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Abstract

A cohesive zone model approach is used in order to study the behaviour of cracks in

elasto-plastic materials. The cohesive zone model being studied is time-dependent, unlike

standard cohesive zone models in elasto-plasticity. The stress distribution over the cohesive

zone is related to the normalised equivalent stress functional, and is expressed in the form of

an Abel-type integral equation. During the stationary crack stage as well as the propagating

crack stage, the aim is to study the behaviour of the cohesive zone length with respect to

time as well as the crack tip opening. To aid accomplishing this aim, the stress intensity

factor was set to zero at the cohesive zone tip. As well as other material parameters, the

external applied load participates in the model equations. We will consider two cases for

the external load, namely the case when this load is constant in time, and the case when

this load behaves linearly with time. We will implement numerical schemes to obtain the

crack growth as well as the cohesive zone growth with respect to time for both the elastic

case and the visco-elastic case while considering different sets of parameters. The numerical

convergence rates are obtained for each of the problems solved. This justifies the suitability

of the numerical schemes used.
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Chapter 1

Introduction

Fracture mechanics is a mature subject. It is an essential topic for understanding and

predicting the failure of buildings and machines. For many centuries, engineers have been

studying the durability of materials; the main approach for this is to identify when failure

will occur. This mainly concerns nucleation and propagation of cracks in a body. Cracks

appear or grow due to stresses caused by external forces. The external load applied on

the material could cause a crack to initiate, or could cause growth of an already existing

crack and the presence of a crack could lead to rupture when the crack propagates directly

through the body. To predict the strength of the material and where fracture will occur,

the local approach or the non-local approach can be used. The local approach uses the

stress (or stress history) at the point where the crack appears, while the non-local approach

uses not only the stress (history) at the point but also in the vicinity of that point.

Problems in fracture mechanics can be classified to belong in two categories: (i) linear

elastic fracture mechanics or (ii) elasto-plastic fracture mechanics. Cohesive Zone (CZ)

models have been used as a tool to study the behaviour of cracks in elasto-plastic materials.

The CZ in a material is the area between two separating but still sufficiently close
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surfaces ahead of the crack tip, this CZ is illustrated by the shaded region in Figure 1.1,

where ĉ, and â denote the CZ tip coordinate and the crack length respectively. Also, q̂,

and δ̂ respectively denote the external load and the crack tip opening. At the CZs, there

are cohesive stresses σ̂ opposing the effect of the external load q̂.

Figure 1.1: Cohesive zone

The external load q̂ is constant in space and it is first taken to be independent of time.

However, in some real life applications, it can be a function of time. To this end, we can

construct a relationship between the load q̂ and time t̂ and see how the behaviour of the

crack changes. The relationship that we will consider in this project is simply a linear

relationship, namely q̂ = st̂ where s is a constant.

There have been many CZ models introduced in the literature. The cohesive stress

σ̂ is defined by a traction-separation law which can be different depending on the CZ

model considered. The simplest case is when the cohesive stress is constant. This case was

introduced by Dugdale, Leonov, and Panasyuk (DLP) (1959-1960), see [19,33]. In the DLP

model, the maximal normal stress in the CZs is constant and equals to the material yield

stress. This model is one of the most popular CZ models and many modifications of this

model have been made and widely used in nonlinear fracture mechanics. Another popular

CZ model is the Barenblatt (1962) model. The 3 main components needed to study CZ
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models are:

• the constitutive equations in the bulk of the material;

• the constitutive equations in the CZ;

• the criterion for the CZ to break, i.e. the crack to propagate.

Many CZ models involve time-independent stresses in the cohesive region; however,

since many materials (such as polymers) exhibit creep behaviour, time-dependent stress is

a vital factor which has largely been ignored in most CZ models in the literature. The

model presented in this thesis is an extension of the DLP model by using a non-linear

history-dependent constitutive equation in the CZ. Thus, the stresses in the CZ will now

be time and history dependent. Although this is not generally necessary, in this project we

will assume that a crack already exists in the material. Furthermore, we assume that there

can exist a CZ ahead of the crack tip.

The crack opening is an important part in terms of analysing when crack propagation

will initiate. Crack propagation begins when the crack tip opening reaches a critical value

known as the critical crack tip opening. Once the crack starts growing, the CZ will grow

simultaneously with the crack but not necessarily at the same rate. By analysing CZ

models in materials, we would like to know or find out the size of this CZ, the time when

the crack will start to propagate, and more importantly, when total rupture of the material

will occur.

Our aim is to study the behaviour of the CZ length with time during 2 stages: (i)

stationary crack stage; and (ii) propagating crack stage. In each of these 2 stages, we will

consider 2 cases of the constitutive equations for the bulk of the material: (i) linear elastic

materials; and (ii) linear viscoelastic materials. We will compare the results obtained in

the elastic case to that of the viscoelastic case as well as analyse the effect, on the CZ, of

having an external load varying in time compared to the case when it is constant. After

formulating the problems, we will obtain numerical solutions using appropriate numerical

techniques. All algorithms were implemented using MATLAB as a programming language.

3



Given below is the layout for this thesis according to the contents of each chapter.

Arrangement of the Thesis

• Chapter 2: Literature Review:

An overview on the work that has been done by researchers in topics related to

this thesis are given in this chapter. This includes an introduction to linear elastic

fracture mechanics as well as an overview on elasto-plasticity, specifically CZ models.

Also covered is the description of a CZ and where such models lie in the field of

fracture mechanics. Also presented is a brief history of the most commonly used CZ

models considered (such as the Dugdale and Barenblatt models). Viscoelasticity is

an important part of the project thus an introduction of viscoelasticity will be given

in this chapter.

• Chapter 3: Model Problem Formulation:

The formulation of the problem is given. The yield condition (CZ appearance crite-

rion), which represents the normalised equivalent stress functional in the form of an

Abel-type integral equation, is discussed. Also given in this chapter is a normalisation

of the principal variables and equations used to solve the problem.

• Chapter 4: Cohesive Zone Growth with a Stationary Crack:

While the crack is stationary, we introduce a numerical algorithm which was used

to obtain the CZ tip position with time. This also involves computing the stresses

ahead of the CZ, at the CZ tip and in the CZ. To this end, graphs of CZ length vs.

time as well as stress (at a specific point in space) vs. time are presented.

• Chapter 5: The Crack Tip Opening:

We introduce the formula used to calculate the crack opening at a specific point in

time and space. We consider the crack opening in a linear elastic material as well
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as that in a linear viscoelastic material. Using the material parameters of PMMA,

we obtain the crack tip opening growth with respect to time for different sets of

parameters.

• Chapter 6: Cohesive Zone Growth with a Propagating Crack:

To begin this chapter, we define and explain the use of the critical crack tip opening

displacement which is a crucial aspect while studying crack growth. This critical

parameter will be used further on in the project. Crack growth initiates when the

crack tip opening reaches a critical value. A numerical algorithm is presented which

outputs the crack growth as well as CZ growth with time. Consequently, we present

some solutions obtained for different sets of parameters.

• Chapter 7: Time-dependent External Load:

Another one model problem is considered where the external load q̂ is a linear function

in time. The resulting equations have been formulated. The solutions for this case

are presented; this includes the crack length as well as the CZ length for both the

elastic and viscoelastic cases while the load is varying in time.

• Chapter 8: Numerical Convergence Rate:

Verifying the suitability of numerical schemes is an important part of knowing how

accurate the solutions are. In this chapter we obtain the numerical convergence rate

at a specific point in time for the solutions of each model problem discussed.

• Chapter 9: Discussion and Evaluation:

This chapter is used to analyse the behaviour of the solutions. This includes discussing

the obtained solutions for the CZ length, crack length and stresses.

• Chapter 10: Conclusions and Ideas for Further Research:

We give a summary of the conclusions and present some ideas on how the project can

be extended further by considering related problems.
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Chapter 2

Literature Review

2.1 Linear Elastic Fracture Mechanics

Linear elastic fracture mechanics (LEFM) is usually used to analyse crack initiation and

growth in linear elastic materials. There are a few assumptions needed in order for linear

elastic fracture mechanics to be applicable. The main assumption is that the plastic de-

formation zone, which is at the crack tip, needs to be small compared to the whole crack,

see [13]. In general, the partial differential equation of motion for a linear elastic body is

given by

∇σ + F = ρü, (2.1)

where ∇σ denotes the divergence of the stress tensor σ, see e.g. [38,57]. Also, F denotes the

force acting on the body per unit volume, ρ is the mass density, and the vector u denotes

the displacement (so ü is the acceleration of the deforming body). This equation reduces

to the equation of equilibrium when the acceleration is zero. In this text, we will use the
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following notation

ui,j =
∂ui
∂xj

,

and similarly for other components such as the stress components. Also, in what follows,

we will use Einstein’s summation convention. This convention, which is applied when we

have repeated indices in the product of variables, is given by the following

xiyi =
∑
i

xiyi.

To this end, equation (2.1) can be written in the form

σij,j + Fi = ρüi. (2.2)

The stress tensor can be expressed as the product of the stiffness tensor and the infinitesimal

strain tensor; this is given by

σij = Cijklεkl i, j, k, l = 1, 2, 3, (2.3)

where Cijkl is symmetric with respect to its indices so that Cijkl = Cklij = Cjikl = Cijlk,

and the components of the strain tensor εkl can be expressed as

εkl =
1

2
(uk,l + ul,k). (2.4)

Equation (2.3) is known as Hook’s law for anisotropic linear elastic materials. Using equa-

tions (2.2), (2.3), (2.4), and the symmetry of the stiffness tensor, we can write the partial

differential equations of motion in a linear elastic material as

(Cijkluk,l),j +Fi = ρüi in Ω (2.5)

where Ω denotes the region of the body. The equations given by (2.5) are known as the

Lamé equations. If the body is homogeneous and isotropic, then the stiffness tensor Cijkl

can be written as

Cijkl = λδijδkl + µ(δikδjl + δilδjk),
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where λ and µ are the elastic constants known as the Lamé constants. Consequently,

equation (2.5) is given by

(λ+ µ)uj,ji + µui,jj + Fi = ρüi.

Consider a body with a crack as in Figure 2.1. The traction vector on any surface with

unit normal ~n in terms of the stress components is given by the following equation

Ti(n, x) = σji(x)nj,

see e.g. [57]. These equations are known as the Cauchy formulas. The forces or displace-

ments on the boundary are called boundary conditions. The boundary conditions depend

on the nature of the problem. We can have traction prescribed on the boundary, or dis-

placements, or both; but not both at the same point. For instance, if we use Dirichlet

boundary conditions, for the displacements, the boundary conditions are given by

ui(x) = vi(x) x ∈ ΓD,

where vi(x) is a known function. If we consider Neumann boundary conditions, the bound-

ary conditions for the traction are given by

Ti(x) = gi(x) x ∈ ΓN ,

where gi(x) is a known function. Let ΓNC denote the boundary of the crack faces. At the

crack faces, the traction is usually known to be zero

Ti(x) = 0 x ∈ ΓNC .
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Figure 2.1: Linear elastic body with a crack, see [38].

2.1.1 Fracture Modes and the Stress Intensity Factors

The stress intensity factor is used to predict the stress state at the crack tip. There are

3 types of stress intensity factors, KI for Mode I type (opening mode), KII for Mode II

(shearing mode), and KIII for Mode III (tearing mode); each type depends on how the

crack vicinity deforms. Figure 2.2 below shows the 3 types. We will further consider the

Mode I loading which is when the crack opens in a perpendicular direction to the plane of

the crack.

Figure 2.2: Fracture modes I, II, and III, taken from [65].

When the stress intensity factor reaches a critical value, this leads to crack growth and
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possibly failure of the material. Denoted by KC , the critical stress intensity factor is a

material parameter and it is also known as the fracture toughness of a material. The

fracture toughness for a material under Mode I loading is denoted by KIC .

Considering an infinite plate containing a straight crack of length 2a, the stress intensity

factor under Mode I loading for such a plate subjected to external loads, σ∞, is given by

(e.g. see [2])

KI = σ∞
√
πa. (2.6)

As well as the stress intensity factor, an important characteristic in the field of linear

elastic fracture mechanics is the strain energy release rate, G. This represents the rate of

change of the mechanical energy UM of an elastic material with respect to the change of

half the crack length a, that is

G =
dUM
da

,

see [32]. This mechanical energy UM consists of the work done by the external applied load

(we will denote this as UL) and the potential energy stored in the elastic material (we will

denote this energy term by UP ). The strain energy release rate, G, is also known as the

crack-extension force. Under mode I loading, G and KI are related. For the plane stress

state, the relationship is given by the following formula

G =
K2
I

E
,

and for the plane strain state, the relationship is given by

G =
K2
I

E
(1− ν2),

where ν denotes Poisson’s ratio; see [2]. The fracture energy Gc, which is also known as the

critical energy release rate, is the amount of energy needed to cause the crack to propagate.

In other words, the crack will propagate when the strain energy release rate G reaches or

exceeds the fracture energy Gc; or alternatively, when the stress intensity factor KI reaches

or exceeds KIC .
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2.1.2 The Griffith’s Criterion

One of the first scientists to research into the field of fracture mechanics was A.A. Griffith

(in 1920). Griffith derived a criterion for the fracture of a body based on the change of the

body’s total energy, see [13]. Griffith considered materials which are elastic and brittle.

Consider a static linear elastic body with a crack of length 2a subjected to external loads.

The total energy of a body, say U , is given by

U = UM + US = (−UL + UP ) + US. (2.7)

see [32]. As mentioned before, the term UM denotes the mechanical energy of the body.

Whereas, the second term of equation (2.7), US, denotes the surface energy; this is the

energy required to separate atomic bonds and form new cracks. As a crack propagates, the

mechanical energy of the whole system will decrease while the surface energy will increase.

In other words, the two energy terms (mechanical and surface energy) in equation (2.7)

must balance; this is known as thermodynamic equilibrium, see [32]. The requirement for

equilibrium is given by the Griffith energy-balance concept:

dU

da
= 0,

i.e. the change in total energy with respect to crack length is 0.

Griffith experimented on glass which is a linear elastic and isotropic material that sat-

isfied Hook’s law before fracture occurs. Griffith obtained a relationship between the work

done by external loads UL and the potential energy UP of the elastic body under constant

external loads during crack formation. This relationship is given by

UL = 2UP , (2.8)

which implies that all the work done goes to the potential energy. Griffith obtained the

following results for a plate of thickness B, see [2, 32],

US = 4aBγ (2.9)
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where a is half the crack length and γ is the free surface energy. Considering an infinite

plane with a straight crack under traction σ∞ normal to the crack, in the state of plane

stress, we have

UP =
πa2σ2

∞
E

. (2.10)

Considering a plate of unit thickness (B = 1), we can substitute equations (2.8), (2.9), and

(2.10) into equation (2.7) to obtain an expression for the total energy in the cracked body.

This expression is given by

U =
−πa2σ2

∞
E

+ 4aγ.

Then, if we differentiate this expression and equate the result to 0, according to the Griffith

energy-balance concept, we obtain an expression for σ∞ which gives the following fracture

criterion

σ∞ =

√
2γE

πa
. (2.11)

In the case of plane strain, we arrive at the same expressions given in equation (2.10) and

so in equation (2.11), except E is replaced by
E

1− v2
.

2.1.3 Irwin’s Model

While studying crack propagation at the macroscopic level, Irwin postulated the idea of

having non-elastic deformation in the vicinity of the crack tips, see [28]. Thus he modified

Griffith’s theory, which was suitable only for fully elastic materials. As cracks propagate, a

dislocation motion takes place near the crack tips and so this causes energy to be dissipated

(as heat). To this end, he introduced an extra energy term called the effective surface energy

(denoted as γe) representing the work done by plastic deformation in the plastic zones which

lie ahead of the crack tips. This gives an extra term added to the total energy given in

equation (2.7). Using the modified version of Griffith’s model, Irwin and Orowan, see [45],

obtained a revised expression for the fracture criterion of a material under plane stress, this

expression is given below

σ∞ =

(
2E(γ + γe)

πa

) 1
2

.
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Similarly to Griffith’s criterion, this expression is for an infinite plane under constant trac-

tion. Having introduced the concept of the strain energy release rate, Irwin then came up

with the idea of using stress intensity factors to describe the asymptotic behaviour of the

stresses at the crack tip.

In general, the solution asymptotics for the stress and displacement components near

the crack tip in a linear elastic body are given, respectively, by the following expressions

σij = (2πr)−
1
2

∑
l=I,II,III

Klflij(θ) + σ̃ij(r, θ), (2.12)

and

ui = u0
i +

1

2E

( r

2π

) 1
2
∑

l=I,II,III

Klgli(θ) + ũi(r, θ),

where radius r and angle θ are the crack tip local polar coordinates, see [32], as shown in

Figure 2.1. The stress terms given by equation (2.12) have a singularity at r = 0. The

remainder stresses given by σ̃ij(r, θ) are finite at r = 0. The remainder displacement terms

ũi(r, θ) approach zero as r tends to zero. The extra term given by u0
i is a constant which

defines the displacement of the body at the crack tip. The functions gli(θ) and flij(θ) are

dimensionless functions corresponding to the deformation type considered (Mode I, Mode

II, or Mode III). In the above expressions, E denotes Young’s modulus of elasticity.

2.2 Elasto-Plastic Fracture Mechanics: Cohesive Zone

Models

In linear elastic fracture models, the stress at the crack tip is infinite, whereas in CZ

models, the stresses are finite. An important assumption needed in order to use linear

elastic fracture mechanics is that the inelastic region at the crack tip must be negligible in

comparison to the size of the whole crack itself (so we assume the bulk of the material acts

elastically). However, in many real life situations this assumption does not apply. In such

cases, elasto-plastic fracture mechanics (EPFM) is considered instead; see e.g. [13].
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2.2.1 Description of a Cohesive Zone

Cohesive zone (CZ) models have been used in the past 40 to 50 years to study the behaviour

of cracks in elasto-plastic materials; see e.g. [11]. In these cases, the need of an initial crack

is not necessary and thus CZ modelling can predict crack growth as well as nucleation and

initiation. When studying CZ models, we assume that there, generally, exists a CZ ahead

of the crack tip. The CZ area in a material is the area between two separating surfaces

ahead of the crack tip, see Figure 1.1. At this CZ, cohesive forces are present pulling

the cohesive faces together. The external loads being applied to a body causes a crack to

propagate and also causes the crack faces to move further away from each other. This CZ is

known as the plastic zone when metals are considered, and known as the process zone when

considering ceramics and cement. By analysing CZ models in materials, we would like to

know the size of this CZ, and more importantly, when the crack will start to propagate.

When the crack eventually propagates, the CZ vanishes in the place where it appeared but

a new CZ is formed further in the material. So, practically, attached to the crack tip, a

CZ will always be present causing the stresses to remain finite. The constitutive equation

defining the relationship between the cohesive stresses (acting on the cohesive faces) and the

displacement jump δ (separation between the separating faces of the material) are known

as the cohesive laws or traction-separation laws. There have been many traction-separation

laws (or cohesive laws) introduced in the literature. From the graphs of stress σ̂ vs. crack

separation δ, one can obtain the fracture energy per unit area, Gc, defined by

Gc =

∫ δc

0

σdδ,

see e.g. [56], where δc represents the displacement jump when fracture occurs. The stress

σ is defined by a constitutive equation which can be different depending on the type of

cohesive law considered. The simplest case is when the cohesive stress is constant. This

case was introduced by Dugdale (1960) and Leonov-Panasyuk (1959), see [19,33].
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2.3 History of Cohesive Zone Models

Two popular CZ models are known as the Dugdale and Barenblatt models where cohesive

forces are introduced in the plastic zone in order to remove the stress singularity at the crack

tip. The Dugdale and Barenblatt models were the first models to take into consideration

CZs; these models have been modified and used in many applications in fracture mechanics,

e.g. see [13, 56].

2.3.1 The Dugdale-Leonov-Panasyuk Model

The Dugdale-Leonov-Panasyuk model (DLP model), introduced in 1959-1960, was for duc-

tile materials. Dugdale used a thin plate of mild steel. The whole body is assumed to be

elastic but the plastic zone, also known as the process zone or the yield zone, acts plasti-

cally; see [13,56]. Consider a crack in such a material where there exists a CZ ahead of each

end of the crack. In his model, Dugdale used σy to denote the cohesive stresses which act

at the cohesive faces. Also, the edges of the whole infinite plate are subjected to uniform

tensile stress, denoted by σ∞, acting perpendicular to this crack. Figure 2.3 illustrates the

described model.

Figure 2.3: Dugdale CZ model.
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The equation for the stress of the DLP model and the stress-separation graph are shown

respectively below

σ =

σy for 0 < δ < δc

0 for δ > δc

Figure 2.4: Stress-separation graph in the Dugdale model.

In this case, the fracture energy is given by

Gc = Area under curve = σyδc.

The results of Dugdale’s experiments showed that as the applied stress increased, the plastic

zone length also increased. The aim here was to study the stress near the crack tip and thus

to determine when the crack will propagate. The traction acting on the crack faces, as well

as the displacement jump, are analysed in order to determine when the crack will propagate

and when the plastic region will undergo plastic deformation. The strength condition in

the DLP CZ model is when the crack tip opening displacement δ is less than a critical value

δc which is a material constant; i.e. δ < δc. If this condition is violated, then the crack will

propagate. Dugdale’s experiments were used to determine the size of the plastic zone, in

other words, to determine l, see Figure 2.3. As mentioned before, the stress at the crack

tip σy remains finite. To that end, we need the stress intensity factor at the end of the
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plastic zone, KI(c), to be zero

KI(c) = 0.

This stress intensity factor, KI(c), is the sum of the 2 stress intensity factors from the 2

load components. Considering an infinite plane under constant traction at infinity, we have

KI(c) = stress intensity factor due toσy + stress intensity factor due to σ∞

= K
σy
I (c) +Kσ∞

I (c)

= K
σy
I (c) + σ∞

√
πc.

Now, Kσy
I (c) is given by

K
σy
I (c) =

∫ −a
−c
−σy(x)K̃I(x, c)dx+

∫ c

a

−σy(x)K̃I(x, c)dx, (2.13)

where the stress intensity factor K̃I(x, c) caused by the action of concentrated forces, applied

at the point x, is given by

K̃I(x, c) =
1√
πc

√
c+ x

c− x
;

see e.g. [1, 38]; such expression for the stress intensity factor was obtained from linear

elastic fracture mechanics. Substituting this formula for K̃I(x, c) into equation (2.13) and

integrating the result, we arrive at the following expression for Kσy
I (c)

K
σy
I (c) = −2σy

√
c√

π
arccos

(
a

a+ l

)
,

where l = c− a. Equating KI(c) to zero, we get

KI(c) = σ∞
√
πc− 2σy

√
c√

π
arccos

(
a

a+ l

)
= 0.

Using this, we can solve the equation for l (the size of the plastic zone), which gives

l = a

[
sec

(
σ∞π

2σy

)
− 1

]
. (2.14)

We can express equation (2.14) in a simplified approximate form by using the series expan-

sion of sec

(
σ∞π

2σy

)
; to this end let x =

σ∞π

2σy
, the series expansion is given by

sec(x) = 1 +
1

2
x2 +

5

24
x4 +

61

720
x6 + . . . (2.15)
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Note that this series expansion can be used if |x| < π

2
. In this case, we must have that

σ∞π

2σy
<
π

2
meaning σ∞ < σy which is true since the external field stress σ∞ is assumed to

be less than the yield stress σy. We therefore have

sec

(
σ∞π

2σy

)
≈ 1 +

1

2

(
σ2
∞π

2

4σ2
y

)
,

where we have neglected the terms of order 4 or higher (when σ∞ < σy). Thus using

equations (2.15) and (2.6) the cohesive size can be approximated by

l ≈ c

(
1 +

σ2
∞π

2

8σ2
y

− 1

)
=

aσ2
∞π

2

8σ2
y

=
π

8

(
KI(a)

σy

)2

(2.16)

where KI(a) = σ∞
√
πa.

The crack opening is given by the following formula

[u2(x1; c)] = [u
(q)
2 (x1; c)] + [u

(σy)
2 (x1; c)],

where

[u
(q)
2 (x1; c)] =

∫ c

−c
qv2(x1, ξ; c)dξ, (2.17)

and

[u
(σy)
2 (x1; c)] =

∫ −a
−c
−σy(ξ)v2(x, ξ, c)dξ +

∫ c

a

−σy(ξ)v2(x, ξ, c)dξ. (2.18)

In the above expressions, κ denotes the Kolosov-Muskhelishvili constant. Under plane

strain conditions, κ = 3 − 4ν, while κ =
3− ν
1 + ν

under plane stress conditions, and µ =

E0

2(1 + ν)
is the shear modulus, where E0 and ν denote Young’s modulus of elasticity and

Poisson’s ratio, respectively. Furthermore, v2(x, ξ; c) denotes the displacement jump gen-

erated by the unit concentrated forces applied to the opposite crack shores; v2(x, ξ; c) is

given by the following formula

v2(x, ξ; c) = −κ+ 1

2πµ
Γ(x, ξ; c), (2.19)
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where

Γ(x, ξ; c) = ln

[
c2 − xξ −

√
(c2 − x2)(c2 − ξ2)

c2 − xξ +
√

(c2 − x2)(c2 − ξ2)

]
, (2.20)

see [38]. After substituting expressions (2.19) and (2.20) into (2.17) and (2.18), we have

the following results, respectively,

[u
(q)
2 (x; c)] =

q(1 + κ)

2µ

√
c2 − x2, (2.21)

[u
(σy)
2 (x; c)] =

σy
4πµ

((x− a)Γ(x, a; c)− (x+ a)Γ(x,−a; c)) . (2.22)

Therefore, the crack opening at the end of the original crack, at x = a, is obtained by

combining equations (2.21) and (2.22); this yields

δ = [u2(a; c)] =
(κ+ 1)cσy

πµ
ln

[
cos

(
qπ

2σy

)]−1

.

Thus, the crack will propagate if the following condition is violated

(κ+ 1)cσy
πµ

ln

[
cos

(
qπ

2σy

)]−1

< δc.

2.3.2 The Barenblatt Model

The Barenblatt model (introduced in 1962) was for brittle materials, thus the bulk of the

material is assumed to be elastic. In Barenblatt’s model, the material is subjected to an

external load which causes a crack to propagate. Also, there exists strong cohesive forces at

each tip of the crack pulling together the faces of the crack. It is assumed in Barenblatt’s

model that the distribution of the forces acting at the crack tip and the CZ length, l, are

independent of the applied load. The distribution of these cohesive forces are unknown;

unlike the Dugdale model, where the distribution of the forces, acting in the plastic zone,

is known and is constant; see e.g. [13,56].
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Figure 2.5: Barenblatt CZ model.

Barenblatt introduced 2 hypotheses about the CZ model, see [5]:

• ‘The width of the edge (cohesive) region of a crack is small compared to the size of

the whole crack.’ This simply means that the length of the whole crack (including

the CZ) is large compared to l (see Figure 2.5). This hypothesis is true for most

cracks, particularly macro-cracks; however, if the crack is very small (a micro-crack)

then this hypothesis is not valid since l might be larger than the crack.

• ‘The form of the normal section of the crack surface in the edge region (and conse-

quently the local distribution of the forces of cohesion over the crack surface) does

not depend on the acting loads and is always the same for a given material under

given conditions (temperature, composition and pressure of the surrounding atmo-

sphere and so on).’ In a basic explanation, this means that if the external applied

load changes, this would not have an effect on the size of the CZ. Moreover, this CZ

will remain the same size for a given material regardless of how much the crack will

propagate.
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2.3.3 Other Models in the Literature

Rice

In 1968, the Barenblatt model was considered by Rice, see [50] and the path-independent J

integral was used which was written in terms of the cohesive stresses and the displacement

jumps. This J integral was used to predict the stability of crack growth as well as a criteria

of crack initiation.

The two main parameters used to characterise crack behaviour in materials are the

stress intensity factor and the J integral. The J integral is an integral used to study

fracture in a linear or nonlinear elastic body. Rice showed that the J integral is a path

independent integral used for obtaining the strain energy release rate. (In linear elastic

fracture mechanics, this J integral becomes the strain energy release rate G defined in

Section 2.1.1.) Let Γ denote a contour around the crack tip starting at the bottom part of

the crack to the top part as shown in Figure 2.6.

Figure 2.6: Contour surrounding a crack tip.

The J integral is a line integral taken over the contour Γ in the anti-clockwise direction,

given by

J :=

∫
Γ

(
Wdx2 −T

∂u
∂x1

)
ds

where W is the strain energy per unit volume, T and u represent the traction vector and

the displacement vector, respectively, and ~n is the unit vector normal to the contour.
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In Rice’s model, CZs are assumed to be present in front of the crack and Γ is taken to

be the contour surrounding the CZ region, as shown in Figure 2.7. The body is loaded with

external loads and cohesive forces are present at the CZs. The proof of path independence

applies for any contour Γ which surrounds the crack tip, see [50].

Figure 2.7: Contour surrounding a CZ in front of a crack.

The crack propagation criterion is when the crack tip opening δ reaches a value of δ∗ and

thus leads to crack growth. It was concluded, see [50], that as long as the CZ is relatively

small, the equilibrium condition is equivalent to Griffith’s (energy) theory, see section 2.1.2.

Hillerborg

In 1976, Hillerborg et al, see [27], developed the DLP and Barenblatt models by applying

them to concrete materials and used numerical implementation with the aid of finite element

techniques. The Hillerborg model is sometimes referred to as the fictitious crack model.

In Hillerborg’s model, the crack starts to propagate, or initiates if no crack is present,

when the maximum principal stress σ reaches a strength of σ∗, see [27]. (In [27] ft is used

instead of σ∗.) The stress, σ, in the CZ starts at it’s maximum value, and decreases as

the crack opening increases. Thus, when the opening reaches a critical value δ = δ∗, the

cohesive stress is zero. Around the crack tip, surrounding the CZ, there is a small region

which was referred to as the microcracked region, see Figure 2.8. The stress in the CZ gets

transferred to this region.
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Figure 2.8: Microcracked region around CZ.

The graph below gives the behaviour of σ against the crack opening δ

Figure 2.9: Stress vs. crack opening.

However, the relationship between the stress and the crack opening can be modified to

take a different form. For example, if we consider a constant stress at σ = σ∗ and then a

sudden decreases when δ = δ∗, Hillerborg’s model will be equivalent to the DLP model.

The stress-opening relationship usually depends on the material being used.

Finite element analysis was used in order to obtain the stresses and absorbed energy.

However, the energy is not very sensitive to the mesh size used thus a fine mesh is not

necessary. This is advantageous when solving difficult problems when only a coarse mesh

can be easily applied; this also implies less computation time.
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Baẑant

Baẑant introduced the crack band model. Baẑant’s theory was for concrete materials and

considered only the mode I case. In the crack band model, the CZ is assumed to have a

finite length. This model, introduced by Baẑant and Oh (1983) see [6], uses stress-strain

relations to describe the micro-cracking which occurs in the crack. This model has been

studied further on after its derivation in 1983, for example De Borst applied numerical

techniques to the crack band model in nonlinear phenomena such as plasticity and creep,

see [11].

The process zone ahead of a crack in a concrete material is very large (particularly

compared with the actual crack). When studying the fracture process in concrete, it should

also be noted that concrete is a heterogeneous material which means that its properties

vary (nonuniform composition) particularly at the micro scale. Microcracking is when

small cracks appear in the neighbourhood of the major crack tip causing the crack to

propagate. The energy used for the growth of these minor cracks causes the main (major)

crack to grow. Strain softening is when the materials’ stress decreases gradually as the strain

increases. Strain softening occurs after a specific peak stress value is reached. In [6], the

stress-strain relation is derived which describes the behaviour of the process zone during

microcracking and crack growth. The strain-softening function depends on the fracture

energy, the uniaxial strength and the width of the process zone. Baẑant’s hypothesis

was that in concrete materials, there is a process zone where blunt-ended microcracks are

formed. Strain-softening develops as a result of the microcracking, see [6].

In concrete materials, the crack grows in a random manner so we cannot predict the path

of the crack in advance. Since the fracture depends highly on the fracture energy of the

materials, the crack propagation condition used in Baẑant’s model considers the fracture

energy (instead of using the materials’ strength as a crack propagation criteria, which is

used in many other CZ models).

Finite element analysis was used in Baẑant’s model to study the microcracking effect
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including the computation of the crack length, the micro-stresses (stresses in the process

zone) and the energy release rate. One of the advantages of using this model compared

with many other models is the absence of the zero stress intensity factor condition. This

model is very similar to Hillerborg’s model. The main difference between the two models

involves the modelling of the CZ. In Baẑant’s model, the given width of the process zone is

assumed to be finite. Thus the fracture energy can be determined, which depends on this

band width.

Schapery

Assuming viscoelasticity in the bulk of the material, Schapery in 1984, studied a CZ model

where variable CZ stress was assumed. Schapery used the fracture energy as the crack

growth criteria unlike in the DLP model, and many other models, where the critical crack

tip opening was considered instead. The viscoelastic functions of the material were used

to determine the work done in the CZ and in turn when this work done is equal to the

fracture energy then crack growth begins. For polymers, this fracture energy is dependent

on time and temperature, see [55].

Schapery’s model was for studying crack growth in nonlinear viscoelastic materials,

see [55]. By using the elastic solutions, along with the correspondence principal, Schapery

obtained the solutions of the stresses σi,j and the displacements ui of the viscoelastic case.

A single hereditary integral was used to study the deformation in a body with viscoelastic

effects.

McCartney

In 1988, McCartney considered a model that can be applied to viscoelastic materials con-

taining a crack with CZs at the crack tips, and analysed the stresses in the CZ under the

assumption that the stress is dependent on the velocity of crack propagation, see [36].
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A linear viscoelastic solid is considered which is under a time-dependent stress applied

at infinity in a direction normal to the crack plane. Cohesive zones are assumed to exist at

the end of the crack tips where, the material behaves as a non-linear elastic or plastic solid.

However, an important assumption made was that the stresses in the CZ were dependent

on the crack growth velocity. Taking this into account, there were two aims in this model,

namely (i) to obtain an energy fracture criterion and (ii) to obtain the stress distribution

as well as the deformation in the CZs; both of which depend on the crack growth speed v.

The displacement discontinuity distribution involves a time-dependent integral which

depends on the longitudinal strain response in the material, the creep function, J(t), the

external applied stress, σ∞, the CZ stresses, σc, and the cohesive zone length, c(t). It

is assumed that the crack grows with uniform velocity. The crack growth speed can be

represented in terms of the effective fracture energy Γ. Results of asymptotic analysis,

particular to see what happens as v → 0 and as v → ∞, show conditions on the stress

intensity factor K such that the numerical results can be implemented.

The dependence of v on the stress intensity factor is analysed. This relationship is

found by using the energy balance criterion in terms of Γ. Numerical schemes were used

to solve the problem for two cases: (i) when the bulk of the material is a linear elastic

solid and (ii) when it is a linearly viscoelastic solid. For case (i), it was shown that the

solution for the displacement discontinuities is independent of the speed v. However, for

case (ii), the solution of the integral equation (for the displacement discontinuities) is

dependent on the velocity. For case (ii), graphs of the dependence of the crack growth

speed on the stress intensity factor were obtained. It was shown that the stress intensity

factor increases monotonically but tends to a finite value as v increases. Also, graphs of

the cohesive stress vs. the CZ length were obtained which show that the cohesive stress

decreases monotonically with CZ length for cases when v → 0 and when v → ∞. It was

also finally concluded that as velocity increases, the CZ length also increases.
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Tvergaard and Hutchinson

Tvergaard and Hutchinson in 1992, see [58], used a ductile material to study how the work

in the plastic region contributes to the fracture toughness of the material. Thus, by using

a trapezoidal traction-separation law it was shown that the fracture toughness depends

highly on the plastic work that surrounds the crack tip.

In [58], two problems were considered: (i) the fracture process in a single void interacting

with the crack tip; and (ii) the fracture process consisting of void growth and coalescence

where multiple voids interact ahead of the crack tip. In this model, small scale yielding and

mode I fracture conditions were considered for a material under plane strain conditions.

Also, it was assumed that fracture was rate-independent. This model depends on 2 main

parameters, namely the work of separation per unit area Γ0 and the peak traction σ̂. The

purpose was to obtain a relation between Γ0 and the total work of fracture. The relation

is given by

σ =



σ̂

δ1

for δ < δ1

σ̂ for δ1 ≤ δ ≤ δ2

(δ − δ2)

(
σ̂

δ2 − δc

)
+ σ̂ for δ∗ < δ < δc

Figure 2.10: Stress-separation graph in the trapezoidal model.
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Here, we have, by finding the area under the curve,

Γ0 =
1

2
σ̂(δc + δ2 − δ1).

An expression for the crack growth resistance KR(∆a) is given where a denotes the crack

length. A finite element approach was used to obtain the crack growth resistance for given

material parameters with respect to the crack length. Graphs of crack growth resistance

vs. crack length were obtained showing the monotonic increase of KR yet tending to a

finite value. When KR ceases to increase, steady-state conditions are attained, we have

Kss
R → KR as ∆a→∞.

Two main stages are considered in this paper, namely the crack initiation stage and the

crack growth stage. The crack initiates when the crack growth resistance satisfies KR = K0

(or equivalently when G = Γ0) where K0 denotes the stress intensity factor in the case of

no plasticity. During the crack growth stage, steady state crack growth was considered and

plots of the crack growth resistance Kss
R vs. σ̂ were obtained for chosen dependence on the

shape of the traction separation law (δ1, δ2, and δc).

Also considered was the problem of crack propagation in the case of having two identical

solids bonded together, as well as the case with two nonidentical solids (where one is much

stronger than the other). Such problems allow us to know how interface structures will

help in the toughness and durability of materials.

Some Other Models in the Literature

There are many other CZ models introduced in the literature. We will briefly introduce

some of these models in this subsection.

Knauss in 1993, studied a time-dependent crack growth by considering a rate dependent

CZ model and determined the crack opening using the viscoelastic properties of the ma-

terial. The stability of the crack was studied by using the traction-separation law, it has
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been concluded that in some materials, the crack tip can become unstable even before the

critical crack tip opening has been reached; see [29].

A linear cohesive law, was used by Camacho and Ortiz (1996). In this case the stress

reduces linearly with displacement. The behaviour is illustrated in Figure 2.11 and the

relation is given by, see [14],

σ = σy − δ
(
σy
δc

)
.

Thus, the fracture energy is given by

Gc =
σyδc

2
.

Figure 2.11: Stress-separation graph in the rigid linear model.

An exponential traction-separation law was used by Xu and Needleman in 1994 see [60]

and later on by Ortiz and Pandolfi in 1999, see [46].

In 1998, Guebelle and Baylor, see [22], used a bilinear CZ model. Unlike the linear

traction-separation law, many researchers have considered the case where the stress starts

at zero (before separation takes place) then increases until it reaches a maximum value for

σ and eventually decreases to zero when the separation reaches δc. An example of such

cohesive law is known as the bilinear traction-separation law, see e.g. [59]. The stress-
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separation equation is given below and the corresponding graph follows in Figure 2.12.

σ =


δ
(σy
δ∗

)
for 0 < δ < δ∗

(δ − δ∗)
(

σy
δ∗ − δc

)
+ σy for δ∗ < δ < δc

Figure 2.12: Stress-separation graph in the bilinear model.

In this case, the critical fracture energy is also given by

Gc =
σyδc

2
.

In 1999, Yoon and Allen [61] considered a CZ model in a nonlinear viscoelastic material

and modelled the behaviour of the crack using hereditary integrals which were in terms of

the relaxation functions of the material. It was shown that the energy release rate is time

and history dependent.

Other traction-separation laws which have not been mentioned here, such as the parabolic

and sinusoidal laws, have also been considered by researchers in the past 40 years, these

models consist of different constitutive equations for the stresses. A table of some CZ

models and their parameters can be found in [16].
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2.4 Viscoelasticity

Viscoelastic materials such as polymers experience a time and history dependant stress-

strain relationship. Viscoelastic materials can be classified as linear or nonlinear. We will

consider only linear materials.

2.4.1 Stress-Strain Relations

When a material is subject to an external constant stress σ0 starting from time t = 0, a

strain is produced and is given by relation

ε(t) = σ0J(t)

where J(t) is called the creep function and is different for different materials. The graphs

in Figure 2.13 demonstrate the behaviour of stress and strain in creep.

Figure 2.13: Viscoelastic creep.

Consider the case of having a second load, denoted by ∆σ applied at a time t = τ where

τ > 0, the corresponding strain is given by ε(t) = ∆σJ(t − τ). Using linearity, the total

strain of both loads is

ε(t) = σ0J(t) + ∆σJ(t− τ).

Now, if we consider an indefinite number of applied loads, the total strain is given by

ε(t) = σ0J(t) +

∫ t

0+
J(t− τ)σ̇(τ)dτ, (2.23)
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see [20], assuming σ(t) = 0 for t < 0, where σ̇ denotes the derivative of σ with respect to

time. If we apply integration by parts to the integral in equation (2.23), we will arrive at

the following representation

ε(t) = J(0)σ(t)−
∫ t

0

J̇(t− τ)σ(τ)dτ.

Denoting J̇(t−τ) =
dJ(t− τ)

dτ
= −K(t−τ), we arrive at the standard constitutive equation

ε(t) =
σ(t)

E0

+

∫ t

0

K(t− τ)σ(τ)dτ (2.24)

we have also used J(0) =
1

E0

where E0 denotes the instantaneous elastic modulus. If the

material is a viscoelastic solid, the strain tends to a finite value as t tends to infinity, as

shown by the dotted line in the graph in Figure 2.13, this value is usually denoted as ε∞.

Otherwise if we have a viscoelastic fluid, the strain continues to grow, see [2].

We can also consider the case of varying stress with time as we keep the strain ε(t) = ε0

for t ≥ 0 constant, and ε(t) = 0 for t < 0. The corresponding stress is given by

σ(t) = ε0Y (t), t > 0

where Y (t) is called the relaxation function and also depends on the material. The graphs

in Figure 2.14 demonstrate the behaviour of strain and stress in relaxation

Figure 2.14: Relaxation.
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If the material is a viscoelastic solid then the stress tends to a finite value as t tends to

infinity, as shown by the dotted line in the graph above, this value is usually denoted as

σ∞. Otherwise if we have a viscoelastic fluid, then the stress continues to decrease to 0.

We obtain the inverse relation of equation (2.24) and arrive at the following constitutive

equation for stress with respect to time

σ(t) = ε(0)Y (t) +

∫ t

0+
Y (t− τ)ε̇(τ)dτ (2.25)

or alternatively expressed by

σ(t) = E0ε(t) +

∫ t

0

E∗(t− τ)ε(τ)dτ

where we have used Ẏ (t− τ) =
dY (t− τ)

dτ
= −E∗(t− τ).

2.4.2 Relation Between the Creep and Relaxation Functions

The relation between the creep function J(t) and the relaxation function Y (t) can be found

with the aid of Laplace transformation, see [7].

For equations (2.23) and (2.25), applying the convolution theorem and obtaining the

inverse Laplace transform yields the following result∫ t

0

J(t− x)Y (x)dx =

∫ t

0

Y (t− x)J(x)dx = t. (2.26)

Therefore, if we know the creep function or the relaxation function, we can use relation

(2.26) to find the relaxation function and the creep function respectively.

2.4.3 Linear Viscoelastic Models

The behaviour of such materials is often modelled using a combination of 2 mechanical

models: springs, to present the elastic characteristics; and dashpots, to present the viscous

characteristics. Examples of such mechanical models are the Maxwell model and the Kelvin-

Voight model.
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The Maxwell Model

The Maxwell model is constructed using a spring and a dashpot in series.

Figure 2.15: Maxwell Model.

The differential equation that defines the stress-strain relationship in a Maxwell model

is given by

ε̇(t) =
1

E
σ̇(t) +

1

η
σ(t),

see [8, 20], where E denotes Young’s modulus of elasticity and η denotes the viscosity

coefficient. This differential equation can be written as

ε(t) =
1

E
σ(t) +

1

η

∫ t

0

σ(τ)dτ.

Using integration by parts on the integral, we have

ε(t) =
1

E
σ(t) +

t

η
σ(t)− 1

η

∫ t

0

τ σ̇(τ)dτ

=
1

E

∫ t

0

σ̇(τ)dτ +
1

E
σ0 +

1

η
t

∫ t

0

σ̇(τ)dτ +
1

η
tσ0 −

1

η

∫ t

0

τ σ̇(τ)dτ

= σ0

(
1

E
+

1

η
t

)
+

∫ t

0

σ̇(τ)

(
1

E
+

1

η
(t− τ)

)
dτ ;

and comparing this to equation (2.23), we find that the creep function for the Maxwell

model is given by

J(t) =
1

E
+

1

η
t.

Using a similar approach, or using relation (2.26), we find that the relaxation function

for the Maxwell model is given by

Y (t) = Ee−
E
η
t;
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generally,
η

E
is known as the relaxation time of the material.

The Kelvin-Voight Model

The Kelvin-Voight model is constructed using a spring and a dashpot in parallel.

Figure 2.16: Kelvin-Voight Model.

The differential equation that defines the stress-strain relationship in the Kelvin-Voight

model is given by

ε̇(t) +
E

η
ε(t) =

1

η
σ(t),

see [8, 20]. Solving this differential equation, using an integrating factor, yields

ε(t) =
1

η

∫ t

0

e
E
η

(τ−t)σ(τ)dτ ;

using integration by parts on the integral gives

ε(t) =
1

E
σ(t)− 1

E
σ0e
−E
η
t − 1

E

∫ t

0

σ̇(τ)e
E
η

(τ−t)dτ

= σ0
1

E

(
1− e−

E
η
t
)

+
1

E

∫ t

0

σ̇(τ)
(

1− e−
E
η

(t−τ)
)
dτ,

and comparing this to equation (2.23), we find that the creep function for the Kelvin-Voight

model is given by

J(t) =
1

E

(
1− e−

E
η
t
)
.

The relaxation function for the Kelvin-Voight model is given by

Y (t) = E + ηδ(t),
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where δ(t) denotes the Dirac delta function which possesses the fundamental property∫ ∞
−∞

δ(t)φ(t)dt = φ(0)

for any continuous function φ(t).

Standard Linear Solid

This model is also known as the 3-parameter material or the Zener model. Consider the

case of having a spring in series with a Kelvin-Voight model, as shown in Figure 2.17.

Figure 2.17: Standard linear solid: Kelvin form.

The corresponding differential equation modelling the stress-strain relation in such a

material is given by

σ(t) +
η

E0 + E1

σ̇(t) =
E0E1

E0 + E1

ε(t) +
ηE0

E0 + E1

ε̇(t),

see [8,20]. Using similar techniques as for the Maxwell and Kelvin-Voight models, we derive

the creep function for a standard linear solid of the Kelvin-Voight form

J(t) =
1

E0

+
1

E1

(
1− e−

E1
η
t
)
.

These results can be generalised for the case of having n Kelvin-Voight elements in series

with a spring. The generalised creep function can be found in e.g. [8].

Now, consider the case of having a spring in parallel with a Maxwell model, as shown

in Figure 2.18.

36



Figure 2.18: Standard linear solid: Maxwell form.

The differential equation describing the stress-strain relation in such a material is

σ(t) +
η

E1

σ̇(t) = E0ε(t) +
η(E0 + E1)

E1

ε̇(t),

see [8,20], and again, we can derive the creep function using the same techniques as before

which yields

J(t) =
1

E0

− E1

E0(E0 + E1)
e
− E0E1
η(E0+E1)

t
. (2.27)

In the literature, see e.g. [4, 49], experiments using polymers have been undertaken

and the corresponding results show that polymers behave like standard linear solids. The

material which will be considered in this project is Poly(methyl methacrylate), also known

as plexiglas or PMMA.

Consider again the case of a spring in parallel with a Maxwell model. If we have constant

stress σ0, from ε(t) = σ0J(t), and the creep function given by equation (2.27), we have

ε(t) =
σ0

E0

− E1σ0

E0(E0 + E1)
e
− E0E1
η(E0+E1)

t
.

Now, at t = 0 and t =∞, we have

ε(0) =
σ0

E0 + E1

, ε(∞) =
σ0

E0

,

and since E0 and E1 are finite, we represent such behaviour for the strain on a graph as

shown below
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Figure 2.19: Strain vs. time for a standard linear solid: Maxwell form.

which resembles the strain behaviour in polymers, see e.g. [47]. Therefore, the standard

linear solid is a reasonable model to predict the creep behaviour of polymers.

2.4.4 Viscoelastic Correspondence Principle

When studying problems in elasticity, the material properties (such as Young’s modulus of

elasticity E0 and Poisson’s ratio ν) which appear in the equations are assumed to be time

independent. The correspondence principle is a technique used in solving viscoelastic stress

analysis problems by using the corresponding elastic problem, see e.g. [20]. Accordingly,

we replace the elastic constants, which appear in the elastic solution, by the corresponding

viscoelastic operators, to arrive at the viscoelastic solution.

2.5 Crack Growth in History-Dependent Materials

There is some work in the literature involving history dependent strength conditions in ma-

terials under creep conditions and fatigue conditions. The main difference between the two

types is that under creep conditions, the stress and rupture are time-dependent, whereas,

under fatigue loading, the number of load cycles is the major factor. While studying crack

propagation, it is useful to construct a graph of crack length against time (creep case),
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or crack length against the number of load cycles (fatigue case). More information about

the characteristics of creep and fatigue loading can be found in [10, 15, 62]. To predict the

strength of the material and where fracture will occur, the local approach or the non-local

approach can be used. The local approach uses the stress (or stress history) at the point

where the crack appears, while, the non-local approach uses the stress (history) not only

at the point of the crack but also in the vicinity of that point. Under creep conditions,

the durability of a material depends on the duration of the applied load as well as the

temporal load history. The Basquin diagram, see [47, 51], is a power type relation which

relates the life time of a material under a uniaxial load which is constant in space and time.

This relation is given by σ∗(t) = σ0t
−1/b, where σ0 and b are constant material parameters.

Given in Figure 2.20 is an example of a durability diagram.

Figure 2.20: Material strength σ∗ under constant uniaxial stress as a function of life time.

In [43], a temporal strength condition is given for materials which exhibit time-dependent

crack growth. This condition is given by

Λ(σ; t) = 1,

where Λ(σ, t) denotes the temporal normalised equivalent stress functional which depends

on the stress σ, history, and time t. A particular form of Λ(σ, t) has been suggested in [40],

and its parameters were obtained from experimental data. This functional is given by

Λ(σ; t) :=

[
d

dt

∫ t

0

∣∣∣∣ σ(τ)

σ∗(t− τ)

∣∣∣∣β dτ
]1/β

< 1,
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where σ∗(t) is the durability diagram under constant loading. The parameter β is a material

constant in the nonlinear accumulation rule for durability under variable load, see [40]. For

the Basquin diagram, it takes the form

Λ(σ; t) =

[
d

dt

∫ t

0

∣∣∣∣σ(τ)

σ0

∣∣∣∣β (t− τ)
β
b dτ

]1/β

=

[
β

bσβ0

∫ t

0

|σ(τ)|β (t− τ)
β
b
−1dτ

]1/β

< 1. (2.28)

When β = b, equation (2.28) coincides with the Robinson rule of linear accumulation of

partial life times. The local approach was used in [25] to study creep crack propagation for

a body with initially no crack. The strength condition (2.28) was used to formulate a non-

linear Abel type integral equation which models the crack behaviour in time. Let a denote

the crack length. For an infinite elastic isotropic or anisotropic plane, the stress distribution

σ22(τ ;x1) ahead of the crack has the following form (see e.g. [54]), which remains valid also

for a viscoelastic material,

σ22(τ ;x1) =
qx1√

(x2
1 − a2(τ))

. (2.29)

Substituting the stress distribution (2.29) into the durability condition (2.28) with x1 = a(t)

(and replacing the inequality with equality), we arrive at the following nonlinear Volterra

integral equation ∫ t

0

(t− τ)
β
b
−1

[a2(t)− a2(τ)]
β
2

dτ =
b

β

(
q

σ0

)−β
a−β(t). (2.30)

The equation that models crack propagation under fatigue loading in an elastic material

is analogous to equation (2.30) except the crack length, a, will depend on the number of

loading cycles, n, instead of time, t.

In [41, 42], equation (2.30) was solved analytically for the case β = b. For other values

of β, no exact solution has yet been found. A modified version of the Nyström method was

introduced and implemented in [25] in order to numerically solve the problem for the cases

when β 6= b. Graphs of crack length against normalised time were produced for β = b (in
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order to compare with the analytical solution) as well as for other values of β. These graphs

were used to analyse the rate of the crack growth taking different values of the parameters,

β and b. The theoretical results from the exact solution for β = b, given in [41], show

that the normalised breaking time for a plane with a crack is tr = 1. On the other hand,

it was also shown that for other certain values of β, the normalised breaking time is also

t = 1. Since the equation modelling crack growth in a body undergoing fatigue loading

conditions is analogous to the equation modelling crack growth in a body undergoing creep

loading conditions, similar interpretations were made on how the crack length increases

with respect to the number of cycles being applied. Papers [41, 42] model the creep and

fatigue cases respectively. Both the local and non local approaches were considered. In

both papers, it is observed that as the material parameter b increases, the crack growth

increases more rapidly with time and number of cycles. However, the local approach is

only applicable for cases when b < 2; whereas, in the non local approach, this restriction is

not required. Therefore, solutions were obtained for values such as b = 3 and b = 6.
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Chapter 3

Model Problem Formulation

Let the problem geometry be as in Figure 1.1, i.e, the crack occupies the interval

[−â(t̂), â(t̂)] and the CZ occupies the intervals [−ĉ(t̂),−â(t̂)] and [â(t̂), ĉ(t̂)] in an infinite

linearly elastic or viscoelastic plane loaded at infinity by a traction q̂ in the direction normal

to the crack applied at time t̂ = 0. We will now give a generalisation of the DLP Model to

history-dependent materials.

3.1 Cohesive Zone Stress Condition

We introduce the normalised equivalent stress, which is given by the following formula

Λ(σ(x̂, ·); t̂) =

(
β

bσβ0

∫ t̂

0

|σ(x̂, τ̂)|β(t̂− τ̂)
β
b
−1dτ̂

) 1
β

(3.1)

see [40]. Here, |σ| is the maximum of the principal stresses, t̂ and x̂ denote the time and

space coordinates respectively. The parameters σ0 and b are material constants in the

assumed power-type relation

t̂∞(q̂) =

(
q̂

σ0

)−b
(3.2)
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between the rupture time t̂∞ and the constant uniaxial tensile stress q̂ applied to a sample

without cracks. The rupture time t̂∞(q̂) satisfies the following equation∫ t̂

t̂0

q̂β(t̂− τ̂)
β
b
−1dτ̂ =

bσβ0
β
.

We will replace the classical DLP CZ (yield) stress condition, σ̂ = σy, with the history-

dependent condition

Λ(σ̂(x̂, ·); t̂) = 1, (3.3)

while in the rest (the bulk) of the material the strength condition

Λ(σ̂(x̂, ·); t̂) < 1

should be satisfied.

So, for x̂ between the crack tip and the CZ tip, the CZ stress satisfies the equation∫ t̂

0

σβ22(x̂, τ̂)(t̂− τ̂)
β
b
−1dτ̂ =

bσβ0
β
.

The integral on the left hand side of the above equation can be split into 2 parts, and thus

we can rewrite the above equation as∫ t̂

t̂c

σβ22(x̂, τ̂)(t̂− τ̂)
β
b
−1dτ̂ =

bσβ0
β
−
∫ t̂c

0

σβ22(x̂, τ̂)(t̂− τ̂)
β
b
−1dτ̂ (3.4)

where x̂ > ĉ(τ̂) and t̂c(x̂) denotes the time when the point x̂ became part of the CZ. The

stress in the integrand on the right hand side of equation (3.4) is the stress ahead of the

CZ; however, the stress in the left hand side of equation (3.4) is the stress in the CZ.

To analyse the range of b and β for which the CZ model based on conditions (3.3), (3.1)

can exist, let us first remark that if β = b, then

d

dt̂
Λ(σ̂(x̂, ·); t̂) =

1

bσβ0
Λ1−β(σ̂; t̂)|σ̂(x̂, t̂)|β,

which means that Λ(σ̂(x̂, ·); t̂) is a strictly growing function for any t, when |σ̂(x̂, t̂)| > 0.

Particularly, if the cohesive condition (3.3) has been reached at some time tc(x), it can not
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stay satisfied at larger times, t > tc(x), for |σ̂(x̂, t̂)| > 0 on the CZ; but if |σ̂(x̂, t̂)| = 0 for

t > tc(x) this means that the point belongs to the crack and not to the CZ. That is, the

CZ can not exist for β = b.

Similarly, if β > b, then

d

dt̂
Λ(σ̂; t̂) =

β
b

βσβ0
Λ1−β(σ̂; t̂)

∫ t̂

0

|σ̂(τ̂)|β(t̂− τ̂)
β
b
−2dτ̂ > 0,

which also prevents the CZ condition (3.3) to hold at any time t > tc, after it had been

reached at a time tc(x), even if σ(t) = 0 for t > tc(x). Thus, the CZ defined by (3.4) can

exist only if 0 < β < b. Thus we will further consider values for b and β from this interval

only.

Relations (3.1)-(3.4) were implemented in [25, 41] to solve a similar crack propagation

problem without a CZ; i.e. it was assumed that when condition (3.1) is reached at a point,

this point becomes part of the crack. However, such approach in a local form appeared to

be inapplicable for b ≥ 2 (but it can still be used for b ≥ 2 in a non-local form, see [41]).

In this paper, a CZ approach is developed instead, in order to cover the larger range of b

values relevant to structural materials. Note that the CZ approach can be considered as a

kind of non-local approach.
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3.2 Stress Ahead of the CZ

As shown in Figure 3.1, the problem for a cracked plane subject to external loads can be

modelled as the sum of the problems for a body with a crack and a body without a crack

subjected to external loads.

Figure 3.1: Infinite plane subject to external loads.

Regarding component B shown in Figure 3.1 (for an infinite plane without a crack), this

is a uniform tension in the x2 direction so the stress components, for any point in the plane,

are given by σ22 = q̂ and σ11 = σ12 = 0; we have

σ(B)(x) =

 0 0

0 q̂


where q̂ is constant with respect to x. If q̂ is negative then the body is in compression.

For the problem of a plane with a crack (illustrated by component C in Figure 3.1), the

stresses at infinity are zero, but there are stresses acting on the crack surfaces lying on

x2 = 0. From the symmetry of the problem, for any point lying on x2 = 0, σ11 and σ22 are

the only non-zero components. Thus we have

σ(C)(x1) =

 σ̃11(x1) 0

0 σ̃22(x1)


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The stress of the combination of the above two cases (illustrated by component A in

Figure 3.1) for the points lying on x2 = 0 can then be represented as

σ(A)(x1) =

 σ̃11(x1) 0

0 q̂ + σ̃22(x1)

 .

The maximum of principle stress ahead of the CZ can be taken as σ̂(x̂, t̂) which is given by

σ̂(x̂, t̂) = q̂ + σ̃22(x̂, t̂). (3.5)

The formula for the stress component σ̃22(x̂, t̂) can be derived using [44] as follows. In

terms of the complex potentials, the stress components can be expressed as

σ̃22 − iσ̃12 = Φ(z) + Ω(z̄) + (z − z̄)Φ′(z) (3.6)

with Φ(z) and Ω(z) defined by

Φ(z) = Ω(z) =
1

2πi
√

(z + ĉ(t̂))(z − ĉ(t̂))

∫ ĉ(t̂)

−ĉ(t̂)

√
(ξ + ĉ(t̂))(ξ − ĉ(t̂))

ξ − z
p(ξ)dξ,

where z = x1 + ix2, ĉ(t̂) denotes half the length of the crack with the CZ, while p(x̂, t̂) is

given by

p(x̂, t̂) =

−q̂ when x̂ is on the crack excluding the CZ

σ̂(x̂, t̂)− q̂ when x̂ is on the CZ
(3.7)

Denoting z̄ as the complex conjugate of z, we have

Ω(z̄) =
1

2πi
√

(z̄ + ĉ(t̂))(z̄ − ĉ(t̂))

∫ ĉ(t̂)

−ĉ(t̂)

√
(ξ + ĉ(t̂))(ξ − ĉ(t̂))

ξ − z̄
p(ξ)dξ.

In our case, x2 = 0; so taking z = x1 = z̄, the last term (z − z̄)Φ′(z) vanishes and

Φ(z) = Φ(x1) = Ω(z̄) = Ω(x1).
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After making the simplifications, we see that the imaginary term of equation (3.6) vanishes

and we retrieve the following

σ̃22(x̂, t̂) =
1

π
√
x̂2 − ĉ2(t̂)

∫ ĉ(t̂)

−ĉ(t̂)

√
ĉ2(t̂)− ξ̂2

ξ̂ − x̂
p(ξ̂, t̂)dξ̂, |x̂| > ĉ(t̂).

Thus, we can rewrite equation (3.5) as

σ̂(x̂, t̂) =
1

π
√
x̂2 − ĉ2(t̂)

∫ ĉ(t̂)

−ĉ(t̂)

√
ĉ2(t̂)− ξ̂2

ξ̂ − x̂
p(ξ̂, t̂)dξ̂ + q̂, |x̂| > ĉ(t̂). (3.8)

Using equation (3.7), we can rewrite equation (3.8) as

σ̂(x̂, t̂) =
1

π
√
x̂2 − ĉ2(t̂)

∫ −â(t̂)

−ĉ(t̂)

√
ĉ2(t̂)− ξ̂2

ξ̂ − x̂
(σ̂(ξ̂, t̂)− q̂)dξ̂ +

∫ â(t̂)

−â(t̂)

√
ĉ2(t̂)− ξ̂2

ξ̂ − x̂
(−q̂)dξ̂

+

∫ ĉ(t̂)

â(t̂)

√
ĉ2(t̂)− ξ̂2

ξ̂ − x̂
(σ̂(ξ̂, t̂)− q̂)dξ̂

+ q̂ |x̂| > ĉ(t̂). (3.9)

The integrals with respect to ξ̂, where σ̂(ξ̂, t̂) does not appear in the integrand, can be

evaluated analytically, and equation (3.9) can then be rewritten as

σ̂(x̂, t̂) =
1

π
√
x̂2 − ĉ2(t̂)

q̂π(x̂−√x̂2 − ĉ2(t̂)

)
+

∫ −â(t̂)

−ĉ(t̂)

√
ĉ2(t̂)− ξ̂2

ξ̂ − x̂
σ̂(ξ̂, t̂)dξ̂

+

∫ ĉ(t̂)

â(t̂)

√
ĉ2(t̂)− ξ̂2

ξ̂ − x̂
σ̂(ξ̂, t̂)dξ̂

+ q̂ |x̂| > ĉ(t̂). (3.10)

Also, using the substitution u = −ξ̂, and noting that the stress, σ̂(x̂, τ̂), is symmetric about

the centre of the whole crack and so acts as an even function, we can combine the integrals

ranging from −ĉ(τ̂) to −â(t̂) and from â(t̂) to ĉ(t̂). Consequently, after simplifications,

equation (3.10) can be rewritten as

σ̂(x̂, t̂) =
x̂√

x̂2 − ĉ2(t̂)

q̂ − 2

π

∫ ĉ(t̂)

â(t̂)

√
ĉ2(t̂)− ξ̂2

x̂2 − ξ̂2
σ̂(ξ̂, t̂)dξ̂

 , |x̂| > ĉ(t̂). (3.11)
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3.3 Stress Intensity Factor

The essence of using CZ modelling of fracture is that it can remove the stress singularity

at the crack tip, see [19,33]. As one can see from (3.11), σ̂(x̂, t̂) generally has a square root

singularity as x̂ tends to the CZ tip ĉ. The stress intensity factor, K̂, at this singularity

can be obtained by multiplying the stress in equation (3.11) by
√
x̂− ĉ(t̂) and taking the

limit as x̂ tends to ĉ(t̂), this yields

K̂(t̂) =

√
ĉ(t̂)

2

q̂ − 2

π

∫ ĉ(t̂)

â(t̂)

σ̂(ξ̂, t̂)√
ĉ2(t̂)− ξ̂2

dξ̂

 . (3.12)

A sufficient condition for the normalised equivalent stress, Λ, to have no such singularity

at the CZ tip is that the stress σ̂ given by (3.11) does not have it either, while the necessary

condition for the latter is that the stress intensity factor, K̂, is zero there.

3.4 Normalisation

For simplicity, we will derive normalised forms of equations (3.4), (3.11) and (3.12). First,

we will normalise time using

t =
t̂

t̂∞
; (3.13)

and we will normalise the space coordinate and dimensions using

x =
x̂

â0

, a(t) =
â(t t̂∞)

â0

, c(t) =
ĉ(t t̂∞)

â0

. (3.14)

Thus, t, a(t), and c(t) denote the normalised time, the normalised crack length, and the

normalised CZ tip coordinate respectively. Here, â0 is the physical initial crack length.

Also, since the stress σ̂(x̂, t̂) depends on the external load q̂, we will use

σ(x, t) =
σ̂
(
x̂, t̂
)

q̂
=
σ̂(x â0, t t̂∞)

q̂
. (3.15)

48



After applying the normalisations given above, we arrive at the following normalised form

of equation (3.4).∫ t

tc(x)

σβ(x, τ)(t− τ)
β
b
−1dτ =

b

β
−
∫ tc(x)

0

σβ(x, τ)(t− τ)
β
b
−1dτ for a(t) ≤ |x| ≤ c(t).

Now, we will apply the same normalisation for the stress ahead of the crack tip. Us-

ing equations (3.13), (3.14), and (3.15) respectively, we arrive at the following form of

equation (3.11)

σ(x, t) =
x√

x2 − c2(t)

(
1− 2

π

∫ c(t)

a(t)

√
c2(t)− ξ2

x2 − ξ2
σ(ξ, t)dξ

)
for |x| > c(t).

For the stress intensity factor, we will also use equations (3.13), (3.14), and (3.15) and

denote

K(c, t) =
K̂(c â0, t t̂∞)

q̂
√
â0

;

this yields the following expression for the normalised stress intensity factor:

K(c(t), t) =

√
c(t)

2

(
1− 2

π

∫ c(t)

a(t)

σ(ξ, t)√
c2(t)− ξ2

dξ

)
.
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Chapter 4

Cohesive Zone Growth with a

Stationary Crack

In this chapter, we assume that a(t) = 1, i.e. the CZ propagates, while the crack does

not. The results of this problem have been published in [23,24,26]. In the previous chapter,

we obtained the following normalised principal equations for the considered problem:

(a) the condition on the normalised equivalent stress, Λ(σ(x), t) = 1 in the form∫ t

tc(x)

σβ(x, τ)(t− τ)
β
b
−1dτ =

b

β
−
∫ tc(x)

0

σβ(x, τ)(t− τ)
β
b
−1dτ, (4.1)

for a(t) ≤ |x| ≤ c(t), t > tc(x).

(b) the expression for the stress ahead of the CZ tip:

σ(x, t) =
x√

x2 − c2(t)

(
1− 2

π

∫ c(t)

a(t)

√
c2(t)− ξ2

x2 − ξ2
σ(ξ, t)dξ

)
for |x| > c(t); (4.2)

(c) the zero stress intensity factor condition, K(c(t), t) = 0, where

K(c(t), t) =

√
c(t)

2
−
√

2c(t)

π

∫ c(t)

a(t)

σ(ξ, t)√
c2(t)− ξ2

dξ. (4.3)
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4.1 Numerical Method

To solve the system of equations given by (4.1) and (4.3) we will introduce a numerical

algorithm which makes wide use of: (i) the analytical solution of an Abel-type integral

equation; (ii) linear interpolation; and (iii) the secant method. We will use the next 3

subsections to briefly discuss these techniques.

Solution of a Generealised Abel-Type Integral Equation

Stated below is an important theorem regarding the exact solution of an Abel-type integral

equation, see for e.g. [21, Theorem 1.2.1].

Theorem 1 Let T0, T1 ∈ R. If f(t) is absolutely continuous on [T0, T1], then the Abel type

integral equation ∫ t

T0

g(τ)(t− τ)−λdτ = f(t), t ∈ [T0, T1], λ ∈ (0, 1)

has a unique solution g in L1(T0, T1), which is given by the formula

g(τ) =
sin (πλ)

π

d

dτ

∫ τ

T0

f(t)

(τ − t)1−λdt. (4.4)

Integrating by parts, expression (4.4) can be written as

g(τ) =
sin (πλ)

π

(
f(T0)(τ − T0)λ−1 +

∫ τ

T0

f ′(t)(τ − t)λ−1dt

)
. (4.5)

Linear Interpolation

A continuous function y(x) can be approximated using linear interpolation

y(x) ≈ y(xi) +
y(xi+1)− y(xi)

xi+1 − xi
(x− xi), x ∈ [xi, xi+1].

This can particularly be used to approximate functions participating in integrands.
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The Secant Method

The secant method is a root finding algorithm. This method requires two initial approx-

imations. As an example, let’s assume we have coordinates (x1, y1) and (x2, y2). In the

secant method, after calculating the next approximation, x3, using

x3 =
y2x1 − y1x2

y2 − y1

we allocate x1 = x2 and x2 = x3 to be used for the next iteration. A numerical method

which is more stable than the secant method is the regula falsi method, see [3, 18]. This

method is a combination of the secant method and the bisection method. In the regula

falsi method, we choose the next 2 approximation x1 and x2 such that, when possible, the

function values at these 2 points are different in sign. Although, in many occasions, this

method takes a longer time to converge than the secant method, the advantage is that the

range [x1, x2] will always span the root so convergence is guaranteed.

4.1.1 Algorithm

Introduce a time mesh ti = ih, i = 0, 1, 2, ..., n, where h > 0 is the time step size. In what

follows, we will use ci to denote the numerical approximation of c(ti), i.e. ci ≈ c(ti), and

similarly for other variables.

At t = t0 = 0, the normalised CZ length is zero, i.e., c0 = 1, hence from equation (4.2),

the stress distribution ahead of the crack is given by

x√
x2 − c2(t)

.

For the following time steps t = ti, we apply the algorithm given below. The details of each

item in the algorithm will follow.

1. Take 2 initial approximations for ci: (ci)1 and (ci)2.
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2. For each approximation of ci, calculate the stress at the CZ tip points at the preceding

time instants, σ(ci, tj) for j = 0, 1, ..., i− 1, using equation (4.2).

3. Calculate the stress in the CZ, σ(ck, ti) k = 1, ..., i− 1 from (4.1), where tc(ck) = tk;

as well as the stress at the CZ tip σ(ci, ti).

4. Now, for each of these 2 approximations, compute the corresponding stress intensity

factors K((ci)1, ti) and K((ci)2, ti) from (4.3).

5. Compute the next approximation for ci using

(ci)3 =
K((ci)2, ti)(ci)1 −K((ci)1, ti)(ci)2

K((ci)2, ti)−K((ci)1, ti)
.

6. If |(ci)3− (ci)1| < ε or |(ci)3− (ci)2| < ε allocate ci = (ci)3 and go to the step t = ti+1.

Otherwise go to the next item.

7. Take the new (ci)1 as former (ci)1 or (ci)2 (depending on the signs of the computed

stress intensity factors) and new (ci)2 as (ci)3 and return to item 2.

Using this algorithm, we obtain the behaviour of the crack length as well as the stress

distribution in the CZ.

The details of items 2, 3, and 4 are given below.

Item 2

For the integral in equation (4.2), we piece-wise linearly interpolate σ(ξ, tj), a ≤ ξ ≤ c(tj),

over σ(ck, tj), k = 0, ..., i− 1, for integration. We have

σ(ci, tj) =
ci√
c2
i − c2

j

1− 2

π

j∑
k=1

∫ ck

ck−1

√
c2
j − ξ2

c2
i − ξ2

σ(ξ, tj)dξ


where

σ(ξ, tj) ≈ σ(ck−1, tj) +
σ(ck, tj)− σ(ck−1, tj)

ck − ck−1

(ξ − ck−1), ck−1 ≤ ξ ≤ ck.
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So, we have:

σ(ci, tj) =
ci√
c2
i − c2

j

(
1− 2

π

j∑
k=1

Sk

)
where

Sk =

(
σ(ck−1, tj)ck − σ(ck, tj)ck−1

ck − ck−1

)
I1 +

(
σ(ck, tj)− σ(ck−1, tj)

ck − ck−1

)
I2

where

I1 =

∫ ck

ck−1

√
c2
j − ξ2

ξ2 − c2
i

dξ and I2 =

∫ ck

ck−1

ξ
√
c2
j − ξ2

ξ2 − c2
i

dξ.

Evaluating the integrals, we have

I1 = arctan

 ck√
c2
j − c2

k

− arctan

 ck−1√
c2
j − c2

k−1


+

√
c2
i − c2

j

ci

arctan

ck−1

√
c2
i − c2

j

ci
√
c2
j − c2

k−1

− arctan

ck
√
c2
i − c2

j

ci
√
c2
j − c2

k

 ,

I2 =
√
c2
j − c2

k−1 −
√
c2
j − c2

k +
√
c2
i − c2

j

arctan


√
c2
j − c2

k√
c2
i − c2

j

− arctan


√
c2
j − c2

k−1√
c2
i − c2

j


when k 6= j and

I1 =

√
c2
i − c2

k

ci
arctan

ck−1

√
c2
i − c2

k

ci

√
c2
k − c2

k−1

− arctan

 ck−1√
c2
k − c2

k−1

− π

2ci

(√
c2
i − c2

k − ci
)
,

I2 =
√
c2
j − c2

k−1 −
√
c2
i − c2

j arctan


√
c2
j − c2

k−1√
c2
i − c2

j


when k = j.

Item 3

To obtain the stress at the CZ tip, we solve the integral equation (4.1) for σβ(ci, ti) by

piecewise linearly interpolating σβ(ci, τ) for τ between t0 and ti. We have
i∑

j=1

∫ tj

tj−1

σβ(ci, τ)(ti − τ)
β
b
−1dτ =

b

β
. (4.6)
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We use the linear interpolant

σβ(ci, τ) ≈ σβ(ci, tj−1) +
σβ(ci, tj)− σβ(ci, tj−1)

tj − tj−1

(τ − tj−1), tj−1 ≤ τ ≤ tj.

Substituting these interpolation formulas into (4.6) and integrating the result, we have

σβ(ci, ti) =

[
b

β
−

i−1∑
j=1

Gj

]
β(β + b)

b2
(ti − ti−1)−

β
b − β

b
σβ(ci, ti−1),

where

Gj = σβ(ci, tj−1)

(
b

β
(ti − tj−1)

β
b − b

β
(ti − tj)

β
b

)
+

(
σβ(ci, tj−1)− σβ(ci, tj)

tj−1 − tj

)(
b

β
(tj−1 − tj)(ti − tj)

β
b

− b2

β(β + b)
(ti − tj)

β
b

+1 +
b2

β(β + b)
(ti − tj−1)

β
b

+1

)
.

To obtain the stress in the CZ, we solve the integral equation (4.1) for σβ(x, ti) for x = ck,

k = 0, 1, 2, 3, ..., i− 1 where tc(x) = tk. For the integral on the right hand side, σβ(x, τ) is

piecewise linearly interpolated between t0 and tc(x) = tk. Using the analytical solution of

a generalised Abel-type integral equation, we arrive at the following solution

σβ(ck, ti) = − 1

π
sin

(
πβ

b

)[ k∑
l=1

σβ(ck, tl−1) (V (tl−1, ti, tk)− V (tl, ti, tk)) +

b

β

(
σβ(ck, tl)− σβ(ck, tl−1)

tl − tl−1

)(
W (tl−1, ti, tk)−W (tl, ti, tk)−

β

b
(tl − tl−1)V (tl, ti, tk)

)]
(4.7)

where

V (y, ti, tk) =

∫ ti

tk

(τ − y)
β
b
−1

(ti − τ)
β
b

dτ and W (y, ti, tk) =

∫ ti

tk

(τ − y)
β
b

(ti − τ)
β
b

dτ.

Evaluating the integrals yields

V (y, ti, tk) = π csc

(
πβ

b

)
− b

β

(
tk − y
ti − y

)β
b

2F1

[
β

b
,
β

b
; 1 +

β

b
;
tk − y
ti − y

]
, (4.8)

and

W (y, ti, tk) =
β

b
π csc

(
πβ

b

)
(ti−y)− b

b+ β
(tk−y)1+β

b (ti−y)−
β
b 2F1

[
1 +

β

b
,
β

b
; 2 +

β

b
;
tk − y
ti − y

]
(4.9)

where 2F1 is the Gauss hypergeometric function, see e.g. [31, Section 1.6].
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Item 4

Piecewise linearly interpolating σ(ξ, ti) over already calculated σ(ck, ti), k = 0, ..., i− 1 and

σ(ci, ti), calculate K(ti, ci) from (4.3). This gives

K(ti, ci) =

√
ci√
2
−
√

2ci
π

i−2∑
k=0

∫ ck+1

ck

1√
c2
i − ξ2

σ(ξ, ti)dξ −
√

2ci
π

∫ ci

ci−1

1√
c2
i − ξ2

σ(ξ, ti)dξ.

(4.10)

For the first integral we have

σ(ξ, ti) ≈ σ(ck, ti) +
σ(ck+1, ti)− σ(ck, ti)

ck+1 − ck
(ξ − ck), ck ≤ ξ ≤ ck+1

and for the second integral, we have a similar interpolant but with ck replaced with ci−1

and ck+1 replaced with ci. Substituting these linear interpolation formulas into (4.10) and

integrating the results, we have

K(ti, ci) =

√
ci√
2
−
√

2ci
π

i−2∑
k=0

[
σ(ck, ti)

(
arcsin

(
ck+1

ci

)
− arcsin

(
ck
ci

))
+
σ(ck+1, ti)− σ(ck, ti)

ck+1 − ck

(√
c2
i − c2

k −
√
c2
i − c2

k+1 − ck arcsin

(
ck+1

ci

)
+ ck arcsin

(
ck
ci

))]
−
√

2ci
π

[
σ(ci−1, ti)

(
π

2
− arcsin

(
ci−1

ci

))
+
σ(ci, ti)− σ(ci−1, ti)

ci − ci−1

(√
c2
i − c2

i−1 − ci−1
π

2
+ ci−1 arcsin

(
ci−1

ci

))]
. (4.11)

4.1.2 Analysis of Stress in the Cohesive Zone

We denote the right hand side of equation (4.1) by f(x, t). Hence,

f(x, t) =
b

β
−
∫ tc(x)

0

σβ(x, τ)(t− τ)
β
b
−1dτ.

Note that since the condition Λ(σ(x, t); t) = 1 must be satisfied, this means that f(c(tk), tc) =

0. Therefore, in our case, using the form given in equation (4.5) for the solution to the

integral equation (4.1) is more accurate than using the form in equation (4.4) since the
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integral in the right hand side is found numerically by interpolation, but we know that

f(c(tk), tc) is analytically zero.

We wish to analyse the continuity of the solution for σ(x, t) as t→ tc(x) (we may use tc

to denote tc(x)). We expect that the stress approaches a finite value. From (4.7), we have

the following

lim
t→tc

σβ(x, t) = lim
t→tc
− 1

π
sin

(
πβ

b

)[ c∑
l=1

σβ(x, tl−1) (V (tl−1, t, tc)− V (tl, t, tc))

+
b

β

(
σβ(x, tl)− σβ(x, tl−1)

tl − tl−1

)(
W (tl−1, t,tc)−W (tl, t, tc)−

β

b
(tl − tl−1)V (tl, t, tc)

)]
.

(4.12)

In the above limit, only V (tl, t, tc) and W (tl, t, tc) depend on t. We compute the limits

lim
t→tc

V (tl, t, tc) =


0 for l < c

π csc

(
πβ

b

)
when l = c

and

lim
t→tc

W (tl, t, tc) = 0 ∀ l ≤ c

see Appendix A for the intermediate steps of obtaining the above limits.

Consequently, in equation (4.12), the summation over l for l < c will be zero but the

non-zero V (tl, t, tc) for l = c yields the following

lim
t→tc

σβ(x, t) = − 1

π
sin

(
πβ

b

)[
−π csc

(
πβ

b

)
σβ(x, tc−1)

+
b

β
· σ

β(x, tc)− σβ(x, tc−1)

tc − tc−1

(
β

b
(tc − tc−1)π csc

(
πβ

b

))]
= σβ(x, tc).

Therefore, lim
t→tc

σβ(x, ti) = σβ(x, tc) ∀ b > β.

The computed integrals are in terms of the Gauss hypergeometric function 2F1. MAT-

LAB is rather slow while computing hypergeometric functions. Therefore, we will often
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look at cases of the parameters β and b such that the resulting hypergeometric functions

can be represented in simplified analytical forms. Such cases are β =
b

2
, β =

b

4
, and β =

b

8
.

Now, we will give the representation of the solution in equation (4.7) for the 3 cases:

β =
b

2
, β =

b

4
, and β =

b

8
. Excluding the intermediate steps, the parameters V and W in

equation (4.7), have the following forms.

For β =
b

2
:

V (y, ti, tk) =
π

2
+ arcsin

(
1 +

2(y − tk)
ti − y

)
,

W (y, ti, tk) =
√

(ti − tk)(tk − t) +
π

4
(ti − y) +

1

2
(ti − y) arcsin

(
1 +

2(y − tk)
ti − y

)
.

For β =
b

4
:

V (y, ti, tk) = π
√

2− 4

(
tk − y
ti − y

)1/4

2F1

[
1

4
,
1

4
;
5

4
;
tk − y
ti − y

]
,

W (y, ti, tk) = (tk−y)1/4(ti−tk)3/4 +
π
√

2

4
(ti−y)−(tk−y)1/4(ti−y)3/4

2F1

[
1

4
,
1

4
;
5

4
;
tk − y
ti − y

]
.

However, 2F1

[
1

4
,
1

4
;
5

4
; z

]
can be represented analytically using

2F1

[
1

4
,
1

4
;
5

4
; z

]
=

ln
(

1 +
√

2z1/4

(1−z)1/4 +
√
z√

1−z

)
− ln

(
1−

√
2z1/4

(1−z)1/4 +
√
z√

1−z

)
4
√

2z1/4

+
2 arctan

(
1− z1/4√

2(1−z)1/4 ,−
z1/4√

2(1−z)1/4

)
+ 2 arctan

(
1 + z1/4√

2(1−z)1/4 ,−
z1/4√

2(1−z)1/4

)
−4
√

2z1/4
(4.13)

see [63].

For β =
b

8
:

V (y, ti, tk) = π csc
(π

8

)
− 8

(
tk − y
ti − y

)1/8

2F1

[
1

8
,
1

8
;
9

8
;
tk − y
ti − y

]
,
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W (y, ti, tk) =

(
tk − y
ti − tk

) 1
8

(ti−tk)+
π

8
(ti−y) csc

(π
8

)
−(ti−y)7/8(tk−y)1/8

2F1

[
1

8
,
1

8
;
9

8
;
tk − y
ti − y

]
.

Although, 2F1

[
1

8
,
1

8
;
9

8
; z

]
cannot directly be represented analytically by a formula, we can

use the Pfaff hypergeometric transformation given by

2F1

[
1

8
,
1

8
;
9

8
; z

]
= (1− z)−1/8

2F1

[
1

8
, 1;

9

8
;

z

z − 1

]

see [31]; and 2F1

[
1

8
, 1;

9

8
;

z

z − 1

]
can be computed analytically using the following formula

2F1

[
1

8
, 1;

9

8
; z

]
=

1

8z1/8

(
2 arctan

(
z1/8

)
+
√

2 arctan
(

1− z1/4,
√

2z1/8
)
− ln

(
1− z1/8

)
+ ln

(
1 + z1/8

)
+
− ln

(
1−
√

2z1/8 + z1/4
)

+ ln
(
1 +
√

2z1/8 + z1/4
)

√
2

)
(4.14)

see [63].

4.2 Numerical Solution

Although the exact solution is unknown, we can judge the suitability of the algorithm by

inspecting the solution as the number of points in the mesh doubles. This inspection is

given in Appendix B. However, a more accurate and elegant way of checking convergence

of the solutions is by looking at the numerical convergence rate considered in Chapter 8.

The solutions will be presented for the cases b = 4, and b = 1.5 with β =
b

2
, β =

b

4
, and

β =
b

8
for each case. In the following section, we will present some of the solutions obtained

after implementing the algorithm. As well as the evolution of the CZ tip coordinate in time,

we are also interested in showing how the stress, at a specific point, is behaving as a function

of time. We expect the stress, at a particular point in space, to grow monotonically before

this point becomes part of the CZ, and to decrease monotonically inside the CZ. To analyse

the behaviour of the stress, we will take a point, say c(t∗) for t∗ = 0.6, and plot the values
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of σ before the point became part of the CZ (before t = 0.6), at the CZ tip (at t = 0.6)

and when it is inside the CZ (after t = 0.6).

In Figures 4.1-4.4, we present graphs of c(t) and σ(c(t∗), t) vs. time for three cases of β

while using a time step of h =
1

800
.
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Figure 4.1: CZ tip coordinate vs. time for b = 4.
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Figure 4.2: CZ tip coordinate vs. time for b = 1.5.

We see that ahead of the CZ tip, the rate of stress increase with time is greater as we
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take higher values for β and, after the CZ tip, the rate of stress decrease with time is greater

as we take higher values of β. We can see that we have monotonic increase of the stress

before the point reaches the CZ tip, and we also have monotonic decrease of the stress after

the CZ tip.
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Figure 4.3: σ(c(t∗), t) for b = 4 at t∗ = 0.6.
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Figure 4.4: σ(c(t∗), t) for b = 1.5 at t∗ = 0.6.
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Chapter 5

The Crack Tip Opening

As in the previous sections, consider a crack of length 2a with a CZ length l = c − a

at each end of the crack. We want to find the crack opening, that is the displacement

jump over the crack shores. We will first consider the case when the bulk of the material

is linearly elastic and then convert the obtained solution to the case of linear visco-elastic

materials using the so-called Volterra principle. We denote the crack opening by û and the

displacement jump at the crack tip (the crack tip opening) by δ̂, see Figure 5.1. We will

use δe and δv to denote the elastic and viscoelastic crack tip opening respectively.

Figure 5.1: Crack with CZs, [38].
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5.1 Linear Elastic Material

5.1.1 Formulation

The crack opening is calculated in a similar manner as done for the Dugdale model, see

subsection 2.3.1, and is given by the following formula

[ûe](x̂, t̂) = [û(q̂)
e ](x̂, t̂) + [û(σ̂)

e ](x̂, t̂)]

where

[û(q̂)
e ](x̂, t̂) =

∫ ĉ(t̂)

−ĉ(t̂)
q̂v̂2(x̂, ξ̂; ĉ(t̂))dξ̂ (5.1)

and

[û(σ̂)
e ](x̂, t̂) =

∫ −â(t̂)

−ĉ(t̂)
−σ̂(ξ̂, t̂)v̂2(x̂, ξ̂, ĉ(t̂))dξ̂ +

∫ ĉ(t̂)

â(t̂)

−σ̂(ξ̂, t̂)v̂2(x̂, ξ̂, ĉ(t̂))dξ̂. (5.2)

In the above expressions, v̂2(x̂, ξ̂; ĉ(t̂)) is given by the following formula

v̂2(x̂, ξ̂; ĉ(t̂)) = −κ+ 1

2πµ
Γ̃(x̂, ξ̂; ĉ(t̂)) (5.3)

where

Γ̃(x̂, ξ̂; ĉ(t̂)) = ln

 ĉ2(t̂)− x̂ξ̂ −
√

(ĉ2(t̂)− x̂2)(ĉ2(t̂)− ξ̂2)

ĉ2(t̂)− x̂ξ̂ +

√
(ĉ2(t̂)− x̂2)(ĉ2(t̂)− ξ̂2)

 (5.4)

see [38].

After substituting the expression (5.3) into (5.1) and (5.2), we have the following results

[û(q̂)
e ](x̂, t̂) =

q̂(1 + κ)

2µ

√
ĉ2(t̂)− x̂2,

[û(σ̂)
e ](x̂, t̂) =

κ+ 1

2πµ

(∫ −â(t̂)

−ĉ(t̂)
σ̂(ξ̂, t̂)Γ̃(x̂, ξ̂; ĉ(t̂))dξ̂ +

∫ ĉ(t̂)

â(t̂)

σ̂(ξ̂, t̂)Γ̃(x̂, ξ̂; ĉ(t̂))dξ̂

)
.

Combining the integrals ranging from −ĉ(t̂) to −â(t̂) and â(t̂) to ĉ(t̂), [û(σ̂)
e ](x̂, t̂) can be

written as

[û(σ̂)
e ](x̂, t̂) =

κ+ 1

2πµ

(∫ ĉ(t̂)

â(t̂)

σ̂(ξ̂, t̂)Γ(x̂, ξ̂; ĉ(t̂))dξ̂

)
,
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where

Γ(x̂, ξ̂; ĉ(t̂)) = ln

2ĉ2(t̂)− ξ̂2 − x̂2 − 2

√
(ĉ2(t̂)− x̂2)(ĉ2(t̂)− ξ̂2)

2ĉ2(t̂)− ξ̂2 − x̂2 + 2

√
(ĉ2(t̂)− x̂2)(ĉ2(t̂)− ξ̂2)

.
So, after combining the expressions for [û(q̂)

e ](x̂, t̂) and [û(σ̂)
e ](x̂, t̂), we have the following

formula for the crack opening

[ûe](x̂, t̂) =
1 + κ

2µ

(
q̂

√
ĉ2(t̂)− x̂2 +

1

π

∫ ĉ(t̂)

â(t̂)

σ̂(ξ̂, t̂)Γ(x̂, ξ̂; ĉ(t̂))dξ̂

)
.

The crack tip opening occurs at x = a(t) and is therefore given by

δ̂e(t̂) := [ûe](â(t̂), t̂) =
1 + κ

2µ

(
q̂

√
ĉ2(t̂)− â2(t̂) +

1

π

∫ ĉ(t̂)

â(t̂)

σ̂(ξ̂, t̂)Γ(â(t̂), ξ̂; ĉ(t̂))dξ̂

)
. (5.5)

Using the space, time, and stress normalisation given in subsection 3.4 as well as the

following normalisation

[ue](x, t) =
8µ [ûe]

(
x̂ â0, tt̂∞

)
q̂â0(1 + κ)

, δe(t) =
8µ δ̂e(t t̂∞)

q̂â0(1 + κ)
, (5.6)

we have the following formulae for the normalised crack opening and the normalised crack

tip opening respectively

[ue](x; t) =
4

π

(
π
√
c2(t)− x2 +

∫ c(t)

a(t)

σ(ξ, t)Γ(x, ξ; c(t))dξ

)
, (5.7)

δe(t) =
4

π

(
π
√
c(t)2 − a(t)2 +

∫ c(t)

a(t)

σ(ξ, t)Γ(a(t), ξ; c(t))dξ

)
. (5.8)

In the previous chapter, we considered discrete time steps and found c(ti) and σ(c(tk), ti).

These results will be used when numerically computing the crack tip opening. To evaluate

the crack tip opening at each time step ti, using equation (5.8), we linearly interpolate

σ(ξ, ti) between c(tk) and c(tk+1) for k = 0, 1, ...i− 1 and i = 1, ..., n. To this end, at time

step ti, we can rewrite the integral in (5.8) as∫ ci

ai

σ(ξ, ti)Γ(ai, ξ; ci)dξ =
i−1∑
k=0

(
σ(ck, ti)ck+1 − σ(ck+1, ti)ck

ck+1 − ck
A+

σ(ck+1, ti)− σ(ck, ti)

ck+1 − ck
B

)
(5.9)
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where

A =

∫ ck+1

ck

ln

[
2c2
i − ξ2 − a2

i − 2
√

(c2
i − a2

i )(c
2
i − ξ2)

2c2
i − ξ2 − a2

i + 2
√

(c2
i − a2

i )(c
2
i − ξ2)

]
dξ (5.10)

and

B =

∫ ck+1

ck

ξ ln

[
2c2
i − ξ2 − a2

i − 2
√

(c2
i − a2

i )(c
2
i − ξ2)

2c2
i − ξ2 − a2

i + 2
√

(c2
i − a2

i )(c
2
i − ξ2)

]
dξ. (5.11)

Since we are now looking at the stationary crack stage, we will replace ai with a. After

integration, we have

A = −4
√
c2
i − a2 arctan

ck√c2
i − c2

k − ck+1

√
c2
i − c2

k+1

c2
k + c2

k+1 − c2
i

+ (a− ck)Γ̃(a, ck; ci)

− (a+ ck)Γ̃(a,−ck; ci)− (a− ck+1)Γ̃(a, ck+1; ci) + (a+ ck+1)Γ̃(a,−ck+1; ci)

and

B = 2
√

(c2
i − c2

k+1)(c2
i − c2

0)− 2
√

(c2
i − c2

k)(c
2
i − c2

0)− 1

2
(c2
k − a2)Γ̃(a, ck; ci)

− 1

2
(c2
k − a2)Γ̃(a,−ck; ci) +

1

2
(c2
k+1 − a2)Γ̃(a, ck+1; ci) +

1

2
(c2
k+1 − a2)Γ̃(a,−ck+1; ci).

Using different forms and simplifications of the above results for A and B for the special

cases when k + 1 = i or k = 0, we have the following results.

When ck = a and ck+1 = ci

A = 4a ln
[ci
a

]
− 4
√
c2
i − a2 arccos

(
a

ci

)
,

B = 2(a2 − c2
i ).

When ck = a and ck+1 6= ci

A = 4a ln
(ci
a

)
− 4
√
c2
i − a2 arctan

a√c2
i − a2 − ck+1

√
c2
i − c2

k+1

a2 − c2
i + c2

k+1


− (a2 − c2

k+1)Γ̃(a, ck+1; ci) + (a2 + c2
k+1)Γ̃(a,−ck+1; ci),

B = 2a2−2c2
i+2

√
(c2
i − c2

k+1)(c2
i − a2)−1

2
(a2−c2

k+1)
(

Γ̃(a, ck+1; ci) + Γ̃(a,−ck+1; ci)
)
.
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When ck+1 = ci and ck 6= a

A = −4
√
c2
i − a2 arccos

(
ck
ci

)
+ (a− ck)Γ̃(a, ck; ci)− (a+ ck)Γ̃(a,−ck; ci),

B = −2
√

(c2
i − a2)(c2

i − c2
k)−

1

2
(c2
k − a2)

(
Γ̃(a, ck; ci)− Γ̃(a,−ck; ci)

)
.

where Γ̃(x, ξ; c) is given in equation (5.4). For a given mesh, A and B can be calculated

and substituted into equation (5.9) and consequently this will be substituted into (5.8) to

give the normalised crack tip opening δe.

5.1.2 Numerical Solution

Using a time mesh consisting of equidistantly spaced nodes with step size h =
1

800
, we

have the following graphs.
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Figure 5.2: Crack tip opening δe vs. time

t for b = 4.
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Figure 5.3: Crack tip opening δe vs. time

t for b = 1.5.
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5.2 Linear Viscoelastic Material

5.2.1 Formulation

To obtain the crack tip opening in the viscoelastic case, we will implement the so-called

Volterra principle, according to which we have to replace the elastic constants µ and ν in

the elastic solution by the corresponding viscoelastic operators, to arrive at the viscoelastic

solution. Although this approach does not always bring a viscoelastic solution for the prob-

lems with moving boundaries, it is possible to show, see [52], that this approach leads to

a viscoelastic solution for the plane symmetric problem with a straight propagating crack.

This means that for the viscoelastic problem we can directly use the results by Muskhe-

lishvili, see [44], for the stress representation ahead of the CZ tip given in equation (4.2)

since they do not include the elastic constants at all.

For simplicity, we will consider the viscoelastic material with constant (purely elastic)

Poisson’s ratio ν (and thus the parameter κ will also remain constant). Then, to obtain

the crack opening in the viscoelastic case, we have to replace
1

µ
in (5.5) by the second kind

Volterra integral operator µ−1 defined by

(
µ−1σ̂

) (
t̂
)

=
σ̂
(
t̂
)

µ
−
∫ t̂

0

J̇
(
t̂− τ̂

)
σ̂ (τ̂) dτ̂

To this end, the crack opening in the viscoelastic case can be computed using

δ̂v
(
t̂
)

=
(
µ−1µδ̂e

) (
t̂
)

=

(
δ̂e
(
t̂
)
− µ

∫ t̂

0

J̇
(
t̂− τ̂

)
δ̂e (τ̂) dτ̂

)
. (5.12)

In our case, we will use the creep function of a standard linear solid, we have

J
(
t̂− τ̂

)
=

1

E0

+
1

E1

(
1− e−

1
θ (t̂−τ̂)

)
,

and so

J̇
(
t̂− τ̂

)
= −1

η
e−

1
θ (t̂−τ̂)
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where θ and η = E1θ denote the relaxation time and viscosity respectively. So, equa-

tion (5.12) becomes

δ̂v
(
t̂
)

= δ̂e
(
t̂
)

+
µ

η

∫ t̂

0

e−
1
θ (t̂−τ̂)δ̂e (τ̂) dτ̂ . (5.13)

We will use the same normalisations given in subsection 3.4 to normalise space, time,

and stress. Furthermore, similarly to equation (5.6), we will normalise the viscoelastic

crack tip opening using

δv(t) =
8µδ̃v (tt∞)

q̂â0 (1 + κ)
. (5.14)

Consequently, the normalised crack tip opening for the viscoelastic case is given by

δv(t) = δe(t) +m

∫ t

0

e−
(t−τ)
θ δe(τ)dτ (5.15)

where m =
E0t̂∞
η

and θ =
θ̂

t̂∞
are dimensionless.

For a time mesh with nodes ti, δv(t) will be evaluated by piecewise linearly interpolating

δe(τ) between t0 and ti. For k = 1, 2, ..., i, we have

δe(τ) ≈ δe(tk)− δe(tk−1)

tk − tk−1

τ +
tkδe(tk−1)− tk−1δe(tk)

tk − tk−1

.

Then, equation (5.15) can be approximated as

δv(ti) ≈ δe(ti) +m
i∑

k=1

∫ tk

tk−1

e−
(ti−τ)
θ δe(τ)dτ.

Substituting the interpolant into the integral, and integrating the result yields

δv(ti) = δe(ti) +m

i∑
k=1

Hk

where

Hk = e−
ti
θ

((
e
tk−1
θ − e

tk
θ

)(δe(tk)− δe(tk−1)

tk − tk−1

)
+ δe(tk)e

tk
θ − δe(tk−1)e

tk−1
θ

)
.
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5.2.2 Reference Data for PMMA

We will use PMMA as a reference material in our calculations. The table below demon-

strates the static creep rupture time under tensile stress for PMMA at a temperature of

22.5◦C. This experimental data was reported in [37].

Stress (MPa) 40 45 50 55 60.34

Time (hrs) 998 110.6 18.3 2.47 0.51

Table 5.1: Experimental results for PMMA.

Fitting these values into the power type relationship

t̂∞(σ̂) =

(
σ̂

σ0

)−b
,

we find that

b ≈ 18.5 and σ0 ≈ 58.1MPa hr1/b.

Taking the applied load as q̂ = 50 MPa, we have

t∞ =

(
50

58.1

)−18.5

= 16.08 hrs.

With a relaxation time of θ̂ = 5.8 · 104 s, we arrive at the following normalised relaxation

time

θ =
θ̂

t̂∞
≈ 1.

PMMA has a Poisson ratio of ν = 0.35, modulus of elasticity of E0 = 3100 MPa, and

viscosity of the same order as η = 3.5 · 107 MPa see e.g. [30,35,64]. From this information,

we can deduce that the shear modulus is given by µ = 1148 MPa, and this gives

m =
E0t̂∞
η
≈ 5.

69



5.2.3 Numerical Solution

As in the case of an elastic material, we will use a mesh with step size h =
1

800
to obtain

the solutions. We will now present the graphs of the elastic crack tip opening and the

viscoelastic crack tip opening on the same figure for comparison. We can see that as β

becomes larger, the crack tip opening increases more rapidly with time.
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Figure 5.4: Crack opening vs. time for b = 4.
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Figure 5.5: Crack opening vs. time for b = 1.5.
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Chapter 6

Cohesive Zone Growth with a

Propagating Crack

We have so far assumed that the crack is stationary and only the CZ is growing ahead

of the crack. However, at some point in time, the crack will start to grow with the CZ still

propagating ahead of the crack. The results of this model problem have been published

in [24,26].

6.1 Crack Growth Criterion

As mentioned in section 2.2, the crack will start to propagate when the crack tip opening δ̂

reaches a critical value δ̂c. We will use the experimentally found value of δ̂c = 0.0016 mm,

for PMMA, see [17]. Using the normalisations given in equation (5.6), in the case of plane

strain, the normalised critical crack tip opening is

δc ≈ 1.13
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where we have used a constant external load with magnitude q̂ = 50MPa and an initial

crack of length â0 = 0.1 mm. The time instant, when the crack tip opening reaches a

critical value, will be referred to as the fracture delay time and denoted by t̂d, where td

corresponds to the normalised delay time. Given below is a closer look at the graphs given

in Figures 5.4-5.5 in the neighbourhood of the critical crack tip opening displacement.
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Figure 6.1: Crack tip opening for b = 4

(elastic).
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Figure 6.2: Crack tip opening for b = 1.5

(elastic).
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Figure 6.3: Crack tip opening for b = 4

(viscoelastic).
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Figure 6.4: Crack tip opening for b = 1.5

(viscoelastic).

In both cases, b = 4 and b = 1.5, as β decreases, the delay time td increases.
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As in the DLP model, we assume that the crack begins to grow when the crack tip

opening δ(t) reaches the critical value δc. During the crack propagation stage, the crack

tip opening satisfies equation

δe(t) = δc, t ≥ td (6.1)

for the purely elastic case; and

δv(t) = δc, t ≥ td (6.2)

for the viscoelastic case. In the crack propagation stage, the crack length a(t) varies with

time and is no longer a constant value. The next section will explain the algorithm used

to study how the crack length and CZ length evolve with time.

6.2 Numerical Method

Taking for example the elastic case with h =
1

500
, b = 4 and β = 2, we have the following

values for the crack tip opening

i 0 1 2 3 4

ti 0 0.002 0.004 0.006 0.008

ci 1 1.05545 1.0848 1.1073 1.1264

δe 0 0.7377 0.9423 1.0625 1.1543

Table 6.1: Solutions using a uniform time mesh.

It is evident that the crack begins to grow before the 4th time step t4 = 0.008. In order to

have more time steps before the delay time, we need to refine the mesh. The crack length

a is equal to 1 for all steps t ≤ td, and after this point in time, the crack begins to grow.

The first aim in the crack propagation stage is to find the delay time, td. This is

obtained by solving equations (6.1) or (6.2) using the secant method, while a(td) = 1; the
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corresponding value of c(td) is obtained by setting the stress intensity factor to zero and

applying secant iterations as explained in Section 4.1.1.

To calculate the crack length and the CZ length at t > td, we use a uniform time mesh

with time steps ti = td+ i ·h, where h is the same step size used during the stationary crack

stage. We then implement an iterative method to solve equation (6.1) (in the elastic case)

or (6.2) (in the visco-elastic case) for a(ti). To this end, we need c(ti) at each iteration,

and this is obtained by setting the stress intensity factor to zero. Thus the equations which

form the system to be solved are

(a) The condition Λ(σ(x), t) = 1∫ t

tc(x)

σβ(x, τ)(t− τ)
β
b
−1dτ =

b

β
−
∫ tc(x)

0

σβ(x, τ)(t− τ)
β
b
−1dτ, (6.3)

for a(t) ≤ |x| ≤ c(t), t > tc(x);

(b) the stress ahead of the crack tip:

σ(x, t) =
x√

x2 − c2(t)

(
1− 2

π

∫ c(t)

a(t)

√
c2(t)− ξ2

x2 − ξ2
σ(ξ, t)dξ

)
for |x| > c(t); (6.4)

(c) the zero stress intensity factor

K(t, a(t), c(t)) =

√
c(t)

2
−
√

2c(t)

π

∫ c(t)

a(t)

σ(ξ, t)√
c2(t)− ξ2

dξ = 0; (6.5)

(d) setting the crack tip opening to the critical value

U(t, a(t), c(t)) = δe(t)− δc = 0 for the elastic case

U(t, a(t), c(t)) = δv(t)− δc = 0 for the viscoelastic case.

We will now go through the details of the method used for finding the length of the crack

with respect to time, and the corresponding CZ length at that time.
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6.2.1 Algorithm

Step 1 Take 2 points, of the CZ tip in the previous time instants, as initial approximations

for ai: (ai)1 = cm and (ai)2 = cm+1. The index m is chosen such that the product of

U(ti, (ai)1, ci) and U(ti, (ai)2, ci) is negative. At the start of crack growth, we begin

with (ai)1 = c0 and (ai)2 = c1.

Step 2 For each of the 2 approximations of ai, find the corresponding ci using the secant

method:

• Take 2 initial approximations as (ci)1 = ci−1 and (ci)2 as the linear extrapolation

of c over the previous time instants:

(ci)2 = ci−2
ti − ti−1

ti−2 − ti−1

+ ci−1
ti − ti−2

ti−1 − ti−2

.

• Find K(ti, ai, (ci)1) and K(ti, ai, (ci)2) using equation (6.5). To find them, we

simultaneously make use of equations (6.3) and (6.4) to find the stress σ(ξ, ti).

• Find (ci)3 as usual in the secant method, i.e.,

(ci)3 =
K(ti, ai, (ci)2)(ci)1 −K(ti, ai, (ci)1)(ci)2

(ci)2 − (ci)1

.

• Take (ci)3 and (ci)2 (or (ci)1) as the next 2 approximations and repeat the above

3 sub-items until convergence is reached and ci is obtained.

Step 3 Once ci has been found for each of the 2 approximations for ai, find the corre-

sponding U(ti, (ai)1, ci) and U(ti, (ai)2, ci).

Step 4 If U(ti, (ai)1, ci) · U(ti, (ai)2, ci) < 0 then take

(ai)3 =
U(ti, (ai)2, ci)(ai)1 − U(ti, (ai)1, ci)(ai)2

U(ti, (ai)2, ci)− U(ti, (ai)1, ci)

implying (ai)1 < (ai)3 < (ai)2. However, if U(ti, (ai)1, ci) · U(ti, (ai)2, ci) > 0 then

go back to Step 1 and take (ai)1 = cm+1 and (ai)2 = cm+2, and repeat the above

procedure until U(ti, (ai)1, ci) · U(ti, (ai)2, ci) < 0.
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Step 5 If |(ai)3 − (ai)1| < ε or |(ai)3 − (ai)2| < ε, allocate a(ti) = (ai)3 and go to the next

time instant t = ti+1. Otherwise, go to the next step.

Step 6 Take (ai)3 and (ai)2 (or (ai)1) as the next 2 approximations and repeat Steps 2-5

until convergence is reached and ai is obtained.

6.2.2 Remarks on the Algorithm

When we have known (previous) cm, m < i, points for the initial approximations for ai, the

stress values σ(ξ, ti) for all the node points in the integration range of ξ are known except

at σ(ci, ti). The stress at ci can be found by solving the integral equation∫ ti

t0

σβ(ci, τ)(ti − τ)
β
b
−1dτ =

b

β

by piecewise linearly interpolating σ(ci, τ) in τ between t0 and ti, similarly to equation (4.6).

As done in the previous algorithm, σ(ci, tj) for j = 0, 1, 2, ...i− 1 will be found using

σ(ci, tj) =
ci√
c2
i − c2

j

1− 2

π

∫ cj

aj

√
c2
j − ξ2

c2
i − ξ2

σ(ξ, tj)dξ

 . (6.6)

Moreover, in order to find K(ti, (ai)3, ci) and U(ti, (ai)3, ci), we will have an integral

from (ai)3 to ci; thus we need to find σ((ai)3, ti). To this end, we use:∫ ti

t0

σβ((ai)3, τ)(ti − τ)
β
b
−1dτ =

b

β
, (6.7)

where we will approximate σβ((ai)3, τ) using piecewise linear interpolation between τ = tk−1

and τ = tk for k = 0, 1, ...i − 1. For each σβ((ai)3, tk), we will use equation (6.7) with ti

replaced by tk; however, for cases when ai > c(tk), we will use equation (6.6).

Furthermore, note that at some point, we will come across the step where ai will exceed

ci−1; and as observed, the CZ length is decreasing, which means we will have ai > ci−1

in all the steps which follow. Thus, for these steps, only one previous value of c (which
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is ci−1) can be taken as an initial approximation of ai. To this end, we will modify the

algorithm by fixing ai and computing the corresponding ti and ci by solving U(ti, ai, ci) = 0

and K(ti, ai, ci) = 0 respectively.

Referring to Step 3, we obtain U(ti, ai, ci) using

Ue(ti, ai, ci) = δe(ti)− δc

for the elastic case, and

Uv(ti, ai, ci) = δe(ti, ai, ci) +m

∫ ti

tc(ai)

e−
1
θ

(ti−τ)δe(τ, ai, ci)dτ − δc (6.8)

for the viscoelastic case; where the lower limit of the integral is replaced with tc(a(t)) (in-

stead of t0) since [ue](x, τ) = 0 when τ ≤ tc(x). To evaluate the integral in (6.8), δe(τ, ai, ci)

is piecewise linearly interpolated between tc(ai) and ti. All the values of δe(tk, ai, ci) are

obtained from the following equation

δe(tk, ai, ci) =
4

π

(
π
√
c2
i − a2

i +

∫ ci

ai

σ(ξ, tk)Γ̂(c(tk), ξ; ci)dξ

)
.

For the viscoelastic case, note that when the approximations for ai are previous values of

c, i.e. (ai)1 = cm and (ai)2 = cm+1, then the integration over τ in (6.8) will be from tm to ti

and tm+1 to ti respectively. For example, in the case when ai = cm, for k = m, ...i we have

δ(τ, ai, ci) ≈ δe(tk, ai, ci) +
δe(tk+1, ai, ci)− δe(tk, ai, ci)

tk+1 − tk
(τ − tk). (6.9)

On the other hand, when ai is not equal to a known value of c, the integration over τ will

be from tm to ti where cm < ai < cm+1, but δe(tm, ai, ci) will be 0. Thus, the integral would

be written as
i−1∑
k=m

∫ tk+1

tk

e−
1
θ

(ti−τ)δe(τ, ai, ci)dτ

where

δe(τ, ai, ci) ≈
δe(tm+1, ai, ci)

tm+1 − tm
(τ − tm)

for k = m and δ(τ, ai, ci) is given by equation (6.9) for k = m+ 1, ..., i.
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6.3 Numerical Solution

Using h =
1

8000
and h =

1

800
as the step sizes for b = 4 and b = 1.5 respectively, we arrive

at the following graphs.
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Figure 6.5: Crack length vs. time for

b = 4.
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Figure 6.6: CZ length vs. time for b = 4.
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Figure 6.7: Crack length vs. time for

b = 1.5.
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Figure 6.8: CZ length vs. time for

b = 1.5.

Now we will present the graphs of the CZ tip coordinate vs. time.
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Figure 6.9: CZ tip coordinate vs. time for b = 4.
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Figure 6.10: CZ tip coordinate vs. time for b = 1.5.

The Delay Time and the Rupture Time

The rate of crack growth, the delay time td, as well as the normalised rupture time tr,

depend on the material parameters. Figure 6.11 shows the delay time dependence on β

for b = 4; and Figure 6.12 shows the delay time dependence on b for β =
1

2
. Figure 6.13

shows the rupture time dependence on β for b = 4; and Figure 6.14 shows the rupture time

dependence on b for β =
1

2
. The calculations were done for β =

3b

4
, β =

b

2
, β =

b

3
, β =

b

4
,

and β =
b

8
. The graphs show a strong dependence of the normalised rupture time in the
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infinite plane on the presence of the crack and on the material parameter. This is in contrast

to the crack propagation results obtained, using the local approach, without the CZ, where

the rupture time in the plane with and without crack was the same [25,41,42]. We will use

e and v in the subscripts to refer to the elastic and viscoelastic cases respectively.

Delay Time: Fixed b = 4, Varying β
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Figure 6.11: Delay time td vs. β for b = 4.

β td,e td,v

3b/4 = 3 0.00474 0.00451

b/2 = 2 0.00724 0.00660

b/3 = 4/3 0.00794 0.00731

b/4 = 1 0.01019 0.00898

b/8 = 1/2 0.01184 0.01025

Table 6.2: Delay time td for

b = 4.

Delay Time: Fixed β =
1

2
, Varying b
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Figure 6.12: Delay time td vs. b for β =
1

2
.

b td,e td,v

8β = 4 0.01184 0.01025

4β = 2 0.09344 0.06566

3β = 3/2 0.12360 0.08994

2β = 1 0.25420 0.18210

4β/3 = 2/3 0.36820 0.28290

Table 6.3: Delay time td for

β =
1

2
.
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Rupture Time: Fixed b = 4, Varying β
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Figure 6.13: Rupture time tr vs. β for b = 4.

β tr,e tr,v

3b/4 = 3 0.02740 0.02709

b/2 = 2 0.02698 0.02662

b/3 = 4/3 0.02120 0.02092

b/4 = 1 0.01896 0.01858

b/8 = 1/2 0.01408 0.01357

Table 6.4: Rupture time tr vs.

β for b = 4.

Rupture Time: Fixed β =
1

2
, Varying b
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Figure 6.14: Rupture time tr vs. β for β =
1

2
.

b tr,e tr,v

8β = 4 0.01408 0.01357

4β = 2 0.18021 0.17322

3β = 3/2 0.37205 0.36431

2β = 1 0.74498 0.74030

4β/3 = 2/3 0.93971 0.95192

Table 6.5: Rupture time tr vs.

β for β =
1

2
.

The dependency of the CZ length at t = td, and the maximum CZ length, for different

parameter sets is given below.

81



Fixed b = 4, Varying β
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Figure 6.15: Maximum CZ length

and l(td) vs. β for b = 4.

β max(le) l(td)e max(lv) l(td)v

3b/4 = 3 0.1034 0.1034 0.1003 0.1003

b/2 = 2 0.1206 0.1206 0.1146 0.1146

b/3 = 4/3 0.1282 0.1282 0.1222 0.1222

b/4 = 1 0.1390 0.1390 0.1296 0.1296

b/8 = 1/2 0.1504 0.1504 0.1388 0.1388

Table 6.6: Maximum CZ length

and l(td) vs. β for b = 4.

Fixed β =
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2
, Varying b
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Figure 6.16: Maximum CZ length

and l(td) vs. b for β =
1

2
.

b max(le) l(td)e max(lv) l(td)v

8β = 4 0.1504 0.1504 0.1388 0.1388

4β = 2 0.1251 0.1251 0.1002 0.0853

3β = 3/2 0.0949 0.0879 0.0828 0.0561

2β = 1 0.0779 0.0776 0.0633 0.0385

4β/3 = 2/3 0.0507 0.0494 0.04787 0.0217

Table 6.7: Maximum CZ length

and l(td) vs. b for β =
1

2
.
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An observation which cannot be missed is how the crack length, and thus the CZ length,

evolves with time as β decreases. We observed that in the stationary crack stage, changing

β doesn’t have a substantial effect on the CZ tip coordinate. However, in the growing

crack stage, Figures 6.5-6.8 show that there is a significant effect of the parameter β on

the solutions. A vanishing CZ is an indication of the crack propagating. We can see from

these figures that, while fixing b, as β decreases the crack grows more rapidly with time;

and so it can also be concluded that as β decreases, the rupture time also decreases.

As seen in Figures 6.1-6.4, as well as Tables 6.2-6.3, the delay time td is higher for the

elastic case than for the viscoelastic one. For example, for b = 4 and β = 1, we obtained

td = 0.01019 for the elastic case and td = 0.00898 for the viscoelastic case. Furthermore,

the rupture time in the viscoelastic case is slightly smaller than that for the purely elastic

case. For example, for b = 4 and β = 1, the normalised rupture time is tr = 0.0189 for the

elastic case and tr = 0.0185 for the viscoelastic one. The results given in Tables 6.6 and 6.7

indicate that as the difference between b and β increases, the maximum CZ length reached

increases. This effect can also be observed from the graphs in Figures 6.6 and 6.8.
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Chapter 7

Time-Dependent External Load

In this chapter, we consider the case when the external load varies linearly in time.

7.1 Problem Formulation

Let a time-dependent load be linear in time

q̂(t̂) = s t̂, (7.1)

where s is a constant. Similarly to the case of a constant load, see Section 3.1, we denote

by t̂s∞ the rupture time of the infinite plane without a crack. It is obtained by solving for

t̂ = t̂s∞ the following equation∫ t̂

t̂0

(sτ̂)β(t̂− τ̂)
β
b
−1dτ̂ =

bσβ0
β

;

this yields

t̂s∞ =

(
σ0

sγ

) b
1+b

, (7.2)

84



where

γ :=

(
b

β

Γ
[
1 + β + β

b

]
Γ
[
β
b

]
Γ[1 + β]

)−1/β

.

Then, the maximum load reached before rupture in the infinite plane without a crack under

such load is

q̂s∞ = st̂s∞. (7.3)

Given below is a graph which shows how γ varies with the constants b and β.

0 2 4 6 8 10
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

b

γ

 

 

β=0.5
β=1
β=1.5
β=2
β=2.5
β=3

Figure 7.1: γ vs. b for various β.

Let us also introduce the reference constant load q̂∗ as

q̂∗ = σ0t̂
−1/b
s∞ (7.4)

under which such plane ruptures at the same time t̂s∞. Expressing s and t̂s∞ in terms of

85



q̂s∞ and q̂∗ from equations (7.3)-(7.4) then substituting them into equation (7.2), yields

q̂∗ = γq̂s∞.

For constant external loading, we used the normalisation σ̂(x̂, t̂) = σ̃(x̂, t̂)q̂, whereas for

variable external loading, we will use σ̂(x̂, t̂) = σ̃(x̂, t̂)q̂∗. This gives the following form of

the condition Λ(σ̂(x̂, t̂); t̂) = 1 on the CZ,∫ t̂

t̂0

σ̃β(x̂, τ̂)(t̂− τ̂)
β
b
−1dτ̂ =

b

β

(
t̂s∞
)β
b â ≤ |x̂| ≤ ĉ. (7.5)

Now, we will normalise time and space using

t̂ = tt̂s∞, x̂ = xâ0, ĉ(t̂) = ĉ(tt̂s∞) = c(t)â0. (7.6)

Also, we will use the notation σ(x, t) = σ̃(xâ0, t̂s∞t); this gives the following relation

between the physical stress σ̂(x̂, t̂) and the normalised stress σ(x, t)

σ(x, t) =
σ̂(xâ0, t̂s∞t)

q̂∗
. (7.7)

Consequently, (7.5) reduces to the following equation∫ t

t0

σβ(x, τ)(t− τ)
β
b
−1dτ =

b

β
, a(t) ≤ x ≤ c(t).

The stress ahead of the crack tip, as in the constant load case, is given by

σ̂(x̂, t̂) =
x̂√

x̂2 − ĉ2(t̂)

q̂(t̂)− 2

π

∫ ĉ(t̂)

â(t̂)

√
ĉ2(t̂)− ξ̂2

x̂2 − ξ̂2
σ̂(ξ̂, t̂)dξ̂

 , |x̂| > ĉ.

After normalising, we have

σ(x, t) =
x√

x2 − c2(t)

(
q(t)− 2

π

∫ c(t)

a(t)

√
c2(t)− ξ2

x2 − ξ2
σ(ξ, t)dξ

)
, |x| > c,

where

q(t) =
q̂(t̂)

q̂∗
=

st̂

γst̂s∞
=

t̂

γt̂s∞
=
t

γ
.
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Furthermore, the stress intensity factor is given by

K̂(t̂, â(t̂), ĉ(t̂)) =

√
ĉ(t̂)

2

q̂(t̂)− 2

π

∫ ĉ(t̂)

â(t̂)

σ̂(ξ̂, t̂)√
ĉ2(t̂)− ξ2

dξ̂

 .

Using the same normalisations as in (7.6) and (7.7), we have

K̂(t, a(t), c(t)) =

√
c(t)â0

2

(
q̂(t̂)− 2q̂∗

π

∫ c(t)

a(t)

σ(ξ, t)√
c2(t)− ξ2

dξ

)
.

Finally, we normalise the stress intensity factor using

K(t, a(t), c(t)) =
K̂(t̂)√
â0 q̂∗

,

which then yields

K(t, a(t), c(t)) =

√
c(t)

2

(
q(t)− 2

π

∫ c(t)

a(t)

σ(ξ, t)√
c2(t)− ξ2

dξ

)
.

For the crack tip opening, we have the following equation in terms of the physical variables

δ̂e(x̂, t̂) =
(1 + κ)

2µ

(
q̂(t̂)

√
ĉ2(t̂)− x̂2 +

1

π

∫ ĉ(t̂)

â(t̂)

σ̂(ξ̂, t̂)Γ̂(x̂, ξ̂, ĉ(t̂))dξ̂

)
,

δ̂v
(
t̂
)

=

(
δ̂e
(
t̂
)

+
µ

η

∫ t̂

0

e−
1
θ (t̂−τ̂)δ̂e (τ̂) dτ̂

)
.

for the elastic and viscoelastic cases respectively. We use the same normalisations as in

(7.6) and (7.7) for time, length, and stress. In addition to that, we will normalise δ̂ using

δ =
8µδ̂

q̂∗â0(1 + κ)
.

Consequently, we have

δe(x, t) =
4

π

(
q(t)π

√
c2(t)− x2 +

∫ c(t)

a(t)

σ(ξ, t)Γ̂(x, ξ, c(t))dξ

)
and

δv(t) =

(
δe(t) +ms

∫ t

0

e−
1
θs

(t−τ)δe(τ)dτ

)
where

ms =
E0t̂s∞
η

, θs =
θ̂

t̂s∞
;

and as before, q(t) =
t

γ
.
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7.2 Numerical Solutions

After implementing the algorithm in Section 4.1.1 for the problem of a stationary crack,

and in Section 6.2.1 for the problem of a propagating crack, we obtained the evolution of

(i) the CZ tip while the crack is stationary; (ii) the crack tip opening for the elastic and

viscoelastic cases; (iii) the crack length, the CZ tip coordinate, and the CZ length, for a

propagating crack. To obtain the crack tip opening for the viscoelastic case, we assume

that the constant s which appears in (7.1) takes the value such that t̂∞ = t̂s∞. Thus, we

will have ms = 5 and θs = 1 as in the case of a constant external load, see Section 5.2.2.

We have used a graded time mesh before crack growth begins in order to have less time

steps before crack growth begins; in other words, we need a denser mesh. Instead of taking

ti = ih, we took ti =
√
h̃i where h̃ is a constant. The results presented below are for the

case h̃ =
1

400
. See Appendix B for the graphs collected using various mesh sizes.

7.2.1 Stationary Crack

CZ Tip Coordinate

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

t

c

 

 

β=b/2
β=b/4
β=b/8

0.78 0.8 0.82 0.84 0.86

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

t

c

 

 

β=b/2
β=b/4
β=b/8

Figure 7.2: CZ tip coordinate vs. time for b = 4.
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Figure 7.3: CZ tip coordinate vs. time for b = 1.5.
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Figure 7.4: σ(c(t∗), t) for b = 4 at t∗ = 0.6.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

t

σ(c(t*),t)

 

 

β=b/2
β=b/4
β=b/8

Figure 7.5: σ(c(t∗), t) for b = 1.5 at t∗ = 0.6.
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Crack Tip Opening
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Figure 7.6: Crack opening δe vs. time t

for b = 4.
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Figure 7.7: Crack opening δe vs. time t

for b = 1.5.
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Figure 7.8: Crack opening δv vs. time t

for b = 4.
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Figure 7.9: Crack opening δv vs. time t

for b = 1.5.
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7.2.2 Propagating Crack Stage

Crack Length

The graphs in Figures 7.10-7.13 show the evolution of the crack length in time for b = 4

and b = 1.5, for three cases of β.
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Figure 7.10: Crack length vs. t for b = 4.
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Figure 7.11: Crack length vs. time for b = 1.5.
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Figure 7.12: Crack length vs. time for b = 4.
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Figure 7.13: Crack length vs. time for b = 1.5.
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CZ Tip Coordinate

The graphs in Figures 7.14-7.17 show the evolution of the CZ tip in time for b = 4 and

b = 1.5 respectively, for three cases of β.
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Figure 7.14: CZ tip coordinate vs. time

for b = 4 (elastic case).
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Figure 7.15: CZ tip coordinate vs. time

for b = 1.5 (elastic case).
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Figure 7.16: CZ tip coordinate vs. time

for b = 4 (viscoelastic case).
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Figure 7.17: CZ tip coordinate vs. time

for b = 1.5 (viscoelastic case).
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CZ Length

The graphs in Figures 7.18-7.21 show the evolution of the CZ length in time for b = 4 and

b = 1.5 respectively, for three cases of β.
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Figure 7.18: CZ length vs. t for b = 4

(elastic case).
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Figure 7.19: CZ length vs. t for b = 1.5

(elastic case).
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Figure 7.20: CZ length vs. t for b = 4

(viscoelastic case).
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Figure 7.21: CZ length vs. t for b = 1.5

(viscoelastic case).
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Chapter 8

Numerical Convergence Rate

Numerical schemes for solving mathematical problems result in some degree of uncer-

tainty due to inaccuracies accumulating within the computations. In order to judge the

applicability of the numerical methods used for each of the problems solved, we will approx-

imate the error in the solutions as well as compute the corresponding numerical convergence

rate.

In the model problems which were numerically solved, we considered discrete solutions

using successively refined meshes. In order to obtain the convergence rate of our numerical

results, we have to first estimate the error. Let y and yappr denote the exact and approximate

value of a variable y respectively. The absolute error is defined as

ε = |y − yappr|;

however, since the exact solutions to our problems are unknown, we cannot obtain an exact

form of the error but an approximation to it. To this end, we will use Aitken’s extrapolation

technique to obtain a good approximation to the exact solution. This nonlinear acceleration

scheme, also known as the Aitken ∆2 process, is a fast and reliable way to accelerate the

convergence of a sequence which can be in turn used to estimate the exact solution of a
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problem based on a sequence of numerical solutions, e.g. see [9]. Aitken’s extrapolation

technique gives an approximation ya of the exact solution y based on 3 consecutive terms

of a convergent sequence, the Aitken extrapolation formula is given by

ya =
yappr
N yappr

N−2 −
(
yappr
N−1

)2

yappr
N − 2yappr

N−1 + yappr
N−2

,

see [9, 12, 48], where yappr
N corresponds to the numerical solution with step size h = hN for

h = h1, h2, ..., hN . Therefore, ya is computed using the solutions corresponding to the 3

finest meshes considered. Consequently, our error will be approximated by

ε = |ya − yappr|. (8.1)

For convergence, we assume that there exists a constant C such that for all h

|ya − yappr| ≤ Chα,

where α is known as the numerical convergence rate, see e.g. [34,53]. Therefore, we have

ε = Chα +O(hα+1).

Neglecting the higher order terms, we have

ε = Chα.

Consider εi = Chαi and εi+1 = Chαi+1; dividing the first equation by the second equation

and taking logarithms yields

α =
log
(

εi
εi+1

)
log
(

hi
hi+1

) . (8.2)

In what follows, we may refer to the numerical convergence rate as CR. We obtain

the approximation of the error using equation (8.1) and the numerical convergence rate

using equation (8.2). In this chapter we will give the numerical convergence rates and the

approximation of the error for the case of constant loading. Similar results were obtained

for the variable load case; the graphs and tables for this case can be found in Appendix C.
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8.1 Constant Loading

Cohesive Zone Length of a Stationary Crack

Taking the solutions corresponding to t = 0.6, we will plot the error against the time spac-

ing in the mesh and present the numerical convergence in a table.
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Figure 8.1: Error of the CZ length

vs. step size for b = 4 and t = 0.6

(stationary crack).
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h

β b

2

b

4

b

8

1/25 - - -

1/50 1.06782 0.96783 0.97768

1/100 1.00550 0.94748 0.96672

1/200 0.96689 0.93922 0.96292

1/400 0.94986 0.93766 0.96279

1/800 0.94986 0.93766 0.96279

Table 8.1: CR α at b = 4 and t = 0.6

(CZ length for stationary crack).
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Figure 8.2: Error of the CZ length

vs. step size for b = 1.5 and t = 0.6

(stationary crack).
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h

β b

2

b

4

b

8

1/25 - - -

1/50 2.00554 0.98495 0.98514

1/100 -0.71453 0.93666 0.96027

1/200 0.33857 0.91483 0.95042

1/400 0.53098 0.90886 0.94855

1/800 0.53098 0.90886 0.94855

Table 8.2: CR α at b = 1.5 and t = 0.6

(CZ length for stationary crack).
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For the case b = 4, the numerical convergence rate is very close to 1 for all three cases of β.

This implies that the numerical solutions obtained converge linearly. The decreasing error,

as the mesh becomes finer, supports this conclusion.

This effect is also apparent for the case b = 1.5; however, for this case, while β =
b

2
,

we observe an increase in the error between h =
1

50
and h =

1

100
. This could be due to

computational errors which lead to a negative convergence rate. From h =
1

100
to h =

1

800
,

the convergence rate approaches
1

2
which implies that we have convergence but at a slower

rate than in the cases
β

4
and

β

8
.

Stress at the Cohesive Zone Tip

We will study the stress at the CZ tip, for x = c(t∗), t∗ = 0.6. We are particularly interested

in what is happening at the CZ tip. For better observations, we will use the parameter sets

β =
3b

4
and β =

b

3
as well as the 3 usual sets β =

b

2
, β =

b

4
and β =

b

8
. We will first look

at the graphs of the stress at the CZ tip for various mesh sizes.
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Figure 8.3: σ(c(t∗), t) for b = 4,

β =
3b

4
, t∗ = 0.6: closer look at the CZ tip.
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Figure 8.4: σ(c(t∗), t) for b = 4, β =
b

2
,

t∗ = 0.6: closer look at the CZ tip.
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Figure 8.5: σ(c(t∗), t) for b = 4,

β =
b

3
, t∗ = 0.6: closer look at the CZ tip.
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Figure 8.6: σ(c(t∗), t) for b = 4, β =
b

4
,

t∗ = 0.6: closer look at the CZ tip.
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Figure 8.7: σ(c(t∗), t) for b = 4, β =
b

8
,

t∗ = 0.6: closer look at the CZ tip.
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Figure 8.8: σ(c(t∗), t) for b = 1.5,

β =
3b

4
, t∗ = 0.6: closer look at the CZ tip.
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Figure 8.9: σ(c(t∗), t) for b = 1.5, β =
b

2
,

t∗ = 0.6: closer look at the CZ tip.
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Figure 8.10: σ(c(t∗), t) for b = 1.5,

β =
b

3
, t∗ = 0.6: closer look at the CZ tip.
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Figure 8.11: σ(c(t∗), t) for b = 1.5,

β =
b

4
, t∗ = 0.6: closer look at the CZ tip.
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Figure 8.12: σ(c(t∗), t) for b = 1.5,

β =
b

8
, t∗ = 0.6: closer look at the CZ tip.

The following table shows the approximations of the stress at the CZ tip for different

mesh sizes. Also, σa denotes the approximation to the exact solution obtained from using

Aitken’s extrapolation formula. We will start with the case b = 4 followed by the case

b = 1.5.
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@
@
@
@@

β

h 1

25

1

50

1

100

1

200

1

400

1

800
σa

3b/4 1.64055 1.78002 1.93513 2.10670 2.29576 2.50354 0.19859

b/2 1.39334 1.44340 1.49319 1.54250 1.59121 1.63929 5.25425

b/3 1.29166 1.31424 1.33450 1.35260 1.36874 1.38311 1.49965

b/4 1.23245 1.24403 1.25390 1.26224 1.26929 1.27521 1.30680

b/8 1.17767 1.18144 1.18438 1.18667 1.18843 1.18980 1.19443

Table 8.3: Stress at the CZ tip and its Aitken approximation for b = 4.

Given below is the graph of the maximum stress (i.e. the stress at the CZ tip) vs.

n = 25, 50, 100, 200, 400, 800.
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Figure 8.13: Stress at the CZ tip vs. n for b = 4.

We can see from Table 8.3 and Figure 8.13 that the stress at the CZ tip increases with

mesh refinement. For β =
b

3
, β =

b

4
, and β =

b

8
, Aitken’s approximation is very close to

the numerically obtained values of σ. However, for β =
3b

4
and

b

2
, Aitken’s approximation

is far from the numerical approximations. Bearing in mind the vital condition 0 < β < b,
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we can conclude that at the CZ tip, there could be another singularity, other than the

square root singularity. The impact and strength of this singularity seems to be detectable

as the condition β < b is close to being violated.

Now, while using the above values for σa, let’s have a look at the approximation of the

error and the numerical convergence rates.
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Figure 8.14: Error of the stress at the CZ tip vs. step size for b = 4.
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h

β 3b

4

b

2

b

3

b

4

b

8

1/25 - - - - -

1/50 -0.13319 0.01883 0.16577 0.24435 0.36745

1/100 -0.13498 0.01897 0.16694 0.24663 0.37080

1/200 -0.13593 0.01904 0.16750 0.24775 0.37243

1/400 -0.13629 0.01906 0.16769 0.24815 0.37303

1/800 -0.13629 0.01906 0.16769 0.24815 0.37303

Table 8.4: CR α for b = 4 (Stress at the CZ tip, stationary crack).

The rate of convergence is higher as β decreases, although the rate is still rather slow
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compared to those observed for the CZ tip coordinate. Furthermore, we can see that the

negative convergence rate, as well as the negative gradient in Figure 8.14, for the case

β =
3b

4
, indicates that there’s no convergence for this case. The low convergence rate at

β =
b

2
also signifies very low convergence for the stress at the CZ tip. The results for the

case b = 1.5 resemble those for the case b = 4, thus similar conclusions pertain.
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@
@
@@

β

h 1

25

1

50

1

100

1

200

1

400

1

800
σa

3b/4 3.04260 3.57850 4.21904 4.98066 5.88300 6.94964 0.02482

b/2 2.20259 2.37480 2.55152 2.73159 2.91416 3.09873 -13.96742

b/3 1.88078 1.95354 2.01986 2.07983 2.13382 2.18227 2.60622

b/4 1.69074 1.72663 1.75740 1.78358 1.80576 1.82449 1.92635

b/8 1.52605 1.53727 1.54606 1.55289 1.55818 1.56227 1.57617

Table 8.5: Stress at the CZ tip and its Aitken approximation for b = 1.5.

Given below is the graph of the maximum stress (i.e. the stress at the CZ tip) vs.

n = 25, 50, 100, 200, 400, 800.
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Figure 8.15: Stress at the CZ tip vs. n for b = 1.5.
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Figure 8.16: Error of the stress at the CZ tip vs. step size for b = 1.5.
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h

β 3b

4

b

2

b

3

b

4

b

8

1/25 - - - - -

1/50 -0.23583 -0.01528 0.15248 0.23840 0.36586

1/100 -0.23909 -0.01552 0.15457 0.24140 0.36943

1/200 -0.24073 -0.01564 0.15568 0.24294 0.37119

1/400 -0.24132 -0.01569 0.15611 0.24354 0.37186

1/800 -0.24132 -0.01569 0.15611 0.24354 0.37186

Table 8.6: CR α for b = 1.5 (Stress at the CZ tip, stationary crack).
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Crack Tip Opening for the Elastic Case
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Figure 8.17:

Error of δe vs. step size for b = 4 at t = 0.6.
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h

β b

2

b

4

b

8

1/25 - - -

1/50 0.61765 1.00204 1.11651

1/100 0.69634 1.04398 1.16272

1/200 0.76918 1.07794 1.19813

1/400 0.80870 1.09752 1.21867

1/800 0.80870 1.09752 1.21867

Table 8.7:

CR α of δe for b = 4 at t = 0.6.
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Figure 8.18:

Error of δe vs. step size for b = 1.5 at t = 0.6.
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h

β b

2

b

4

b

8

1/25 - - -

1/50 0.88202 1.06906 1.19473

1/100 1.01906 1.08583 1.22421

1/200 1.07580 1.11027 1.25169

1/400 1.09585 1.12768 1.26958

1/800 1.09585 1.12768 1.26958

Table 8.8:

CR α of δe for b = 1.5 at t = 0.6.
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Crack Tip Opening for the Viscoelastic Case
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Figure 8.19:

Error of δv vs. step size for b = 4 at t = 0.6.
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h

β b

2

b

4

b

8

1/25 - - -

1/50 0.96579 0.99327 1.00007

1/100 0.96146 0.99002 0.99491

1/200 0.96320 0.99027 0.99344

1/400 0.96562 0.99113 0.99327

1/800 0.96562 0.99113 0.99327

Table 8.9:

CR α of δv for b = 4 at t = 0.6.
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Figure 8.20:

Error of δv vs. step size for b = 1.5 at t = 0.6.
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h

β b

2

b

4

b

8

1/25 - - -

1/50 1.03148 1.01847 1.02646

1/100 1.00445 1.01172 1.01819

1/200 0.99307 1.01054 1.01480

1/400 0.98937 1.01079 1.01347

1/800 0.98937 1.01079 1.01347

Table 8.10:

CR α of δv for b = 1.5 at t = 0.6.

For both the elastic and viscoelastic cases, we can see that the numerical convergence

rate tends to 1 which manifests that we have convergence of the crack tip opening obtained.

This is seen for both cases b = 4 and b = 1.5 and for all cases of β.
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Crack Propagation Stage for the Elastic Case

Now, we will compute the CR at a time before crack growth begins as well as at a time

during crack growth. During crack growth, the time t = td is included within the time

mesh, therefore time steps which follow will no longer be equidistantly distributed. Hence,

in this case, for the chosen value t, we will linearly interpolate the CZ length for times ta

and tb where ta < t < tb. We will start with b = 4 and then the case b = 1.5 will follow.
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Figure 8.21: Error of CZ length vs. step size for b = 4 (stationary and growing crack stage

(elastic)).
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h

β b

2
, t < td

b

2
, t > td

b

4
, t < td

b

4
, t > td

b

8
, t < td

b

8
, t > td

1/500 - - - - - -

1/1000 6.96313 1.36470 1.98295 1.19125 0.12785 0.18568

1/2000 2.50666 1.39154 2.84403 1.32103 0.55313 0.77385

1/4000 5.75240 1.34905 2.98105 1.41315 0.67061 0.84807

1/8000 5.75240 1.34905 2.98105 1.41315 0.67061 0.84807

Table 8.11: CR α of the CZ length for b = 4 (stationary and growing crack stage (elastic)).
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Figure 8.22: Error of CZ length vs. step size for b = 1.5 (stationary and growing crack stage

(elastic)).
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h

β b

2
, t < td

b

2
, t > td

b

4
, t < td

b

4
, t > td

b

8
, t < td

b

8
, t > td

1/50 - - - - - -

1/100 1.62800 0.63777 0.85262 1.52504 0.85567 1.33368

1/200 2.26296 1.41131 0.82017 1.26149 0.86294 2.70421

1/400 4.68284 1.51220 0.81501 1.17033 0.87217 5.57225

1/800 4.68284 1.51220 0.81501 1.17033 0.87217 5.57225

Table 8.12: CR α of the CZ length for b = 1.5 (stationary and growing crack stage (elastic)).

For both cases b = 4 and b = 1.5, we can see from the graphs that the approximation

of the error is decreasing as we take finer meshes. In some cases, such as when b = 4,

β =
b

2
, and b = 1.5, β =

b

2
,
b

8
we have a relatively high convergence rate of greater than

4 for t < td. The higher the convergence rate, the quicker the method is converging for

this particular case and chosen time step. This is evidently justified from the graphs in

Figures 8.21-8.22.

107



Crack Propagation Stage for the Viscoelastic Case

Given below are the graphs presenting the errors as well as the tables showing the nu-

merical convergence rates of the CZ length for the viscoelastic case. We only present the

convergence rate for a time step during crack growth since the solutions of the CZ growth

for a stationary crack is the same for both elastic and viscoelastic cases (up to t = td).

Refer to Tables 8.11 and 8.12 for the convergence rates in the stationary crack stage.
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Figure 8.23: Error of CZ length vs. step size for b = 4 (growing crack stage (viscoelastic)).
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h

β b

2
, t > td

b

4
, t > td

b

8
, t > td

1/500 - - -

1/1000 1.40449 1.09721 0.68019

1/2000 1.21844 1.19432 2.70292

1/4000 1.16394 0.99579 1.71441

1/8000 1.16394 0.99579 1.71441

Table 8.13:

CR α of the CZ length for b = 4 (viscoelastic).
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Figure 8.24: Error of CZ length vs. step size for b = 1.5 (growing crack stage (viscoelastic)).
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h

β b

2
, t > td

b

4
, t > td

b

8
, t > td

1/50 - - -

1/100 0.42797 1.18890 0.82246

1/200 1.38178 1.16192 0.78850

1/400 1.49043 1.01566 0.72298

1/800 1.49043 1.01566 0.72298

Table 8.14:

CR α of the CZ length for b = 1.5 (growing crack stage (viscoelastic)).

The results showing the convergence rates and the approximation of the error in the

viscoelastic case produce similar outcomes as those in the elastic case. However, we can

see from Table 8.14 that the convergence rate decreases with decreasing β. This could be

due to the computational errors which emerge from linearly interpolating the CZ length

between times ta and tb for ta < t < tb.
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Chapter 9

Discussion and Evaluation

9.1 Comparison of the Constant and Variable Loading

Cases

In this section, we will look at how the solutions differ in the case of a variable external

load with that of the case of a constant external load. We will compare

1. The CZ tip coordinate in the stationary crack stage

2. The stress ahead of the CZ as well as in the CZ

3. The crack tip opening for the elastic and viscoelastic cases

4. The CZ tip position in the propagating crack stage

5. The CZ length in the propagating crack stage

Note that in the graphs obtained, the legends will state ‘constant’ and ‘variable’ to distin-

guish the cases of the external loads being constant and varying in time respectively.
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9.1.1 Stationary Crack Stage
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Figure 9.1: CZ tip coordinate vs. time for

b = 4.
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Figure 9.2: CZ tip coordinate vs. time for

b = 1.5.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

t

σ(c(t*),t)

 

 

β=b/2 (constant)
β=b/2 (variable)
β=b/4 (constant)
β=b/4 (variable)
β=b/8 (constant)
β=b/8 (variable)

Figure 9.3: σ(c(t∗), t) at t∗ = 0.6 b = 4.
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Figure 9.4: σ(c(t∗), t) at t∗ = 0.6 b = 1.5.

0 0.2 0.4 0.6 0.8 1

10
−1

10
0

10
1

10
2

t

δ
e

 

 

β=b/2 (constant)
β=b/2 (variable)
β=b/4 (constant)
β=b/4 (variable)
β=b/8 (constant)
β=b/8 (variable)

Figure 9.5: δe vs. t b = 4.
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Figure 9.6: δe vs. t b = 1.5.
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Figure 9.7: δv vs. t b = 4.
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Figure 9.8: δv vs. t b = 1.5.

9.1.2 Propagating Crack Stage

The graphs in Figures 9.9 and 9.10 show the evolution of the CZ length in time for b = 4

and b = 1.5 respectively, for three cases of β. We start with presenting the results of the

elastic case followed by the results for the viscoelastic case.
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Figure 9.9: CZ length vs. time for b = 4 (elastic case).
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Figure 9.10: CZ tip coordinate vs. time for b = 1.5 (elastic).
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Figure 9.11: CZ tip coordinate vs. time for b = 4 (viscoelastic).
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Figure 9.12: CZ tip coordinate vs. time for b = 1.5 (viscoelastic).

For the stationary crack stage, we conclude that the CZ tip coordinate grows more

rapidly with time in the constant loading case than in the variable loading case. In addition

to that, we observe from the obtained graphs that the crack tip opening, in both the elastic

and viscoelastic cases, increases more rapidly in the constant loading case. The results

for the propagating crack stage show significant differences while comparing the case of a

constant load with that of a variable load. We can conclude that in the variable loading

case, the crack begins to grow at a much later time than in the constant loading case. This

effect holds for b = 4 and b = 1.5 as seen in Figures 9.9-9.12. However, the difference

between the constant external load and variable external load is remarkable when b = 4.
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9.2 Analysing the Onset of Crack Growth

Inspecting the graphs of the CZ length with respect to time, we can see that for the case

b = 4, β =
b

8
, we have a jump, at the start of crack growth, of the CZ length, see Figure 6.6.

We wish to study the behaviour for this set of parameters and also see if this effect appears

for the viscoelastic case as well as the case of changing the parameter b.

The Elastic Case with b = 4, β =
b

8

For instance, when h =
1

2500
, Figure 9.13 shows how the CZ length is changing with time.
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Figure 9.13: CZ length vs. time for b = 4, β =
1

2
.

Let ld correspond to the CZ length at the delay time td. The CZ length at this point

was numerically obtained using the algorithm explained in Section 6.2, this gives the values

(td, ld) = (0.01184, 0.15043). At time step td+ = td +
1

h
= td +

1

2500
, we have the value

ld+ = 0.12168. However, we will modify the value of td+ 100 times using td+,i = td +
1

2500i
for i = 1, 2, ...100; to see that the CZ length does not tend to ld = 0.150428 as td+1,i → td,

but it decreases and ld+,i → 0.11925 as td+,i → td. Additionally, a(d+, i) does not tend to 1

but ad+,i → 1.05 as td+,i → td. The dashed vertical line in Figure 9.14 joins the points for

the CZ length at time td. See Figure 9.14.
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Figure 9.14: CZ length (left), crack length and CZ tip coordinate (right), vs. t for b = 4, β =
1

2
(elastic).

If we take the points corresponding to i = 99 and i = 100 (i.e. td+,99 and td+,100),

and extrapolate to find an approximation of the CZ length at td, we obtain the values

(t̃d, l̃d) = (0.011841, 0.118796). Using (t̃d, l̃d) as the first step during crack growth, we

obtain the graph given in Figure 9.15.
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Figure 9.15: CZ length, l(t) vs. time, t for b = 4, β =
1

2
.

The jump of the crack length at t = td, seen on the figures, indicates that there is
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unstable crack growth at the onset of crack propagation followed by stable crack growth,

for the chosen set of parameters. It also causes a jump in the CZ length at td+ followed by

a continuous CZ length evolution.

The Viscoelastic Case with b = 4, β =
b

8

Now we will take the viscoelastic case and see wether the same behaviour will arise at the

onset of crack growth. As in the elastic case, we will take h =
1

2500
. Figure 9.16 shows

that there is an initial decrease of the viscoelastic CZ length. However, with comparison

to the elastic case, the drop is not as pronounced.
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Figure 9.16: CZ length vs. t for b = 4, β =
1

2
.

For this case, we have (td, ld) = (0.01067, 0.13889). As previously done, we will modify

the value of td+ 100 times using td+,i = td +
1

2500i
for i = 1, 2, ...100. See Figure 9.17.
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Figure 9.17: CZ length (left), crack length and CZ tip coordinate (right), vs. t for b = 4, β =
1

2
(viscoelastic).

From the above graphs, we see that the behaviour emerging at the onset of crack growth

for the elastic case does not occur for the viscoelastic case. In fact, we have that as td+ → td,

ld+ → ld and concurrently ad+1 → ad = 1, i.e. l(t) and a(t) are continuous at t = td

The Case b = 1.5

For a step size of h =
1

200
, we will look at the limiting behaviour for the elastic and

viscoelastic cases. The graphs below show that as we take td+ closer to td, the CZ length

at td+ approaches the CZ length which was computed before crack growth for t = td.
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Figure 9.18: CZ length vs. t for b = 1.5,

β =
b

8
(elastic).
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Figure 9.19: CZ length vs. t for b = 1.5,

β =
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8
(viscoelastic).
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Discontinuity for Various Parameter Sets

Now, let’s have a look at the initiation of crack growth for different sets of parameters.

As mentioned before, the red line connects the points at t = td and t = td +
1

2500
, while

the blue curve demonstrates whether ld+ → ld as t → td. We are plotting these graphs to

observe which sets of parameters cause convergence of the CZ length at the onset of crack

growth. Convergence is shown by those graphs where the discrete points (demonstrated by

the blue points) tend to the maximum red point.

Table 9.1: CZ length at the onset of crack growth (elastic case).
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Table 9.2: CZ length at the onset of crack growth (viscoelastic case).
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Evidently, when we assume that the material behaves as a linear viscoelastic material,

we have continuity of the CZ length at t = td for all sets of parameters considered. This

stability at the onset of crack growth holds in the elastic case for β =
b

2
, as demonstrated

in Table 9.1. On the other hand, as β decreases
(
i.e. for β =

b

4
and β =

b

8

)
, there is

unstable crack growth as the crack begins to propagate for some cases of b. It is observed

that this instability becomes more pronounced as b increases.
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Chapter 10

Conclusions and Ideas for Further

Research

10.1 Conclusions

A modified version of the Dugdale-Leonov-Panasyuk (DLP) cohesive zone (CZ) model was

developed in this thesis. The model problem consists of a time- dependent CZ condition

which is in the form of an Abel type integral equation. The unknown function in the

integrand is the stress in the CZ. This integral equation depends on the stress ahead

of the CZ. The formula which computes these stresses was formulated using results by

Muskhelishvili, see [44]. Furthermore, for this stress to be bounded at the CZ tip, the

stress intensity factor is assumed to be zero there.

The two main material parameters in the model problem are the exponent in the power-

type durability curve, b, and the exponent in the accumulation law, β. The CZ defined in

the model problem can exist only if 0 < β < b. We mainly implemented the algorithm for
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the set of parameters β =
b

2
, β =

b

4
and β =

b

8
and used b = 4 and b = 1.5. Two stages

were thoroughly analysed: (i) the stage of a stationary crack; and (ii) the stage of a crack

propagating in time.

For the stationary crack stage, we used a numerical method to study how the CZ tip

moves with time and how the stress influences this movement. This numerical method was

based on a discrete time mesh and assumed zero stress intensity factor. Applying the secant

method, we obtain the CZ tip coordinate, the stress in the CZ and the stress ahead of the

CZ. We used the general solution of an Abel type integral equation to find the stress in

the CZ. When b = 4, the CZ length grows more rapidly with time as β increases; whereas

when b = 1.5, the CZ length grows more rapidly with time as β decreases. We can see from

Figures 4.3 and 4.4 that for a specific point in space, the stress increases while this point

is ahead of the CZ tip then reaches a maximum at the CZ tip and monotonically decreases

with the distance from the tip.

After that, we looked at the crack opening especially the opening at the crack tip.

To obtain the crack opening, we made use of the formulas in the DLP approach where

necessary modifications were made, namely including the time and history dependence of

the CZ stress and crack length. We first considered the case when the bulk of the material

acts elastically and then used a time- dependent Volterra integral operator to arrive at the

crack tip opening in the case of having a viscoelastic material. As expected, we have an

increase, with time, of the crack tip opening. Moreover, for both cases of b considered, as

β increases the crack tip opening increases more rapidly with time. The obtained graphs

demonstrate that the crack opens at a higher rate in the viscoelastic case than in the elastic

case.

Subsequently, the crack initiation stage, and thus the crack propagation stage, were

considered. The crack tip opening is very important in order to predict when the crack will

propagate. The crack begins to grow when the crack tip opening reaches a critical value.

The time instant when this occurs is referred to as the delay time td. For all times following
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td, the crack is in it’s propagating stage. This condition for crack growth holds for both

the elastic and viscoelastic cases.

Consequently, under such assumptions, we can find the crack length as well as the CZ

length with respect to time. This was carried out by modifying the algorithm used for a

stationary crack by allowing the crack length a to be a function depending on time. For

the growing crack stage, t > td, we can see that the crack growth rate increases, while

the CZ length decreases with time. The time, when the CZ length becomes zero seems to

coincide with the time when the crack length becomes infinite and can be associated with

the complete fracture of the body.

The parameter β has a larger effect on the cohesive zone length during the propagating

crack stage compared to the stationary crack stage. Furthermore, in the propagating crack

stage, the crack grows more rapidly with time as β decreases; and so it can also be concluded

that as β decreases, the rupture time also decreases.

An interesting observation made was regarding the delay time and the rupture time as

we change the set of values taken for b and β. The delay time td is higher for the elastic

case than for the viscoelastic case. The rupture time in the viscoelastic case is slightly

smaller than that for the purely elastic case. Also, as b and β become further apart, the

maximum CZ length reached increases.

It has been noticed that for the elastic case with b = 4, β =
1

2
, we have unstable crack

growth as crack propagation initiates. This is accompanied by a significant drop of the CZ

length during the first time step, td+ of crack growth. Studying the limiting value of the

crack length, we conclude that the crack length does not tend to its normalised value of

1 as td+ approached td. The following steps for this case indicate the occurrence of stable

crack growth. Moreover, for the other cases of the parameters, we have stable crack growth

with the crack length at the onset of crack growth approaching a0 = 1 as td+ approaches

td.
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The problem with an external load varying linearly in time was also considered. While

the crack is stationary, considering a variable load produces a slower rate of CZ growth

compared to the case of considering a constant load. Evidently, the crack tip opening

increases more rapidly in the constant loading case for both the elastic and viscoelastic

materials. For the variable loading case, the delay time is larger than in the constant

loading case. This effect is more conspicuous when b = 4 compared to when b = 1.5.

Additionally, from Figures 7.10-7.17, we discover that the difference between the curves

for the three cases of β is minor when b = 4 compared to when b = 1.5. In other words,

decreasing the value of β does not have a significant effect on the rupture time of the body

when b = 4. On the other hand, when b = 1.5, there is a clear difference in the rupture

time for the different cases of β considered.

Last, but not least, the numerical convergence rate was studied for the numerical so-

lutions obtained. The convergence rates, as well as the approximation of the error, were

obtained by using Aitken’s extrapolation technique. We can conclude that for the station-

ary crack stage, as well as the propagating crack stage, we have convergence of all computed

values as the mesh becomes finer, except for the stress at the CZ tip when the difference

between β and b is sufficiently small. The very slow convergence (almost non-convergence)

of the stress at the CZ tip, when β =
3b

4
and

b

2
, may be a manifestation of a CZ tip

stress singularity, at some range of values for the parameter β. Although the square root

singularity has been eliminated in the model by the requirement that the corresponding

stress intensity factor at the CZ tip is zero, a singularity of a different order may still be

present there, however this needs a separate analysis, which is an open problem.
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10.2 Ideas for Further Research

Although fracture mechanics is a relatively prevalent subject, much still remains to be

discovered. Issues such as creep, and time dependence contain open problems of high

importance, some of which are mentioned below.

(a) Multiple cracks: It is very interesting to study the behaviour of cohesive zones in ma-

terials which contain not one but multiple cracks which are collinear. The equations

modelling such geometrical representation of cracks will be different to those used for

a single crack, see [39].

(b) Problems of other varying external loads in time: By using a linear function in time

for the external load for this thesis, we were thinking about how the solutions would

change if a different function was used for the external load. Such dependence of the

variable load on time could involve sinusoidal functions to demonstrate a periodic

effect of the load on the material. Also, another idea is to consider an impulsive load.

(c) Energy release rate: An open problem is to study the energy release rate for the time-

dependent CZ model. The amount of fracture energy dissipated during crack growth

depends on the CZ model considered.

(d) The stress at the CZ tip is of great interest. As mentioned in the conclusion, there

could be other singularities at the CZ tip which haven’t been removed.

(e) An intriguing thought, whilst applying the problems in this thesis to the material

PMMA, involves how other materials behave when having a time and history depen-

dent CZ model. Various polymers could be considered and therefore the change of

parameters, used in Section 5.2.2, will have an effect on the solutions obtained in the

viscoelastic case.
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Appendix A

Continuity of the Stress in the Cohesive

Zone

Let us now analyse the behaviour of the solution of (4.1) for σ(x, t) as t → tc(x) + 0. We

have the following

lim
t→tc(x)+0

σβ(x, t)

= lim
t→tc(x)+0

− 1

π
sin

(
π
β

b

)[ c∑
l=1

σβ(x, tl−1) (V (tl−1, t, tc(x))− V (tl, t, tc(x)))

+
b

β

(
σβ(x, tl)− σβ(x, tl−1)

tl − tl−1

)
•(

W (tl−1, t, tc(x))−W (tl, t, tc(x))− β

b
(tl − tl−1)V (tl, t, tc(x))

)]
. (A.1)

In the above formula, only V (tl, t, tc(x)) and W (tl, t, tc(x)) depend on t. Moreover, since

β > 0, from (4.8) and (4.9) we have for any t,

V (tc, t, tc) = π csc

(
π
β

b

)
, W (tc, t, tc) = 0.
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For the case when l 6= c, we have

lim
t→tc+0

V (tl, t, tc) = lim
t→tc+0

{
π csc

(
π
β

b

)
− b

β

(
tc − tl
t− tl

)β
b

2F1

[
β

b
,
β

b
; 1 +

β

b
;
tc − tl
t− tl

]}

= π csc

(
π
β

b

)
− b

β
Γ

[
1 +

β

b

]
Γ

[
1− β

b

]
= π csc

(
π
β

b

)
− b

β

(
π
β

b
csc

(
π
β

b

))
= 0,

lim
t→tc+0

W (tl, t, tc)

= lim
t→tc+0

{
β

b
π csc

(
π
β

b

)
(t− tl)−

1

1 + β
b

(tc − tl)1+β
b (t− tl)−

β
b 2F1

[
1 +

β

b
,
β

b
; 2 +

β

b
;
tc − tl
t− tl

]}

=
β

b
π csc

(
π
β

b

)
(tc − tl)−

1

1 + β
b

(tc − tl)Γ
[
2 +

β

b

]
Γ

[
1− β

b

]
=
β

b
π csc

(
π
β

b

)
(tc − tl)−

β

b
π(tc − tl) csc

(
π
β

b

)
= 0,

where we have used that

2F1[a, b, c, 1] =
Γ[c]Γ[c− a− b]
Γ[c− a]Γ[c− b]

,

as well as other properties of the Gamma function such as

Γ[z + 1] = zΓ[z] and Γ[1− z]Γ[z] = π csc[(πz)].

Consequently, in equation (A.1), the summation over l yields

lim
t→tc(x)+0

σβ(x, t) = − 1

π
sin

(
π
β

b

)[
−π csc

(
π
β

b

)
σβ(x, tc−1)+

b

β
· σ

β(x, tc(x))− σβ(x, tc−1)

tc(x)− tc−1

(
β

b
(tc(x)− tc−1)π csc

(
π
β

b

))]
= σβ(x, tc(x)).

Therefore, lim
t→tc(x)+0

σβ(x, t) = σβ(x, tc(x)) for 0 < β < b.
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Appendix B

Graphs of Solutions using Various

Meshes

In this section, we present the solutions obtained for the problems considered during the

stationary crack stage as well as the propagating crack stage. For each of the cases, we will

present the solutions for b = 4 to begin with, then the solutions for b = 1.5 will follow. The

caption of the graphs and tables indicate the parameter sets.

From these graphs, we can see that the solutions obtained converge as we take more

points in the mesh.
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B.1 Constant Loading
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Figure B.1: CZ tip coordinate vs. time for b = 4, β =
b
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Figure B.2: CZ tip coordinate vs. time for b = 4, β =
b
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Figure B.3: CZ tip coordinate vs. time for b = 4, β =
b
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Figure B.4: CZ tip coordinate vs. time for b = 1.5, β =
b
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Figure B.5: CZ tip coordinate vs. time for b = 1.5, β =
b
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Figure B.6: CZ tip coordinate vs. time for b = 1.5, β =
b
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Stresses

The Case b = 4 β =
3b
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Figure B.7: σ(c(t∗), t) vs. time for

b = 4, β =
3b

4
, t∗ = 0.6: global picture.
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Figure B.8: σ(c(t∗), t) for b = 4, β =
3b
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,

t∗ = 0.6: closer look ahead of the CZ (t < t∗).
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Figure B.9: σ(c(t∗), t) for b = 4, β =
3b

4
,

t∗ = 0.6: closer look in the CZ (t > t∗).
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Figure B.10: σ(c(t∗), t) for b = 4,

β =
3b

4
, t∗ = 0.6: closer look at the CZ tip

(near t∗).
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The Case b = 4 β =
b
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Figure B.11: σ(c(t∗), t) vs. time for

b = 4, β =
b

2
, t∗ = 0.6: global picture.
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Figure B.12: σ(c(t∗), t) for b = 4,

β =
b

2
, t∗ = 0.6: closer look ahead of the

CZ (t < t∗).
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Figure B.13: σ(c(t∗), t) for b = 4, β =
b

2
,

t∗ = 0.6: closer look in the CZ (t > t∗).
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Figure B.14: σ(c(t∗), t) for b = 4, β =
b

2
,

t∗ = 0.6: closer look at the CZ tip

(near t∗).
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The Case b = 4 β =
b
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Figure B.15: σ(c(t∗), t) vs. time for

b = 4, β =
b

3
, t∗ = 0.6: global picture.
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Figure B.16: σ(c(t∗), t) for b = 4, β =
b

3
,

t∗ = 0.6: closer look ahead of the CZ (t < t∗).
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Figure B.17: σ(c(t∗), t) for b = 4, β =
b

3
,

t∗ = 0.6: closer look in the CZ (t > t∗).
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Figure B.18: σ(c(t∗), t) for b = 4,

β =
b

3
, t∗ = 0.6: closer look at the CZ tip

(near t∗).
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The Case b = 4 β =
b

4
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Figure B.19: σ(c(t∗), t) vs. time for

b = 4, β =
b

4
, t∗ = 0.6: global picture.
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Figure B.20: σ(c(t∗), t) for b = 4,

β =
b

4
, t∗ = 0.6: closer look ahead of the

CZ (t < t∗).
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Figure B.21: σ(c(t∗), t) for b = 4,

β =
b

4
, t∗ = 0.6: closer look in the CZ

(t > t∗).
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Figure B.22: σ(c(t∗), t) for b = 4, β =
b

4
,

t∗ = 0.6: closer look at the CZ tip

(near t∗).
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The Case b = 4 β =
b
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Figure B.23: σ(c(t∗), t) vs. time for b = 4,

β =
b

8
, t∗ = 0.6: global picture.
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Figure B.24: σ(c(t∗), t) for b = 4, β =
b

8
,

t∗ = 0.6: closer look ahead of the CZ

(t < t∗).
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Figure B.25: σ(c(t∗), t) for b = 4, β =
b

8
,

t∗ = 0.6: closer look in the CZ

(t > t∗).
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Figure B.26: σ(c(t∗), t) for b = 4, β =
b

8
,

t∗ = 0.6: closer look at the CZ tip

(near t∗).
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The Case b = 1.5, β =
3b
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Figure B.27: σ(c(t∗), t) vs. time for

b = 1.5, β =
3b

4
, t∗ = 0.6: global picture.
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Figure B.28: σ(c(t∗), t) for b = 1.5,

β =
3b

4
, t∗ = 0.6: closer look ahead of the CZ

(t < t∗).
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Figure B.29: σ(c(t∗), t) for b = 1.5,

β =
3b

4
, t∗ = 0.6: closer look in the CZ

(t > t∗).

0.58 0.59 0.6 0.61 0.62 0.63

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

t

 

 

σ(c(t*),t)

n=25
n=50
n=100
n=200
n=400
n=800

Figure B.30: σ(c(t∗), t) for b = 1.5,

β =
3b

4
, t∗ = 0.6: closer look at the CZ tip

(near t∗).
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The Case b = 1.5 β =
b
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Figure B.31: σ(c(t∗), t) vs. time for

b = 1.5, β =
b

2
, t∗ = 0.6: global picture.
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Figure B.32: σ(c(t∗), t) for b = 1.5,

β =
b

2
, t∗ = 0.6: closer look ahead of the

CZ (t < t∗).
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Figure B.33: σ(c(t∗), t) for b = 1.5,

β =
b

2
, t∗ = 0.6: closer look in the CZ

(t > t∗).
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Figure B.34: σ(c(t∗), t) for b = 1.5,

β =
b

2
, t∗ = 0.6: closer look at the CZ tip

(near t∗).
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The Case b = 1.5 β =
b
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Figure B.35: σ(c(t∗), t) vs. time for

b = 1.5, β =
b

3
, t∗ = 0.6: global picture.
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Figure B.36: σ(c(t∗), t) for b = 1.5,

β =
b

3
, t∗ = 0.6: closer look ahead of the CZ

(t < t∗).
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Figure B.37: σ(c(t∗), t) for b = 1.5,

β =
b

3
, t∗ = 0.6: closer look in the CZ

(t > t∗).

0.58 0.585 0.59 0.595 0.6 0.605 0.61 0.615

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

t

 

 

σ(c(t*),t)

n=25
n=50
n=100
n=200
n=400
n=800

Figure B.38: σ(c(t∗), t) for b = 1.5,

β =
b

3
, t∗ = 0.6: closer look at the CZ tip

(near t∗).
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The Case b = 1.5 β =
b
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Figure B.39: σ(c(t∗), t) vs. time for

b = 1.5, β =
b

4
, t∗ = 0.6: global picture.
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Figure B.40: σ(c(t∗), t) for b = 1.5,

β =
b

4
, t∗ = 0.6: closer look ahead of the

CZ (t < t∗).
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Figure B.41: σ(c(t∗), t) for b = 1.5,

β =
b

4
, t∗ = 0.6: closer look in the CZ

(t > t∗).
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Figure B.42: σ(c(t∗), t) for b = 1.5,

β =
b

4
, t∗ = 0.6: closer look at the CZ tip

(near t∗).
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The Case b = 1.5 β =
b
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Figure B.43: σ(c(t∗), t) vs. time for

b = 1.5, β =
b

8
, t∗ = 0.6: global picture.
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Figure B.44: σ(c(t∗), t) for b = 1.5,

β =
b

8
, t∗ = 0.6: closer look ahead of the

CZ (t < t∗).
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Figure B.45: σ(c(t∗), t) for b = 1.5,

β =
b

8
, t∗ = 0.6: closer look in the CZ

(t > t∗).
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Figure B.46: σ(c(t∗), t) for b = 1.5,

β =
b

8
, t∗ = 0.6: closer look at the CZ tip

(near t∗).
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Crack Tip Opening for the Elastic Case
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Figure B.47: Crack Opening δe vs. time t for b = 4, β =
b
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Figure B.48: Crack Opening δe vs. time t for b = 4, β =
b
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Figure B.49: Crack Opening δe vs. time t for b = 4, β =
b
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Figure B.50: Crack Opening δe vs. time t for b = 1.5, β =
b
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Figure B.51: Crack Opening δe vs. time t for b = 1.5, β =
b
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Figure B.52: Crack Opening δe vs. time t for b = 1.5, β =
b
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Crack Tip Opening for the Viscoelastic Case
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Figure B.53: Crack Opening δv vs. time t for b = 4, β =
b
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Figure B.54: Crack Opening δv vs. time t for b = 4, β =
b
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Figure B.55: Crack Opening δv vs. time t for b = 4, β =
b
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Figure B.56: Crack Opening δv vs. time t for b = 1.5, β =
b

2
.

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

10
2

t

δ
v

 

 

n=25
n=50
n=100
n=200
n=400
n=800

0.61 0.615 0.62 0.625

8.4

8.45

8.5

8.55

8.6

8.65

8.7

8.75

8.8

t

δ
v

 

 

n=25
n=50
n=100
n=200
n=400
n=800

Figure B.57: Crack Opening δv vs. time t for b = 1.5, β =
b
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Figure B.58: Crack Opening δv vs. time t for b = 1.5, β =
b
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Crack Propagation Stage for the Elastic Case

The Case b = 4

Regarding the time mesh of equidistant time steps h, we have considered five cases, namely

h =
1

500
,

1

1000
,

1

2000
,

1

4000
and

1

8000
. We will present in a table the number of time steps

before crack growth begins for three cases of β.

Table B.1: Number of time steps b = 4 (elastic case).

@
@
@
@@

β

h 1

500

1

1000

1

2000

1

4000

1

8000

b/2 4 8 15 29 58

b/4 6 11 21 41 82

b/8 6 12 24 48 95

Now, we will present graphs showing the results obtained.
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Figure B.59: Length (log scale) vs. time for b = 4, β =
b
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Figure B.60: Length (log scale) vs. time for b = 4, β =
b
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Figure B.61: Length (log scale) vs. time for b = 4, β =
b
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The Case b = 1.5

In this case, for the time mesh, we have considered five cases, namely h =
1

50
,

1

100
,

1

200
,

1

400

and
1

800
. We will present in a table the number of time steps before crack growth begins

for three cases of β.

Table B.2: Number of time steps b = 1.5 (elastic case).

@
@
@
@@

β

h 1

50

1

100

1

200

1

400

1

800

b/2 7 14 28 55 109

b/4 9 17 33 66 132

b/8 10 19 37 73 146

Now, we will present graphs showing the results obtained.
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Figure B.62: Length (log scale) vs. time for b = 1.5, β =
b
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Figure B.63: Length (log scale) vs. time for b = 1.5, β =
b
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Figure B.64: Length (log scale) vs. time for b = 1.5, β =
b
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Figure B.65: CZ length vs. t, b = 4, β =
b
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Figure B.66: CZ length vs. t, b = 4, β =
b
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Figure B.67: CZ length vs. t, b = 4, β =
b
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Figure B.68: CZ length vs. t, b = 1.5, β =
b
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Figure B.69: CZ length vs. t, b = 1.5, β =
b
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Figure B.70: CZ length vs. t, b = 1.5, β =
b
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Crack Propagation Stage for the Viscoelastic Case

The Case b = 4

Regarding the time mesh of equidistant time steps h, we have considered five cases, namely

h =
1

500
,

1

1000
,

1

2000
,

1

4000
and

1

8000
. We will present in a table the number of time steps

before crack growth begins for three cases of β.

Table B.3: Number of time steps b = 4 (viscoelastic case).

@
@
@
@@

β

h 1

500

1

1000

1

2000

1

4000

1

8000

b/2 4 7 14 28 55

b/4 5 10 19 38 76

b/8 6 11 22 44 87

Now, we will present graphs showing the results obtained.
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Figure B.71: Length (log scale) vs. time for b = 4, β =
b
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Figure B.72: Length (log scale) vs. time for b = 4, β =
b
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Figure B.73: Length (log scale) vs. time for b = 4, β =
b

8
.

160



The Case b = 1.5

In this case, for the time mesh, we have considered five cases, namely h =
1

50
,

1

100
,

1

200
,

1

400

and
1

800
.

Table B.4: Number of time steps b = 1.5 (viscoelastic case).

@
@
@
@@

β

h 1

50

1

100

1

200

1

400

1

800

b/2 6 11 22 44 87

b/4 7 13 26 52 103

b/8 7 14 28 56 111

Now, we will present graphs showing the results obtained.
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Figure B.74: Length (log scale) vs. time for b = 1.5, β =
b
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Figure B.75: Length (log scale) vs. time for b = 1.5, β =
b
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Figure B.76: Length (log scale) vs. time for b = 1.5, β =
b
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Figure B.77: CZ length vs. t, b = 4, β =
b
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Figure B.78: CZ length vs. t, b = 4, β =
b
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Figure B.79: CZ length vs. t, b = 4, β =
b
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Figure B.80: CZ length vs. t, b = 1.5, β =
b
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Figure B.81: CZ length vs. t, b = 1.5, β =
b
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Figure B.82: CZ length vs. t, b = 1.5, β =
b

8
.

163



B.2 Variable Loading

CZ Tip Coordinate and Stresses
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Figure B.83: c(t) vs. t for b = 4, β =
b
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Figure B.84: σ(c(t∗), t) vs. t for b = 4, β =
b
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Figure B.85: c(t) vs. t for b = 4, β =
b
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Figure B.86: σ(c(t∗), t) vs. t for b = 4, β =
b
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Figure B.87: c(t) vs. t for b = 4, β =
b
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Figure B.88: σ(c(t∗), t) vs. t for b = 4, β =
b
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Figure B.89: c(t) vs. t for b = 1.5, β =
b
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Figure B.90: σ(c(t∗), t) vs. t for b = 1.5,

β =
b
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Figure B.91: c(t) vs. t for b = 1.5, β =
b
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Figure B.92: σ(c(t∗), t) vs. t for b = 1.5,

β =
b
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Figure B.93: c(t) vs. t for b = 1.5, β =
b
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Figure B.94: σ(c(t∗), t) vs. t for b = 1.5,

β =
b
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Crack Tip Opening for the Elastic Case
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Figure B.95: δe vs. t for b = 4, β =
b
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Figure B.96: δe vs. t for b = 4, β =
b
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Figure B.97: δe vs. t for b = 4, β =
b
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Figure B.98: δe vs. t for b = 1.5, β =
b
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Figure B.99: δe vs. t for b = 1.5, β =
b
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Figure B.100: δe vs. t for b = 1.5, β =
b
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Crack Tip Opening for the Viscoelastic Case
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Figure B.101: δv vs. t for b = 4, β =
b
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Figure B.102: δv vs. t for b = 4, β =
b
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Figure B.103: δv vs. t for b = 4, β =
b
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Figure B.104: δv vs. t for b = 1.5, β =
b
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Figure B.105: δv vs. t for b = 1.5, β =
b
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Figure B.106: δv vs. t for b = 1.5, β =
b
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CZ Length for a Propagating Crack: Elastic Case
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Figure B.107: CZ length vs. t

for b = 4, β =
b
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Figure B.108: CZ length vs. t

for b = 4, β =
b
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Figure B.109: CZ length vs. t

for b = 4, β =
b

8
.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

t

l

 

 

h=1/25
h=1/50
h=1/100
h=1/200
h=1/400

Figure B.110: CZ length vs. t

for b = 1.5, β =
b
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Figure B.111: CZ length vs. t

for b = 1.5, β =
b
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Figure B.112: CZ length vs. t

for b = 1.5, β =
b
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CZ Length for a Propagating Crack: Viscoelastic Case

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

t

l

 

 

h=1/25
h=1/50
h=1/100
h=1/200
h=1/400

Figure B.113: CZ length vs. t

for b = 4, β =
b
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Figure B.114: CZ length vs. t

for b = 4, β =
b
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Figure B.115: CZ length vs. t

for b = 4, β =
b
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Figure B.116: CZ length vs. t

for b = 1.5, β =
b
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Figure B.117: CZ length vs. t

for b = 1.5, β =
b
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Figure B.118: CZ length vs. t

for b = 1.5, β =
b
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Appendix C

Numerical Convergence Rate for the

Variable Loading Case

We will use CR to denote the numerical convergence rate α.

Cohesive Zone Length of a Stationary Crack
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Figure C.1: Error of the CZ length vs. step

size for b = 4 (stationary crack, variable load).

@
@

@
@@

h̃

β b

2

b

4

b

8

1/25 - - -

1/50 1.15325 1.08914 1.11553

1/100 1.09899 1.05023 1.09938

1/200 1.07595 1.03434 1.09730

1/400 1.07595 1.03434 1.09730

Table C.1: CR α of the CZ length for b = 4

(stationary crack stage, variable load).
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Figure C.2: Error of the CZ length vs. step

size for b = 1.5 (stationary crack stage, variable

load).

@
@

@
@@

h̃

β b

2

b

4

b

8

1/25 - - -

1/50 1.20413 0.62096 0.56792

1/100 1.14595 0.66246 0.58262

1/200 1.11929 0.67458 0.58692

1/400 1.11929 0.67458 0.58692

Table C.2: CR α of the CZ length for

b = 1.5 (stationary crack, variable load).

Stress at the Cohesive Zone Tip

As done for the case of a constant load, we will study the stress at the point x = c(t∗),

t∗ = 0.6. Also, we will use the parameter sets β =
3b

4
and β =

b

3
as well as the usual 3 sets

β =
b

2
, β =

b

4
and β =

b

8
.

@
@
@
@@

β

h̃ 1

25

1

50

1

100

1

200

1

400
ya

3b/4 2.34684 2.62118 2.90778 3.21403 3.54430 -0.99663

b/2 2.056619 2.20209 2.33690 2.46555 2.58998 6.25368

b/3 1.82037 1.89511 1.95862 2.01382 2.06232 2.41329

b/4 1.68757 1.73202 1.76876 1.79944 1.82514 1.95804

b/8 1.46837 1.47359 1.47973 1.48556 1.49065 1.52581

Table C.3: Stress at the CZ tip and its Aitken approximation for b = 4, variable load.
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Now we will obtain the graph showing the error ε and the table which follows shows the

numerical convergence rate at the CZ tip, thus at step t = 0.6.
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Figure C.3: Error of the stress at the CZ tip vs. step size for b = 4 (variable load).

@
@
@
@@

h̃

β 3b

4

b

2

b

3

b

4

b

8

1/25 - - - - -

1/50 -0.11377 0.05089 0.19440 0.25899 0.13753

1/100 -0.10999 0.04887 0.18863 0.25597 0.18039

1/200 -0.10894 0.048183 0.18673 0.25510 0.19502

1/400 -0.10894 0.04818 0.18673 0.25510 0.19502

Table C.4: CR α for b = 4 (stress at the CZ tip, stationary crack, variable load).
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@
@
@
@@

β

h̃ 1

25

1

50

1

100

1

200

1

400
ya

3b/4 5.22639 6.29361 7.54548 9.02099 10.76183 -0.66016

b/2 3.78948 4.15634 4.53986 4.93563 5.34045 -12.76732

b/3 2.98270 3.08529 3.19467 3.30273 3.40546 5.38498

b/4 2.62217 2.64047 2.67340 2.71082 2.74798 8.26950

b/8 2.13353 2.07111 2.03855 2.02127 2.01230 2.00261

Table C.5: Stress at the CZ tip and its Aitken approximation for b = 1.5, variable load.

Similarly to the case b = 4, we will obtain the graph showing the error ε and the table

which follows shows the numerical convergence rate at the CZ tip, thus at t∗ = 0.6.
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Figure C.4: Error of the stress at the CZ tip vs. step size for b = 1.5 (variable load).
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@
@
@
@@

h̃

β 3b

4

b

2

b

3

b

4

b

8

1/25 - - - - -

1/50 -0.24037 -0.03162 0.06296 0.00468 0.93453

1/100 -0.23882 -0.03233 0.07031 0.00846 0.93050

1/200 -0.23856 -0.03262 0.07299 0.00968 0.94530

1/400 -0.23856 -0.03262 0.07299 0.00968 0.94530

Table C.6: CR α for b = 1.5 (stress at the CZ tip, stationary crack, variable load).

Crack Tip Opening for the Elastic Case
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Figure C.5: Error of δe vs. step size for b = 4

(variable load).

@
@

@
@@

h̃

β b

2

b

4

b

8

1/25 - - -

1/50 1.09747 1.06331 1.09249

1/100 1.07247 1.04469 1.08499

1/200 1.06178 1.03648 1.08399

1/400 1.06178 1.03648 1.08399

Table C.7:

CR α of δe for b = 4 variable load.
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Figure C.6: Error of δe vs. step size for

b = 1.5 (variable load).

@
@

@
@@

h̃

β b

2

b

4

b

8

1/25 - - -

1/50 1.14340 1.34027 0.55444

1/100 1.10279 1.41178 0.57297

1/200 1.08322 1.51596 0.57920

1/400 1.08322 1.51596 0.57920

Table C.8: CR α of δe for b = 1.5, variable

load.

Crack Tip Opening for the Viscoelastic Case
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Figure C.7: Error of δv vs. step size for b = 4

(variable load).

@
@

@
@@

h̃

β b

2

b

4

b

8

1/25 - - -

1/50 1.11985 1.10527 1.14557

1/100 1.08832 1.07462 1.12320

1/200 1.07568 1.06124 1.11536

1/400 1.07568 1.06124 1.11536

Table C.9: CR α of δv for b = 4, variable load.
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Figure C.8: Error of δv vs. step size for

b = 1.5 (variable load).

@
@

@
@@

h̃

β b

2

b

4

b

8

1/25 - - -

1/50 1.20393 1.38697 1.85606

1/100 1.15729 1.43407 2.70668

1/200 1.13264 1.51320 2.14398

1/400 1.13264 1.51320 2.14398

Table C.10: CR α of δv for b = 1.5,

variable load.
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Appendix D

MATLAB Files: Names and Roles

All the algorithms constructed in this thesis were implemented using MATLAB. Table D.1

shows the main MATLAB files used. All the MATLAB files used for this thesis are on a

CD which is submitted with the thesis.

Table D.1: Role of main m files used in MATLAB.

File Name Role of file

nitem9.m computes the CZ tip coordinate for the stationary

crack problem. The stresses ahead of the CZ and in

the CZ and at the tip are therefore computed

displ.m computes the crack tip opening in the elastic case

displvisc.m computes the crack tip opening in the viscoelastic case

algnewm2.m computes the crack length and CZ tip coordinate for

the propagating crack stage (elastic case)

vvalgnewm2.m computes the crack length and CZ tip coordinate for

the propagating crack stage (viscoelastic case)

crate.m computes the numerical convergence rates α for speci-

fied solutions where the error is also calculated
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