DMPRPS(2)

BETA=DMPRPS(3)

TAU=DMPRPS(4)

MU0=DMPRPS(5)

KCOMP=DMPRPS(6)

C-------------------Initialise values

SC=2.0D0*GF/SIGMX

S0=(1.0D0-BETA)*SC

E0 =(SIGMX / S0)

MU1 = 1-MU0

SSPREV=SS-DS

DDAMDS=0.0D0

C-------------------Update damage

SMAX=MAX(SMAX,SS)

IF(SMAX.LT.0.0D0) THEN

DAMNEW=DAM

C Mode-I compression

ELSEIF(SMAX.LE.S0)THEN

C Mode-I tension but elastic

DAMNEW=0.0D0

ELSEIF(SMAX.GT.SC)THEN

C Complete damage

DAMNEW=1.0D0

C Loading beyond SMAX

ELSEIF(SS.EQ.SMAX)THEN

DAMNEW= (1/(1 - (S0 / SC)))*(1 - S0/(SS))

DDAMDS=(1/(1 - (S0 / SC)))*(S0/(SS*SS))

ENDIF

IF(DAMNEW.GT.DAM)THEN

DAM=DAMNEW

ENDIF

C------------RECURSIVE VISCOELASTIC TERM COMPUTATION

DELTAH = (TAU/DT)*(1-DEXP(-DT/TAU))*(SS-SSPREV)

HCUR =DEXP (-DT/TAU)*HCUR+DELTAH

C-------------------Compute stress

IF(SS.LT.0.0D0)THEN

SIG=KCOMP*SS

ELSE

SIG=(1.0D0-DAM)*(E0*(MU0*SS+MU1*HCUR))

ENDIF
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C-------------------Update tangent

IF(DAM.EQ.1.0D0)THEN

TANG=0.0D0

ELSEIF(SS.GT.0.0D0)THEN

TANG=(1.0D0-DAM)*E0*MU0+

# (1.0D0-DAM)*E0*MU1*(TAU/DT)*(1-DEXP(-DT/TAU))-

# DDAMDS*E0*(MU0*SS+MU1*HCUR)

ELSEIF(SS.LT.0.0D0)THEN

TANG=KCOMP

ENDIF

C-------------------Slightly reduce SMAX to ensure tangent predictor

C in the next increment

IF(SS.EQ.SMAX) THEN

SMAX=SMAX*(1-1.0D-12)

ENDIF

C

END

Fractional Kernel Viscoelastic Model

This computer code is property of Dunlop Oil and Marine, Division ContiTech of Con-

tinental AG. Licenses for its use might be granted by Dunlop Oil and Marine. Inquiries

concerning license rights should be forwarded to the attention of the Technical Man-

ager, Dunlop Oil and Marine, Moody Lane, Pyewipe, Grimsby, North East Lincolnshire,

DN31 2SY, England (website: www.dunlop-oil-marine.co.uk).

SUBROUTINE UMAT

A( STRESS ,STATEV ,DDSDDE ,SSE ,SPD ,

B SCD ,RPL ,DDSDDT ,DRPLDE ,DRPLDT ,

C STRAN ,DSTRAN ,TIME ,DTIME ,TEMP ,

D DTEMP ,PREDEF ,DPRED ,CMNAME ,NDI ,

E NSHR ,NTENS ,NSTATV ,PROPS ,NPROPS ,

F COORDS ,DROT ,PNEWDT ,CELENT ,DFCRD0 ,

G DFGRD1 ,NOEL ,NPT ,LAYER ,KSPT ,
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H KSTEP ,KINC )

C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

c INCLUDE ’ABA_PARAM.INC’

C

CHARACTER*80 CMNAME

DIMENSION

A STRESS(NTENS) ,STATEV(NSTATV) ,DDSDDE(NTENS,NTENS),

B DDSDDT(NTENS) ,DRPLDE(NTENS) ,STRAN(NTENS) ,

C DSTRAN(NTENS) ,TIME(2) ,PREDEF(1) ,

D DPRED(1) ,PROPS(NPROPS) ,COORDS(3) ,

E DROT(3,3) ,DFGRD0(3,3) ,DFGRD1(3,3)

C My variables

LOGICAL

A DEBUG

C--------------------------------------------------------------------

C Common block for fractional algorithm

INTEGER NXMINC ,NHISFR

PARAMETER (NXMINC =100)

PARAMETER (NHISFR =NXMINC)

REAL*8 TTT,DTF,AAG,NU

COMMON / FRCALG / TTT(NXMINC),DTF,AAG(NHISFR) ! Real variable

C--------------------------------------------------------------------

C Get the updated relative dispalcements

SS=STRAN(1)+DSTRAN(1)

C Initialise

DDSDDE(2,2)=0.0D0

DDSDDE(1,2)=0.0D0

DDSDDE(2,1)=0.0D0

STRESS(2)=0.0D0

DTALGN=DTIME

CALL INTFRC

#( NPROPS ,PROPS ,DTALGN ,SS ,

# STATEV(1) ,STATEV(2) ,STATEV(3) ,STATEV(3+NHISFR),

# STRESS(1) ,DDSDDE(1,1) ,DTIME ,NPT ,

# KINC ,DSTRAN(1) ,NOEL )

END

SUBROUTINE INTFRC
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#( NMPRPS ,DMPRPS ,DTALGN ,SS ,

# SMAX ,DAM ,HSPAST ,SGPAST ,

# SIG ,TANG ,DT ,NG ,

# INC ,DS ,NEL )

IMPLICIT NONE

C--------------------------------------------------------------------

C Common block for fractional algorithm

INTEGER NXMINC ,NHISFR

PARAMETER (NXMINC =100)

PARAMETER (NHISFR =NXMINC)

REAL*8 TTT,DTF,AAG,NU

COMMON / FRCALG / TTT(NXMINC),DTF,AAG(NHISFR) ! Real variable

C--------------------------------------------------------------------

INTEGER

# NMPRPS ,NG ,INC ,NEL

REAL*8

# DMPRPS(NMPRPS),DTALGN ,SS ,SMAX ,

# DAM ,HSPAST(NHISFR),SGPAST(NHISFR),SIG ,

# TANG ,DT ,DS

REAL*8

# HSPALG(NHISFR) ,SGALG(NHISFR) ,ETA ,

# GF ,SIGMX ,BETA ,

# KT ,E1 ,E2 ,

# SUMSS ,SUMSIG ,NXMINCR

REAL*8

# TJ ,TJM ,TJP ,SJM ,SJP ,SIGJM ,SIGJP ,TINCM

INTEGER

# J ,M ,INTCOUN ,I ,JR

REAL*8

# SC ,S0 ,DDAMDS ,DAMNEW ,DBG ,

# LAMBDA1 ,DELTAHPREV ,DELTAH ,MU0 ,

# MU1 ,HCUR ,GC ,Y ,DDHDS ,

# TEST1 ,TEST2 ,KCOMP ,DAMNEW2 ,DDAMDS2,

# SIGSLS ,SSM ,SIGM ,LAMBDA ,GAMMA ,

# FACT

C--------------------------------------------------------------------

GF=DMPRPS(1)

SIGMX=DMPRPS(2)

BETA=DMPRPS(3)

LAMBDA=DMPRPS(4)
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MU0=DMPRPS(5)

KCOMP=DMPRPS(6)

NU=DMPRPS(7)

C Grunwald coefficients

IF(INC.EQ.1.AND.NG.EQ.1)THEN

AAG(1) = 1.0D0

DO J=1,NXMINC-1

JR=DBLE(J)

AAG(J+1)=(JR-1.0D0-NU)/JR*AAG(J)

END DO

ENDIF

C--------------------------------------------------------------------

C Store current relative displacement and traction values in the past history

HSPAST(INC)=SS

C-----Determine other parameters

SC=2.0D0*GF/SIGMX

S0=(1.0D0-BETA)*SC

E1=SIGMX/S0

E2=(1.0D0-MU0)/MU0*E1

GAMMA=LAMBDA*(E1+E2)

FACT=(1.0D0/(1.0D0+LAMBDA*DTALGN**(-NU)))

KT=FACT*(E1+GAMMA*DTALGN**(-NU))

C Initialise

DDAMDS=0.0D0

C-----Interpolate Displacements and stresses

HSPALG(1)=HSPAST(INC)

DO J=1,NXMINC

C Get time where SSj is to be computed

TJ=TTT(INC)-J*DTALGN

IF(TJ.LT.0.0D0)THEN

HSPALG(J)=0.0D0

SGALG(J)=0.0D0

ENDIF

C Determine increment times before and after, TJM and TJP,

C and related relative displacement values SJM and SJP

DO I=INC,1,-1

IF(I.GT.1)THEN

TINCM=TTT(I-1)

ELSE

TINCM=0.0D0
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ENDIF

C Inpterpolate

IF(TJ.LT.TTT(I).AND.TJ.GE.TINCM)THEN

TJM=TINCM

TJP=TTT(I)

C Determine adjacent previous values of stress and rel.dsp

IF(I.GT.1)THEN

SJM=HSPAST(I-1)

SIGJM=SGPAST(I-1)

ELSE

SJM=0.0D0

SIGJM=0.0D0

ENDIF

C Determine adjacent next values of rel.dsp

SJP=HSPAST(I)

C Determine/estimate adjacent next values of strain

IF(I.LT.INC)THEN

SIGJP=SGPAST(I)

ELSE

C Estimate

C SIGJP=SIGJM+KT2*DS

SIGJP=SIGJM+KT*DS

ENDIF

HSPALG(J)=SJM+(SJP-SJM)/(TJP-TJM)*(TJ-TJM)

SGALG(J)=SIGJM+(SIGJP-SIGJM)/(TJP-TJM)*(TJ-TJM)

ENDIF

END DO

END DO

C----------------------------------------------------------------------

C Compute DAMAGE

SMAX=MAX(SMAX,SS)

IF(SS.LT.0.0D0) THEN

DAMNEW=DAM

C Mode-I compression

ELSEIF(SMAX.LE.S0)THEN

C Mode-I tension but elastic

DAMNEW=0.0D0

ELSEIF(SMAX.GT.SC)THEN

C Complete damage

DAMNEW=1.0D0
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C Loading beyond SMAX

ELSEIF(SS.EQ.SMAX)THEN

DAMNEW=(1.0D0/(1.0D0-(S0/SC)))*(1.0D0-S0/(SS))

DDAMDS=(1.0D0/(1.0D0-(S0/SC)))*(S0/(SS*SS))

ENDIF

C-------------------Update damage

IF(DAMNEW.GT.DAM)THEN

DAM=DAMNEW

ENDIF

C----------------------------------------------------------------------

C Compute sums and SLS stress

SUMSS = 0.0D0

SUMSIG = 0.0D0

DO J=1,NXMINC-1

SUMSS=SUMSS +AAG(J+1)*HSPALG(J)

END DO

DO J=1,NXMINC-1

SUMSIG=SUMSIG +AAG(J+1)*SGALG(J)

END DO

SIGSLS=KT*SS+FACT*DTALGN**(-NU)*(GAMMA*SUMSS-LAMBDA*SUMSIG)

C-----Compute stress

IF(SS.LT.0.0D0)THEN

SIG=KCOMP*SS

ELSE

C Calculate stress

SIG =(1.0D0-DAM)*SIGSLS

ENDIF

C-----Slightly reduce SMAX to ensure tangent predictor

C in the next increment

IF(SS.EQ.SMAX) THEN

SMAX=SMAX*(1-1.0D-12)

ENDIF

C-------------------Update tangent

IF(DAM.EQ.1.0D0)THEN

TANG=0.0D0

ELSEIF(SS.GT.0.0D0)THEN

TANG = (1.0D0-DAM)*KT-DDAMDS*SIGSLS

ELSEIF(SS.LT.0.0D0)THEN

TANG=KCOMP

ENDIF
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C------Store stress value

SGPAST(INC)=SIGSLS

END

The non-local CZM as a variational problem

Firstly the space PC of piecewise constant functions is introduced. The following defi-

nition is taken from [82].

Definition 1 A function u : (a, b) → < is piecewise constant on (a,b) if there exist

points a = x0 < x1 < xn < xn+1 = b such that u(x) is constant almost everywhere on

(xi−1,xi) for all i = 1,..., n+1. The subspace of L∞ of all such functions u is denoted by

PC(a, b). If u ∈ PC(a, b) then J(u) is the (minimal) set {x1, ..., xn} ⊂ (a,b) such that

the definition holds. Elements of J(u) are denoted J(u)k, k = 1, ..., n. The notation

]J(u) is used to indicate the cardinality of J(u).

For completeness it is remarked that at all points x ∈ (a, b) the values u(t+) and

u(t−) can be defined as the values taken a.e. by u on (x, x+ε) and (x, x−ε) respectively

for ε small enough.

A subset of PC(a, b), whose elements will be indicated as "square piecewise con-

stant" is introduced next. This set will be named SPC(a, b) and is defined as follows

(see Fig.5.16)

Definition 2 A function u : (a, b) → < belongs to SPC(a, b) if u ∈ PC(a, b) and ∀x ∈
(xi−1 ,xi) u(x) = xi-xi−1 a.e.

It can be confirmed that there is a one-to-one correspondence between interval parti-

tions P and SPC functions: given a partition the corresponding SPC function is built

by assigning to each interval a value equal to the interval width. The opposite procedure

links each partition to one SPC function only.

With these definitions in mind, the energy W defined as a function of a partition

P , see equation (5.21), can be expressed as a functional F defined on functions u ∈
PC(0, l̂)
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Figure 5.16: Graphs of a PC and a SPC function: in addition to constancy over con-

nected open intervals, the SPC function is also characterised by having the same value

over an open interval as the width of the interval itself.

F(u) =


∫
Γ ϑ(δ)ϕ (u(x)) dx +

∑
x∈J(u) γ1(x) if u ∈ SPC

∞ if u /∈ SPC

(5.42)

where for notational simplicity the notation

ϕ (u(x)) = ϕ̃

(
u(x)

l̂

)
γ1 = γ̃1h (5.43)

is used.

It might be worth remarking that SPC(a, b) is not a subspace of PC under the com-

mon multiplication-by-scalar and addition operations. It can though be given a metric

space structure. Among various possible choices the L1 distance will be employed, i.e.

d(u, v) =
∫ b

a
|u(x)− v(x)|dx (5.44)

This definition of distance will be referred to later when discussing local minima.

The chosen definition does not necessarily attribute a distance d > d̄ > 0, d̄ ∈ <++
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to functions such that ]J(u) 6= ]J(v), which is physically interesting as it means the

nucleation of a new crack does not necessarily imply a finite distance from the previous

configuration.

We will now address the issue of existence of minimizers for the functional F .

The Direct Method of the Calculus of Variations, [198, 211], is to be employed.

The initial step consists usually in proving the functional is bounded from below, i.e.

inf{F(y) : y ∈ X} is finite: this guarantess the existence of an infimum. The second

step is to prove that from one sequence uj for which limj→∞F(yj) = inf{F(y) : y ∈
X}, X being the class of admissible competitors of interest, a converging subsequence

can be extracted (the notion of convergence to be employed being problem-specific).

As third an last step, if it can be shown that the sequence converges to ū ∈ X such that

F(ū) = inf {F(y); y ∈ X}, then the existence of a minimizer is proven.

The first step is in the present case straightforward to complete, as will be shown

shortly. The second step is in general often achieved by requiring the stronger property

that a converging subsequence can be extracted from any arbitrary minimizing sequence,

namely requiring that any arbitrary minimizing sequence lies in a compact subset of the

class of admissible competitors (PC in the present case).

The third step requested by the described approach could be verified by ensuring that

for the candidate minimizing sequence uj tending to u the following lower semiconti-

nuity requirement holds

F(u) ≤ lim inf
j→∞

F(uj) (5.45)

A stronger requirement can and will be considered in the present case, namely the fact

that the lower semicontinuity inequality holds for all sequences.

The whole procedure results in the following set of inequalities

inf{F(u) : u ∈ X} ≤ F(ū) ≤ lim inf
j→∞

F(uj) ≤ inf{F(y) : y ∈ X} (5.46)

from which the conclusion F(ū) = inf{F(y) : y ∈ X} follows.

Let us then follow the described procedure by noting that in the present case inf{F(u) :

u ∈ PC(0, l̂)} exists because the codomain of the functional F is bounded below

by 0. The compactness of SPC(a, b), in relation to the second step, is addressed

next. It is noted that in the present case if u ∈ Ck then u ∈ SPC(0, l̂): this stems

from the definition of the functional F which penalises competitors not belonging to
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SPC . Then, following the described approach, it is sufficient to prove that the set

SPC(0, l̂) is compact. Actually, for the present purposes it suffices to prove that the

set C] = {u ∈ SPC(0, l̂) : ]J(u) < +∞} is compact, again as a result of the fact

competitors that do not belong to SPC are penalised by the functional definition.

Proposition 1 Let (uj) be a sequence in SPC(a, b) such that supj ](J(uj)) < +∞.

Then uj converges to u ∈ SPC(a, b)

Proof: Let us define J̄ = maxj{J(uj)}. The set of SPC(a, b) functions with n dis-

continuity points is isomorphic to the set of partitions {u} = {x0, x1, ...xn, xn+1}. Also

let us note that any SPC(a, b) function with n discontinuity points coincides pointwise

with an SPC(a, b) function with n+1 discontinuity points, u = {x0, x1, ...xn, xn+1, xn+2},

xk = xk+1 for a certain k. Then, any partition u can be considered as a SPC function

with S̄ points of discontinuity. Let us consider the sequence of partitions {uj}, from

which the sequence {ukj}, obtained by selecting the k-th discontinuity point of uj . Let

us then consider {u1j}. This sequence is bounded, hence a convergent subsequence

could be extracted, converging to x̄1. The sequence made of the corresponding ele-

ments uj is denoted {uj1}. Iterating the same argument, i.e considering the sequence

obtained by selecting the second element from the sequence{uj1}, this is again bounded

and a convergent subsequence could be extracted from it, determining a correspond-

ing sequence {uj2}. The procedure can be re-iterated as many times as the number of

discontinuity points, yielding a chain of subsequences

{uj1} ⊇ {uj2} ⊇ . . . (5.47)

The last subsequence is then convergent by construction to u = {x0, x1, ..., xS̄−1, tS̄},

from which u ∈ SPC(a, b) follows.

Remark 5.5.1 The above proposition is an immediate consequence of Helly’s Theorem

[179], as any SPC(a, b) function with a finite number of discontinuities belongs to the

space BV (a, b) of functions of bounded variation on (a, b). An elementary proof is

preferred only for clarity.

In reference to the third step, the lower semicontinuity of the functional will be

proved by considering the two terms in F , for u ∈ SPC(0, l̂), separately. The re-
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sult will follow by noting that a functional defined as a sum of lower semicontinuous

functionals is lower semicontinuous.

Let us recall that by Fatou’s lemma [179] any non-negative and measurable function

f defined pointwise (the Lemma still holds considering convergence in measure) using

a sequence fn as

f(x) = lim inf
n→∞

fn(x) (5.48)

satisfies

lim inf
n→∞

∫ b

a
fndx ≥

∫ b

a
fdx (5.49)

As a result the first term in F for u ∈ SPC(0, l̂), namely
∫
Γ ϑ(δ)ϕ (u(x)) dx is lower

semicontinuous (non-negativeness and measurability being guaranteed by the condi-

tions imposed on ϕ).

The lower semicontinuity of the second term in equation 5.42, i.e.
∑

x∈J(u) γ1, is ad-

dressed in the next proposition. Use is made of Theorem 5.8 from [82], whose statement

is reported below for the reader’s convenience.

Proposition 2 Let F : PC(a, b) → [0, +∞] be given by F (u) =
∑

x∈S(u) θ(u(t−), u(t+)),

where θ : <2 → [0, +∞]. The the following conditions are equivalent:

(i) F is lower semicontinuous on PC(a, b) with respect to a.e. convergence (also con-

vergence in measure and L1(a, b)-convergence)

(ii) θ is lower semicontinuous and sub-additive

The lower semicontinuity of the term
∑

x∈J(u) γ1 is a corollary of this Theorem, spe-

cialising θ to the constant function of value γ1 and noting that any constant function is

lower semicontinuous and sub-additive (see equation (2.92) for the definition of sub-

additivity).

The whole argument proves the existence of minimizers for the functional F .

Proposition 3 Given a function ϕ : (0,∞) → (ϕ̊, 1), ϕ̊ ∈ <++, satisfying conditions

(5.16, 5.17, 5.18, 5.19), a continuous and convex function ϑ : <+ → <+ such that

ϑ(0) = 0, a constant γ1 ∈ <++, there exists at least one function u ∈ SPC ⊂ PC

solution to the minimisation problem
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min


∫
Γ ϑ(δ)ϕ (u(x)) dx +

∑
x∈J(u) γ1(x) if u ∈ SPC

∞ if u /∈ SPC

Then following two propositions characterise local minima and have been mentioned

in Section 5.3.

Proposition 4 Let us assume ϕ ∈ C2(<) and is convex. Then any equidistant partition

PN = {0, 1
N+1

l̂, 2
N+1

l̂, ..., n
N+1

l̂, n+1
N+1

l̂}, ∀N , is a local minimizer of
∫
Ω ϑ(δ)ϕ(u)dx +

Nγ1 with respect to the L1 distance. Conversely, any local minimizer is an equidistant

partition PN = {0, 1
N+1

l̂, 2
N+1

l̂, ..., n
N+1

l̂, n+1
N+1

l̂}

Proof: The one-to-one correspondence from u ∈ SPC and partitions P will be

exploited for notational simplicity. A variation P ε
N of PN can be expressed in general

as

P ε
N = {0,

(
1

N + 1
+ ε1

)
l̂,
(

2

N + 1
+ ε2

)
l̂, ...,

(
N

N + 1
+ εn

)
l̂,
(

N + 1

N + 1
+ εn+1

)
l̂}

(5.50)

subject to ∑
n

εn = 0, − 1

N + 1
< εi <

N

N + 1
(5.51)

It is sufficient though to consider the case

P ε
N = {0,

(
1

N + 1
+ ε

)
l̂,
(

2

N + 1
− ε

)
l̂, ...,

(
N

N + 1

)
l̂,
(

N + 1

N + 1

)
l̂} (5.52)

as the line of reasoning can be iterated for any variation by considering suitably de-

fined intervals separately and successively their union. The proof of the if-part of

the proposition then follows by observing that (after introducing the notation Θ(x) =

ϕ( 1
N+1

+ x)( 1
N+1

+ x)

F(P ε
N ) = ϑ(δ)(N − 2)ϕ( 1

N+1
)( 1

N+1
)l̂ + ϑ(δ)ϕ( 1

N+1
+ ε)( 1

N+1
+ ε)l̂ + ϑ(δ)ϕ( 1

N+1
−

ε) 1
N+1

− ε)l̂ + Nγ1 =

= ϑ(δ)l̂[(N − 2)Θ(0) + Θ(ε) + Θ(−ε)] + Nγ1 ≥ ϑ(δ)l̂[(N − 2)Θ(0) + 2Θ(0) +

2Θ′′(ε)ε2] + Nγ1 ≥ ϑ(δ)NΘ(0) + Nγ1 = F(PN)
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To prove the only-if-part of the proposition it will be shown that if a partition is not

equidistant then it is not a local minimizer. A partition Pineq = {0, x1, x2, x3, ...xn} is

considered for which

∃i ∈ {2, 3, ..., n} : xi − xi−1 6= xi−1 − xi−2 (5.53)

Let us select one i for which the above inequality holds. The proof follows by consid-

ering the convexity of the function U over the interval (xi−2, xi).

Proposition 5 In a "short" interface, l̂ < z̃, the uncracked configuration can only

evolve to a single-cracked configuration.

Proof: Let us determine the displacements δ at which the energy of a configuration

with j cracks equals the energy of a configuration with j + 1 cracks, for j = 0, 1, 2.

Such displacements, which are denoted δ0 and δ1 are roots of the following equations

ϑ(δ)[ϕ(1)− ϕ(
1

2
)] = γ1 ϑ(δ)[ϕ(

1

2
)− ϕ(

1

3
)] = 2γ1 (5.54)

which yield

ϑ(δk) =
kγ1

ϕ( 1
k
)− ϕ( 1

k+1
)

k = 1, 2 (5.55)

ϑ is monotonic and can be inverted. As a result of the convexity (following from the

restriction to a "short" interface) of ϕ, ϕ( 1
N

)−ϕ( 1
N+1

) > ϕ( 1
N+1

)−ϕ( 1
N+2

) for any N .

Then, δ1 > δ0 which concludes the proof.
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