

Schema theory for Gene Expression
Programming

A thesis submitted for the degree of

Doctor of Philosophy

by

Zhengwen Huang

School of Engineering and Design

Brunel University, Uxbridge

30th September 2012

Abstract

This thesis studied a new variant of Evolutionary Algorithms called Gene Expression

Programming. The evolution process of Gene Expression Programming was investigated

from the practice to the theory. As a practice level, the original version of Gene Expression

Programming was applied to a classification problem and an enhanced version of the

algorithm was consequently developed. This allowed the development of a general

understanding of each component of the genotype and phenotype separated representation

system of the solution employed by the algorithm. Based on such an understanding, a version

of the schema theory was developed for Gene Expression Programming. The genetic

modifications provided by each genetic operator employed by this algorithm were analysed

and a set of theorems predicting the propagation of the schema from one generation to

another was developed. Also a set of experiments were performed to test the validity of the

developed schema theory obtaining good agreement between the experimental results and the

theoretical predictions.

i

Declaration

I hereby declare that no part of this thesis has been previously submitted to this or any other
university as part of the requirement for a higher degree. The work described herein was
conducted solely by the undersigned except for those colleagues and other workers
acknowledged in the text.

Zhengwen Huang

 September 30th 2012

ii

Dedication

To my father, mother and my wife

iii

Acknowledgements

I would like to acknowledge the following people for their help and encouragement over the

duration of my thesis work.

Thanks go to my supervisor, Dr Liliana Teodorescu, for her help over the course of my PhD,
and for reading and suggesting my thesis, through all its iterations.

Thanks to Dr Daniel Sherwood for being a great example of a successful PhD student for me.

Thanks to Dr Rajiv Bose for his suggestion on the Latex template of the thesis.

Thanks to all my colleagues for sharing their knowledge and software with me.

iv

v

Contents

Abstract ··i

Declaration ···ii

Dedication ···iii

Acknowledgements ···iv

Chapter 1 Introduction ···1

1.1 Gene Expression Programming and Schema Theory ·································1

1.2 Thesis Organization ···3

Chapter 2 Gene Expression Programming ·······························5

2.1 Natural Evolution ··5

2.2 Evolutionary Algorithms ···6

2.2.1 Genetic Algorithms ···10

2.2.2 Genetic Programming ··13

2.3 Gene Expression programming ··17

2.3.1 The Representation of the Solution ···17

2.3.2 The Evolution Process ···23

2.3.3 The Genetic Operators ···28

2.3.4 The Genetic Operator Rate of GEP ··35

2.4 New Developments of GEP ··36

vi

2.5 Application of GEP ··39

Chapter 3 Schema theory ···41

3.1 GA Schema Theory ··42

3.1.1 GA Schema ··42

3.1.2 GA Schema Theorem ··43

3.2 GP Schema Theory ··44

3.2.1 GP Schema ··44

3.2.2 GP Schema Theorem ···50

3.3 GEP Schema Theory ··55

Chapter 4 GEP Schema Theory ···58

4.1 GEP and Schema ···58

4.2 GEP Schema Theory ··63

4.3 GEP Schema Theorem ··64

4.3.1 ···67

 4.3.2 𝐺 _𝑚 𝑑 𝑓 ··68

Chapter 5 GEP Schema Validation ·····································136

5.1 The Experiments ··136

5.1.1 The Experimental Methodology ···137

5.2 The Experimental Result ··143

 5.2.1 The Validation of Schema Theorem ··································143

5.2.2 The Dependence of the Schema Theorem·····························158

5.2.3 The Quality of the Chromosome containing Schema ···············165

5.3 The Outcomes of the Experiments ···168

Chapter 6 Conclusion and future work ································169

6.1 Conclusion ···169

6.2 Future work ···171

Bibliography ···173

List of Figures

Fig. 2.1. Basic procedure of Evolutionary Algorithms ····································9

Fig. 2.2. A chromosome in Genetic Algorithms··10

Fig. 2.2.1 A example of crossover in Genetic Algorithms·······························10

Fig. 2.2.2 A example of mutation in Genetic Algorithms·······························11

Fig. 2.3. Basic procedure of Genetic Algorithms····································12

Fig. 2.4. A chromosome in Genetic Programming ·······································13

Fig. 2.5. Basic procedure of Genetic Programming·····································16

Fig. 2.6. An example of a chromosome which consists of two genes ·················18

Fig. 2.7. Structure of a gene ···19

Fig. 2.8. An example of the translation between a gene and the expression tree ····22

Fig. 2.9. An example of the genetic modification ··27

Fig. 2.10. The evolution process of GEP ··28

Fig. 2.11. An example of the Inversion operation ··29

Fig. 2.12. An example of the Insertion Sequence operation ····························30

Fig. 2.13. An example of Root Insertion Sequence operation ··························31

Fig. 2.14. An example of One-Point Recombination operation ························32

Fig. 2.15. An example of Two-Point Recombination operation ·······················33

Fig. 2.16. An example of Mutation operation ··34

Fig. 2.17. Example of GEP and pGEP decoding methods······························36

Fig. 2.18. Classification accuracy as a function of number of generations for pGEP

with online FT and truncated evolution (blue) and the original GEP

(red) ···38

Fig. 3.1. GA schema example ···42

Fig. 3.2. Koza`s schema and its samples ··45

Fig. 3.3. O`Reilly`s schema and its samples ··46

vii

Fig. 3.4. Rosca’s schema and its samples ···47

Fig. 3.5. Whigham`s schema and its sample ··48

Fig. 3.6. Poli and Langdon`s schema and its samples ···································49

Fig. 4.1. Two point recombination with end point locate in H' ························83

Fig. 4.2. Two point recombination with the beginning point located in H'···········85

Fig. 4.3. Two Point Recombination with the beginning and end points located in

H'···86

Fig. 4.4. Insertion with the segment matching the schema located in the tail ········93

Fig. 4.5. Insertion with the segment matching the schema which covers both the head

and the tail ···94

Fig. 4.5.1 An example of class a) redundant insertion··································95

Fig. 4.5.2 An example of class b) redundant insertion··································96

Fig. 4.6. Insertion with the segment matching the schema locates in the head ·······99

Fig. 4.6.1 An example of class a) redundant insertion···················100

Fig. 4.6.2 An example of class b) redundant insertion···················101

Fig . 4 .6 .3 An example of redundant inser t ion · · · · · · · · · · · · · · · · · · ·102

Fig. 4.7. Root Insertion with the segment matching the schema locates in the tail·107

Fig. 4.8. Insertion with the segment matching the schema which covers both the head

and the tail ··108

Fig. 4.8.1 An example of class b) redundant Root Insertion Sequence··············109

Fig. 4.9. Root Insertion with the segment matching the schema locates in the

head··111

Fig. 4.9.1 An example of class b) redundant Root Insertion Sequence···············112

Fig. 4.10. Inversion with the segment matching the schema locates in the tail ·····116

Fig. 4.11. Inverse with the segment matching the schema which covers both the head

the tail ··117

Fig. 4.11.1 An example of class a) redundant Inversion····························118

Fig. 4.11.2 An example of class b) redundant Inversion·······························120

Fig. 4.11.3. An example of a redundant Inversion······································122

Fig. 4.12. Inverse with the segment matching the schema locates in the head ·····124

Fig. 4.12.1. End point locates in the segment matching the schema··················125

Fig . 4 .12 .2 . Beginning poin t loca tes in the segment matching the

viii

schema···127

Fig. 4.12.3. Both begin and end point locate in the segment matching the

schema···128

Fig. 4.12.4. Both begin and end point locate in the segment matching the

schema···129

Fig. 4.11.4 An example of redundant inversion··130

Fig. 5.1. The extraction of the target schemas ··140

Fig. 5.2. Population size 100-schema of length 3 starting at position 0 (OPR) ·····144

Fig. 5.3. Population size 100-schema of length 3 starting at position 1 (OPR)·····145

Fig. 5.4. Population size 100-schema of length 3 starting at position 8 (OPR)·····145

Fig. 5.5. Population size 100-schema of length 3 starting at position 9 (OPR)·····145

Fig. 5.6. Population size 100-schema of length 3 starting at position 15 (OPR)····146

Fig. 5.7. Population size 100-schema of length 3 starting at position 16 (OPR)····147

Fig. 5.8. Population size 100-schema of length 3 starting at position 1

(INVERSE) ···148

Fig. 5.9. Population size 100-schema of length 3 starting at position 2

(INVERSE) ···148

Fig. 5.10. Population size 100-schema of length 3 starting at position 8

(INVERSE) ···149

Fig. 5.11. Population size 100-schema of length 3 starting at position 9

(INVERSE) ···149

Fig. 5.12. Population size 100-schema of length 3 starting at position 15

(INVERSE) ···150

Fig. 5.13. Population size 100-schema of length 3 starting at position 16

(INVERSE) ···150

Fig. 5.14. Population size 100-schema of length 3 starting at position 1

(INSERT) ···151

Fig. 5.15. Population size 100-schema of length 3 starting at position 2

(INSERT) ···152

Fig. 5.16. Population size 100-schema of length 3 starting at position 8

(INSERT) ···152

ix

Fig. 5.17. Population size 100-schema of length 3 starting at position 9

(INSERT) ···153

Fig. 5.18. Population size 100-schema of length 3 starting at position 15

(INSERT) ···153

Fig. 5.19. Population size 100-schema of length 3 starting at position 16

(INSERT) ···154

Fig. 5. 20. Population size 100-schema of length 3 starting at position 1

(mutation) ··155

Fig. 5. 21. Population size 100-schema of length 3 starting at position 2

(mutation) ··155

Fig. 5. 22. Population size 100-schema of length 3 starting at position 8

(mutation) ··156

Fig. 5. 23. Population size 100-schema of length 3 starting at position 9

(mutation) ··156

Fig. 5. 24. Population size 100-schema of length 3 starting at position 15

(mutation) ··157

Fig. 5. 25. Population size 100-schema of length 3 starting at position 16

(mutation) ··157

Fig. 5.26. Population size 100 at Generation 20 ····································158

Fig. 5.27. Population size 100 at Generation 50 ··159

Fig. 5.28. Population size 100 at Generation 80 ··159

Fig. 5.29. Population size 100 at Generation 90 ··160

Fig. 5.30. Population size 100- schemas located in the head ··························161

Fig. 5.31. Population size 100- schemas located both in the head and in the tail ··162

Fig. 5.32. Population size 100- schemas located in the tail ···························163

Fig. 5.33. Target schema starting at position 0 ··164

Fig. 5.34. Target schema starting at position 1···165

Fig. 5.35. Target schema starting at position 8···165

Fig. 5.36. Target schema starting at position 9···166

Fig. 5.37. Target schema starting at position 15···166

x

List of Tables

Table 2.1 The typical rates of the genetic operators in GEP ····························36

xi

Chapter 1

Introduction

1.1 Gene Expression Programming and Schema Theory

Gene Expression Programming (GEP) [1] is a new member of Evolutionary

Algorithms (EA) [2] developed in 2001. It is developed based on the similar idea to

Genetic Algorithms (GA) [3] and Genetic Programming (GP) [4]. With a special

format of the solution representation structure GEP overcomes some limitations of

the previous two versions of EA and brings significant improvement on some

problems.

In order to maintain and accumulate the genetic information, GEP operates a

separated genotype and phenotype system to handle the representation of the

candidate solution. In this way, the algorithm inherits the advantages of the linear

structure of GA and of the tree structure of GP. The linear structure provided by GEP

gives a relatively simple structure of a chromosome. The tree structure also lets the

GEP have a relatively more flexible chromosome structure.

1

GEP was applied to many problems that were previously investigated with

the classical versions of EA. Such problems include combinatorial optimization,

classification, time series prediction, parametric regression, and symbolic regression.

Schema theory [3] is an attempt to explain how EA finds a good solution for

the problem and provides the theoretical foundation for the development of these

algorithms. It explores how the individuals (candidate solutions) are improved

during the evolution process by accumulating genetic modifications under the

pressure of selection. It also explores the relationship among each factor of such an

evolution process. Based on the understanding of the evolution process, the schema

theory provides a set of theorems to describe the relationship between the evolution

process and the accumulation of genetic information in the individual. With these

theorems an estimation of the propagation of the individual from one generation to

the next generation is also achieved. Many versions of Schema theory were

developed for different types of EA. Schema theory for GA is a version developed

for the linear structured individuals. While, the schema theory for GP [4] is adapted

to the flexible tree structure specific to GP.

In order to investigate and improve the performance of GEP, the schema

theory provides an important foundation. Currently the research of this topic is

highly underdeveloped. The only study available theory [5] attempts to give a GA

like solution. In this thesis a schema theory for GEP which concentrates more on the

character of GEP is presented.

GEP combines the advantage of the linear structure of GA and the flexible

tree structure of GP. The schema theory for GEP takes into consideration these two

factors. The character of the genetic operation is also involved in the consideration of

the schema theory for GEP.

A definition of the schema of GEP was investigated and designed. A set of

theorems which provide the estimation of the minimal number of the chromosomes

containing certain genetic features and their propagation from one generation to

another were developed. The validity of these theorems was experimentally

investigated using GEP for solving a signal and background classification problem

using a dataset from particle physics.

2

 In order to perform these experimental studies an implementation of GEP

was developed by this thesis author. A preliminary version of the software

application was presented by the author at the IEEE Nuclear Science Symposium

and Medical Imaging Conference Dresden Germany, 2008. It was also used in the

study presented at Advanced Computing and Analysis Techniques (ACAT) 2008

and was published in [6].

1.2 Thesis organization

This thesis is organised as followed:

• Chapter 1 presents a brief description of the subject, the research goals and

the organisation of the thesis.

• Chapter 2 presents a detailed description of GEP. The EA and its two

variants, GA and GP, are briefly discussed in order to introduce the key

concepts and the differences introduced by GEP. The recent developments

and applications of the GEP are also summarised in this chapter.

• Chapter 3 presents an introduction of the schema theory for GA, GP and GEP.

• Chapter 4 presents a version of the schema theory for GEP developed in this

thesis. The relationship between the genetic modification and the evolution

process is detailed. The propagation of a chromosome matching a schema

during the evolution process is analysed by considering the modifications

provided by the genetic operators. The disruption of the modification of the

chromosomes matching a schema by each operator was investigated. A set of

theorems were developed to provide the estimation of the number of

chromosomes matching a schema which is propagated from one generation to

another.

3

• Chapter 5 presents the experiments performed in order to test the validity of

the theorems developed. One genetic operator of four type of genetic

operation (Recombination, Mutation, Insertion and Transposition) was

considered in these experiments.

• Chapter 6 presents the conclusions of the studies performed in this thesis as

well as possible future developments.

4

Chapter 2

Gene Expression Programming

2.1 Natural Evolution

The evolution process in nature is a process of developing the individuals of a

species. Under pressure of natural selection [7] the individuals improve their ability

to survive in the natural environment. The individuals with characteristics that can fit

the requirements of the environment are propagated generation by generation; the

number of individuals without such characteristics decreases generation by

generation.

5

 The characteristics of the individuals are controlled by Deoxyribonucleic acid

(DNA) [8, 9, 10] and protein in their cell. The chromosome of an individual consists

of an organized structure of DNA and protein. During the evolution process the

chromosome is inherited generation by generation [11,12,13]. However, the

chromosomes are not entirely copied (without any change) from the previous

generation. Some segments of the chromosome are modified randomly. Such a

modification does not change the organized structure of the chromosome (only some

components are changed). The modified chromosome can still be inherited by the

offspring of the individual. Those DNA which make the individual in the current

generation to have fitter characteristics are inherited by the offspring. Under the

selection pressure with the genetic information extracted from the inherited DNA the

appearance of the fitter individuals in the next generation is also guaranteed (the

survival probability of individuals with a fitter character are higher than those

without it).

 Therefore, the evolution process can be considered as a process in which the

change on the genetic information is accumulated by modifying the components of

the chromosome of an individual. This accumulation process is achieved under the

pressure of the nature selection. With the fitter characteristics achieved by the

accumulated modification on the chromosome, the owner of such a chromosome (an

individual of a species) is getting fitter for the requirements of the natural

environment. The better fitting ability for the requirements of the natural

environment also allows the owner of such a chromosome to have a high probability

to generate more offspring with similar fitter characteristics in the next generation.

2.2 Evolutionary Algorithms

 In computer science, Evolutionary Algorithms (EA) are proposed to simulate

the mechanism of natural evolution in order to generate a solution to a given problem

[7]. It applies Darwin`s theory [7] on finding the solution of various problems that

are not easily solved by the conventional methods.

6

 EA use the following terminology:

• Chromosome

As described in the previous section, a chromosome in the natural

evolution is a “container” for the genetic information of an individual. In EA, a

chromosome is designed to hold the candidate solution of a given problem. It can

be represented in many formats corresponding to different problems. The

solution of given problem is then encoded in the chromosome.

• Individual

The individual in Nature is the owner of the chromosome. In EA, there is

no significant difference between the chromosome and its owner, Individual.

Chromosome and Individual have the similar meaning. An individual in EA can

then be considered as the candidate solution to the given problem.

• Population

The population in Nature is a set of individuals belonging to the same

species. In EA, the population is a set of chromosomes (individuals) belonging to

the same generation.

• Evaluation

The evaluation is a procedure to credit the performance of a chromosome

(individual). The performance of a chromosome is measured by checking the

level of satisfaction of the requirements for a given problem. The qualities of the

chromosomes are weighted with the results of the measurement, which makes the

chromosome to be comparable for the selection.

• Fitness function

The fitness function is a function which measures the quality of the

chromosome for the evaluation. The fitness function outputs a weighted version

of the performance of chromosome.

7

• Selection

The selection is a process to select a chromosome to take part into the

genetic modification (to produce the chromosome for the next generation). The

selection is based on the performance of a chromosome. A chromosome is

selected proportionally with the result of the evaluation.

• Genetic operator

The genetic operator is an operator which modifies the chromosome. The

genetic operator provides the variation for the evolution process.

The evolution process of EA is the process in which the solution of a given

problem is searched with the guidance of a selection pressure. A basic procedure of

EA is given in Figure 2.1.

First, the solution of a given problem is encoded into a chromosome. The

initial generation of chromosome is then created randomly.

After evaluating the performance of each chromosome, a “distance” guides

the direction of the evolution. The “distance” is the distance to the ideal solution of

given problem is similarly to the pressure of the natural selection. The “distance” is

measured by the fitness function. Without the guide of the “distance” the evolution

process could go far away from the initial purpose of finding a solution for the given

problem.

The chromosomes are then being modified generation by generation until a

chromosome with a good enough performance is found. The modification of the

chromosome consists of selection and execution of the genetic operator. The

selection of chromosome for the next generation is performed by a fitness

proportionate method which makes the chromosomes with better performance to

have a higher probability to be selected. The execution of genetic operator provides

the variation of the genetic material.

8

The process of generating a better solution in EA is similar to the process of

propagating a fitter individual in the Natural evolution. By accumulating the positive

modifications on the chromosome, in EA the distance to the ideal solution is getting

shorter and shorter, generation by generation. Meanwhile, as in the natural evolution,

the individual with a better ability to fit the environment is propagated generation by

generation.

There are many variants of EA: Genetic Algorithms [2], Evolutionary

Strategies [14], Evolutionary Programming [15], and Genetic Programming [4]. In

the following section two of the best known EA, the Genetic Algorithms and the

Genetic Programming, are discussed. They deeply influenced the development of the

Gene Expression Programming.

Fig. 2.1. Basic procedure of Evolutionary Algorithms

Encode solution
to chromosome

Create initial generation Evaluate each
chromosome

Execution of Genetic
operator

New chromosome of next
generation

Terminate?

End

Decode the chromosome

Y

N

Select chromosome proportionately
for Reproduction of next generation

9

2.2.1 Genetic Algorithms

 The Genetic Algorithms (GA) are used to solve search, optimization and

machine learning problem. The algorithm was developed by Holland, his students,

and his colleagues at the University of Michigan [3].

i) The representation of the solution

The original GA use a fixed length string to represent the

solution. The simplest representation is a fixed string of zeros and

ones (0 and 1). An example of such a chromosome with length 8 is

given in Figure 2.2.

Fig. 2.2. A chromosome in Genetic Algorithms

There are many other versions of the representation such as

floating number [14], permutations [60].

ii) The genetic operators

In order to achieve the variation on the bit string format of the

chromosome, two kinds of operations were developed in order to

provide the modification of the chromosome:

a) Crossover: it exchanges two segments of the bit string between

two randomly selected parent chromosomes. Due to the fixed

structure the number of bit selected from the two chromosomes

are same.

Fig. 2.2.1. An example of crossover in Genetic Algorithms

1 1 0 1 0 1 0 0

1 1 0 1 0
1 0 1

1 1 0 1 0
1 1 0

`

10

b) Mutation: it replaces one element of a randomly selected

chromosome with an element selected from the element set which

is used to create the chromosome.

Fig. 2.2.2. An example of mutation in Genetic Algorithms

iii) the evolution process

GA use the following procedure to implement the evolution

process.

First, the solution of a given problem is encoded into a fixed –

length bit string structure. With a number of this kind of random

generated bit string, the initial generation is then created.

Second, these strings are evaluated with a fitness function. If

the ideal solution is not found, the selection of genetic operation is

then achieved by considering the genetic operator probability to

provide the modification of chromosome for the next generation.

Third, with result of evaluation the candidate chromosomes of

the genetic operation are selected proportionately with their fitness.

Once the chromosome(s) is (are) selected the genetic operator is then

applied on it (them). The genetic operators provide the variation of bit

string for the next generation. In this step the chromosome(s) are

modified or replicated for the next generation. The candidates of the

next generation are also created in this step.

Fourth, the new generation is constructed with enough number

of chromosomes from the third step. The new generation is then to be

evaluated again for the new iteration of the evolution.

Figure.2.3 displays a general procedure of GA.

1 1 0 1 0 1 0 0

11

Fig. 2.3. Basic procedure of Genetic Algorithms

Encode solution
to a bit string

Create initial generation Evaluate each
chromosome

Select one
chromosome
based on fitness

Construction of next
generation

Terminate?

End

Decode the
chromosome

Y

N

Select genetic operation

Select two
chromosomes
based on fitness

Perform genetic
operator
mutation

Perform genetic
operator
crossover

Provide one
chromosome for
new generation

Provide two
chromosomes for
new generation

Select one
chromosome
based on fitness

Replicate the
chromosome

Provide one
chromosome for
new generation

12

2.2.2 Genetic Programming

Genetic programming (GP) [4] was designed to let the computer solve

problems as an automatic programming process. GP is an extension of GA [2].

Computer programs are used as chromosome. The computer program could be, in

principle, in any programming language which is able to express and to evaluate the

composition of functions and terminals (for example PASCAL, FORTAN, C,

FORTH, and LISP) [4]. However, in practice the LISP programming language (fully

parenthesized Polish prefix notation) was selected because of its syntactic form (S-

expression) [16].

i) The representation of the solution

GP uses S-expression to represent the solution. The S-

expression can be translated into a rooted tree graphically. The nodes

of the tree are generated from the element set which consists terminal

elements and function elements. The functions include all the

operators which provide the operation on the terminals (such as

arithmetic operations, mathematical functions). The terminals are

variables (used to represent input, sensor, detector or state of a system)

and constants (can be real number values or Boolean values). These

terminal and function elements are selected from the union element

set which is used to encode the chromosome. An example of a

chromosome is the S-expression (𝐹 (𝐹 𝑇 𝑇) 𝑇) . It is translated

into a tree with 5 nodes shown in Figure 2.4. Here, ‘F’ stands for a

function; ‘T’ stands for a terminal.

Fig. 2.4. A chromosome in Genetic Programming

F

F T

T T

13

ii) The genetic operators

Since the variation of the chromosome is performed on the

tree structure, the genetic operations are designed to modify both sub-

trees and single nodes.GP use two operators.

a) Crossover: it exchanges the sub-trees between two randomly

selected parent trees. The sizes of the sub-trees exchanged are

flexible.

b) Mutation: it replaces one node or sub-tree of a randomly selected

target tree with the node (or sub-tree) selected from (or created

with) the set which is used to create the chromosome. The

component can be mutated in GP is flexible.

iii) The evolution process

As GP is an extension of GA, GP use the same method to

achieve the evolution process.

First some random composition of the functions and terminals

(computer programs) are encoded into tree structure to create the

initial generation.

Second, execute these programs to evaluate fitness value

according to how good the problem is solved (fitness function). If the

ideal solution is not found, the selection of genetic operation is then

achieved by considering the genetic operator probability.

Third, based on the result of the evaluation, these programs

are selected proportionately to be modified by genetic operator. Once

the chromosome(s) is (are) selected the genetic operator is then

applied on it (them). Some node or sub-tree of the chromosome are

replaced by mutation or exchanged by crossover. Some trees are

replicated without any modification. As a result some new trees are

14

created. The candidates of the next generation are also created in this

step.

Fourth, after the modification, these modified and replicated

programs become the candidates which are used to construct the

population of the next generation. The new generation is then to be

measured again with fitness function for the new iteration of the

evolution.

Figure.2.5 displays a general procedure of GP.

Based on this classical version of GP, many extended versions were

developed using a similar idea. Cartesian Genetic Programming (CGP) uses an

integer based system to represent the program primitives and how they are connected

together [17]. Probabilistic Incremental Program Evolution (PIPE) uses a

Probabilistic Prototype Tree (PPT) to store the understanding of the given problem

and guide the evolution process [18]. Extended Compact Genetic Programming

(ECGP) [19] is an extension of Extended Compact Genetic Algorithm [20], where

the linkages between the sub-trees are considered as a very important part of the

evolution.

15

Fig. 2.5. Basic procedure of Genetic Programming

Encode solution
to a tree structure

Create initial generation Evaluate each
chromosome

Select one
chromosome
based on fitness

Construction of next
generation

Terminate?

End

Decode the chromosome

Y

N

Select genetic operation

Select two
chromosomes
based on fitness

Perform genetic
operator
mutation

Perform genetic
operator
crossover

Provide one
chromosome for
new generation

Provide two
chromosomes for
new generation

Select one
chromosome
based on fitness

Replicate the
chromosome

Provide one
chromosome for
new generation

16

2.3 Gene Expression Programming

 Gene Expression Programming (GEP) [1] is a relatively new EA. Based on

the same evolutionary principles as the other EA, GEP generates the solution of a

given problem by simulating the evolution process in Nature.

2.3.1 The Representation of the Solution

In order to maintain and accumulate the genetic information, GEP operates a

separated genotype and phenotype system. With this system the simulation of the

natural evolution is performed efficiently.

i) The phenotype and genotype of GEP

In the biological field, the genotype is the genetic constitution

of an individual; the phenotype is an observable characteristic of the

individual. They provide an internal connection between the structure

of the individual`s chromosome and a certain characteristic of the

individual`s functions. Individuals with the same genotype always

have the same corresponding phenotype. The appearance of the better

and fitter individual in the natural evolution is obtained by the change

of their genotype and phenotype.

In GA and GP the genotype and phenotype are played by the

same entity (bit string and tree respectively). In GEP the two roles are

played by two different entities.

The genotype of GEP is designed with a GA’s bit-string-like

format. Instead of a ‘bit’ string GEP uses an element string to contain

the genetic information called the chromosome. As the genetic

17

material container, the GEP chromosome (the element string),

provides a platform for the genetic modification.

The phenotype of GEP is an Expression Tree (ET), which has

the same structure as the tree in GP and provides similar flexibility.

The correspondence between the chromosome and ET is made

with a coding/decoding (mapping) mechanism.

ii) Chromosome, Gene and Expression Tree

a) The chromosome and gene

The GEP chromosome consists of a variable number of genes

that are linked together with a linking function (an example is shown

in Figure 2.6). Each gene consists of a fixed number of elements

which are functions or terminals. A terminal can be a real number or a

variable. (In Figure 2.7 𝑎, 𝑏, 𝑐,𝑑 are terminals and +, −, ∗, / are

functions). The union of all the functions can be selected by the user

to build chromosome is defined as function set. The union of all the

terminals can be selected by the user to build chromosome is defined

as terminal set. The function set and terminal set are chosen by the

user for each problem. The linking function between the genes is a

fixed function also chosen by the user.

 Fig.2.6. An example of a chromosome which consists of two genes

18

b) The structure of a gene

Fig. 2.7. Structure of a gene

A gene is composed of a head and a tail. An example is shown

in Figure 2.7. The elements of the head are selected randomly from

the terminal and the function set of the problem. The elements of the

tail are selected randomly only from the terminal set.

The number of elements of a gene is fixed (chosen by the

user). The relation between the length of the head and the length of

the tail is expressed with the following equation:

𝑇𝑎𝑖𝑝𝑝 = 𝐻𝑒𝑎𝑑 ∗ (𝑛𝑛— 1) + 1 (2.1)

where, Tail is the number of elements of the tail of the gene.

Head represents the number of elements of the head of the gene. The

number of elements of the head is chosen by the user. n is the arity

of the function which requires the highest number of arguments.

19

c) The gene and ET

ET is designed to translate the genetic information of the

chromosome into the candidate solution of the problem.

During the translation process the elements of the gene are

selected from the first position of the head to the last position of the

tail with a bread-first order. By putting the selected element on the

corresponding position of the expression tree, the expression tree is

built to provide the solution of the given problem. The detailed

translation process is listed below.

Step 1: The first element of the gene is placed on the root

position of ET. This is the level 0 of ET.

Step 2: The number of arguments needed by the root element

is checked and then the corresponding number of elements from the

element string (gene) are selected to be the leaf nodes of the element

(the leaf nodes are on the level 1 of ET).

 Step 3: Check the number of arguments needed by the

element located on the level just created, and then the corresponding

number of elements from the element string (gene) are selected to fill

the leaf nodes of the elements of this level (the leaf nodes are on the

next level of ET).

Step 4: Step 3 is repeated until all the leaf nodes of the last

level of ET are filled with terminals. At this point the process stops

even if there are some elements of the gene not selected.

20

Figure 2.8 shows how a gene is translated into an expression

tree:

Step 1: the element containing the function ‘+’ is selected to

be the root of ET.

Step 2: the number of the arguments needed for the function

‘+’ is two. Then the terminal ‘𝑎’ and the function ‘∗’ are selected to

be placed on level-1 (the leaf nodes of function ‘+’ are on the level 1

of the expression tree).

Step 3: Since level1 has only one function, ‘∗’, the number of

the needed arguments is still two. Two elements, the terminal ‘𝑏’ and

the function ‘∗’, are selected to be placed on level2 (the leaf nodes of

the function ‘∗’ are on the level2 of ET).

Step 4: by repeating the process of step 3, the level3 and

level4 are filled until all the leaf nodes in the last level—(‘level4’) are

filled with terminals.

As the example shows, the number of elements contained in a

gene is fixed while the number of nodes on ET is a variable value.

This kind of mapping mechanism provides GEP with the advantage

of the GA`s bit string structure and the GP`s tree structure.

Compare with other variants of EA, GEP implements an

evolution style more similar with the biology evolution. The

structural organization of GEP’s gene and ET uses the idea of the

Open Reading Frame (ORF). In a real chromosome in Nature, an

ORF is a continuous sequence of DNA that contains a start codon, a

subsequent region which usually has a length, and a stop codon in the

same reading frame [20]. ORF used in GEP steps a little bit more than

the biology. In GEP, the root of ET is always generated from the first

position of a gene. However, the termination point does not always

generated from the last position of a gene. The unselected part of the

21

gene can be considered as an extra space for the genetic information

that might not be useful for the current generation but might be useful

for the future evolution. This is also one of GEP unique

characteristics.

Fig. 2.8. An example of the translation of a gene into ET

22

2.3.2 The Evolution Process

With the mechanism mentioned in the previous subsection, GEP encodes the

solution of a given problem into a chromosome. Based on a number of randomly

created chromosomes the first generation is created. The evolution process starts

with this first generation. The chromosomes are then modified in the next iterations

of the evolution process.

In an iteration of the evolution process, the chromosomes are processed by

four steps evaluation, termination criteria check, replication and selection, and

genetic modification.

a) Evaluation

In this step the performance of each chromosome of the current generation is

measured. ET is decoded from the chromosome to extract the candidate solution

of the given problem. The solution is then evaluated by the fitness function

which is specific to the problem. After the evaluation, every chromosome is

assigned a fitness value.

b) Termination criteria check

In this step the condition for the termination of the evolution process is

evaluated. Two possible conditions are usually used: the quality of the

chromosome or the number of the evolution iterations (generations).

The termination criteria should normally be the quality of the chromosome.

The quality of the chromosome is checked with the specific requirements of the

problem. The level of the satisfaction of the requirements of the given problem is

used to set the criterion of the termination.

In some cases, for practical reasons, the number of the evolution iterations is

an alternative choice. It is very hard to estimate when (the exact number of the

23

evolution iterations) a chromosome with the desired quality can be found. In

order to provide a practical termination signal for the case when the chromosome

with the desired quality is not found after a certain number of generations, the

maximum number of the evolution iterations should be set by the user as a

criterion of the termination.

The two conditions are considered simultaneously during the evolution

process. If a chromosome with a desired level of quality is found, the evolution

process is stopped at the current generation; if not, a new generation of

chromosomes will be produced. If a chromosome of adequate quality is not

found until the evolution process reached a limit number of iterations (which is

set by user), the evolution process is also terminated.

c) Replication and selection

In this step, an intermediate population of chromosomes is created with the

replication and selection. The replication copies a chromosome into the next

generation without any modification. The selection guides the replication which

chromosome should be copied. The replication, together with the selection picks

the candidate chromosomes for the next generation.

The selection is made proportionally with the chromosome`s fitness value.

Reward-based [21], stochastic universal sampling [22], tournament [23], roulette

[24, 25] are common selection algorithms used in EA. In order to provide an

intermediate population of chromosomes for the evolution, the roulette is a better

choice to implement the selection of the candidate. With the roulette selection the

chromosome with higher fitness has higher probability to be selected as the

candidate (the higher fitness means a larger area on the roulette is allocated). If

the 𝑓𝑖 is the fitness of the chromosome of the population, its probability of being

selected as a candidate is 𝑝𝑝𝑖 = 𝑓𝑖
∑ 𝑓𝑗𝑁
𝑗

 , where 𝑁 is the number of individuals in the

population. The roulette is executed as many times as the number of

chromosomes in current generation to provide the same number of candidates for

the intermediate generation (In each execution of the roulette algorithm, a

24

candidate is selected proportionally with its fitness). An intermediate generation

is prepared in this way and it will be modified in the next step of the genetic

modification.

d) Genetic modification

In this step, a set of genetic operators (Mutation, Inversion, Transposition and

Recombination) are applied on the chromosomes to provide variation of the

chromosomes for the next generation. Each operator is applied with its own

genetic operating rate (details are discussed in 2.3.4). With the modification

provided by the genetic operators, the genetic information stored in the

chromosome is changed. After the genetic modification the new generation of

chromosomes is ready to be put into the next iteration of the evolution process.

During the genetic modification, the genetic operators are applied on the

chromosomes of the current generation sequentially. The chromosomes modified

by the 𝑛𝑛𝑡𝑡ℎ genetic operator which is applied after the replication will be modified

by the (𝑛𝑛 + 1)𝑡𝑡ℎ genetic operator as well. This means one chromosome can be

modified by more than one genetic operator during the genetic modification of

one generation.

The whole set of chromosomes belonging to the same generation but living at

different stages of the genetic modification is called 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒙𝒙 . The subscript 𝑥𝑥

represents the corresponding genetic operator. 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒙𝒙 represents the set of

chromosomes which are candidates selected to be modified by the genetic

operator 𝑥𝑥 . Note: 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝟎𝟎 is reserved for representing the set of chromosomes

exiting before applying the replication.

In Figure 2.9 an example is shown to demonstrate how the genetic

modification is applied on the chromosomes during this step. In this example the

sequence of the applied genetic operators is One-Point Recombination (OPR),

Two-Point Recombination (TPR) and inversion.

25

Before applying the genetic modification, the replication is applied on the

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝0. After the replication, 𝑐ℎ𝑟𝑝𝑝𝑚𝑝𝑝𝑠𝑝𝑝𝑚𝑒𝑠 1,2,3,5 are selected and replicated.

𝐶ℎ𝑟𝑝𝑝𝑚𝑝𝑝𝑠𝑝𝑝𝑚𝑒 3 is selected twice and one of it replaces the position of

𝑐ℎ𝑟𝑝𝑝𝑚𝑝𝑝𝑠𝑝𝑝𝑚𝑒 4 (the grayed one in 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝0 .). As a result, two copies of

𝑐ℎ𝑟𝑝𝑝𝑚𝑝𝑝𝑠𝑝𝑝𝑚𝑒 3 appear in 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑂𝑂𝑂𝑂 (the two masked). The genetic operator

One-Point Recombination (OPR) is then applied on the 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑂𝑂𝑂𝑂 . The two

𝑐ℎ𝑟𝑝𝑝𝑚𝑝𝑝𝑠𝑝𝑝𝑚𝑒 3 are modified in the execution of One-Point Recombination. As a

result, two 𝑐ℎ𝑟𝑝𝑝𝑚𝑝𝑝𝑠𝑝𝑝𝑚𝑒 3 (𝑂𝑃𝑅) are generated in 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝑂𝑂𝑂𝑂 . 𝑂𝑃𝑅 in the

bracket represents that the chromosome is modified by the genetic operator OPR.

As described before the result of the execution of OPR is actually the set of

chromosomes which will take part in the execution of TPR. In the execution of

the TPR, the two 𝑐ℎ𝑟𝑝𝑝𝑚𝑝𝑝𝑠𝑝𝑝𝑚𝑒 3 (𝑂𝑃𝑅) are selected again, then

two 𝑐ℎ𝑟𝑝𝑝𝑚𝑝𝑝𝑠𝑝𝑝𝑚𝑒 3 (𝑂𝑃𝑅,𝑇𝑃𝑅) are generated for 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑂𝑂𝐼𝐼𝐼𝐼 . The notation

(𝑂𝑃𝑅,𝑇𝑃𝑅) indicates that this chromosome is modified by two genetic operators

sequentially, the first one is OPR and the second one is TPR. Then the inversion

is applied on the 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼𝑛𝑣𝑒𝑟𝑠𝑒. The evolution process continues with the other

genetic operators in a similar manner.

26

Fig. 2.9. An example of the genetic modification

The GEP evolution process consist of a number of iterations of the four steps

described above. Figure 2.10 shows the general procedure of the evolution process in

GEP.

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝0

 Chromosome 1

Chromosome 2

Chromosome 3

Chromosome 4

Chromosome 5

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑂𝑂𝑂𝑂

 Chromosome 1

Chromosome 2

Chromosome 3

Chromosome 3

Chromosome 5

Replication

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝑂𝑂𝑂𝑂

 Chromosome 1

Chromosome 2

Chromosome 3a(OPR)

Chromosome 3b(OPR)

Chromosome 5

r1p applied

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑂𝑂𝐼𝐼𝐼𝐼

 Chromosome 1

Chromosome 2

Chromosome 3a(OPR,TPR)

Chromosome 3b(OPR,TPR)

Chromosome 5

r2p applied

27

Fig. 2.10. The evolution process of GEP

2.3.3 The Genetic Operators

The GEP operators are designed to operate on the linear element string

structured chromosomes. According to the number of corresponding chromosome

involved, these operators are mainly divided into three classes: the single

chromosome class, the double chromosome class and the whole population class.

Encode solution
into
chromosome

Create initial population

End

Express chromosome

Get expression tree

Evaluate fitness

Replication and selection

Genetic

Modification

Prepare
chromosome for the
next generation

Termination
check

Y

N

28

The single chromosome class of operators provide modifications of the

genetic material of the target chromosome itself. This class contains the operators

Inversion and Transposition. The double chromosome class of operators exchange

genetic material between two chromosomes. Recombination operator belongs to this

class. The whole population class of operator provides changes only of one element

of the chromosome but every chromosome in the population is involved. The

operator Mutation belongs to this class.

 The detail functionality of each genetic operator of GEP is described below.

i) Single chromosome class of operators:

Inversion is achieved by inversing the sequence of the genetic material (string of

elements) in the head of the gene.

The start and the end positions of the inversed segment are randomly selected.

An example of the execution of the Inversion is shown in Figure 2.11. The

two element strings (upper one and bottom one) show what is changed on the

chromosome before and after the execution of the Inversion. The grayed

segment (𝑏,∗,−) indicates the part of the chromosome involved in this

operation.

Fig. 2.11. An example of the Inversion

29

Transposition is implemented by transposing the genetic material of the

chromosome. A segment of the chromosome with randomly selected start and end

positions is transposed to a new position. GEP uses three types of transpositions:

Insertion Sequence (INSERTION) transposition, Root Insertion Sequence (RIS)

transposition and Gene transposition. The selection of the position where the

selected segment of the chromosome is to be deployed depends on the type of

operators.

a) Insertion Sequence (INSERTION) transposition: this operator

transposes a segment of the chromosome with a function or terminal at

the first position to a position of the head of the gene except of the first

position. After the insertion the original elements of the head are shifted

to the tail direction but do not enter into the tail. As the result of this shift,

the same number of elements as the number of inserted elements are

removed from the end of the head in order to keep the length of the head

constant. An example of the execution of INSERTION is displayed in

Figure 2.12. The two element strings (upper one and bottom one) show

what is changed on the chromosome before and after the execution of

INSERTION. The grayed segment (𝑏,∗) indicates the selected candidate

for the execution of INSERTION and the segment (∗,−) is removed.

Fig. 2.12. An example of the Insertion Sequence transposition

30

b) Root Insertion Sequence (RIS) transposition: this operator transposes a

segment of a chromosome with a function at its first position to the first

position of the head of its gene. After the insertion the original elements

of the head are shifted to the tail direction but they do not enter in the tail.

As the result of the shift, the same number of elements as the number of

the elements which are inserted is removed from the end of the head in

order to keep the length of the head constant. An example of the

execution of RIS is shown in Figure 2.13. The two element strings (upper

one and bottom one) show what is changed on the chromosome before

and after the execution of RIS. The grayed segment (∗, 𝑏,∗) indicates the

selected candidate for the execution of RIS and the segment (𝑏,∗,−) is

removed.

Fig. 2.13. An example of Root Insertion Sequence operation

c) Gene transposition: this operator transposes an entire randomly selected

gene (except the first one) to the first position of the chromosome.

31

ii) Double chromosome class of operators:

Recombination is implemented by exchanging the genetic material between two

parent chromosomes. The parent chromosomes are randomly selected and paired.

GEP has three types of Recombination: One-Point Recombination, Two-Point

Recombination and Gene Recombination are participating operators of this

operation.

a) One-Point Recombination (OPR): this operator selects a position

randomly from one of the parent chromosomes. Then it exchanges the

part of the chromosomes after this position between the two

chromosomes. An example of the execution of OPR is displayed in

Figure 2.14. The two sets of element strings (upper one and bottom one)

show what is exchanged on the chromosomes before and after the

execution of OPR. The grayed segments, (𝑏,∗, … ,𝑑, 𝑐,𝑑) and (𝑏,𝑑,/

, … ,𝑎, 𝑏, 𝑎), indicate the selected candidates for the execution of OPR and

they are exchanged as part of the execution of this operator.

Fig. 2.14. An example of One-Point Recombination

32

b) Two-Point Recombination (TPR): this operator selects two positions

randomly on one of the parent chromosomes and exchanges the segment

of the two parent chromosomes located between these two positions. An

example of the execution of the Two-Point Recombination is displayed in

Figure 2.15. The two pairs of element strings (upper one and bottom one)

show what is exchanged on the chromosomes before and after the

execution of TPR. The grayed segments, (𝑏,∗,−,𝑎, 𝑏, 𝑐) and (𝑏,𝑑,/

,𝑎, 𝑐, 𝑏), indicates the selected candidates for the execution of TPR and

they are exchanged after the execution of this operator.

Fig. 2.15. An example of Two-Point Recombination

c) Gene Recombination: this operator selects randomly a position on one

of the parent chromosomes, and then exchanges the entire gene located at

this position between the two parent chromosomes.

33

iii) Whole population class of operator:

Mutation is implemented by replacing an element on a randomly selected gene from

a randomly selected chromosome with a randomly selected element from the

terminal or function set.

The elements in the head are replaced with the elements selected from the

function or terminal set; the elements in the tail are replaced only with the

elements selected from the terminal set. An example of the execution of the

mutation is displayed in Figure 2.16. The two element strings (upper one and

bottom one) show what is changed on the chromosome before and after the

execution of the mutation operation. The grayed element ‘−’ indicates the

selected candidate for the modification and is replaced by the element ‘+’.

Since the selected element ‘−’ is selected from the head, the replacement of

this element can be selected from the function set or the terminal set.

Fig. 2.16. An example of Mutation

34

2.3.4 The Genetic Operator Rate of GEP

The genetic operator rate is used to control the number of participates which takes

part in the execution of a genetic operator. The rates of different genetic operators

are adjusted by the user for the specific problems.

The number of the chromosome which will take part in the execution of

single chromosome class and double chromosome class of operators is given by the

following formula:

𝑛𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑝𝑝𝑥 × 𝑀 (2.2)

where, 𝑝𝑝𝑥 is the genetic operator rate of the operator 𝑥𝑥 ; 𝑀 is the number of

chromosome in the same generation.

 The whole population class of operator Mutation focuses on a single element

of chromosome. The number of the element which will take part in the execution of

mutation is given by the following formula:

𝑛𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑝𝑝𝑥 × 𝑀 × 𝑐ℎ𝑟𝑝𝑝𝑚𝑝𝑝𝑠𝑝𝑝𝑚𝑒_𝑠𝑖𝑧𝑒 (2.3)

where, 𝑝𝑝𝑥 is the genetic operator rate of the operator 𝑥𝑥 ; 𝑀 is the number of

chromosome in the same generation. 𝑐ℎ𝑟𝑝𝑝𝑚𝑝𝑝𝑠𝑝𝑝𝑚𝑒_𝑠𝑖𝑧𝑒 is number of element of the

chromosome.

An example of a set of typical values of the rates is presented in the following table.

Type of operation Participating Genetic operator rate

Single chromosome class Inversion 10%

Insertion Sequence

Transposition

30%

Root Insertion Sequence

Transposition

30%

35

Double chromosome class One-Point Recombination 30%

Two-Point Recombination 30%

Gene Recombination 10%

Whole population class Mutation 4.4%

Table 2.1 The typical rates of the genetic operators in GEP

2.4 New Developments of GEP

Because of the significant improvement provided by the genotype and phenotype

separated system of GEP, other directions of its development were investigated and

reported in the literature.

By replacing the mapping mechanism between the genotype and phenotype

with a version based on a prefix order mapping, the prefix Gene Expression

Programming (pGEP) was proposed in [26].

Fig. 2.17. Example of GEP and pGEP decoding methods

36

Figure 2.17 shows an example of decoding the same chromosome with GEP

and pGEP methods. The prefix decoding used by pGEP starts with placing the first

element of the chromosome on the root (level 0) of ET. If this element is a function,

the second element is placed on the next level (level 1), as its first argument. If the

second element is also a function then the next elements of the chromosome are

placed on the next level (level 2) as arguments of the function from level 1. The

process continues following this depth first approach until the entire branch is

completed by ending with terminals. Then the next element of the chromosome is

placed on level 1 of ET, as the second element of the first function (root in level 0),

and the process continues until ET is completed by ending all its branches with

terminals.

The pGEP algorithm proposed in [26] maintains a closer connection between

the function and its argument. However this version also abandoned some of the

novel ideas implemented in GEP such as the head-tail separation of the chromosome

making a step backwards towards other previously proposed versions of

evolutionary algorithms. The performance of pGEP reported in [26] is the effect of

all the modification, not only the prefix order mapping method.

The effect of the prefix order mapping mechanism only on the GEP`s

performance was investigated in [6] by Teodorescu, L and Huang, Z (this thesis

author). This study shows that due to the higher connection structure between the

functions and their participating terminals (function`s arguments), with the prefix

order mapping the destructive effect of the genetic operator is reduced. During the

evolution process the prefix order mapping structure intends to bring the function

element and its participating terminals as close as possible on the chromosome.

In [6] also a truncated evolution [27, 28, 29] on GEP was investigated.

Truncated evolution is the evolution in which these low quality individuals are

totally eliminated with the expectation that this will improve the efficiency of the

search process. Each generation, particularly in the early stage of the evolution

process, is expected to have a number of individuals of low quality. In a normal

evolution these individuals are fully processed (take part in the selection process)

and have a certain probability to participate in the reproduction process.

37

In this study, the truncated evolution was implemented with a fitness

threshold (FT). Only individuals with the fitness value higher than FT were allowed

to participate in the reproduction process. It was found that imposing such a

threshold has two effects which need to be balanced. On one hand, it improves the

convergence speed (number of generations in which the solution is found). On the

other hand, it facilitates the reduction of the population diversity which might favour

the trapping of the algorithm in a local optimum. The value of FT has to be carefully

optimised in order to balance the two effects.

The FT used was guided by the average fitness value per population and it

was called an online fitness threshold. It was calculated by multiplying the average

fitness per population with a scaling factor which needs to be optimised for each

problem. This online FT was found to provide a better pressure on the evolution

process if it is properly optimised. If the value of FT is too high then unstable results

are obtained due to a high degree of uniformity of the population resulting in

trapping the algorithm in local optima.

Fig. 2.18. Classification accuracy as a function of number of generations for pGEP with

online FT and truncated evolution (blue) and the original GEP (red)

38

It was found that pGEP with truncated evolution and online FT. A

comparison between this version and the original GEP is presented in Figure 2.18.

The most significant improvement is in terms of the convergence speed, the number

of generations needed to reach the optimal solution being under 5,000 generations.

The quality of the signal solution is also improved, the classification accuracy being

with approximately 0.8% higher. The significance level of this difference is under

1%.

Another discussion of development was proposed in [30] which introduce a

set of new adaptive structural parameters of the chromosome. The flexible structure

used in AdaGEP overcomes the limitation of the evaluation on its parameters. Some

fixed evolutionary parameters, such as the number of chromosomes, the number of

genes in each chromosome become variable under this idea. Under the guide of the

evolution pressure, these parameters are modified during the evolution process. As

the result of the modification, the evolution is improved in terms of the mean fitness

of the best-of-run solutions.

Based on the result of the above GEP algorithm study, the strong connection

among the change of the components of the chromosome, the change on its fitness

value and the progress of the evolution appear to be a very important further research

point. This pointed me to proceed with the schema study which is the main topic of

my thesis.

2.5 Application of GEP

GEP is applied to many problems that were previously investigated with other

evolutionary algorithms. Such problems include combinatorial optimization [31],

39

classification [32, 33, 34, 35, 36], time series prediction [37, 38, 39], parametric

regression [40, 41] symbolic regression [42, 43, 44].

It was also applied to a variety of domain, such as data analysis in high energy

physics [45, 46], traffic engineering for IP network [47], Designing electronic

circuits [48], Evolving Classification Rules [33, 34].

40

Chapter 3

Schema Theory

Schema theory for EA tries to explain how the individuals are improved during the

evolution process by accumulating genetic modifications under the pressure of the

selection.

By considering the number and the performance of the chromosomes that

have similar genetic characteristics in the population of the current generation, the

schema theory provides an estimation of the number of the chromosomes with such

characteristics in the next generation. The common genetic characteristics are

described by the so called schema.

This chapter describes the historical development of the schema theory for

EA. As two typical candidates of EA, GA and GP provides significant contributions

to the development of the schema theory. As GA and GP are the predecessors of

GEP, the GA and GP schema theory plays a very important role in the development

of the GEP schema theory.
41

 3.1 GA Schema Theory

GA schema theory was developed to explain why GA works, how the

algorithm finds good solutions. The answer is in the structured search employed by

GA. A candidate solution can be considered as a point in the solution space. The

schema of a chromosome containing such a solution can be considered as the

coordinates of the point in the solution space. In order to find the location of a good

solution (a certain point in the solution space) a restricted search space is provided

by the schema of a chromosome during the evolution process. This restricted search

space is searched point by point for the best solution.

3.1.1 GA Schema

In GA, the classical version of schema was defined as a string of symbols

taken from the set {1 , 0 , # , where # represents “do not care” 1 } [3]. With a

combination of “bits” designed for fixed elements and ‘#’ (do not care) designed for

an unfixed element, schema can represent several bit strings. For example, the

schema #1#10 represents 01010, 01110, 11010 and 11110. The search space is

restricted by the fixed elements.

Fig. 3.1. GA schema example

1 “do not care” is an element on the schema. That can be matched by any elements from the
allowed set used to create the chromosome

#

1 1 0

0

0 1 1 0

0

1 1 1 0

1

0 1 1 0

1

1 1 1 0

42

3.1.2 GA Schema Theorem

Holland [3] developed a schema theorem to predict the number of strings

matching schema 𝐻 in the next generation by analyzing the genetic environment of

the current generation. The analysis of the genetic environment includes calculating

the fitness of a chromosome, counting the number of the chromosomes matching

schema 𝐻, and evaluating the average fitness of the current generation. According to

this theorem,

 ()[] () () () () ()()

−×

−
×−×−××≥+ tHp

N
HL

pptHpMtHME def
xo

HO
m ,1

1
11,1,

 (3.1)

where,

a) 𝐸[𝑀(𝐻, 𝑡 + 1)]is the expected number of individuals matching

schema 𝐻 in the generation 𝑡 + 1;

b) 𝑀 is the number of individuals in the population;

c) 𝑝𝑚 is the probability of the mutation per bit;

d) 𝑂(𝐻) is the order of the schema 𝐻; The value of 𝑂(𝐻) is equal

with the number of fixed bits in the schema.

e) 𝑝𝑥𝑜 is the probability of the crossover;

f) 𝑁 is the number of bits in each individual;

g) 𝑀(𝐻, 𝑡) is the number of the individuals matching the schema 𝐻

in the generation 𝑡;

h) 𝑝(𝐻, 𝑡) is the probability of the selection of the schema 𝐻, and it

is given by the formula

𝑝(𝐻, 𝑡) = 𝑀(𝐻,𝑡)𝑓̅(𝐻,𝑡)
𝑀𝑓(𝑡)

; (3.2)

where,

𝑓(̅𝐻, 𝑡) is the average fitness of those individuals matching

schema H in the generation 𝑡;

43

𝑓(̅𝑡) is the average fitness of all the individuals in the population

of the generation 𝑡;

In this theory the estimation of the number of strings matching schema 𝐻 is

obtained by considering the disruptions caused by the genetic modification

quantified by three terms: the effect of fitness-proportionate selection, ()tHpM ,× ,

the effect of mutation, () ()HO
mp−1 , and the effect of one point crossover

() ()()

−×

−
×− tHp

N
HL

p def
xo ,1

1
1 .

3.2 GP Schema Theory

In developing a schema theory for GP most of the researchers put their focus

on tree fragments (or sub-trees). Many successful implementations of the GP schema

theory were developed based on the analysis of the variation of the tree structure

during the evolution process.

3.2.1 GP Schema

By extending Holland’s GA schema theory, Koza [4] made the first attempt

to define the schema for GP as the subspace of trees containing a set of predefined

sub trees. Koza uses a set of S-expressions to represent the schema. For example, the

schema {(+ 𝑎 𝑏), (∗ 𝑐 𝑑)} represents all S-expressions having at least one

occurrence of the expression “𝑎 + 𝑏 ” and of the expression “𝑐 ∗ 𝑑 ”. As no

positional information is considered, more than one tree fragment matching the

selected schema can be found in the same tree. This means a schema can be

instantiated many times in a chromosome.

44

Figure 3.2 (c) shows an example in which the schema “𝑎 + 𝑏” appears at

more than one position in a chromosome. The first position is the first argument of

the function ‘∗’, the second position is the first argument of the function ‘−’.

Fig. 3.2. Koza`s schema and its samples

O’Reilly [50] formulized and extended Koza’s system with a “do not care”

symbol ‘#’ that can be matched by any subtree, even by a single node. For example,

the schema {(+ # 𝑏), (+ 𝑎 𝑐)} represents all S-expressions having at least one

occurrence of the expression “𝑎 + 𝑐” and the tree fragment (+ # 𝑏). The tree

fragment (+ # 𝑏) can match all S-expressions having a function ‘+’ and a terminal

‘b’ as its second argument. As the Figure 3.3 shows, the ‘#’ in the dark grey circled

b a

+

d c

* -

+
*

b a

+

d c

*

d c

*

Sample a

Sample b

b a

+

d c

*

-

*

b a

+

Sample c

b a

+ d

a + b c * d

45

node is matched by a single terminal node ‘𝑐’ in the sample (a). In the sample (b), ‘#’

is matched by a subtree “𝑎 / 𝑐”. As in Koza`s definition, the positional information

of the schema is not considered.

With the “do not care” symbol, O’Reilly provides the order and the defining

length of a GP schema. The order of a schema is the number of non-‘#’ nodes in the

expression corresponding to the part of the chromosome matched by the schema.

The defining length of a schema is the number of links that are used to connect the

nodes in the expression of the part of the chromosome matched by the schema. It

contains the links in the sub tree including ‘#’, the links in the fixed node part, and

the links that are used to connect the former two together.

Fig. 3.3. O`Reilly`s schema and its samples

Rosca’s rooted-tree schema [51] includes the positional information as a new

part of the schema. A continuous tree fragment with a fixed element as its root is

used to define a schema in this implementation. For example the schema {(∗ 𝑎 #)}

represents all programs having the function ∗ as the root and the terminal 𝑥 as the

c a

+

b #

+
a + c # + b

c a

+

*

b c

+

Sample a

+

c a

+

b /

+

a c

Sample b

46

first argument. Since the positional information is considered in order to provide

some restriction on the range of the matched instances, a relatively smaller number

of matched instances compared with the number generated with the two previous

definitions, can be found in a chromosome. This newly involved positional

information also provides a better performance in the analysis of the propagation of

the schema from one generation to another.

Considering the root node in this definition of schema, only one instance of a

schema can be found within the same chromosome. This means the number of

instances matching schema is equal with the number of chromosomes that have the

part matched by the schema. Therefore, the analysis of the propagation of the

schema means the analysis of the chromosomes which have a part matching such a

schema.

Fig. 3.4. Rosca’s schema and its samples

Whigham [52] introduced a context-free grammar Genetic Programming in

which the chromosome is defined as a derivation tree. The derivation tree is a syntax

tree which describes how the solution is generated. A set of rules generated from a

predefined grammar are used as the internal nodes on this derivation tree.

Whigham`s schema is also proposed with this kind of context-free grammar style

a

*
* a #

a

*

b c

+

Sample a

a

*

c

Sample b

47

chromosome. It is defined as a partial derivation tree, schema 𝐻 x⇒α where x ∈ 𝑁

and α ∈ {N ∪ ε} . 𝑁 is a finite non-terminal set and 𝜀 is a finite terminal set.

Figure 3.5 is an example of the schema x ⇒ xxT, where, two samples of the

chromosomes matching this schema are shown. In the sample (a) in this figure the

derivation tree of the expression (+ (+ 𝑎 𝑏) 𝑏) match the schema 𝐻. The tree greyed

part of the derivation tree matches x ⇒ xxT . The x is parsed with xxT . In the

sample (b) the greyed part of the deration tree of expression (+ 𝑎 𝑏) match the

schema 𝐻 as well.

Fig.3.5. Whigham`s schema and its sample

Schema x⇒xxT
T x

x

S

x

x

T

x

T

b +

F

b

Sample a (+ (+ a b) b)

F

a +

Sample b (+ a b)

x

S

x T

x

T F

b a +

Schema x⇒xxT

48

Poli and Langdon [53] introduced a fixed-size-and-shape schema which

provides more restrictions on the shape of the S-expression matching the schema.

Because the “do not care” (#) in Rosca`s definition can represent a node or a sub tree,

the part of the tree matching schema might become very complex. Poli and Langdon

introduced a new “do not care” symbol ‘=’ with a higher level of restrictions

meaning that only one node can be replaced with “do not care” ‘=’. This node can

be an element selected from the union of the terminal set and the function set. For

example, the schema {(+ = (= 𝑎 𝑏))} represents all S-expressions having: ‘+’ as

its root, a ‘do not care’ argument ‘=’ which represents a single terminal or function

as the first argument of ‘+’, while the second argument of ‘+’ is a tree fragment

containing another ‘do not care’ argument ‘=’ as its root , ‘a’ as its first argument

and ‘b’ as its second argument. As the Figure 3.6 shows, with the function set

{+,−} and the terminal set {𝑎, 𝑏} the example schema can represent four samples.

Fig.3.6. Poli and Langdon`s schema and its samples

=

+

b a

=

a , b + , -

Terminal

Function Set

Schema

a

+

b a

+ b

+

b a

+

a

+

b a

- b

+

b a

-

Sample a Sample b

Sample c Sample d

49

In a later version, Poli and McPhee [54] developed a Cartesian node

reference system to enhance the positional connection between the schema and the

tree structure. Each position on the tree structure is indexed with one point in the

node reference system. With this node reference system a more precise analyses of

the propagation of the tree fragments matching schema can be obtained.

3.2.2 GP Schema Theorem

As for GA, the schema theorem for GP is designed to provide the estimation

of the number of chromosomes matching a schema in the next generation.

O`Reilly`s theorem [50]

E[i(H, t + 1)] ≥ i(H, t) ∙ f(H,t)
f(t)

∙ �1 − pc ∙ maxb∈Pop(t) Pd(H,b,t)� (3.3)

where,

a) 𝐸[𝑖(𝐻, 𝑡 + 1)]is the expected number of individuals matching schema

𝐻 in the generation 𝑡 + 1;

b) i(H, t) is the number of the chromosomes matching the schema 𝐻 in

the generation t;

c) f(H, t) is the average fitness of the chromosomes matching the

schema 𝐻 in the generation 𝑡;

d) f(t) is the average fitness of all the chromosomes in the population in

the generation 𝑡;

e) pc is the probability of applying crossover on a chromosome;

f) Pop(t) is the number of chromosomes in the population of the

generation 𝑡;

g) Pd(H,b,t) is the disruption probability of a schema H of the

chromosome b in the generation t; It is a ratio between the defining

50

length of the schema H and the total number of possible positions that

can be selected by crossover.

In O`Reilly`s theorem, the estimation of the number of the chromosomes

matching schema is considered in a similar way as in GA. The disruption caused by

the genetic modification includes the effect of fitness-proportionate selection,

 i(H, t) ∙ f(H,t)
f(t)

 , and the effect of crossover, (1 − pc ∙ maxb∈Pop(t) Pd(H,b,t)). Since the

format of the part of the chromosome matching the schema H might be very

complicated, the number of links found in this part is a variable. In order to calculate

the effect of the crossover the maximum level of the disruption was considered. The

maximum length of defining length maxb∈Pop(t) Pd(H,b,t) was used in this theorem.

Only the crossover was considered in this theorem. Mutation was not considered in

evaluating the disruption effect.

Rosca`s theorem [51]

E[m(H, t + 1)] ≥ m(H, t)
f(̅H, t)

f(t)
�1 − (pm + pc) �

O(H)
N(b)

f(b)
∑ f(b)b∈H∩Pop(t)b∈H∩Pop(t)

�

 (3.4)

where,

a) 𝐸[𝑚(𝐻, 𝑡 + 1)] is the expected number of individuals matching

schema 𝐻 in the generation 𝑡 + 1;

b) m(H, t) is the number of the chromosomes matching the schema 𝐻 in

the generation t;

c) f(H, t) is the average fitness of the chromosomes matching the

schema 𝐻 in the generation t;

d) f(t) is the average fitness of all the chromosomes in the population in

the generation t;

e) pm is the probability of applying mutation on a chromosome;

51

f) pc is probability of applying crossover on a chromosome;

g) 𝑂(𝐻) is the order of schema; the value of the 𝑂(𝐻) is equal with the

number of fixed nodes in the schema H;

h) N(b) is the number of nodes in the chromosome b;

i) f(b)is the fitness of the chromosome b.

In Rosca`s theorem, besides the effect of the fitness-proportionate

selection, m(H, t) f̅(H,t)
f(t)

, both mutation and crossover are considered for the disruption

caused by genetic modification. The disruption is also weighted with the ratio

between the size of the part of the chromosome matching schema and the size of the

whole tree, and with the ratio between f(b) and ∑ f(b)b∈H∩Pop(t) (the sum of the

fitness of the chromosome 𝑏 which matches schema 𝐻 in the population of the

generation t). Since no definition of defining length is given in Rosca`s theorem, this

weighted method is used to provide a similar function as the Pd(H,b,t) in O`Reilly`s

theorem.

Whigham`s theorem [52]

𝐸[𝑖(𝐻, 𝑡 + 1)] ≥ 𝑖(𝐻, 𝑡)
f(H, t)

f(t)
��1 − pm𝑃𝑑𝑚(𝐻, 𝑡)��������������1 − 𝑝𝑐𝑃𝑑𝑐(𝐻, 𝑡)�������������

 (3.5)

 where,

a) 𝐸[𝑖(𝐻, 𝑡 + 1)]is the expected number of individuals matching schema

𝐻 in the generation 𝑡 + 1;

b) i(H, t) is the number of the chromosomes matching the schema 𝐻 in

the generation t;

c) f(H, t) is the average fitness of the chromosome matching the schema

𝐻 in the generation t;

d) f(t) is the average fitness of all the chromosomes in the population in

the generation t;
52

e) pm is the probability of applying mutation on a chromosome;

f) pc is the probability of applying crossover on a chromosome;

g) 𝑃𝑑𝑚(𝐻, 𝑡) is the probability of the disruption of the schema H caused

by the mutation;

h) 𝑃𝑑𝑐 (𝐻, 𝑡) is the probability of the disruption of the schema H caused

by the crossover;

As in Rosca`s theorem, the effect of the fitness-proportionate selection,

 i(H, t) f̅(H,t)
f(t)

, and the effect of the crossover and mutation are all considered in the

Whigham`s theorem. Since not every tree matching schema has the same structure,

the number of nodes on the derivation tree is varies. As a result, the value of

𝑃𝑑𝑚(𝐻, 𝑡) and 𝑃𝑑𝑐 (𝐻, 𝑡) calculated with the number of these nodes varies. Therefore,

the average value of them, 𝑃𝑑𝑚(𝐻, 𝑡)������������ and 𝑃𝑑𝑐(𝐻, 𝑡)����������� , are used to calculate the

disruption caused by the mutation and the crossover.

Poli and Langdon`s theorem [53]

 E[m(H, t + 1)] ≥

m(H, t)
f(H, t)

f(t)
(1 − pm)O(H)

∙ �1

− pc �pdiff(t)�1 −
m(G(H), t)f(G(H), t)

Mf(t)
�

+
L(H)

N(H) − 1
m(G(H), t)f(G(H), t) − m(H, t)f(H, t)

Mf(t)
��

 (3.6)

where,

a) 𝐸[𝑚(𝐻, 𝑡 + 1)] is the expected number of individuals matching

schema 𝐻 in the generation 𝑡 + 1;
53

b) m(H, t) is the number of the chromosomes matching the schema 𝐻 in

the generation t;

c) f(H, t) is the average fitness of the chromosome matching the schema

𝐻 in the generation t;

d) f(t) is the average fitness of all the chromosomes in the population in

the generation t;

e) 𝑂(𝐻) is the order of schema (the number of non-do not care elements

in schema);

f) 𝑝𝑑𝑖𝑓𝑓(𝑡) is the probability that a tree matching schema H is crossed

by a tree having a different structure;

g) 𝐺(𝐻) is a special zero order schema; It has the same format as the

schema H. All the nodes on this special schema are replaced with do

not care ‘=’.

h) L(H)is the defining length of the schema 𝐻;

i) N(H)is the length of the schema 𝐻;

In Poli and Langdon`s theorem, the calculation of the effect of the fitness-

proportionate selection , m(H, t) f(H,t)
f(t)

 , has the same definition as in the previous

versions. Since Poli and Langdon`s schema is a fixed-size-and-shape version, the

estimation of the number of the chromosomes matching schema involves new

considerations for the one point crossover and the point mutation. The disruption

caused by such operators generally come from two kinds of modifications.

 One is the fact that the fixed element in the part matching schema is changed.

This kind of modification includes point mutation,(1 − pm)O(H) , and one point

crossover between two trees with the same structure,
L(H)

N(H)−1
m(G(H),t)f(G(H),t)−m(H,t)f(H,t)

Mf(t)
. The L(H)

N(H)−1
 is the probability to select crossover

position from the part of the tree which the fixed element is connected with. The
m(G(H),t)f(G(H),t)−m(H,t)f(H,t)

Mf(t)
 is the probability to have a tree matching schema H to be

crossed with a tree having the same structure but which does not match schema H .

54

Another disruption comes from the fact that the structure of the part matching

schema is changed. This kind of modification is only caused by one point crossover

between two trees with different structures,pdiff(t) �1 − m(G(H),t)f(G(H),t)
Mf(t)

�. The term

�1 − m(G(H),t)f(G(H),t)
Mf(t)

� is the probability to select a tree that does not match 𝐺(𝐻).

 In the above mentioned versions of the GP schema theory, the connections

between the schema and the genetic feature of the chromosome are becoming

stronger. The evolution progress is well described by this kind of connection.

 O`Reilly`s method puts more restrictions on the shape of the sub tree which

is matched by the schema though only the disruption caused by crossover is

considered. Rosca`s idea brings the root as an important factor of the schema. The

rooted structure limits the number of the trees matching the schema to one. With

such an advantage it is possible to implement the analysis of the propagation of the

schema by considering the chromosomes which are part matching such schema.

Whigham`s version works for the chromosomes represented as derivation tree. Poli

and Langdon`s schema consider the position information and the genetic operator

together.

3.3 GEP Schema Theory

 As GEP is a relatively new EA algorithm, not many theoretical studies were

performed for understanding how the algorithm works. The only study [5] available

has attempted to provide a version of the GEP schema.

55

 In this study, a schema called GEP model[5], is defined as a segment of the

chromosome made of function , terminal and wildcard ‘#’ selected from the Open

Read Frame [20] part of the chromosome. The wildcard “#” symbol is introduced to

provide similar functionality as the “do not care” symbol in the GA schema.

Similarly to GA schema theory the “#” symbol represents only one terminal or

function element generated from the union of the terminal and function sets.

By considering the total number of function and terminal elements in the

union of the terminal and function set, the number of samples represented by such a

GEP model (schema) can be calculated. This number is, in the actual fact, the

number of instances of the schema (GEP model).

For example, given a function set {+,−,∗,/} , a terminal set 𝑇{𝑎, 𝑏} and a

GEP model { ∗ # + #𝑏}. In this example, the first ‘#’ can match any function of the

set {+,−,∗,/} and the second ‘#’ can match any terminals of the set {𝑎, 𝑏} , the GEP

model represents eight samples of the GEP chromosome segment. The segments

are { ∗ + + 𝑎 𝑏} , { ∗ + + 𝑏 𝑏} , { ∗ − + 𝑎 𝑏} , { ∗ − + 𝑏 𝑏} , { ∗ ∗ +𝑎 𝑏} , { ∗ ∗

+𝑏 𝑏},{ ∗ / +𝑎 𝑏},{ ∗/+𝑏 𝑏}. There are in fact instance of the schema { ∗ # + #𝑏}.

Using a probabilistic method, a set of theorems was developed to calculate

the number of segments matching the GEP model (meaning the number of schema

instances) that survive after applying the genetic operators.

This implementation of GEP schema follows closely the GA type of scehma

theory. However, it does not fully consider the feature specific to GEP, such as the

head and tail structure of the chromosome and the phenotype and genotype

separation mechanism.

This thesis attempts to provide a new version of the GEP schema theory

which takes into account the GEP specific feature in a more significant manner.

As will be shown in the next chapters of the this thesis, the definition of

schema and the corresponding theorems which predict the propagation from one

generation to another take into account the head and tail structure of the chromosome.

Also, the phenotype and genotype separation is taken into account. The genotype is

used to select schema which can be part of the entire chromosome, not only of the

56

Open Reading Frame part as in the study [5]. The phenotype is used, only to provide

the selection pressure through the fitness values of the chromosomes containing the

schema.

57

Chapter 4

GEP Schema Theory

As for other EA, GEP schema provides a quantitative way to trace and

analyze the ‘history’ of the evolution showing the accumulating process of the

genetic information in the chromosomes (from primitive to mature). Based on the

schema theory for GA and GP described in the previous chapter, a schema theory for

GEP developed by the author of this thesis is presented in this chapter.

4.1 GEP and Schema

As described in chapter 2, GEP uses a genotype and phenotype separated

system to simulate of the natural evolution. The genotype of GEP is a GA like string

of elements. As a genetic material container, the genotype of GEP, the chromosome

58

(element string), provides a platform for the accumulation of the genetic

modifications. The GEP schema is extracted from such an accumulation process by

analyzing the structure, the content and the position information of a certain

segment of the chromosome which has certain characteristics.

 In the GEP genotype and phenotype separated system, the change on the

Expression Tree (ET) is caused by the change on the elements of the chromosome

body. GEP schema should then focus on the source of the change: the change in the

elements of the chromosome body. Therefore, the GEP schema can be defined as a

segment of elements generated from the chromosomes with similar generic features

belonging to the same generation. The segment contains the functions selected from

the set 𝐹𝐹 ∪ {=} and terminals selected from the set 𝑇𝑇 ∪ {#} ∪ {=} where 𝐹𝐹 and 𝑇𝑇 are

the function and the terminal sets, respectively, used to create the chromosome. ‘=’ is

a symbol which stands for “do not care” in the head of a gene of the chromosome

and ‘#’ is a symbol which stands for “do not care” in the tail of the gene of the

chromosome. Because of the mapping structure between the genotype and the

phenotype, the same segment found in different positions in the chromosome may

not provide the same contribution to the fitness. Therefore positional information

(the beginning and the end position of the segment) is also included in the definition

of the GEP schema.

In defining the schema and its theory, the following notations were used:

a) 𝐻𝐻 - a schema

b) 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 - beginning of schema 𝑯𝑯 defined as the index of the first

element matched by the schema 𝐻𝐻 in the gene (the index starts with

the value zero)

c) 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 - length of the gene segment before the first element

matched by the schema 𝐻𝐻 . Its value is equal with the number of

elements of the segment which starts with the first element of the

59

gene and ends with the last element of the gene before the segment

matched by 𝐻𝐻.

Numerically,

𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

d) 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 - end of schema 𝑯𝑯 defined as the index of the last element

matched by 𝐻𝐻 in the gene.

e) 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 - length of the gene segment before the last element

(included) matched by 𝐻𝐻 . Its value is equal to the number of

elements in the gene segment between the first element of the gene

and the last element of the gene segment matched by 𝐻𝐻 (includes the

segment matched by 𝐻𝐻 and the part of the gene before this segment).

Numerically,

𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 = 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 + 1 (4.1)

where “+1” takes into account that the value of the index starts with

zero.

f) 𝐿𝐿(𝐻𝐻) - length of schema 𝑯𝑯 defined as the number of elements

(functions, terminals, ‘ = ’ or ‘ # ’) of 𝐻𝐻 . The relation among

𝐿𝐿(𝐻𝐻) , 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 and 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is given by the following formula:

𝐿𝐿(𝐻𝐻) = 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 − 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 1 (4.2)

where ‘+1’ on the right side of the equation indicates that the

element on position 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 should be considered as part of the

schema.

g) 𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻) - defining length of schema 𝑯𝑯 representing the number of

elements (functions, terminals, ‘=’ or ‘#’) in the segment between the

leftmost “fixed” element and the rightmost ‘fixed’ element

60

(inclusive) of 𝐻𝐻. A “fixed” element means an element representing a

function or a terminal (not a “do not care” element).

h) DNC segment (“Do Not Care” segment) - a special segment of the

schema 𝐻𝐻 that contains only “do not care” elements.

i) 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 - length of the 𝒊𝒊𝒕𝒕𝒕𝒕 DNC segment found between the first and

the last “fixed” element of 𝐻𝐻.

j) 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏- length of the DNC segment found in 𝐻𝐻 before its first

‘fixed’ element. If the element on the position 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is a fixed

element, then

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏 = 0

k) 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 - length of the DNC segment found in 𝐻𝐻 after its last

‘fixed’ element. If the element on the position 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 is a fixed

element, then

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 = 0

The relationship among 𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻) , 𝐿𝐿(𝐻𝐻) , 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏 and 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 is

given by

𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻) = 𝐿𝐿(𝐻𝐻) − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 (4.3)

l) 𝑂𝑂(𝐻𝐻) - order of the schema 𝑯𝑯 defined as the number of “fixed”

elements of 𝐻𝐻.

m) 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 - length of the gene defined as the number of elements of the

gene.

61

n) 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 - length of the head of the gene defined as the number of

elements of the head of the gene.

The following example is a single-gene chromosome matching schema 𝐻𝐻, where 𝐻𝐻

is ‘ + − = 𝑎𝑎 # 𝑐𝑐 ’. The segment ‘∗ + + − / ’ is the head of the gene. The

segment ‘𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑐𝑐 𝑑𝑑 𝑐𝑐 ’ is the tail of the gene. The chromosome`s segment ‘+ −

 / 𝑎𝑎 𝑏𝑏 𝑐𝑐’ matches 𝐻𝐻 (begins at position 2 and ends at position 7). This segment is an

instance of schema 𝐻𝐻.

Position(index) 0 1 2 3 4 5 6 7 8 9 10

Chromosome * + + - / a b c c d c

Schema H + - = a # c

In this example:

a) 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 2; The schema 𝐻𝐻 starts at position 2.

b) 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 2;

c) 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 = 7; Schema 𝐻𝐻 ends at position 7.

d) 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 = 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 + 1 = 8;

e) 𝐿𝐿(𝐻𝐻) = 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 − 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 1 = 7 − 2 + 1 = 6

f) 𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻)= 6; The function ‘+’ is the leftmost “fixed”

element and the terminal ‘𝑐𝑐’ is the rightmost “fixed”

element. The number of elements between these two

elements is 6.

g) ‘ = ’ is a “DNC” segment of the schema. The gene

segment matched by it is located in the head of the

gene.

62

‘#’ is another “DNC” segment of the schema. The gene

segment matched by it is located in the tail of the gene.

In the example, these segments have just one “DNC”

element.

h) 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷1 = 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷2 = 1; The length of 1st and 2nd DNC

segments between the first and the last “fixed” element

of 𝐻𝐻 are both ‘one’.

i) 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏 = 0; There is no “DNC” segment found

before the first “fixed” element of 𝐻𝐻

j) 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 = 0; There is no “DNC” segment found after

the last ‘fixed’ element of 𝐻𝐻

𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻) = 𝐿𝐿(𝐻𝐻) − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 = 6 − 0 − 0

= 6

k) 𝑂𝑂(𝐻𝐻) = 4 ; 𝐻𝐻 has four fixed elements the functions

‘+’, ‘-’ and the terminals ‘a’ and ‘c’.

l) 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 = 11

The gene has 11 elements.

m) 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 = 5 ; The head length is 5.

4.2 GEP Schema Theory

 The GEP schema theory is designed to investigate the evolution progress of

the linearly structured chromosome of GEP. It is used to explain how and why GEP

work. By analyzing the modifications on the chromosome, the relationship between

the genetic operators and the generic features of the chromosome is considered in the

63

GEP schema theory. This theory provides a theorem which gives the lower bound on

the propagation of the schema matched chromosomes in the next generation.

4.3 GEP Schema Theorem

 In developing this theorem, the evolution process of the chromosome is

divided in two parts:

i) Replication – selection of a chromosome based on its fitness for being

modified by the genetic operators,

ii) Genetic modification – modification of the chromosomes by the

genetic operators.

 Considering only the replication part, the estimated number of chromosomes

matching schema 𝐻𝐻 propagated from one generation to another can be calculated

with the following equation:

𝐸𝐸�𝑀𝑀[𝐻𝐻, 𝑡𝑡 + 1]� = 𝑀𝑀 × 𝑃𝑃𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) (4.1)

where

 𝐻𝐻 is the schema

 𝑡𝑡 is the generation number

 𝑀𝑀 is the number of chromosomes in the population

 𝑀𝑀[𝐻𝐻, 𝑡𝑡 + 1] is the number of chromosomes matching the schema 𝐻𝐻 in

the generation 𝑡𝑡 + 1

 𝐸𝐸�𝑀𝑀[𝐻𝐻, 𝑡𝑡 + 1]� is the estimated value of 𝑀𝑀[𝐻𝐻, 𝑡𝑡 + 1]

 𝑃𝑃𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) is the probability the chromosome matching 𝐻𝐻 is

selected for Replication in the generation 𝑡𝑡

Considering only the genetic modification, the equation becomes:

𝐸𝐸�𝑀𝑀[𝐻𝐻, 𝑡𝑡 + 1]� ≥ 𝑀𝑀 × 𝑃𝑃𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅_𝑚𝑚𝑅𝑅𝑒𝑒𝑏𝑏𝑑𝑑𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) (4.2)

64

where

 𝑃𝑃𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅_𝑚𝑚𝑅𝑅𝑒𝑒𝑏𝑏𝑑𝑑𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) is the probability that the schema 𝐻𝐻 will

survive after the genetic modification process at generation 𝑡𝑡 and will

exist in the next generation 𝑡𝑡 + 1

 This equation takes into account only the destructive effect that the genetic

modification has on the chromosomes matching the schema 𝐻𝐻 and for this reason it

gives only a lower bound (“≥” in the equation). The genetic modification can also

create chromosome matching the schema 𝐻𝐻. This last effect is not considered in this

study.

Considering the two contributions together, the formula becomes:

𝐸𝐸�𝑀𝑀[𝐻𝐻, 𝑡𝑡 + 1]� ≥ 𝑀𝑀 × 𝑃𝑃𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) × 𝑃𝑃𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅_𝑚𝑚𝑅𝑅𝑒𝑒𝑏𝑏𝑑𝑑𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) (4.3)

 Since the genetic modification process in GEP consists of a set of operations

--- recombination, transposition, inversion and mutation, the influence caused by the

genetic modification is a combined result of all the participating genetic operators.

(As discussed in section 2.3.2, these operations are not independent in terms of

applying the operations. The bracket is used to indicate the dependency relationship

among the operations. The details of this relation are described in section 4.3.2).

Hence,

𝑃𝑃𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅_𝑚𝑚𝑅𝑅𝑒𝑒𝑏𝑏𝑑𝑑𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) =

𝑃𝑃𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) �𝑃𝑃𝐼𝐼𝑏𝑏𝐼𝐼𝑏𝑏𝐼𝐼𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) �𝑃𝑃𝑇𝑇𝐼𝐼𝑅𝑅𝑏𝑏𝐼𝐼𝑅𝑅𝑅𝑅𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻)(𝑃𝑃𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻))��

 (4.4)

where

 𝑃𝑃𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) is the probability that the schema survives after the

execution of all the operators of Recombination

65

 𝑃𝑃𝑇𝑇𝐼𝐼𝑅𝑅𝑏𝑏𝐼𝐼𝑅𝑅𝑅𝑅𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) is the probability that the schema survives after the

execution of all the operators of Transposition

 𝑃𝑃𝐼𝐼𝑏𝑏𝐼𝐼𝑏𝑏𝐼𝐼𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) is the probability that the schema survives after the

execution of Inversion

 𝑃𝑃𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) is the probability that the schema survives after the

execution of Mutation

The brackets in this formula indicate that the survival probability

corresponding to each operator on the chromosome pool is calculated taking into

account that each operator acts on the chromosome pool resulted after the previously

applied operator (see section 2.32).

The order in which the operators are applied is the one in this formula,

starting with the innermost (Recombination). The order presented in 4.4 is just an

example sequence which is used for particle physics problem. The schema theorem

described in this section is independent of ordering. The order of the operation

described in the theorem can be changed if any other problem is involved.

By replacing 𝑃𝑃𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅_𝑚𝑚𝑅𝑅𝑒𝑒𝑏𝑏𝑑𝑑𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) in equation (4.3), the following

schema theorem is obtained:

𝐸𝐸�𝑀𝑀[𝐻𝐻, 𝑡𝑡 + 1]� ≥ 𝑀𝑀 × 𝑃𝑃(𝐻𝐻)𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏 ×

× 𝑃𝑃𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) �𝑃𝑃𝐼𝐼𝑏𝑏𝐼𝐼𝑏𝑏𝐼𝐼𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) �𝑃𝑃𝑇𝑇𝐼𝐼𝑅𝑅𝑏𝑏𝐼𝐼𝑅𝑅𝑅𝑅𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻)(𝑃𝑃𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻))��

(4.5)

Note: Because the replication in GEP is applied with elitism, a more precise version

of formula 4.5 is:

66

𝐸𝐸�𝑀𝑀[𝐻𝐻, 𝑡𝑡 + 1]�

≥

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑀𝑀 × 𝑃𝑃𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) × �𝑃𝑃𝑀𝑀𝑀𝑀𝑡𝑡𝑎𝑎𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺(𝐻𝐻) �𝑃𝑃𝐼𝐼𝐺𝐺𝐼𝐼𝐺𝐺𝐼𝐼𝐼𝐼𝑀𝑀𝑀𝑀𝐺𝐺(𝐻𝐻) �𝑃𝑃𝑇𝑇𝐼𝐼𝑎𝑎𝐺𝐺𝐼𝐼𝑇𝑇𝑀𝑀𝐼𝐼𝑀𝑀𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺(𝐻𝐻)�𝑃𝑃𝑅𝑅𝐺𝐺𝑐𝑐𝑀𝑀𝑅𝑅𝑏𝑏𝑀𝑀𝐺𝐺𝑎𝑎𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺(𝐻𝐻)���� + 𝐺𝐺;

𝑤𝑤ℎ𝐺𝐺𝐺𝐺, 𝑏𝑏𝐺𝐺𝐼𝐼𝑡𝑡 𝑐𝑐ℎ𝐼𝐼𝑀𝑀𝑅𝑅𝑀𝑀𝐼𝐼𝑀𝑀𝑅𝑅𝐺𝐺𝐼𝐼 𝑅𝑅𝑎𝑎𝑡𝑡𝑐𝑐ℎ 𝐼𝐼𝑐𝑐ℎ𝐺𝐺𝑅𝑅𝑎𝑎 𝐻𝐻

𝑀𝑀 × 𝑃𝑃𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) × �𝑃𝑃𝑀𝑀𝑀𝑀𝑡𝑡𝑎𝑎𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺(𝐻𝐻) �𝑃𝑃𝐼𝐼𝐺𝐺𝐼𝐼𝐺𝐺𝐼𝐼𝐼𝐼𝑀𝑀𝑀𝑀𝐺𝐺(𝐻𝐻) �𝑃𝑃𝑇𝑇𝐼𝐼𝑎𝑎𝐺𝐺𝐼𝐼𝑇𝑇𝑀𝑀𝐼𝐼𝑀𝑀𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺(𝐻𝐻)�𝑃𝑃𝑅𝑅𝐺𝐺𝑐𝑐𝑀𝑀𝑅𝑅𝑏𝑏𝑀𝑀𝐺𝐺𝑎𝑎𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺(𝐻𝐻)���� ;

𝑤𝑤ℎ𝐺𝐺𝐺𝐺, 𝑏𝑏𝐺𝐺𝐼𝐼𝑡𝑡 𝑐𝑐ℎ𝐼𝐼𝑀𝑀𝑅𝑅𝑀𝑀𝐼𝐼𝑀𝑀𝑅𝑅𝐺𝐺𝐼𝐼 𝑑𝑑𝑀𝑀 𝐺𝐺𝑀𝑀𝑡𝑡 𝑅𝑅𝑎𝑎𝑡𝑡𝑐𝑐ℎ 𝐼𝐼𝑐𝑐ℎ𝐺𝐺𝑅𝑅𝑎𝑎 𝐻𝐻

(4.6)

where, 𝐺𝐺 is the number of the elitist individuals (Number of best

chromosomes copied in the next generation without modification).

Every term of the pervious formula is discussed in the next section.

4.3.1 𝑃𝑃𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻)

Replication is the process of selecting chromosomes for being modified by

the genetic operators. Unlike the selection in GA and GP, the chromosomes which

are not selected in the replication process are eliminated completely. As the first

processing step of a single generation in the GEP evolution process, the replication

controls the production of candidate chromosomes for the population pool of next

generation.

 The selection process in GEP is implemented with the “roulette-wheel”

algorithm [24,25]. The fitness of the chromosome is used to calculate the size of the

section on the “roulette” corresponding to that chromosome. During the selection

process a chromosome with higher fitness has a bigger section on the “roulette”

which means it has higher probability to be selected and to survive after the

replication process. As a part of the chromosome, the segment of the chromosome

matching the schema 𝐻𝐻 has the same survival probability as its container

chromosome. Hence, the survival probability of the schema 𝐻𝐻 depends on the

average fitness of its container chromosome and the average fitness of the whole

generation, and it is given by the equation:

 𝑃𝑃𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) = 𝑀𝑀(𝐻𝐻, 𝑡𝑡) × 𝑑𝑑̅(𝐻𝐻,𝑅𝑅)
𝑀𝑀×𝑑𝑑(𝑅𝑅)

 (4.7)

67

where,

a) 𝑀𝑀 is the number of chromosomes in the population;

b) 𝑀𝑀(𝐻𝐻, 𝑡𝑡) is the number of the chromosomes matching 𝐻𝐻 in the

generation 𝑡𝑡;

c) 𝑓𝑓(̅𝐻𝐻, 𝑡𝑡)is the average fitness of the chromosomes matching 𝐻𝐻 in

the generation 𝑡𝑡;

d) 𝑓𝑓(̅𝑡𝑡) is the average fitness of all the chromosomes of the

population in the generation 𝑡𝑡;

 This probability is similar with the corresponding probability in GA and GP

(see the equation 3.2 in section 3.1.2).

4.3.2 𝑃𝑃𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅_𝑚𝑚𝑅𝑅𝑒𝑒𝑏𝑏𝑑𝑑𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻)

Genetic modification is the second step in a generation of the GEP evolution

process. In the genetic modification process, there are four operations,

Recombination, Transposition, Inversion and Mutation, applied on the chromosomes

which have survived after the previous step.

 To survive successfully in this step the segment matching schema should

survive the execution of all the genetic operators without any damage. The survival

probability to survive after the genetic modification is equal with the probability to

survive after the execution of all the operators.

 The calculation of the survival probability of the schema after applying an

operator is a very complex process. As mentioned in the beginning of this section the

creation and the disruption of the schema are both found in the genetic modification

process. In this thesis only the destructive effect is considered in calculating the

survival probability. Then

𝑃𝑃𝑥𝑥 = 1 − 𝑃𝑃𝑥𝑥_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) (4.8)

68

 where, the symbol 𝑃𝑃𝑥𝑥_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) is the probability of destroying the

schema by applying the genetic operator 𝑥𝑥 on the chromosome that contains an

instance of 𝐻𝐻 . For example, 𝑥𝑥 = One-Point Recombination, Two-Point

Recombination, Mutation etc.

 The 𝑃𝑃𝑥𝑥_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) is given by the following formula

𝑃𝑃𝑥𝑥_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) = 𝑃𝑃𝑥𝑥_𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅ℎ(𝐻𝐻) × 𝑃𝑃𝑥𝑥_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) (4.9)

where,

• 𝑃𝑃𝑥𝑥_𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅ℎ(𝐻𝐻) is the probability that a chromosome matching 𝐻𝐻 from

the 𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝑥𝑥 (see section 2.3.2 for the explanation of the meaning of

𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝑥𝑥) takes part in the genetic operator 𝑥𝑥.

• 𝑃𝑃𝑥𝑥_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) is the probability that the gene`s segment matching 𝐻𝐻 is

destroyed by the execution of the genetic operator 𝑥𝑥.

The detailed format of 𝑃𝑃𝑥𝑥_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) is specific to each operators and it

will be discussed later in this chapter.

In formula 4.9, the 𝑃𝑃𝑥𝑥_𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅ℎ(𝐻𝐻) is given by formula

 𝑃𝑃𝑥𝑥_𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅ℎ(𝐻𝐻) = 𝐷𝐷1(𝐻𝐻)
𝐷𝐷2(𝐻𝐻)

 (4.10)

 where,

𝑁𝑁1(𝐻𝐻) is the number of the chromosomes matching 𝐻𝐻 from 𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝑥𝑥

selected to take part in the execution of the genetic operator 𝑥𝑥.

The detailed format of 𝑁𝑁1(𝐻𝐻) is specific to each operator and

will be discussed later in this chapter.

𝑁𝑁2(𝐻𝐻) is the total number of the chromosomes matching 𝐻𝐻 from

𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝑥𝑥 and is given by

69

𝑁𝑁2(𝐻𝐻) = 𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑥𝑥(𝐻𝐻) × 𝑀𝑀 (4.11)

where, 𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑥𝑥(𝐻𝐻) is the probability that a chromosome in 𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝑥𝑥

(on which the genetic operator 𝑥𝑥 acts) matches the schema 𝐻𝐻.

As described in section 2.3.2, the genetic operators are applied sequentially

on the population. When the genetic operator 𝑥𝑥 is being appiled, the population on

which the genetic operator acts is the one just modified by the very previous genetic

operator and not the population selected after the replication (apart for the first

operator applied).

The 𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑥𝑥(𝐻𝐻) is given by

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑥𝑥(𝐻𝐻) =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑃𝑃𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) ,
𝑤𝑤ℎ𝐺𝐺𝐺𝐺 𝑥𝑥 𝑀𝑀𝐼𝐼 𝑡𝑡ℎ𝐺𝐺 𝑓𝑓𝑀𝑀𝐼𝐼𝐼𝐼𝑡𝑡 𝑀𝑀𝑇𝑇𝐺𝐺𝐼𝐼𝑎𝑎𝑡𝑡𝑀𝑀𝐼𝐼 𝑎𝑎𝑇𝑇𝑇𝑇𝑝𝑝𝑀𝑀𝐺𝐺𝑑𝑑

𝑀𝑀𝑥𝑥(𝐻𝐻, 𝑡𝑡)
𝑀𝑀

 ,

𝑤𝑤ℎ𝐺𝐺𝐺𝐺 𝑥𝑥 𝑀𝑀𝐼𝐼 𝑀𝑀𝐺𝐺𝐺𝐺 𝑀𝑀𝑓𝑓 𝑡𝑡ℎ𝐺𝐺 𝐺𝐺𝐺𝐺𝑥𝑥𝑡𝑡 𝑀𝑀𝑇𝑇𝐺𝐺𝐼𝐼𝑎𝑎𝑡𝑡𝑀𝑀𝐼𝐼𝐼𝐼 𝑎𝑎𝑇𝑇𝑇𝑇𝑝𝑝𝑀𝑀𝐺𝐺𝑑𝑑

 (4.12)

where, 𝑀𝑀𝑥𝑥(𝐻𝐻, 𝑡𝑡) is the number of chromosomes matching 𝐻𝐻 just before the

execution of the genetic operator 𝑥𝑥 and 𝑀𝑀 is the number of chromosomes in the

population.

With the formulas 4.8 and 4.9 only the survival probability of the schema

after the action of a genetic operator can be calculated. In order to consider the

probability to survive after the execution of all the genetic operators, the survival

probability of all the genetic operators should be considered together. As described

in Chapter 2 the genetic operators are applied sequentially. The execution sequence

of the genetic operators needs to be considered in determining the survival

probability for each operator. The relationship between the survival probability after

the entire genetic modification and the survival probability after each genetic

70

operator is given by the formula 4.4, where the execution order of the operators is

from the innermost to the outmost. The operators in the innermost bracket,

recombination, is executed firstly. The brackets in the formula 4.4 are used to

indicate this order. The (𝐺𝐺 + 1)𝑅𝑅ℎ operator (after the replication) is applied on the

execution result of the 𝐺𝐺𝑅𝑅ℎ operator.

 In the rest of this section, the survival probability corresponding to each

genetic operator is discussed. The consideration of the survival probability is based

on the genetic modification applied on one-gene chromosome.

A) Mutation

Mutation takes a single element to be the unit of operating object in each

single execution. The Mutation operator is applied a number of times on the

population. After the execution of the whole mutation operation whether or not the

segment matching the schema 𝐻𝐻 can survive relies on the accumulated result of

several single executions of the operator Mutation. To survive after one execution of

operator Mutation, the segment matching the fixed part of the schema 𝐻𝐻 should be

kept “untouched” during the whole operation process. A “no-fixed-element involved

execution” can be achieved by selecting an element matched by the “DNC” element

in the schema region or any other element from the outside of the segment matching

𝐻𝐻.

 The probability to survive after one execution of the operator mutation is

given below:

𝑃𝑃𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀(𝐻𝐻) = 1 − 𝑃𝑃𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻)

= 1 − 𝑃𝑃𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀_𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅ℎ(𝐻𝐻) × 𝑃𝑃𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻)

 = 1 − 𝐷𝐷1(𝐻𝐻)
𝐷𝐷2(𝐻𝐻) × 𝑃𝑃𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻)

(4.13)

where,

• 𝑁𝑁1(𝐻𝐻) is the number of the chromosomes matching 𝐻𝐻 selected from

𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀 to take part in the execution of the genetic operator

71

Mutation.

• 𝑁𝑁2(𝐻𝐻) is the number of the chromosomes matching 𝐻𝐻 in

𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀 .

• 𝑃𝑃𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) is the probability that the segment matching 𝐻𝐻 is

destroyed by the execution of Mutation.

𝑵𝑵𝟏𝟏(𝑯𝑯)

 In a single execution of mutation only one chromosome is selected randomly.

Whether or not a chromosome matching 𝐻𝐻 is selected is not guaranteed. In order to

consider the maximum level of the disruption caused by a single execution of

Mutation, we assume one chromosome matching the schema 𝐻𝐻 is selected. Under

this circumstance, the maximum probability to select a chromosome matching

schema at the beginning of each single execution of the operator Mutation for the

whole operation is guaranteed. Then we generate:

𝑁𝑁1(𝐻𝐻) = 1

Where ‘1’ indicates one chromosome matching the schema 𝐻𝐻 is selected.

𝑵𝑵𝟐𝟐(𝑯𝑯)

The 𝑁𝑁2(𝐻𝐻) of the operator Mutation is given by:

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀(𝐻𝐻) × 𝑀𝑀. (4.14)

The expression 𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀(𝐻𝐻) × 𝑀𝑀 represents the number of chromosomes

matching the schema 𝐻𝐻 in 𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀.

72

𝑷𝑷𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴_𝒔𝒔𝒔𝒔𝒔𝒔(𝑯𝑯)

To destroy the segment matching 𝐻𝐻, the mutation point should be selected

from the fixed part of 𝐻𝐻 . The 𝑃𝑃𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) of the operator Mutation can be

calculated with the number of fixed position on 𝐻𝐻 and the number of positions can

be selected by the operator Mutation. The probability to select an element from the

segment matching the fixed part of the schema 𝐻𝐻 in an execution of mutation

operator can be provided by the formula:

𝑃𝑃𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =
𝑂𝑂(𝐻𝐻)

1 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿

(4.15)

The denominator 1 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 is the number of elements in the chromosomes which

can be selected as a mutation point, where the ‘1’ means that only one gene in a

chromosome is considered. The 𝑂𝑂(𝐻𝐻) in the numerator is the number of the fixed

elements in the schema 𝐻𝐻.

 Considering the 𝑁𝑁1(𝐻𝐻) , the 𝑁𝑁2(𝐻𝐻) ,�𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀(𝐻𝐻) × 𝑀𝑀� , and the

𝑃𝑃𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) together, we obtain the probability to survive after a single

execution of the operator Mutation with the expression:

𝑃𝑃𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀(𝐻𝐻) = 1 − 𝑃𝑃𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻)

= 1 − 𝑃𝑃𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀_𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅ℎ(𝐻𝐻) × 𝑃𝑃𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻)

= 1 −
𝑁𝑁1(𝐻𝐻)
𝑁𝑁2(𝐻𝐻) × 𝑃𝑃𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻)

= 1 −
1

�𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀(𝐻𝐻) × 𝑀𝑀�
×

𝑂𝑂(𝐻𝐻)
1 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿

= 1 −
𝑂𝑂(𝐻𝐻)

�𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀(𝐻𝐻) × 𝑀𝑀� × 1 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿

(4.16)

73

This probability is also the probability of having a “no-fixed-element

involved execution” of operator Mutation.

 Considering an operation Mutation consists of a number of single executions

of operator Mutation. The disruption probability of the operation Mutation includes

all the contributions of every single executions of the operator Mutation. The

disruption probability of the entire operation of Mutation (𝑃𝑃𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝐼𝐼𝑀𝑀𝐷𝐷_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻))

can be calculated with the ratio between the number of cases which the segment

matching 𝐻𝐻 is destroyed by the execution of operator Mutation and the total number

of chromosome matching 𝐻𝐻 in 𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀 before applying the first execution.

Since the operation Mutation focuses on a single element, the expression

(𝑇𝑇𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀 × 𝑀𝑀 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 × 1) can be used to provide the total number of executions

of the operator mutation. Then, the number of executions which destroy the segment

matching schema can be calculated with

(𝑇𝑇𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀 × 𝑀𝑀 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 × 1) × (1 − 𝑃𝑃𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝐸𝐸(𝐻𝐻))

(4.17)

The number of chromosome matching the schema 𝐻𝐻 in 𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝑚𝑚𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏 is

�𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀(𝐻𝐻) × 𝑀𝑀�. Then the survival probability of the whole operation of

mutation can be calculated with the expression:

𝑃𝑃𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝐼𝐼𝑀𝑀𝐷𝐷(𝐻𝐻) = 1 − 𝑃𝑃𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝐼𝐼𝑀𝑀𝐷𝐷_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻)

= 1

−

(𝑇𝑇𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀 × 𝑀𝑀 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 × 1) × �1 − �1 − 𝑂𝑂(𝐻𝐻)
�𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀(𝐻𝐻) × 𝑀𝑀� × 1 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿

��

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀(𝐻𝐻) × 𝑀𝑀

= 1 −
𝑇𝑇𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀 × 𝑂𝑂(𝐻𝐻)

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀(𝐻𝐻) × 𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇𝑀𝑀(𝐻𝐻) × 𝑀𝑀

(4.18)

where, 𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀×𝑀𝑀(𝐻𝐻)
𝑃𝑃𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑏𝑏_𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻)×𝑃𝑃𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑏𝑏_𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻)×𝑀𝑀

 is the disruption

probability of the whole operation of mutation.

74

B) Recombination

Recombination consists of three operators: One-Point Recombination (OPR), Two-

Point Recombination (TPR) and Gene Recombination (GR). Only One-Point

Recombination and Two-Point Recombination are considered for the one-gene

chromosome. As descried before, genetic operators are applied on the population

pool sequentially. The Two-Point Recombination is performed on the population

pool which is just modified by the very previous operator, the One-Point

Recombination. Therefore the probability to survive after the execution of the

operation recombination is given by

 𝑃𝑃𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) = 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅(𝑃𝑃𝑀𝑀𝑃𝑃𝑅𝑅) (4.19)

The symbol 𝑃𝑃𝑀𝑀𝑃𝑃𝑅𝑅 and 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅 are the survival probability of the schema after the

execution of One-Point Recombination and Two-Point Recombination respectively.

B.1) One-Point Recombination

With the formula 4.8 and 4.9, the disruption probability of One-Point

Recombination (OPR) is given by

𝑃𝑃𝑀𝑀𝑃𝑃𝑅𝑅 = 1 − 𝑃𝑃𝑀𝑀𝑃𝑃𝑅𝑅_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) =

= 1 − 𝑃𝑃𝑀𝑀𝑃𝑃𝑅𝑅_𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅ℎ(𝐻𝐻) × 𝑃𝑃𝑀𝑀𝑃𝑃𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =

 = 1 − 𝐷𝐷1(𝐻𝐻)
𝐷𝐷2(𝐻𝐻) × 𝑃𝑃𝑀𝑀𝑃𝑃𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻)

(4.20)
Where,

• 𝑁𝑁1(𝐻𝐻) is the number of the chromosomes matching 𝐻𝐻 from the

𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀𝑃𝑃𝑅𝑅 selected to take part in the execution of the genetic operator

One-Point Recombination.

75

• 𝑁𝑁2(𝐻𝐻) is the number of the chromosomes matching 𝐻𝐻 from

𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀𝑃𝑃𝑅𝑅 . The 𝑃𝑃𝑀𝑀𝑃𝑃𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) is the probability that the gene`s segment

matching 𝐻𝐻 is destroyed by the execution of the genetic operator

One-Point Recombination.

• 𝑃𝑃𝑀𝑀𝑃𝑃𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) is the probability that the segment matching 𝐻𝐻 is

destroyed by the execution of OPR.

𝑵𝑵𝟐𝟐(𝑯𝑯)

 As the operator One-Point Recombination is the first genetic operator applied

𝑁𝑁2(𝐻𝐻) = 𝑃𝑃𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) × 𝑀𝑀 (4.21)

𝑵𝑵𝟏𝟏(𝑯𝑯)

In order to calculate the disruption probability of One-Point Recombination,

the evaluation of 𝑁𝑁1(𝐻𝐻) should consider the selection of the candidate chromosomes

(as an operator of Double chromosome class, a pair of parent chromosome is

selected). The selected pair of chromosomes which is equal with 𝑁𝑁1(𝐻𝐻) for One-

Point Recombination should satisfy the following two conditions.

The two conditions are:

a) A chromosome matching 𝐻𝐻 should be selected by the operator as one of

participating chromosomes.

b) The other participating chromosome should not match the same schema

𝐻𝐻.

 As a satisfying pair of parent chromosomes (which satisfy the two conditions

above), a father chromosome (the “father” chromosome is defined to represent a

chromosome that match 𝐻𝐻) and a mother chromosome (the “mother” chromosome is

76

defined to represent a chromosome that does not match 𝐻𝐻) are needed.

To calculate the number of satisfying pairs of parent chromosomes, the

number of chromosomes matching 𝐻𝐻, the number of chromosomes which do not

match 𝐻𝐻 and the number of chromosome which will take part in the execution of the

operator One-Point Recombination should be considered firstly.

The number of father chromosomes is controlled by the number of

chromosomes matching 𝐻𝐻. The number of chromosomes matching 𝐻𝐻 in the current

population can be calculated with the expression 𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑃𝑃𝑅𝑅(𝐻𝐻) × 𝑀𝑀

where,𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑃𝑃𝑅𝑅(𝐻𝐻) = 𝑃𝑃𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) as One-Point Recombination is the first

operator after Replication, as described in section 2.3.2).

The number of mother chromosomes is controlled by the number of

chromosomes which do not match the schema 𝐻𝐻 . The number of chromosomes

which do not match the schema 𝐻𝐻 is given by �1 − 𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑃𝑃𝑅𝑅(𝐻𝐻)� × 𝑀𝑀 .

The total number of chromosomes (including those that match 𝐻𝐻 and those

which do not match 𝐻𝐻) that will take part in the execution of the operator One-Point

Recombination limits the maximum number of the satisfying parent chromosomes.

The total number of chromosomes that will take part in the execution of the operator

One-Point Recombination can be calculated with the expression 𝑇𝑇𝑀𝑀𝑃𝑃𝑅𝑅 × 𝑀𝑀 where,

𝑇𝑇𝑀𝑀𝑃𝑃𝑅𝑅 is the rate of the operator One-Point Recombination.

The number of satisfying pairs of parent chromosomes is controlled by all the

three factors mentioned above. Within the range limited by the number of pairs of

the parent chromosomes, too many father chromosomes or too many mother

chromosomes will influence the number of satisfying pairs of chromosomes. Too

many father chromosomes means not enough mother chromosomes can be found in

𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀𝑃𝑃𝑅𝑅.

In order to calculate the disruption probability the maximum level of the

disruption caused by the selection of the parent chromosomes is considered. Based

on the factors mentioned above, three possible situations which lead to the maximum

disruption are considered below.

77

Situation A:

The number of the father chromosomes and the number of the mother

chromosomes are more than the number of the pairs of chromosomes which

will take part in the execution of the operator One-Point Recombination.

In order to cause the maximum degree of disruption, the number of

the father chromosome and the number of the mother chromosome should be

the same. The number of the satisfying pairs of parent chromosomes is

�𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂×𝑀𝑀
2

� (rounded to lower base). The symbol 𝑇𝑇𝑀𝑀𝑃𝑃𝑅𝑅 is One-Point

Recombination rate.

Situation B:

The number of the father chromosomes is less than the number of the

pairs of chromosomes which will take part in the execution of the operator

One-Point Recombination.

Since the number of the father chromosomes is not big enough to

cover all the possible disruption cases, all chromosomes that match 𝐻𝐻 in

𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀𝑃𝑃𝑅𝑅 are selected in evaluating the maximum level of the disruption. The

number of the satisfying pairs of parent chromosomes is

�𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑃𝑃𝑅𝑅(𝐻𝐻) × 𝑀𝑀�.

Situation C:

The number of the father chromosomes is less than the number of the

pair of chromosomes which will take part in the execution of the operator

One-Point Recombination.

78

In this situation, the number of the mother chromosomes is not

enough to cover all the possible disruption cases. All the chromosomes that

do not match 𝐻𝐻 in 𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀𝑃𝑃𝑅𝑅 are then selected to consider the maximum level

of the disruption. The number of such chromosomes is

�1 − 𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑃𝑃𝑅𝑅(𝐻𝐻)� × 𝑀𝑀 .

Since only one situation will occur in the execution of a genetic operator and

the number of participating chromosomes matching 𝐻𝐻 in every situation is restricted

by the total number of participating chromosomes, considering the three situations

together, the number of chromosomes matching 𝐻𝐻 available is given by the

expression:

𝑁𝑁1(𝐻𝐻) =

𝑀𝑀𝑀𝑀𝐺𝐺 ��𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂×𝑀𝑀
2

� , �𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑃𝑃𝑅𝑅(𝐻𝐻) × 𝑀𝑀�, ��1 − 𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑃𝑃𝑅𝑅(𝐻𝐻)� × 𝑀𝑀��.

(4.22)

This is the maximum value possible for 𝑁𝑁1(𝐻𝐻) leading to the maximum level

of the schema disruption.

𝑷𝑷𝑶𝑶𝑷𝑷𝑶𝑶_𝒔𝒔𝒔𝒔𝒔𝒔(𝑯𝑯)

 Only under the circumstance that the recombination point locates within the

segment of the parent chromosome matched by the effective part of the schema 𝐻𝐻

can destroy the segment matching 𝐻𝐻. The effective part is the segment between the

leftmost fixed element and the rightmost fixed element (included) of the schema 𝐻𝐻.

The expression 𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑
(𝐻𝐻)−1

𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−1
 represents the probability of selecting a recombination

point in the effective part of the schema region. The denominator represents the total

number of elements which could be selected as a recombination point (‘−1’ means

79

that the first element of the schema cannot be selected as a recombination point), and

the numerator represents the number of possible selections in the schema region

(‘−1 ’ means that the first point of the chromosome cannot be selected as a

recombination point). Then,

𝑃𝑃𝑀𝑀𝑃𝑃𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) = 𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻)−1
𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−1

 (4.23)

Considering all these terms together,

𝑃𝑃𝑀𝑀𝑃𝑃𝑅𝑅_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻)

=
𝑀𝑀𝑀𝑀𝐺𝐺 ��𝑇𝑇𝑀𝑀𝑃𝑃𝑅𝑅 × 𝑀𝑀

2 � , �𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑃𝑃𝑅𝑅(𝐻𝐻) × 𝑀𝑀�, ��1 − 𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑃𝑃𝑅𝑅(𝐻𝐻)� × 𝑀𝑀�� ×
𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻) − 1
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 1

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑃𝑃𝑅𝑅(𝐻𝐻) × 𝑀𝑀

(4.24)

 And the equation (4.24) becomes

𝑃𝑃𝑀𝑀𝑃𝑃𝑅𝑅 = 1 − 𝑃𝑃𝑀𝑀𝑃𝑃𝑅𝑅_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) = 1 −
𝑁𝑁1(𝐻𝐻)
𝑁𝑁2(𝐻𝐻) × 𝑃𝑃𝑀𝑀𝑃𝑃𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =

=1 −
𝑀𝑀𝑏𝑏𝑏𝑏��𝑝𝑝𝑂𝑂𝑂𝑂𝑂𝑂×𝑀𝑀

2 �,�𝑃𝑃𝐼𝐼𝐺𝐺𝑝𝑝𝐺𝐺𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺_𝑂𝑂𝑃𝑃𝑅𝑅(𝐻𝐻)×𝑀𝑀�,��1−𝑃𝑃𝐼𝐼𝐺𝐺𝑝𝑝𝐺𝐺𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺_𝑂𝑂𝑃𝑃𝑅𝑅(𝐻𝐻)�×𝑀𝑀��×
𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻)−1
𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−1

𝑃𝑃𝐼𝐼𝐺𝐺𝑝𝑝𝐺𝐺𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺_𝑂𝑂𝑃𝑃𝑅𝑅(𝐻𝐻)×𝑀𝑀

(4.25)

B.2) Two-Point Recombination

The operator Two-Point Recombination exchanges a segment (located with

two randomly selected recombination points, the beginning and the end point)

between the parent chromosomes. The discussion of the relationship between the

80

recombination point and the effective part of the schema H for Two-Point

Recombination is an extension of the previous discussion for One-Point

Recombination. The only difference is that Two-Point Recombination has two

recombination points (both the beginning point and the end point of candidate

segment can vary).

In this section, the candidate segment is defined as a segment of the candidate

chromosome on which the genetic operator will be applied. The effective part of

schema 𝐻𝐻 is a segment between the first and the last “fixed” element of the schema

(inclusive). Similarly to the One-Point Recombination, the disruption probability of

schema 𝐻𝐻 is calculated with the formula 4.8 and 4.9.

𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅 = 1 − 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) =

= 1 − 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅_𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅ℎ(𝐻𝐻) × 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =

 = 1 − 𝐷𝐷1(𝐻𝐻)
𝐷𝐷2(𝐻𝐻) × 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻)

(4.26)

Where,

• 𝑁𝑁1(𝐻𝐻) is the number of the chromosomes matching 4 𝐻𝐻 from

𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝑇𝑇𝑃𝑃𝑅𝑅 selected to take part in the execution of the genetic operator

Two-Point Recombination.

• 𝑁𝑁2(𝐻𝐻) is the number of the chromosomes matching 𝐻𝐻 from

𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝑇𝑇𝑃𝑃𝑅𝑅 .

• 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) is the probability that the segment matching 𝐻𝐻 is

destroyed by the execution of the genetic operator Two-Point

Recombination.

𝑵𝑵𝟏𝟏(𝑯𝑯)

 Two-Point Recombination is one of the Double chromosome class genetic

operators. And 𝑁𝑁1(𝐻𝐻) can be obtained following the same reasoning as for One-

81

Point Recombination. With the formula presented in section One-Point

Recombination the 𝑁𝑁1(𝐻𝐻) can be obtained below by replacing 𝑇𝑇𝑀𝑀𝑃𝑃𝑅𝑅 and

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑀𝑀𝑃𝑃𝑅𝑅 with 𝑇𝑇𝑇𝑇𝑃𝑃𝑅𝑅 and 𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑇𝑇𝑃𝑃𝑅𝑅 , respectively.

𝑀𝑀𝑀𝑀𝐺𝐺 ��𝑅𝑅𝑀𝑀𝑂𝑂𝑂𝑂×𝑀𝑀
2

� , �𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑇𝑇𝑃𝑃𝑅𝑅(𝐻𝐻) × 𝑀𝑀�, ��1 − 𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑇𝑇𝑃𝑃𝑅𝑅(𝐻𝐻)� × 𝑀𝑀�� (4.27)

𝑵𝑵𝟐𝟐(𝑯𝑯)

The 𝑁𝑁2(𝐻𝐻) of the operator Two-Point Recombination is given by

𝑁𝑁2(𝐻𝐻) = 𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑇𝑇𝑃𝑃𝑅𝑅(𝐻𝐻) × 𝑀𝑀

Then, 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) = 𝐷𝐷1(𝐻𝐻)
𝐷𝐷2(𝐻𝐻) × 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =

=
𝑀𝑀𝑀𝑀𝐺𝐺 ��

𝑇𝑇𝑇𝑇𝑃𝑃𝑅𝑅 × 𝑀𝑀
2 � , (𝑃𝑃𝐼𝐼𝐺𝐺𝑝𝑝𝐺𝐺𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺_𝑇𝑇𝑃𝑃𝑅𝑅(𝐻𝐻) × 𝑀𝑀), �(1 − 𝑃𝑃𝐼𝐼𝐺𝐺𝑝𝑝𝐺𝐺𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺_𝑇𝑇𝑃𝑃𝑅𝑅(𝐻𝐻)) × 𝑀𝑀��

𝑃𝑃𝐼𝐼𝐺𝐺𝑝𝑝𝐺𝐺𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺_𝑇𝑇𝑃𝑃𝑅𝑅(𝐻𝐻) × 𝑀𝑀
×

× 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻)

 (4.28)

𝑷𝑷𝑴𝑴𝑷𝑷𝑶𝑶_𝒔𝒔𝒔𝒔𝒔𝒔(𝑯𝑯)

To destroy the segment matching 𝐻𝐻, at least one of the recombination points

(beginning or end) should be selected within the segment matching the effective part

of the schema 𝐻𝐻 (there is an overlapping segment between the candidate segment

selected by the operator Two-Point Recombination and the segment matching the

effective part of the schema 𝐻𝐻). This segment matching the effective part of the

schema 𝐻𝐻 will be represented as 𝐻𝐻′ in this section.

 The calculation of the 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) of the operator Two-Point Recombination

takes into account the different locations of the pair of the two recombination points

82

(the beginning and the end points of the candidate segment). There are three possible

situations where the beginning and the end points can be selected. 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) is

calculated using the total number of selections of the possible candidate segments

and the number of selections (the candidate segment) which destroy the segments

matching the schema 𝐻𝐻 in each situation.

B.2.1) Situation i: The beginning point of the candidate segment is selected

within the segment located before 𝐻𝐻′and the end point is selected within 𝐻𝐻′

Fig. 4.1. Two point recombination with end point locate in 𝐻𝐻′

 The total number of the possible selections of the candidate segment in this

situation can be calculated with the expression

�𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒−𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒2 � − �𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏+𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏
2

� − �𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻)
2 �

(4.29)

where, the expression �𝑥𝑥𝑦𝑦� represents the 𝑦𝑦-combinations of the set 𝑥𝑥. When

we select 𝑦𝑦 elements from a set which has 𝑥𝑥 elements, the number of combinations

Schema region

Selected segment

Beginning point

 End point

Recombination region

: Element of effective
part of schema

: Element of schema

83

can be calculated with �𝑥𝑥𝑦𝑦�.

�
𝑥𝑥
𝑦𝑦�

= 𝑐𝑐𝑥𝑥
𝑦𝑦 =

𝑥𝑥!
�(𝑥𝑥 − 𝑦𝑦)!� ∗ 𝑦𝑦!

(4.30)

 In the formula 4.30, the expression �𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒−𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒2 � represents the total

number of possible selections of the candidate segment which is located within the

region before the position �𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 − 1�. This region contains the elements

from the first position of the chromosome to the position matched by the last fixed

element of the schema 𝐻𝐻. Beside those pairs which satisfy this condition (the end

point located within 𝐻𝐻′.), the number calculated with the expression �𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒−𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒2 �

also includes two extra parts, one corresponding to both recombination points being

located within the region before the position�𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏 − 1� and another

corresponding to both recombination points being located within the 𝐻𝐻′. The region

before the position �𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏 − 1� contains the elements from the first

position of the chromosome to the position matched by the first fixed element of the

schema 𝐻𝐻. The number of the selections of the candidate segment belonging to

those parts can be generated with�𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏+𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏
2

� and �𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻)
2 �, respectively. When

those extra parts are removed, the total number of possible selections which destroy

the segment matching 𝐻𝐻 can be obtained.

B.2.2) Situation ii: The beginning point of the candidate segment is selected

within the segment located within 𝐻𝐻′ and the end point is selected after 𝐻𝐻′

84

Fig. 4.2. Two point recombination with the beginning point located in 𝐻𝐻′

The total number of the possible selections of the candidate segment in this

situation can be generated with the expression

�
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏

2
� − �

𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻)
2

� − �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒

2 �

(4.31)

 In this formula, �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏−𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏
2

� provides the total number of

possible selections of the candidate segment which is located within the gene

segment after the position �𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏 − 1� . This segment contains the

elements from the position matched by the first fixed element of the schema 𝐻𝐻 to the

last position of the chromosome. Similarly to the situation i), the extra part

containing the selections with both recombination points located within the effective

part of the schema 𝐻𝐻 and the part containing the selections with both recombination

points located after the position �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 − 1� should be removed.

The number of the selections of the first part is given by �𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻)
2 �. The number of

the selections of the second part is given by �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒+𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒2 �. The region after

the position �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 − 1� contains the elements from the position

Schema region

Selected segment

Beginning point

Recombination region

: Element of effective
part of schema

: Element of schema

85

matched by the last fixed element of the schema 𝐻𝐻 to the last position of the

chromosome. Then the total number of the possible selections which destroy the

segment matching 𝐻𝐻 in this situation is obtained with the formula 4.31.

B.2.3) situation iii: Both the beginning and end points of the candidate

segment are selected within 𝐻𝐻′

Fig. 4.3. Two Point Recombination with the beginning and end points located in 𝐻𝐻′.

The total number of the possible selections of the candidate segment in this

situation can be calculated with the expression

�
𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻)

2
� − 1 − � �

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖
2 �

𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑅𝑅𝑑𝑑_𝐷𝐷𝐷𝐷𝐷𝐷_𝐼𝐼𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑅𝑅

𝑏𝑏=1

 (4.32)

 In this formula, �𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻)
2 � is the number of the selections of the candidate

segment which are selected from 𝐻𝐻′. One single case of the redundant operation is

Schema region

Selected segment

Beginning point

 End point

Selected region

: Element of effective
part of schema

: Element of schema

86

that elements on 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 are selected as the beginning point and the end

point of the candidate segment. Here, the “redundant” means the execution of the

genetic operator does not destroy the 𝐻𝐻′ . In this formula, ‘-1’ represents this

redundant operation is removed.

Since the elements of the “DNC” segment in the schema 𝐻𝐻 can be matched

by any element, some other redundant operations should be considered even though

those candidate segments are selected from 𝐻𝐻′. These redundant operations include

the cases in which the candidate segments are selected from the same “DNC”

segment. The total number of this kind of redundant operations can be calculated

with the expression ∑ �𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖2 �𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑅𝑅𝑑𝑑_𝐷𝐷𝐷𝐷𝐷𝐷_𝐼𝐼𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑅𝑅
𝑏𝑏=1 . By removing all the redundant

operations the total number of possible selections which destroy the segment

matching 𝐻𝐻 can obtained with the expression 4.32.

�𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻)
2 � − 1 − ∑ �𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖2 �𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑅𝑅𝑑𝑑_𝐷𝐷𝐷𝐷𝐷𝐷_𝐼𝐼𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑅𝑅

𝑏𝑏=1 .

(4.32)

 Considering the above three situations together the total number of possible

selections which destroy the segment matching 𝐻𝐻 is obtained with the following

formula:

𝑇𝑇𝑀𝑀𝑡𝑡𝑎𝑎𝑝𝑝_𝐺𝐺𝑀𝑀𝑅𝑅𝑏𝑏𝐺𝐺𝐼𝐼_𝑑𝑑𝐺𝐺𝐼𝐼𝑡𝑡𝐼𝐼𝑀𝑀𝑦𝑦𝐺𝐺𝑑𝑑 =

= �
𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒

2 � − �
𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏

2
� − �

𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻)
2

� +

+ �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏

2
� − �

𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻)
2

� − �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒

2 � +

+�
𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻)

2
� − 1 − � �

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖
2 �

𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑅𝑅𝑑𝑑_𝐷𝐷𝐷𝐷𝐷𝐷_𝐼𝐼𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑅𝑅

𝑏𝑏=1

 (4.33)

 With the total number of selections of the possible candidate segments

𝑇𝑇𝑀𝑀𝑡𝑡𝑎𝑎𝑝𝑝_𝐺𝐺𝑀𝑀𝑅𝑅𝑏𝑏𝐺𝐺𝐼𝐼_𝑇𝑇𝑀𝑀𝐼𝐼𝐼𝐼𝑀𝑀𝑏𝑏𝑝𝑝𝐺𝐺, which can be generated in the chromosome is �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿2 �,

87

and with the total number of possible selections which destroy the segment matching

𝐻𝐻 obtained above, the probability that the segment matching 𝐻𝐻 is destroyed,

𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) , is given by the following equation:

 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) = 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑒𝑒𝑏𝑏𝐼𝐼𝑅𝑅𝐼𝐼𝑅𝑅𝑦𝑦𝑏𝑏𝑒𝑒
𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼𝑏𝑏𝑏𝑏𝑅𝑅𝑏𝑏

=
𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻) × �

2 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻) − 1
2 � − 1 − ∑ �𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖2 �𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑅𝑅𝑑𝑑_𝐷𝐷𝐷𝐷𝐷𝐷_𝐼𝐼𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑅𝑅

𝑏𝑏=1

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 1)
2

 (4.34)

Then, with the 𝑁𝑁1(𝐻𝐻) and the 𝑁𝑁2(𝐻𝐻) generated before, the disruption

probability caused by the operator Two-Point Recombination is calculated with the

following expression:

𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) =

=
𝑀𝑀𝑀𝑀𝐺𝐺 ��𝑇𝑇𝑇𝑇𝑃𝑃𝑅𝑅 × 𝑀𝑀

2 � , �𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑇𝑇𝑃𝑃𝑅𝑅(𝐻𝐻) × 𝑀𝑀�, ��1 − 𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑇𝑇𝑃𝑃𝑅𝑅(𝐻𝐻)� × 𝑀𝑀��

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑇𝑇𝑃𝑃𝑅𝑅(𝐻𝐻) × 𝑀𝑀
×

× 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =

=
𝑀𝑀𝑀𝑀𝐺𝐺 ��𝑇𝑇𝑇𝑇𝑃𝑃𝑅𝑅 × 𝑀𝑀

2 � , �𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑇𝑇𝑃𝑃𝑅𝑅(𝐻𝐻) × 𝑀𝑀�, ��1 − 𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑇𝑇𝑃𝑃𝑅𝑅(𝐻𝐻)� × 𝑀𝑀��

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑇𝑇𝑃𝑃𝑅𝑅(𝐻𝐻) × 𝑀𝑀
×

×
𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻) × �

2 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑒𝑒𝑏𝑏𝑑𝑑(𝐻𝐻) − 1
2 � − 1 −∑ �𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖2 �𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑅𝑅𝑑𝑑_𝐷𝐷𝐷𝐷𝐷𝐷_𝐼𝐼𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑅𝑅

𝑏𝑏=1

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 1)
2

 (4.35)

The probability to survive after the execution of the operator Two-Point

Recombination is then calculated with the following equation:

88

𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅 = 1 − 𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅_𝑑𝑑𝑀𝑀𝐼𝐼𝐼𝐼𝑀𝑀𝑇𝑇𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺(𝐻𝐻) =

= 1 −
𝑀𝑀𝑀𝑀𝐺𝐺��

𝑇𝑇𝑇𝑇𝑃𝑃𝑅𝑅 ×𝑀𝑀
2 � , �𝑃𝑃𝐼𝐼𝐺𝐺𝑝𝑝𝐺𝐺𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺_𝑇𝑇𝑃𝑃𝑅𝑅(𝐻𝐻) ×𝑀𝑀�, ��1−𝑃𝑃𝐼𝐼𝐺𝐺𝑝𝑝𝐺𝐺𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺_𝑇𝑇𝑃𝑃𝑅𝑅(𝐻𝐻)�×𝑀𝑀��

𝑃𝑃𝐼𝐼𝐺𝐺𝑝𝑝𝐺𝐺𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺_𝑇𝑇𝑃𝑃𝑅𝑅(𝐻𝐻) ×𝑀𝑀 ×

×
𝐿𝐿𝑑𝑑𝐺𝐺𝑓𝑓(𝐻𝐻) × �

2 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑑𝑑𝐺𝐺𝑓𝑓(𝐻𝐻)− 1
2 � − 1−∑ �𝐿𝐿𝐷𝐷𝑁𝑁𝐷𝐷𝑀𝑀2 �𝐺𝐺𝑀𝑀𝑅𝑅𝑏𝑏𝐺𝐺𝐼𝐼_𝑀𝑀𝑓𝑓_𝐷𝐷𝑁𝑁𝐷𝐷_𝐼𝐼𝐺𝐺𝑠𝑠𝑅𝑅𝐺𝐺𝐺𝐺𝑡𝑡

𝑀𝑀=1

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿× (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 1)
2

 (4.36)

C) Transposition

Transposition consists of three operators: Insertion Sequence transposition

(INSERT), Root Insertion Sequence transposition (RIS) and Gene transposition.

Unlike the Recombination, the Transposition is applied on a single chromosome.

Only the Insertion Sequence transposition and Root Insertion Sequence transposition

are applicable to one gene chromosome studied in this thesis. With the similar

method used for the Recombination, the survival probability after the execution of

the Transposition can be calculated with the equation.

𝑃𝑃𝑇𝑇𝐼𝐼𝑅𝑅𝑏𝑏𝐼𝐼𝑅𝑅𝑅𝑅𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) = 𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅(𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇)
 (4.37)

C.1) Insertion Sequence Transposition

Operator Insertion Sequence inserts a randomly selected segment into the head of a

gene. Except for the first one, every position in the head can be selected as an

insertion position.

With the formulas 4.8 and 4.9, the disruption probability of schema 𝐻𝐻 is

𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇 = 1 − 𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) =

89

= 1 − 𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇_𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅ℎ(𝐻𝐻) × 𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =

 = 1 − 𝐷𝐷1(𝐻𝐻)
𝐷𝐷2(𝐻𝐻) × 𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻)

 (4.38)

where,

• 𝑁𝑁1(𝐻𝐻) is the number of the chromosomes matching 𝐻𝐻 from

𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇 selected to take part in the execution of the genetic

operator Insertion sequence.

• 𝑁𝑁2(𝐻𝐻) is the number of the chromosomes matching 𝐻𝐻 from

𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇 .

• 𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) is the probability that the segment matching 𝐻𝐻 is

destroyed by the execution of the genetic operator Insertion Sequence.

𝑵𝑵𝟏𝟏(𝑯𝑯)

 Since the Insertion Sequence is an operator of the Single chromosome class,

the calculation of the 𝑁𝑁1(𝐻𝐻) is simplified by focusing on the selection of a single

chromosome. The two conditions necessary to calculate 𝑁𝑁1(𝐻𝐻) mentioned in the

section One-Point Recombination are simplified to only one: a candidate

chromosome matching 𝐻𝐻 should be selected.

 In order to calculate the disruption probability the maximum level of the

disruption caused by the selection of the chromosome should be considered. This

means the maximum value of 𝑁𝑁1(𝐻𝐻) which leads to the maximum level of

disruption should be used. Unlike the operator of Recombination, Insertion Sequence

only requires one chromosome to be the candidate chromosome. With the similar

method used in the case of the Double chromosome class, the largest number of

cases that satisfy this condition is given by the expression:

𝑁𝑁1(𝐻𝐻) = �𝑀𝑀𝑀𝑀𝐺𝐺 ��𝑇𝑇𝐼𝐼𝑁𝑁𝐼𝐼𝐸𝐸𝑅𝑅𝑇𝑇 × 𝑀𝑀�, (𝑃𝑃𝐼𝐼𝐺𝐺𝑝𝑝𝐺𝐺𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺_𝐼𝐼𝑁𝑁𝐼𝐼𝐸𝐸𝑅𝑅𝑇𝑇(𝐻𝐻) × 𝑀𝑀)��

(rounded to lower case)

(4.39)

90

where, (𝑇𝑇𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇 × 𝑀𝑀) is the number of the chromosomes which will take

part in the execution of Insertion Sequence;

�𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇(𝐻𝐻)� is the number of the chromosomes matching 𝐻𝐻 in

𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇.

Similarly to the formula 4.22 generated for Double chromosome class, the

function “𝑀𝑀𝑀𝑀𝐺𝐺” in the expression above is used to select the largest number of

chromosomes in two cases.

One is that the number of chromosomes matching 𝐻𝐻 is more than the number

of candidate chromosomes of the operator Insertion Sequence. In such a case, in

order to achieve the highest level of disruption the highest number of candidate

chromosomes matching 𝐻𝐻 that can be selected for the operator Insertion Sequence is

the number of candidate chromosomes of the operator Insertion Sequence. Then the

number of chromosomes equal with the (𝑇𝑇𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇 × 𝑀𝑀) are selected for this case.

Another case is when the number of chromosomes matching 𝐻𝐻 is less than

the number of candidate chromosomes of the operator Insertion Sequence. In this

case, the highest number of candidate chromosomes matching 𝐻𝐻 that can be selected

for the operator Insertion Sequence is the number of candidate chromosomes

matching 𝐻𝐻 in 𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇 . The number of chromosomes equal with the

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇(𝐻𝐻) × 𝑀𝑀 are selected in this case.

𝑵𝑵𝟐𝟐(𝑯𝑯)

The 𝑁𝑁2(𝐻𝐻) of the operator Insertion Sequence is given by

𝑁𝑁2(𝐻𝐻) = 𝑃𝑃𝐼𝐼𝐺𝐺𝑝𝑝𝐺𝐺𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺_𝐼𝐼𝑁𝑁𝐼𝐼𝐸𝐸𝑅𝑅𝑇𝑇(𝐻𝐻) × 𝑀𝑀 (4.40)

Then,

 𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) = 𝐷𝐷1(𝐻𝐻)
𝐷𝐷2(𝐻𝐻) × 𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =

91

=
�𝑀𝑀𝑀𝑀𝐺𝐺 �(𝑇𝑇𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇 × 𝑀𝑀), �𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇(𝐻𝐻) ×𝑀𝑀���

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇(𝐻𝐻) ×𝑀𝑀 × 𝑃𝑃𝐼𝐼𝑁𝑁𝐼𝐼𝐸𝐸𝑅𝑅𝑇𝑇_𝐼𝐼𝐺𝐺𝑠𝑠

(4.41)

𝑷𝑷𝑰𝑰𝑵𝑵𝑰𝑰𝑴𝑴𝑶𝑶𝑴𝑴_𝒔𝒔𝒔𝒔𝒔𝒔(𝑯𝑯)

The damage on 𝐻𝐻 caused by the operator Insertion Sequence is restricted by

the area where the insertion happens. If the segment matching 𝐻𝐻 is located within the

head of the gene and the insertion position is selected from the segment before the

position matched by the last fixed element of the schema 𝐻𝐻 within the overlapping

segment, the schema 𝐻𝐻 is destroyed after the execution of the insertion. Therefore,

the overlapping relationship between the segments matching 𝐻𝐻 and the head of the

container gene is a very important factor in determining 𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) .

𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) of the operator Insertion Sequence, is discussed below considering

the three possible situations of the location of the segment matching 𝐻𝐻 .

𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) can be calculated as the ratio between the number of the destroyed

cases and the number of the possible cases. A “case” means a combined selection

that includes the selection of the insertion position and the selection of the candidate

segment (the segment which will be inserted). If the selections of a “case” leads to

the destruction of the segment matching 𝐻𝐻, such “case” is called a “destroyed case”.

C.1.1) situation i: the whole segment matched by the schema 𝐻𝐻 only covers

the tail of the gene (there is no overlapping segment between the head of the

container gene and the segment matching 𝐻𝐻) (𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 > 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿)

92

Fig. 4.4. Insertion Sequence with the segment matching the schema is located in the tail

Since the modification can be applied only in the head, the genetic material in

the tail is kept “unchanged” after the execution of the insertion. The modification

cannot influence the schema 𝐻𝐻 that is located in the tail. This means the number of

selections (the candidate segments) which destroy the segments matching 𝐻𝐻 is zero.

Hence, 𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) is zero in this situation and

𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇 = 1−𝑁𝑁1(𝐻𝐻)
𝑁𝑁2(𝐻𝐻) × 0 = 1− 0 = 1

(4.42)

C.1.2) situation ii: the segment matching 𝐻𝐻 covers both the head and the tail

of the gene (the overlapping segment starts with 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and ends with the last

element of the head) (0 < 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≤ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 .𝑀𝑀𝑁𝑁𝐷𝐷. 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 > 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿)

a # b a #

Schema region

Insertion region

: Element of effective part
of schema
: Element of schema

: Element of tail

: Element of head : Insertion point

93

Fig. 4.5. Insertion Sequence with the segment matching the schema which covers

both the head and the tail

Except for the first one，any position in the head could be selected as an

insertion position. All the elements after the insertion position will shift their position

after the execution of the operator Insertion Sequence. This means most changes

caused by the operator on the elements within or before the overlapping region will

destroy the segment matching 𝐻𝐻 (some redundant operations will be discussed later).

 Since in this situation the region that is located before the last element of the

overlapping segment is actually the whole head (except for the first position), the

number of the possible selections of the insertion position is 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1. As the

inserted segment is selected randomly, the number of possible selections is �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿2 �.

Therefore, the number of possible cases can be calculated with the expression

(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1) × �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿2 �.

a # = a b

Schema region

Insertion region

: Element of effective part
of schema
: Element of schema

: Element of tail

: Element of head

: Insertion point

a b

=

Selected segment

Beginning point

#
 End point

a = #

94

 Similarly to the redundant operation discussed in the Two-Point

Recombination, the calculation of the number of satisfying cases should be

calculated without the influence caused by the redundant insertion. In this situation

the redundant insertion includes two classes.

Class a) the insertion position is selected from the elements located at

the end of the head and such elements are matched by a “DNC” segment of

the schema 𝐻𝐻;

Fig. 4.5.1. An example of class a) redundant insertion

When the insertion is applied on a segment that appears at the end of

the head of a gene and such a segment is matched by a “DNC” segment

(which means the elements located at the end of the head of a gene are

matched by a “DNC” segment of the schema 𝐻𝐻), the insertion cannot damage

the segment matching 𝐻𝐻 in this situation. The reason is that the element of

the “DNC” segment can be matched by any element on its position. As

shown in the Figure 4.5.1, since the insertion point is matched by a “DNC”

= a b

Schema region

Insertion region

: Element of effective part
of schema
: Element of schema

: Element of tail

: Element of head

: Insertion point

= b

=

Selected segment

Beginning point

#
 End point

a = #

=

95

element, the insertion of selected segment just replace the element on the

“DNC” matched position. After the execution of Insertion Sequence the

segment matching 𝐻𝐻 is in an undamaged state. The expression

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒
(𝐻𝐻) represents the number of “DNC” elements found within

the last “DNC” segment matching the elements located at the end of the head

of the gene (only the “DNC” elements found in the head are counted). This

number is also the number of selections for the insertion positions which can

cause some redundant insertions. Therefore, the number of redundant

operation cases in class a) is 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒
(𝐻𝐻) × �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿2 �.

Class b) the selected insertion position is the same as the beginning

position of the candidate segment;

Fig. 4.5.2. An example of class b) redundant insertion

a b

Schema region

Insertion region

: Element of effective part
of schema
: Element of schema

: Element of tail

: Element of head

: Insertion point

c b

=

Selected segment

Beginning point

#
 End point

a = #

 =

c

96

When the selected segment is being inserted into the head of a gene,

the same number of elements is removed from the end of the head by the

“shift” movement. If the insertion position and the beginning position of the

candidate segment selected are the same, and the end position of the

candidate segment is selected from the segment after the position matched by

the last “fixed” element of the schema 𝐻𝐻 in the head, the genetic material

inserted and the genetic material removed are actually the same. After the

execution of the Insertion, this kind of redundant operation makes no harmful

change on the chromosome. Figure 4.5.2 shows an example. After the

execution of insertion, the insertion region of the chromosome still matches

𝐻𝐻. The number of the redundant operation cases in class b) is given by

�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒
(𝐻𝐻)� × 1 ×

× �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒
(𝐻𝐻)�

(4.43)

where, �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒
(𝐻𝐻)� is the number of

selections of the insertion position;𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒
(𝐻𝐻) is used to exclude

those “DNC” elements considered in class a);

‘× 1’ indicates the beginning position of inserted segment is the same

as the insertion position;

�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒
(𝐻𝐻)� is the number of the

possible selections of the end position of the candidate segment; 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 −

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒
(𝐻𝐻) represents the end position of the inserted

segment which can be selected only from the segment after the position

matched by the last “fixed” element of the schema 𝐻𝐻 in the head.

 In this situation the number of destroyed cases can be calculated by removing

the two classes of redundant operations of the insertion. The value is given by the

following formula:

97

(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1) × �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿2 � − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒
(𝐻𝐻) × �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿2 � − �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1 −

−𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒
(𝐻𝐻)� × 1 × �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒

(𝐻𝐻)� =

=
(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1) × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 1)

2
− 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒

(𝐻𝐻) ×

×
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 1)

2
− �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒

(𝐻𝐻)� ×

× �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒
(𝐻𝐻)�

(4.44)

Eventually 𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) of the operator Insertion Sequence can be

calculated with the expression obtained by accumulating the restrictions caused by

all the above situations and is given by:

𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =
𝑇𝑇𝑀𝑀𝑡𝑡𝑎𝑎𝑝𝑝_𝐺𝐺𝑀𝑀𝑅𝑅𝑏𝑏𝐺𝐺𝐼𝐼_𝑑𝑑𝐺𝐺𝐼𝐼𝑡𝑡𝐼𝐼𝑀𝑀𝑦𝑦𝐺𝐺𝑑𝑑
𝑇𝑇𝑀𝑀𝑡𝑡𝑎𝑎𝑝𝑝_𝐺𝐺𝑀𝑀𝑅𝑅𝑏𝑏𝐺𝐺𝐼𝐼_𝑇𝑇𝑀𝑀𝐼𝐼𝐼𝐼𝑀𝑀𝑏𝑏𝑝𝑝𝐺𝐺

=

=

(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1) × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 1)
2 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒

(𝐻𝐻) ×

× 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 1)
2 − �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒

(𝐻𝐻)� ×

× �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒
(𝐻𝐻)�

(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1) × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 1)
2

=

= �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒
(𝐻𝐻)� ×

×
�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 1) − 2 × �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒

(𝐻𝐻)��

(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1) × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 1)

 (4.45)

 Hence, the 𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇 become

𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇 = 1 −
𝑁𝑁1(𝐻𝐻)
𝑁𝑁2(𝐻𝐻) × 𝑃𝑃𝐼𝐼𝑁𝑁𝐼𝐼𝐸𝐸𝑅𝑅𝑇𝑇_𝐼𝐼𝐺𝐺𝑠𝑠(𝐻𝐻) =

98

= 1 −
�𝑀𝑀𝑀𝑀𝐺𝐺 �(𝑇𝑇𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇 × 𝑀𝑀), �𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇(𝐻𝐻) ×𝑀𝑀���

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇(𝐻𝐻) ×𝑀𝑀 ×

× �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒
(𝐻𝐻)� ×

×
�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 1) − 2 × �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒(𝐻𝐻)��

(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1) × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 1)

 (4.46)

C.1.3) situation iii: the segment matching 𝐻𝐻 cover only the head of the gene

(the overlapping segment starts at 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and ends at 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒) (0 < 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 ≤ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿)

Fig. 4.6. Insertion Sequence with the segment matching the schema located in the head

𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 of the schema 𝐻𝐻 is located within the head of a gene which limits the

range of the overlapping region between the head and the segment matching 𝐻𝐻. The

operator Insertion Sequence applied after the last “fixed” element of the schema 𝐻𝐻

= b a

Schema region

Insertion region

: Element of effective part
of schema

: Element of schema

: Element of tail

: Element of head

: Insertion point

a b

=

Selected segment

Beginning point

=
 End point

=

=

=

99

on the chromosome does not damage the segment matching 𝐻𝐻. To destroy 𝐻𝐻 the

insertion position should be selected from the segment before the position �𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 −

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 − 1�. 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 represents how many “do not care” elements in the “do not

care” segment are located after the last “fixed” element of the schema 𝐻𝐻.

 With a similar method used in the situation ii), the number of possible

selection cases can be calculated with the expression (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1) × �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿2 � .

Since the element(s) of the last “DNC” segment in the schema 𝐻𝐻 could be matched

by any element(s), every position on the last “DNC” segment can be selected as a

harmless insertion position. In this situation, the number of redundant operations of

the class a) mentioned in the previous section is 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 × �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿2 � .

Fig. 4.6.1. An example of class a) redundant insertion

The number of the redundant operations of class b) is calculated considering

the selection of the possible end positions of the inserted segment. Unlike the

situation ii), the segment matching 𝐻𝐻 is located within the head in this situation. The

possible selections of the end position are considered with the segment after the

= = a b a

Schema region

Insertion region

: Element of effective part
of schema

: Element of schema

: Element of tail

: Element of head

: Insertion point

a b

=

Selected segment

Beginning point

=
 End point

a =

=

100

position 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒. If the end position of the candidate segment is selected from the

segment starting at the position matched by the first element of the “do not care”

element located after the last “fixed” element of the schema 𝐻𝐻 , the Insertion

Sequence does not damage the segment matching 𝐻𝐻. The number of the redundant

operations of class b) is then given by:

�𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 − 1� × 1 × �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒� (4.47)

where, �𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 − 1� is the number of the selections of the insertion

position; 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒is used to exclude those “DNC” elements considered in class a); the

‘× 1’ indicates the beginning position of the inserted segment is the same as the

insertion position;

�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒� represents the end position of the inserted

segment which can be selected only from the segment after the position matched by

the last ‘fixed’ element of the schema 𝐻𝐻.

Fig. 4.6.2. An example of class b) redundant insertion

= = a b a

Schema region

Insertion region

: Element of effective part
of schema

: Element of schema

: Element of tail

: Element of head

: insertion point

a b

=

Selected segment

Beginning point

=
 End point

a =

=

101

In this situation, the insertion position can be selected from the segment after

the segment matched by 𝐻𝐻 . When the insertion is applied on such segment, the

insertion cannot damage the segment matching 𝐻𝐻 in this situation. One more class of

redundant insertion which only can be found in this situation should be considered.

Figure 4.6.3 shows an example of redundant insertion. The number of redundant

operations of this class is given by

(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒) × �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿2 � (4.48)

Where, (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒) is the number of selections of the insertion position;

 �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿2 � is the number of possible selections of the inserted segment.

Fig. 4.6.3. An example of redundant insertion

In this situation the number of the destroyed cases can be calculated by

removing the two classes of redundant operations. The value is given by the

following formula:

= a b a

Schema region

Insertion region

: Element of effective part
of schema

: Element of schema

: Element of tail

: Element of head

: Insertion point

a b

=

Selected segment

Beginning point

=
 End point

a =

=

 =

102

(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1) × �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿

2 � − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 × �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿

2 � − �𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 − 1� × 1 ×

× �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒� − (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒) × �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿

2 � =

= (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1) × �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿

2 � − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 × �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿

2 � −

 −�𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 − 1� × �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒�

(4.49)

 𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) of the operator Insertion Sequence can then be calculated

with the expression

 𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) = 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑒𝑒𝑏𝑏𝐼𝐼𝑅𝑅𝐼𝐼𝑅𝑅𝑦𝑦𝑏𝑏𝑒𝑒
𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼𝑏𝑏𝑏𝑏𝑅𝑅𝑏𝑏

=

= �(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1) × �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿

2 � − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 × �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿

2 � − �𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 − 1� ×

× �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒� − (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒) × �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿

2 �� ×

×
1

(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1) × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 1)
2

(4.50)

 𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇 of this situation is given by:

𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇 = 1 −
𝑁𝑁1(𝐻𝐻)
𝑁𝑁2(𝐻𝐻) × 𝑃𝑃𝐼𝐼𝑁𝑁𝐼𝐼𝐸𝐸𝑅𝑅𝑇𝑇𝐼𝐼𝐺𝐺𝑠𝑠(𝐻𝐻) =

= 1 −
�𝑀𝑀𝑀𝑀𝐺𝐺 �(𝑇𝑇𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇 × 𝑀𝑀), �𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇(𝐻𝐻) ×𝑀𝑀���

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇(𝐻𝐻) ×𝑀𝑀 ×

× �(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1) × �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿

2 � − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 × �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿

2 � − �𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 − 1� ×

× �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒� − (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒) × �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿

2 �� ×

×
1

(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1) × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 1)
2

(4.51)

103

Considering all the situations of the location of the segment matching 𝐻𝐻

together, and combining equations of all situations we obtain:

𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇 = 1 − 𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) =

= 1 − 𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇_𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅ℎ(𝐻𝐻) × 𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =

 = 1 − 𝐷𝐷1(𝐻𝐻)
𝐷𝐷2(𝐻𝐻) × 𝑃𝑃𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =

=

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

1,
𝑓𝑓𝑀𝑀𝐼𝐼 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 > 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿;

1 − �𝑀𝑀𝑀𝑀𝐺𝐺 �(𝑇𝑇𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇 × 𝑀𝑀), �𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇(𝐻𝐻) ×𝑀𝑀��� ×

× �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒
(𝐻𝐻)� ×

×
�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 1) − 2 × �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒

(𝐻𝐻)��

(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1) × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 1) ×

×
1

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇(𝐻𝐻) ×𝑀𝑀
𝑓𝑓𝑀𝑀𝐼𝐼 0 < 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≤ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 .𝑀𝑀𝑁𝑁𝐷𝐷.𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 > 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 ;

1 −
�𝑀𝑀𝑀𝑀𝐺𝐺 �(𝑇𝑇𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇 × 𝑀𝑀), �𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇(𝐻𝐻) ×𝑀𝑀���

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝐼𝐼𝐷𝐷𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇(𝐻𝐻) ×𝑀𝑀 ×

[(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1) × �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿

2 � − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 × �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿

2 � − �𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 − 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒 − 1� ×

× �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒� − (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒) × �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿

2 �] ×

×
1

(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 1) × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 1)
2

𝑓𝑓𝑀𝑀𝐼𝐼 0 < 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 ≤ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿;

 (4.52)

104

C.2) Root Insertion Sequence

 Root Insertion Sequence (RIS) is a version of the operator Insertion Sequence

with a fixed insertion position. Besides the original requirements of the operator

Insertion Sequence, two more restrictions are necessary: the candidate segment

should start with a function as its first element and it should be inserted at the first

position of the chromosome (the root position).

The survival probability of Root Insertion Sequence Transposition is given

by the following formula:

𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅 = 1 − 𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) =

= 1 − 𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅_𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅ℎ(𝐻𝐻) × 𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =

 = 1 − 𝐷𝐷1(𝐻𝐻)
𝐷𝐷2(𝐻𝐻) × 𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻)

(4.53)

Where,

• 𝑁𝑁1(𝐻𝐻) is the number of the chromosomes matching 𝐻𝐻 from 𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝑅𝑅𝑀𝑀𝑀𝑀𝑇𝑇

selected to take part in the execution of the genetic operator Root

Insertion Sequence.

• 𝑁𝑁2(𝐻𝐻) is the number of the chromosomes matching 𝐻𝐻 from 𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝑅𝑅𝐼𝐼𝑅𝑅 .

• 𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) is the probability that the segment matching 𝐻𝐻 is

destroyed by the execution of the genetic operator Root Insertion

Sequence.

𝑵𝑵𝟏𝟏(𝑯𝑯)

 Root Insertion Sequence is an operator of the single chromosome class.

Therefore, the largest number of cases that satisfy the condition mentioned in section

Insertion, the largest value of 𝑁𝑁1(𝐻𝐻), can be calculated with a similar method used

in section for Insertion Sequence. The 𝑁𝑁1(𝐻𝐻) of the operator Root Insertion

Sequence is given by:

105

𝑁𝑁1(𝐻𝐻) = �𝑀𝑀𝑀𝑀𝐺𝐺 ��𝑇𝑇𝑅𝑅𝐼𝐼𝐼𝐼 ×𝑀𝑀�, �𝑃𝑃𝐼𝐼𝐺𝐺𝑝𝑝𝐺𝐺𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺_𝑅𝑅𝐼𝐼𝐼𝐼(𝐻𝐻) ×𝑀𝑀��� (4.54)

(rounded to lower case)

𝑵𝑵𝟐𝟐(𝑯𝑯)

The 𝑁𝑁2(𝐻𝐻) of the operator Root Insertion Sequence is given by:

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑅𝑅𝐼𝐼𝑅𝑅(𝐻𝐻) ×𝑀𝑀

(4.55)

Then,

 𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) = 𝐷𝐷1(𝐻𝐻)
𝐷𝐷2(𝐻𝐻) × 𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =

=
�𝑀𝑀𝑀𝑀𝐺𝐺 ��𝑇𝑇𝑅𝑅𝐼𝐼𝐼𝐼 ×𝑀𝑀�, �𝑃𝑃𝐼𝐼𝐺𝐺𝑝𝑝𝐺𝐺𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺_𝑅𝑅𝐼𝐼𝐼𝐼(𝐻𝐻) ×𝑀𝑀���

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑅𝑅𝐼𝐼𝑅𝑅(𝐻𝐻) ×𝑀𝑀 × 𝑃𝑃𝑅𝑅𝐼𝐼𝐼𝐼_𝐼𝐼𝐺𝐺𝑠𝑠(𝐻𝐻)

 (4.56)

𝑷𝑷𝑶𝑶𝑰𝑰𝑰𝑰_𝒔𝒔𝒔𝒔𝒔𝒔(𝑯𝑯)

In order to calculate 𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) the overlapping relationships between the

segment matching 𝐻𝐻 and the head of the gene are discussed considering similar

situations to those mentioned in the section 4.3.2.B.i) for One-Point Recombination.

More restrictions of the insertion position result in a simpler selection of the

insertion position for the operator Root Insertion Sequence. Since the operator Root

Insertion inserts the candidate segment into the first position of the chromosome,

every element in the head will shift its position in order to provide space for the

newly inserted candidate segment. Once the part of the schema 𝐻𝐻 is located into the

head, the schema 𝐻𝐻 will be destroyed by the shift movement. Some redundant

operations are also considered in order to avoid the unnecessary consideration of the

disruption caused by Root Insertion Sequence. 𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) is calculated with the

ratio between the number of destroyed cases and the number of the possible cases.

Similarly to the operator Insertion, a “case” means a combined selection that

106

includes the selection of the insertion position (only one, the root) and the selection

of the candidate segment (the segment which will be inserted).

 C.2.1) situation i: the whole segment matching 𝐻𝐻 only covers the tail of the

gene (there is no overlapping segment between the head of the container gene and

the segment matching 𝐻𝐻) (𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 > 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿)

Fig. 4.7. Root Insertion Sequence with the segment matching the schema located in the tail

If the whole schema 𝐻𝐻 is located within the tail, the modification caused by

the “shift” movement cannot influence the segment matching the schema 𝐻𝐻 that is

located in the tail. This means the number of the selections (the candidate segment)

which destroy the segments matching 𝐻𝐻 is zero. Hence, 𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) of the operator

Root Insertion Sequence is zero and

𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅 = 1 −
�𝑀𝑀𝑏𝑏𝑏𝑏�(𝑅𝑅𝑂𝑂𝑅𝑅𝑅𝑅×𝑀𝑀),�𝑃𝑃𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑏𝑏_𝑂𝑂𝑅𝑅𝑅𝑅(𝐻𝐻)×𝑀𝑀���

𝑃𝑃𝐼𝐼𝐺𝐺𝑝𝑝𝐺𝐺𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺_𝑅𝑅𝐼𝐼𝐼𝐼(𝐻𝐻)×𝑀𝑀
× 0 = 1 − 0 = 1

 (4.57)

a # b a #

Schema region

Insertion region

: Element of effective part
of schema
: Element of schema

: Element of tail

: Element of head : Insertion point

107

 C.2.2) Situation ii: the segment matching 𝐻𝐻 covers both the head and the

tail of the gene (the overlapping segment starts at 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and ends with the last

element of the head.) (0 < 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≤ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 .𝑀𝑀𝑁𝑁𝐷𝐷. 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 > 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿)

Fig. 4.8. Root Insertion Sequence with the segment matching the schema which covers

both the head and the tail

 The number of the selections of the insertion position is ‘1’ in Root Insertion

Sequence. Since the element at the beginning position of the selected segment must

be a ‘function’, the beginning position can only be selected from the head. Actually

the beginning position could be any function element in the head. Therefore the

number of the selections for the beginning position of the candidate segment is a

variable. In order to estimate the maximum level of the disruption, the maximum

number of possible selections is used, which is 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿. As the end position of

candidate segment is selected randomly after the beginning position, for every

beginning position the number of the possible selections of the end position is given

by (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝑀𝑀𝐺𝐺𝑑𝑑𝐺𝐺𝑥𝑥_𝑀𝑀𝑓𝑓_𝐵𝐵𝐺𝐺𝑠𝑠𝑀𝑀𝐺𝐺𝐺𝐺𝑀𝑀𝐺𝐺𝑠𝑠𝑃𝑃𝑀𝑀𝐼𝐼𝑀𝑀𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺) . Then the number of all possible

cases for the selections of the candidate segment can be calculated with the

expression ∑ �1 × �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−𝑏𝑏1 ��𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿
𝑏𝑏=1 , where, ‘i’ is the index of the beginning point.

a # = a b

Schema region

Insertion region

: Element of effective part
of schema
: Element of schema

: Element of tail

: Element of head

: Insertion point

a b

=

Selected segment

Beginning point

#
 End point

a = #

108

 Due to the unique insertion position, almost all shift movements damage the

part matched by the fixed element of the schema 𝐻𝐻. Only the redundant operation of

class b) mentioned in the section Insertion Sequence (the insertion position and the

beginning position of the inserted segment are the same) can be found in the

execution of Root Insertion Sequence. If the selected candidate segment starts with

the first element of chromosome (the root) and ends with the elements from the

position matched by the last ‘fixed’ element of the schema 𝐻𝐻 in the head, this kind of

execution of the Root insertion Sequence is considered as a redundant operation.

Similarly to the execution of the operator Insertion Sequence, the number of the

redundant cases under this situation is given by 1 × 1 × �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 +

 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒
(𝐻𝐻)�. The first ‘1’ indicates that only the first (root) position can be

selected. The second ‘1’ indicates the beginning position of the candidate segment

should be the first position (the root). The �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒
(𝐻𝐻)�

represents that the end position of the candidate segment can only be selected from

the segment after the position matched by the last ‘fixed’ element of the schema 𝐻𝐻 in

the head.

Fig. 4.8.1. An example of class b) redundant Root Insertion Sequence

a # = a b

Schema region

Insertion region

: Element of effective
part of schema
: Element of schema

: Element of tail

: Element of head

: Insertion point

=

Selected segment

Beginning point

End point

a = a b

a

109

By removing the number of the redundant operations, the number of the

destroyed cases can be calculated with

� �1 × �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝑀𝑀

1 �� − 1 × 1 × �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒
(𝐻𝐻)�

𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿

𝑏𝑏=1

(4.58)

 Then, the 𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) of the operator Root Insertion Sequence can be

calculated with the following formula

𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =
𝑇𝑇𝑀𝑀𝑡𝑡𝑎𝑎𝑝𝑝_𝐺𝐺𝑀𝑀𝑅𝑅𝑏𝑏𝐺𝐺𝐼𝐼_𝑑𝑑𝐺𝐺𝐼𝐼𝑡𝑡𝐼𝐼𝑀𝑀𝑦𝑦𝐺𝐺𝑑𝑑
𝑇𝑇𝑀𝑀𝑡𝑡𝑎𝑎𝑝𝑝_𝐺𝐺𝑀𝑀𝑅𝑅𝑏𝑏𝐺𝐺𝐼𝐼_𝑇𝑇𝑀𝑀𝐼𝐼𝐼𝐼𝑀𝑀𝑏𝑏𝑝𝑝𝐺𝐺

=

=
∑ �1 × �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−𝑏𝑏1 �� − 1 × 1 × �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒

(𝐻𝐻)�𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿
𝑏𝑏=1

∑ �1 × �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−𝑏𝑏1 ��𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿
𝑏𝑏=1

=

= 1 −
�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒

(𝐻𝐻)�

∑ �1 × �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−𝑏𝑏1 ��𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿
𝑏𝑏=1

 (4.59)

 Using the result, we obtain the formula for 𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅 :

𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅 = 1 −
𝑁𝑁1(𝐻𝐻)
𝑁𝑁2(𝐻𝐻) × 𝑃𝑃𝑅𝑅𝐼𝐼𝐼𝐼_𝐼𝐼𝐺𝐺𝑠𝑠(𝐻𝐻) =

= 1 −
�𝑀𝑀𝑀𝑀𝐺𝐺 �(𝑇𝑇𝑅𝑅𝐼𝐼𝑅𝑅 × 𝑀𝑀), �𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏𝑂𝑂𝑅𝑅𝑅𝑅 × 𝑀𝑀���

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂𝑀𝑀×𝑀𝑀
×

× �1 −
1 × 1 × �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒

(𝐻𝐻)�

∑ �1 × �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−𝑏𝑏1 ��𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿
𝑏𝑏=1

�

(4.60)

 C.2.3) Situation iii: the segment matching 𝐻𝐻 covers only the head of the

gene (the overlapping segment starts at 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and ends at 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒) (0 < 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 ≤

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿)

110

Fig.4.9. Root Insertion Sequence with the segment matching the schema located in the head

 Similarly to the situation ii), the number of all possible cases for the

selections of the candidate segments can be calculated with the expression

∑ �1 × �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−𝑏𝑏1 ��𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿
𝑏𝑏=1 , where, ‘i’ is the index of the beginning point.

In this situation, the number of the redundant cases is 1 × 1 × �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 −

𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒�. The first ‘1’ indicates that only the first (root) position can be

selected; The second ‘1’ indicates the beginning position of the inserted candidate

segment should be the first (root) position; The �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒�

represents the end position of the inserted candidate segment only can be selected

from the segment after the position matched by the last “fixed” element of the

schema 𝐻𝐻. Then the total number of the destroyed cases is given by:

� �1 × �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝑀𝑀

1 ��
𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿

𝑏𝑏=1

− 1 × 1 × �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒�

(4.61)

= = a b a

Schema region

Insertion region

: Element of effective part
of schema

: Element of schema

: Element of tail

: Element of head

: Insertion point

a b

=

Selected segment

Beginning point

=
 End point

a =

=

111

Fig. 4.9.1. An example of class b) redundant Root Insertion Sequence

Then, 𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) of the operator Root Insertion sequence is given by the

following formula:

𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =
𝑇𝑇𝑀𝑀𝑡𝑡𝑎𝑎𝑝𝑝_𝐺𝐺𝑀𝑀𝑅𝑅𝑏𝑏𝐺𝐺𝐼𝐼_𝑑𝑑𝐺𝐺𝐼𝐼𝑡𝑡𝐼𝐼𝑀𝑀𝑦𝑦𝐺𝐺𝑑𝑑
𝑇𝑇𝑀𝑀𝑡𝑡𝑎𝑎𝑝𝑝_𝐺𝐺𝑀𝑀𝑅𝑅𝑏𝑏𝐺𝐺𝐼𝐼_𝑇𝑇𝑀𝑀𝐼𝐼𝐼𝐼𝑀𝑀𝑏𝑏𝑝𝑝𝐺𝐺

=

=
∑ �1 × �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−𝑏𝑏1 ��𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿
𝑏𝑏=1 − 1 × 1 × �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒�

∑ �1 × �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−𝑏𝑏1 ��𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿
𝑏𝑏=1

=

= 1 −
�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒�
∑ �1 × �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−𝑏𝑏1 ��𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿
𝑏𝑏=1

(4.62)

 Using the result, we obtain the formula for 𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅 :

: Element of effective
part of schema
: Element of schema

: Element of tail

: Element of head

: Insertion point

Selected segment

Beginning point

End point

a = a b

a

= = a b a

Schema region

Insertion region

112

𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅 = 1 −
𝑁𝑁1(𝐻𝐻)
𝑁𝑁2(𝐻𝐻) × 𝑃𝑃𝑅𝑅𝐼𝐼𝐼𝐼_𝐼𝐼𝐺𝐺𝑠𝑠(𝐻𝐻) =

= 1 −
�𝑀𝑀𝑀𝑀𝐺𝐺 �(𝑇𝑇𝑅𝑅𝐼𝐼𝑅𝑅 × 𝑀𝑀), �𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑅𝑅𝐼𝐼𝑅𝑅(𝐻𝐻) × 𝑀𝑀���

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝑅𝑅𝐼𝐼𝑅𝑅(𝐻𝐻) × 𝑀𝑀
×

× �1 −
1 × 1 × �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒 + 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒�

∑ �1 × �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−𝑏𝑏1 ��𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿
𝑏𝑏=1

�

(4.63)

Considering all the situations of the location of the segment matching the

schema 𝐻𝐻 together, and combining equations of all situations we obtain:

𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅 = 1 − 𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) =

= 1 − 𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅_𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅ℎ(𝐻𝐻) × 𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =

= 1 −
𝑁𝑁1(𝐻𝐻)
𝑁𝑁2(𝐻𝐻) × 𝑃𝑃𝑅𝑅𝐼𝐼𝑅𝑅𝑠𝑠𝑏𝑏𝑏𝑏(𝐻𝐻) =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ 1 − 𝐷𝐷1(𝐻𝐻)

𝐷𝐷2(𝐻𝐻) × 0

𝑓𝑓𝑀𝑀𝐼𝐼 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 > 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿;

1 −

�𝑀𝑀𝑏𝑏𝑏𝑏�(𝑅𝑅𝑂𝑂𝑅𝑅𝑅𝑅×𝑀𝑀),�𝑃𝑃𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑏𝑏_𝑂𝑂𝑅𝑅𝑅𝑅(𝐻𝐻)×𝑀𝑀���×�1−
�𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿+𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒

(𝐻𝐻)�

∑ �1×�𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−𝑖𝑖1 ��𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿
𝑖𝑖=1

�

𝑃𝑃𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑏𝑏_𝑂𝑂𝑅𝑅𝑅𝑅(𝐻𝐻)×𝑀𝑀

𝑓𝑓𝑀𝑀𝐼𝐼 0 < 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≤ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 .𝑀𝑀𝑁𝑁𝐷𝐷.𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 > 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 ;

1 −
�𝑀𝑀𝑏𝑏𝑏𝑏�(𝑅𝑅𝑂𝑂𝑅𝑅𝑅𝑅×𝑀𝑀),�𝑃𝑃𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑏𝑏_𝑂𝑂𝑅𝑅𝑅𝑅(𝐻𝐻)×𝑀𝑀���×�1−

�𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒+𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒�

∑ �1×�𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿−𝑖𝑖1 ��𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿
𝑖𝑖=1

�

𝑃𝑃𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑏𝑏_𝑂𝑂𝑅𝑅𝑅𝑅(𝐻𝐻)×𝑀𝑀

𝑓𝑓𝑀𝑀𝐼𝐼 0 < 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 ≤ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿;
 (4.64)

113

D) Inversion

The Inversion (INVERSE) is applied in the head of gene. The operator is designed to

inverse the sequence of the genetic material of chromosome.

 The probability for schema 𝐻𝐻 to survive after the execution of the operator

inversion is given by following formula

𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀 = 1 − 𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀_𝑒𝑒𝑏𝑏𝐼𝐼𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏(𝐻𝐻) =

= 1 − 𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) × 𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =

= 1 −
𝑁𝑁1(𝐻𝐻)
𝑁𝑁2(𝐻𝐻) × 𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻)

(4.65)

where,

• 𝑁𝑁1(𝐻𝐻) is the number of the chromosomes matching 𝐻𝐻 from

𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀 selected to take part in the execution of the genetic

operator Inversion.

• 𝑁𝑁2(𝐻𝐻) is the number of the chromosomes matching 𝐻𝐻 from

𝑇𝑇𝑀𝑀𝑀𝑀𝑝𝑝𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀 .

• 𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) is the probability that the segment matching 𝐻𝐻 is

destroyed by the execution of the genetic operator Inversion.

𝑵𝑵𝟏𝟏(𝑯𝑯)

 Similarly to other operators of the Single chromosome class, the 𝑁𝑁1(𝐻𝐻) is

given by:

 �𝑀𝑀𝑀𝑀𝐺𝐺 �(𝑇𝑇𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀 × 𝑀𝑀), �𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀(𝐻𝐻) × 𝑀𝑀���

(rounded to lower case)

(4.66)

114

𝑵𝑵𝟐𝟐(𝑯𝑯)

 The 𝑁𝑁2(𝐻𝐻) of the operator Inversion can be calculated with

 𝑁𝑁2(𝐻𝐻) = 𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀(𝐻𝐻) × 𝑀𝑀 (4.67)

 Then,

𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀 = 1 −
𝑁𝑁1(𝐻𝐻)
𝑁𝑁2(𝐻𝐻) × 𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =

= 1 −
 �𝑀𝑀𝑀𝑀𝐺𝐺 �(𝑇𝑇𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀 × 𝑀𝑀), �𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝐷𝐷𝐼𝐼𝑀𝑀𝑂𝑂𝑅𝑅𝑀𝑀(𝐻𝐻) × 𝑀𝑀���

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝐷𝐷𝐼𝐼𝑀𝑀𝑂𝑂𝑅𝑅𝑀𝑀(𝐻𝐻) × 𝑀𝑀
×

× 𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻)

 (4.68)

𝑷𝑷𝑰𝑰𝑵𝑵𝑰𝑰𝑴𝑴𝑶𝑶𝑰𝑰𝑴𝑴_𝒔𝒔𝒔𝒔𝒔𝒔(𝑯𝑯)

The operator Inversion damages the sequence of the genetic material in the

region selected by the operator inversion. To destroy the chromosomes matching 𝐻𝐻,

the operator Inversion should be applied on an overlapping segment between the

segment matching 𝐻𝐻 and the candidate segment which is selected to be inversed. In

most of the cases the sequence of the candidate segment which is matched by the

schema 𝐻𝐻 is destroyed by the operator Inversion (some redundant operations are also

considered later). 𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) can be calculated with the number of the

destroyed cases and the number of the possible cases. A “case” is a selection of a

candidate segment (the segment which will be inversed).

 Similarly to the operator Insertion Sequence, the overlapping relation

between the segment matching 𝐻𝐻 and the head of the gene are discussed considering

three possible locations of the segment matching 𝐻𝐻 . The first situation and the

second situation are discussed with the similar way as the operator Insertion

Sequence. The third situation considers three sub-situations (similarly to the

115

situations discussed for the operator Two-Point Recombination) which are based on

the relationship between the location of the segment matching 𝐻𝐻 and the location of

the candidate segment of the operator Inversion.

D.1) Situation i: the whole segment matched by the schema 𝐻𝐻 cover only

the tail of the gene (there is no overlapping segment between the head of the

container gene and the segment matching 𝐻𝐻) (𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 > 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿)

Fig.4.10. Inversion with the segment matching the schema located in the tail

Since the modification can only be applied in the head, the genetic material in

the tail is kept “unchanged” after the execution of the operator Inversion. Therefore,

no damage will be done on the segments matching 𝐻𝐻 that are located in the tail. This

means the number of the destroyed cases is zero. Hence, 𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) of the

operator Inversion is zero in this situation and

𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀 = 1− �𝑀𝑀𝑏𝑏𝑏𝑏�(𝑅𝑅𝑅𝑅𝐷𝐷𝐼𝐼𝑀𝑀𝑂𝑂𝑅𝑅𝑀𝑀×𝑀𝑀),�𝑃𝑃𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑏𝑏_𝑅𝑅𝐷𝐷𝐼𝐼𝑀𝑀𝑂𝑂𝑅𝑅𝑀𝑀(𝐻𝐻)×𝑀𝑀���

𝑃𝑃𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑏𝑏_𝑅𝑅𝐷𝐷𝐼𝐼𝑀𝑀𝑂𝑂𝑅𝑅𝑀𝑀(𝐻𝐻)×𝑀𝑀 × 0 = 1− 0 = 1

 (4.69)

a # b a #

Schema region

Inversion region

: Element of effective part
of schema

: Element of schema

: Element of tail

: Element of head

116

 D.2) Situation ii: the segment matched by the schema 𝐻𝐻 covers both the

head and tail of the gene (the overlapping segment starts at 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and ends with the

last element of the head.) (0 < 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≤ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 .𝑀𝑀𝑁𝑁𝐷𝐷. 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 > 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿)

 Fig. 4.11. Inversion with the segment matching the schema which covers

both the head and the tail

 The total number of the possible cases of the operator Inversion can be

calculated with expression �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿2 �. To consider the number of the destroyed cases

the number of redundant operations of operator Inversion will be removed from this

total number.

 The total number of possible candidate segments which does not have an

overlapping part with the segment matching 𝐻𝐻 can be calculated with expression

�𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏2 �. This is the first part of the redundant Inversion.

a # = a b

Schema region

Inversion region

: Element of effective part
of schema
: Element of schema

: Element of tail

: Element of head

117

 Similarly to the situation iii) mentioned in the section for Two Point

Recombination, some redundant operations in which the candidate segment of

operator Inversion are selected from the segments matching the “DNC” segments

should be considered, although the candidate segment and the segment matching 𝐻𝐻

are overlapped. Since the sequence of chromosome is the major object that can be

destroyed by the inversion, two classes of redundant operations are discussed with

the different types of the location (the beginning and end position) of the candidate

segment of the operator inversion and the structure of the “DNC” part of the schema

𝐻𝐻.

 Class a) both the beginning and the end position of a candidate segment are

selected from the elements matched by the same completed “DNC” segment

 Fig. 4.11.1. An example of class a) redundant Inversion

 Since the sequence and the content information of the segment matched by

the “DNC” segment of the schema are totally free (can be matched by any element),

the candidate segments selected from that area cannot be damaged. The number of

a # = b

Schema region

Inversion region

: Element of effective part
of schema
: Element of schema

: Element of tail

: Element of head

=

118

the possible candidate segments matched by the same “DNC” segment of the schema

𝐻𝐻 can be calculated with the expression �𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷2 �. The total number of the candidate

segments which are all generated from the “DNC” segments located in the

overlapping segment can be calculated with the following expression

𝐹𝐹𝐷𝐷 = � �
𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖

2 � + �
𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒

(𝐻𝐻)
2

�
𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑅𝑅𝑑𝑑_𝐷𝐷𝐷𝐷𝐷𝐷_𝐼𝐼𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑅𝑅_𝑏𝑏𝑏𝑏_ℎ𝑏𝑏𝑅𝑅𝑒𝑒−𝐹𝐹𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠

𝑏𝑏=1

× 𝐹𝐹𝑅𝑅𝑅𝑅𝐼𝐼𝑅𝑅

 (4.70)

where,

 the expression�𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒(𝐻𝐻)
2

� × 𝐹𝐹𝑅𝑅𝑅𝑅𝐼𝐼𝑅𝑅 corresponds to the case when there is

an uncompleted “DNC” segment located at the end of overlapping segment (the

“uncompleted” means only part of the last “DNC” segment locates within the head).

For the calculation of such an “uncompleted” segments only the part of the segment

which is located in the head is considered.

 Symbol 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒
(𝐻𝐻) represents the length of the participating part of

such a segment. The number of the possible candidate segments of the operator

Inversion can be calculated with the expression �𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠_𝑖𝑖𝑏𝑏_ℎ𝑏𝑏𝑙𝑙𝑒𝑒(𝐻𝐻)
2

�.

 𝐹𝐹𝑅𝑅𝑅𝑅𝐼𝐼𝑅𝑅 will return ‘1’ if the last “DNC” segment in the head is an “uncompleted”

one (“uncompleted” means only part of “DNC” segment is located in the head);

otherwise it will return ‘0’.

 The expression ∑ �𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖2 �𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑅𝑅𝑑𝑑_𝐷𝐷𝐷𝐷𝐷𝐷_𝐼𝐼𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑅𝑅_𝑏𝑏𝑏𝑏_ℎ𝑏𝑏𝑅𝑅𝑒𝑒−𝐹𝐹𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠
𝑏𝑏=1 is generated for

all the completed “DNC” segments in the overlapping segment. The number of

possible candidate segments can be generated with the expression

∑ �𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖2 �𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑅𝑅𝑑𝑑_𝐷𝐷𝐷𝐷𝐷𝐷_𝐼𝐼𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑅𝑅_𝑏𝑏𝑏𝑏_ℎ𝑏𝑏𝑅𝑅𝑒𝑒−𝐹𝐹𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠
𝑏𝑏=1 directly.

 Class b) the beginning and end positions of candidate segment are selected

from different “DNC” segments

119

 Fig. 4.11.2. An example of class b) redundant Inversion

 Two circumstances specific to the operator Inversion should be considered

here. Before describing the detail of circumstance, the following notation should be

presented firstly.

 The “DFD” format of is a format of the schema which begins with a “DNC”

segment, ends with a “DNC” segment, and has a fixed element or a string of fixed

elements (all the elements on the string must be the same) in the middle. In the

notation “DFD”, the ‘D’ stands for one or a string of “do not care” elements (“DNC”

segment); the ‘F’ stands for a Fixed element or a string of fixed elements (Fixed

segment).

 Similarly the “FD” format is a format of the schema which begins with a

Fixed element or a string of Fixed elements (all element on the string must be the

same) and ends with a “DNC” segment. The “DF” format is a format of the schema

which begins with a “DNC” segment and ends with a Fixed element or a string of

Fixed elements (all elements on the string must be the same).

 For example, (‘#’-‘#’-‘Function F’-‘#’-‘#’) and (‘#’-‘Terminal x’-‘Terminal x’-

a # = a

Schema region

Inversion region

: Element of effective part
of schema
: Element of schema

: Element of tail

: Element of head

a

120

‘#’) are segments in the ‘DFD’ format (the segment matched by the DFD format is

called ‘DFD’ segment). In the example the left and the right part of the ‘DFD’

segment has the same length (𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷).

 The two circumstances mentioned at the beginning of this section are:

 a) The genetic material in the overlapping segment is matched by the

segment of the schema with the “DFD” format. The beginning and the end position

are selected from the segments matched by two “DNC” segments that are

symmetrically distributed at both sides of the midpoint (the center point of the

“Fixed” segment). The sequence-change caused by the inversion does not damage

the genetic information in this kind of symmetrical structure with the “DFD” format.

Figure 4.11.2 shows an example of this circumstance.

 To select a segment from a “DFD” segment for a redundant inversion, the

starting position should be selected from the left “DNC” segment. Then the

corresponding end position should be selected from the symmetrical position located

in the right “DNC” segment. In order to achieve this kind of symmetrical selection

one starting position has only one corresponding end position. Therefore the number

of the selections of the inversion segment equals to the number of the selections of

the starting position or the end position.

 Function DFDF is designed to calculate the number of possible candidate

segments of the operator inversion that are generated from a ‘DFD’ segment.

𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷 = Min �𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑏𝑏𝑑𝑑𝑠𝑠 , 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑖𝑖𝑏𝑏ℎ𝑠𝑠� + �𝐿𝐿𝐹𝐹𝑖𝑖𝐹𝐹𝑏𝑏𝑒𝑒𝑅𝑅𝑏𝑏𝑏𝑏
2

� (4.71)

 The expression �𝐿𝐿𝐹𝐹𝑖𝑖𝐹𝐹𝑏𝑏𝑒𝑒𝑅𝑅𝑏𝑏𝑏𝑏
2

� (round to the lower base) represents the number of

the possible candidate segments which are selected from the “Fixed” segment

(𝐿𝐿𝐹𝐹𝑏𝑏𝑥𝑥𝑏𝑏𝑒𝑒𝑅𝑅𝑏𝑏𝑏𝑏 represents the length of the “Fixed” segment). If the two “DNC” segments

(the left one and the right one of the middle fixed segment) have different numbers

121

of elements, the function Min is used to consider the length of the shorter “DNC”

segment. The number of the redundant inversions selected in this circumstance is

based on the number of the elements in the shorter “DNC” segment. Since the

overlapping segment may contain more than one “DFD” segment, the total number

of the redundant operations is ∑ 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝑖𝑖
𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑅𝑅𝑑𝑑_𝐷𝐷𝐹𝐹𝐷𝐷
𝑏𝑏=1 .

 b) The genetic material located at the beginning of the overlapping segment

is matched by the segment of the schema sequenced with the “FD” format (the first

element in the overlapping segment must be a ‘fixed’ element). The “DNC” segment

after the ‘fixed’ segment cannot be damaged by the inversion operation if the

midpoint of the segment matched by the ‘Fixed’ segment and the midpoint of the

candidate segment taken by the operator Inversion is the same. The inversion applied

on such a region does not damage this kind of half symmetrical structure. Figure

4.11.3 is an example of this circumstance. The schema (𝑏𝑏, 𝑏𝑏, 𝑏𝑏, =, #) is sequenced

with the “FD” format. The midpoint of the inversion segment is the same as the

midpoint of the segment matched by the ‘Fixed’ segment of schema. The inversion

does not change the segment matched by the schema.

Fig. 4.11.3. An example of a redundant Inversion

b # b

Schema region

Inversion region

: Element of effective part
of schema
: Element of schema

: Element of tail

: Element of head

= b

b : Midpoint of inversion

122

 Function 𝐹𝐹𝐹𝐹𝐷𝐷 gives the number of the possible candidate segments of the

inversion generated from the FD segment.

𝐹𝐹𝐹𝐹𝐷𝐷 = 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐹𝐹𝐷𝐷 + 𝑀𝑀𝑀𝑀𝐺𝐺 ��𝐿𝐿𝐹𝐹𝑖𝑖𝐹𝐹𝑏𝑏𝑒𝑒𝑅𝑅𝑏𝑏𝑏𝑏
2

� , 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� (4.72)

The 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐹𝐹𝐷𝐷 is the length of the “DNC” segment in a FD segment. The function

 Min shows that the possible candidate segments of the Inversion selected from the

‘Fixed’ part of a FD segment is limited by the position 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. If the number of the

elements can be selected before the position 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is less than the number of

“DNC” elements in the FD segment, the 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 should be used.

 By removing all two classes of the redundant

operations, �𝐹𝐹𝐷𝐷 + ∑ 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝑖𝑖
𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑅𝑅𝑑𝑑_𝐷𝐷𝐹𝐹𝐷𝐷
𝑏𝑏=1 + 𝐹𝐹𝐹𝐹𝐷𝐷� , from the total number of the

possible cases of the inversion, the number of the destroyed case is given by

𝑇𝑇𝑀𝑀𝑡𝑡𝑎𝑎𝑝𝑝_𝐺𝐺𝑀𝑀𝑅𝑅𝑏𝑏𝐺𝐺𝐼𝐼_𝑑𝑑𝐺𝐺𝐼𝐼𝑡𝑡𝐼𝐼𝑀𝑀𝑦𝑦𝐺𝐺𝑑𝑑 =

= �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿

2 � − �
𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

2 � − �𝐹𝐹𝐷𝐷 + � 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝑖𝑖

𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑅𝑅𝑑𝑑_𝐷𝐷𝐹𝐹𝐷𝐷

𝑏𝑏=1

+ 𝐹𝐹𝐹𝐹𝐷𝐷�

(4.73)

 Then, 𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) of the operator Inversion, can be obtained with the

following formula for this situation.

𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =
𝑇𝑇𝑀𝑀𝑡𝑡𝑎𝑎𝑝𝑝_𝐺𝐺𝑀𝑀𝑅𝑅𝑏𝑏𝐺𝐺𝐼𝐼_𝑑𝑑𝐺𝐺𝐼𝐼𝑡𝑡𝐼𝐼𝑀𝑀𝑦𝑦𝐺𝐺𝑑𝑑
𝑇𝑇𝑀𝑀𝑡𝑡𝑎𝑎𝑝𝑝_𝐺𝐺𝑀𝑀𝑅𝑅𝑏𝑏𝐺𝐺𝐼𝐼_𝑇𝑇𝑀𝑀𝐼𝐼𝐼𝐼𝑀𝑀𝑏𝑏𝑝𝑝𝐺𝐺

=

=
�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿2 � − �𝐿𝐿𝑏𝑏𝐺𝐺𝑠𝑠𝑀𝑀𝐺𝐺2 � − �𝐹𝐹𝐷𝐷 + ∑ 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝑀𝑀

𝐺𝐺𝑀𝑀𝑅𝑅𝑏𝑏𝐺𝐺𝐼𝐼_𝑀𝑀𝑓𝑓_𝐷𝐷𝐹𝐹𝐷𝐷
𝑀𝑀=1 + 𝐹𝐹𝐹𝐹𝐷𝐷�

�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿2 �

(4.74)

Using the result, 𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀 of this situation is given by:

123

𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀 = 1 −
 �𝑀𝑀𝑏𝑏𝑏𝑏�(𝑅𝑅𝑅𝑅𝐷𝐷𝐼𝐼𝑀𝑀𝑂𝑂𝑅𝑅𝑀𝑀×𝑀𝑀),�𝑃𝑃𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑏𝑏_𝑅𝑅𝐷𝐷𝐼𝐼𝑀𝑀𝑂𝑂𝑅𝑅𝑀𝑀(𝐻𝐻)×𝑀𝑀���

𝑃𝑃𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑏𝑏_𝑅𝑅𝐷𝐷𝐼𝐼𝑀𝑀𝑂𝑂𝑅𝑅𝑀𝑀(𝐻𝐻)×𝑀𝑀
× 𝑃𝑃𝐼𝐼𝑁𝑁𝐼𝐼𝐸𝐸𝑅𝑅𝐼𝐼𝐸𝐸_𝐼𝐼𝐺𝐺𝑠𝑠(𝐻𝐻) =

= 1 −
 �𝑀𝑀𝑀𝑀𝐺𝐺 �(𝑇𝑇𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀 × 𝑀𝑀), �𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀(𝐻𝐻) × 𝑀𝑀���

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀(𝐻𝐻) × 𝑀𝑀
×

×
�𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿2 � − �𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏2 � − �𝐹𝐹𝐷𝐷 + ∑ 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝑖𝑖

𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑅𝑅𝑑𝑑_𝐷𝐷𝐹𝐹𝐷𝐷
𝑏𝑏=1 + 𝐹𝐹𝐹𝐹𝐷𝐷�

�𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿2 �

(4.75)

D.3) Situation iii: the segment matching 𝐻𝐻 covers only the head of the gene

(the overlapping segment starts at the position 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and ends at the position 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒.

It is the segment matching the entire schema 𝐻𝐻) (0 < 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 < 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿)

Fig. 4.12. Inversion with the segment matching the schema located in the head

 The discussion of the overlapping relationship between the segment matching

the schema 𝐻𝐻 and the candidate segment of inversion in the head of a gene is actual

a region-limited version (as it only occurs in the head) of the Two-Point

= = a b a

Schema region

Inversion region

: Element of effective part
of schema

: Element of schema

: Element of tail

: Element of head

124

Recombination applied on the entire gene. The location of the candidate segment and

the location of the segment matching 𝐻𝐻 are still the key to divide the consideration

into different situations. Besides the original three situations mentioned in the Two-

Point Recombination, one more situation for when the entire scheme 𝐻𝐻 region is

involved in is added (The “sub-situation” is used in this situation iii) to represent that

it is a sub section of the situation iii)). In each sub-situation the 𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) is

discussed with the number of segments causing redundant operations of inversion

and the number of possible cases of Inversion can be selected in such sub-situation.

 D.3.1) Sub-situation i: the beginning point of the candidate segment

is located within the region before the schema region and the end point of the

candidate segment is located within the schema region

Fig. 4.12.1. End point locates in the segment matching the schema

 With a similar method used in situation ii), the number of the

candidate segments causing a redundant operation in this sub-situation can be

calculated with the function 𝐹𝐹𝐹𝐹𝐷𝐷.

 a = a

Schema region

Inversion region

: Element of effective part
of schema

: Element of schema

: Element of tail

: Element of head

Selected segment

Beginning point

End point

a a b

a

a

125

 The total number of the candidate segments of Inversion which have

an overlapping part with the segment matching 𝐻𝐻 can be calculated with

�
𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒

2 � − �
𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

2 � − �
𝐿𝐿(𝐻𝐻)

2
�

(4.76)

where, �𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒2 � is the number of the candidate segments which are selected

from the segment started before the position matched by the last element of

the schema 𝐻𝐻 . �𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏2 � represents the number of the candidates which are

selected from the segment before the position matched by the first element of

the schema 𝐻𝐻 ; �𝐿𝐿(𝐻𝐻)
2 � represents the number of the candidates which are

selected from the segment matched by schema 𝐻𝐻.

Then the number of the destroyed cases of the operator Inversion in

this sub-situation is

�
𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒

2 � − �
𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

2 � − �
𝐿𝐿(𝐻𝐻)

2
� − 𝐹𝐹𝐹𝐹𝐷𝐷

(4.77)

D.3.2) Sub-situation ii: the beginning point of the candidate segment

is located within the segment matching 𝐻𝐻 and the end point is located in the

region after the segment matching 𝐻𝐻

In this situation the possible candidate segment of inversion does not

cover the beginning of schema 𝐻𝐻 . A new circumstance that the genetic

material at the end of the overlapping segment is matched by a segment of

the schema sequenced with the “DF” format should be considered.

126

Fig. 4.12.2. Beginning point locates in the segment matching the schema

 𝐹𝐹𝐷𝐷𝐹𝐹 is similarly to the function 𝐹𝐹𝐹𝐹𝐷𝐷, and it presents the number of the

candidate segments of the inversion generated from a DF segment.

 𝐹𝐹𝐷𝐷𝐹𝐹 = 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐹𝐹 + 𝑀𝑀𝑀𝑀𝐺𝐺 ��𝐿𝐿𝐹𝐹𝑖𝑖𝐹𝐹𝑏𝑏𝑒𝑒𝑅𝑅𝑏𝑏𝑏𝑏
2

� , ()endLGeneHL − �

 (4.78)

The total number of possible candidate segments of inversion which

have an overlapping part with the segment matching 𝐻𝐻 can be calculated with

�
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

2 � − �
𝐿𝐿(𝐻𝐻)

2
� − �

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒
2 �

(4.79)

where,

�𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿−𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏2 � represents the number of candidate segments selected

from the segment between the element matched by the first element of the

schema 𝐻𝐻 and the last element of the head.

 a = a

Schema region

Inversion region

: Element of schema

: Element of tail

: Element of head

Selected segment

Beginning point

End point

a a =

a

127

�𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿−𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒2 � is the number of candidate segments selected from the

segment between the last element matched by the last element of the schema

𝐻𝐻 and the last element in the head.

Then the number of the destroyed cases of the operator Inversion in

this sub-situation is

�
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

2 � − �
𝐿𝐿(𝐻𝐻)

2
� − �

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒
2 � − 𝐹𝐹𝐷𝐷𝐹𝐹

(4.80)

D.1.3.3) Sub-situation iii: both the beginning and the end points of

the candidate segment are located within the segment matching 𝐻𝐻

Fig. 4.12.3. Both begin and end point locate in the segment matching the schema

 In this sub-situation the possible candidate segments of inversion are

selected only from the segment matching 𝐻𝐻, the “DNC” segment and the

“DFD” segment of the schema 𝐻𝐻 need to be considered.

The number of the redundant operations in this sub-situation can be

 a = a

Schema region

Inversion region

: Element of schema

: Element of tail

: Element of head

Selected segment

Beginning point

End point

a a =

a

a

128

calculated with the expression

𝐹𝐹𝐷𝐷 + � 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝑖𝑖

𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑅𝑅𝑑𝑑_𝐷𝐷𝐹𝐹𝐷𝐷

𝑏𝑏=1

(4.81)

 The total number of the possible candidate segments of inversion

which have an overlapping part with the segment matching 𝐻𝐻 can be

calculated with

�
𝐿𝐿(𝐻𝐻)

2
�

(4.82)

Then the number of the destroyed cases of the operator Inversion in

this sub-situation is

�
𝐿𝐿(𝐻𝐻)

2
� − �𝐹𝐹𝐷𝐷 + � 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝑖𝑖

𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑅𝑅𝑑𝑑_𝐷𝐷𝐹𝐹𝐷𝐷

𝑏𝑏=1

�

(4.83)

 D.1.3.4) Sub-situation iv: both the beginning and the end point are

located outside of the schema region

Fig. 4.12.4. Both begin and end point locate in the segment matching the schema

 a = a

Schema region

Inversion region

: Element of schema

: Element of tail

: Element of head

Selected segment

Beginning point

End point

a a =

129

 In this sub-situation the possible candidate segment of inversion

covers the entire schema region. If the elements of the entire schema 𝐻𝐻 are

distributed symmetrically and the candidate segment is selected

symmetrically, the inversion does not damage the genetic information in the

segment matching 𝐻𝐻. The “elements are distribute symmetrically” means that

the midpoint of the schema 𝐻𝐻 is a “fixed segment” and the segments

distributed at both sides of such a “fixed segment” have the same content (the

elements of the segment located at the left side of such a “fixed segment” and

the elements of the segment located at the right side of such a “fixed

segment” are identical). The “candidate segment is selected symmetrically”

means that the candidate segment has the same number of elements located at

both sides of the part matching the schema 𝐻𝐻. Figure 4.11.4 is an example of

a case which has a whole symmetrically distributed schema 𝐻𝐻 and a

symmetrically selected candidate. The number of such candidate segments is

the number of the redundant operations.

 Fig. 4.11.4. An example of redundant inversion

 = =

Schema region

Inversion region

: Element of schema

: Element of tail

: Element of head

a

130

 The number of these redundant operations in this sub-situation can be

calculated with the expression

𝑀𝑀𝑀𝑀𝐺𝐺�𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒� × 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑏𝑏

(4.84)

where,

 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑏𝑏 will return ‘1’ if the schema is distributed symmetrically;

otherwise it will return ‘0’.

 �𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1� is the number of selections for the beginning position of

the candidate segment. (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒) indicates the number of selections

for the end position of the candidate segments.

 In order to obtain a redundant inversion the same number of elements

located before and after the segment matching 𝐻𝐻 should be selected.

However, the number of elements located before the segment and the number

of elements located after the segment varies. Function 𝑀𝑀𝑀𝑀𝐺𝐺 is defined to take

the smaller value in order to make sure that the same number of elements is

selected.

 For the beginning position of every candidate segment selected from

the segment before the segment matching 𝐻𝐻 , the number of the

corresponding selections for the end position is (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒) . The total

number of possible candidate segments of inversion which have an

overlapping part with the segment matching 𝐻𝐻 can be calculated with the

expression:

��𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1� × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒)� (4.85)

Then the number of the destroyed cases of the operator Inversion in

this sub-situation is

��𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1� × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒)� −

−�𝑀𝑀𝑀𝑀𝐺𝐺�𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒� × 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑏𝑏�

(4.86)

131

 By accumulating all the above sub-situations, the total number of destroyed

cases and the total number of possible cases for the situation iii) of operator

Inversion can be calculated.

𝑇𝑇𝑀𝑀𝑡𝑡𝑎𝑎𝑝𝑝_𝐺𝐺𝑀𝑀𝑅𝑅𝑏𝑏𝐺𝐺𝐼𝐼_𝑑𝑑𝐺𝐺𝐼𝐼𝑡𝑡𝐼𝐼𝑀𝑀𝑦𝑦𝐺𝐺𝑑𝑑 =

= �
𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒

2 � − �
𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

2 � − �
𝐿𝐿(𝐻𝐻)

2
� − 𝐹𝐹𝐹𝐹𝐷𝐷 +

+ �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

2 � − �
𝐿𝐿(𝐻𝐻)

2
� − �

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒
2 � − 𝐹𝐹𝐷𝐷𝐹𝐹 +

+�
𝐿𝐿(𝐻𝐻)

2
� − �𝐹𝐹𝐷𝐷 + � 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝑖𝑖

𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑅𝑅𝑑𝑑_𝐷𝐷𝐹𝐹𝐷𝐷

𝑏𝑏=1

� +

+�𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1� × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒) −

−�𝑀𝑀𝑀𝑀𝐺𝐺�𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒� × 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑏𝑏�

(4.87)

𝑇𝑇𝑀𝑀𝑡𝑡𝑎𝑎𝑝𝑝_𝐺𝐺𝑀𝑀𝑅𝑅𝑏𝑏𝐺𝐺𝐼𝐼_𝑇𝑇𝑀𝑀𝐼𝐼𝐼𝐼𝑀𝑀𝑏𝑏𝑝𝑝𝐺𝐺 = �𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿2 � (4.88)

 Then, 𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) of the operator Inversion, can be obtained with the

following formula for this situation:

𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =
𝑇𝑇𝑀𝑀𝑡𝑡𝑎𝑎𝑝𝑝_𝐺𝐺𝑀𝑀𝑅𝑅𝑏𝑏𝐺𝐺𝐼𝐼_𝑑𝑑𝐺𝐺𝐼𝐼𝑡𝑡𝐼𝐼𝑀𝑀𝑦𝑦𝐺𝐺𝑑𝑑
𝑇𝑇𝑀𝑀𝑡𝑡𝑎𝑎𝑝𝑝_𝐺𝐺𝑀𝑀𝑅𝑅𝑏𝑏𝐺𝐺𝐼𝐼_𝑇𝑇𝑀𝑀𝐼𝐼𝐼𝐼𝑀𝑀𝑏𝑏𝑝𝑝𝐺𝐺

=

= [�
𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒

2 � − �
𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

2 � − �
𝐿𝐿(𝐻𝐻)

2
� − 𝐹𝐹𝐹𝐹𝐷𝐷 +

+ �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

2 � − �
𝐿𝐿(𝐻𝐻)

2
� − �

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒
2 � − 𝐹𝐹𝐷𝐷𝐹𝐹 +

+�
𝐿𝐿(𝐻𝐻)

2
� − �𝐹𝐹𝐷𝐷 + � 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝑖𝑖

𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼𝑠𝑠𝑑𝑑𝐷𝐷𝐹𝐹𝐷𝐷

𝑏𝑏=1

� +

+ ��𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1� × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒)� − �𝑀𝑀𝑀𝑀𝐺𝐺�𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒� × 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑏𝑏�] ×

×
1

�𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿2 �

 (4.89)

132

Then, 𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀 of this situation is given by:

𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀 = 1 −
 �𝑀𝑀𝑀𝑀𝐺𝐺 �(𝑇𝑇𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀 × 𝑀𝑀), �𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀(𝐻𝐻) × 𝑀𝑀���

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀(𝐻𝐻) × 𝑀𝑀
×

× 𝑃𝑃𝐼𝐼𝑁𝑁𝐼𝐼𝐸𝐸𝑅𝑅𝐼𝐼𝐸𝐸_𝐼𝐼𝐺𝐺𝑠𝑠(𝐻𝐻) =

= 1 −
 �𝑀𝑀𝑀𝑀𝐺𝐺 �(𝑇𝑇𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀 × 𝑀𝑀), �𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀(𝐻𝐻) × 𝑀𝑀���

𝑃𝑃𝐼𝐼𝑏𝑏𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑏𝑏_𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀(𝐻𝐻) × 𝑀𝑀
×

× [�𝐿𝐿𝐺𝐺𝐺𝐺𝑑𝑑2 �− �
𝐿𝐿𝑏𝑏𝐺𝐺𝑠𝑠𝑀𝑀𝐺𝐺

2 �− �
𝐿𝐿(𝐻𝐻)

2 � −𝐹𝐹𝐹𝐹𝐷𝐷 +

+ �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

2 � − �
𝐿𝐿(𝐻𝐻)

2
� − �

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒
2 � − 𝐹𝐹𝐷𝐷𝐹𝐹 +

+�
𝐿𝐿(𝐻𝐻)

2
� − �𝐹𝐹𝐷𝐷 + � 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝑖𝑖

𝑏𝑏𝑀𝑀𝑚𝑚𝑏𝑏𝑏𝑏𝐼𝐼_𝑅𝑅𝑑𝑑_𝐷𝐷𝐹𝐹𝐷𝐷

𝑏𝑏=1

� +

+ ��𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1� × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒)� − �𝑀𝑀𝑀𝑀𝐺𝐺�𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒� × 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑏𝑏�] ×

×
1

�𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝐻𝐻𝐿𝐿2 �

(4.88)

Considering all the situations of the location of the segment matching 𝐻𝐻

together, and combining the equations of all the situations, it can be calculated:

𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀(𝐻𝐻) = 1 −
𝑁𝑁1(𝐻𝐻)
𝑁𝑁2(𝐻𝐻) × 𝑃𝑃𝐼𝐼𝐷𝐷𝐼𝐼𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀_𝐼𝐼𝑏𝑏𝑏𝑏(𝐻𝐻) =

133

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

1
𝑓𝑓𝑀𝑀𝐼𝐼 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 > 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿;

1−
 �𝑀𝑀𝑀𝑀𝐺𝐺 ��𝑇𝑇𝐼𝐼𝑁𝑁𝐼𝐼𝐸𝐸𝑅𝑅𝐼𝐼𝐸𝐸 ×𝑀𝑀�, �𝑃𝑃𝐼𝐼𝐺𝐺𝑝𝑝𝐺𝐺𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺_𝐼𝐼𝑁𝑁𝐼𝐼𝐸𝐸𝑅𝑅𝐼𝐼𝐸𝐸(𝐻𝐻) ×𝑀𝑀���

𝑃𝑃𝐼𝐼𝐺𝐺𝑝𝑝𝐺𝐺𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺_𝐼𝐼𝑁𝑁𝐼𝐼𝐸𝐸𝑅𝑅𝐼𝐼𝐸𝐸(𝐻𝐻) ×𝑀𝑀 ×

×
�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿2 � − �𝐿𝐿𝑏𝑏𝐺𝐺𝑠𝑠𝑀𝑀𝐺𝐺2 � − �𝐹𝐹𝐷𝐷 + ∑ 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝑀𝑀

𝐺𝐺𝑀𝑀𝑅𝑅𝑏𝑏𝐺𝐺𝐼𝐼_𝑀𝑀𝑓𝑓_𝐷𝐷𝐹𝐹𝐷𝐷
𝑀𝑀=1 + 𝐹𝐹𝐹𝐹𝐷𝐷�

�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿2 �
𝑓𝑓𝑀𝑀𝐼𝐼 0 < 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 < 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 .𝑀𝑀𝑁𝑁𝐷𝐷. 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 > 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 ;

1−
 �𝑀𝑀𝑀𝑀𝐺𝐺 ��𝑇𝑇𝐼𝐼𝑁𝑁𝐼𝐼𝐸𝐸𝑅𝑅𝐼𝐼𝐸𝐸 ×𝑀𝑀�, �𝑃𝑃𝐼𝐼𝐺𝐺𝑝𝑝𝐺𝐺𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺_𝐼𝐼𝑁𝑁𝐼𝐼𝐸𝐸𝑅𝑅𝐼𝐼𝐸𝐸(𝐻𝐻) ×𝑀𝑀���

𝑃𝑃𝐼𝐼𝐺𝐺𝑝𝑝𝐺𝐺𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺_𝐼𝐼𝑁𝑁𝐼𝐼𝐸𝐸𝑅𝑅𝐼𝐼𝐸𝐸(𝐻𝐻) ×𝑀𝑀 ×

× [�𝐿𝐿𝐺𝐺𝐺𝐺𝑑𝑑2 � − �
𝐿𝐿𝑏𝑏𝐺𝐺𝑠𝑠𝑀𝑀𝐺𝐺

2 �− �
𝐿𝐿(𝐻𝐻)

2 �− 𝐹𝐹𝐹𝐹𝐷𝐷 +

+�
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿− 𝐿𝐿𝑏𝑏𝐺𝐺𝑠𝑠𝑀𝑀𝐺𝐺

2 �− �
𝐿𝐿(𝐻𝐻)

2 �− �
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿− 𝐿𝐿𝐺𝐺𝐺𝐺𝑑𝑑

2 � −𝐹𝐹𝐷𝐷𝐹𝐹 +

+�
𝐿𝐿(𝐻𝐻)

2 � − �𝐹𝐹𝐷𝐷 + � 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝑀𝑀

𝐺𝐺𝑀𝑀𝑅𝑅𝑏𝑏𝐺𝐺𝐼𝐼 _𝑀𝑀𝑓𝑓_𝐷𝐷𝐹𝐹𝐷𝐷

𝑀𝑀=1
�+

+ ��𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1� × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒)� − �𝑀𝑀𝑀𝑀𝐺𝐺�𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑒𝑒� × 𝐹𝐹𝐷𝐷𝐹𝐹𝐷𝐷𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑏𝑏�] ×

×
1

�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿2 �
𝑓𝑓𝑀𝑀𝐼𝐼 0 < 𝐻𝐻𝑏𝑏𝑏𝑏𝑒𝑒 < 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐿𝐿;

(4.89)

4.4 GEP schema theorem and ORF

In GA and GP, the solution is generated from the genotype (a bit string

or a tree) directly. There is no “un-coded” element on the chromosome. Every

element of the chromosome is a component of the solution. Therefore, the GA

and GP schema theorems take the whole chromosome into account.

134

In GEP, the genotype and phenotype separated mechanism change the

relation between the chromosome and the solution. The chromosomes are only

designed to provide a genetic material container. The Expression Tree provides

the solution for a given problem. The special ORF structure involves some un-

coded elements (they belong to the chromosome but do not appear on the

Expression Tree). That means NOT every element of the chromosome

contributes to the solution. This is a very important distinction between GEP

and GA/GP. However, this distinction does not lead to any difference on the

consideration of the schema theorems for GEP. GEP schema theorems take the

entire chromosome (every element on the chromosome) into account.

The elements located within or outside of the ORF are both considered

by the GEP schema theorems. The reason is that the consideration of the

schema theorem should focus on genetic modification. Although the Expression

Tree interrupts the direct connection between the chromosome and the solution,

the operating area of the genetic operator still is the entire chromosome (not

only the ORF part). Although the elements that appear after the ORF part do not

contribute to the solution, these elements are not immutable to the genetic

operation. Therefore, the consideration of the GEP schema theorems takes the

entire chromosome into account. The schema theorems discussed in this chapter

can be applied to every position of the chromosome. The elements located in

and outside of the ORF are both considerable.

135

Chapter 5

GEP Schema Validation

The theorems derived from the GEP schema theory were designed to predict the

number of chromosomes matching the schema that will appear in the next

generation. The validity of these theorems is investigated with a set of

experiments which trace the evolution process. The experiments, their results and

the result interpretation are presented in this chapter.

5.1 The Experiments

In order to test the validity of the GEP schema theory, experiments to trace the

evolution progress by monitoring the propagation of the chromosomes matching a

schema from one generation to another were performed.

136

The tracing of the propagation of these chromosomes contains two parts:

Part A: the tracing of the exact number of chromosomes found in

the current generation matching the target schema (the “target schema” is

the schema that will be monitored during the evolution process). As this

number is counted from the actual chromosomes existing in the current

generation, this value is called the actual number of appearances of the

target schema.

Part B: the tracing of the predicted number of chromosomes

matching the target schema in the current generation. The predicted

number is obtained using the theorems provided by the schema theory.

Because the predicted number is estimated using the formula presented in

the previous chapter, this value is called the estimated number of

appearances of the target schema.

If we observe that the actual number of appearances of the target schema

is similar to the estimated number of appearances of the target schema, it can be

concluded that the theorems provided by the schema theory are valid and hence

they can be used to predict the evolution progress.

5.1.1 The Experimental Methodology

In these experiments GEP was used to solve a two-class classification

problem using a data set from particle physics. The data set used contained 5000

data points corresponding to the two classes in the ratio of 1:4.

As the purpose of these experiments was to study the validity of the

schema theory and not to obtain the best solution of the classification problem,

only a simplified version of GEP, containing only one genetic operator for each

run, was used.

137

A GEP run (a run means an execution of the GEP algorithm for the given

problem and data) used for this study had the following parameters:

i) gene head size: 10;

ii) population size: 100;

iii) number of generation: 500;

iv) One-Point Recombination rate: 30%;

 Insertion Sequence Transposition rate: 10%;

 Inversion rate: 10%;

 Mutation rate: 0.44%;

Detailed information about the evolution process was recorded during

each GEP run. This information contained:

• copies of all the chromosomes generated in each generation,

• decomposition of each chromosome into its elements in order to

analyse its modification at the element level,

• the quality (fitness value) of each chromosome.

In order to produce this information and to convert it into various data

formats necessary in its analyses, dedicated software was developed by the author

of this thesis. In order to analyse the information further, ROOT [57], an object-

oriented framework designed for solving data analysis problems, was used. This

software application provides a tree structure which is a very efficient container

of the data.

 For the analysis a number of schemas were selected and traced during the

evolution process. These schemas are the target schemas in this study. These

target schemas are defined by both their element content and their position in the

chromosome.

138

 Figure 5.1 illustrates how the target schemas were extracted. In this

example two types of schema are illustrated:

1) schema in which all the elements are defined (are functions or terminals)

(schema 1, and schema n in the figure). This is actually a segment of a

chromosome and represents a special case of the schema (schema with

only one instance).

2) schema in which a “do not care” element is presented (schema 2, and

schema n+1 in the figure).

This example is for four schemas of length 3 with the starting positions 0,

1, 𝑛 and 𝑛 + 1 , respectively. Elements “a” and “b” are terminals. Elements “+”,

“∗”, “/” and “−” are functions. The target schema 1 and the target schema n are

selected from the head part and the tail part of the chromosome, respectively. The

target schema 2 and the target schema n+1 contain the “do not care” element. The

second position of the target schema 2 and the first position of the target schema

n+1 are the “do not care” elements. (Since the target schema 2 is selected from

the head part, “=” is used to represent the “do not care” element. Since the schema

n+1 is selected from the tail part, “#” is used to represent the “do not care”

element.)

139

Fig. 5.1. The extraction of the target schemas

For each target schema the number of chromosomes matching it was

counted for each generation during a given period of the evolution progress. This

number is the actual number of appearances of the target schema in the

corresponding generation.

+ * - / a b b a

Fixed element selected
for Target schema 1

Fixed element selected
for Target schema 2

Fixed elements selected for
Target schema n

Fixed elements
selected for Target
schema n+1

+ * /

* - =

Target schema 1

Target schema 2

Target schema n

Target schema n+1

a b b

b a

 Element of chromosome the head part

Element of chromosome the tail part

=

“Do not care” element of schema in the head part

“Do not care” element of schema in the tail part

140

For each target schema the estimated number of appearances is also

calculated using the formulas (4.5 and 4.7). With these formulas the estimated

number of appearances is given by:

𝐸𝐸�𝑀𝑀[𝐻𝐻, 𝑡𝑡 + 1]� ≥ 𝑀𝑀(𝐻𝐻, 𝑡𝑡) ×
𝑓(̅𝐻𝐻, 𝑡𝑡)

𝑓(𝑡𝑡)
× 𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝑚𝑚𝐺𝐺𝐺𝐺𝑚𝑚𝐺𝐺𝐺𝐺𝑚𝑚𝐺𝐺

 (5.1)

In this formula,

𝐸𝐸�𝑀𝑀[𝐻𝐻, 𝑡𝑡 + 1]� is the estimated number of appearances of the

target schema 𝐻𝐻 in the generation 𝑡𝑡 + 1;

𝑀𝑀(𝐻𝐻, 𝑡𝑡) is the actual number of appearances of the target schema

𝐻𝐻 in the generation 𝑡𝑡;

𝑓(̅𝐻𝐻, 𝑡𝑡) is the average fitness of the chromosomes matching

schema 𝐻𝐻 in the generation 𝑡𝑡;

𝑓(̅𝑡𝑡) is the average fitness of all the chromosomes of the

population in the generation 𝑡𝑡;

Then, the actual number of appearances and the estimated number of

appearances of the target schema 𝐻𝐻 were compared. Using such a comparison,

the following topics were studied:

a) The validity of the schema theorem during the evolution

Four kinds of genetic operation (Recombination, Inversion,

Transposition, and Mutation) are considered for the validation. One

operators of each operation is selected. To validate the theorem the

following method was designed for the different modification

characteristics of the genetic operators.

141

All the schemas found in the best chromosome of the last

generation were selected and traced back in the previous generations. The

actual number of appearances in each previous generation was

determined.

For each selected schema, the estimated number of appearances

in each previous generation was calculated.

Besides the validation of the schema theorem, the dependence of the

validity of the schema theorem on the position of the selected schema and on the

stage of the evolution, the quality of the chromosomes containing schema are also

studied. The One-Point Recombination is selected for these topics.

b) The dependence of the validity of the schema theorem on the position

of the selected schema

In this study many schemas, from all the generations, were

selected and individually traced in order to obtain a significantly large

number of schemas. Only the schemas of length 3 were used. For each

schema its actual and estimated number of appearances was determined

as described in the previous section.

The selected schemas were then divided in sub-sample

corresponding to their starting position. For each sub-sample the average

value of the absolute difference between the actual and the estimated

number of appearances was calculated. The dependence of this average

was then studied as a function of the starting position of the schema.

c) The dependence of the validity of the schema theorem on the stage of

the evolution

In this study the same sub-samples described above in subsection b)

(study on dependence on position), were used. This time the average

142

values of the absolute difference between the actual and the estimated

number of appearances of schema was studied as a function of the

number of generation.

d) The quality of the chromosomes containing schema present in the final

solution

In this study target schemas of length 3 were selected from the best

individual of the last generation. Each schema was traced back in the

previous generations. The fitness of each chromosome matching the target

schema was determined. Then the average fitness of the chromosome

matching a target schema in each generation was calculated together with

the average fitness of all the chromosomes in the generation. These two

average fitness values were studied as a function of the number of

generations.

5.2 The Experimental Result

The results generated from the previous experiments are presented in this section.

5.2.1 The Validation of Schema Theorem

i) Recombination

GEP has three Recombination operators: the One-Point Recombination,

the Two-Point Recombination and the Gene Recombination. One-Point

Recombination was selected for the investigation.

143

The plots in figures from 5.2 to 5.7 show the difference between the

actual number of appearances and the estimated number of appearances of a

selected target schema for the operator One-Point Recombination (OPR). The

selected target schema are of length 3 , and selected from the best chromsome of

the last generation. Only the first and the last element of these schemas are fixed

(the middle elements are “do not care”).

The plots in figure 5.2 and 5.3 are for schema selected from the head part

of the chromosome. The plots in figure 5.6 and 5.7 are for schema selected from

the tail part of the chromosome. The plots in figure 5.4 and 5.5 are for schema

selected from the area cover both the head and tail part of the chromosome.

In these plots the horizontal axis is the number of generations and the

vertical axis is the number of chromosomes matching the target schmea. The red

curve represents the actual number of appearances of the target schema. The

blue curve represents the estimated number of appearances of the target schema.

Fig. 5.2. Population size 100-schema of length 3 starting at position 0 (OPR)

144

Fig. 5.3. Population size 100-schema of length 3 starting at position 1 (OPR)

Fig. 5.4. Population size 100-schema of length 3 starting at position 8 (OPR)

145

Fig. 5.5. Population size 100-schema of length 3 starting at position 9 (OPR)

Fig. 5.6. Population size 100-schema of length 3 starting at position 15 (OPR)

146

Fig. 5.7. Population size 100-schema of length 3 starting at position 16 (OPR)

ii) Inversion

The plots in figures from 5.8 to 5.13 show the difference between the

actual number of appearances and the estimated number of appearances of a

target schema for operator Inversion (INVERSE). The selected target schemas are

of the length 3 and selected from the best chromsome of the last generation. Only

the first and the last element of these schema are fixed (the middle elements are

“do not care”).

The plots in figure 5.8 and figure 5.9 are for schema selected from the

head part of the chromosome.The plots in figure 5.10 and figure 5.11 are for

schema selected from the tail part of the chromosome. The plots in figure 5.12

and figure 5.13 are for schema selected from the area cover both the head and tail

part of the chromosome.

In these plots the horizontal axis is the number of generations and the

vertical axis is the number of chromosomes matching the target schmea. The red

147

curve represents the actual number of appearances of the target schema. The

blue curve represents the estimated number of appearances of the target schema.

Fig. 5.8. Population size 100-schema of length 3 starting at position 1 (INVERSE)

Fig. 5.9. Population size 100-schema of length 3 starting at position 2 (INVERSE)

148

Fig. 5.10. Population size 100-schema of length 3 starting at position 8 (INVERSE)

Fig. 5.11. Population size 100-schema of length 3 starting at position 9 (INVERSE)

149

Fig. 5.12. Population size 100-schema of length 3 starting at position 15 (INVERSE)

Fig. 5.13. Population size 100-schema of length 3 starting at position 16 (INVERSE)

150

iii) Transposition

GEP Transposition has three operators Insertion Sequence (INSERT),

Root Insertion Sequence (RIS) and Gene Transposition. The Insertion Sequence

(INSERT) is investigated. The result is shown below.

The plots in figures from 5.14 to 5.19 show the difference between the

actual number of appearances and the estimated number of appearances of a

target schema for operator Insertion Sequence. The selected target schema are of

length 3 and selected from the best chromsome of the last generation. Only the

first and the last element of these schemas are fixed (the middle elements are “do

not care”).

The plots in figure 5.14 and figure 5.15 are for schema selected from the

head part of the chromosome.The plots in figure 5.16 and figure 5.17 are for

schema selected from the tail part of the chromosome. The plots in figure 5.18

and figure 5.19 for schema selected from the area cover both the head and tail part

of the chromosome.

In these plots the horizontal axis is the number of generations and the

vertical axis is the number of chromosomes matching the target schmea. The red

curve represents the actual number of appearances of the target schema. The

blue curve represents the estimated number of appearances of the target schema.

Fig. 5.14. Population size 100-schema of length 3 starting at position 1 (INSERT)

151

Fig. 5.15. Population size 100-schema of length 3 starting at position 2 (INSERT)

Fig. 5.16. Population size 100-schema of length 3 starting at position 8 (INSERT)

152

Fig. 5.17. Population size 100-schema of length 3 starting at position 9 (INSERT)

Fig. 5.18. Population size 100-schema of length 3 starting at position 15 (INSERT)

153

Fig. 5.19. Population size 100-schema of length 3 starting at position 16 (INSERT)

iv) Mutation

The plots in figures from 5.20 to 5.25 show the difference between the

actual number of appearances and the estimated number of appearances of a

target schema for mutation. The selected target schema are of the length 3 and

selected from the best chromsome of the last generation. Only the first and the last

element of these schema are fixed (the middle elements are “do not care”).

The plots in figure 5.20 and figure 5.21 are for schema selected from the

head part of the chromosome.The plots in figure 5.22 and figure 5.23 are for

schema selected from the tail part of the chromosome. The plots in figure 5.24

and figure 5.25 are for schema selected from the area cover both the head and tail

part of the chromosome.

In these plots the horizontal axis is the number of generations and the

vertical axis is the number of chromosomes matching the target schmea. The red

curve represents the actual number of appearances of the target schema. The

154

blue curve represents the estimated number of appearances of the target schema.

Fig. 5. 20. Population size 100-schema of length 3 starting at position 1 (mutation)

Fig. 5.21. Population size 100-schema of length 3 starting at position 2 (mutation)

155

Fig. 5.22. Population size 100-schema of length 3 starting at position 8 (mutation)

Fig. 5.23. Population size 100-schema of length 3 starting at position 9 (mutation)

156

Fig. 5.24. Population size 100-schema of length 3 starting at position 15 (mutation)

Fig. 5.25. Population size 100-schema of length 3 starting at position 16 (mutation)

157

5.2.2 The Dependence of the Schema Theorem

• The dependence of the validity of the schema theorem on the position of

the selected schema

The plots in figures (from 5.26 to 5.29) show the dependence between the

position of the target schema in the chromosome and the difference between the

actual number of appearances and the estimated number of appearances of

target schema of length 3. The horizontal axis shows the index of the first element

of the gene segment which is matched by the target schema. The vertical axis

shows the average value of the absolute difference between the actual number of

appearances and the estimated number of appearances of the chromosomes

matching the target schema. Each point on the diagram represents an average

value of this difference for all schemas located at the corresponding position. In

order to provide a clear trend of the change of the difference the points between

two neighbour positions were connected with a line.

In the experiment, two population sizes were considered. In the case of a

population size of 100, 19 starting positions were traced.

Fig. 5.26. Population size 100 at Generation 20

158

Fig. 5.27. Population size 100 at Generation 50

Fig. 5.28. Population size 100 at Generation 80

159

Fig. 5.29. Population size 100 at Generation 90

• The dependence of the validity of the schema theorem on the stage of the

evolution

The plots in figures (from 5.30 to 5.32) show the dependence between the

number of generation in which the schema is traced and the difference of the

actual number of appearances and estimated number of appearances of the

schema. In these plots, the horizontal axis is the number of generations from

which the schema is selected and the vertical axis is the average value of absolute

difference between the actual number of appearances and the estimated number

of appearances of the chromosomes matching the selected target schemas.

Population size of 100 was studied. The difference between the actual number of

appearances and estimated number of appearances are observed from the early

stage to the late stage of the evolution.

The target schemas shown in these plots are selected from three locations:

the head part of the chromosome (position 0-2), the tail part of the chromosome

160

(position 15-17) and both the head part and the tail part of the chromosome

(position 8-10). In each position two types of schema are presented. The top

figure is for schema with three fixed elements; the bottom one is for schema with

a “do not care” element in the middle.

Fig. 5.30. Population size 100-schemas located in the head

161

Fig. 5.31. Population size 100-schemas located both in the head and in the tail

162

Fig. 5.32. Population size 100-schemas located in the tail

163

5.2.3 The Quality of the Chromosome containing Schema

• The quality of the chromosomes containing schema present in the final

solution

The plots shown in figure (from 5.33 to 5.37) show the comparison

between the average fitness of the chromosome matching the target schema and

the average fitness of all the chromosomes in the population. The target schema is

selected from the best chromosome of the last generation and its length is 3. The

target schemas are from three locations: the head only, the head and the tail, and

the tail only. Only the first and the third element are fixed. The middle element is

a “do not care element”.

In these plots, the horizontal axis is the number of generation from which

the schema is selected and the vertical axis is the average fitness of chromsomes.

The red curve is for the average value of the fitness of the chrosomes matching

the target schema. The blue curve is for the average value of the fitness of the

whole generation.

Fig. 5.33. Target schema starting at position 0

164

Fig. 5.34. Target schema starting at position 1

Fig. 5.35. Target schema starting at position 8

165

Fig. 5.36. Target schema starting at position 9

Fig. 5.37. Target schema starting at position 15

166

5.3 The Outcomes of the Experiments

Based on the figures generated from the experiments presented in this

chapter, the performance of the theorem (formula 5.1) can be analysed.

a) Validity of schema theorem during the evolution

As can be seen in the figures from 5.2 to 5.25, the curve of the estimated

number of appearances of the schema provided by the theorem is always in a

relatively close distance from the curve of the actual number of appearances of

the same schema. The difference between the two values is less than 5% (relative

to the number of the chromosomes in the population).

It can also be observed that the actual values are always higher than the

estimated values which are in agreement with the theorem.

As described in chapter 4, the theorem takes into account only the

destructive effect of the genetic modification on schemas, neglecting the creation

of schemas during the evolution, and hence, it provides only the low limit of the

number of schemas. Also the maximum level of the destructive effect of the

genetic operators is considered in the theorems. In practice, not every single

execution of a genetic operator causes the maximum level of the destructive effect.

b) The dependence of the validity of the schema theorem on the position of the

selected schema

In study a) only a few particular locations of the target schema were

considered and the results suggested no dependence on the position.

This study was extended by considering a full range of possible positions

of schema. As can be seen in the figures from 5.26 to 5.29, the difference between

the actual and the estimated number of appearances of the schema is almost

167

constant along the full range of schema positions. This indicates that the schema

theorem is approximately equally valid for schema situated in all the positions of

the chromosome.

c) The dependence of the validity of the schema theorem on the stage of the

evolution

In this study the dependence of the validity of the schema theorem on the

stage of the evolution process (number of generations) was studied.

As can be seen in the figures from 5.30 to 5.32, no significant variation

with the number of generations of the absolute difference between the actual and

the estimated number of appearances of the schema is detected. This indicates

that the schema theorem is equally valid at all stages of the evolution process.

The plateau of the curves present in the plots is due to reaching the

convergence to the best achievable solution. As only One-Point Recombination is

used in this study, the convergence is reached relatively early, around 100-300

generations.

d) The quality of the chromosomes containing schema present in the final solution

Based on the figures from 5.33 to 5.37, it can be observed that the average

fitness value of the chromosomes matching the schema is always higher than the

average fitness of the whole population.

This means that by accumulating the understanding of the problem studied

in the schema, GEP refines the chromosomes generation by generation. Some

schemas always appear in the chromosome with the better fitness and they could

be interpreted as the components of the final best chromosome.

168

Chapter 6

Conclusion and future work

This chapter summarise the conclusions of the studies carried out in this thesis.

Some possible future directions of research are also summarised.

6.1 Conclusion

A relatively new member of the EA, Gene Expression Programming was

investigated in this thesis.

In order to get a deeper understanding of GEP the preliminary study carried

out in this thesis focused on applying the algorithm to a specific problem and then

enhancing the algorithm with the experience obtained from this study. GEP was

169

applied to a classification problem from high energy physics. Some software

programme packages were also developed in [6].

Prefix order mapping mechanism, truncation evolution and fitness threshold

were studied and implemented for the enhancement of the algorithm in the

preliminary study. The improvement observed in the preliminary study also indicates

that keeping the related genetic material together during the evolution is a very

important factor to be investigated for the evolution process. With the genotype and

phenotype separated representation GEP has a more sensitive and clear structure of

the chromosome to generate a schema theory. The study was extended to investigate

the relation among the propagation of the genetic material, the fitness of the

chromosomes and the evolution progress in GEP in order to obtain a theoretical

understanding of the algorithm.

Based on the practical understanding of GEP it was concluded that the

relationship among the components of the GEP evolution is the key to investigate

further and hence a schema theory was developed in order to provide a theoretical

understanding of the GEP evolution process. The conclusions of the GEP schema

theory generated in this study are listed below.

• The definition of the schema of GEP was developed. The definition inherited

some advantages of GA and GP definitions and also considered GEP

characteristics. The schema of GEP was defined with the consideration on

both the positional information of the schema`s elements and the content of

the schema`s elements. The definition focused on the genotype linear string

format of the chromosome on which the genetic operators are applied directly.

• A set of theorems for one genetic operator of each genetic operation (for a

single gene chromosome) were developed by analysing the behaviour of the

genetic operators during the evolution process. The disruptions of the

chromosome segment matching the schema (an instance of schema) were

considered with the modification taking place in the replication and the

genetic modification process. An approximate estimation (only the

destructive effect of the schema was considered) of the number of

170

chromosomes matching a schema after the execution of a genetic operator is

predicted by the theorems.

• A set of systematic experiments were performed in order to test the validity

of the theorems generated with the schema theory. The evolution process was

monitored for a number of generations and the propagation of some

chromosomes matching schema was traced. These experiments were

performed only for one genetic operator of each type of genetic operation in

this study. The experiments generated the following conclusions:

o The difference between the estimated number of chromosomes

matching a schema and the actual number of chromosome matching

a schema existing in a population was less than 5% (relative to the

number of the chromosome in the population).

o The schema theorem is approximately equally valid for schema

situated in all the positions of the chromosome.

o The schema theorem is equally valid at all stages of the evolution

process.

o The chromosomes matching the schema which is extracted from the

best chromosome have higher fitness value than those which do not

match this schema.

6.2 Future work

Further development work of the GEP schema theory is also possible as well

as its exploration for a more advanced understanding of the GEP evolution

mechanism. In this thesis the schema theory was focused on one gene chromosomes.

171

The study can be extended to multi-gene chromosomes. In such a case the

connection function between the genes defined by the user is a key factor for

consideration.

 In this thesis the theorems were generated under the condition that only the

destructive effect is considered. The estimation of the constructive effect is a very

important future direction of the GEP schema research. If the constructive and

destructive efforts are both considered, a more precious version of schema theorem

can be developed in future.

 Schema theory is designed to help obtaining a deeper understanding of the

evolution process of GEP. Whether or not certain segments of the chromosome

matching a schema can be kept unchanged during the evolution in order to improve

the performance of the algorithm is a good question for future investigation. This

would require answering some challenging questions such as how to define what a

good segment is, how to manage such segments during the evolution and how to

optimise their number. Such studies are linked with the concept of a building block

[55,56] of an individual proposed in the literature for other versions of Evolutionary

Algorithms.

172

Bibliography

[1] C. Ferreira, Gene Expression Programming: A New Adaptive Algorithm for
Solving Problems, Complex Systems, vol. 13, issue 2, pp. 87-129, 2001

[2] Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice: Evolution

Strategies, Evolutionary Programming, Genetic Algorithms, Oxford Univ. Press.

[3] Holland, John H (1975), Adaptation in Natural and Artificial Systems, University

of Michigan Press.

[4] Koza, J.R. (1992), Genetic Programming: On the Programming of Computers by

Means of Natural Selection, MIT Press

[5] H.Cheng, J.Xue (2012) The Research on Evolution Schema Theorem on Gene

Expression Programming, Advances in Intelligent and Soft Computing, Volume 146,

2012, pp 399-406

173

[6] Teodorescu, L and Huang, Z (2008). Enhanced Gene Expression Programming

for signal-background discrimination in particle physics. XII Advanced Computing

and Analysis Techniques in Physics Research.

[7] Darwin C. (1859). On the Origin of Species by Means of Natural Selection, or

the Preservation of Favoured Races in the Struggle for Life John Murray, London;

modern reprint Charles Darwin, Julian Huxley (2003). On The Origin of Species.

Signet Classics.

[8] Saenger, Wolfram (1984). Principles of Nucleic Acid Structure. New York:

Springer-Verlag. ISBN 0-387-90762-9.

[9] Alberts, Bruce; Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts and

Peter Walters (2002). Molecular Biology of the Cell; Fourth Edition. New York and

London: Garland Science. ISBN 0-8153-3218-1. OCLC 145080076 48122761

57023651 69932405.

[10] Butler, John M. (2001). Forensic DNA Typing. Elsevier. ISBN 978-0-12-

147951-0. OCLC 223032110 45406517. pp. 14–15.

[11] Lorenz MG, Wackernagel W (1994). "Bacterial gene transfer by natural

genetic transformation in the environment". Microbiol. Rev. 58 (3): 563–602. PMC

372978. PMID 7968924.

[12] Avery O, MacLeod C, McCarty M (1944). "Studies on the Chemical Nature of

the Substance Inducing Transformation of Pneumococcal Types: Induction of

Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus

Type Iii". J Exp Med 79 (2): 137–158. doi:10.1084/jem.79.2.137. PMC 2135445.

PMID 19871359.

[13] Hershey A, Chase M (1952). "Independent Functions of Viral Protein and

Nucleic Acid in Growth of Bacteriophage". J Gen Physiol 36 (1): 39–56.

doi:10.1085/jgp.36.1.39. PMC 2147348. PMID 12981234.

174

[14] Ingo. Rechenberg. (1971). Evolutionsstrategie: Optimierung technischer

Systeme nach Prinzipien der biologischen Evolution", [PhD Thesis] Technical

University of Berlin, Department of Process Engineering.

[15] Fogel,L.,Owens,A.and Walsh,M. (1995). Artificial intelligence through a

simulation of evolution. In Maxfield ,M., Callahan, A., and Fogel, L., editors,

Biophysics and Cybernetic Systems, pages 131-155.

[16] Edwin D. Reilly (2003). Milestones in computer science and information

technology. Greenwood Publishing Group. pp. 156–157

[17] Miller and Thomson, (1997). Grew out of work in the evolution of digital

circuits.

[18] R. Salustowicz and J. Schmidhuber, (1997). Probabilistic incremental program

evolution. Evolutionary Computation. pp. 123-141.

[19/32] K. Sastry and D.E. Goldberg, (2003). Probabilistic model building and

competent genetic programming, In R. L. Riolo and B. Worzel, editors, Genetic

Programming Theory and Practise, pages 205-220, Kluwer.

[20] Benjamin C. Pierce (2012). Genetics: a conceptual approach. W. H. Freeman.

ISBN 9781429232500.

[20] Kumara sastry davide E. Goldberg. On Extended Compact Genetic Algorithm

[21] Loshchilov, I.; M. Schoenauer and M. Sebag (2011). "Not all parents are equal

for MO-CMA-ES". Evolutionary Multi-Criterion Optimization 2011 (EMO 2011).

Springer Verlag, LNCS 6576. pp. 31-45.

[22] Baker, James E. (1987). "Reducing Bias and Inefficiency in the Selection

Algorithm". Proceedings of the Second International Conference on Genetic

Algorithms and their Application (Hillsdale, New Jersey: L. Erlbaum Associates):

14–21.

[23] Brad L. Miller , David E. Goldberg (1995). Genetic Algorithms, Tournament

Selection, and the Effects of Noise

175

[24] David E. Goldberg and Kalyanmoy Deb. A Comparative Analysis of Selection

Schemes Used in Genetic Algorithms.

[25] Baker, J. E (1987). Reducing Bias and Inefficiency in the Selection Algorithm.

Proceedings of the Second International Conference on Genetic Algorithms and their

Application, Hillsdale, New Jersey, USA: Lawrence Erlbaum Associates, 1987.

[26] Xin Li, Chi Zhou, Weimin Xiao, and Peter C. Nelson, (2005). Prefix Gene

Expression Programming. In Late Breaking Paper at Genetic and Evolutionary

Computation Conference, GECCO-2005.

[27] Blickle, T. and Thiele, L (1995). A Comparison of Selection Schemes used in

Genetic Algorithms (2. Edition). TIK Report No. 11, Computer Engineering and

Communication Networks Lab (TIK), Swiss Federal Institute of Technology (ETH)

Zürich, Switzerland,

[28] James F. Crow and Motoo Kimura (1979). Efficiency of truncation selection.

Proceedings of the National Academy of Sciences of United States of America

vol.76 no.1

[29] C.Clark cockerham and Peter M. Burrows (1980). Selection limits and

strategies. Proceedings of the National Academy of Sciences of United States of

America vol.77 no.1

[30] Elena Bautu, Andrei Bautu, and Henri Luchian, (2007). AdaGEP - An Adaptive

Gene Expression Programming Algorithm. In Proceedings of the Ninth International

Symposium on Symbolic and Numeric Algorithms for Scientific Computing, IEEE

Computer Society, Washington, DC, USA, pp. 403-406

[31] Ferreira, C., (2002). Combinatorial Optimization by Gene Expression

Programming: Inversion Revisited. In J. M. Santos and A. Zapico, eds., Proceedings

of the Argentine Symposium on Artificial Intelligence, pages 160-174.

176

[32] Ferreira, C., (2002) Discovery of the Boolean Functions to the Best Density-

Classification Rules Using Gene Expression Programming. In E. Lutton, J. A. Foster,

J. Miller, C. Ryan, and A. G. B. Tettamanzi, eds., Proceedings of the 4th European

Conference on Genetic Programming, EuroGP 2002, Vol. 2278 of Lecture Notes in

Computer Science, pages 51-60, Springer-Verlag.

[33] Chi Zhou, Peter C. Nelson, Weimin Xiao, and Thomas M. Tirpak, (2002).

Discovery of Classification Rules by Using Gene Expression Programming. In

Proceedings of the International Conference on Artificial Intelligence, pages 1355-

1361.

[34] Chi Zhou, Weimin Xiao, Peter C. Nelson, and Thomas M. Tirpak, (2003).

Evolving Accurate and Compact Classification Rules with Gene Expression

Programming. IEEE Transactions on Evolutionary Computation, Vol. 7, No. 6,

pages 519-531.

[35] M. H. Marghny and I. E. El-Semman, (2005). Extracting Logical Classification

Rules with Gene Expression Programming: Microarray Case Study. In Proceedings

of the International Conference on Artificial Intelligence and Machine Learning,

AIML.

[36] M. H. Marghny and I. E. El-Semman, (2005). Extracting Fuzzy Classification

Rules with Gene Expression Programming. In Proceedings of the International

Conference on Artificial Intelligence and Machine Learning, AIML.

[37] Jie Zuo, Chang-jie Tang, Chuan Li, Chang-an Yuan and An-long Chen, (2004).

Time Series Prediction Based on Gene Expression Programming. In Advances in

Web-Age Information Management, Vol. 3129 of Lecture Notes in Computer

Science, pages 55-64, Springer

[38] Litvinenko, V.I., P.I. Bidyuk, J.N. Bardachov, V.G. Sherstjuk, and A.A. Fefelov,

(2005). Combining Clonal Selection Algorithm and Gene Expression Programming

for Time Series Prediction. In Proceedings of the Third Workshop 2005 IEEE

Intelligent Data Acquisition and Advanced Computing Systems: Technology and

Applications, IDAACS 2005, pages 133-138.

177

[39] Lopes, H.S. and W.R. Weinert, (2004). A gene expression programming system

for time series modeling. In Proceedings of XXV Iberian Latin American Congress

on Computational Methods in Engineering ,CILAMCE 2004.

[40] Edwin Roger Banks, James C. Hayes, and Edwin Núñez, (2004). Parametric

Regression Through Genetic Programming. In M. Keijzer, ed., Late Breaking Paper

at Genetic and Evolutionary Computation Conference, GECCO-2004.

[41] E. R. Banks, J. C. Hayes, and E. Núñez. (2004). Parametric Regression

Through Genetic Programming. In R. Poli, S. Cagnoni, M. Keijzer, E. Costa, F.

Pereira, G. Raidl, S.C. Upton, D. Goldberg, H. Lipson, E. de Jong, J. Koza, H.

Suzuki, H. Sawai, I. Parmee, M. Pelikan, K. Sastry, D. Thierens, W. Stolzmann, P.L.

Lanzi, S.W. Wilson, M. O'Neill, C. Ryan, T. Yu, J.F. Miller, I. Garibay, G. Holifield,

A.S. Wu, T. Riopka, M.M. Meysenburg, A.W. Wright, N. Richter, J.H. Moore, M.D.

Ritchie, L. Davis, R. Roy, and M. Jakiela, eds., GECCO 2004 Workshop

Proceedings.

[42] Heitor S. Lopes and Wagner R. Weinert, (2004). EGIPSYS: An Enhanced Gene

Expression Programming Approach for Symbolic Regression Problems.

International Journal of Applied Mathematics and Computer Science, 14 (3): 375-

384.

[43] Cai Zhihua, Li Qu, Jiang Siwei, Zhu Li, (2004). Symbolic regression based on

GEP and its application in predicting amount of gas emitted from coal face, In

Proceedings of the 2004 International Symposium on Safety Science and

Technology, pp. 637-641.

[44] Elena Bautu, Andrei Bautu, and Henri Luchian, (2005). Symbolic Regression on

Noisy Data with Genetic and Gene Expression Programming. In Proceedings of the

Seventh International Symposium on Symbolic and Numeric Algorithms for

Scientific Computing, SYNASC 2005, pp. 321-324.

[45] Teodorescu, L., (2006). Gene Expression Programming Approach to Event

Selection in High Energy Physics. IEEE Transactions on Nuclear Science, Vol. 53,

Issue 4: 2221-2227.

178

[46] Teodorescu, L., (2005). High energy physics data analysis with gene expression

programming. In 2005 IEEE Nuclear Science Symposium Conference Record, Vol. 1,

pp. 143-147.

[47] Bagula, A.B., (2006). Traffic Engineering Next Generation IP Networks Using

Gene Expression Programming. In Proceedings of the 10th IEEE/IFIP Network

Operations and Management Symposium, NOMS 2006, pp. 230-239.

[48] Xue-song Yan, Wei Wei, Rui Liu, San-you Zeng, and Li-shan Kang, (2006).

Designing Electronic Circuits by Means of Gene Expression Programming. In

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems,

AHS 2006, pp. 194-199.

[49] Goldberg, David E. (1989). Genetic Algorithms in Search Optimization and

Machine Learning. Addison Wesley.

[50] O’Reilly, U.-M. and Oppacher, F. (1995). The troubling aspects of a building

block hypothesis for genetic programming. In Whitley, L. D. and Vose, M. D.,

editors, Foundations of Genetic Algorithms 3, pages 73–88, Estes Park, Colorado,

USA. Morgan Kaufmann.

[51] Rosca, J. P. (1997). Analysis of complexity drift in genetic programming. In

Koza, J. R.,Deb, K., Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and Riolo, R. L.,

editors,Genetic Programming 1997: Proceedings of the Second Annual Conference,

pages 286-294, Stanford University, CA, USA. Morgan Kaufmann.

[52] Whigham, P. A. (1995). A schema theorem for context-free grammars. In 1995

IEEE Conference on Evolutionary Computation, volume 1, pages 178-181, Perth,

Australia. IEEE Press.

[53] Poli, R. and Langdon, W. B. (1997). A new schema theory for genetic

programming with one-point crossover and point mutation. In Koza, J. R., Deb, K.,

Dorigo, M.,Fogel, D. B., Garzon, M., Iba, H., and Riolo, R. L., editors, Genetic

Programming 1997: Proceedings of the Second Annual Conference, pages 278 �285,

Stanford University, CA, USA. Morgan Kaufmann.

179

[54] Poli, R. and McPhee, N. F. (2003). General Schema Theory for Genetic

Programming with Subtree-Swapping Crossover: Part I. Evolutionary Computation

11(1): page 53-66.

[55]. U. M. O’Reilly and F. Oppacher. (1992). The troubling aspects of a building

block hypothesis for genetic programming. Working Paper 94-02-001, Santa Fe

Institute, 1399 Hyde Park Road Santa Fe, New Mexico 87501-8943 USA

[56] K. Sastry, U.-M. O’Reilly, D. E. Goldberg, and D. Hill. (2003). Building block
supply in genetic programming. In R. L. Riolo and B. Worzel, editors, Genetic
Programming Theory and Practice, chapter 9, pages 137–154. Kluwer.

[57] ROOT website http://root.cern.ch/drupal/

[58] David H. Wolpert and William G. Macready.(1997) No Free Lunch Theorems for
Optimization IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

[59]Charles Darwin abridged & Introduced by Richard E.Leakey. The illustrated
origin of species

[60] Darrell whitley and nam-wook yoo. Modeling Simple Genetic Algorithms for
Permutation Problems

180

http://root.cern.ch/drupal/

	1_thesis_head_1
	2_thesis_abs_corrections
	3_thesis_content
	4_thesis_list_fig
	5_thesis_list_table
	6_thesis_chapter1_introduction
	7_thesis_chapter2_gep
	Chapter 2
	Gene Expression Programming
	Fig. 2.11. An example of the Inversion

	8_thesis_chapter3_schema
	9_thesis_chapter4__v2
	10_thesis_experiment_v2_corrections
	11_thesis_conclusion_corrections
	12_thesis_Bibliography

