
The Complexity of Asynchronous Model Based Testing

Robert M. Hieronsa

aThe School of Information Systems, and Computing Mathematics, Brunel University,
Uxbridge, Middlesex, UB8 3PH, UK

Abstract

In model based testing (MBT), testing is based on a model M that typically
is expressed using a state-based language such as an input output transition
system (IOTS). Most approaches to MBT assume that communications between
the system under test (SUT) and its environment are synchronous. However,
many systems interact with their environment through asynchronous channels
and the presence of such channels changes the nature of testing. In this paper
we investigate the situation in which the SUT interacts with its environment
through asynchronous channels and the problems of producing test cases to
reach a state, execute a transition, or to distinguish two states. In addition,
we investigate the Oracle Problem. All four problems are explored for both
FIFO and non-FIFO channels. It is known that the Oracle Problem can be
solved in polynomial time for FIFO channels but we also show that the three
test case generation problems can also be solved in polynomial time in the
case where the IOTS is observable but the general test generation problems
are EXPTIME-hard. For non-FIFO channels we prove that all of the test case
generation problems are EXPTIME-hard and the Oracle Problem in NP-hard,
even if we restrict attention to deterministic IOTSs.

Keywords: Software Testing; Asynchronous Channels; Model Based Testing;
Input Output Transition System.

1. Introduction

It is widely accepted that testing is an important part of the software de-
velopment process. However, testing is often a manual process and as a result
it is expensive and error prone. This has led to interest in model based testing
(MBT), in which a model of some aspect of the system under test (SUT) is
produced and testing is based on this model [5, 15, 16, 17, 18, 26, 49]. The
models used in MBT are usually state-based and MBT tools typically translate
the models into either finite state machines (FSMs) or input output transition
system (IOTSs). Automated testing then proceeds on the basis of the FSM or
IOTS [16].

Many algorithms for generating test cases from an FSM use input sequences
or adaptive processes to reach and distinguish states [1, 2, 13, 21, 27, 34, 38]

Preprint submitted to Elsevier May 4, 2012

and there has also been interest in such problems when testing from an IOTS
[29]. There are also approaches that aim to execute the transitions of the FSM
or IOTS. Thus, approaches to produce (parts of) test cases that reach states,
execute transitions and distinguish states play an important role in MBT.

FSMs and IOTSs model interaction as being synchronous. However, in prac-
tice communication is often asynchronous: interaction with the SUT proceeds
through the exchange of messages using (asynchronous) channels. Many types
of systems, such as web services, communicate with their environment through
such channels. The use of asynchronous channels affects testing through intro-
ducing latency: the SUT receives inputs after they were sent and the outputs
produced by the SUT are observed later than they were produced. For example,
if the tester applies input ?i1 followed by input ?i2 and then observes output !o1
then the output may have been produced by the SUT after the SUT received
the first input: it was not observed by the tester until after the tester sent the
second input because of the time taken for the output to arrive. Thus, the
observed sequence need not be one that was produced by the SUT. In addition,
it can be hard to ensure that each input is received by the SUT after a required
sequence of inputs and outputs: in the above example the intention may have
been for the SUT to receive ?i2 before it sent !o1 but we cannot know whether
this has been achieved. Thus, most MBT methods cannot be directly applied
when the tester and the SUT communicate through asynchronous channels.

It is desirable to extend the work on testing from an FSM or an IOTS to
testing through asynchronous channels. One approach is to model the channels
and produce an FSM or IOTS that models the composition of the required
behaviour of the SUT and the channels [30, 45, 47]. Traditional FSM and
IOTS based test methods can then be applied directly. While this provides a
general approach, it has the disadvantage of increasing the number of states
of the model being analysed. In particular, if we consider unbounded channels
then we compose the original model with one or more infinite state models
and so obtain an infinite state machine. Even if the channels are bounded, the
number of states of the composition of the original model and the model of the
channels grows exponentially with the bound. An alternative is to reason about
the effect of the channels and this is the approach we take in this paper. In
this context, there has been work that has defined alternative implementation
relations (notions of correctness) for testing in the presence of asynchronous
channels [6, 7, 8, 9] and also research that has explored test case generation
problems [39, 28, 29]. There has also been some work that has looked at the
situation in which inputs are supplied in a synchronous manner but outputs are
asynchronous [36]. Finally, it has been shown that if inputs and outputs are
stamped to show the order in which they occurred then the use of asynchronous
communications has less effect [31] but this requires the SUT to communicate
synchronously with the agent that stamps the events.

MBT test case generation algorithms often aim to test aspects of the SUT
associated with parts of the modelM being used. For example, one standard test
criterion is to execute test cases that reach all states, while another is to execute
all transitions [29, 35, 13]. In addition, in testing we will often wish to set up the

2

state in order to execute (check) a transition and then check that the state after
the transition is correct. To check the state after a transition we typically use
input sequences or strategies (also called adaptive test cases) that distinguish
between the expected state and alternatives [3, 27, 32, 32]. However, only
recently have such problems been considered for (asynchronous) testing through
channels [29]. This recent work [29] investigated the problem of finding input
sequences to execute transitions of an IOTS model. The authors distinguish
between two cases: the sequence must execute the transition t of interest and
the sequence may execute t. The ‘may’ case is relatively straightforward: any
test case that executes a transition t of an IOTS under synchronous testing
may also execute it under asynchronous testing. As a result, in this paper we
investigate the problem of finding test cases that must achieve a given objective.
The approach that has been given for finding sequences that must execute a
transition t when there are asynchronous channels is to first produce a test
case that must execute t under synchronous communications and then check
whether it still achieves this under asynchronous communications. While the
results of empirical studies were encouraging [29], this paper did not investigate
the problem of deciding whether there is a test case that must execute a given
transition. An alternative approach adapts a test purpose, produced from the
specification IOTS, for use in asynchronous testing but does not directly consider
problems such as reaching or distinguishing states [14].

It is known that there are polynomial time algorithms for finding sequences
to reach a state of a deterministic finite state machine (DFSM) or to distinguish
two states of a DFSM [33]. It is also known that the corresponding problems are
EXPTIME-complete for finite state machines (FSMs) that need not be deter-
ministic [4]. In addition, they are undecidable for distributed testing, in which
the SUT has multiple interfaces and a separate tester is placed at each interface
[25]. In this paper we investigate the problems of reaching a state, executing a
transition and distinguishing two states for asynchronous testing through chan-
nels. We consider two types of channels: those that are first-in-first-out (FIFO)
and non-FIFO channels. Previous work has assumed that channels are FIFO
[29, 31, 14] but in some situations, such as communicating through the Internet,
channels are non-FIFO. Since the work on asynchronous testing has considered
testing from an IOTS [28, 29, 30, 14], and IOTSs are more general than FSMs,
we use this formalism.

The problems of reaching states, executing transitions and distinguishing
states are all highly relevant to test case generation. However, the use of a model
such as an IOTS provides further opportunities for test automation: there is
also the potential to check the observed behaviour against the model. This
problem, of deciding whether an observed sequence of inputs and outputs is
consistent with the model, is called the Oracle Problem. Automated solutions
to the Oracle Problem can make testing significantly cheaper and allow many
more test cases to be used. This has led to significant interest in the Oracle
Problem [48, 10, 11, 12]. In this paper we investigate the Oracle Problem for
asynchronous testing.

In this paper we use a general notion of a test case that allows it to be adap-

3

tive: we do not restrict attention to sequences. The main results in this paper
are as follows. We prove that we can decide in polynomial time whether there
is a test case that is guaranteed to reach a given state, execute a given tran-
sition, or distinguish two given states when the IOTS is observable. An IOTS
M is observable if it has no state s and input or output a such that M can
move from s to states s1 and s2, s1 6= s2, under a and so this does not require
M to be deterministic. We also prove that the problems are EXPTIME-hard
if we do not require the IOTSs to be observable. In contrast, with non-FIFO
channels it transpires that the problems of deciding whether there is a test
case that reaches a state, executes a transition or distinguishes two states are
EXPTIME-hard even for deterministic IOTSs. In addition, for non-FIFO chan-
nels the Oracle Problem is NP-complete, again even if we restrict attention to
deterministic IOTSs. These results suggest that testing through asynchronous
channels is significantly more difficult when the channels are non-FIFO than
when they are FIFO.

This paper is structured as follows. We define IOTSs in Section 2 and in
Section 3 we describe the types of test cases we consider. We investigate the
problems of reaching states, executing transitions and distinguishing states in
Sections 4, 5, and 6 respectively. We then explore the Oracle Problem in Section
7. Finally, conclusions are drawn in Section 8.

2. Input Output Transition Systems

An Input Output Transition System (IOTS) is defined by a set of states with
transitions between them. Each transition has a label that is either an input
or an output1. Since we are interested in defining algorithms and deciding
complexity, we restrict attention to IOTSs that have finite sets of states, inputs
and outputs. An Input Output Transition System M is thus defined by a tuple
(S, s0, I, O, h) in which S is a finite set of states; s0 ∈ S is the initial state; I is
the finite input alphabet; O is the finite output alphabet; and h is the transition
relation of type S × (I ∪O)↔ S. For s ∈ S and a ∈ I ∪O we let h(s, a) denote
the set of s′ ∈ S such that (s, a) and s′ are related under h. If s′ ∈ h(s, a) for
a ∈ I ∪ O then M can move from state s to state s′ through action a and this
defines a transition (s, a, s′) with starting state s, ending state s′, and label a.
A transition with the same starting and ending states is said to be a self-loop
transition.

We use the usual convention in which the name of an input is preceded by ?
and the name of an output is preceded by !. An IOTS is output divergent if it
has a state from which it is possible to take an infinite sequence of consecutive
transitions whose labels are outputs. Output divergence is similar to a livelock
and is usually undesirable. Similar to [28, 29, 14], we therefore assume that any
IOTS considered is not output divergent. An IOTS is input-enabled if for every

1Sometimes internal actions, with label τ , are allowed. However, to simplify the exposition
we will do not consider internal actions.

4

state and input there is at least one associated transition: for all s ∈ S and
?i ∈ I, h(s, ?i) 6= ∅. A state s of M is said to be stable if for all !o ∈ O we have
that h(s, !o) = ∅. Thus, a state s of M is stable if it is not possible for M to
leave s without M receiving an input.

This paper only considers input-enabled IOTSs and we will use M to refer
to such an IOTS. If the IOTS used is not input-enabled then the semantics of
the language from which the IOTS was produced often allows the IOTS to be
completed. For example, for each state s and input ?i such that h(s, ?i) = ∅ we
might add a transition (s, ?i, s) (the input of ?i has no effect), which corresponds
to the semantics given in Harel Statecharts [20], or we might add a transition
from s with input ?i to an error state. We say that an IOTS M is observable
if h is a function [37] (for all s ∈ S and a ∈ I ∪ O, |h(s, a)| ≤ 1) although
the term output-deterministic has also been used [4]. We can convert an IOTS
into an observable IOTS using the standard algorithm for converting a finite
automaton into a deterministic finite automaton [40], although this can lead
to an exponential increase in the number of states. We will say that M is
deterministic if h is a function, and for all s1, s, s

′ ∈ S and outputs !o′ 6=!o, we
cannot have that (s1, !o, s) and (s1, !o

′, s′) are transitions of M . A recent piece of
work [14] assumes that quiescence can be observed, where the SUT is quiescent
if it is in a state that it cannot leave without first receiving input (a stable state).
It seems likely that the observation of quiescence, which is typically through a
timeout, is feasible for some systems that communicate asynchronously but not
others. We do not assume that quiescence can be observed but the observation
of quiescence has very little effect on the results in this paper.

An IOTS M interacts with its environment through a sequence of steps
where each step involves M receiving an input or producing an output, a step
corresponding to a transition of M . M thus interacts with its environment
through a sequence of consecutive transitions. Such a sequence ρ = t1 . . . tk,
ti = (si, ai, si+1), is a walk with label a1 . . . ak, starting state s1 and ending
state sk+1. If the starting state of ρ is s0 then a1 . . . ak ∈ (I ∪O)∗ is said to be
a trace of M .

An IOTS M defines the regular language L(M) of labels of walks with
starting state s0: the set of traces of M . Similarly, we let LM (s) denote the set
of labels of walks of M with starting state s. Two states s and s′ of M are said
to be equivalent if they define the same languages: LM (s) = LM (s′). Similarly,
two IOTSs M and N are equivalent if L(M) = L(N).

3. Using strategies for testing

Most work on testing from deterministic models assumes that a preset input
sequence is applied: for deterministic systems less is gained by using an adap-
tive process since as soon as the behaviour of the SUT diverges from that of M
we know that there has been a failure. In the context of testing from a nonde-
terministic FSM there has been interest in adaptive testing (see, for example,
[4, 22, 23, 24, 33, 44, 49]).

5

?>=<89:;s2 ?i
kk

?>=<89:;s0 ?i // ?>=<89:;s1 !o //

?i

>>}}}}}}}}}}} ?>=<89:;s3 ?i // ?>=<89:;s4 ?i
kk

Figure 1: A deterministic IOTS with two possible responses to ?i?i

In testing with asynchronous channels we may want testing to be adaptive,
even if M is deterministic. This is because the tester cannot directly observe
the inputs and outputs of the SUT but instead observes the sequence of inputs
and outputs in a system composed of the SUT and channels. As a result, inputs
arrive at the SUT later than they were sent by the tester and the observation of
an output by the tester will be later than the generation of this output by the
SUT. Thus, if the tester has observed a trace a1 . . . ak then this may not be a
trace of the SUT and, in addition, the SUT may have produced further outputs
that have yet to be observed. This effectively introduces nondeterminism into
testing. Let us suppose, for example, that we supply ?i?i when the IOTS shown
in Figure 1 is in state s0. There are two possibilities regarding the second ?i: it
is received before !o is output by the SUT and so the IOTS ends in state s2 or
it is received after !o is output by the SUT and so the IOTS ends in state s4.

A strategy specifies what input the tester should supply and when. We will
assume that the tester uses a strategy µ that is a partial function from (I ∪O)∗

to I and so it makes decisions, regarding the sending of input, on the basis of the
observations it has made. The tester uses the strategy µ in the following way: if
the current sequence of observations is σ and µ(σ) is defined and equals ?i ∈ I
then the tester sends ?i to the SUT and otherwise it does nothing. The SUT
receives the input of ?i at some later point and this triggers a transition. Since
we are interested in the use of strategies in testing, we use the terms strategy
and test case interchangeably.

Consider now the nondeterministic IOTS in Figure 2 and let us suppose that
we wish to reach state s3 in synchronous testing. After applying input ?i we
either observe !o1 and then apply ?i or we observe !o2 and apply no further
input. This defines a strategy that reaches (ends in) state s3 but it is clear that
there is no single sequence that is guaranteed to achieve this: the behaviour
after the first input must depend on the resultant output.

We can define the set of possible sequences of interactions the tester can
have with the composition of an SUT with channels given strategy µ.

Definition 1 A sequence σ ∈ (I ∪ O)∗ is an evolution of strategy µ if the
following properties hold:

1. If σ1?i is a prefix of σ and ?i ∈ I then µ(σ1) =?i. This says that the tester
only sends an input when this is specified by the strategy.

6

?>=<89:;s2
?i

��?>=<89:;s0 ?i // ?>=<89:;s1 !o2 //

!o1

>>}}}}}}}}}}}

?i

VV

?>=<89:;s3 ?i // ?>=<89:;s4
?i

VV

Figure 2: A nondeterministic IOTS

2. If σ1 is a proper prefix of σ and µ(σ1) =?i then σ1?i is a prefix of σ.
This says that the tester sends an input whenever this is specified by the
strategy.

We let Ev(µ) denote the set of evolutions of µ.

While this defines the set of possible observable traces when using strategy µ, it
does not necessarily correspond to the possible traces that M can perform when
using µ since the use of asynchronous channels can mean that the observed trace
σ was not the trace of M that occurred. We therefore need to reason about the
relationship between traces that are observed and those that can be produced
by the SUT.

First consider the case where communications are through FIFO channels.
We know that if trace σ′ of M occurred then the observed trace σ can only
differ from σ′ through σ being formed from σ′ by the delaying of output. We
therefore say that σ can result from σ′, denoted σ � σ′, if σ can be formed from
σ′ through a sequence of transformations of the form !o?i→?i!o for ?i ∈ I and
!o ∈ O.

Definition 2 A sequence σ′ ∈ (I ∪ O)∗ is an internal evolution of strategy µ
with FIFO channels if there exists σ ∈ Ev(µ) such that σ � σ′. We let Int(µ)
denote the set of internal evolutions of µ with FIFO channels. Where it is clear
from the context that the channels are FIFO we simply say that σ′ is an internal
evolution of µ

The set of internal evolutions of µ with FIFO channels are the traces that an
SUT might produce when the tester is using strategy µ and the tester and SUT
interact through FIFO channels. The idea is that any interaction σ between the
system composed of the SUT and the channels must be an evolution of µ but
the actual trace of the SUT could be any σ′ with σ � σ′.

Now consider the case where the channels are non-FIFO. We know that if
trace σ′ of M occurred then the observed trace σ can differ from σ′ through
σ′ being formed from σ by the delaying of output in σ, by inputs arriving in
a different order to which they were sent or by outputs arriving in a different
order to which they were sent. We therefore say that observed sequence σ can

7

result from the trace σ′ of the SUT, denoted σ v σ′, if σ can be formed from
σ′ through a sequence of transformations of the form: !o?i→?i!o for ?i ∈ I and
!o ∈ O; !o1!o2 →!o2!o1 for !o1, !o2 ∈ O; ?i1?i2 →?i2?i1 for ?i1, ?i2 ∈ I.

Definition 3 A sequence σ′ ∈ (I ∪ O)∗ is an internal evolution of strategy
µ with non-FIFO channels if there exists σ ∈ Ev(µ) such that σ v σ′. We
let Int′(µ) denote the set of internal evolutions of µ with non-FIFO channels.
Where it is clear from the context that the channels are non-FIFO we simply
say that σ′ is an internal evolution of µ

In this paper we consider the problem of defining strategies for three goals:
reaching a state of an IOTS, executing a transition of an IOTS, and distin-
guishing two states of an IOTS. The first two goals refer to the trace that the
SUT performed, not that observed, and so we will have to reason about inter-
nal evolutions. Later we formally define what it means to reach a state of an
IOTS (Definitions 4 and 6), to execute a transition of an IOTS (Definitions 7
and 8) or to distinguish two states of an IOTS (Definitions 10 and 12). As
discussed earlier, all three problems are motivated by standard test techniques
and criteria.

Strategies similar to those described above have been studied in the context
of two player games. Alur et al. [4] expressed the problems of reaching and
distinguishing states of non-deterministic FSMs in terms of two player games
with incomplete information and we use results regarding such games to reason
about the complexity of problems in asynchronous testing.

A two player ∃∀ game G with incomplete information is a nondeterministic
machine (Q,X, Y, k,Qin, Q

f) in which Q is a set of game positions, X is the set
of inputs, Y is the set of outputs, k is a transition relation of typeQ×X ↔ Q×Y ,
Qin is a set of starting positions and Qf is a set of winning position. The game
starts in one of the positions in Qin and in each move the ∃ player chooses an
input to apply and the ∀ player then chooses a transition of G to follow: if the
game position before the move is q and the ∃ player applies input ?i then the ∀
player chooses the output !o and next game position q′ from those that satisfy
(q′, !o) ∈ k(q, ?i). The ∃ player observes the output but not the game position
and uses a ∃ strategy µ of type O∗ → I that specifies the next input to apply.
The game ends if it reaches a position in Qf and the ∃ player then wins. If the
game does not end then the ∀ player wins.

The outcome problem for a ∃∀ game G with incomplete information is to
determine whether there is a winning strategy for the ∃ player: a strategy for the
∃ player that guarantees that they will win. It has been proved that this outcome
problem is EXPTIME-complete [41]. Naturally, in reasoning about such results
we restrict attention to games in which the sets Q, X, Y are finite. At times
we will restrict the sets Qin and/or Qf to contain a single state. However,
restricting Qin to contain a single state does not change the complexity of the
outcome problem since we can add a new unique start state and the initial
moves take the game to states in Qin. Similarly, we can represent a game G
with more than one winning state by adding a new input ?i, new winning state

8

sw and the following moves in response to ?i: if ?i is applied in a state in Q\Qf
then there is a fixed output !o ∈ O; if ?i is applied in a state in Qf then it takes
the game to sw.

An alternative approach to strategies is to define test cases as trees, called
transfer trees [49]. It has been shown that for observable non-deterministic
finite state machines it is possible to find optimal transfer trees that reach or
distinguish states when communications are synchronous [49]. We will use these
results despite the fact that we consider IOTSs rather than finite state machines
and we also use asynchronous communications.

4. Reaching states

Alur et al. [4] showed that the problem of deciding whether there is a strategy
that reaches a given state of a nondeterministic FSM, when communications are
synchronous, is EXPTIME-complete. They achieve this by showing that the
outcome problem for a ∃∀ game G can be converted into a problem of finding
a strategy to reach a state of a nondeterministic FSM. In contrast, if the IOTS
is deterministic, and communications are synchronous, then we can solve the
problem through the use of a depth-first search and this takes linear time [43].

The situation is different in asynchronous testing since a trace observed by
the tester does not have to be a trace of the SUT. This introduces nondetermin-
ism even when the SUT is deterministic: an input may lead to several possible
outputs as a result of the different possible delays of the input. Indeed, we can
simulate nondeterminism by introducing a sequence of k outputs by the SUT
and the sending of an input ?i: the input will arrive at the SUT after k′ ≤ k
of the outputs and different values of k′ can lead to different behaviours. Our
problem thus appears to be similar to that of reaching a state of a nondetermin-
istic FSM, a problem that is EXPTIME-hard. However, we will see that we can
solve this problem in polynomial time when the IOTS is observable and we have
FIFO channels while it is EXPTIME-hard when the channels are non-FIFO.

First we consider the problem of finding a strategy to reach a state s of
IOTS M when communications are asynchronous through FIFO channels. By
reaching a state we mean that at the end of the application of the test case
(strategy) µ we must have that M is in state s. As a result, only stable states
are reachable. Consider again the IOTS shown in Figure 1 in which the input
?i takes the IOTS to state s1. We do not say that s1 is reachable because it
is not a stable state; from s1 the IOTS can move to s3 under output !o. As a
result, state s3 is reachable using input ?i. Since s3 is reachable, so is s4: we
apply input ?i and then supply ?i again after !o is observed. In contrast, s2 is
not reachable since if we supply input sequence ?i?i we cannot guarantee that
the second ?i arrives before !o is produced.

There is an alternative notion of µ reaching state s of M : its application
must lead to M entering state s but M need not be in state s at the end of
the application of µ. However, if we are interested in this alternative notion
of reaching s then we can rewrite M to form an IOTS Ms by removing all
transitions with starting state s and adding self-loops with input in state s.

9

Then, µ reaches state s of M in the alternative notion of reachable if and only
if µ reaches state s of Ms using the notion of reachable that we use. Thus, we
lose nothing in requiring that M is in state s at the end of the application of µ:
we can transfer the results to the alternative notion of reaching a state.

Before considering the problem of reaching states in detail we define what
it means for a strategy µ to reach a stable state s of M . Essentially, we require
that if σ is an internal evolution of µ, and so is consistent with some evolution
of µ, and it is also a possible trace of M then all walks of M with label σ have
ending state s.

Definition 4 Strategy µ reaches the state s of M with FIFO channels if s
is a stable state, there is an upper bound on the length of the sequences in
Int(µ) ∩ L(M) and for all σ ∈ Int(µ) ∩ L(M) that label maximal walks of M
that end in stable states, we have that every walk of M from state s0 with label
σ has ending state s.

In this definition we only consider the labels in Int(µ) ∩ L(M) of maximal
walks (those that are not proper prefixes of other walks with labels in Int(µ)∩
L(M)) since we are concerned with the state of M after µ has been applied and
not the states of M met earlier. We require there to be an upper bound on the
length of such traces since we want the application of µ to terminate.

We now investigate the problem of deciding whether such a strategy exists
for a given state s of a deterministic IOTS M ; later in this section we consider
cases where M is nondeterministic. First we prove that it is sufficient to consider
a special type of strategy when M is observable.

Proposition 1 There is a strategy µ that reaches a state s of an observable
IOTS M in asynchronous testing with FIFO channels if and only if there is
such a strategy µ′ that only applies inputs in stable states.

Proof
Since M can be nondeterministic there may be several initial output sequences.
Consider one possible first input ?i, which µ sends after output sequence σ is
observed. Further, let us suppose that M has a walk from its initial state to a
stable state whose label is the output sequence σ′ such that σ is a proper prefix
of σ′. Since communications are asynchronous and so an input is delayed by
the channel, ?i might arrive at the SUT after any σ′′ has been produced by the
SUT such that σ is a prefix of σ′′ and σ′′ is a prefix of σ′. In addition, in each
possible case µ must lead to state s eventually being reached. In particular,
µ must define a strategy for the case where ?i arrives after σ′ and so when ?i
arrives in a stable state. In addition, since M is observable we know when a
stable state has been reached: we cannot have the situation in which there are
two walks from a state s′ with the same output sequence as label and one reaches
a stable state but the other does not. We can therefore produce a strategy µ1

from µ by requiring that if an output sequence with prefix σ occurs then ?i is
applied in a stable state. We can now repeat this process to obtain a strategy
in which inputs are only applied in stable states.

10

The converse direction follows immediately and so the result holds. �
This approach does not work if M is not observable since the tester need not

know when the SUT is in a stable state. For example, from a state s there may
be two transitions with label !o, one of which takes M to a stable state while
the other takes M to a state that is not stable.

We can assume that the state s is a stable state: otherwise it is not reachable.
We now define an IOTS that corresponds to M only receiving input in stable
states.

Definition 5 Given an IOTS M = (S, s0, I, O, h) we define the IOTS S(M) =
(S, s0, I, O, h

′) in which the transitions of S(M) are defined by the following
rules.

• For each s ∈ S and !o ∈ O, h′(s, !o) = h(s, !o).

• For each stable state s ∈ S and ?i ∈ I, h′(s, ?i) = h(s, ?i).

• For each state s ∈ S that is not a stable state and ?i ∈ I, h′(s, ?i) = ∅.

By Proposition 1 it is sufficient to consider S(M) when deciding reachability
for deterministic IOTSs.

Theorem 1 The problem of deciding whether there exists a strategy that reaches
a state s of a deterministic IOTS M in asynchronous testing with FIFO channels
can be solved in linear time.

Proof
Assume that s is a stable state of M since otherwise we immediately know that
it is not reachable. By Proposition 1 it is sufficient to consider strategies in
which inputs are applied in stable states. Since M is deterministic, S(M) has
a unique stable state reached without input and this is the state in which the
first input is applied. Since M is deterministic, S(M) is also deterministic. In
addition, stable state s is reachable if and only if it is reachable in S(M) from
the state s0. We can consider S(M) to be a directed graph G: the states of S(M)
are represented by the vertices of G and each transition of S(M) is represented
by an edge. Then, s is reachable if and only if there is a walk in G from the
vertex representing s0 to the vertex representing s and we can use a depth-first
search to decide this in linear time [43]. The result therefore holds. �

Now consider the case where M is observable but need not be deterministic.
Clearly S(M) need not be deterministic and there is a set S0 of states in which
the first input can be applied: the stable states of M that are reached from s0
without applying input. However, S(M) can be seen as an observable nondeter-
ministic finite state machine and so we can decide in polynomial time whether
there is a transfer tree that reaches a given state s [49]. Since we require the ap-
plication of strategies to lead to a bounded set of possible sequences, strategies
correspond exactly to transfer trees and so the following holds.

11

Theorem 2 The problem of deciding whether there exists a strategy that reaches
a state s of an observable IOTS M in asynchronous testing with FIFO channels
can be solved in polynomial time.

Finally, we consider the general case in which M need not be observable.

Theorem 3 The problem of deciding whether there exists a strategy that reaches
a state s of an IOTS M in asynchronous testing with FIFO channels is EXPTIME-
hard.

Proof
Recall that a two player ∃∀ game G with incomplete information is a nonde-
terministic machine (Q,X, Y, k,Qin, Q

f) in which Q is a set of game positions,
X is the set of inputs, Y is the set of outputs, k is a transition relation of type
Q×X ↔ Q×Y , Qin is a set of starting positions and Qf is a set of winning po-
sition. In addition, as explained in Section 3, we can assume that Qin contains
only one state, which we call qin and also that the set Qf of winning states also
only contains one state, which we call qf . Such a game G defines an IOTS M in
which we complete (Q, qin, X, Y, k) by, for each state s′ reached by a transition
labelled by an input, adding transitions from s′ labelled with inputs to an error
state se from which we cannot reach qf . A strategy for the ∃ player is a winning
strategy if it is guaranteed to take G to state qf . Now observe that a strategy
that is guaranteed to take M to qf must have input and output alternating,
since otherwise the error state might be reached, and so a strategy will involve
applying an input, waiting for the output, and then applying the next input.
This corresponds exactly to a strategy for G and so a strategy µ takes M to
qf if and only if µ is a winning strategy for G. The result now follows from
the fact that we can construct M from G in polynomial time and the problem
of deciding whether there is a winning strategy for a two player ∃∀ game with
incomplete information is EXPTIME-hard [41]. �

Now consider non-FIFO channels.

Definition 6 Strategy µ reaches the state s of M with non-FIFO channels if
s is a stable state, there is an upper bound on the length of the sequences in
Int′(µ) ∩ L(M) and for all σ ∈ Int′(µ) ∩ L(M) that label maximal walks of M
that end in stable states, we have that every walk of M from state s0 with label
σ has ending state s.

The use of non-FIFO channels introduces an important difference: if from
a stable state we send a sequence σ1 of inputs before waiting for output (i.e.
moving from stable states to other stable states) then these inputs might be
received in any order. This allows us to simulate non-determinism in a ∃∀ game
in the following way.

Theorem 4 For asynchronous testing with non-FIFO channels, the problem
of deciding whether there is a strategy that reaches a state s of IOTS M is

12

EXPTIME-hard. In addition, this result holds even if we restrict M to being
deterministic.

Proof
We will prove this by showing that an instance of an ∃∀ game with incomplete
information can be converted into the problem of reaching a state of an IOTS
through non-FIFO channels. We therefore assume that we have ∃∀ game G with
incomplete information that has winning state s.

Below we form an IOTSM(G), with a new input ?i0, where a strategy that
reaches state s defines a winning strategy for G. We also have a new state se
that will represent an ‘error state’: from se (se 6= s) all transitions are self-loops
labelled with input and so it is not possible to get from se to s. Let d denote an
upper bound on the degree of branching in G: for every state s of G and input
?i, the ∀ player has no more than d possible responses to the ∃ player supplying
?i in state s.

Consider a state si of G and input ?i that could be supplied by the ∃ player.
and assume that the ∀ player has d′ ≤ d possible responses. Then we introduce
a walk (s1i , ?i0, s

2
i), (s

2
i , ?i0, s

3
i) . . . (s

d−1
i , ?i0, s

d
i) in which s1i = si. We order the

possible responses of the ∀ player to ?i in state si and let us suppose that the jth
possible response involves output !oj and moving to state uji . We will use the

arrival of ?i in state sji to represent the jth possible move for the ∀ player and

include a transition (sji , ?i, t
j
i). If d′ < d then for all d′ ≤ j < d we let the jth

choice be arbitrarily set to one of the allowed responses of the ∀ player. From tji
we include a walk whose label has d− j instances of ?i0 followed by output !oj
and M(G) moving to state uji . Thus, each possible response to ?i is triggered
from at least one point at which ?i might arrive in an input sequence consisting
of ?i and d− 1 instances of ?i0. If any input other than ?i0 is received in one of
these states, on the walk from tji to uji , thenM(G) moves to state se. Note that
when considering different inputs in si we use the same intermediate states of
the form sji . This ensures thatM(G) is deterministic. We now completeM(G)
to make it input-enabled by making the input of ?i0 in a state sdi ofM(G) lead
to se.

Now consider a strategy µ that movesM(G) to state s. Then µ must operate
in the following way: apply an input ?i and also apply ?i0 a total of d−1 times.
The next input, if any, is determined by the output produced. Each possible
response of the ∀ player is simulated by a possible number of ?i0 that arrive
before ?i and so a strategy for reaching s defines a winning strategy for G. Thus,
a strategy reaches state s of M(G) if and only if it defines a winning strategy
of G. Thus, the result follows from the outcome problem for ∃∀ games with
incomplete information being EXPTIME-complete [41]. �

5. Executing transitions

One of the standard test criteria used when testing from a state machine is
transition coverage: we wish to apply a set of test cases that is guaranteed to

13

lead to every transition being executed. This criterion has been explored in the
context of asynchronous testing with FIFO channels [29] but algorithms were
not given for generating test cases that satisfy this criterion2 and so complexity
issues were not considered. In order to execute a transition t of M we need to
take M to the starting state of t and then apply the input of t. As a result, it
might initially seem that this is identical to reachability but there is a difference:
when executing a transition we do not require that the strategy terminates once
the objective has been achieved.

In this section we prove that we can represent the problem of reaching a
state in terms of executing a transition and that the converse also holds. Before
doing this we define what it means for a strategy to execute a transition when
there are FIFO channels and also when there are non-FIFO channels.

Definition 7 Strategy µ executes transition t of M with FIFO channels if there
is an upper bound on the length of sequences in Int(µ) ∩ L(M) and for all σ ∈
Int(µ)∩L(M) that is not a proper prefix of another sequence in Int(µ)∩L(M)
we have that every walk of M from state s0 with label σ contains t.

Definition 8 Strategy µ executes transition t of M with non-FIFO channels
if there is an upper bound on the length of sequences in Int′(µ) ∩ L(M) and
for all σ ∈ Int′(µ) ∩ L(M) that is not a proper prefix of another sequence in
Int′(µ)∩L(M) we have that every walk of M from state s0 with label σ contains
t.

First we show how we can express the problem of executing a transitions t
in terms of reachability. For transition t = (s, x, s′) of M we form a new IOTS
Mt by adding a new state st, change t to t′ = (s, x, st) and in st having a self-
loop (st, ?i, st) for every input ?i. The following properties are clear from the
definition of Mt, with the only differences between M and Mt occurring after
the execution of t in M and t′ in Mt.

Proposition 2 Let us suppose that t = (s, x, s′) is a transition of IOTS M and
t′ is the transition (s, x, st) of Mt. Then the following hold for both FIFO and
non-FIFO channels:

1. Given a strategy µ, µ executes t in M if and only if µ executes t′ in Mt.

2. Given a strategy µ, µ executes t′ in Mt if and only if µ reaches state st in
Mt.

Then any strategy that reaches st in Mt executes t in M and any strategy
that executes t in M reaches st in Mt. This leads to the following results.

2Instead, the authors considered the problem of deciding whether a given input sequence,
which executes a transition t when using synchronous testing, ensured that t is executed when
using FIFO channels.

14

Theorem 5 The problem of deciding whether there exists a strategy that exe-
cutes a transition t of a deterministic IOTS M in asynchronous testing with
FIFO channels can be solved in linear time.

Proof
We can construct deterministic Mt in constant time. From Proposition 2 we
know that a strategy leads to t being executed in M if and only if it reaches the
state st in Mt. The result thus follows from Theorem 1. �

Theorem 6 The problem of deciding whether there exists a strategy that ex-
ecutes a transition t of an observable IOTS M in asynchronous testing with
FIFO channels can be solved in polynomial time.

Proof
We can construct observable Mt in constant time and we know that a strategy
leads to t being executed in M if and only if it leads to the state st in Mt. The
result thus follows from Theorem 2. �

We now show how we can express the problem of reaching a stable state s
of M in terms of covering a transition. In order to achieve this we produce an
IOTS Ms from M by introducing a new input ?is such that ?is takes Ms from
s to a new state sp and takes every other state to an error state se. The only
transitions from se and sp are self-loops labelled with input. We do this for the
special case in which there are no output sequences of length more than 1 and
all transitions that reach s produce output. This condition is satisfied by the
IOTS used in the proofs of Theorems 3 and 4 and ensures that the tester knows
when the strategy is complete; there are no more outputs to be produced.

Proposition 3 Let us suppose that s is a state of IOTS M , every transition of
M that ends in s has a label that is an output, there are no pairs of consecutive
transitions of M that are labelled with output, and the channels are FIFO or
non-FIFO. There exists a strategy that executes transition (s, ?is, sp) of Ms if
and only if there is a strategy that reaches state s of M .

Proof
First note that if a strategy µ reaches the state s of M then µ followed by ?is
executes the transition (s, ?is, sp) of Ms. Further, if µ executes the transition
(s, ?is, sp) of Ms then it must apply ?is in state s and not before, since otherwise
it might enter the error state. Thus, µ, with all instances of ?is and later input
removed, reaches the state s of M . The result therefore holds. �

Theorem 7 The problem of deciding whether there exists a strategy that exe-
cutes a transition t of an IOTS M in asynchronous testing with FIFO channels
is EXPTIME-hard.

Proof
This follows from Proposition 3 and Theorem 3. �

Now consider the case where channels are non-FIFO.

15

Theorem 8 The problem of deciding whether there exists a strategy that ex-
ecutes a transition t of an IOTS M in asynchronous testing with non-FIFO
channels is EXPTIME-hard. In addition, this result still holds if we restrict M
to being deterministic.

Proof
First consider a game G and with M = M(G) as constructed in the proof of
Theorem 4. Then we have that both M and Ms are deterministic. The result
thus follows from Proposition 3 and Theorem 4. �

6. Distinguishing states

In this section we consider the problem of distinguishing two states of an
IOTS. In the previous sections we were concerned with the trace of M and
what we can deduce about this from an observed trace σ. However, we can only
distinguish two states through external observations and thus not directly from
traces of M . We therefore first define the set of traces that can be observed
when interacting with M through channels: the traces that can be formed from
traces of M through delaying outputs.

Definition 9 A sequence σ ∈ (I ∪O)∗ is an external trace of IOTS M in state
s with FIFO channels if there exists σ′ ∈ LM (s) such that σ � σ′. We let
E(M, s) denote the set of external traces of M in state s with FIFO channels.
Further, given IOTS M , state s of M , and strategy µ, we let T r(M,µ, s) be
the maximal elements of E(M, s) ∩ Ev(µ): those that are not proper prefixes of
sequences in E(M, s) ∩ Ev(µ).

Thus, T r(M,µ, s) is the set of (complete) traces that can be observed when
testing M using µ when the testing starts in state s.

We can now define what it means to distinguish between two states when
there are FIFO channels.

Definition 10 A strategy µ distinguishes states s and s′ of IOTS M with FIFO
channels if there is an upper bound on the lengths of the traces in T r(M,µ, s)
and T r(M,µ, s′) and T r(M,µ, s) ∩ T r(M,µ, s′) = ∅.

This says that when using strategy µ, if σ is a possible observation when
applying µ from state s then it is not a possible observation when applying µ
from state s′ and that the converse also applies. We can now extend this to
non-FIFO channels.

Definition 11 A sequence σ ∈ (I ∪ O)∗ is an external trace of IOTS M in
state s with non-FIFO channels if there exists σ′ ∈ LM (s) such that σ v σ′.
We let E ′(M, s) denote the set of external traces of M in state s with non-
FIFO channels. Further, given IOTS M , state s of M , and strategy µ, we let
T r′(M,µ, s) be the maximal elements of E ′(M, s) ∩ Ev(µ): those that are not
proper prefixes of sequences in E ′(M, s) ∩ Ev(µ).

16

We can now define what it means to distinguish between two states when
the channels are non-FIFO.

Definition 12 A strategy µ distinguishes states s and s′ of IOTS M with
non-FIFO channels if there is an upper bound on the lengths of the traces in
T r′(M,µ, s) and T r′(M,µ, s′) and T r′(M,µ, s) ∩ T r′(M,µ, s′) = ∅.

As before, if M is observable and we are using FIFO channels then it is
sufficient to consider only strategies that apply input in stable states.

Proposition 4 There is a strategy µ that distinguishing states s1 and s2 of an
observable IOTS M in asynchronous testing with FIFO channels if and only if
there is such a strategy µ′ that only applies inputs in stable states when applied
to s1 or s2.

Proof
If s1 and s2 are not stable states then in each case there will be an output
sequence before a stable state is reached and we can consider all such output
sequences. If different output sequences are produced from s1 and s2, when
reaching stable states, then there is no need to apply any further input. Thus,
we only need to consider identical initial output sequences from s1 and s2 and
since M is observable we know when a stable state has been reached. Now
assume that for s1 and s2 we have that the output sequence σ takes M to stable
states. Consider one possible first input ?i sent when µ is used to test M such
that ?i is sent after an output sequence σ′ that is a prefix of σ. As with the
proof of Proposition 1, we cannot know that ?i is not applied in a stable state.
Thus, µ must define a strategy for the case where ?i arrives after σ and so when
?i arrives in a stable state. We can therefore produce a strategy µ1 from µ by
requiring that ?i is applied in a stable state. We can now repeat this process to
obtain a strategy in which inputs are only applied in stable states.

The converse direction follows immediately and so the result holds. �
Given state s of M let M(s) denote the IOTS formed by making s the

initial state of M . Given states s1 and s2 we can form the IOTS S(M(s1)) and
S(M(s2)) that represent the behaviours of M(s1) and M(s2) respectively when
input is only applied in stable states.

The following is clear.

Proposition 5 With FIFO channels, there is a strategy that distinguishes states
s1 and s2 of observable IOTS M if and only if there is a strategy that distin-
guishes S(M(s1)) and S(M(s2)).

Definition 13 Given two observable IOTSs M1 = (S1, s
1
0, I, O, h1) and M2 =

(S1, s
2
0, I, O, h2) the product P (M1,M2) is the tuple ((S1×S2)∪{sf}, (s10, s20), I, O, h)

in which sf is not a state of M1 or M2 and the relation h is defined by the fol-
lowing.

1. Given (s1, s2) ∈ S1×S2 and a ∈ I ∪O, if h1(s1, a) = {s′1} and h2(s2, a) =
{s′2} then h((s1, s2), a) = {(s′1, s′2)}.

17

2. Given (s1, s2) ∈ S1 × S2 and !o ∈ O, if h1(s1, !o) 6= ∅ and h2(s2, !o) = ∅
or h1(s1, !o) = ∅ and h2(s2, !o) 6= ∅ then h((s1, s2), !o) = {sf}.

3. The only transitions with starting state sf are self-loops with input.

The following is clear from the definition of the product P (M1,M2) of IOTSs
M1 and M2.

Proposition 6 A strategy µ distinguishes states s1 and s2 of observable IOTS
M in asynchronous testing with FIFO channels if and only if it reaches the state
sf of P (S(M(s1)), S(M(s2))).

Theorem 9 Given two states s1 and s2 of an observable IOTS M , in asyn-
chronous testing with FIFO channels we can decide in polynomial time whether
there is a strategy that distinguishes s1 and s2.

Proof
By Proposition 6 we know that it is sufficient to determine whether there is
a strategy that reaches the state sf of P (S(M(s1)), S(M(s2))). In addition,
it is clear that P (S(M(s1)), S(M(s2))) is observable. If M has n states then
P (S(M(s1)), S(M(s2))) hasO(n2) states and so the result follows from Theorem
2. �

Theorem 10 Given two states s1 and s2 of an IOTS M , in asynchronous
testing with FIFO channels the problem of deciding whether there is a strategy
that distinguishes s1 and s2 is EXPTIME-hard.

Proof
We will prove that if we can solve this then we can also solve the reachability
problem. We therefore assume that we have an instance of the reachability
problem in asynchronous testing with FIFO channels based on IOTS M and
state sk. We can assume that sk is a stable state since otherwise we know that
it is not reachable. We also assume that every transition of M that ends in sk
has a label that is an output and there are no pairs of consecutive transitions
of M that are labelled with output. We can obtain a new IOTS M ′ from M in
the following way:

1. For each state si of M we have two copies, s′i and s′′i , the initial state
being s′0.

2. For a ∈ I ∪ O there is a transition (s′′i , a, s
′′
j) if and only if (si, a, sj) is a

transition of M .

3. For every transition (si, a, sj) of M we have the transition (s′i, a, s
′
j).

4. We add a special input ?is such that from state s′k the IOTS M ′ moves to
a special state sw and outputs a unique value !ow 6∈ O, from every state
of the form s′i with i 6= k there is a transition (s′i, ?is, s

′′
i) and from every

state of the form s′′i there is a transition (s′′i , ?is, s
′′
i).

18

This IOTS starts in state s′0 and behaves like M until input ?is is received.
If the machine is in state s′i when ?is is first received then either i = k and the
special output !ow is produced and otherwise no output is produced and it moves
to state s′′i . From there it behaves likeM . Thus, a strategy µ distinguishes states
s′0 and s′′0 of this IOTS if and only if µ, with ?is and all input after ?is removed,
reaches state sk. Thus, by Theorem 3, the problem of deciding whether there
is a strategy to distinguish states is EXPTIME-hard and so the result holds. �

When considering non-FIFO channels we get the following whose proof is
equivalent to that of Theorem 10 except that it uses Theorem 4 rather than
Theorem 3.

Theorem 11 Given two states s1 and s2 of an IOTS M , in asynchronous test-
ing with non-FIFO channels the problem of deciding whether there is a strategy
that distinguishes s1 and s2 is EXPTIME-hard. In addition, this result holds
even if we restrict M to being deterministic.

7. The Oracle Problem

In testing, the problem of deciding whether an observation is consistent with
the specification is called the Oracle Problem. We will assume that we have com-
pleted a test run and therefore that the SUT has reached a stable state and all
output that has been produced has been observed. We are therefore interested
in the walks of M that reach stable states and will let Lδ(M) denote the corre-
sponding language: the set of traces in L(M) that label walks from s0 to stable
states. It has been shown that given a sequence σ of observations, made when
testing through FIFO channels, it is possible to define a finite automaton with
O(|σ|2) states that accepts all sequences that the SUT might have produced:
those in which the delay of output can lead to the observation of σ [14]. Further,
this can be achieved in O(|σ|2) time. This leads to the following result.

Theorem 12 Given σ ∈ (I∪O)∗ with length k and IOTS M with p transitions,
it is possible to decide whether there exists σ′ ∈ Lδ(M) such that σ � σ′ in
O(k2p) time.

Proof
We can produce a finite automaton N that accepts all σ′ with σ � σ′ in O(k2)
time [14]. It is therefore sufficient to decide whether L(N)∩Lδ(M) is empty and
this can be decided in O(k2p) time by forming a finite automaton that accepts
the language L(N) ∩ Lδ(M). The result therefore holds. �

We now investigate the Oracle Problem for asynchronous testing with non-
FIFO channels: the problem of deciding whether, for an observed sequence σ
and IOTS M , there exists a sequence σ′ that is consistent with σ (σ v σ′) and
that is in Lδ(M). We prove that this problem is NP-hard by showing that we
can reduce the following to this problem.

19

Definition 14 Given boolean variables z1, . . . , zr let C1, . . . , Ck denote sets of
three literals, where each literal is either a variable zi or its negation. The
three-in-one SAT problem is to decide whether there exists an assignment to the
boolean variables such that each Ci contains exactly one true literal.

The three-in-one SAT problem is known to be NP-hard [42].

Theorem 13 Let us suppose that σ is a trace using the same input and output
alphabets as the IOTS M and we are using asynchronous testing with non-FIFO
channels. Then the problem of deciding whether there exists σ′ ∈ L(M) that can
take M to a stable state such that σ v σ′ is NP-complete. In addition, this result
holds even if we restrict M to being deterministic.

Proof
First we show that the problem is in NP by considering the following procedure.
We first guess an order σ′ of the elements of E(σ), σ = a1, . . . , ak, and check
that this order is consistent with the partial order on the elements of σ: if ai ∈ O
and aj ∈ I for i < j then ai must appear before aj in σ′. If σ′ passes this check
then we determine whether σ′ ∈ Lδ(M). Then, there exists σ′ ∈ L(M) that can
take M to a stable state such that σ v σ′ if and only if some guess σ′ passes
the two checks and since these checks can be performed in polynomial time we
have that the Oracle Problem is in NP.

We now prove that the problem is NP-hard and assume that we have an
instance of the three-in-one SAT problem with variables z1, . . . , zr and clauses
C1, . . . , Ck and show how this can be reduced to an instance of the Oracle
Problem for asynchronous testing with non-FIFO channels.

We will define a deterministic IOTS M with two ‘core’ states, s0, s1, and
‘error’ states s1e and s2e. The inputs of M are ?i0, ?i1, . . . , ?ir and the outputs
of M are !o1, . . . , !ok, !oe.

If input ?ij with 1 ≤ j ≤ r is received in state s0 then the IOTS simulates
the case where variable zj is true by producing output !op for each clause Cp
that contains the literal zj . This is achieved by a cycle that starts and ends at
s0 and starts with input ?ij .

Similarly, if input ?ij with 1 ≤ j ≤ r is received in state s1 then the IOTS
simulates the case where variable zj is false by producing output !op for each
clause Cp that contains the literal ¬zj .

Input ?i0 moves M from state s0 to state s1 and in states s1, s1e and s2e it
leads to no change in state. The first ?i0 received, if received in state s0, thus
moves M from the state where inputs represent variables that are true to the
state where inputs represent variables that are false.

If an input is received in a state other than s0, s1, s1e, or s2e then it takes M
to error state s1e. From state s1e there is a transition with label !oe to s2e. The
only other transitions from s1e and s2e are self-loops labelled with input.

Now consider σ =?i0?i1 . . .?ir!o1!o2 . . .!ok and IOTS M . Since σ does not
contain output !oe, if there is σ′ ∈ L(M) that can take M to a stable state
such that σ v σ′ then we must have that the corresponding walk of M does not

20

include state s1e. Thus, each input must be applied in either state s0 or state
s1. In addition, the inputs might have arrived at M in any order. In particular,
we cannot know whether an input ?ij , 1 ≤ i ≤ r, was received before or after
?i0. Thus, an input ?ij , 1 ≤ i ≤ r, might either have led to output !op for
each clause Cp that contains the literal zj or might have led to output !op for
each clause Cp that contains the literal ¬zj . In addition, the outputs are all
observed after the inputs and so we cannot know which outputs were produced
in response to particular inputs. The outputs !o1!o2 . . .!ok also represent the case
where each clause Ci contains exactly one literal that is true, for the values of
the boolean variables represented by the transitions triggered by the ?ij . Thus,
there exists σ′ ∈ L(M) that can take M to a stable state such that σ v σ′ if
and only if there is an assignment of truth values to variables z1, . . . , zr such
that each clause Cp contains exactly one literal that is true. We have therefore
reduced the three-in-one SAT problem to that of deciding whether there exists
σ′ ∈ L(M) that can take M to a stable state such that σ v σ′. The result now
follows from observing that the three-in-one SAT problem is NP-hard and that
both M and σ can be produced in polynomial time. �

Now consider the alternative case where it is possible that not all outputs
have been observed yet. We can adapt the proof that the problem is NP-hard as
follows. Instead of considering an instance of the three-in-one SAT problem we
consider an instance of the SAT problem with variables z1, . . . , zr and clauses
C1, . . . , Ck. Here each clause is a set of literals and there is a solution to the SAT
problem if and only if there is an assignment of values to the boolean variables
z1, . . . , zr such that each clause contains at least one literal that is true. All
other parts of the proof (that the problem is NP-hard) remain the same since
for σ =?i0?i1 . . .?ir!o1!o2 . . .!ok we have that there is some σ′ ∈ L(M) such that
σ v σ′ if and only if there is an assignment to the boolean variables such that
each clause Ci contains at least one true literal (and so the sequence of outputs
produced contains at least one instance of !oi).

8. Conclusions

In model based testing (MBT) we base testing on a model M of the system
under test or some aspect of the SUT. Typically, M is expressed as a state-based
model such as a finite state machine or an input output transition system (IOTS)
and communications are synchronous. Thus, many MBT approaches assume
that the communications between the tester and the SUT are synchronous but
there are important classes of system where this is unlikely to be the case. While
we can compose M with models of the communications channels and then apply
standard MBT approaches, this can lead to a significant increase in the state
space.

In this paper we considered the problem of testing from an IOTS M where
the SUT interacts with its environment through asynchronous channels. We
considered the problem of producing strategies (test cases) that are guaranteed
to reach a state, execute a transition or distinguish two states. We first con-
sidered the use of FIFO channels. We showed that the above problems can be

21

solved in polynomial time for an observable model M . However, the general
problems are EXPTIME-hard. While M can be used to drive test case genera-
tion, it can also be used to check whether an observed sequence of observations
contains a failure (the Oracle Problem). When channels are FIFO the Oracle
Problem can be solved in polynomial time.

We also investigated the case where the channels are non-FIFO. It transpired
that all of the test case generation problems considered are EXPTIME-hard. In
addition, the Oracle Problem is NP-complete. These results hold even if we
restrict attention to the case where M is deterministic. It is clear that the
test case generation problems are semi-decidable, however, we leave as an open
question whether they are in EXPTIME.

Many systems interact with their environment through non-FIFO channels,
an important class being any system that communicates via the Internet. The
results in this paper suggest that non-FIFO channels introduce significant prac-
tical issues into testing. It may thus be best to test such systems without using
the channels; by directly supplying input to the SUT and receiving output di-
rectly from the SUT. However, this is likely to be difficult for distributed systems
and for such systems we may need to devise design for test guidelines that lead
to systems that are easier to test.

There are several other possible lines of future work. For test case generation,
we might also consider strategies that are likely to achieve an objective. In
addition, while a number of the problems were NP-complete or EXPTIME-
hard, it would be interesting to investigate reasonable conditions under which
there are polynomial time solutions. Finally, it would be interesting to extend
the results to certain types of model that have been proposed for distributed
systems. Two types of model of particular note are those that use partial orders,
rather than inputs and outputs, to label transitions [19, 46] and models in which
the response to an input ?i in state s not being specified in model M means
that if M receives ?i when in state s then ?i is retained in the input queue [29].

References

[1] H. AboElFotoh, O. Abou-Rabia, and H. Ural. A test generation algorithm
for protocols modeled as non-deterministic FSMs. The Software Engineer-
ing Journal, 8(4):184–188, 1993.

[2] A. V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar. An optimization tech-
nique for protocol conformance test generation based on UIO sequences and
Rural Chinese Postman Tours. In Protocol Specification, Testing, and Ver-
ification VIII, pages 75–86, Atlantic City, 1988. Elsevier (North-Holland).

[3] A. V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar. An optimization
technique for protocol conformance test generation based on UIO sequences
and rural chinese postman tours. IEEE Transactions on Communications,
39(11):1604–1615, 1991.

22

[4] R. Alur, C. Courcoubetis, and M. Yannakakis. Distinguishing tests for
nondeterministic and probabilistic machines. In 27th ACM Symposium on
Theory of Computing, pages 363–372, 1995.

[5] M. Barnett, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann,
and M. Veanes. Towards a tool environment for model-based testing with
AsmL. In Formal Approaches to Testing, volume 2931 of Lecture Notes
in Computer Science, pages 252–266, Montreal, Canada, 2003. Springer-
Verlag.

[6] Puneet Bhateja, Paul Gastin, and Madhavan Mukund. A fresh look at test-
ing for asynchronous communication. In Automated Technology for Verifi-
cation and Analysis, 4th International Symposium (ATVA 2006), volume
4218 of Lecture Notes in Computer Science, pages 369–383. Springer, 2006.

[7] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Asynchronous
observations of processes. In First International Conference on the Foun-
dations of Software Science and Computation Structure (FoSSaCS 1998),
volume 1378 of Lecture Notes in Computer Science, pages 95–109. Springer,
1998.

[8] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. A theory of “may”
testing for asynchronous languages. In Second International Conference on
the Foundations of Software Science and Computation Structure (FoSSaCS
1999), volume 1578 of Lecture Notes in Computer Science, pages 165–179.
Springer, 1999.

[9] Ilaria Castellani and Matthew Hennessy. Testing theories for asynchronous
languages. In 18th Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 1998), volume 1530 of Lecture
Notes in Computer Science, pages 90–101. Springer, 1998.

[10] T. Y. Chen, T. H. Tse, and Z. Zhou. Fault–based testing in the absence
of an oracle. In IEEE Annual International Computer Software and Ap-
plications Conference (COMPSAC 2001), pages 172–178. IEEE Computer
Society Press, 2002.

[11] T. Y. Chen, T. H. Tse, and Z. Zhou. Fault-based testing in the absence of
an oracle. Information and Software Technology, 45(1):1–9, 2003.

[12] Tsong Yueh Chen, Joshua W. K. Ho, Huai Liu, and Xiaoyuan Xie. An
innovative approach for testing bioinformatics programs using metamorphic
testing. BMC Bioinformatics, 10, 2009.

[13] T. S. Chow. Testing software design modelled by finite state machines.
IEEE Transactions on Software Engineering, 4:178–187, 1978.

[14] Adenilso da Silva Simão and Alexandre Petrenko. Generating asynchronous
test cases from test purposes. Information and Software Technology,
53:1252–1262, 2011.

23

[15] E. Farchi, A. Hartman, and S. Pinter. Using a model-based test generator
to test for standard conformance. IBM systems journal, 41(1):89–110, 2002.

[16] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating finite
state machines from abstract state machines. In Proceedings of the ACM
SIGSOFT Symposium on Software Testing and Analysis, pages 112–122,
2002.

[17] Wolfgang Grieskamp. Multi-paradigmatic model-based testing. In For-
mal Approaches to Software Testing and Runtime Verification (FATES/RV
2006), volume 4262 of Lecture Notes in Computer Science, pages 1–19.
Springer, 2006.

[18] Wolfgang Grieskamp, Nicolas Kicillof, Keith Stobie, and Victor Braber-
man. Model-based quality assurance of protocol documentation: tools and
methodology. The Journal of Software Testing, Verification and Reliability,
21(1):55–71, 2011.

[19] Stefan Haar, Claude Jard, and Guy-Vincent Jourdan. Testing input/output
partial order automata. In (TestCom/FATES 2007), volume 4581 of Lecture
Notes in Computer Science, pages 171–185. Springer, 2007.

[20] D. Harel and M. Politi. Modeling reactive systems with statecharts: the
STATEMATE approach. McGraw-Hill, New York, 1998.

[21] F. C. Hennie. Fault-detecting experiments for sequential circuits. In Pro-
ceedings of Fifth Annual Symposium on Switching Circuit Theory and Log-
ical Design, pages 95–110, Princeton, New Jersey, November 1964.

[22] R. M. Hierons. Adaptive testing of a deterministic implementation against
a nondetermistic finite state machine. The Computer Journal, 41(5):349–
355, 1998.

[23] R. M. Hierons. Testing from a non-deterministic finite state machine using
adaptive state counting. IEEE Transactions on Computers, 53(10):1330–
1342, 2004.

[24] Robert M. Hierons. Applying adaptive test cases to nondeterministic im-
plementations. Information Processing Letters, 98(2):56–60, 2006.

[25] Robert M. Hierons. Reaching and distinguishing states of distributed sys-
tems. SIAM Journal of Computing, 39(8):3480–3500, 2010.

[26] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleave-
land, John Derrick, Jeremy Dick, Marian Gheorghe, Mark Harman,
Kalpesh Kapoor, Paul Krause, Gerald Lüttgen, Anthony J. H. Simons,
Sergiy A. Vilkomir, Martin R. Woodward, and Hussein Zedan. Using for-
mal specifications to support testing. ACM Computing Surveys, 41(2),
2009.

24

[27] Robert M. Hierons and Hasan Ural. Optimizing the length of checking
sequences. IEEE Transactions on Computers, 55(5):618–629, 2006.

[28] Jiale Huo and Alexandre Petrenko. On testing partially specified IOTS
through lossless queues. In 16th IFIP International Conference on the
Testing of Communicating Systems (TestCom 2004), volume 2978 of Lec-
ture Notes in Computer Science, pages 76–94. Springer, 2004.

[29] Jiale Huo and Alexandre Petrenko. Transition covering tests for systems
with queues. Software Testing, Verification and Reliability, 19(1):55–83,
2009.

[30] Claude Jard, Thierry Jéron, Hakim Kahlouche, and César Viho. Towards
automatic distribution of testers for distributed conformance testing. In
TC6 WG6.1 Joint International Conference on Formal Description Tech-
niques and Protocol Specification, Testing and Verification (FORTE 1998),
volume 135 of IFIP Conference Proceedings, pages 353–368. Kluwer, 1998.

[31] Claude Jard, Thierry Jéron, Lénaick Tanguy, and César Viho. Remote test-
ing can be as powerful as local testing. In Joint International Conference
on Formal Description Techniques for Distributed Systems and Communi-
cation Protocols (FORTE XII) and Protocol Specification, Testing and Ver-
ification (PSTV XIX), volume 156 of IFIP Conference Proceedings, pages
25–40. Kluwer, 1999.

[32] D. Lee and M. Yannakakis. Testing finite-state machines: State identifi-
cation and verification. IEEE Transactions on Computers, 43(3):306–320,
1994.

[33] D. Lee and M. Yannakakis. Principles and methods of testing finite-state
machines - a survey. Proceedings of the IEEE, 84(8):1089–1123, 1996.

[34] G. L. Luo, G. v. Bochmann, and A. Petrenko. Test selection based on
communicating nondeterministic finite-state machines using a generalized
Wp-method. IEEE Transactions on Software Engineering, 20(2):149–161,
1994.

[35] A. Jefferson Offutt and Aynur Abdurazik. Generating tests from UML spec-
ifications. In Second International Conference on the The Unified Modeling
Language (UML 1999), volume 1723 of Lecture Notes in Computer Science,
pages 416–429. Springer, 1999.

[36] Olaf Owe, Martin Steffen, and Arild B. Torjusen. Model testing asyn-
chronously communicating objects using modulo ac rewriting. Electronic
Notes Theoretical Computer Scence., 264(3):69–84, 2010.

[37] A. Petrenko, N. Yevtushenko, A. Lebedev, and A. Das. Nondeterministic
state machines in protocol conformance testing. In Proceedings of Protocol
Test Systems, VI (C-19), pages 363–378, Pau, France, 28-30 September
1994. Elsevier Science (North-Holland).

25

[38] A. Petrenko, N. Yevtushenko, and G. v. Bochmann. Testing deterministic
implementations from nondeterministic FSM specifications. In Testing of
Communicating Systems, IFIP TC6 9th International Workshop on Testing
of Communicating Systems, pages 125–141, Darmstadt, Germany, 9–11
September 1996. Chapman and Hall.

[39] Alexandre Petrenko, Nina Yevtushenko, and Jiale Huo. Testing transition
systems with input and output testers. In 15th IFIP International Confer-
ence on Testing of Communicating Systems (TestCom 2003), volume 2644
of Lecture Notes in Computer Science, pages 129–145. Springer, 2003.

[40] M. O. Rabin and D. Scott. Finite automata and their decision problems.
IBM Journal of Research and Development, 3(2):114–125, 1959.

[41] John H. Reif. The complexity of two-player games of incomplete informa-
tion. Journal of Computer and System Sciences, 29(2):274–301, 1984.

[42] Thomas J. Schaefer. The complexity of satisfiability problems. In Tenth
Annual ACM Symposium on Theory of Computing (STOC), pages 216–226,
1978.

[43] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal
of Computing, 1(2), 1972.

[44] P. Tripathy and K. Naik. Generation of adaptive test cases from non-
deterministic finite state models. In Proceedings of the 5th International
Workshop on Protocol Test Systems, pages 309–320, Montreal, September
1992.

[45] Louis Verhaard, Jan Tretmans, Pim Kars, and Ed Brinksma. On asyn-
chronous testing. In Proceedings of the IFIP TC6/WG6.1 Fifth Inter-
national Workshop on Protocol Test Systems (Protocol Test Systems V),
volume C-11 of IFIP Transactions, pages 55–66. North-Holland, 1992.

[46] Gregor von Bochmann, Stefan Haar, Claude Jard, and Guy-Vincent Jour-
dan. Testing systems specified as partial order input/output automata. In
20th IFIP TC 6/WG 6.1 International Conference on Testing of Software
and Communicating Systems (TestCom/FATES), volume 5047 of Lecture
Notes in Computer Science, pages 169–183. Springer, 2008.

[47] Martin Weiglhofer and Franz Wotawa. Asynchronous input-output con-
formance testing. In Proceedings of the 33rd Annual IEEE International
Computer Software and Applications Conference (COMPSAC 2009), pages
154–159. IEEE Computer Society, 2009.

[48] E. J. Weyuker. On testing non-testable programs. The Computer Journal,
25(4):465–470, 1982.

[49] Fan Zhang and To-Yat Cheung. Optimal transfer trees and distinguishing
trees for testing observable nondeterministic finite-state machines. IEEE
Transactions on Software Engineering, 29(1):1–14, 2003.

26

