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Abstract 

Retrovirus gene therapy vectors can deliver therapeutic genes to mammalian cells in a 

permanent manner by integrating their genome into host chromosomes and therefore 

provide the potential for long term therapeutic gene expression. Retrovirus integration, 

however, can be oncogenic. Apart from insertional mutagenesis (IM) genotoxicity may 

be caused by other factors including DNA damage following infection and integration 

and epigenetic effects related to incoming viral particles. Thus, using retrovirus and 

lentivirus infected murine tumour tissue and infected cell lines in vitro this thesis was 

directed at investigating whether virus infection and integration could cause 

genotoxicity by alternative route(s) other than IM.  

Using clonally derived liver tumours that developed in mice, and normal liver and 

kidney tissues, following EIAV and HIV delivery in utero, comparative genome 

hybridisation methodology was used to examine for copy number variation. This 

showed amplification and deletions only in EIAV derived tumours. Real time Q-PCR 

analysis was then used to measure gene expression changes relating to genes contained 

within or near to amplifications observed in two tumours of individual mice. The 

STRING database was then used to find networks linking genes with differential 

expression profiles and genes in one of these tumours identified with provirus insertions 

that were also differentially expressed. These data provided preliminary data 

implicating a role for LV in Hepatocellular carcinoma (HCC). 

DNA damage is known to cause chromosomal instability that can lead to tumour 

development. The relationship between double strand breaks (DSB) and virus infection 

was also investigated in-vitro to find alternative routes to genotoxicity other than IM. 

Cell viability analysis demonstrated cells with a defective DNA damage response 

(DDR) have decreased cell viability compared with cells with intact DDR when 

infected with RV or LV vectors. DSB assays showed RV and LV infection to generate 

foci over a 6 hour period followed by DDR. Where no viral integrase is present, no 

DDR appears, however, where the vector is used with or without a genome to infect 

cells, DDR occurs as shown by the presence of 53BP1 foci indicative of DNA damage. 

The relationship between DNA damage and methylation was also investigated. Global 

methylation was found elevated in the genomic DNA of LV and RV infected cells and 

not in control uninfected cells. In contrast, methylation changes were not found in 
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infected cells lacking the NHEJ repair pathway. These data suggest the DNA damage 

response is linked to genome methylation. The E2F transcription factor plays a key role 

in regulating expression of genes known to control oncogenesis and cancer, and E2F is 

regulated by methylation of its related target gene promoters. Taking into account all 

genes in the human genome the number of genes that bind E2F is 32.77%. However, 

using microarray to represent genes differentially expressed after infection, 59% of 

these were E2F targets.  

Overall, taking the data obtained in this thesis into account it may be suggested that RV 

and LV infection causes a number of potentially related changes to cells that include 

DNA damage and repair and methylation changes that could influence E2F that is an 

important factor involved in oncogenesis. Combining this with IM, attenuated RV and 

LV currently in use for gene therapy may cause genotoxicity to infected cells and 

increase the risk of oncogenesis especially where DNA damage is not correctly 

repaired. Further work is required to show in greater detail the extent of this 

genotoxicity, possible by whole genome sequencing of treated host genomes or cell 

transformation assays linked to the genotoxicity assays presented here. 

Collectively these data show that alternative factors to IM might exist that could act 

independently or synergistically to IM.  
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1.1         Gene therapy 

 

Gene therapy refers to the transfer of genetic material to cells to modify specific gene 

expression to treat or correct the progression of a genetic disease. Whilst traditional 

pharmacological therapies aim to cure the symptoms of a disease, gene therapy aims to 

treat or remove the cause of disease by correcting the defective genetic information 

contained within the cells of the patient. For some diseases stem cell therapy is possible, 

however, the complications associated with HLA-mismatched bone marrow 

transplantation have meant that the use of stem cells in an autologous manner is of 

importance. Thus, gene therapy should be used somatically or on patient stem cells in 

an ex-vivo manner.  

Gene therapy is applicable to the “classic” diseases such as the inherited monogenic 

disorders that result from the absence or dysfunction of a specific gene product. It is 

also applicable to the treatment of rheumatoid arthritis, infection of pathogens, 

atherosclerosis and cancer.  

Studies in the 1960’s by Borenfreund and Bendich first demonstrated gene transfer of 

exogenous DNA and found that incorporation of genetic material into the nucleus of the 

mammalian cell occurred 6-24 hours post treatment (Borenfreund and Bendich, 1961). 

Interest in gene therapy increased when between 1961 and 1966 it was made possible to 

characterize and deliver therapeutic genes (Rieke1962; Borenfreund and Bendich, 1961; 

Bendich, 1961).  

Gene therapy has been improved by the use of viruses as vectors to carry therapeutic 

genes into host cells defective of a genetic function as they have evolved intricate 

mechanisms for overcoming the defensive barriers of their target cells. One such virus 

is the retrovirus (RV) and our understanding of RV biology has helped us use these 

viruses to deliver genes in an efficient manner.  
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1.2        Retroviruses 

 

The term RV is used to describe a large and diverse family of RNA viruses (Figure 1 

and 2). RV were discovered more than 20 years ago. They have a small and simple 

genome that can provide stable co linear integration into host genome whilst also 

accommodating about 10kb of foreign DNA for high transfer efficiency  (Bouard, 

Alazard-Dany and Cosset, 2009). 

Retrovirus particles are typically 80-100nm in size and consist of enveloped 

glycoprotein particles and a lipid envelope (Coffin, Huges and Varmus, 1997).  The 

retrovirus genome consists of two copies of single stranded linear RNA genome of 

positive polarity that are able to create double stranded complementary DNA (cDNA) 

copies of their RNA genomes in the nucleus of the host cell using reverse transcriptase. 

The DNA is then incorporated into the host’s genome via a virally encoded protein 

called integrase. It is this process of alternating genetic material between RNA in the 

virion and DNA in infected cells which is the vital feature of the life cycle (Somia and 

Verma, 2000; Zhang and Temin, 1993). Also due to their ability to integrate into the 

host genome they can provide permanent gene transfer to the host cells (Bushman, 

2007).  

Retroviruses are broadly divided into simple and complex classes based on their 

genome organisation and can be further subdivided into seven groups (Table 1). Simple 

retroviruses encode only the basic viral functions such as the structural, enzymatic and 

envelope proteins. The complex retroviruses, code for additional regulatory proteins 

that help to accurately control the level and timing of expression of the viral genes 

(Brenner and Malech, 2003; Coffin, 1992). 
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Genome Sub-Division Genus Example 

Simple 

1 
Avian sarcoma and 

leukosis viral group 
Rous sarcoma virus 

2 
Mammalian B-type viral 

group 
Mouse mammary tumour virus 

3 
Murine leukemia-related 

viral group 

Moloney murine leukaemia 

virus (Mo-MLV) 

4 D-type viral group Mason-Pfizer monkey virus 

Complex 

5 

Human T-cell leukemia–

bovine leukemia viral 

group 

Human T-cell leukemia virus 

6 Spumaviruses Human foamy virus 

7 Lentiviruses (LV) 

Equine Infectious Anaemia 

virus or Human 

Immunodeficiency Virus 

 

Table 1. Classification of RV’s. Seven genesis of RV’s are listed along with examples 

from each group. Note, five of these groups display oncogenic potential (1-5) and are 

known as oncoretroviruses. 

 

The genome common to all RVs consists of three coding genes called gag, pol and env 

which are required in supplying multiple components of the virus structure, enzymes 

and envelope proteins respectively, in both simple and complex retroviruses (Figure 1, 

Table 2) (Vogt, 1997; Coffin, 1996).   

The Gag gene encodes and directs the synthesis of internal virion proteins that form the 

matrix, capsid and nucleocapsid proteins that make up virions. Pol encodes the viral 

protease, reverse transcriptase, RNase H and integrase responsible for transcribing viral 

RNA into double stranded DNA and for integration, respectively. The env gene encodes 

the proteins needed for receptor recognition and envelope anchoring. The viral envelope 

is formed by a cell derived lipid bilayer where proteins encoded by the env region of the 

viral genome are inserted. These consist of the transmembrane and the surface 

components linked together by disulphide bonds  (Cardone et al., 2009; Benit, 

Dessen and Heidmann, 2001; Erlwein, Bieniasz and McClure, 1998).  

Duplicated regions in the 5’ and 3’ ends known as Long Terminal Repeats (LTR) flank 

the gag, pol and env genes. The LTR consists of the U3 (unique 3), R (repeat) and U5 
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(unique 5) sequences and acts as the control centre for gene expression  (Wilk et al., 

2001; Zhang and Temin, 1993).   

 

 

 

 

 

 (Rodrigues, M.  and Coroadinh, Chapter 2, 2011) 

 

Figure 1. Schematic representation of a retrovirus particle. Retrovirus particles vary in 

size from 80–100nm in diameter and have an outer envelope consisting of a lipid 

bilayer that is obtained from the host plasma membrane during the budding process. 

The protein core of the virus consists of viral enzymes and the viral RNA genome 

consisting of two RNA strands. Gag encodes the structural proteins that form the matrix 

capsid, and the nucleoprotein complex. Pol encodes for the essential viral enzymes, 

reverse transcriptase and integrase and is responsible for synthesis of viral DNA and 

integration into host DNA after infection. Env encodes the viral glycoproteins and 

transmembrane proteins that are displayed on the surface of the virus and are 

responsible for association and entry of virion into host cell. 
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 (Fouty and Solodushko, Chapter 4, 2011) 

 

Figure 2. A schematic overview of the retrovirus genome. The virion RNA is typically 7-

12kb in size and consists of the gag, pol and env genes. The LTR regions flank the 

genome. The gag gene encodes the Matrix protein (MA), capsid protein (CA) and 

nucleoplasmid (NC). The pol gene encodes reverse transcriptase (RT), protease (PR), 

integrase (IN) and deoxyuridine triphosphatases (duTPases). The env gene encodes 

the surface subunit (SU) and transmembrane subunit (TM).   

 

 

Gene Function 

Gag 
Directs the synthesis of internal virion proteins that form the matrix, 

the capsid, and the nucleoprotein structures. 

Pol 
Contains the information for the reverse transcriptase and integrase 

enzymes. 

Env 
Provides surface and transmembrane components of the viral 

envelope protein. 

LTR 
Regulate viral gene expression and therefore replication and 

pathogenesis.  

Repeat -R Essential for reverse transcription and replication. 

Unique 3 - U3 Comprises of transcriptional enhancer and promoter sequences.  

Unique 5 – U5 Contains sequences involved in initiation of reverse transcription. 

 

Table 2.Basic components of the RV genome. 
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1.2.1        Life cycle of the RV 

 

 

 

 (Ganser-Pornillos, Yeager  and Sundquist, 2008) 

 

Figure 3. Schematic illustration of the general stages of a RV life cycle. Cell entry is 

facilitated by fusion of the virus with host cell membrane. The virus particle uncoats and 

releases its proteins. Reverse transcription and integration of viral cDNA take place. 

Virus proteins are assembled and viral particles are released from the host cell.    
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Cell binding and entry  

 

The lifecycle of a generic retrovirus is shown in Figure 3 and begins with its attachment 

to a suitable host cell membrane via virally encoded glycoproteins and specific cell 

surface molecules. These viral glycoproteins, that are embedded in the surface unit lipid 

envelope, recognize receptors displayed on the target cell plasma membrane such as, 

CD4, CD8 and CAT-1, and then mediate viral attachment  (Suzuki and Craigie, 2007; 

Ugolini, Mondor  and Sattentau, 1999).  

Membrane fusion is carried out by the viral env protein. The env protein is an oligomer 

composed of three surface unit (SU)-transmembrane (TM) subunit complexes  (Sharma, 

Miyanohara  and Friedmann, 2000). TM is integrated into the cellular membrane. SU is 

located extracellularly and linked to TM by non-covalent interaction. Consequently, SU 

mediates receptor binding and TM mediates membrane fusion. The SU highly specific 

receptor mediated interaction is thought to activate a conformational change of the SU 

proteins leading to the fusion or endocytosis of the viral and cell lipid bilayers. This 

process is dependent on the virus envelope ligand and cell receptor used for entry  

(Damico and Bates, 2000; Sharma, Miyanohara  and Friedmann, 2000).  

Viral particles have two mechanisms of cell entry; membrane fusion or receptor-

mediated endocytosis. This is supported by recent compelling research by Miyauchi et 

al in 2011 who used a pH sensitive green fluorescent protein (GFP) tag to successfully 

visualize the preferential uptake of HIV into acidic endosomes upon entry. This, along 

with other evidence confirms HIV and other retroviruses do not only rely on lipid 

membrane fusion, but also receptor-mediated endocytosis followed by pH mediated 

endosomal fusion for viral entry  (Miyauchi, Marin  and Melikyan, 2011). In contrast in 

ASLV-A, Tva serves as the cellular receptor and interacts with the ASLV-A specific 

protein EnvA and requires low pH conditions to carry out receptor-mediated endocytosis  

(Katen et al., 2001; Wang et al., 1999). Binding of the HIV envelope glycoprotein 

gp120, which is found on the surface of the viral particle, to the primary receptor CD4 

in the host cells leads to conformational changes in both CD4 and gp120. This results in 

exposure of co-receptors belonging to the chemokine receptor family, mainly CXCR4 

and CCR5, which allow viral entry  (Zhang et al., 1999). Entry of virions into the cell 

results in the release of the retroviral core into the cytoplasm of the host cell.  
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Reverse Transcription 

 

Once the retrovirus virions have entered the cytoplasm, the virion nucleocaspid releases 

the enzyme reverse transcriptase (RT). At this stage a positive sense (5’ to 3’) ssRNA is 

transcribed into a double strand complementary DNA (cDNA) via a series of molecular 

events (Fig 4) (Telesnitsky A, 1997; Palaniappan et al., 1996) The RNAse H activity of 

RT hydrolyses and displaces the ssRNA template so that RT can transcribe a second 

complementary DNA strand using the previously generated DNA as a template  

(Telesnitsky A, 1997; Palaniappan et al., 1996).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (Delviks-Frankenberry et al., 2011) 

 

Figure 4. Retrovirus replication. Representation of the key steps in retrovirus 

replication. Negative polarity DNA synthesis (red) is initiated using a partially unwound 

tRNA annealed to the primer-binding site (PBS) at the 5′-end of the viral genomic RNA 

(Step 1). Complementary DNA then binds to the U5 (non-coding region) and R region 

(a direct repeat found at both ends of the RNA molecule) of the viral RNA (Step 2). RT 

continues copying U3 located at 3’ end of viral DNA (Step 3). RT uses the polypurine 

tract (PPT) to initiate plus strand synthesis by copying the 3’LTR (Step 4). The first 

http://en.wikipedia.org/wiki/Complementary_DNA
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strand of complementary DNA (cDNA) is extended (Step 5). Provirus used for 

integration into the host genome of the target cells (Step 6).   

 

Nuclear Entry 

 

The double stranded DNA (dsDNA) is now shuttled into the nucleus remaining 

associated with some of the viral structural proteins in a pre-integration complex (PIC). 

It has been demonstrated that PIC interacts with the cellular microtubule network to 

transport itself through the cytoskeleton towards the nucleus. Simple retroviruses cannot 

gain access to the cellular genome until the disassembly of the nuclear envelope during 

mitosis. Once this occurs, transportation of PIC’s to the cytoplasm can take place  

(Nisole, Stoye  and Saib, 2005; Roe et al., 1993). Consequently, retroviruses such as 

MLV are dependent on the cell cycle and cannot replicate in non-dividing cells. In 

comparison, the PIC’s of lentiviral complexes, such as HIV-1 are able to productively 

infect non-dividing cells. Here, the import of the viral genome and its associated 

proteins is mediated by the interaction of the nuclear pore complex with the protein 

components of the lentiviral PIC’s  (Fouchier and Malim, 1999; Miller, Farnet  and 

Bushman, 1997).  
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Integration 

 

Once nuclear entry has been achieved the viral DNA is transported into the nucleus and 

integrated into the cellular genome by the viral integrase in order to form a provirus  

(Mitchell et al., 2004; Bukrinsky et al., 1993). This is shown in figure 5.   

 

 

 (Bushman et al., 2005) 

Figure 5. Integration of retroviral DNA into the host cell genome 

a) The pre-integration complex (PIC) is composed of a double stranded complementary 

DNA molecule (cDNA). b) Complexed to the viral integrase and other proteins (beige 
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oval) integrase cleaves 2 nucleotides from the 3’ end of each strand exposing recessed 

3’ –OH groups. c) The recessed 3’ hydroxyl groups are joined with the 5’ ends of the 

target DNA. This reaction is mediated by a transesterification reaction. d) Gaps at host-

virus DNA junctions are caused due to unpairing of the integration intermediate 

reaction. e) Once the gap is repaired this accomplishes the formation of the integrated 

proviral DNA. 

 

Viral gene expression, particle assembly and budding 

 

Once integrated the viral DNA can produce full length RNA and spliced RNA using the 

cellular transcription machinery. Using RNA sequence known as packaging signal () 

part of the full length viral transcripts are packaged into new virions to become the next 

generation of viruses  (McBride, Schwartz  and Panganiban, 1997; McBride and 

Panganiban, 1997). The remainder of the full-length transcripts are used as templates 

for the translation of the viral proteins. Progeny virions are then packaged using these 

proteins and become ready to leave the host by one of two mechanisms. These are; 

budding from the surface membrane thereby preserving the host cell, or the more 

destructive lytic pathway often destroying the host cell. Following release, some 

retroviruses undergo a post-release maturation phase. This coincides with 

morphological changes of the viral core, ultimately culminating in mature progeny 

virion capable of infecting new target host cells. 
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1.3        Lentivirus 

 

Lentiviruses are a sub group of the retroviridae family. They are among the most 

intensely studied group of viruses. Lentivirus vectors based on HIV-1 can transduce a 

broad spectrum of non-dividing cells in vivo, such as retinal cells, muscle cells, neurons 

and hepatocytes  (Bouard, Alazard-Dany  and Cosset, 2009). Their ability to efficiently 

deliver large and complex transgenes (up to 10kb) to target cells and tissues is the main 

reason lentiviruses are used for gene therapy (Verma and Weitzman, 2005). The 

lentiviral genome (Fig 6) also carries the three main genes coding for the viral proteins 

(gag, pol and env) however the lentiviral genome is more complex than simple 

retroviruses in that is has additional genes that include regulatory genes (tat and rev) 

and auxiliary genes (vpr, nef, vpu and vif). These genes produce products involved in 

regulation of synthesis and processing viral RNA and also enable efficient viral 

replication (Pfeifer and Verma, 2001; Coffin, 1996).   

Lentiviruses have been found capable of infecting several cell types (Tang, Kuhen  and 

Wong-Staal, 1999; Narayan and Clements, 1989). There are five serotypes of 

lentiviruses such as primate (Human immunodeficiency virus, HIV), sheep and goats, 

(caprine arthritis-encephalomyelitis, CAEV) horses (equine infectious anemia virus, 

EIAV), cats (Feline Immunodeficiency Virus, FIV) and cattle (Bovine 

Immunodeficiency Virus, BIV).  

Due to the long incubation periods of lentiviral vectors they take a toll on the immune 

system resulting in a slowly developing multi-system diseases (Tang, Kuhen  and 

Wong-Staal, 1999). The disease associated with lentiviral infections range from benign 

and subclinical to severely debilitating and lethal. A common feature of lentiviruses is 

their tropism for cells of the monocyte or macrophage lineages. Infection of 

macrophages provide a hiding place for the virus from the infected host immune system 

(Trono, 2000).  
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 (Chang, Liu  and He, 2005) 

 

Figure 6.  Schematic representation of the HIV genome. HIV has several major genes 

coding for structural proteins that are found in all retroviruses (gag, pol, env) and 

several nonstructural/ accessory genes that are unique to HIV genome. 

 

An important genetic difference between simple retroviruses and lentiviruses are 

regulatory (tat and rev) and auxiliary genes (vpr, vif, vpu and nef) that have important 

functions during the viral life cycle and viral pathogenesis  (Brügger et al., 2007).  

The tat (transactivator of transcription) gene binds to the TAR region of viral RNA and 

to host proteins and acts as an activating element by binding to cellular factors and 

mediating their phosphorylation thereby resulting in an increased transcription of all 

HIV genes. Tat is also involved in LTR activation and therefore important in the 

production of viral genomes and for gene expression (Kim and Sharp, 2001).  

The rev (regulator of expression of virion proteins) gene allows fragments of HIV 

mRNA containing a Rev Response element (RRE) to be exported from the nucleus to 

the cytoplasm so that structural proteins and RNA genome can be produced. This 

mechanism provides time-dependent regulation of replication (Strebel, 2003).  

The vpr gene plays an important role in regulation of nuclear import of the HIV-1 pre-

integration complex and is required for viral replication in non-dividing cells  

(Muthumani et al., 2006).  

The vif gene, which overlaps the 3’ end of the pol gene, affects the assembly of the 

virions and infectivity in certain cell types, while also stabilizing the pre-integration 

complex.   

The vpu gene is involved in viral budding following infection and is necessary for down 

regulation in CDF molecules. In addition vpu stimulates viral release  (Lindwasser, 

Chaudhuri  and Bonifacino, 2007).  

The nef gene is expressed by primate lentiviruses, HIV. It is known as a virulence factor 

as it manipulates the host’s cellular machinery to aid infection, survival and viral 



                                INTRODUCTION Chapter 1 
 

  14 
 

replication. Nef also promotes the survival of infected cells by down modulating the 

expression of several surface molecules important in host immune function such as the 

CD4 receptor (Das and Jameel, 2005). 

 

1.3.1        HIV 

 

The first lentiviral vectors developed were derived from HIV-1, the most extensively 

studied lentivirus  (Naldini et al., 1996). Two variants of HIV have been described; 

HIV-1 presents more pathogenic properties with greater virulence and infectivity than 

HIV-2  (Gilbert et al., 2003).  HIV causes acquired immunodeficiency syndrome 

(AIDS) a condition that resulted in the deaths of 1.9 million people in 2009 

http://www.who.int/hiv/data/2009_global_summary.png. This is a condition whereby 

the immune system is compromised allowing cancers and opportunistic infections to 

thrive. This is achieved by the presence of HIV within infected immune cells or as free 

virus particles.  The HIV genome is approximately 10kb in size and primarily infects 

macrophages and CD4
+
 T cells and dendritic cells  (Delassus, Cheynier  and Wain-

Hobson, 1991).  

In contrast to the epidemic nature of HIV-1, HIV-2 has diminished transmission 

efficiency due to its lower viral loads. HIV-2 is also less pathogenic and therefore has a 

reduced progression rate to AIDS  (Gilbert et al., 2003).  

 

 

1.4           Optimizing vectors and vector packaging 

 

Retroviruses have been shown to be the second mostly used viral vectors for gene 

therapy (Edelstein, Abedi  and Wixon, 2007). In order to use these viruses as vectors 

safety considerations must be met so they can enter the host without causing adverse 

effects. To do this, vectors need to be structurally and genetically stable, have no ability 

to recombine, and not cause insertional mutagenesis  (Goverdhana et al., 2005).  

To prevent pathogenicity, replication incompetence has been engineered into vectors so 

that only defective particles deliver therapeutic genes without spread (Buchschacher and 

Wong-Staal, 2000). To do this, the gag, pol and env genes that provide viral proteins 

needed to package, reverse transcribe and integrate the vector genome, and target the 
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virus to the cell’s receptors have been removed from the vector and placed on plasmids. 

Hence, packaging proteins are then provided in trans in packaging cells. Homology 

between packaging constructs has also been kept to a minimum to reduce the chance of 

creating replication competent viruses (RCV) through recombination in the packaging 

cells.  

The remaining sequences on the retroviral genome are called ‘cis’ elements and 

composed of the LTRs, part of gag needed for genome packaging, the primer-binding 

site (PBS) that is recognized by reverse transcriptase and the genome packaging 

sequence required for efficient packaging of the genome into the viral core. During 

vector production, the genome carrying the cis sequences that also include an internal 

promoter to drive transgene expression, are packaged leaving behind in the packaging 

cells the plasmids carrying the trans sequences that do not have packaging sequences 

(Otto et al., 1994).  To generate viral particles that can transfer their RNA genomes, the 

cis and trans components are transfected as plasmids into packaging cells. However, 

there is still the problem that a single recombination event between these two packaging 

constructs can occur to generate replication competent virus particles. To avoid this 

trans-acting viral genes have been further split and placed on separate plasmids (Miller 

and Buttimore, 1986). These two packaging constructs contain the gag and pol on one 

plasmid and the env gene on the other. This also enables switching of the env genes 

called pseudotyping.  (Danos and Mulligan, 1988).  

This exchange generates new viral vectors with altered tropism to the host cells. 

Examples of this are:  The ecotropic envelope (limited to one species), xenotropic 

envelope (infecting most mammalian cells except rodent cells), amphotropic enveope 

(infecting all mammalian cells) and the pantropic envelope (infecting various species) 

(Gaspar et al., 2004; Danos and Mulligan, 1988). The envelope from the vesicular 

stomatis virus (VSV) is now often used because the G protein of the VSV substitutes 

for the viral env protein to enable efficient cell entry  (Chen et al., 1996). It does this by 

mediating virus attachment to the cell surface that results in endocytosis of the virus. 

VSV-G also mediates fusion of the viral envelope with the endosomal membrane  

(Barraza and Poeschla, 2008; Douar, Themis  and Coutelle, 1996). Previously a major 

limitation to the production of high titre retrovirus was believed to be due to the labile 

nature of the virus envelope that prevented increasing its titre using centrifugation. The 

VSV-G envelope not only enables broad-range host infection but also provides stability 
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to the virus thus allowing concentration by ultracentrifugation. This leads to an 

increased viral titre of up to two orders of magnitude, reaching 10
9
 particles per ml, 

suitable for in-vivo gene transfer (Chen et al., 1996) Examples of alternative 

pseudotypes used successfully with lentiviral vectors include the influenza 

haemagglutinin, the Ross River Virus glycoprotein (offers enhanced liver transduction), 

lymphocytic choriomeningitis virus envelope and a rabies-G envelope (that successfully 

achieves gene delivery to the central nervous system)  (Cronin, Zhang  and Reiser, 

2005).  

Retroviruses do however have several other disadvantages when being considered for 

gene therapy. They require cell division for infection since they are unable to reach the 

nucleus without nuclear breakdown that occurs during mitosis. Hence, tissues such as 

brain, lungs, eyes and pancreas may not be efficiently infected using these vectors  (del 

Pozo-Rodriguez et al., 2008).  Also, retroviral insertion into the host genome is non-

random and this can cause problems of genotoxicity by insertional mutagenesis  (Baum 

et al., 2006). This is because the LTRs act as promoters and enhancers and can activate 

genes close to or far away from where they insert. If the gene close to insertion is an 

oncogene this ‘promoter’ insertion’ can lead to oncogenesis. LTRs have also been 

shown to be involved in splicing with cellular genes and can be subjected to promoter 

shut down by host methylation.  

To circumvent some of these disadvantages and with the emergence of new knowledge 

on the HIV virus, lentiviruses based on HIV-1 have been optimized for gene transfer 

(del Pozo-Rodriguez et al., 2008; Nisole and Saib, 2004) To overcome the problem of 

‘promoter’ or ‘enhancer’ insertion self-inactivating (SIN) vectors were developed  

(Miyoshi et al., 1998). SIN is achieved by deleting the promoter/enhancer sequences in 

the U3 region of the 3’ LTR of the viral vector. This mutation is carried over to the 5’ 

LTR during reverse transcription. (Baum et al., 2003; Zufferey et al., 1998; Miyoshi et 

al., 1998; Yu et al., 1986). This design is a significant development for gene therapy 

because it reduces or prevents endogenous oncogene activation following integration.  

In addition, replacement of the 5’ LTR (U3 region) with the human cytomegalovirus 

(CMV) promoter results in a CMV driven packaging system which is compatible with 

the CMV/LTR hybrid vectors and high titre virus preparation. The cells used to 

generate these vectors are again human embryonic kidney (HEK) 293 cells (Dull et al., 

1998; Finer et al., 1994). 
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Additional elements used to improve lentiviral design are repositioning of the central 

polypurine tract (cPPT). This cPPT improves entrance of the vector into the nucleus 

(Barraza and Poeschla, 2008). The inclusion of a cPPT element has also shown 

significant improvement in transduction efficiency in vitro and in vivo. HIV and SIV 

based vectors that contain a cPPT also show a two to threefold enhancement in 

transduction efficacy  (Follenzi et al., 2000). 

The woodchuck post-transcriptional regulatory element (WPRE) further improves 

transduction and translational efficiency of lentiviral vectors via increasing virus titre by 

improving RNA stability and export of virus genomes from the nucleus. Incorporating 

the WPRE in the HIV-derived vector increases reporter gene expression up to 5-8 fold 

higher after transduction of both dividing and arrested 293T cells  (Zufferey et al., 

1999).  

Following these modifications the vector packaging cell along with the transgene 

cassette is introduced into the packaging cell line. The transient infection method is 

rapid and flexible due to the virus particles being harvested a few days after infection of 

293T cells. The vector will then undergo a series of analytical tests for infection and 

titre before being either used for further research or delivered therapeutically to a patient 

(Coffin et al, 1997). 
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1.5        Gene therapy success  

 

The idea of delivering genes to human cells for beneficial therapeutic effect has been in 

the mind of scientists since the landmark paper by Friedman and Roblin in 1972 

(Friedmann and Roblin, 1972). However there was skepticism because of lack of 

information on gene regulation, lack of knowledge of the gene causing the disease, the 

potential side effects and the safety of this approach. However, due to advances in gene 

therapy technologies as well as in molecular therapy and the discovery of new genes by 

the human genome project in 2003, gene therapy has become closer to reality to treat 

many diseases.  

 

Efficient delivery of genes is an enormous hurdle for gene therapy. Synthetic expression 

vectors such as liposomes have been used to transfer genes into the host cell however, 

this has proved to be inefficient, produced low level and short lived expression. 

Entering the hydrophobic membrane of the host cell may still be problematic even if 

these issues are overcome and gene transfer occurs there is still the problem of low level 

gene transfer dosage (Conese, 2004).  

Gene therapy of hematopoietic stem cells (HSC) has received much attention. It is 

relevant to a broad range of human diseases, ranging from cancer to haematological 

disorders. It also allows the use of ex vivo transduction protocols that minimize the 

exposure of the entire patient to viral particles. However, the use of retroviral vectors in 

this setting is still hampered by the low frequency of gene delivery, as transduction by 

retrovirus vectors occurs only in cells that are replicating at the time of infection (Miller 

and Buttimore, 1986). A promising approach is the finding that a number of growth 

factor combinations can be used to pre-stimulate hematopoietic stem/progenitor cells to 

increase transduction efficacy (Pfeifer and Verma, 2001; Nolta, Smogorzewska  and 

Kohn, 1995) 
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1.6        Gene therapy trials involving retrovirus vectors 

 

Worldwide, over 400 gene therapy clinical trials have been carried out or are underway. 

70% are cancer related and mainly used on terminally ill patients. The most common 

used vectors are the retroviral-based vectors  (Blaese et al., 1995).  

Blaese and Anderson, from the National Institute of Health, performed the first human 

gene therapy trial in 1990.  The therapy treated two children for the primary 

immunodeficiency disorder, adenosine deaminase (ADA) deficiency. ADA is a rare 

genetic disease in which children are born with severe immunodeficiency and are prone 

to repeated serious infections  (Aiuti et al., 2002). ADA is an enzyme needed to convert 

nucleoside inosine and it is this deficiency that prevents the body from producing 

enough lymphocytes (B-cells and T-cells) that are required to fight off infections  

(Joachims et al., 2008). Mutations in ADA in mice have shown the progression of 

severe combined immunodeficiency disease (SCID) due to the severely low levels of B, 

T and natural killer (NK) cells  (Blackburn et al., 1996). Before gene therapy the only 

way to treat ADA deficiency was regular injection with the ADA enzyme and bone 

marrow transplant from a compatible donor. If neither of these treatments were possible 

then the child would have to be isolated in a germ free environment in order to survive.  

Hence the term “bubble babies”. Blaise and Anderson drew blood from the girls and 

induced the T cells from the blood to replicate in culture. Then retroviral mediated 

transfer of ADA gene into the cultured T cells took place allowing enough time for the 

vector to integrate into the patient genome and transfer the gene. Blasie and Anderson 

then injected the enhanced T cells back into the patients via the bone marrow. This 

restored ADA gene expression and subsequently a viable T cell population.  Within the 

first 6 months one of the patients T-cell count rose and she had developed a steady 

increase of ADA while the other patient also showed a rapid rise in T cells and showed 

improvements in immune function tests  (Muul et al., 2003; Blaese et al., 1995; Culver 

et al., 1991; Kohn et al., 1989).  

 

The year 2000 saw Alan Fischer and Marina Cavazzana-Calvo successfully treat 3 

young children suffering from the fatal X-Linked Severe Combined Immuno-

Deficiency (X-SCID) disorder. This was achieved by the reinfusion of hematopoietic 
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stem cells that were transduced ex vivo with an MLV vector  (Cavazzana-Calvo, M. and 

Hacein-Bey-Abina, S., 2001; Cavazzana-Calvo et al., 2000). Other successful 

developments in gene therapy include treatments for cancer, chronic granulomatous 

disorder (CGD) (Seger, 2008; Ott et al., 2006), viral infections  (von Laer, Baum  and 

Protzer, 2009) and ADA SCID  (Aiuti et al., 2002).  However gene therapy again saw a 

setback when 2-6 years after the treatment of X-SCID 4 patients in the French trial and 

one patient in the English trial developed clonal T-cell proliferation  (Dave et al., 2009; 

Hacein-Bey-Abina et al., 2003). The main concern here was that there was no control of 

where the gene was inserted in the genome carried by the retroviral vector. As a 

consequence, the retroviral vector was later found to be in the LMO-2 gene resulting in 

its dysregulation and leukaemogenesis. This was soon proven as insertional 

mutagenesis. 
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1.7        Safety of gene therapy vectors  

 

The introduction of genetic material into the host where integration takes place may 

result in disruption of host gene causing insertional mutagenesis and may lead to 

oncogenesis. This problem has hampered many clinical trials and requires a clear 

understanding of the mechanisms that contribute to oncogenesis in order that safety 

gene therapy vectors can be designed. 

 

1.8        Genotoxicity 

  

Genotoxicity can be defined as a process that has a particular effect on the genome of 

any individual that can result in a phenotypic change due to mutation  (Ramezani, 

Hawley  and Hawley, 2008). The potential for insertional mutagenesis during 

permanent gene transfer offered by retrovirus vectors present a genotoxic risk to the 

host.  

One of the defining features of retroviral life cycle is the covalent integration of the 

double stranded viral DNA into the host chromosomal DNA. Retroviral integration is 

semi-random occurring in genes with open chromatin configuration that are being 

actively transcribed  (Albanese et al., 2008; Baum et al., 2004; Mitchell et al., 2004; 

Wu et al., 2003; Schroder et al., 2002).  This can disrupt host genomic sequences and 

lead to genotoxicity as a result of gene activation or inactivation  (Nienhuis, 

Dunbar  and Sorrentino, 2006). Insertional mutagenesis mediated by wild type viruses 

has been known for some time and was found to cause tumor development in several 

animal species as a result of proviruses either carrying a truncated oncogene that 

becomes expressed uncontrollably or by altering the expression of oncogenes found 

near to the virus integration site. Indeed, retrovirus mediated mutagenesis can be 

valuable to study a range of mechanisms associated with deviations from normal 

cellular function since the gene involved in causing a phenotypic change can be found  

(Varmus, 1982; King et al., 1985). However, very few studies have reported using 

attenuated vectors as tools to discover new genes involved in cellular processes since 

the likelihood of insertional mutagenesis by these viruses was considered to be remote, 

with estimations of the frequency of mutations to be in the region of 10‾
7
 for a haploid 

locus  (Stocking et al., 1993).   
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1.8.1        Insertion site (IS) selection 

 

Most DNA sequences can act as sites for retrovirus integration acceptor sites, however 

primary sequences may influence integration. It has been shown that if DNA is placed 

into nucleosomes in vitro it will not reduce integration but instead this creates new “hot 

spots” for integration. This is thought to be due the IS that are distorted due to wrapping 

of the DNA around nucleosomes making the DNA accessible in places to viral 

integration (Pruss, Bushman  and Wolffe, 1994). Hence, viral integration appears to be 

influenced by target site selection and this may influence the likelihood of insertional 

mutagenesis. 

 

In order to analyze IS, infected cells can be subjected to molecular techniques that 

retrieve the DNA where integration occurred. This allows sequences of several 

thousand integration sites to be analyzed (Mitchell et al., 2004; Schmidt et al., 2002; 

Schroder et al., 2002).  

Early studies on MLV indicated preference for integrating in open chromatin as a 

positive correlation was detected between DNase I-hypersensitive sites and integration 

frequency  (Rohdewohld et al., 1987; Vijaya, Steffen  and Robinson, 1986). More 

recently, due to the sequencing of the human genome, it has been found that roughly 

25% of integration events are near transcription start sites and are associated with CpG 

islands  (Bushman et al., 2005b; Wu et al., 2003; Scherdin, Rhodes  and Breindl, 1990). 

Wu et al in 2003, looked at 903 MLV insertion sites and found that 80% of integration 

sites were distributed in the genome in a random fashion but that 20% of these were 

within the 5’ end of a transcriptional unit  (Wu et al., 2003). These insertion profiles 

have been supported by studies of IS in hematopoietic cells of rhesus macaques by 

Hematti et al in 2004,  (Bushman et al., 2005b; Hematti et al., 2004). Hematti et al 

showed the same integration site preferences from both human cells and rhesus 

macaques indicating that integration patterns are similar a (Hematti et al., 2004).  

Vectors based on lentiviruses are considered to be less genotoxic than gamma 

retroviruses as lentiviruses such as HIV-1 and EIAV prefer insertion within the gene 

transcription units whereas retroviruses such as MLV show an obvious bias for 

promoters and selected gene classes involved in growth control and cancer which may 
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increase probability of oncogene activation and consequently cancer development  

(Montini et al., 2009; Cherepanov, 2007; Bushman et al., 2005b; Schroder et al., 2002). 

Montini et al proved that using lentiviral vectors reduces the risk of cell transformation 

by a factor of 10 as compared with gamma retroviruses due to IS selection (Modlich and 

Baum, 2009; Montini et al., 2009) (Modlich and Baum, 2009; Montini et al., 2009)  

A study by Lewinski et al in 2006, used HIV chimeras with MLV gag and pol genes 

substituted for their HIV counterparts and found this to cause the hybrid vectors to 

shown MLV integration profile (Lewinski et al., 2006). Overall, this study showed how 

viral sequences such as gag and integrase have a direct role in target site selection. 

Tethering interactions between cellular proteins and retroviral proteins may also effect 

integration targeting.  HIV integrase binds lens epithelium-derived growth factor 

(LEDGF)/p75, a nuclear chromatin which is believed to be a cellular component that 

influences IS preference. Cells lacking LEDGF/75 show reduced frequency of insertion 

in transcription units demonstrating that LEDGF/p75 may play a role in integration 

targeting in HIV (Engelman and Cherepanov, 2008; Lewinski et al., 2006; Kang et al., 

2006). 

Analysis of the clonal dynamics of genetically modified lymphocytes in vivo is of 

crucial importance to understand the potential genotoxic risk of using retroviral vectors 

for gene therapy of haematological disorders. Molecular techniques such as linear 

amplification-mediated PCR and pyrosequencing have provided a genome-wide, high-

definition map of retroviral IS in the genome of peripheral blood T cells from several 

donors treated this way. This, in parallel to gene expression profiling and bioinformatics 

has enabled a comparison to be drawn with matched random controls and with 

integrations obtained from CD34
+
 hematopoietic stem/progenitor cells. Analysis of 

integration sites in T cells obtained ex vivo two months after infusion showed no 

evidence of integration-related clonal expansion or dominance, but rather loss of cells 

harboring integration events interfering with RNA post-transcriptional processing  

(Cattoglio et al., 2010). The study shows that high-definition maps of retroviral 

integration sites are a powerful tool to analyze the fate of genetically modified T cells in 

patients and the biological consequences of retroviral transduction.  
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1.8.2        Insertional mutagenesis (IM) 

 

As previously mentioned retroviral mediated insertional mutagenesis can lead to 

malignancy via altering the expression of host genes in the vicinity of the IS. Virus 

insertion can also alter gene products following aberrant splicing between virus and host 

genes. If the affected gene is cancer related such as a tumor suppressor gene or proto-

oncogene, inactivation and activation respectively, can cause uncontrolled cell division 

and promote tumor development  (Modlich and Baum, 2009; Uren et al., 2005; Baum et 

al., 2004). Various bodies of research have demonstrated vector integration affecting 

flanking genes as far as 10kb away, leading to production of aberrant transcripts and 

ultimately clonal proliferation.  

 

1.9           Identification of IM during gene therapy of X-SCID  

  

X-SCID is an X-linked monogenic disorder characterized by disruption of T and natural 

killer cells signaling and activation due to mutations in the cytokine IL2 receptor -

chain (IL2RG)  (Howe et al., 2008; Thomas, Ehrhardt  and Kay, 2003; Cavazzana-

Calvo et al., 2000). IL2RG encodes a subunit of a cell surface receptor that allows 

developing immune cells to respond to growth signals called cytokines. Without this 

subunit children fail to develop the mature T lymphocytes so B-lymphocytes fail to 

make antibodies to fight infection.  (Hacein-Bey-Abina et al., 2008; Thrasher et al., 

2006). A mutation in the IL2RG receptor subunit can lead to lower rates of T and B 

lymphocytes and natural killer cells which can in turn lead to lack of signalling required 

for growth and survival of progenitor cells. Young patients with X-SCID are 

particularly vulnerable to recurrent infections, as reduced lymphocyte function cannot 

compensate for the already low immunoglobulin levels during early infancy. Hence, 

SCID is often fatal within the first year  (Thrasher et al., 2006). 

Bone marrow transplant from HLA matched donors is the most common way to treat X-

SCID, however, it is often difficult to find matched cells to circumvent immune 

rejection. Thus, in order to compensate this problem gene therapy has been used in an 

autologous manner on patient haematopoietic stem cells. Gene therapy for X-SCID was 

initiated around the year 2000, following promising in vitro results and a trial by Lo et 
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al in 1999 whereby T, B and NK cells were restored in C deficient mice via a retroviral 

vector containing the C gene  (Lo et al., 1999). However, the main concern was that 

there was no control over where retroviral vector integration occurred and the 

ramifications of this. Hence, the risk of cancer development by IM was always under 

consideration (Check, 2002).  

Following on from the initial preclinical trial in vivo clinical trials took place in Paris 

and (Cavazzana-Calvo et al, 2000; Hacein-Bey-Abina et al, 2002) and London (Gaspar 

et al, 2004) for the treatment of X-SCID. Haematopoietic stem cells (CD34
+
) isolated 

from children suffering from X-SCID were transduced ex vivo with an MLV gamma 

retroviral vector carrying the C receptor gene before reinfusion back into the patients. 

Several months after returning the treated cells cellular and humoral immunity was 

restored and it was noted that T and NK cell counts and function were at near normal 

levels to those found in normal children of the same age. Unfortunately, in 5 patients 

clonally dominant cells emerged leading to leukaemnia 3-5 years after treatment  

(Hacein-Bey-Abina et al., 2010; Qasim, Gaspar  and Thrasher, 2009). This resulted in 

premature cessation of the trials and investigations into the cause(s) of the leukaemias. 

To investigate for suspected IM, patient cells were isolated and genomic DNA 

examined for virus IS. Lam-PCR using specifically designed primers recognizing 

retroviral sequences and linkers to capture genomic DNA containing the inserted vector 

enabled IS detection. In 4 out of 5 patients that developed leukaemia, 3 from the Paris 

trial and 1 from the London trial showed integrative events occurred in or near to the 

proto-oncogene LIM domain only 2 (LMO2) gene. It was subsequently shown that this 

led to elevated LMO-2 expression and uncontrolled proliferation of mature T cells  

(Hacein-Bey-Abina et al., 2010; Qasim, Gaspar  and Thrasher, 2009; Nam and Rabbitts, 

2006; Hacein-Bey-Abina et al., 2003). What remains vague is why the viral vector 

inserted itself near the LMO2 promoter locus in 4 of the 11 children treated with the 

same protocol. One suggestion is that it was due to gene expression promoting IS 

selection  (Kaiser, 2003; Coutelle et al., 2003).  

A number of studies were performed following the X-SCID trials. One study by Li et 

al, (2002) echoed the findings of the original French trial by showing that the 

transplantation and expansion of clones from retroviral transduced bone-marrow cells 

also induced leukaemia in mice  (Li et al., 2002). The transgene used in this study was 
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thought to have had growth promoting activities however, the authors also suggested 

that the cancer may have developed due to the consequence of co-operation between the 

transgene product and the MLV retroviral integration event that disrupted and up-

regulated the proto-oncogene   (Baum et al., 2003). 

A later  study by Modlich et al in 2005 also showed the development of leukemia in 

mice that were treated by infection of bone marrow derived stem cells at high retroviral 

MOI. In this case the retroviral vectors were carrying the multi resistance gene 1 

(MDR1). Even though several other studies reported no complications of using MDR1 

in the transduction of bone marrow cells Modlich found multiple insertions in proto-

oncogenes  (Modlich et al., 2005) in clonally derived cells.  

1.10        Chronic granulomatous (CGD) trial 

X-Linked chronic granulomatous disease is an inherited disorder caused by abnormal 

p22phox (CYBA), P67phox (NCF2) and gp91phox (CYBB) genes. Two thirds of CGD’s 

are however caused mostly by mutations in the gp91phox genes. This group of genes 

work together to create the NADPH oxidase enzyme which catalases the production of 

superoxide from oxygen and NADPH (Kang and Malech, 2009; Seger, 2008). Thus, 

CGD occurs via the absence of NADPH oxidase activity that results in neutrophils, 

monocytes and other phagocytes being incapable of producing the reactive oxygen 

species to destroy bacteria. Thus failure of the production of dp91phox causes frequent 

life threatening infections  (Stein et al., 2010; Malech et al., 1997; Bjorgvinsdottir et al., 

1997). CGD is usually treated with bone marrow transplantation, however, as the gene 

responsible for CGD is known, it has therefore been possible to apply gene therapy to 

attempt CGD correction.  

A study by Dinauer et al in 2001 showed successful retroviral transduction of rats that 

had a mutation in the gp91phox gene. This resulted in the phagocytes of these rats being 

able to return to producing reactive oxygen radicals  (Dinauer et al., 2001). Lee et al in 

2008 transduced murine bone marrow stem cells with the MT-gp91phox gene and 

evaluated the possibility for toxicity to occur in the treated mice. Although white blood 

cell counts increased no toxicity was found (Lee et al., 2008). Hence, in comparison to 

the X-SCID trial, the gamma retroviruses used in these studies did not create any clonal 

imbalance.  
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In 2004, two adolescent X-CGD patients were infused with CD34
+ 

blood stem cells 

containing the gp91phox gene after retroviral mediated gene transfer and initially clear 

benefits were found. In the follow up of patients from this trial, hematopoietic clones 

carrying insertions in certain gene loci became dominant  (Gaspar et al., 2004). 

Research into gene insertions and their differential expression suggested that this clonal 

dominance was due to growth and or survival advantage conferred by gene-activating or 

suppressing effects of the integrated retroviral vector. Clonal dominance had already 

been thought to be a natural property of hematopoiesis (Fehse and Roeder, 2008; Ott et 

al., 2006; 2006). As a result of this work and that of others it is generally accepted that 

having a low copy number of vector integrants per cell is clearly favorable to reduce the 

likelihood of oncogenesis  (Ramezani, Hawley  and Hawley, 2008). In addition to this, 

the vector configuration, the transgene carried by the vector, the proliferation status of 

the host cells during infection and most recently synergy between the transcription 

status and the mutational potential of the vector are considered as factors associated 

with clonal dominance (Nowrouzi et al., 2012; Baum et al., 2006). These findings 

clearly highlight the need to understand more about the association between vector 

insertion and genotoxicity in the host to develop safer integrating vectors for gene 

therapy.  

 

 

 

 

 

 

 

 

 



                                INTRODUCTION Chapter 1 
 

  28 
 

1.11         Models for genotoxicity 

The study of retrovirus mediated genotoxicity may still be considered in its infancy and 

so it is important that we attempt to understand vector associated adverse effects on the 

host in greater detail. To do this, in vitro and in vivo models need to be established that 

either expose the causes of genotoxicity by retrovirus vectors and/or predict their 

genotoxic risk. 

1.11.1       In Vitro models of genotoxicity 

One in vitro assay designed to measure the risk of vector-related genotoxicity is an 

adaptation of the hrpt in vitro assay in V79 Chinese hamster male cells. This assay has 

previously been used to test for carcinogenicity and genotoxicity caused by radiation 

and UV light. The hprt gene encodes the hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) and catalyzes purines to monophosphates that are 

toxic to cells. V79 cells are used as they are male in origin and carry a single copy of 

the hprt gene that is present in the X-chromosome  (Zhang et al., 1994). The advantages 

of using this gene is that existing hprt‾ mutants can be purged from culture populations 

using HAT treatment so that any new mutants are likely caused as a result of virus 

associated induction to hprt‾ via mutagenesis. Mutants can be isolated following 

selection using 6-thioguanine (6TG) 

Themis et al (2003) adapted this model to determine whether retroviral insertional 

mutagenesis could mediate loss of hprt activity by gene inactivation following selection 

for hprt‾ mutants in a similar manner to that carried out previously in mouse ES cells  

(Themis et al., 2003; King et al., 1985).  

Goff predicted the frequency of mutagenesis by a single provirus insertion in the 

mammalian genome at a haploid locus such as hprt to be about one inactivating 

mutation in 10
6 

virally exposed cells (Goff, 1987) however, King et al (1985) 

established that only one in 10
8 

provirus insertions can cause hprt mutagenesis  (King et 

al., 1985).  The work by Themis et al, in 2003, however, showed hprt mutagenesis by 

attenuated retroviruses occurs at a similar frequency using replication competent vectors 

at 3.6x10
6
 and only if high MOI is used. This group also showed that a 2.3 fold increase 

in the risk of mutagenesis only occurred where the infection resulted in multiple 

provirus insertions per host genome (Themis et al., 2003).  
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Kustikova et al (2003) also investigated the relationship between vector copy numbers 

and gene transfer efficiency using K562 leukemia cells and primary CD34
+
 cells. This 

group also found insertional mutagenesis closely linked with vector copy number.. 

From their study, they also found an increase in copy number is accompanied by high 

gene transfer rates. A single transduced cell with one vector insertion occurs when a 

gene transfer of less than 30% is reached. The use of insertion of 3 vectors/cell (MOI of 

3) increased the transduction efficacy to 60% and an MOI of 9 increased gene transfer 

efficacy to 90%  (Kustikova et al., 2003).  

 

Kustikova et al in 2007 studied the cause of clonal dominance leading to malignancy by 

cultivating bone marrow stem cells ex vivo and transporting them to primary then 

secondary mice. They then produced a database showing which retroviral IS are related 

to malignancy. This insertional dominance database (IDDb) showed retroviral insertions 

into genes with ontologies associated with apoptosis, cell cycle control, proliferation 

and transcription  (Kustikova et al., 2007).  In 2009 this group then showed the 

influence of purifying haemopoietic stem cells and cell sorting on insertional 

mutagenesis. They found that when stem cells were purified this did not necessarily 

reduce the genotoxic effect of -retroviral transduction. However, reducing the number 

of transduced haemopoietic stem cells did reduce the genotoxic risk. They also found 

that the risk of clonal imbalance  (Kustikova, Modlich  and Fehse, 2009)caused by 

provirus insertion into proto-oncogenes could be reduced by using lentiviruses instead 

of -retroviral vectors to transduce purified haemopoietic stem cells  (Kustikova, 

Modlich  and Fehse, 2009).  

 

The effect of vector dosage on retroviral transduction was studied further by Modlich et 

al in 2005 where it was found that increasing vector dose contributes to increasing 

insertional mutagenesis. This was demonstrated by transducing bone marrow cells ex 

vivo with the RV vectors containing the MDR1 gene. The cells were then returned to 

the C57BL/6J mice. Development of leukemia was shown to be associated with clones 

that gave high retroviral expression of MDR1 as a result of high vector copy numbers 

achieved by high MOI infection. These clones were also over-represented with multiple 

RV insertion into proto-oncogenes and other signaling genes  (Modlich et al., 2005). In 
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2006 Modlich et al also developed a cell culture model assay to test genotoxicity by RV 

or LV mediated gene up regulation in haematopoietic cells  (Modlich et al., 2006). 

Interestingly, results suggested the idea that genotoxicity could be due to the 

architecture of the vector used, and by re-locating the strong enhancer regions from the 

LTR region this could significantly decrease genotoxic outcome  (Josephson and 

Abshire, 2006; Modlich et al., 2006; Wang et al., 1999). Importantly there was a 

correlation between insertion into the Evil gene and the MOI used (Modlich et al., 

2006). The same principle could therefore be applied to other viral vectors to deduce if 

these same changes to the architecture of the vector could lower genotoxicity levels, 

thus improving the safety of viral gene therapy. 

 

1.11.2       In Vivo models of genotoxicity 

In genotoxic research studies the mouse is the most used mammalian model as it is 

small, reproduces quickly and has many genetic, biological and behavior characteristics 

that closely resemble those of humans. Larger models of gene therapy include sheep, 

pigs  (Amsterdam et al., 1999), rhesus monkeys  (Tarantal et al., 2001) and dogs.  

One particular mouse model for genotoxicity has been developed in our laboratory. This 

model was originally based on gene therapy before birth. Numerous genetic disorders 

may manifest in the fetus before birth and hence in utero gene therapy has been 

researched to treat individuals at this early time point in development. In utero gene 

therapy therefore aims at early intervention for prevention of fatal genetic diseases by 

targeting stem cells, gene delivery circumventing immune rejection to the vector and 

transgene product, tolerance to the vector and permanent correction (Coutelle et al., 

2005). In 2004 Waddington et al corrected human factor IX (hFIX) deficiency using 

HIV-1 lentiviral vector in hFIX knock out mice. Plasma FIX antigen levels increased 

and delivery of hFIX did not cause an immune response  (Waddington et al., 2004).  

In utero studies have been shown in both small and large animal models  (Tarantal et 

al., 2005; Themis et al., 2005; Walsh, 1999). However, since virus IS are believed to 

target genes that are actively dividing as in the case of rapidly replicating fetal cells this 

could increase the risk of insertional mutagenesis. The potential for IM in the mouse 

fetus was hypothesized by Dr Themis. Using the fetal mouse model this group 

published the observation of liver cancers in mice treated in utero with lentivirus 
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vectors. Hence, the in utero mouse genotoxicity model was developed (Themis et al 

2005;2012). The original study to establish this model involved the use of both primate 

HIV (HR’SIN-cPPT-S-FIX-W) and non-primate EIAV (SMART2) viral vectors each 

driving hFIX gene expression. Although both vectors resulted in correction of the KO 

mouse for haemophilia B, in the EIAV treated mice hepatocellular carcinoma (HCC) 

developed (n=8/10)  (Themis et al., 2005). These tumours were easily predicted by high 

level HFIX expression in mouse blood. Isolation of DNA from these tumours followed 

by Southern analysis showed each to be of clonal origin with 1 to 10 integrated 

proviruses per genome. Next LAM PCR allowed mapping of EIAV IS relative to genes 

in the mouse genome. Fifty-six percent of these were found to be oncogenes or genes 

associated with oncogenes. Ninety-nine of these were then found reduced in expression 

indicative of IM. Furthermore, 11 of were listed in the mouse retroviral tagged cancer 

gene database (RTCGD) that carries already known genes found involved in 

tumorigenesis in mice that developed tumours following retroviral infection (Themis et 

al., 2005; Akagi et al., 2004). Interestingly, the primate HIV vector was not associated 

with tumour development that indicates this vector could be suitable for prenatal and 

post natal gene therapy (Waddington et al., 2004).  

This in vivo model is a valuable tool to enable the evaluation of lentiviral genotoxicity 

and most importantly for the discovery of genes involved in liver tumour development 

using the HCC phenotype. The model circumvents the need for cell engraftment and 

proliferation such is the case for ex-vivo models of genotoxicity and is useful to identify 

molecular pathways for immortalisation and malignant progression that differ from 

those specific to leukaemia. Most recently, this group used the fetal model to show IS 

preference to actively transcribing genes and the different IS profiles between the 

primate HIV and non-primate EIAV vectors  (Nowrouzi et al., 2012). 
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1.12         Alternative routes to genotoxicity not involving IM 

 

1.12.1 DNA Damage  

 

A DNA double strand break (DSB) is a severe form of DNA lesion. Our genomes 

experience thousands of DNA lesions per cell each day. Some of these lesions are quite 

benign while others can be genotoxic. DNA DSBs are regarded as one of the most 

dangerous, toxic and mutagenic forms of DNA damage. A single DSB may lead to the 

loss of 100 million base pairs of genetic information. The breaks in the covalent bond of 

both the phosphate backbone of the DNA molecule leads to DNA DSB in eukaryotic 

cells. After dissociation of the two ends of DNA double stands, repairing becomes 

difficult and may lead to inappropriate recombination with other broken sites. If DSB's 

are misrepaired it can cause chromosomal translocations, which is an early step to 

developing carcinogenesis, and if left unrepaired it can cause cell death  (Helleday et 

al., 2007; Bassing and Alt, 2004).  

DSB can form in response to exogenously or endogenously produced DNA damaging 

agents. Endogenous sources such as reactive oxygen species and free radicals are 

generated from cellular metabolic reactions, class switch recombination, and replication 

fork collapse during DNA replication and physical stress during meiosis can cause DSB  

(van Gent, Hoeijmakers  and Kanaar, 2001).  

Interestingly despite the danger of DSB, mammals have found ways of using this 

process for their own benefit in controlling biological processes. Programmed DSB 

occur in the steps involved in maturation of immunoglobulin genes by initiating 

rearrangements.  V (D) J recombination is involved in the early development of B and 

T-lymphocytes and is important in generating diverse groups of antigens receptors 

occurring in lymphocytes. The rearrangement of exons that encode immunoglobulin and 

T cell receptors occur during B or T lymphocyte development by variable (V), diversity 

(D) and joining (J) gene segments. These programmed temporary DNA DSB are 

induced in the cell nucleus by proteins such as RAG1 and RAG2  (Bassing, Swat  and 

Alt, 2002). DSB are also essential for the maintenance of DNA synthesis. DSB occur 

behind the replication fork by enzyme topoisomerase, which relieves the tension of 

unwinding  (Shin et al., 2004a; Jackson, 2002). The enhanced levels of endogenous 

chromosome breakage or chromosomal rearrangement, which have been seen in cells 
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that do not repair DSBs, show that they represent frequent encounters of endogenous 

lesions  (van Gent, Hoeijmakers  and Kanaar, 2001).  

Exogenous factors that cause DSB include ionizing radiation, chemicals and 

chemotherapy agents. Cellular responses to these exogenous factors are variable 

depending on cell type, dose and exposure length.  

The early work on DNA damage and repair in the 1930’s was stimulated by a prominent 

group of physicists (Friedberg, 2002). It was the work of geneticist Hermann Muller 

who while working on the Drosophilla fruitfly first demonstrated mutations occurring 

when external agents such as ionizing radiation were involved (Muller, 1927). Ionizing 

radiation is energy that is carried by electromagnetic rays or by particles emitted from 

radioactive materials, nuclear reactions and medical X-ray equipment. Living organisms 

experience ionizing radiation from natural sources at low doses and at high doses via x-

rays and radiation therapy. Understanding how cells respond to radiation exposure is 

therefore critical. DNA damage is caused directly by energy transfer of the DNA 

molecule or indirectly by the production of hydroxyl radicals from the ionization of 

water molecules that subsequently attack DNA. Exposure to ionizing radiation activates 

the signaling pathway of DNA damage in the nucleus and the result could be 

therapeutic depending on exposure conditions such as cell cycle, cell cycle stage an 

dose of radiation  (Kastan and Bartek, 2004; Qvarnstrom et al., 2004).  

DNA stressing agents induce DNA DSBs that initiate complex set of responses in the 

cell. First, DNA damage sensing and signaling mechanisms will alert the cell of DNA 

DSB taking place. Then mediators and transducers will transmit the damage signals to 

effector molecules that arrest cell cycle if necessary until the DSB is repaired. DNA 

damage signals can induce apoptosis when the cell suffers from high levels of genomic 

instability  (Mills, Ferguson  and Alt, 2003; Paull et al., 2000).  
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1.12.2        DNA DSB repair 

 

All eukaryotic cells have evolved mechanisms to deal with DSBs. The two main 

mechanisms of DDR repair are homologous recombination (HR) and non-homologous 

end joining (NHEJ). HR uses replication to generate an identical copy of the cellular 

DNA and the undamaged copy can be used as a template for repair and resynthesize of 

a DSB. This pathway exploits a sister chromatid which is present following replication, 

consequently HR is restricted to the S phase of the cell cycle. When a replication fork 

stalls due to its production of unfavorable DNA structures the HR pathway restarts the 

replication machinery. This pathway is deemed a very accurate method of repair. In 

contrast, NHEJ is less reliable but more robust as the broken ends of a DSB are fused 

together. This may result in the removal or addition of a few nucleotides at the repair 

site and may be error prone. The NHEJ repair mechanism is preferred at the G1 phase 

of the cell cycle where (Shrivastav, De Haro  and Nickoloff, 2008; Jeggo and Lobrich, 

2007; Essers et al., 2000).    

 

1.12.2.1     DNA repair by Homologous recombination (HR) 

 

HR is meditated though a set of proteins including RAD50, RAD51, RAD52, RAD54, 

RAD55, RAD57, RAD59, MRE11 and XRS2 which are all essential in repairing DSB  

(Thompson and Schild, 1999; Kanaar, Hoeijmakers  and van Gent, 1998). The first step 

in the HR pathway is the resectioning of the broken DNA ends beginning with the 5’ to 

3’ end processing by the MRN complex consisting of Mre11p, Rad51p and NBS1  

(Shin et al., 2004). Next the replication protein A (RPA) binds the 3’ single stranded 

DNA (ssDNA) ends. RPA is phosphorylated and replaced with Rad52 to allow Rad51 

binding. A homologous sequence that is complementary to broken DNA sequence is 

found and invaded by Rad51 that binds to the ssDNA end forming a nucleoprotein. 

Rad51 is the dissociated from the ssDNA to allow normal base pairing by DNA 

polymerase and extend the ssDNA strand according to the host complementary DNA 

sequence. This process termed synthesis-dependent strand annealing can occur by 

annealing extended ssDNA strand with non-invading DNA strand on opposite side of 

DSB or HR can produce a double holiday junction by invading both strands which are 

then resolved by crossover or by non-crossover recombinants. Finally, DNA 
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polymerase and DNA ligase resolve the nicks and gaps by ligation of two DNA ends  

(Shrivastav, De Haro  and Nickoloff, 2008; Shin et al., 2004; van Gent, 

Hoeijmakers  and Kanaar, 2001).  

 

1.12.2.2     DNA repair by  non-homologous end joining (NHEJ) 

 

NHEJ require the concerted action of a series of proteins.  Such as Ku heterodimer 

(Ku70 and Ku80), DNA-PKcs, Artemis, XRCC4, DNA ligase IV and XLF (known as 

Cernunnos).  Firstly, the overhanging ends are detected by Ku protein that consists of 

two subunits Ku70 and Ku80. The broken ends of the DNA are attached with Ku dimer 

proteins to protect the DNA ends from further collapse and provide access to other 

repair proteins such as DNA-dependent kinase (DNA-PKcs) (DS, 2005). The second 

step of NHEJ pathway is the processing of the DNA ends to remove non-ligatable end 

groups. Different enzymes may be used depending on the nature of the breaks. Artemis, 

DNA polymerases, MRN complex, RPA and WRN are candidate-processing enzymes. 

Lastly, XLF stimulate the XRCC4/DNA ligase IV to ligate the DNA ends  (Summers et 

al., 2011; Shrivastav, De Haro  and Nickoloff, 2008; Barnes, 2001).  

NHEJ is not precise due to synapsis occurring between two broken DNA ends and the 

trimming that occurs at each end. If two breaks occur at the same time the ends may get 

mixed up when DNA repair is taking place and genes may be translocated from one 

place to another. These errors can be deleterious in some cases leading to cancer such as 

Burkett’s lymphoma which moves an inactive c-myc genes into a very active area 

thereby causing uncontrolled growth in the cell by an over expression of the gene  

(Rowh et al., 2011).  

 

In the late 1960s James Cleaver reported individuals with xeroderma pigmentosum (XP) 

to be prone to skin cancers. Cleaver then went on to look for a mammalian cell line 

deficient in excision repair and found that XP individuals who were genetically 

defective in excision repair were sunlight sensitive and more prone to cancer. This 

defect in nucleotide excision repair represented a triumph in the field of genetics as it 

provided insight into defining DNA repair and hereditary human diseases (Cleaver, 

1968).  
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The first known DSB repair defective mouse mutant was the SCID mouse. These mice 

carried a mutation which prevented the production of mature B and T cells, due to a 

defect in V (D) J recombination. These mice were also found to be sensitive to ionizing 

radiation, which is caused by a mutation in the PRKDC gene resulting in the deletion of 

parts of the DNA-PKcs (Smith and Jackson, 1999). 

Deficiencies in NHEJ leads to increased risk of cancer with chromosomal instability 

partially in cells consisting of a mutation in the tumor suppressor gene p53. This could 

be possibly due to the decrease in the cell undergoing apoptosis  (Helleday et al., 2007; 

van Gent, Hoeijmakers  and Kanaar, 2001). Patients with mutations in the Artemis gene 

have been found to develop thymic lymphomas. This shows that a decrease in NHEJ 

end capacity may increase the incidence of cancer  (Moshous et al., 2003).  

 

1.12.3        Genome instability due to DSB 

 

Elevated levels of spontaneous genomic instability, increased sensitivity to ionizing 

radiation and other factors, which contribute to DSBs, are some of the phenotypes that 

are associated with mutation or inactivation of either the NHEJ or HR pathway 

(Jackson, 2002).  

Incorrect repair of DSB can cause genome instability in the form of chromosomal loss, 

rearrangements, or amplifications that could potentially lead to cancer  (Shrivastav, De 

Haro  and Nickoloff, 2008). Mutations which alter the function of a specific gene i.e. 

oncogenes and tumor suppressor genes, which are essential for cell division give rise to 

neoplasmic transformations. This is known as the somatic mutation hypothesis that 

shows correlation between chromosomal abnormalities and cancer. This was first 

observed by Theodore Boveri, who reported abnormal number of chromosomes in 

cancerous cells (Boveri, 2008).  

There are two main forms of genomic instability that are linked to tumours. One is 

mutational instability (MIN) phenotype that is connected to mismatch repair defects and 

is portrayed by small deletions or point mutations. The other genomic instability is the 

chromosomal instability (CIN) phenotype, which is characterized by rearrangements of 

chromosomes. Unrepaired DNA DSB can lead the cellular genome towards gene 

deletion, chromosome aberrations including chromosome segment amplification and the 

loss or gain of whole chromosome  (Ricke, van Ree  and van Deursen, 2008).  
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Amplification of a chromosome region may initiate tumorigenesis by the activation of 

proto-oncogenes whereas inactivation of tumor suppressor genes can be activated by the 

loss of large regions of a chromosome. Studies involving ionizing radiation of mammals 

or cells involving DSB have been shown to be involved in chromosome aberrations  

(van Gent, Hoeijmakers  and Kanaar, 2001).  

Chromosome instability stems from the inability to correct sister chromatids during 

mitosis. Failure of this mitotic checkpoint has been shown to be involved in 

chromosome instability. If the mitosis is prolonged it results in mitotic checkpoint over 

activation and is a frequent observation in tumours  (Schvartzman, Sotillo  and Benezra, 

2010). Most of the main regulators of the mitotic checkpoints are downstream targets of 

the retinoblastoma (Rb) tumor suppressor pathway which is up regulated in most human 

tumors  (Iovino et al., 2006; Zheng et al., 2002; Lentini, Pipitone  and Di Leonardo, 

2002). Mitotic checkpoint genes are essential in each mammalian cell division, 

however, unlike DNA damage checkpoint their loss is unlikely to cause a buildup of 

genomic damage in tumors  (Schvartzman, Sotillo  and Benezra, 2010).  

Several genes are involved in the mitotic checkpoint and mitosis. These genes are under 

the control of the E2F family of transcription factors and are partially dependable on the 

on the level of inhibition of the Rb pathway  (Lentini, Pipitone  and Di Leonardo, 

2002). Several cancers result from the mutations in genes that are essential for DNA 

damage checkpoint and DNA repair pathways such as hereditary non-polyposis 

colorectal cancer caused by the MLH1 and MSH2 gene, xeroderma pigementosum (Xp 

family) and ataxia-telangiectasia (ATM mutated) (O'Driscoll and Jeggo, 2006). In most 

cases genes that are essential for mitotic checkpoint are up regulated, this may be due to 

the absence of the Rb pathway. This overexpression of key genes and an inhibition of 

the Rb pathway can lead to tumor formation.  Interestingly gene expressions from 

human tumors have shown that genes, which are involved in DNA damage repair 

pathways, are overexpressed in DNA damage pathways  (Swanton et al., 2009).  

If a DSB is repaired incorrectly by non-homologous end joined (NHEJ) pathway this 

can result in mutation or oncogenic rearrangement. V (D) J recombination can lead to 

rearrangements of oncogene chromosome resulting in lymphoid cancers such as 

Burkitt’s lymphoma and B-cell malignancy which are caused partially due to 

rearrangements of the c-MYC gene (Jackson, 2002). In conclusion, agents that cause 

DSB should be considered as potential mutagens. Indeed, integration by retroviruses 
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also cause DSB due to the viral integrase cutting and ligating the virus genome with that 

of the infected host  (Sakurai et al., 2009). 

 

1.12.4        Proteins used to determine the presence of DSBs 

 

It is vital to spread the alert signal efficiently to the cell when a DSB occurs. Checkpoint 

mediators or adaptors and transducer kinases CHK1 and CHK2 are linked to proximal 

checkpoint kinases such as ATM and ATR to organize the global cellular response to 

DSBs. These transducers (CHK1 and CHK2) regulate the phosphorylation of the 

downstream checkpoint targets such as effector proteins that play a vital role in cell 

cycle controls, DNA repair and apoptosis (Jeggo and Lobrich, 2007).  

In addition to ATM and MRN other key effectors of the DSB response include histone 

H2AX and 53BP1. These proteins respond to the site of DSB and initiate in the ATM 

dependent signaling cascade that leads to DNA repair, or apoptosis.  

The proteins function as key regulators in the DNA damage response as an inactivation 

of any will render the cell sensitive to DSB (van Attikum and Gasser, 2009).  

 

H2AX 

 

H2AX is found exclusively at sites of DNA DSBs and is a key component of chromatin  

(McKinnon and Caldecott, 2007; Rogakou et al., 1998). H2AX is at the heart of 

ionizing radiation induced foci and contains a serine residue that is rapidly 

phosphorylated by protein kinase family ATM in response to DNA damage. This 

modified form is then referred to as H2AX  (Bassing et al., 2003; Rogakou et al., 

1998). It is readily phosphorylated on chromatin surrounding DNA DSBs. It does not 

diffuse freely in the cell this may explain why their phosphorylation appears to be 

important for DNA repair and is not required in cell cycle arrest  (Zgheib et al., 2005). 

H2AX regulates the recruitment and accumulation of a multitude of DNA damage 

repair factors (DDR) and is critical for repair of DNA lesions. One study using mice 

found H2AX deficiency results in genome instability and is associated with cancer 

predisposition  (Celeste et al., 2002).  
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53BP1 

 

53BP1 is a DDR protein phosphorylated by ATM as an early signal of DNA DSBs. 

53BP1 is a nuclear protein which rapidly localizes to discrete foci followed by lesions 

in the cell. The evidence of involvement of 53BP1 in DNA DSBs is the localization of 

53BP1 to the sites of DSB after exposure to Ionizing radiation. Its recruitment to sites of 

DSBs is facilitated by histone H2AX phosphorylation and ubiquitination indirectly 

(Fernandez-Capetillo et al., 2002). 53BP1 is involved in ATM activation since 

suppression of 53BP1 leads to a reduction in ATM phosphorylation  (Wu et al., 2009). 

The interaction of 53BP1 with histone H3 methylated on Lys79 also mediates the 

recruitment of 53BP1 to sites of DNA DSBs  (Zgheib et al., 2005; Huyen et al., 2004). 

Importantly, 53Bp1 undergoes nuclear relocalization to focal structures following 

irradiation. This molecule facilitates both checkpoint and repair functions. Relocation of 

53BP1 to the DNA damage sites is also dependent on its tudor domain that recognizes 

methylated histones  (Kim et al., 2006). Knockdown of 53BP1 results in instability 

represented by increased levels of chromatid gaps and aneuploidy indicating that 53BP1 

is involved and much needed in DNA repair  (FitzGerald, Grenon  and Lowndes, 2009; 

Ward et al., 2003).  

Since ATM assists in H2AX spreading and in turn is required for the accumulation of 

additional DDR factors such as 53BP1, together these events trigger and amplify the 

DDR signal  (Zgheib et al., 2005; Lukas, Lukas  and Bartek, 2004). Translocation of 

these proteins to DNA DSBs facilitates DNA damage checkpoint activation and 

enhances efficiency of the DNA damage repair. 
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1.12.5         Methods for determining DNA DSBs 

 

There are a number of methods to measure DNA DSBs such as sucrose density 

gradients, neutral elution, pulse field gel electrophoresis (PFGE) and nuclear foci 

analysis. PGFE and nuclear foci analysis are the most common methods of detecting 

DSBs. In PGFE DNA DSBs is quantified according to the fraction size of DNA 

released. Because H2AX and 53BP1 are involved in signaling pathways of DNA 

damage and repair and accumulate in large nuclear domains after DNA damage, their 

recruitment to DSBs can be exploited to enable in situ visualization of DSBs. To do 

this, H2AX and 53BP1 proteins are stained with specific antibodies then subjected to 

immunofluorescence. This allows quantification of foci representative of DSB in the 

cell nucleus after DNA damage  (Qvarnstrom et al., 2004; Paull et al., 2000). 

Quantification can be done either manually or via an automated computational 

analyzing system  (Bourton et al., 2012).  
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1.12.6        Retrovirus integration mediated DSB 

 

As previously described, retroviral integration into the host genome is critical for 

retroviral replication using the virus integrase enzyme. The integrase removes two 

nucleotides from the 3’ ends of the viral DNA in the cytoplasm. It then catalyzes the 

joining of these ends to staggered phosphorous atoms in the backbone of the 

complementary strands of the host DNA (Skalka and Katz, 2005). Single strand gaps 

are produced between the viral DNA and the target DNA  (Miller, Wang  and Bushman, 

1995). During this process the host cell DNA suffers a DSB. Insertion of 3-10kb of 

newly synthesized DNA is likely to be sensed as a major assault on genomic integrity 

that leads to a DDR. Additionally, unintegrated viral DNA can be is circularized by 

ligation of LTR sequences to form a 2LTR circle. One LTR circles can also be 

generated  (Goff, 2001; Li et al., 2001).  Presumably, this limits recognition of free 

DSB to reduce a DDR. Completion of the integration is highly important to virus 

survival as DSB can lead to apoptosis 

Indeed, retroviral transduction into cells which lack the DNA-PK or ligase IV repair 

enzymes undergo apoptosis. This suggests the requirement of NHEJ to complete 

retroviral integration  (Daniel, Katz  and Skalka, 1999). Lau et al showed that ATM 

dependent DNA damage response is stimulated by the HIV-1 integrase and that 

deficiency of the ATM also triggers apoptosis.  

Sakurai et al in 2009 found that ATM, Artemis and the MRN complex play vital roles 

in protecting the ends of viral DNA before strand transfer and the 3’ processing activity 

of the integrase as in the cells deficient in ATM, Artemis and the MRN complex could 

not completely process terminal dinuclotides  (Sakurai et al., 2009). Sakuirai et al also 

found in the same study that their sequence analysis indicated lack of DSB repair 

enzymes influenced HIV-1 integration site selection. They used the data of Holman et 

al (2005) to show that HIV-1 integration preference is slightly influenced by ATM as 

cells deficient in ATM have different IS profiles to cells that have normal ATM levels  

(Sakurai et al., 2009; Holman and Coffin, 2005).  

 

Daniel et al in 1999 first suggested the role of the NHEJ pathway in post integration 

repair by showing DNA-PK to be involved in the RV DNA integration process.  When 



                                INTRODUCTION Chapter 1 
 

  42 
 

DNA-PK deficient murine SCID cells were infected with 3 different RV, integration is 

reduced and death via apoptosis occurred. Furthermore, SCID cells infected with the 

avian retrovirus have reduced viability by 40-50% compared to control cells and this 

appeared dependent on the virus MOI. In the same study, they observed death of SCID 

cells after infection with integration competent virus but not with integration defective 

viruses (Daniel, Katz  and Skalka, 1999). A study  (Weller, Joy  and Temin, 1980) 

showed that RV infection induced apoptosis in 80-90% of NHEJ deficient cells. They 

also found the NHEJ system to be responsible for the circulization of some of the viral 

cDNA to produce 2LTR circles. This is also in agreement with studies by Howard 

Temin et al (1980) who also observed a correlation between the degree of cytopathic 

effect after infection and the number of integrated RV. Overall, these data suggest that 

RV integrations cause DNA damaging events and that a failure of post integration repair 

to these can lead to apoptosis (Skalka and Katz, 2005; Daniel, Katz  and Skalka, 1999; 

Weller, Joy  and Temin, 1980).  

 

Daniel et al in 2004 established that RV infection induces the formation of H2AX foci 

and that H2AX phosphorylation occurred at sites of RV DNA integration. They also 

established that cells respond to DNA integration in a similar manner to DSBs.  

This group also found that efficient transduction of MEF’s by HIV- 1 requires DNA-

PKcs and that XRCC4 deficient CHO cells infected with HIV-1 have a transduction 

efficiency 5-10 fold lower than control cells.  Furthermore, they found a sharp decrease 

in viability of cells infected with integration competent virus compared with integration 

defective vectors  (Daniel et al., 2004).  
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1.13           Epigenetic modifications leading to genotoxicity 

 

Epigenetic modifications determine where and how genetic information is used by the 

cell to maintain homeostasis (Waddington, 2012). It is important in the normal 

development of a cell, cell proliferation, gene expression and aetiology of disease  

(Matouk and Marsden, 2008; Devaskar, S.U. & Raychaudhuri, S., 2007). Making sure 

genes are active or inactivated at the correct time is essential to prevent abnormal gene 

expression that could potentially lead to disease and cancer (Sarkies and Sale, 2012; 

Klose and Bird, 2006; Robertson and Wolffe, 2000).  

Epigenetic changes can influence chromatin structure and regulate transcription. Such 

changes regulate chromatin remodeling and mediate histone modification and DNA 

methylation  (Dolinoy, Weidman  and Jirtle, 2007).  

DNA methylation is a post replication modification involving the covalent addition of a 

methyl group to the 5 position of cytosine (Robertson, 2001). DNA methylation itself 

can result in transcriptional repression, chromatin modulation, genomic imprinting, X 

chromosomal inactivation and governs genomic integrity. Research has revealed its 

importance in many processes such as DNA repair, genome stability as well as 

chromatin architecture (Robertson and Wolffe, 2000; Baylin and Herman, 2000; Jones 

and Laird, 1999). Globally, DNA methylation patterns in mammals are established by at 

least three independent DNA methyltransferases: DNMT1, DNMT3A and DNMT3B 

(Klose and Bird, 2006; Robertson, 2001). 

 

DNMT1 

 

DNMT1 was the first methyltransferase to be discovered and is the most abundant in 

somatic cells  (Bestor et al., 1988). It is primarily the enzyme responsible for copying 

pre-existing methylation patterns onto new DNA strand during DNA replication (Klose 

and Bird, 2006). However, under carcinogenic conditions DNMT1 has been found to 

perform de novo methylation  (Vertino et al., 1996). 

DNMT1 identifies methylated and non-methylated DNA in its regulatory region and 

carboxy-terminal domain (Fang et al., 2001). DNMT1 is associated with the tumour 

suppressor Rb that interacts with the N-terminal region of DNMT1 (Robertson and 
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Wolffe, 2000). DNMT1 also interacts with the Rb associated DNA binding protein and 

transcriptional activator E2F1. DNMT1 homozygous knockout of embryonic stem cells 

lead to only 30% of normal methylation levels and have a tenfold increase in the rate of 

mutations and gene rearrangements compared with the wild type strain of this mouse. 

Embryonic stem cells deficient in DNMT1 also have high levels of transcription that 

may be influential to increased genome instability  (Chen et al., 1998). Several cancers 

are associated with disruption of DNMT1, E2f1 and Rb DNA binding activity 

(Robertson and Wolffe, 2000). Methylation defects observed in tumour cells are 

believed to be associated with loss of function of Rb either via direct loss of the Rb gene 

or genes associated with Rb which can include improper nuclear localization of Rb with 

DNMT1 (Robertson, 2001). Studies have shown that loss of pRb results in increased 

DNMT1 expression  (McCabe, Davis  and Day, 2005). The interaction between Rb, 

E2F and DNMT1 is facilitated by the existence of E2F binding sites in the DNMT1 

promoter. During cell division Rb is phosphorylated and no longer binds E2F1. This 

releases DNMT1 to perform its functions. It has been postulated that loss of Rb may 

grant DNMT1 free access to the genome that could potentially lead to de novo 

methylation (Robertson, 2001). DNMT1 is required for embryonic development, 

imprinting and X-activation and is involved in several biological processes that include 

cell cycle control, chromosomal instability and DNA damage and repair (Tan and 

Porter, 2009; Brown and Robertson, 2007).  

  

DNMT3A and DNMT3B 

 

DNMT3a and DNMT3b are responsible for de novo methylation and are mainly 

responsible for introducing cytosine methylation at previously unmethylated sites. 

These enzymes are also required following de novo methylation following embryo 

implantation for the de novo methylation of integrated retroviral sequences in mouse 

embryonic stem cells  (Robertson and Wolffe, 2000; Okano et al., 1999). Increased 

levels of DNMT3a has been shown to promote polyposis and may be involved in 

several cancers such as HCC. DNMT3a knockout mice survive to birth but die soon 

after at about 4 weeks of age  (Okano et al., 1999). Zhao et al in 2010 found in 

DNMT3a depleted cells suppression of cell proliferation  (Zhao et al., 2010). In HCC 
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cell lines with low DNMT3a cellular proliferation is also suppressed  (Shafiei et al., 

2008).  

DNMT3b knockout mice are not viable and mutant embryos have multiple organ 

failure, growth impairment and developmental defects (Li, Bestor  and Jaenisch, 1992).  

In patients with ICF syndrome mutations in the catalytic domain of DNMT3b results in 

immunodeficiency, centromere instability and facial anomalies (Okano et al., 1999; 

Gartler et al., 1999).  Studies have shown the interaction of dnmt1 with dnmt3b to 

inactive gene expression (Robertson and Wolffe, 2000b). 

 

1.14            Viral integration and methylation 

 

DNA methylation is widely seen to function as a host defense mechanism against the 

uptake, integration or expression of foreign DNA into chromosomes, to prevent foreign 

agents from influencing the transcription of cellular genes (Tao and Robertson, 2003).  

This includes incoming virus elements in infected cells. Methylation of the viral 

genome usually takes place in LTR to reduce or prevent viral replication. Hence, 

methylation can act as a mechanism of suppression of viral expression where the LTR 

drives gene expression. It also affects virus latency (Fang et al., 2001; Mikovits et al., 

1990). 

Harbers et al in 1981 first showed a relationship between retroviral replication and 

DNA methylation of the MLV virus. In this study, viral expression was silenced by the 

hypermethylation of sequences in the MLV LTR. Suppression of expression and latency 

of HIV-1 and HTLV-1 has also been shown following methylation of virus genomes 

(Harbers et al., 1981). 

As RV integration is known to favour promoter regions that are composed of CpG 

regions and these regions are used for methylation, MLV insertion is often accompanied 

by methylation of the virus and shut-down of virus expression. LV appears to favour the 

transcription unit rather than the promoter region and is less susceptible to inactivation 

of gene expression. (Hacker et al., 2006).  

There have been a number of studies that have highlighted the role of viral infection on 

stimulating the cellular methylation machinery. Leonard et al (2011) showed an up 

regulation of DNMT3a and a down regulation of DNMT3b and DNMT1 following 

EBV infection of B cells  (Leonard et al., 2011) 
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Fang et al (2001) investigated the relationship of HIV-1 infection and methylation 

levels in lymphoid cells. An increase in DNMT1 levels was reported when lymphoid 

cells were infected with either HIV-1 wild type or an integrase (IN) mutant (replication 

defective) 3 to 5 days post infection. This was accompanied by an overall increase in 

genome methylation and de novo methylation of a CpG dinucleotides in gene promoters 

resulted in promoter shutdown. Importantly, this was reported following infection by a 

defective HIV vector where increased methylation of CpG nucleotides in the promoter 

of the p16
INK4A

 gene occurred. The p16
INK4A 

is frequently methylated in non-Hodgkin’s 

leukaemia  (Fang et al., 2001) and this finding suggests that changes in methylation 

patterns following HIV infection could lead to disease. Lee et al (2003) also reported 

similar methylation patterns in non integrating viruses such as HCV and integration 

HBV virus  (Lee et al., 2003).  

 

Yamagata et al (2012) investigated the epigenetic effects of transduction of CD34
+
 cells 

by a defective lentiviral vector. This group was the first to show that gene transfer into 

somatic and progenitor cells could influence the methylation state of the genome in 

vitro by gene therapy vectors. The study cultured CD34
+
 cells in the presence of 

cytokines for 24hours followed by 2 consecutive incubations with LV. The study found 

that on exposure to cytokines CD34
+
 cells had genome wide DNA methylation changes 

accompanied by an increase in DNMT1 expression only 24 hours after infection. The 

study then went on to show up to 900 host genes to be differentially expressed 

following infection compared to just 200 genes in cells cultured in presence of 

cytokines only  (Yamagata et al., 2012).    

Surprisingly, little is still known about the overall effects on the host following 

methylation changes influenced by infection by defective LV. It is of paramount 

importance, therefore to understand the association between virus integration and host 

DNA methylation and to what extent gene expression in the host is altered to avoid 

complications when applying these vectors to patients in the clinic.  
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1.15            Methylation and DNA damage 

 

A study by Cuozzo et al (2007) demonstrated DNA methylation to mark homologous 

repair (HR) segments and protects cells against DNA damaged up-regulated gene 

expression. They found this by inducing a single break in the genome of mouse or 

human cells. This was repaired via HR. DSB repair by HR and gene alteration is linked 

to methylation changes in the area that DSB occurs and this requires the activity of 

DNMT1 (Cuozzo et al., 2007).  

Armstrong et al (2012) showed an inverse correlation between hypomethylation and 

radiation induced genomic instability. This group found DNMT1 deficient mESCs to 

have a 10 fold increase in de novo mutation of the hprt locus (Armstrong et al., 2012). 

Thereby, suggesting a role in DNMT1 in hindering efficient function of DNA repair 

resulting in this increase rate of mutation. 

Several studies have showed a connection between DNA methylation, genomic 

instability and DSB and DNA repair. It has also been suggested that DNMT1 is 

important in sensing or repairing DNA damage  (Palii et al., 2008; Guo, Wang  and 

Bradley, 2004).  

Chen et al (1998), showed DNMT1 deficiency to result in a mutator phenotype by 

showing DNMT1 deficient ES mice have a ~10 fold increase in mutation frequency  

(Chen et al., 1998). Okano et al (1999) also showed mice lacking in DNMT1 to be 

genetically unstable  (Okano et al., 1999). Guo et al (2004) used a genetic screen to find 

genes involved in mismatch repair (MMR) and found DNMT1 to be one of these genes. 

They then found that murine ES cells deficient in DNMT1 exhibited a 4-fold increase in 

microsatellite instability  (Guo, Wang  and Bradley, 2004). Mortusewicz et al (2005) 

also found DNMT1 plays a role in regulating genome integrity by inducing DNA 

damage using ultraviolet light showing DNMT1 and proliferating cell nuclear antigen 

PCNA accumulates at sites of DNA damage  (Palii et al., 2008; Mortusewicz et al., 

2005). Palii et al (2008) then confirmed this using immunofluorescence to demonstrate 

DNMT1 to be present at H2AX positive foci in cells treated with the DNA methylation 

inhibitor, 5-aza-2’-deoxycytidine. They also showed in DNMT1 deficient cells severe 

defects in the activation of key DSB responses such as lack of γ-H2AX induction and 

reduced phosphorylation of p53 and CHK1  (Palii et al., 2008). Taken together these 

studies show a role for DNMT1 in the DNA DSB response pathway.  
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1.16            E2F and DNA damage 

 

E2F is a group of proteins (E2F 1-8). They are transcription factors which have a 

heterodimeric complex which contains an E2F component and a DP1/2 subunit, with 

the exception of E2F7 and 8. Three of E2Fs act as activators and 6 others as suppressors 

of gene expression by acting on specific promoter TTTCCCGC sequences. It is this 

dual activity that allows both oncogenic and tumour suppressor activity  (Polager et al., 

2002; Dyson, 1998). E2F target genes are involved in cell cycle regulation, cellular 

differentiation, DNA synthesis, and DNA damage and repair mechanisms  (Frame et al., 

2006; Polager et al., 2002).   

E2Fs are specifically regulated by the Rb tumour suppressor protein (pRb). pRb belongs 

to the pocket protein family that consist of p107 and p130  (Lee et al., 2002). They 

inhibit cell cycle progression by regulating the G1 to S phase of the cell cycle, until the 

cell is ready to divide thereby preventing excessive cell growth  (DeGregori et al., 

1997).  In G0 and early G1, E2F is transcriptionally repressed by complexing with pRb. 

Transcription of E2F target genes takes place when pRb is phosphoralated causing the 

E2f-Rb complex to disassociate and release E2F (Lee et al., 2002). Chellapan et al in 

1991 found that the disassociation of the E2f-Rb complex correlated with an increase in 

adenovirus infection, as pRb is targeted by the adenovirus E1A (early region 1 A) 

oncoprotein  (Chellappan et al., 1991).  

 

Polagar et al (2002) studied the expression of genes involved in DNA replication, repair 

and mitosis. They found that E2F1 and E2F3 activity up-regulates the expression of 

genes involved in all 3 groups. Their findings also indicate that E2F gene activation 

may contribute to the cell response to DNA damage as they found PCNA and BRCA-1 

to be controlled by E2F (Polager et al., 2002).  

Frame et al (2006) established that the deregulation of Rb/E2F pathways in human 

fibroblast cells caused E2F1 mediated apoptosis and that the MRN complex, 53BP1 and 

H2AX relocalize into discrete foci following deregulation of E2F1. E2F has also been 

shown to play a vital role in maintaining cell cycle and apoptotic cell death in response 

to oncogene activation and DNA damage  (Frame et al., 2006). DeGregori et al (1997) 

found E2F genes rapidly induce apoptosis when E2F is highly expressed (DeGregori et 
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al., 1997). In agreement with this Tsai et al (1998) showed that mutations in E2F caused 

suppression in apoptosis (Tsai et al., 1998).  

Hence E2F appeares closely linked to DNA damage, is controlled by methylation and 

has an important role in cancer development. It may, therefore be suggested that RV 

infection that causes DSBs may also be involved in mediating E2F activity. DSB, 

methylation and E2F activity may all be considered as contributors of genotoxicity if 

stimulated by RV infection and this may occur independent of IM and be synergistic to 

IM in early on in oncogenesis.  

 

1.17            Hypothesis 

 

Genotoxicity by RV and LV may be caused by several factors. Apart from IM these 

factors also include DNA damage following infection and integration, and epigenetic 

effects related to incoming virus particles. These effects may ultimately influence the 

control of E2F on its target genes. The hypothesis of this work is that DNA damage 

mediated by RV may lead to epigenetic changes in the form of methylation of genes in 

the host and changes in E2F target gene expression. 

   

1.17.1         Aims and Objectives 

 

 Mouse tumours will be examined for genetic changes in the form of gene 

amplifications and deletions 

 An in vitro model cell line will be used to investigate the DDR to infection by 

retrovirus and lentivirus vectors 

 Epigenetic changes will be measured in vitro following infection 

 The relationship between DDR and methylation will be investigated using cells 

mutated at 53BP1, a gene important to the DDR pathway 

 Gene expression pathways will be investigated for DNA damage and repair 

pathways and genes known to be controlled by the E2F transcription factors 

 



             MATERIALS & METHODS Chapter 2 
 

  50 
 

2.1           MATERIALS 

 

The materials used in these experiments are listed below, along with details of the 

suppliers from which they were purchased.  

 

2.1.1  General chemicals and reagents 

 

Chemical/ Reagent Company name 

Agar Fisher Scientific (Loughborough, UK) 

 Agarose 

Ampicillin Sigma-Aldrich (Dorset, UK) 

 BSA (Bovine Serum Albumin)  

Chloroform Fisher Scientific 

Double distilled water (ddH2o) Autoclaved purite water
1 

DMSO (dimethyl Sulfoxide) Sigma-Aldrich 

Ethanol  Hayman LTD (Essex, UK) 

Ethidium Bromide Sigma- Aldrich 

Glycerol Fisher Scientific 

IMS (industrial methylated spirit) Hayman LTD 

Isopropanol Fisher Scientific 

Magnesium Chloride Sigma-Aldrich 

 Paraformaldehyde 

Phenol 

Potassium Ferrocyanide 

Potassium Ferricyanide 

SDS (sodium dodecyl sulfate) 

Sodium chloride Fisher Scientific 

Sodium citrate Sigma Aldrich 

Sodium hydroxide BDH 

Tris Borate Acid (TBE) Fisher Scientific 

 
Table 3. General chemicals and reagents used in experiments 1 represent ddH2O 
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2.1.2  Tissue culture reagents 
 

Chemical/ Reagent Company name 

DMEM (Dulbecco’s modified Eagle’s 

medium) containing GlutaMax, 

1000mg/L and sodium pyruvate 

Fisher Scientific 

Pen/Strep (penicillin/streptomycin) 

Fetal Bovine Serum 

DMEM-F12 

Hydrocortisone 

Insulin 

Penicillin/streptomycin/glutamine 

Epidermal growth factor Sigma- Aldrich 

10X Trypsin-EDTA (containing 0.5% 

trypsin in 5.3mM EDTA)  

Fisher Scientific 

DMSO (dimethyl sulfoxide) Sigma-Aldrich 

1X PBS (Phosphate Buffered Saline) 

Trypan Blue Invitrogen 

Virkon disinfectant Fisher Scientific 

 
Table 4. General reagents used for tissue culture 

 

 

2.1.3  X-gal reagents 
 

Chemical/ Reagent Company name 

1X PBS Sigma- Aldrich 

4% Paraformaldehyde 

Potassium Ferrocyanide 

Potassium Ferricyanide 

Magnesium Chloride 

X-gal (5-bromo-4-chloro-3-indoyl b-d-galactopyranoside) Fisher Scientific 

 
Table 5. General chemicals and reagents used in x-gal staining procedure 

 

 

2.1.4  Cell viability reagents 
 

Chemical/ Reagent Company name 

Countess® Cell Counting Chamber Slides Invitrogen 

Trypan blue stain (0.4%) 

1X PBS (Phosphate Buffered Saline) Sigma-Aldrich 

 

Table 6. General chemicals and reagents used in cell viability assays 
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2.1.5  Immunofluorescence reagents 
 

Chemical/ Reagent Company name 

1X PBS Sigma- Aldrich 

4% Paraformaldehyde 

Permeabilization buffer See 2.13 

Blocking buffer See 2.13 

Washing buffer Solution See 2.13 

Mouse anti-human 53BP1 IgG2b (1:200) BD Transduction Laboratories (Oxford, 

UK) 

Rabbit anti-mouse 53BP1 (1:200)  

Vectashield
®
 Mounting Media containing 

Dapi 

Vector Laboratories (Peterborough, UK)  

 
Table 7. Reagents used in immunofluorescence 

 

 

2.1.6  DNA Extraction reagents 
 

Chemical/ Reagent Company name 

Phenol Sigma-Aldrich 

Chloroform Fisher Scientific 

Extraction buffer See 2.13 

Proteinase K Fisher Scientific 

RNase A 

Ethanol Hayman LTD 

70% Ethanol See 2.13 

 
Table 8. Reagents used for DNA extraction of cells 

 

 

2.1.7 Reagents for global methylation assay using Imprint  

Methylated DNA quantification kit 

 
Table 9. General reagents used for global methylation assays. 

Chemical/ Reagent Company name 

10X wash buffer Sigma- Aldrich 

DNA Binding Solution 

Methylated Control DNA (50 ng/l) 

Block Solution 

Capture Antibody 

Detection Antibody 

Developing Solution 

Stop Solution 
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2.1.8 Pre designed and custom made TaqMan probes for gene 

expression analysis- Applied Biosystems 
 

Gene Name Assay ID Exons amplified Amplificon 

product size 

18sRNA 4310893E n/a 187 

Dnmt1 Mm00599763_m1 1-2 68 

Dnmt3a Mm00432870_m1 6-7 75 

Dnmt3b Mm00599800_m1 1-2 61 

 
Table 10. TaqMan gene expression assays used to quantify DNA methyltransferase 
activity 

 

 

2.1.9  RNA extraction reagents 
 

Chemical/ Reagent Company name 

RNA extraction 

TRIzol reagent Invitrogen 

Chloroform Fisher Scientific 

2-propan-1-ol (isopropanol) Sigma-Aldrich 

75% ice cold ethanol See 2.13 

Nuclease free ddH2O Qiagen (West Sussex, UK) 

DNase I Treatment 

10X reaction buffer Sigma- Aldrich 

Amplification Grade DNase I (1,0000 

units) 

Stop solution 

RNA purification 

-ME (2-Mercaptoethanol) Agilent technologies, Stratagene 

 

 

Lysis solution 

1 x low salt wash solution 

Elution buffer 

 
Table 11.  Reagents used for isolation of total RNA from cell lines, DNase I treatments 
and RNA purification 
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2.1.10  cDNA synthesis for Real Time Quantitative (Q)- PCR reagents 
 

Chemical/ Reagent Company name 

ddH2O 
 

10X RT buffer Applied Biosystems 

10X RT random Primers 

25X dNTP mix (100mM) 

MultiScribe, Reverse Transcriptase, 

50U/l 

RNase Inhibitor 

 
Table 12. General chemicals and reagents used for cDNA synthesis of total RNA for 
QPCR 

 

2.1.11  Q-PCR reagents for gene expression analysis 
 

Chemical/ Reagent Company name 

ddH2O 
 

2X  TaqMan universal PCR Master Mix 

containing AmpliTaq GoldDNA 

polymerase, Amperase UNG, dNTP’s 

and dUTP 

Applied Biosystems 

20X TaqMan gene expression assay 

 
Table 13. General chemicals and reagents for TaqMan PCR reactions 

 

2.1.12  mFISH reagents 

Chemical/ Reagent Company name 

Metaphase Spreads 

Carnoy’s Fixative See 2.13 

Slide pre-treatment prior to hybridization  

50% Acetic acid  See 2.13 

100% methanol Sigma- Aldrich 

0.1M HCL See 2.13 

2X SSC Sigma- Aldrich 

Hybridisation 

70% Formamide  See 2.13 

Human M-FISH paint  MetaSystems (Houston, USA) 

70% Ethanol See 2.13 

90% Ethanol See 2.13 

100% Ethanol Hayman LTD (Essex, UK) 

Fixogum Tesco (UK) 

Post- Hybridisation 
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Table 14. General chemicals and reagents used for mFISH experiments 

 

2.1.13  MicroArray reagents 

 
Table 15. General chemicals and reagents used for Microarray experiments 

2X SSC Sigma- Aldrich 

50% formamide/ 2X SSC See 2.13 

4X SSCT See 2.13 

Anti biotin Cy5.5 (Cy5.5 conjugated 

Affinity purified anti-biotin [goat] 

Rockland Immunochemicals 

(Pennsylvania, USA) 

Counterstain DAPI (SlowFade® Gold 

antifade reagent with DAPI   

Invitrogen 

Chemical/ Reagent Company name 

cDNA synthesis- 3DNA 900  

RT primer- Cy3 (1.0 pmole/l) Genisphere (Pennsylvania, USA) 

RT primer- Cy5  (1.0 pmole/l) 

SuperaseIn 

dNTP mix (10mM each)  

cDNA synthesis- SuperScript III 

SuperScript III RT (200 U/μl)  Invitrogen 

5X First Strand Buffer 

0.1M DTT 

Pre-hybridization solution 

BSA (100mg/ml)  Sigma- Aldrich 

10% SDS 

20X SSC 

cDNA Hybridization  

LNA dT blocker Genisphere 

2X SDS-based hybridization buffer 

Nuclease free water 

Hybridization Wash 

2x SSC, 0.2% SDS wash buffer Sigma- Aldrich 

2x SSC wash buffer 

0.2x SSC 

Hybridization  

3DNA capture reagent- Cy3 Genisphere 

3DNA capture reagent- Cy5 

SlideBooster 

Hydration solution- MilliQ water  

Coupling solution- 25% glycerol 

70% ethanol See 2.13 
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2.1.14  Compositions of buffers and solutions 

 

General buffers and solutions 

 

75% Ethanol for RNA use 

750ml nuclease free ddH2O 

250ml Absolute ethanol solution 

 

70% Ethanol 

750ml ddH2O 

250ml Absolute ethanol solution 

 

90% Ethanol 

900ml ddH2O 

100ml Absolute ethanol solution 

 

DNA Extraction buffer 

50mM Tris pH 8.0 

100mM EDTA pH 8.0 

100mM NaCl 

0.1% SDS 

 

Permeabilization Buffer 

50ml X1 PBS 

0.5% Triton X100 

 

Blocking Buffer 

0.2% skimmed dry milk 

0.1% Triton X100 

50ml X1PBS 
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Washing Buffer Solution 

0.1% Triton X100 

50ml X1 PBS 

 

5X TBE (tris-borate EDTA) buffer 

500ml ddH2O 

27g Tris base 

137.5g boric acid 

10ml 0.5M EDTA pH 8.0 

 

1X TBE 

700ml ddH2O 

300ml of 5X TBS solution 

 

X-Gal staining solution 

PBS containing : 

4mM K3FE (CN) 6 

4mM K4FE (CN) 6 

0.1mM MgCl2 

0.4mg/ml X-Gal (from 40mg/ml stock dissolved in DMSO) Make up fresh immediately 

before use, protect from light before and during staining. If solution is to be used to 

stain cells in tissue culture plates it should be filtered through a 0.22m pore size filter 

unit before use to eliminate any un dissolved crystals that would hamper subsequent 

microscopic inspection.  

 

Paraformaldehyde Solution 

4% (w/v) paraformaldehyde in PBS. 

Stir under gentle heat to dissolve, store frozen in 20ml aliquots. 

 

Carnoy’s Fixative 

3:1methanol/ glacial acetic acid 

 

50% Acetic acid 

50ml acetic acid in 50ml ddH2O 
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4X SSCT 

80µl Tween 20 in 400ml of 4XSSC  

 

0.01 HCL  

50µl 38% HCL, concentrated grade 

50ml HPLC water containing 500µl of 1% pepsin.  

 

70% Formamide 

30% 2X SSC 

 

2.1.15  Cell Lines 

The cell lines utilized in these experiments are listed below.  

 

HepG2   

HepG2 cells are a human hepatocellular carcinoma cell line used for mammalian tissue 

culture. These cells were kindly provided by Dr Amanda Harvey (Brunel University, 

Uxbridge, UK) 

HepG2 cells have been isolated from human liver cancer patients. These cells are 

frequently used in genotoxicity studies and identification of reactive components. 

(Knasmuller et al, 2004) 

 

Mcf10a 

Mcf10a cells are an immortalized non transformed human mammary epithelial cell line. 

These cells were kindly provided by Dr Amanda Harvey (Brunel University, Uxbridge, 

UK) 

Mcf10a cells were derived from the breast tissue of a 36 year old patient with 

fibrocystic changes. It exhibits numerous features of normal breast epithelium, 

including lack of tumorigenicity in nude mice, lack of anchorage-independent growth 

and is dependable on growth factors and hormones for proliferation and growth. It is 

also one step away from being metastic (Yang et al., 2006).  
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MRC5-SV1 

Is a SV40 immortalized lung fibroblast which when undergone DNA damage, repairs 

normally (Arlett et al., 1988). 

These cells were kindly provided by Dr Christopher Parris (Brunel University, 

Uxbridge, UK) 

 

AT5BIVA 

AT5BIVA is an SV40 immortalized classic ataxia telangiectasia fibroblast cell line and 

are derived from an ataxia telangiectasia patient. It is DNA DSB repair deficient and is 

deficient in the ATM gene at the cell cycle check point (Murnane et al., 1985). 

These cells were kindly provided by Dr Christopher Parris (Brunel University, 

Uxbridge, UK) 

 

XP14BRneo17 

Is an SV40 immortalized fibroblast cell line, derived from a human subject defect in the 

NHEJ pathway particularly deficient in DNA PKcs (Abbaszadeh et al., 2010). 

These cells were kindly provided by Dr Christopher Parris (Brunel University, 

Uxbridge, UK) 

 

53BP1 -/- 

Is a 53BP1 deficient mouse embryonic fibroblast (MEF) cell line (Shibata et al, 2010).  

These cells were kindly provided by Professor Penny Jeggo (University of Sussex, 

Brighton, UK) 

 

TELCeB/ AF-7 

TELCeB/ AF-7 cells contain pCeB (gag/pol), pAF7 (amphotropic envelope) and the 

pMfGns Laz-Z backbone (Cossett et al., 1995). For the purpose of this study this virus 

producing cell line was called MLV. 

 

PA317 

Pa317 cells were derived from NIH 3T3 TK
-
 cells by co-transfection of the defective 

viral DNA. DNA construct consist of the promoter, gag, pol and env sequences of a 

helper virus useful for making retrovirus packaging cell line that do not transfer the 
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packaging function (Miller and Rosman, 1989). For the purpose of this study these cells 

were called, Empty vector.    

These cells were kindly provided by Dr Michael Themis (Brunel University, Uxbridge, 

UK) 

 

2.1.16  Viral vectors 

 

The Smart2Z (EIAV), HR’SIN-CPPT-S-FX-W (HIV), HR’SIN-CPPT-S-FX-W (HIV 

containing defective integrase) and pLIONhAAThFIX FIV (FIV) vectors used in this 

study were originally provided by Dr Themis. These vectors were used to infect cell 

lines.  
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2.2  METHODS 

 

2.2.1  Mammalian cell culture methods 

 

All cell culture protocols were performed under a laminar class II cell culture hood 

(Heraeus).  

HepG2, TELCeB/ AF-7, PA317, MRC-5 SV1, AT5BIVA, XP14BRneo17 and 53BP -/- 

cells were maintained in the same growth medium: DMEM containing 15% FBS, 

supplemented with 1% penicillin/streptomycin.  

Mcf01a cells were cultured in DMEM-F12 containing 10% FBS, 1% 

penicillin/streptomycin/ glutamine, 0.5µg/ml hydrocortisone, 20ng/ml epidermal growth 

factor and 5µg/ml insulin.  

 

2.2.1.1  Growth and Maintenance  

 

Cells were grown as a monolayer in sterile tissue culture flasks or cell culture dishes in 

a CO2 incubator (Sanyo) maintained at 37ºC, in a humidified, 5% CO2 atmosphere.  

Once the cells had reached 70% confluence, growth medium was aspirated and the 

monolayer washed once with 1 x PBS warmed to 37 ºC. Cells were detached from the 

culture dish using 1 x Trypsin- EDTA. The cell culture dishes were then incubated at 

37ºC for no more than 5 minutes. Trypsin activity was neutralized by the addition of   

>5 volumes of growth medium, and the cells were gently mixed by pipetting up and 

down. The neutralised cell suspension was centrifuged at 1000rpm for 5 minutes. The 

clear supernatant formed was discarded. The pellet was re-suspended in 1ml of fresh 

growth medium and mixed by pipetting up and down until a homogenous single cell 

suspension was achieved. An aliquot of this was transferred to a cell culture dish 

containing fresh growth medium and cell culture dishes were placed in the incubator 

Cells were passaged 2 or 3 times per week at a ratio of 1:3 – 1:8 depending on the 

growth characteristics of each individual cell line.  

 

 

 

 



             MATERIALS & METHODS Chapter 2 
 

  62 
 

2.2.1.2  Long term storage of cells in liquid nitrogen 

 

Cells were frozen in liquid nitrogen (-196ºC) for long term storage. Cell pellet achieved 

from centrifugation after passaging were re-suspended in freezing medium containing 

DMEM including 20% FBS and 10% DMSO. 1ml aliquots were transferred to labelled 

cryotubes, packed in insulated boxes then frozen slowly at -80ºC for 24 hours. After this 

time the vials were transferred to a liquid nitrogen dewar.  

 

2.2.1.3  Seeding cells into cell culture dishes 

 

Cells were trypsinised and re suspended in a small volume of growth medium as 

described for passaging, then counted using a haemocytometer to determine the cell 

density. The suspension was adjusted to 1.5 x 10
5 

cells/ml before being added to cell 

culture dishes at a total volume of 10ml/ dish (i.e. 2ml /well for a 6 well plate, 1ml/ well 

for a 12 well plate, etc.). Dishes were then replaced at 37ºC until the cells had re-

adhered. At this seeding density the cells could be infected the next day.  

 

2.2.1.4  Infection of cells with viral vectors 

 

Cells were plated as described above and left at 37ºC to reattach. Growth medium was 

aspirated from the cells and replaced with the medium containing the diluted virus. Un-

concentrated vector preparations were often applied to the cells without dilution. Plates 

were replaced at 37ºC for infection to proceed, and in most cases were analysed for 

gene expression after 6, 24 and 72 hours.  

 

2.2.2  X-Gal Staining - Percentage of infectibility 

 

Cell lines to be stained with x-gal solution were washed with X1 PBS three times, fixed 

in 4% paraformaldehyde for 8 minutes at room temperature, then washed in x1 PBS 

three times to remove all traces of paraformaldehyde. Fresh X-gal staining solution was 

prepared and enough was added to each sample to completely cover the cell monolayer. 

The samples were wrapped in aluminium foil to exclude light, then left to stain at room 

temperature for up to 24 hours. The x-gal compound is a chromogenic substrate of - 
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galactosidase, and hydrolysis of the  1-4 bond between galactose and the 5-bromo-4-

chloro-3-indolyl parts of the molecule results in the production of an insoluble blue 

precipitate. The distribution of any - galactosidase enzyme within the sample is 

therefore revealed by the appearance of blue pigment. After staining samples were 

washed with X1 PBS and stored in X1 PBS.  

In samples with high levels of -gal expression, blue colorations could be seen with the 

naked eye after as little as 30 minutes in staining solution. For the majority of samples, 

however, inspection under magnification was required. Stained samples were viewed 

under the Olympus inverted light microscope.  

 

2.2.2.1  Image capture and processing   

 

Samples of interest were photographed using a canon digital camera attached to the 

Olympus microscope.  The numbers of blue cells in each well counted were recorded 

using a tally counter and all wells from each infection were averaged.  

 

2.2.3  Cell viability asssay 

 

The dye exclusion test is used to determine the number of viable cells present in a cell 

suspension.  

An aliquot of cell suspension being tested for viability was centrifuged for 5 minutes at 

1000rpm and its supernatant discarded. The pellet was then re-suspended in 50l- 1ml 

of PBS. 10l of this cell suspension was added into a sterile epindorph tube with 10l 

of 0.4% trypan blue. This mixture was allowed to incubate for 5 minutes at room 

temperature. 20l of this mixture was then pipetted into one of the chambers of the 

Countess slides. The slide was then inserted into the Countess Automated cell 

counter and focused. Unstained (viable) and stained (nonviable) cells were counted 

separately in the Countess Automated cell counter and a percentage of viable cells 

were produced.     

Cell Viability assays were carried out 24 hours after infection and every day for the next 

5 days.  
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2.2.4  Immunofluorescence 

 

Cell monolayers were grown on 15mm coverslips in 35mm culture dishes. At 70-75% 

confluency cell monolayers were washed with cold PBS twice. Cells were fixed with 

4% paraformaldehyde for 8 minutes at room temperature in order to retain the shape 

and location of all cellular proteins. After the cell monolayer was washed in 1x PBS 

three times, 2ml permeabilization buffer was added to each dish to permeabilize the 

cells and incubated for 5 minutes at room temperature.2 ml of blocking buffer was then 

added to each dish and left to incubate for 1 hour at room temperature. After this time 

the coverslips were transferred from the dishes to humidity chamber via sterile tweezers 

and placed on damp sterile tissue paper. A dilution of primary antibody in blocking 

buffer was added to the coverslips. The primary antibody was a mouse anti-human 

53BP1 IgG2b and was used at a 1/200 dilution. Coverslips were incubated at room 

temperature for 1 hour. The secondary antibody was a preparation of rabbit anti-mouse 

53BP1, diluted 1/200 in blocking buffer. Coverslips were incubated at room 

temperature for 1 hour in the dark. All steps after this were done in the dark. The 

secondary antibody was washed off to remove unbound reagents and background. This 

was done by dipping the coverslips in 3 beakers containing washing buffer solution. 

Vector shied containing dapi was placed on sterile slides. Each coverslip was then 

mounted on the slide and sealed with clear nail polish. Slides were then inspected using 

a Zeiss microscope and photographed using the Metapher softwares: Msearch and 

AutoCapt. 

 

2.2.4.1  Immunofluorescence image analysis 

 

Nuclei images were imported into and analysed by the Definiens software in 

collaboration with Dr Martin Spitaler of Imperial College, London.  

 

2.2.5  DNA extraction from cultured cells 

 

All surfaces and equipment were wiped down with 2% trigene and 70% ethanol. From a 

cell culture dish, standard trypsinization protocol was performed and the cells were 

pelleted by centrifugation in a 15ml tube. The supernatant was decanted and the pellet 
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resuspended in 0.5-1 ml of extraction buffer until a thick gloopy solution was generated. 

The reaction mixture was transferred into a sterile epindorph tube using a pipette, 

20g/ml RNAase was added and the reaction mixture was incubated at 37C for an 

hour.  Proteinase K at a concentration of 100g/ml was added to the reaction tubes and 

incubated at 55C for two hours. An equal amount of (0.5-1 ml) of phenol was then 

added to the reaction mixture and mixed gently by inverting the tube sideways until a 

white solution was formed. The reaction mixture was spun in a centrifuge at 13,000 g 

for 20 minutes at 4C. The reaction mixture yielded 2 phases separating DNA between 

the phenol- protein solution. The top layer was DNA in aqueous solution. The aqueous 

DNA solution was transferred to a sterile centrifuge tube and an equal volume of 

chloroform was added. The solution was the mixed carefully by inversion. The reaction 

mixture was spun down at 13,000 g for 20 minutes at 4C. The supernatant was 

removed and transferred to a sterile centrifuge tube. 1.5 ml of ice cold 100% ethanol 

was added to wash the reaction mixture and the tube gently mixed by tilting until a clear 

solution with DNA precipitate was formed. The solution containing DNA precipitate 

was spun down to form a pellet. The ethanol solution was poured off by tilting the tube 

in the opposite direction of the DNA pellet. The DNA pellets were washed in 70% 

ethanol twice to remove excess salt. The tubes were air dried in a sterile hood and the 

pellets re-suspended in 300l of double distilled water. The reactions mixtures were left 

to dissolve at 4°C overnight.  

 

2.2.6  Quantification of nucleic acids 

 

Nucleic acids (dsDNA, cDNA and RNA) were quantified and absorbance values 

measured at several wavelengths (260, 280 and 260:280) using the Nanodrop 

spectrophotometer. The 260 absorbance reading was used to determine the 

concentration of nucleic acids present in uninfected, normal and infected cell line 

samples. The 280 absorbance reading was used to detect protein contamination in the 

samples. ddH20/TE nucleic acids buffer was used as a reference sample. 1.5μl of this 

reference sample was applied to the Nanadrop using a sterile pipette and this was used 

to read a zero absorbance for the ‘blank’. 1.5μl of DNA, plasmid DNA, cDNA and 

RNA samples were then measured using the Nanadrop. For pure DNA and RNA 

samples the 260/280 ratio given were approximately 1.8 and 2.0 respectively. 
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2.2.7  Agarose gel electrophoresis  

 

Electrophoresis allows the detection and separation of macromolecules (DNA and 

RNA) based on their size. This was performed through 1 or 2% agarose gels 

supplemented with 0.5g/ml ethidium bromide using a casting tray with well-forming 

combs depending on sample number. Each sample DNA was mixed with 6 x Loading 

buffer and run alongside a 1Kb DNA ladder containing marker fragments of known 

size.  A constant voltage of 50V was applied to move the DNA or RNA fragment 

through the gel. The electric field causes the negatively charge DNA or RNA molecules 

to migrate from negative to positive poles, whilst the ethidium bromide intercalates 

within DNA or RNA molecules allowing the visualization of the restriction digest 

sample. DNA or RNA fragments were visualized using ultraviolet illumination of the 

gel. Gel images were captured using the BIO RAD Chemi Doc 
TM

  XRS.  

 

2.2.8 Global methylation assay using Imprint Methylated DNA 

Quantification Kit 

 

DNA samples which were extracted from lentiviral and retroviral infected cells were 

quantified using the Nanodrop spectrophotometer. DNA samples were then diluted 

using DNA binding solution to achieve a concentration of 50ng in 30μl. Standard 

control samples consisted of a negative blank and a positive DNA sample (uninfected 

and standard methylated DNA samples). The negative controls and methylated DNA 

were also diluted in DNA binding solution. All dilutions were mixed by brief 

centrifugation at 12,000 x g and 30μl of each sample was added to an ELISA plate. To 

ensure that each well was coated the plate was gently tilted from side to side. The plate 

was covered with optical adhesive film and incubated at 37°C for 1hr. 10x wash buffer 

was thawed on ice. Following incubation 150μl of blocking buffer solution was added 

directly to each well to coat samples and reduce non-specific DNA binding. The plate 

wells were covered and incubated at 37°C for 30 minutes. The reaction mixtures were 

removed from each well by inverting plate. Each well was washed by adding 150μl of 

1x wash buffer followed by inversion of the plate to remove the contents. This step was 

repeated 3 times. Methylated DNA capture involved the use of a capture antibody 

specific to methylated CpG dinucleotides. A 1X wash buffer was prepared in a sterile 
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bottle using 11ml of 10x wash buffer and 99ml of ddH2O. Capture antibody was diluted 

in a 1:1000 ratio using 1x wash buffer. 50μL of diluted Capture antibody was then 

added to each well. The plate was then covered and incubated at room temperature for 

1hr. The capture antibody was removed from each well by inverting the plate. Each well 

was washed 4 times with 150μl of 1x wash buffer. The detection antibody was diluted 

to a 1 in 1000 ratio using 1x wash buffer. 50μl of diluted detection antibody was added 

to each well. The plate was covered and incubated at room temperature for 30 minutes. 

The detection antibody was removed from each well and the reaction wells were 

washed 5 times with 150μl of 1x wash buffer. For the detection of methylated DNA 

100μl of developing solution was added to each well. The plate was covered and 

incubated at room temperature away from light for 1-10 minutes. The reaction mixtures 

were monitored for colour change to ensure the formation of a blue solution. 50μl of 

stop solution was added to each well which yielded a yellow solution. The absorbance 

values correspond to the level of CpG methylation. Absorbance (Abs) values were 

measured at 450nm on a plate reader (Biotex Instruments). To calculate the relative 

methylation levels for each DNA sample. Firstly replicate absorbance values for all 

DNA and blank samples were averaged. The average blank value was then subtracted 

from the average absorbance values for each DNA sample to give value A. Next the 

average blank value was subtracted from the average absorbance value taken from the 

positive control sample to give value B. Value A was divided by value B and multiplied 

by 100. This calculated percentage value represents a global methylation level that is a 

percentage of the positive control DNA sample. 

 

Calculation for global methylation:       (Abs 450 sample - Abs 450 Blank)              x100                              

(Abs 450 Methylation Control DNA - Abs 450 Blank) 

 

 

2.2.9  RNA extraction from cultured cells 

 

Cell monolayers at 90-95% confluency were washed with 10ml PBS twice. 2-3ml trizol 

reagent was added and left for 2 minutes at room temperature. Lysate was retropipetted 

and placed in a sterile 15ml tube. The homogenized sample was then incubated at room 

temperature for 5 minutes. 200l of chloroform per 1ml trizol reagent was added and 



             MATERIALS & METHODS Chapter 2 
 

  68 
 

the reaction mixture was mixed vigorously by hand for 15 seconds and incubated for 2-

3 minutes at room temperature. The samples were then centrifuged at 12,000 g for 15 

minutes at 4C in a sigma centrifuge (model GK10). Following centrifugation the 

reaction mixture was separated into 3 layers representing RNA solution (clear aqueous 

phase), proteins (white phase) and DNA (pink phase) respectively. The clear aqueous 

phase was transferred to a sterile epindorph tube and 500l of isopropanol (2-propan-1-

ol) per 1ml of trizol reagent was added. The mixture was mixed by inverting the tubes 

gently several times and left to incubate at room temperature for 10 minutes. The 

reaction tubes were re-centrifuged at 12, 000 g for 10minutes at 4C.  The supernatant 

was removed using a pipette and the pellet re- suspended in 1ml of 75% ice cold ethanol 

to wash. The reaction mixture was vortexed followed by centrifugation at 7,500 g for 5 

minutes at 4°C. This washing step was repeated once. The supernatant was removed 

and the tubes left to air dry for 5-10 minutes. The RNA pellet was then re-suspended in 

50μl of nuclease free water. 

 

2.2.9.1  DNase I Treatment  

 

A DNase I reaction mixture was prepared using the reagents and quantities listed in 

Table 16.  

 

Reagent Final Concentration Working volume x1 (μl) 

RNA sample - 50 

Reaction buffer 1x 5 

Amplification Grade DNaseI 1U/ μl 5 

 

 Table 16. Preparation of one reaction mixture for DNase I treatment.  

 

DNase I was used to digest DNA present in RNA samples into oligo and 

mononucleotides prior to cDNA synthesis. The reaction mixture was left to incubate at 

room temperature for 15 minutes. DNase is then inactivated by addition of 5μl of Stop 

DNase I (50mM EDTA) solution and mixed by brief centrifugation followed by a 10 

minute incubation on a 70C heating block.  The reaction tubes were then cooled in ice. 

RNA purification 
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Total RNA samples were extracted and RNA was purified using the Absolute Total 

RNA & mRNA Purification Kit (Agilent technologies, Stratagene Cat # 400806). 

1.75μl of β-ME was added to total RNA samples. 250μl of lysis buffer and 250μl of 

70% ethanol was added to each reaction mixture and mixed by centrifugation 12,000 x 

g. The reaction mixture was transferred to an RNA binding spin cup and seated in a 2ml 

receptacle tube. The reaction mixture was mixed by centrifugation for 1 min. The flow 

through was discarded and 500μl of 1x low salt wash buffer added to the spin cup. The 

tube was re-centrifuged for 1 min and the flow through discarded. The addition of wash 

buffer followed by centrifugation and removal of flow through was repeated once with 

500μl and again 300μl of wash buffer. The reaction mixture was re-centrifuged for 2 

minutes. The spin cup was transferred to a sterile 1.5ml micro-centrifuge tube and 50μl 

of elution buffer added. The reaction mixture was incubated at room temperature for 2 

min then re- centrifuged. The elution, incubation and centrifugation step was repeated 

once. Purified RNA samples were placed in ice and prepared for immediate cDNA 

synthesis.  

 

2.2.10  cDNA synthesis for Q-PCR 

 

cDNA was prepared from purified total RNA samples isolated from virus infected 

HepG2, Mcf10a and 53BP1-/- cell lines.  

Quantification of RNA samples were carried out using the Nanodrop 

spectrophotometer. The conditions for the PCR were amplified prior to the experiment 

taking place. The optimised input of RNA template was 125ng in 10μl of RNA. All 

reverse transcription reactions were performed on ice each RNA sample using the 

reagents and quantities listed in Table 17. 

 

Reagents 1 X Working volume (l) 

ddH2O 3.2 

10X RT buffer 2 

10X RT Random Primers 2 

25X dNTP mix (100mM) 0.8 

MultiScribe
TM

, Reverse Transcriptase, 50 U/l 1 

RNase inhibitor 1 

 

Table 17. General reagents used for cDNA synthesis of total RNA for QPCR reactions.  
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10μl of RNA sample was added to each reverse transcription reaction and briefly mixed 

by centrifugation. The reaction mixtures were transferred to the thermal cycler and 

reverse transcription performed using the parameters listed in Table 18.  

 

Step Temperature (C) Time (min) 

Primer extension 25 10 

cDNA synthesis 37 120 

Reaction termination 85 5 

Pause 4 - 

 

Table 18. PCR parameters used for cDNA synthesis  using the MultiScribe reaction kit.  

 

 

2.2.10.1  Q-PCR for gene expression analysis 

 

A real time PCR reaction master mix was prepared on ice using the reagents and 

quantities listed in table 19. The reaction mixtures were then alliquoted into a 96 well 

plate and 2μl of cDNA was added to each reaction master mix. The amount of DNA 

required for gene expression analysis of virus-inserted genes was 125ng of cDNA. The 

reaction plates were sealed with a MicroAmp 96 optical adhesive film to prevent 

evaporation and loss of samples during PCR reactions.  

 

Reagents Working volume (μl) 

ddH2O 7 

2X TaqMan Universal PCR Master Mix 10 

20X TaqMan gene expression assay 1 

 

Table 19. Reagents used for preparation of TaqMan PCR mastermix for amplifications 
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The reaction mixtures were transferred to a 7900HT real time PCR thermal cycler 

(Applied Biosystems). PCR amplifications were run in the absolute quantification blank 

template format. The parameters for all amplification reactions are listed in Table 20. 

 

Step Temperature (C) Time No. Cycles 

… 50 2 minutes 1 x 

Denaturation 95 10 minutes … 

Denaturation 95 15 seconds  

40 x Annealing 60 1 minute 

Extension 72 90 seconds 

 

Table 20. PCR parameters required for Q-PCR.  

 

Validation experiments for PCR efficiency and optimal template concentration required 

were calculated quantitatively. Raw data for each reaction plate consisted of CT values. 

CT values were manually transferred from the thermal cycler to a CD for data analysis. 

All reactions were performed in quadruplets and the reactions repeated on two 

occasions. All genes were normalised using the house keeping gene (18sRNA) and 

normal un- infected samples. The relative expression level of each gene was manually 

calculated from CT values using the delta delta CT (ΔΔCT) method. 

 

1. The average CT for each gene was subtracted from the average housekeeping 

CT value to produce a ΔCT value.  

 

2. ΔCT values from each sample was subtracted from the reference sample to yield 

a ΔΔCT value (ΔΔCT = ΔCTsample – ΔCTnormal liver).  

3. Relative gene expression values 2
(-log fold value) 

were calculated using the following 

equation - 2
-ΔΔCT

.  

 

Statistical analysis including 95% confidence intervals, standard error of the mean 

(SEM) and student T testing was performed on CT values to validate gene expression 

data between normal and infected samples. 
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2.2.11  Microarray 

 

RNA was extracted from cell monolayers, DNase treated and purified. Microarrays are 

only performed using good quality RNA. All RNA was assessed for quantity and purity 

using the Nanodrop and for integrity on the BioAnylzer. Concentration of RNA was 

measured using the Nanodrop. RNA should ideally have a 260/280 ratio of 1.9 to 2.1.  

Two microarray slides were done per experiment to reduce any errors.  

 

2.2.11.1 cDNA synthesis from RNA 

 

cDNA sysntheis was performed using the superscript III enzyme kit (Invitrogen).  

In a sterile epindorph tube the RNA-RT Primer Mix (1.0 pmole/l) was prepared by the 

addition of 2g of RNA in 5l being added to 1l of the relevant RT primer (Cy3 or 

Cy5) as indicated in table 21. 

 

CH1=Cy3 label (532) CH2=Cy5 label (635)  

Sample ~ RNA Sample ~ RNA Slide barcode 

Empty vector (1) 2ug/5ul NC 2ug/5ul 19710929 

MLV(1) 2ug/5ul NC 2ug/5ul 19710927 

EIAV(1) 2ug/5 ul NC 2ug/5ul 19710928 

NC 2ug/5ul Empty vector (2) 2ug/5ul 19710930 

NC 2ug/5ul MLV(2) 2ug/5ul 19710931 

NC 2ug/5ul EIAV(2) 2ug/5ul 19710932 

Empty vector (3) 2ug/5ul NC 2ug/5ul 19710933 

MLV(3) 2ug/5ul NC 2ug/5ul 19710934 

EIAV(3) 2ug/5ul NC 2ug/5ul 19710935 

  

Table 21.  Samples used for the reaction master mix of cDNA synthesis.  

 

 

The solution was mixed, briefly centrifuged and heated on a pre-set 80C PCR machine 

for 5 minutes to denature RNA secondary structures. Tubes were immediately placed on 

ice for 3 minutes, quickly spun down and replaced on ice.  
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A Reaction Master Mix was prepared in sterile epindorph tubes using the reagents and 

quantities listed in table 22. The reaction master mix was formulated to a final volume 

dependent on the number of cDNA synthesis set up simultaneously. The specificity of 

labelling is determined for each channel by the primers used. Thus the master mix is the 

same for each channel, therefore 2 reaction amounts are for the two channel labelling of 

RNA samples that will be hybridized onto one slide  

 

 

Reagents Working Volumes X2 (l) 

5X SuperScript III First strand buffer 4 

0.1 M DTT 2 

SuperaseIn 1 

dNTP mix 1 

SuperScript Enzyme  1 

 

Table 22.  Reagents used for reaction master mix for cDNA synthesis.  

 

The reaction master mix was gently mixed and briefly centrifuged. 4.5l of the reaction 

master mix was added to the 6l of RNA-RT primer mix to give a total volume of 

10.5l.  

Tubes were gently mixed, briefly centrifuged and incubated at 42C in a pre-set PCR 

machine for 3 hours.  

 

2.2.11.2 Degradation of RNA 

 

RT reaction tubes were removed from the PCR machine after 3 hours and the reactions 

stopped by the addition of 1l of 1M NaOH/ 100mM EDTA solution. The tubes were 

then incubated at 65C for 10 minutes in the PCR machine to denature the cDNA/ RNA 

hybrids and degrade the template RNA. The reaction was then neutralized by adding 

1.2l of 2M Tris-HCL, pH 7.5 for a final volume of 12.7l.  

 

 

 

 



             MATERIALS & METHODS Chapter 2 
 

  74 
 

2.2.11.3 Pre-slide scanning and Wash 

 

Op Human Ready Array (microarrays Inc, USA) slides were handled with clean powder 

free gloved hands. All slides were pre-scanned before to ensure their print quality using 

the InnoScan (700A scanner) and Mapic software (version 3.1.0, Innoqsys, France).  

 

2.2.11.4 Pre-hybridisation of slides 

 

These slides were then pre-washed prior to use and scanned again to ensure that they 

were clean and properly blocked.  

Pre-hybridisation solution was prepared in a coplin jar using the reagents and quantities 

in table… 

 

Reagents Working volume x1 

BSA solution (100mg/ml) 5ml 

10% SDS 500l 

20x SSC 8.75ml 

MilliQ water 35.75ml 

Total 50ml 

 

Table 23. Reagents used to make pre-hybridisation solution for Microarray. 

 

The coplin jar was then placed in a 65C hybridisation oven for 30 minutes. Array 

slides were placed in the solution in the coplin jar and placed back in the 65C oven for 

20 minutes.  

Slides were removed from the coplin jar and secured into a black staining rack. This 

was immediately immersed in a washing trough filled with MilliQ water and rinsed for 

1 minute.  The black staining rack was then immersed into a washing trough filled with 

isopropanol and rinse for 1 minute. The slides were then completely dried using the 

slide centrifuge.  

Slides were then scanned again to check there are no smears / streaks from pre-

hybridisation and kept clean and dry by placing them in a slide holder container until 

ready for use.  
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2.2.11.5 Preparation of Slidebooster 

  

3 minutes before the end of the RT reaction the SlideBooster was prepared. 70% ethanol 

was used to clean the SlideBooster, making sure no liquid is left next to the bar.  500l 

of hydration solution was added to each of the two hydration wells and 15l of coupling 

solution was added onto each of the three transducer connections. The slide was placed 

over the tranducers and checked for any bubbles. LifterSlip was then placed over the 

slide. 60l of coupling solution was then placed into the thumb hole at the base of the 

slide so that it makes contact with the solutions under the slide. The chamber protocol 

was then set to 55C for 16 hours.  The hybridisation chamber is then closed and left to 

heat up to 55C.  

 

2.2.11.6 cDNA hybridisation 

  

2X SDS-based hybridisation buffer was thawed and resuspended by heating to 70C for 

10 minutes and then vortexed to make sure that components were resuspended evenly.  

For each array using a 22x60 LifterSlip, the following cDNA Hybridisation Mix as 

shown in Table 24 was used. 

 

Reagents X1 working Volume (l) 

cDNA synthesis reaction 1 (Cy3) 12.7 

cDNA synthesis reaction 1 (Cy5) 12.7 

LNA dT blocker 2 

2X SDS-based hybridisation buffer 37 

Nuclease free water 9.6 

TOTAL 74 

  

Table 24. Reagents used for cDNA hybridisation for Microarray. 

 

After addition of all components the cDNA Hybridisation mix was vortexed, briefly 

spun down and incubated at 80C for 10 minutes to denature secondary structures and 

then cooled to 60C.  
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When the slide in the slide booster is warmed to 55C, the cDNA hybridisation mix is 

pipetted to the microarray slide and hybridized overnight (16 hours) (mix power:27, 

pulse power: 3/7). 

 

2.2.11.7 Post cDNA hybridisation wash 

 

The slide was removed from the slide booster and quickly placed into a pre warmed 

trough with pre warmed (55C) 2x SSC, 0.2% SDS wash buffer. The LifterSlip was 

carefully floated off the slide in the wash solution in the trough. The slide was then 

inserted into the submerged rack. After the following washes took place: 

Wash 1: Slide was washed for 10 minutes in the pre warmed 2x SSC, 0.2% SDS wash 

buffer at an orbital rotation (150rpm) in the incubator at 55C. 

Wash 2: Side was washed for 10 minutes in 2x SSC wash buffer at an orbital rotation 

(150rpm) at room temperature. 

Wash 3: Side was washed for 10 minutes in 0.2x SSC wash buffer at an orbital rotation 

(150rpm) at room temperature. 

The slide is immediately dried using the slide centrifuge. 

 

2.2.11.8 Hybridisation of the fluorescently labelled 3DNA to the 

Microarray Slide 

 

The 3DNA capture reagents (Cy3 and Cy5) were pre-prepared for the 3DNA 

hybridisation by firstly placing both vials in a light proof container in the dark as these 

capture reagents contain fluorophores thus, light sensitive. These vials were then left at 

room temperature for 20 minutes.  After which they were incubated at 55C for 10 

minutes in the heat block (covering the block with foil). The capture reagents were then 

vortexed briefly and spun down. The tubes were checked for any aggregates, as 

aggregates will prevent the array from labelling properly. 

 

2X SDS-based hybridisation buffer was thawed and re suspended by heating to 70C 

for 10 minutes and then vortexed to make sure that components were re suspended 

evenly.  
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For each array a 3DNA hybridisation mix relevant for use on 22x60 LifterSlip, was 

made according to Table 25.  

 

Reagents X1 working Volume (l) 

3DNA capture reagent- Cy3 2.5 

3DNA capture reagent- Cy5 2.5 

2X SDS-based hybridisation buffer 37 

Nuclease free water 32 

TOTAL 74 

 

Table 25. Reagents used for 3DNA hybridisation mix for 1 slide for Microarray.  

 

After addition of all components the 3DNA Hybridisation mix was vortexed, briefly 

spun down and incubated at 80C for 10 minutes and then cooled to 55C.  

During these 10 minutes the array and LifterSlip was placed in the Slide Booster (with 

contact solution and correct hydration solution as before) and pre-warmed to 50C. The 

3DNA hybridisation mix is pipetted to the microarray slide and hybridized for 4 hours 

(mix power: 27, pulse power: 3/7). 

 

2.2.11.9  Post 3DNA hybridisation wash 

 

The slide was removed from the slide booster and quickly placed into a pre warmed 

trough with pre warmed (50C) 2x SSC, 0.2% SDS wash buffer. The LifterSlip was 

carefully floated off the slide in the wash solution in the trough. The slide was then 

inserted into the submerged rack. After the following washes took place: 

Wash 1: Slide was washed for 10 minutes in the pre warmed 2x SSC, 0.2% SDS wash 

buffer at an orbital rotation (150rpm) in the incubator at 55C. 

Wash 2: Side was washed for 10 minutes in 2x SSC wash buffer at an orbital rotation 

(150rpm) at room temperature. 

Wash 3: Side was washed for 10 minutes in 0.2x SSC wash buffer at an orbital rotation 

(150rpm) at room temperature. 

The slide is immediately dried using the slide centrifuge and placed in a lightproof slide 

holder.  
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2.2.11.10 Microarray image acquisition. 

 

Microarray slides were scanned with Innoscan 700A microarray scanner/Mapix 3.1.0 

software (Innopsys, France). Laser and PMT settings were manipulated to balance 

overall intensity between Cy3 and Cy5 channels and to avoid excess of saturated pixels 

in the spots. 

 

2.2.11.11 Microarray image analysis. 

 

Microarrays scan .tiff images were imported into and analysed by BlueFuse for 

Microarrays 3.2 (4484) (BlueGnome, UK). Microarray spots grid were generated from 

.gal file (supplied by microarrays manufacturer), and manually adjusted to the spot 

positions on the images. Spots were segmented and their intensities were calculated 

according to the software algorithms. Calculated spot intensities then were normalised 

by “Global Lowess” function, and spots replicates normalised intensities averaged by 

“fused” function. 

 

2.2.11.12 Microarray data analysis. 

 

Output files with both normalised spots intensities and experiment/control log2 rations 

were imported to the web implementations of Cyber-T (Kayala and Baldi, 2012) and 

Rank-Product (Laing and Smith, 2010) software to find differentially expressed genes. 

The cut-off for differentially expressed genes was more than 1.5 fold change and 

P<0.05. 

 

2.2.12  mFISH 

 

In the current project M-FISH has been performed using human paints prepared from 

flow-sorted human chromosomes. The ‘human paint mix’ has been obtained from 

whole chromosome paints labelled with different combinations of four fluorochromes 

(Cy5, Cy3.5, Cy3 and FITC) and one hapten (Biotin). In total, 24 unique combinations 

have been obtained, and no more than 3 fluorochromes were used for each combination.  
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2.2.12.1 Slide preparation and metaphase spreads 

 

Cells were fixed with freshly prepared Carnoy’s fixative (3:1 methanol/glacial acid). 

This metaphase cell suspension were then dropped onto clean microscope slides 

(sonicated at 1% decon and stored in 96% ethanol) using the water bath at 50ºC. Slides 

were checked under the phase contrast microscope to ensure both the cell concentration 

and the metaphase spreads are optimal.  

 

2.2.12.2 Slide pre-treatment prior to hybridization  

 

Slides were incubated in a coplin jar of 50% acetic acid (in water), at room temperature 

for 3 minutes and then incubated in a jar of 100% methanol, at room temperature for 3 

minutes and air dried. After the slides were dry they were incubated in a coplin jar of 

0.01 HCL at room temperature for 3 minutes. After which slides were thoroughly rinsed 

3 times in 2X SSC for 5 minutes each and air dried.  Slides were then baked at 65 ºC for 

an hour.  

 

2.2.12.3 Hybridisation  

 

Slides were denatured in a coplin jar containing 70% formamide (pre-warmed in a 72ºC 

waterbath) for 1 minute 30 seconds and immediately quenched in 70% ice cold ethanol 

for 1 minute. Slides were then dehydrated through an ethanol series (70%. 70%, 90%, 

90% and 100%) for a minute each and air dried. Human M-FISH paint was vortexed, 

pulse microfuged and denatured at 65 ºC for 10 minutes. 10µl of human M-FISH paint 

probe was pipetted onto the slide and covered with a clean 22X22 coverslip and sealed 

with fixogum. Slides were then incubated over night at 37 ºC incubator in a humid 

chamber.  

 

2.2.12.4 Post-hybridisation wash and detection 

 

Fixogum was removed from slides and coverslips soaked off in 2X SSC at room 

temperature. Slides were then incubated at 50% formamide/ 2X SCC at 42ºC for 5 

minutes. This was repeated again in different coplin jar containing 50% formamide/ 2X 
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SCC. Slides were then washed in pre-warmed 2X SSC twice at 42ºC. slides were 

drained and 150µl of anti-biotin Cy5.5 (1:200 dilution in 4X SSCT) was added to each 

slide and allowed to incubate at 37 ºC for 15-20 minutes.  Slides were then washed 

thrice in 4X SSCT, 5 minutes each at 42ºC. Each slide was drained and approximately 

15-20µl of DAPI counterstain was added, overlayed with a 22X50 mm coverslip and 

finally, sealed with nail varnish. Slides were then ready for imaging. 

 

2.2.12.5 mFISH Imaging 

 

Multicolour FISH’d metaphase images are captured and processed using the 

SmartCapture
®
 (Digital Scientific, UK) digital imaging system that consists of a 

epifluorescent Zeiss microscope (Axioplan2 Imaging or AxioImager DI) fitted with a 

cooled charge coupled device  (CCD) camera (Hamamatsu Orca ER), equipped with 

narrow band pass filters for Cy5.5, Cy5, Cy3, Cy3.5, FITC (fluorescein isothiocyanate) 

and DAPI (4’,6-diamidino-2-phenylindole) fluorescence and an iMAC computer 

(Apple). Metaphase images are then karyotyped using the Digital Scientific, UK,  

Smattype software. 

In the current study 40 images from each cell line was imaged, karyotyped and 

analysed. 
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3.1   Background 

 

Retrovirus gene therapy vectors can deliver therapeutic genes to mammalian cells in a 

permanent manner by integrating their genome into host chromosomes and therefore 

provide the potential for long-term therapeutic gene expression. However, this is 

contrasted by their ability to cause mutagenesis upon integration. This insertion appears 

to be semi-random by integration into actively transcribed regions of the genome with 

target site selectivity near promoter regions. Already known is that these insertions can 

result in up-regulation or down-regulation of neighbouring gene expression by provirus 

LTR promoters or enhancers or by splicing of virus sequences together with host genes. 

Where the host genes are oncogenes or tumour suppressor genes IM can lead to 

oncogenesis. 

Lentiviruses (LV) are a subgroup of retroviruses that have similar characteristics to their 

retrovirus counterparts, however, their integration target site selection appears to be the 

gene transcription unit rather than promoter regions. These vectors have been designed 

with SIN properties and therefore lack promoter sequences that switch on host gene 

expression unless internal promoter read-through takes place.  Little is known, however, 

about their potential for IM. 

The observation of HCC in mice treated by LV vectors described by Dr Themis’s group 

in 2005 and more recently in 2013 (Appendix 1) highlights the potential for 

genotoxicity by these vectors and how IS profiles differ between primate and non 

primate vectors. Microarray characterization of these HCCs coupled with LAM PCR 

revealed gene ontologies (GO’s) of genes with insertions involved in oxidative 

reduction and DNA damage and repair and several were known oncogenes involved in 

cancer and particularly HCC. Because, cancer development usually requires multiple 

genetic events beginning with cell immortalisation then progression to malignancy, the 

original hypothesis that IM caused oncogenesis alone is difficult to reconcile. The work 

of this thesis was, therefore, directed at investigating whether virus infection and 

integration could cause genotoxicity by an alternative route(s) than IM. One important 

route based on the microarray data (Nowrouzi et al., 2012) is the possibility that virus 

infection is associated with genome instability and this could be also contributing to the 

cancer phenotype identified. This hypothesis is supported by a previously published 
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report by the Themis group (2003) that showed high level infection of cells in vitro 

leads to the hprt –ve phenotype coupled to instability at this locus (Themis et al., 2003). 

To begin this work, mouse liver tissues were investigated for genome instability using 

the method of Comparative Genome Hybridization (CGH) in collaboration with Dr 

Nathalie Conte of the Wellcome Trust. CGH enables chromosome amplification and 

deletions to be examined using mouse chromosome specific probes. Hence CGH is a 

molecular cytogenetic method for the analysis of copy number variations (CNV) (gains 

or losses) in the DNA content of tumour cells compared with normal livers. In this 

process, kidney genomic DNA was used to prove normal livers had similar CNV.    

 

3.2 Investigation of mouse tumour DNA compared to non-tumour 

liver using CGH 

 

For CGH analysis, tumours that developed from mice treated with EIAV and HIV 

vectors and a spontaneous tumour were used. These were compared with normal livers 

and kidney samples for each respective liver tumour to control for normal liver CNV. 

 

 

 

 

 

 

 

 



                                                       RESULTS Chapter 3 
 

83 
 

 

EIAV induced liver tumours vs. normal liver (n=6 each) 
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HIV induced liver tumours vs. Normal liver (n=3 each) 
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Spontaneous tumour vs. Kidney 
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Figure 7. CGH Ideograms representing pooled CNV of tumours. 

Ideograms are shown of sample DNAs derived from mice treated with EIAV vector vs. 

respective normals (n=6), tumours that derived from animals treated with the HIV 

vector (n=3) and a spontaneous liver tumour. DNA from respective kidneys of each 

mouse was compared with normal livers first (data not shown) before comparisons 

between normal livers and tumours to ensure non-tumour liver DNA contained normal 

CNV to the kidney. The spontaneous liver tumour (without infection) was compared 

directly to the kidney of this animal. Chromosomes 1-19, X and Y are shown. CNV are 

represented as: Green bars = deletions; red bars = amplification.  

 

 

 

The CGH shown in figure 7 represents CNV between mouse tumour DNAs compared 

with non-tumour livers infected with the EIAV vector. In these samples CNV 

representing deletions in chromosome 1, 4, 7, 18 and whole loss of chromosome X were 

observed. Amplifications were observed in chromosomes 2 and 6.  

In the 3 HIV vector associated tumours small regions of amplifications and deletions 

were found. These were observed in commonly known regions that are believed 

unstable and found in independent CGH screens on several murine cell types at the 

Wellcome Trust (personal communication with Dr Nathalie Conte).  Hence, these were 

believed unlikely to be caused by the HIV vector.  

For the spontaneous tumour (not carrying a virus insertion) CNV were detected only in 

the Y chromosome which is also known to be unstable and common in spontaneous 

tumours (personal communication with Dr Nathalie Conte).   

Because CNV were identified mainly in EIAV derived tumours more detailed 

examination of the regions carrying these CNV was made. 
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EIAV Tumour 2- Liver tumour vs. Normal liver and normal kidney- Chromosome 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4559357- Hnf4α 

147876573- Foxa2 
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EIAV Tumour 2- Liver tumour vs. Normal liver and normal kidney- Chromosome 6 
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EIAV Tumour 2- Liver tumour vs. Normal liver and normal kidney- Monosomy X 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. CGH Ideograms representing CNV in EIAV Tumour 2.  The ideograms show the regions carrying CNV. This information was used for 

BLAST searches using NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to identify the genes in the regions of CNV. In chromosome 2 a specific region 

between 4559357 and 147876573 was amplified. Also complete amplification was observed in, chromosome 6 and entire loss of the X 

chromosome.   

 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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EIAV Tumour 1- Liver tumour vs. kidney- Chromosome 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. CGH Ideogram representing amplification of part of chromosome 2 in EIAV derived Tumour 1.  

CNV are shown with the BLAST search (http://blast.ncbi.nlm.nih.gov/Blast.cgi) for the genes contained in the region of CNV. 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Of the 6 EIAV derived tumours analysed tumour 1 showed amplification of the whole 

of chromosome 2. Common to Tumour 1 and Tumour 2 was amplification of a large 

region of this chromosome. 

 

Region of amplification of chromosome 2 common to EIAV derived 

Tumour 1 and  2 

 

Tumour 1         Tumour 2 

 

 

Figure 10. Ideogram comparing Tumours 1 and 2 CNV in chromosome 2 

The figure shows the region of CNV found in both tumours and genes contained in this 

region after BLAST search.  

 

The region of chromosome 2 shown for these tumours was investigated for genes which 

may have been disrupted by the amplification and possibly important to HCC. In this 

breakpoint region Hnf4α and Foxa2 were identified after BLAST (Fig 10). These genes 

were then investigated further for differential expression in the microarray of these 

tumours.  
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For Hnf4α, microarray data showed a 1.5 (p>0.05) fold decrease in expression of this 

gene, whereas no change in expression was identified for the Foxa2 gene. 

Interestingly, in Tumour 1 microarray showed Tgm2 expression increased by 4.5 fold 

(p<0.05). Tgm2 is in the same region as the breakpoint region found in Tumour 2, and 

this gene which codes for a transglutaminase has been shown to be differentially 

expressed in HCC (Sun et al., 2008). To examine more accurately the changes in gene 

expression observed by microarray, RT-PCR using primer/probes for each gene was 

performed. 

 

 

Table 26. Real time PCR relative change in gene expression of Hnf4α, 

Hnf1α and Foxa2 in Tumour 1 and 2. 

 

Gene name 
Relative change in gene expression  

(log2) 

Relative change in gene expression 

(log2) 

 Tumour 1  (+/-SD) Tumour 2 (+/-SD) 

Foxa2 1.57 (0.41) -0.75  (0.08) 

Hnf1α -0.55 (0.15) -0.20 (0.05) 

Hnf4α -0.62 (0.04) -0.18 (0.04) 

 

RT PCR was used to measure levels of Hnf4α, Hnf1α and Foxa2 gene expression. 

These were decreased in both Tumour 1 and 2 except in Tumour 1 Foxa2 gene 

expression was increased compared with normal liver tumour samples. All levels of 

expression are given as log 2 fold changes that were normalised to 18S RNA gene 

expression that was set at 1. SD= standard deviation. 
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Figure 11. RT-PCR of Hnf4α, Hnf1α and Foxa2 genes in Tumours 1 and 

Tumour 2.  

RT-PCR was performed on mRNA isolated from Tumour 1 and 2. Gene expression 

(ΔΔCT) were calculated for each gene and compared to normal liver samples. Values 

were shown are those with changes that were statistically significant. All experiments 

were performed in quadruplets and repeated on different occasions. The conditions for 

all amplification reactions were optimised and a validation efficiency test performed. 

18sRNA expression was used to normalise gene expression.  Statistical analysis using 

the Student T test at 95% confidence interval testing was performed on all Q-PCR data 

(P<0.05). 

 

As shown in Table 26 and Figure 11 Hnf4α expression levels was reduced in Tumours 1 

and 2 compared with normal livers for these tumours.  Hnf1α was also reduced in both 

tumours. These genes are known to be repressed during liver oncogenesis and HCC. 

Foxa2 had increased expression levels in RT-PCR of Tumour 1 and increased 

expression in Tumour 2.  

To investigate the potential cause of oncogenesis in Tumour 2, Hnf4α, Hnf1α and 

Foxa2 genes found by CGH and Pah and Acvr2α genes found with EIAV vector 

insertions and described by Themis et al 2013  (Nowrouzi et al., 2012) were 

investigated together for pathways common to these genes using the STRING 
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(http;//string-db.org/) database. This database identifies predicted protein interactions 

that include direct (physical) and indirect (functional) associations. Four of the five 

genes were found in related pathways (Fig 12). The Pah gene was found to be 

associated with Hnf1a, Hnf4a and Foxa2 which are all associated with HCC. Foxa2, 

Hnf1a and Hnf4a are closely related transcription factors which are critical to the 

development and function of the mouse liver.  Acvr2a and Tgm2 were not found to be 

linked.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Analysis of the relationship between genes found by CGH and IM of 

tumour 2 

Foxa2, Hnf1α, Hnf4α and Tgm2 identified using CGH of Tumour 2 and Pah and Acvr2a 

genes found with EIAV vector insertions were imputed into the STRING (http;//string-

db.org/) database. The Pah gene was found to be associated with Hnf1a, Hnf4a. No 

association was found for these genes with Acvr2a and Tgm2, however, all 6 genes 

are known to be associated with liver disease and specifically to HCC. Confidence 

levels are provided from the STRING database for gene interactions.  

 

The results obtained by CGH suggest genome instability. However, because the 

tumours identified in the mice treated with EIAV were as a result of clonal evolution, 

the CNV observed could not be strictly assigned to being caused by the EIAV vector. 

The work carried out in this thesis, therefore, concerns the use of alternative assays to 

investigate genotoxicity independent of IM.  The work investigates the possible 
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connection between retroviral infection and genome instability and the host innate 

response to infection in the form of epigenetic changes.  
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4.1 Investigation of vector associated genotoxicity in cells following 

in vitro delivery of RV and LV 

 

Evidence of genome instability following RV infection has been provided by the 

laboratory of Frederick Bushman who showed that virus integration causes double 

strand breaks (DSB) (Bushman et al., 2001). To examine this process further, the 

relationship between DSB and mutagenesis was investigated here using in-vitro assays.  

To begin this study, genome instability was measured following infection. This was 

initially performed to confirm the findings of Bushman et al (2001). To do this, 

different gene therapy vectors were applied to cell lines either capable or incapable of 

DNA damage repair pathways. Throughout this study Mcf10a cells, with an intact DNA 

repair pathway were used as an in vitro model cell line. This cell line has previously 

been used in genotoxic studies. It lacks the ability to grow as anchorage-independent 

and is one step away from being metastatic (Yang et al., 2006).   

 

4.1.1  Cell infectibility  

 

Before the investigation of genome instability could commence, the level of infection of 

cell lines required for this study was established. In addition to using Mcf10a cells that 

have active pathways to DNA damage repair (DDR), the Mrc5 cell line was included 

because it is also known to display normal DDR kinetics (Bourton et al., 2012). At5biva 

and Xp14br cells that have been shown previously to be repair deficient without intact 

pathways of DSB repair (Bourton et al., 2012) were also used to demonstrate DSB.  
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MCF10A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Mcf10a cells infected with RV and LV vectors. Infection was performed 

using MLV, HIV and EIAV at high and low MOI. Level of infection was measured using 

β-galactosidase staining of cells and counting the percentage of blue cells.  Images 

were taken at X100 magnification using the Zeiss Axiovert 25 microscope.   

MLV- Low MOI 

EIAV- High MOI EIAV- Low MOI 
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HIV- Low MOI 

MLV- High MOI 

Un-Infected 
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MRC5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Mrc5 cells infected with RV and LV vectors. Infection was performed using 

MLV, HIV and EIAV at high and low MOI. Level of infection was measured using β-

galactosidase staining of cells and counting the percentage of blue cells.  Images were 

taken at X100 magnification using the Zeiss Axiovert 25 microscope. 

Un-Infected 

MLV- High MOI MLV- Low MOI 

HIV- High MOI 

EIAV- High MOI 

HIV- Low MOI 
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AT5BIVA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. At5biva cells infected with RV and LV vectors. Infection was performed 

using MLV, HIV and EIAV at high and low MOI. Level of infection was measured using β-

galactosidase staining of cells and counting the percentage of blue cells.  Images were 

taken at X100 magnification using the Zeiss Axiovert 25 microscope. 
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XP14BR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Xp14br cells infected with RV and LV vectors. Infection was performed using 

MLV, HIV and EIAV at high and low MOI. Level of infection was measured using β-

galactosidase staining of cells and counting the percentage of blue cells.  Images were 

taken at X100 magnification using the Zeiss Axiovert 25 microscope.  
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Figure 17. Mcf10a, Mrc5, At5biva and Xp154br cells were infected with an HIV derived integrase negative (IN-ve) vector at high 

MOI (22) and low MOI (10). The IN- vector carries the GFP marker gene. Green cells were counted using the JuLI smart  fluorescent 

cell analyzer at X40 3 days post-infection. Mcf10a cells showed high levels of infection. Mrc5, At5biva and Xp14br cells showed low 

levels of infection. Un-infected cells did not show any green immunofluorescence (data not shown).  

XP14BR- Low MOI XP14BR- High MOI 

AT5BIVA- Low MOI 
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Table 27. Percentage level of infection in Mcf10a, Mrc5, At5biva and 
Xp14br cells 
 

 

 

 

 

 

 

 

 

 

 

 

 

Cells were infected with RV and LV vectors. Level of infection of cells was measured 

using β-galactosidase staining of cells and percentages of blue cells were counted and 

calculated. Negative controls were cultured in an identical manner to virally infected cells 

and mock infected in the presence of 5µg/ml DEAE dextran. All infections used DEAE 

dextran at 5µg/ml. 24 hours after infection cells were re-fed with complete medium and 

24 hours later infection levels were calculated. Upon infection with LV or RV all cell lines 

showed positive infection. Levels of infection are greater when a high MOI was used. 

Un-infected cells showed no positively blue cells. Due to differences in titres between 

viruses that could be generated, high and low MOIs, respectively, were not identical. 

Mcf10a, Mrc5, At5biva and Xp14br cells were infected with MLV (High MOI:200, Low 

MOI:10), HIV (High MOI:50, Low MOI:10), EIAV (High MOI:20, Low MOI:10), IN- (High 

MOI:22, Low MOI:10). Un-Infected=negative control; MLV=Moloney murine leukaemia 

virus; HIV=Human immunodeficiency virus; EIAV=Equine infectious anaemia virus; IN-, 

Human immunodeficiency virus vector with mutated integrase=IN- This vector had a 

GFP marker gene. SEM’s are derived from triplicate readings. High MOI=H, Low MOI=L

Cell Line   MOI Percentage infection (+/- SEM) 

    MLV HIV EIAV IN- 

MCF10A 
H 99 (1) 62 (8) 68 (4) 72 (3) 

L 75 (5) 22 (5) 12 (4) 64 (4) 

MRC5 
H 100 (0) 21 (5) 43 (6) 22 (3) 

L 37 (2) 8 (3) 14 (2) 15 (3) 

AT5BIVA 
H 98 (2) 31 (2) 9 (5) 10 (5) 

L 28 (5) 7 (0) 3 (3) 4 (7) 

XP14BR 
H 98 (2) 44 (4) 27 (3) 5 (7) 

L 88 (4) 8 (4) 11 (3) 2 (6) 
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Highest level infection for each vector was achieved at high MOI. 100% infection was 

found on Mrc5 cells with the MLV vector at an MOI of 200 (Fig 14) in contrast to 

negative controls. Mcf10a cells were infected at the highest level (99% +/-1) with MLV. 

Lowest level of infection was found using the EIAV vector (12% +/-4) for this cell line 

(Fig 13). Mrc5 level reached 8% (+/-3) using the HIV vector (Table 27). At5biva and 

Xp14br cell lines showed highest levels of infection with the MLV vector at 98% (+/-2) 

(Table 27).   

Levels of infection using high or low MOI of the IN- vector were low for Mrc5, Atbiva 

and Xp14br, however, levels of infection for Mcf10a cells infected with high MOI IN- 

vector was 72% (+/-3) and 64% (+/- 4) with low MOI IN- vector.  

The results obtained suggest the cell lines could be infected with RV and LV vectors 

and that the highest infection was achieved using Mcf10a and Mrc5 cell lines. Next, cell 

viability was tested on each cell line to determine the effects of virus infection on cell 

survival. 

 

 

4.1.2  Survival of cells following infection 

 

Following infection cell survival assays were performed using the trypan blue assay. 

Trypan blue staining of cells distinguishes between cells that are alive or dead. Cells 

that are viable exclude the dye whereas dead cells do not and can be viewed by 

microscopy. Cell viability assays were carried out on Mcf10a, Mrc5, At5biva and 

Xp14br cell lines. Cells were infected with a range of retroviral vectors at high and low 

MOI and percentages of viable cells were counted 0-5 days post infection.
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  Graphs showing percentage cell survival after infection with RV and LV at high MOI 

 

 

 

Figure 18. Mcf10a and Mrc5 percentage cell survival following infection with RV and 

LV at high MOI. Mcf10a cells that were either un-infected or irradiated show cell survival 

levels between 95-100% over the 5-day period following infection. After infection with MLV, 

HIV, EIAV, FIV and the MLV vector without the virus genome, cell viability decreased 24 to 

48 hours post infection and then increased thereafter. Mrc5 cells showed similar survival to 

Mcf10a cells post infection, however cells infection by the MLV vector 24 hours post infection 

showed low cell viability (43%+/-5). 
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Figure 19. At5biva and Xp14br percentage cell survival on infection with RV and LV at 

high MOI. At5biva and Xp14br exhibit least survival with the EIAV vector, shown 1 day post 

infection with cell viability reduced to 10%. Un-infected cells remained with 97-100% cell 

viability throughout. Irradiated cells had decreased cell viability 0-5 days post irradiation.    
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Graphs showing percentage cell survival after infection with RV and LV at low MOI  

 

 

 

 

Figure 20. Mcf10a and Mrc5 percentage cell survival after infection with RV and LV at 

low MOI.  Mcf10a and Mrc5 cells infected with MLV shows the lowest rate of cell viability 2 

days post infection at 75% (+/-6) and 64% (+/-3), respectively. Cell viability increases after 2 

days post infection with each vector. 
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Figure 21. At5biva and Xp14br percentage cell survival after infection with RV and LV 

at Low MOI. At5biva and Xp14br infected with EIAV have a drastically reduced cell survival 

1 day post infection with cell viability falling to 45% (+/-6) and 41% (+/-5), respectively.  
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Table 28. Percentage of viable cells on infection with High MOI RV and LV 
vectors 

 

CELL 
LINE 

Vector 
DAYS POST-INFECTION 

Percentage infection (+/-SEM) 

   0 1 2 3 4 5 

MCF01A 

Un-Infected 100 (0) 97 (1) 100 (0) 99 (0) 100 (0) 100 (0) 
IR 100 (0) 95 (1) 96 (4) 97 (0) 97 (2) 98 (2) 

MLV 100 (0) 65 (6) 60 (5) 72 (4) 81 (1) 87 (6) 
HIV 100 (0) 70 (2) 61 (4) 76 (9) 79 (8) 82 (6) 

EIAV 100 (0) 68 (5) 59 (6) 67  (7) 65 (8) 70 (5) 
FIV 100 (0) 71 (6) 62 (4) 75 (4) 78 (9) 89 (6) 
IN- 100 (0) 85 (8) 89 (5) 92 (7) 93 (2) 94 (5) 

Empty Vector 100 (0) 88 (7) 75 (6) 72 (2) 79 (8) 81 (7) 

             

MRC5 

Un-Infected 100 (0) 99 (1) 99 (1) 100 (0) 98 (2) 100 (0) 
IR 100 (0) 96 (3) 98 (2) 98 (0) 97 (1) 99 (1) 

MLV 100 (0) 57 (11) 43 (5) 68 (8) 71 (7) 75 (6) 
HIV 100 (0) 70 (7) 60 (4) 70 (11) 79 (5) 85 ( 6) 

EIAV 100 (0) 65 (6) 59 (4) 65 (6) 7 (8) 83 (7) 
FIV 100 (0) 72 (5) 67 (8) 68 (2) 79 (4) 89 (3) 
IN- 100 (0) 87 (2) 85 (6) 93 (3) 97 (1) 95 (2) 

Empty Vector 100 (0) 85 (10) 71 (6) 76 (5) 75 (8) 77 (3) 

             

AT5BIVA 

Un-Infected 100 (0) 100 (0) 98 (1) 100 (0) 98 (1) 97 (1) 
IR 100 (0) 80 (10) 74 (4) 61 (8) 55 (5) 52 (7) 

MLV 100 (0) 45 (8) 32 (6) 28 (4) 20 (3) 22 (2) 
HIV 100 (0) 65 (8) 46 (3) 32 (5) 38 (8) 44 (2) 

EIAV 100 (0) 13 (5) 15 (8) 19 (5) 21 (8) 23 (3) 
FIV 100 (0) 65 (2) 65 (6) 52 ( 7) 48 (8) 45 (3) 
IN- 100 (0) 87 5) 85 (9) 88 (8) 84 (5) 91 (5) 

Empty Vector 100 (0) 74 (7) 67 (5) 69 (8) 72 (4) 76 (2) 

             

XP14BR 

Un-Infected 100 (0) 100 (0) 97 (1) 99 (1) 100 (0) 98 (1) 
IR 100 (0) 90 (5) 82 (2) 74 (4) 66 (7) 60 (8) 

MLV 100 (0) 52 (2) 47 (3) 34 (4) 30 (5) 27 (6) 
HIV 100 (0) 43 (6) 42 (5) 35 (6) 41 (4) 46 (2) 

EIAV 100 (0) 10 (6) 16 (5) 24 (4) 28 (7) 31 (3) 
FIV 100 (0) 64 (7) 60 (4) 49 (5) 49 (6) 40 (7) 
IN- 100 (0) 84 (4) 85 (6) 89 7) 93 (5) 93 (3) 

Empty Vector 100 (0) 68 (6) 64 (4) 75 (5) 78 (4) 79 (4) 
               

 

Mcf10a, Mrc5, At5biva and Xp14br were infected with RV and LV at a low MOI of 10 and cell 

survival was measured using the trypan blue assay. Percentage cell survival was calculated 

after counting cells using the Invitrogen Countess Automated cell counter 0-5 days post 
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infection. Negative controls were cultured in an identical manner to virus infected cells and mock 

infected in the presence of 5µg/ml DEAE dextran. All infections used DEAE dextran at 5µg/ml. 

24 hours after infection cells were re-fed with complete medium. All cell lines showed 100% cell 

viability 0 days post infection. 24 hours post infection cell viability was significantly reduced. 

Mcf10a, Mrc5, At5biva and Xp14br cells were infected at the maximum MOI allowed by virus 

titre (high MOI). MLV (MOI 100), HIV (MOI 100), EIAV (MOI 100), IN- (MOI 22), FIV (MOI 100) 

and empty Vector (MOI estimated at 100). Un-Infected cells were treated as negative control; 

IR=Irradiated (1Gy); MLV=Moloney murine leukaemia virus; HIV=Human immunodeficiency 

virus; EIAV=Equine infectious anaemia virus; IN-=Human immunodeficiency virus with mutated 

integrase; FIV=Feline immunodeficiency virus; Empty Vector=MLV without viral genome. 
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Table 29. Percentage of viable cells following infection with RV and LV at low 
MOI  

 

Mcf10a, Mrc5, At5biva and Xp14br cells were infected with RV and LV at a low MOI of 10 and 

the percentage cell survival was measured using the trypan blue assay followed by counting 

using an Invitrogen Countess Automated cell counter at 0-5 days post infection. Negative 

controls were cultured in an identical manner to virally infected cells and mock infected in the 

presence of 5µg/ml DEAE dextran. All infections were performed with DEAE dextran at 

5µg/ml. 24 hours after infection cells were re-fed with complete medium. All cell lines showed 

100% cell viability at day 0 post infection. 24 hours post infection cell viability appeared 

reduced. 

CELL 
LINE 

Vector 
DAYS POST-INFECTION 

Percentage Survival (SEM +/-) post infection 

   0 1 2 3 4 5 

MCF01A 

MLV 100 (0) 82 (4) 75 (6) 79 (8) 86 (6) 89 (2) 

HIV 100 (0) 89 (6) 84 (3) 87 (3) 92 (6) 93 (5) 

EIAV 100 (0) 85 (4) 76 (4) 87 (7) 89 (4) 89 (3) 

FIV 100 (0) 87 (6) 77 (4) 85 (6) 88 (2) 92 (8) 

IN- 100 (0) 91 (5) 91 (3) 95 (4) 97 (3) 99 (1) 

Empty Vector 100 (0) 90 (3) 85 (5) 82 (6) 82 (4) 86 (7) 

             

MRC5 

MLV 100 (0) 78 (6) 64 (3) 68 (7) 72 (6) 87 (12) 

HIV 100 (0) 86 (6) 75 (8) 79 (3) 82 (10) 92 (3) 

EIAV 100 (0) 81 (5) 75 (8) 82 (2) 89 (6) 93 (4) 

FIV 100 (0) 87 (9) 79 (2) 85 (8) 89 (7) 93 (5) 

IN- 100 (0) 92 (3) 92 (8) 93 (5) 94 (5) 93 (5) 

Empty Vector 100 (0) 90 (4) 81 (5) 86 (11) 89 (5) 92 (2) 

             

AT5BIVA 

MLV 100 (0) 64 (8) 53 (3) 48 (7) 33 (5) 36 (4) 

HIV 100 (0) 78 (7) 62 (4) 58 (6) 60 (9) 74 (4) 

EIAV 100 (0) 45 (6) 31 (6) 38 (4) 42 (2) 46 (7) 

FIV 100 (0) 75 (8) 68 (6) 60 (7) 57 (8) 54 (7) 

IN- 100 (0) 93 (5) 94 (6) 92 (3) 94 (5) 96 (1) 

Empty Vector 100 (0) 86 (6) 78 (5) 79 ( 4) 82 (3) 89 (2) 

             

XP14BR 

MLV 100 (0) 72 (5) 64 (5) 58 (6) 53 (7) 47 (4) 

HIV 100 (0) 67 (6) 65 (8) 54 ( 4) 62 (7) 68 (4) 

EIAV 100 (0) 41 (5) 48 (2) 56 (8) 58 (7) 62 (6) 

FIV 100 (0) 75 (4) 70 (6) 62 (3) 59 (3) 52 (2) 

IN- 100 (0) 89 6) 87 (4) 86 (6) 87 (4) 91 (3) 

Empty Vector 100 (0) 82 (5) 78 (9) 65 (6) 69 (5) 72 (8) 
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Un-infected Mcf10a and Mrc5 cells survival throughout the 5 day duration of cell 

culturing was 97-100%. Irradiated (1Gy) Mcf10a and Mrc5 cell viability did not show a 

large change in cell survival, however, the percentage of viable cells decreased slightly 

after 24 hours post infection after which time cells appeared to recover possibly as a 

result of DNA damage repair as cell viability increased to 98% (SEM +/- 2) and 99% 

(+/-1) by day 5, respectively. Mcf10a and Mrc5 cells infected with MLV showed the 

lowest rate of cell viability at 2 days post infection of 60% (+/-5) and 43% (+/-5), 

respectively. Interestingly, cell infected with the HIV vector containing a mutated 

integrase showed a similar pattern to that of the irradiated cell lines although the 

percentage viable cells were slightly lower than the irradiated cells. 

Irradiated (1Gy) At5biva and Xp14br cell viability decreased initially to 80% (+/-10) 

and 90% (+/-5), respectively, then further decreased to 52% (+/-7) and 60% (+/-8), 

respectively, 5 days post irradiation. Using the EIAV vector at high MOI to infect 

At5biva and Xp14br the lowest level of viable cells was observed at 13% (+/-5) and 

10% (+/-6), respectively.    

The results obtained show percentage cells with intact DNA repair pathways have 

decreased cell survival upon infection with RV and LV vectors 2 days post infection 

after which cells appear to recover possibly due to DNA repair. Atbiva and Xp14br 

cells without DNA repair pathways intact showed cell viability to decrease throughout 

the 5 days.  

Following the findings described, cells were next investigated to identify DSB in their 

genomes following infection by each vector to attempt to correlate cell survival with 

DNA damage. 
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4.1.3  The effect of infection by RV and LV on DNA DSB 

 

DNA damage is known to cause chromosomal instability that can lead to tumour 

induction. The extent of DSB caused by integrating RV and LV is not clearly defined. It 

was necessary, therefore to investigate this for each vector and demonstrate proviral 

integration as a major assault on the genome of the cell and whether this varies between 

different vectors. DNA damage on the cell has already been shown following irradiation 

or by the use of genotoxic drugs. DNA damage has been shown following integration 

by the laboratory of F. Bushman using HIV-1 derived LV. The Bushman group 

demonstrated a rapid DDR was measurable using γH2AX immunofluorescence to 

identify DSB foci at the sites of DNA damage (Bushman et al., 2001). In the following 

work, to measure the extent of DNA damage on the genome by several RV and LV, 

cells were infected and immunofluorescence of the DNA damage/repair protein 53BP1 

was used for measuring induction of foci representing DSB. 53BP1 was used as an 

alternative to gH2AX because this protein is important in signalling pathways of DNA 

repair as well as apoptosis. For this purpose, a number of cell lines were tested with and 

without intact repair pathways followed by 53BP1 immunofluorescence. 
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Figure 22 a 
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Figure 22 b 
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Figure 22a and b. Photomicrographs of immunofluorescence of 53BP1 in MCF10a cells infected by RV and LV at high and low MOI. A 

DNA damage response (DDR) is evident for each vector tested. Control positive cells were irradiated at 1Gy. Negative controls were cultured in 

an identical manner to virus infected cells and mock infected in the presence of 5µg/ml DEAE dextran. All infections used DEAE dextran at 

5µg/ml. Following irradiation the DDR increases followed by repair over a 6 hour period. RV and LV infection generates foci over a 6 hour 

period believed to be the time required for infection and integration to occur. This is then followed by DDR. Where no viral integrase (-IN) is 

present no DDR appears, however where the vector is present but no genome DDR occurs and shown by the presence of 53BP1 foci. The 

number of nuclei counted is indicated. 

IR=irradiated; NC=negative control; MLV=Moloney murine leukaemia virus; HIV=Human immunodeficiency virus; -IN=Human 

immunodeficiency virus with mutated integrase; EIAV=Equine infectious anaemia virus; FIV=Feline immunodeficiency virus; Empty 

Vector=MLV without viral genome. Photomicrographs are shown for Mcf10a cells infected with MLV at high MOI of 200 and low MOI of 10, HIV 

high MOI of 50 and low MOI of 10, EIAV at high MOI of 20 and low MOI of 10, IN- at high MOI of 22 and low MOI of 10, FIV at high MOI of 10 

and low MOI of 10, Empty Vector at high MOI of 200 and low MOI of 10, IR was performed using 1Gy. Images were viewed using the Zeiss 

Axioplan 2 Imaging microscope and images were captured using the Metafer4 software. Images were then processed using the Definiens 

programme. 
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Figure 23a. Mcf10a 
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 Figure 23b. Mcf10a cells  

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
Histograms of the mean number of 53BP1 foci in MCF10a cells infected at high and 
low MOI 
 
Figure 23a and b represent values of the means and standard errors of Mcf10a 53BP1 foci 

counted and calculated after each treatment. Infections were performed with RV and LV at high 

(red) and low (blue) MOI. Un-infected Mcf10a cells have a mean of 0.7-0.8 foci per nuclei. IR 

cells show a peak at 30minutes of 12.54 foci per nuclei that gradually decreases over a 24 hour 

period. Cells treated with the empty vector at high MOI vector generated highest average number 

of foci at 6 hours post infection with a mean of 7.86, compared to virus vectors with genomes. 

Cells infected with the HIV –IN vector generated similar average of foci as un-infected cells. 
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Table 30a. Mean number of DSB foci in Mcf10a nuclei at high MOI  
 

 

 

 

 

 

Treatment  Time (hours) 

  1  6  24  72 

      

Un-
infected 

MEAN (+/- SEM) 0.80 (0.04) 0.72 (0.04) 0.71  (0.05)   

p-value  0.15 0.06   

No of nuclei 972 817 626   
            

IR 
MEAN (+/- SEM)  12.54 (0.40) 6.32 (0.19) 2.34 (0.12)   
p-value  6.52E-10 8.80E-38   
No of nuclei 340 1092 385   

            

MLV 
MEAN (+/- SEM) 3.52 (0.16) 5.40 (0.25) 1.44 (0.11)   
p-value  1.61E-08 7.75E-27   

No of nuclei 572 452 280   
            

HIV 
MEAN (+/- SEM) 0.95 (0.10) 2.62 (0.12) 1.52 (0.08)   
p-value  4.09E-13 4.31E-12   
No of nuclei 327 614 508   

            

EIAV 
MEAN (+/- SEM) 2.40 (0.17) 7.62 (0.27) 2.17 (0.16)   
p-value  3.63E-46 4.12E-57   
No of nuclei 491 684 627   

            

FIV 
MEAN (+/- SEM) 2.60 (0.15) 4.32 (0.32) 1.03 (0.07)   
p-value  4.42E-08 6.98E-16   
No of nuclei 509 199 589   

            

IN- 
MEAN (+/- SEM) 1.12 (0.12) 0.82 (0.07) 1.13 (0.11) 0.84 (0.07) 
p-value  0.03 0.01 0.03 

No of nuclei 313 356 381 354 
            

Empty 
Vector 

MEAN (+/- SEM) 7.17 (0.29) 7.86  (0.28) 4.54 (0.48)   

p-value  0.01 5.80E-05   

No of nuclei 557 649 94   
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Table 30b. Mean number of DSB foci in Mcf10a nuclei at low MOI 

 

MCF10a cells exposed to RV and LV vectors at high and low MOI are shown in table 30a 

and b above. The DNA damage response (DDR) was measured using 53BP1 

immunoflourescence. Control positive cells were irradiated at 1Gy. Negative controls were 

cultured in an identical manner to virus infected cells and mock infected in the presence of 

5µg/ml DEAE dextran. All infections used DEAE dextran at 5µg/ml. Following irradiation 

the DDR increases followed by repair over a 6 hour period. RV and LV infection appeared 

to occur over an approximate 6 hour period where a peak in the mean number of 53bp1 

foci was observed. This is then followed by a reduction in foci believed due to DDR. All 

infected cells appear to show DDR. Where no viral integrase is present no DDR appears, 

however where the MLV vector is present with no genome DDR occurs. Calculated mean 

values, p-values obtained from standard t-test and no of nuclei counted are shown in the 

table. 

 

 

Treatment   Time (hours) 

    1  6 24  72 
            

MLV 
MEAN (+/- SEM) 1.39 (0.07) 1.96 (0.09) 0.93 (0.06)   

p-value   2.16E-05 1.37E-09   

No of nuclei 768 798 467   
            

HIV 
MEAN (+/- SEM) 0.95 (0.05) 1.54 (0.12) 0.72 (0.05)   
p-value   5.75E-09 2.33E-08   
No of nuclei 729 285 536   

            

EIAV 
MEAN (+/- SEM)  0.71 (0.04) 3.05 (0.13) 1.88 (0.10)   
p-value   7.42E-50 2.08E-09   
No of nuclei 968 620 573   

            

FIV 
MEAN (+/- SEM) 0.99  (0.12) 1.36 (0.10) 0.62 (0.06)   
p-value   0.01 3.41E-09   
No of nuclei 269 273 301   

            

IN- 
MEAN (+/- SEM) 0.83 (0.06) 0.64 (0.04) 1.03 (0.06) 0.84 (0.06) 
p-value   0.00 4.01E-08 0.00 
No of nuclei 485 661 660 546 

            

Empty 
Vector 

MEAN (+/- SEM) 2.15 (0.28) 3.28  (0.29) 1.81 (0.11)   
p-value   0.03 1.19E-05   
No of nuclei 177 263 442   
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Figure 24a. Mrc5 cells 
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Figure 24b. Mrc5 cells 

 

 

 

 

 

 

 

 

 

Histograms of the mean number of 53BP1 foci in MRC 5 cells infected at high and 
low MOI 
 
Figures 24 a and b. represent values of the means and standard errors of Mrc5 53bp1 foci 

observed for each treatment. Infection was performed with RV and LV vectors at high (red) and low 

(blue) MOI. Un-infected Mrc5 cells have a mean of 1.81-2.17 foci per nuclei. IR cells at 30minutes 

have a peak foci number of 7.21 per nuclei that gradually decreases over a 24 hour period. Cells 

infected with the MLV vector at high MOI vector had the highest mean number of foci at 6 hours 

post infection with a mean of 10.57, compared with cells treated with other vectors. Cells infected 

with HIV mutated integrase vector showed similar mean foci patterns as the un-infected cells with a 

very slight peak at 6 hours. 
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Table 31a. Mean number of DSB foci in MRC5 nuclei at high MOI 
 

Treatment   Time (hours)  

    1  6  24  72 

            

Un-
infected 

MEAN (+/- SEM) 2.06 ( 0.23) 2.17 (0.24) 1.81 (0.35)   
p-value   0.64 0.54   
no of nuclei 139 146 85   

            

IR 
MEAN (+/- SEM) 7.21 (0.36) 2.17 (0.20) 1.12 (0.10)   

p-value   2.25E-12 1.25E-10   
no of nuclei 457 183 425   

            

MLV 
MEAN (+/- SEM) 5.96 (0.28) 10.57 (1.12) 4.11  (0.24)   
p-value   0.00 1.82E-07   
no of nuclei 368 128 329   

            

HIV 
MEAN (+/- SEM) 4.49 (0.29) 8.28 (0.60) 3.72 (0.32)   
p-value   4.06E-09 2.85E-09   
no of nuclei 344 190 165   

            

EIAV 
MEAN (+/- SEM) 4.41 (0.29) 8.25 (1.06) 2.75 (0.25)   
p-value   0.00 1.51E-06   
no of nuclei 387 102 269   

            

FIV 
MEAN (+/- SEM) 3.04 (0.27) 6.81 (0.41) 3.51 (0.38)   
p-value   6.28E-11 1.68E-07   
no of nuclei 168 252 123   

            

IN- 
MEAN (+/- SEM) 2.50 (0.13) 2.53 (0.14) 2.14 (0.16) 2.23 (0.13) 
p-value   0.92 0.38 0.96 
no of nuclei 369 372 226 409 

            

Empty 
Vector 

MEAN (+/- SEM) 7.54 (0.62) 8.53 (0.62) 4.11 (0.29)   
p-value   0.16 1.40E-10   
no of nuclei 214 195 197   
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Table 31b. Mean number of DSB foci in MRC5 nuclei at low MOI 
 

Treatment   Time (hours) 

    1  6  24  72 

            

MLV 
MEAN (+/- SEM)  2.53 (0.11) 5.30 (0.51) 1.99 (0.13)   
p-value   2.64E-07 4.09E-09   
no of nuclei 605 347 373   

            

HIV 
MEAN (+/- SEM)  1.84 (0.10) 2.27 (0.12) 1.57 (0.09)   
p-value   0.05 3.49E-06   
no of nuclei 549 513 531   

            

EIAV 
MEAN (+/- SEM) 1.92 (0.11) 4.25 (0.27) 2.06 (0.14)   
p-value   1.04E-14 1.83E-12   
no of nuclei 578 434 543   

            

FIV 
MEAN (+/- SEM) 1.51 (0.11) 2.36 (0.15) 2.09 (0.22)   
p-value   0.01 0.03   
no of nuclei 458 580 212   

            

IN- 
MEAN (+/- SEM) 1.96 (0.23) 2.51 (0.16) 1.81 (0.35) 1.61 (0.14) 
p-value   0.01 0.01 0.20 
no of nuclei 75 335 85 323 

            

Empty 
Vector 

MEAN (+/- SEM) 2.34 (0.27) 3.05 (0.18) 2.17 (0.35)   
p-value   0.00 0.00   
no of nuclei 177 297 104   

            
 

Mrc5 cells exposed to RV and LV vectors at high and low MOI are shown in table 31a and 

b.The DNA damage response (DDR) was measured using 53BP1 immuno-flourescence. 

Control positive cells were irradiated at 1Gy. Negative controls were cultured in an identical 

manner to virally infected cells and mock infected in the presence of 5µg/ml DEAE dextran. 

All infections used DEAE dextran at 5µg/ml. Following irradiation the DDR increases followed 

by repair over a 6 hour period. RV and LV infection appeared to occur over an approximate 6 

hour period where a peak in the mean number of 53bp1 foci was observed. This is then 

followed by a reduction in foci believed due to DDR. All infected cells appear to show DDR. 

Where no viral integrase is present no DDR appears, however where the MLV vector is 

present with no genome DDR occurs. Calculated mean values, p-values obtained from 

standard t-test and number of nuclei counted are shown in the table. 

 

 



                                                      RESULTS Chapter  4 
 

125 
 

0 

2 

4 

6 

8 

1 hour 6 hour 24 hour 

N
ym

b
e

r 
o

f 
Fo

ci
/ 

C
e

ll 

Time (hours) 

MLV 

Figure 25a. At5biva cells 
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Figure 25b. At5biva cells 

 

Histograms of the mean number of 53BP1 foci in At5biva cells infected at high and 
low MOI 
 
Figures 25a and b represent values of the means and standard errors of At5biva 53bp1 foci 

observed for each treatment. Infection was performed with RV and LV vectors at high (red) and low 

(blue) MOI’s.  This cell line is repair deficient. Un-infected cells show a mean number of foci of 

1.28-1.56 per nuclei. IR cells show foci number that increases up to the 24 hour period of 

measurement at 8.70 foci per nucleus.  
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   Table 32a. Mean number of DSB foci in AT5BIVA nuclei at high MOI 
 

Treatment   Time (hours) 

    1 6  24  72 

            

Un-
infected 

MEAN (+/- SEM) 1.30 (0.16) 1.56 (0.08) 1.28 (0.12)   
p-value   0.16 0.35   
no of nuclei 459 483 300   

            

IR 
MEAN (+/- SEM)  6.27 ( 0.25) 8.02 ( 0.55) 8.70 ( 0.35)   
p-value   0.04 0.03   

no of nuclei 496 179 440   
            

MLV 
MEAN (+/- SEM) 4.58 ( 0.50) 5.01 (0.36) 6.15 (0.26)   
p-value   0.39 0.02   
no of nuclei 91 360 464   

            

HIV 
MEAN (+/- SEM) 7.28 (0.38) 7.41 ( 0.40) 7.73 (0.48)   
p-value   0.02 0.01   
no of nuclei 303 478 185   

            

EIAV 
MEAN (+/- SEM) 5.36 ( 0.23) 5.20 (0.25) 5.27 (0.33)   
p-value   0.80 0.98   
no of nuclei 558 377 280   

            

FIV 
MEAN (+/- SEM) 7.04 ( 0.43) 8.08 ( 0.33) 7.94 (0.37)   
p-value   0.03 0.69   
no of nuclei 314 425 364   

            

IN- 
MEAN (+/- SEM) 2.11 ( 0.29) 2.31 ( 0.15) 2.63 ( 0.25) 2.25 ( 0.14) 
p-value   0.70 0.22 0.43 
no of nuclei 133 277 183 251 

            

Empty 
Vector 

MEAN (+/- SEM) 4.86 ( 0.51) 5.50 ( 0.60) 6.12 ( 0.41)   
p-value   0.80 0.04   
no of nuclei 141 288 163   
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Table 32b. Mean number of DSB foci in AT5BIVA nuclei at low MOI 

 

At5biva cells exposed to RV and LV vectors at high and low MOI are shown in table 32a 

and b. The DNA damage response (DDR) was measured using 53BP1 

immunoflourescence. Control positive cells were irradiated at 1Gy. Negative controls 

were cultured in an identical manner to virally infected cells and mock infected in the 

presence of 5µg/ml DEAE dextran. All infections used DEAE dextran at 5µg/ml. At5biva 

are deficient in DDR thus following irradiation instead of eventually decreasing in DSB 

(foci) the level increases. This is also found for the virus infected cells. Mean, p-values 

obtained from standard t-test and number of nuclei counted are all shown in the table. 

 
 

 

 

 

 

Treatment   Time (hours) 

    1  6 24  72 

            

MLV 
MEAN (+/- SEM) 2.30 (0.12) 2.88 (0.17) 2.69 (0.19)   
p-value   0.01 0.89   
no of nuclei 398 407 274   

            

HIV 
MEAN (+/- SEM) 3.19 (0.19) 3.88 (0.31) 4.21 (0.32)   
p-value   0.14 0.19   
no of nuclei 272 255 222   

            

EIAV 
MEAN (+/- SEM) 1.82 (0.14) 2.26 (0.19) 2.49 (0.12)   
p-value   0.03 0.15   
no of nuclei 299 288 450   

            

FIV 
MEAN (+/- SEM) 2.29 (0.21) 3.13 (0.17) 2.36 (0.13)   
p-value   0.00 0.00   
no of nuclei 221 348 399   

            

IN- 
MEAN (+/- SEM) 1.61 (0.15) 2.01 (0.24) 1.91 (0.11) 1.7 (0.27) 
p-value   0.57 0.37 0.54 
no of nuclei 243 72 442 250 

            

Empty 
Vector 

MEAN (+/- SEM) 1.51 (0.09) 1.89 (0.11) 3.04 (0.13)   
p-value   0.02 1.30E-05   
no of nuclei 435 440 611   
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Figure 26a.Xp14br cells 
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Figure 26b. Xp14br cells 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

Histograms of the mean number of 53BP1 foci in Xp14br cells infected at high and low 
MOI 
 
Figures 26a and b represent values of the means and standard errors of Xp14br 53bp1 foci observed 

for each treatment. Infection was performed with RV and LV vectors at high (red) and low (blue). DDR 

does not take place in these cells in contrast to cells with intact DDR pathways such as Mcf10a OR 

Mrc5.  
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   Table 33a. Mean number of DSB foci in XP14BR nuclei at high MOI 
 

Treatment   Time (hours) 

    1  6  24  72 

            

Un-
infected 

MEAN (+/- SEM) 1.35 ( 0.22) 1.23 (0.13) 1.13 (0.09)   
p-value   0.63 0.49   
no of nuclei 297 293 424   

            

IR 
MEAN (+/- SEM) 7.54 (0.53) 6.05  (0.38) 4.52  (0.32)   
p-value   0.01 0.00   
no of nuclei 246 252 226   

            

MLV 
MEAN (+/- SEM) 4.44 (0.42) 5.02 (0.50) 6.02 (0.32)   
p-value   0.44 0.34   

no of nuclei 327 168 513   
            

HIV 
MEAN (+/- SEM) 5.65 (0.27) 5.38 (0.34) 5.78 (0.33)   
p-value   0.40 0.28   
no of nuclei 519 291 30   

            

EIAV 
MEAN (+/- SEM) 5.36 (0.35) 7.04 (0.67) 8.07 (0.40)   
p-value   0.01 0.52   
no of nuclei 201 182 297   

            

FIV 
MEAN (+/- SEM) 5.08 (0.42) 4.47 (0.40) 5.04 (0.59)   
p-value   0.34 0.91   
no of nuclei 171 265 79   

            

IN- 
MEAN (+/- SEM) 1.81 (0.18) 1.59 (0.13) 1.23 (0.12) 1.37 (0.15) 
p-value   2.54E-05 0.88 0.53 

no of nuclei 219 340 300 295 
            

Empty 
Vector 

MEAN (+/- SEM) 2.33 (0.20) 4.15 (0.37) 3.73 (0.19)   
p-value   1.68E-05 0.77   
no of nuclei 488 182 448   
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Table 33b. Mean number of DSB foci in XP14BR nuclei at low MOI 

 

Treatment   Time (hours) 

    1  6  24  72 

            

MLV 
MEAN (+/- SEM) 2.33 (0.19) 2.95 (0.22) 3.25 (0.19)   
p-value   0.00 1.76E-05   
no of nuclei 628 424 326   

            

HIV 
MEAN (+/- SEM) 2.58 (0.21) 3.46 (0.21) 3.56 (0.26)   

p-value   0.01 0.81   
no of nuclei 338 328 256   

            

EIAV 
MEAN (+/- SEM) 3.30 (0.22) 4.14 (0.19) 4.92 (0.28)   
p-value   0.08 0.00   
no of nuclei 273 444 343   

            

FIV 
MEAN (+/- SEM) 3.06 (0.16) 3.19 (0.19) 3.91 (0.22)   
p-value   0.72 0.06   
no of nuclei 383 419 510   

            

IN- 
MEAN (+/- SEM) 1.62 (0.13) 1.49 (0.09) 1.24 (0.14) 1.79 (0.16) 
p-value   0.55 0.77 0.09 
no of nuclei 276 351 194 198 

            

Empty 
Vector 

MEAN (+/- SEM) 1.96 (0.19) 2.43 (0.14) 2.31 (0.18)   
p-value   0.09 0.70   
no of nuclei 237 393 465   

            
 

Xp14br cells exposed to RV and LV vectors at high and low MOI are shown in table 33a 

and b. The DNA damage response (DDR) was measured using 53BP1 immuno-

flourescence. Control positive cells were irradiated at 1Gy. Negative controls were cultured 

in an identical manner to virally infected cells and mock infected in the presence of 5µg/ml 

DEAE dextran. All infections used DEAE dextran at 5µg/ml. Xp14br are deficient in DDR 

thus following irradiation instead of eventually decreasing in DSB (foci) the level increases. 

This is also found for the virus infected cells. Mean, p-values obtained from standard t-test 

and number of nuclei counted are all shown in the table. 
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By infecting Mcf10a and Mrc5 cells it was demonstrated that the expected normal repair of 

DSB occurs 6 hours post infection whereas for Xp14br and At5biva cells without intact 

pathways for DSB DBR did not take place. Instead, DSB foci remain constant as visualized 

by the presence of 53BP1 immuno staining up to the 24 hour time point where 

measurements ceased.  

The highest number of foci recorded at 6 hours post infection in the Mcf10a cell line was 

induced by the MLV genome free vector. For the Mrc5 cell line this occurred with the MLV 

vector carrying a genome. The HIV integrase mutated vector (IN-) induced similar numbers 

of nuclei with foci to the un-infected Mcf10a and Mrc5 cells. At5biva and Xp14br infected 

cell lines demonstrated genotoxicity to their genomes after infection where DBR does not 

take place. 

To measure the extent of DSB and the possible genotoxicity caused by integrative vectors on 

cell genomes, the frequency of DSB were compared between vectors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                      RESULTS Chapter  4 
 

134 
 

EIAV 

0-5 foci 

6-10 foci 

11-15 foci 

16-20 foci 

21-25 foci 

>30 foci 

HIV 

0-5 foci 

6-10 foci 

11-15 foci 

16-20 foci 

21-25 foci 

>30 foci 

MLV 

0-5 foci 

6-10 foci 

11-15 foci 

16-20 foci 

21-25 foci 

>30 foci 

-IN 

0-5 foci 

6-10 foci 

11-15 foci 

16-20 foci 

21-25 foci 

>30 foci 

FIV 

0-5 foci 

6-10 foci 

11-15 foci 

16-20 foci 

21-25 foci 

>30 foci 

Empty Vector 

0-5 foci 

6-10 foci 

11-15 foci 

16-20 foci 

21-25 foci 

>30 foci 

 Frequency of foci in MCF10A nuclei at high MOI 6 hours post infection  

 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

IR 

0-5 foci 

6-10 foci 

11-15 foci 

16-20 foci 

21-25 foci 

>30 foci 

Un-Infected 

0-5 foci 

6-10 foci 

11-15 foci 

16-20 foci 

21-25 foci 

>30 foci 



                                                      RESULTS Chapter  4 
 

135 
 

Empty Vector 
0-5 foci 

6-10 foci 

11-15 foci 

16-20 foci 

21-25 foci 

>30 foci 

-IN 
0-5 foci 

6-10 foci 

11-15 foci 

16-20 foci 

21-25 foci 

>30 foci 

 Frequency of foci in MCF10A nuclei at low MOI 6 hours post infection  

 

Figure 27. Pie charts representing the frequency of 53BP1 foci in Mcf10a nuclei at 6 

hours post treatment with IR, MLV, HIV, EIAV, FIV, IN- and MLV without genome. 

MLV and EIAV have similar profiles with regards to nuclei with 6-10 foci but on the whole EIAV 

appears to have nuclei with higher numbers of foci. FIV, which like EIAV is a non-primate LV, 

shows a similar profile to EIAV but without nuclei with high numbers of foci. Of all the vectors 

tested the HIV vector appears to have nuclei mainly very low numbers of foci. Interestingly, 

however, cells infected with the MLV vector without a genome (empty vector) appeared with 

nuclei the highest number of foci ranging from 0-5 up to more than 30 per nucleus. Also un-

infected cells appeared with a similar range of nuclei to cells infected with integrase negative 

vector (IN-). Cells infected with vectors at low MOI followed a similar trend to those treated with 

vectors at high MOI albeit with fewer foci per nucleus. 
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Figure 28. Pie charts representing the frequency of 53BP1 foci in Mrc5 nuclei at 6 

hours post treatment with IR, MLV, HIV, EIAV, FIV, IN- and MLV without genome. 

Cells infected with IN- and un-infected cells have similar profiles of 6-10 nuclei with foci. EIAV and 

FIV have very similar foci number in their nuclei. Interestingly, however, the MLV vector without a 

genome (empty vector) appeared with a more evenly distributed range of nuclei with foci from 6-10 

up to more than 30.  Vectors at low MOI followed a similar trend to the high MOI vectors however 

they had lower numbers of nuclei with foci. 
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Figure 29. Pie charts representing the frequency of 53BP1 foci in At5biva nuclei at 6 

hours post treatment with IR, MLV, HIV, EIAV, FIV, IN- and MLV without genome. 

Cells either un-infected or infected with IN- vector showed the similar profiles of nuclei with foci. IR 

and MLV treated cells also follow a similar pattern to each other in regards to nuclei with foci from 0-

5 to more than 30. Interestingly, FIV treated cells have a similar trend to cell infected with the MLV 

vector without a genome (empty vector). Vectors at low MOI followed similar trends to cells infected 

at high MOI vectors, however, with lower foci numbers. 
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Figure 30. Pie charts representing the frequency of 53BP1 foci in Xp14br nuclei at 6 

hours post treatment with IR, MLV, HIV, EIAV, FIV, IN- and MLV without genome. 

Un-infected cells and cells infected with the IN- vector show similar trends with regards to nuclei 

that have mainly 0-5 foci. Cells treated by IR or with MLV, HIV, EIAV, FIV and the MLV vector 

without a genome show similar patterns in regards to the frequency of nuclei with foci. Cell 

infected with vectors at low MOI followed a similar trend to those treated with vector at high MOI, 

however, with nuclei with lower foci number. 
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The frequency pie charts show the number of nuclei in Mcf10a cells with 53BP1 

positive foci to be similar to Mcf10a cells infected with the IN- HIV based vector and 

uninfected cells. This was also the case in Mrc5 cells. Mrc5 also appeared to show this 

trend, however, this cell line appears to be a more sensitive cell line to DNA damage 

with nuclei containing higher numbers of foci (6-10) than Mcf10a. The MLV vector 

containing no genome (empty vector) showed similar patterns to cells treated with the 

other vectors (excluding IN-). At5biva and Xp14br, which are cell lines that are repair 

deficient again showed similar trends to each other. 

To determine whether DSB are repaired following infection of Mcf10a cell that contain 

intact DSB repair pathways whole chromosome analysis using muticolour fluorescent in 

situ hybridisation (mFISH) and G-banding chromosomes was then performed. This was 

to determine whether chromosome rearrangement occurs as a result of genome 

instability caused by infection. 
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4.2 An investigation of chromosome integrity using multicolour fluorescent in 

situ hybridisation (mFISH) and G-banding following infection 

 

In the previous chapters 3 to 4 that described investigations of CGH for chromosome CNV 

in mouse tumours obtained by the in vivo study of the Themis group (Nowrouzi et al., 2012) 

and the occurrence of DSB and DBR after infection of cells in vitro with RV and LV, the 

next step was to examine the integrity of chromosomes in infected cells.  

In collaboration with Dr Ruby Banerjee of the Wellcome trust the method of multicolour 

fluorescent in situ hybridisation (mFISH) and G-banding of chromosomes was used to 

analyze infected cells. To begin with, uninfected Mcf10a cells were characterized for their 

karyotype. This was followed by examination of these cells infected with MLV, EIAV and 

HIV vectors for chromosome aberrations. Cells for each treatment were given 2 weeks post 

infection before analysis to allow for any rearrangements to occur.  
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 mFISH of Mcf10a cell without infection 

 

Pseudo G-banding of Mcf10a without infection 

  

48 chromsomes, XX, i(1)(q)+del91)(q), der(3)t(3;9), i(8)(q), der(9)t(3;5;9)+20 
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Figure 31. mFISH and pseudo G-Banding of un-infected Mcf10a.   

Structural aberrations (100%): chromosome 1- i (1)(q) and del (1)(q) showed an 

isochromosome on chromosome 1 involving q arm and partial deletion on 1q. 

Chromosome 3- der (3)t(3;9) showed a derivative chromosome 3 and translocation 

involving chromosome 3 and 9. Chromosome 8-  i (8)(q) showed isochromosome on 

chromosome 8 involving q arm. Chromosome 9- der (3)t(3;5;9) Complex 

rearrangement involving chromosome 3,5 and 9. 40 metaphases were analysed. 

Numerical aberrations (100%) Chromosome 20- (+20) extra copy of chromosome 20.        

 

 

The karyotype identified for the Mcf10a cell line appears to be identical to that reported 

by Cowell et al (2005) and therefore, these cells have not undergone any gross 

chromosomal changes during culturing in the laboratory (Cowell et al., 2005). This 

provided a good basis to begin exploring the effects on these cells of virus infection. 

Mcf10a cells were infected with MLV at MOI of 200, EIAV at MOI of 20 and HIV at 

MOI of 50. Uninfected cells were treated in the same manner as infected cells except for 

exposure to RV and LV then grown for 2 weeks after which mFISH and G-banding was 

carried out. 
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mFISH of EIAV infected Mcf10a 

 

Pseudo G-banding of EIAV infected Mcf10a 

 
 

48 chromsomes, XX, i(1)(q)+del91)(q), der(3)t(3;9), i(8)(q), der(9)t(3;5;9)+20 
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mFISH of HIV infected Mcf10a 

 

Pseudo G-banding of HIV infected Mcf10a 

  

48 chromsomes, XX, i(1)(q)+del91)(q), der(3)t(3;9), i(8)(q), der(9)t(3;5;9)+20 
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mFISH of MLV infected Mcf10a 

 

Pseudo G-banding of MLV infected Mcf10a 
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Figure 32. mFISH and pseudo G-Banding of EIAV, HIV and MLV infected 

Mcf10a cells.   

Structural aberrations (100%): chromosome 1- i (1)(q) and del (1)(q) showed an 

isochromosome on chromosome 1 involving q arm and partial deletion on 1q. 

Chromosome 3- der (3)t(3;9) showed a derivative chromosome 3 and translocation 

involving chromosome 3 and 9. Chromosome 8- i (8)(q) showed isochromosome on 

chromosome 8 involving q arm. Chromosome 9- der (3)t(3;5;9) Complex 

rearrangement involving chromosome 3,5 and 9. 40 metaphases analysed. 

Numerical aberrations (100%) Chromosome 20- (+20) extra copy of chromosome 20.        

 

 

 

The karyotypes of Mcf10a infected with EIAV, HIV and MLV vectors were identical to 

that of uninfected cells demonstrating that 2 weeks after infection no gross 

chromosomal changes can be attributed to infection by RV or LV. 
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5.1 Epigenetic modification and E2F regulation of host genes 

following RV and LV vector delivery 

 

5.1.1 The effects of RV and LV infection on host epigenetics via 

methylation 

 

In previously published findings the group of Fang et al (2001) demonstrated a DNA 

damage response following LV infection to be linked to global methylation changes in 

lymphoblastoid cells. This was attributed to an immune response by cells via epigenetic 

changes to protect the host cell from infection (Fang et al., 2001). Epigenetic changes 

involve DNA methylation using DNA methyltransferases DNMT 1, 3a and 3b, where 

DNMT 3a and b are involved in establishing new methylation of DNA in cells and 

DNMT1 maintains methylation changes during division. In this chapter, the link 

between RV and LV infection and host methylation is further examined.  

To investigate whether the response by cells to RV and LV infection is not specific to 

lymphoblastoid cells only, Mcf10a, HepG2 were infected with each of the MLV, HIV, 

EIAV, FIV vectors. DNA methylation response was measured at 3 time points (6 hours, 

24 hours and 3 days) after infection. Analysis of global methylation changes and DNMT 

1, 3a and 3b gene expression levels were performed. To determine whether methylation 

changes could be found related to the DDR, a 53BP1-/- cell line was also infected in the 

same manner as for M cf10a and HepG2 cells and the epigenetic response investigated.  

These cell lines were also infected with MLV, HIV, EIAV, FIV and MLV virus without 

genome vectors and examined at the same 3 time points (6 hours, 24 hours and 3 days) 

mentioned above post infection. To determine whether methylation changes were due to 

virus integration, cells were also infected with the integrase negative HIV vector. 
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Table 34. Measurement of global methylation in Mcf10a cells infected 

with RV and LV 

vectors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The experimental samples represent Mcf10a infected with the following vectors: MLV, 

HIV, IN- (HIV with mutated integrase), EIAV and Empty Vector (MLV without viral 

genome).  

 

 

 

 

 

Sample Time (hours) 
Relative 

methylated levels 
(%) SEM 

      

Un-infected  
6 100 (0.01) 

24  100 (0.02) 
72 100 (0.02) 

      

HIV 
6  286.57 (0.03) 

24  121.21 (0.03) 
72  414.71 (0.08) 

      

IN- 
6  143.28 (0.01) 

24  154.55 (0.05) 
72  150.33 (0.02) 

      

MLV 
6  143.28 (0.01) 

24  272.73 (0.04) 
72  255.23 (0.01) 

      

EIAV 
6  205.97 (0.01) 

24  96.97 (0.00) 
72  33.33 (0.02) 

      

Empty Vector 
6  4423.88 (0.15) 

24  1262.63 (0.12) 
72  712.25 (0.07) 
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Figure 33. Global methylation levels in RV and LV infected Mcf10a cells.  

 

Global methylation was measured in control, uninfected cells (NC) and compared with cells infected with HIV, IN-, MLV, EIAV, FIV and MLV 

without genomes (empty vector). Percentage methylation levels were calculated using average spectrophotometric absorbance measured at 

450nm. Elevated global methylation was observed in all infected samples. Standards errors of the means of 3 readings = SEM are represented 

as error bars. *Denotes the methylation level that exceeded the y-axis chart value measured at 4423.88%.  

* 
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Table 35. Measurement of global methylation in HepG2 cells infected with 

RV and LV vectors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The experimental samples represent HepG2 cells infected with the following vectors: 

MLV, HIV, IN- (HIV with mutated integrase), EIAV, FIV and Empty Vector (MLV without 

viral genome).  

 

 

 

 

 

 

 

 

 

Treatment Time (hours) 
Relative methylated levels 

(%) SEM 
      

Un-infected  
6 100 (0.30) 

24  100 (0.06) 
72 100 (0.00) 

      

HIV 
6  2.41 (0.09) 

24 138.34 (0.15) 
72 0 (0.09) 

      

IN- 
6  0 (0.10) 

24 207.25 (0.34) 
72  266 (0.03) 

      

MLV 
6 47.81 (0.04) 

24 39.01 (0.01) 
72 341 (0.03) 

      

EIAV 
6 199.57 (0.11) 

24  24.99 (0.16) 
72 204 (0.07) 

      

Empty Vector 
6 387.4 (0.01) 

24 208.03 (0.14) 
72 69.09 (0.21) 

      

FIV 
6  23.42 (0.12) 

24  425.27 (0.11) 
72  914 (0.30) 
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Figure 34. Global methylation levels in RV and LV infected HEPG2 cells.  

 

Global methylation was measured in control, uninfected cells (NC) and compared with cells infected with HIV, IN-, MLV, EIAV, FIV and MLV 

without genomes (empty vector). Percentage methylation levels were calculated using average spectrophotometric absorbance measured at 

450nm. Elevated global methylation was observed in all infected samples. Standards errors of the means of 3 readings = SEM are represented 

as error bars 
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Table 36. Measurement of global methylation in 53BP1 -/- cells infected 

with RV and LV vectors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The experimental samples represent 53BP1 -/- cells infected with the following vectors: 

MLV, HIV, IN- (HIV with mutated integrase), FIV, EIAV and Empty Vector (MLV without 

viral genome).  

 

 

 

 

 

 

 

Treatment Time (hours) 
Relative methylated 

levels (%) SEM 
      

Un-infected  
6  100 (0.08) 

24  100 (0.00) 
72  100 (0.15) 

      

HIV 
6 0 (0.01) 

24 0 (0.02) 
72 30.90 (0.01) 

      

IN- 
6 0 (0.01) 

24 105.37 (0.02) 
72 0 (0.16) 

      

MLV 
6 0 (0.02) 

24 0 (0.01) 
72 10.39 (0.00) 

      

EIAV 
6 135.45 (0.01) 

24 0 (0.12) 
72 0 (0.03) 

      

Empty Vector 
6 99.01 (0.12) 

24  101.91 (0.12) 
72  100.66 (0.04) 

      

FIV 
6  111.19 (0.07) 

24 56.87 (0.22) 
72 0 (0.31) 
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Figure 35. Global methylation levels in RV and LV infected 53BP1-/- cells.  

 

Global methylation was measured in control, uninfected cells (NC) and compared with cells infected with HIV, IN-, MLV, EIAV, FIV and MLV 

without genomes (empty vector). Percentage methylation levels were calculated using average spectrophotometric absorbance measured at 

450nm. Elevated global methylation was observed in all infected samples. Standards errors of the means of 3 reading = SEM are represented 

as error bars 
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Global methylation assays performed on the Mcf10a cell line showed a significant 

increase (P <0.05) in methylation levels at virtually all time points by all vectors 

(excluding EIAV 24 and 72 hours). Global methylation levels in cells infected with 

HIV, IN, MLV, EIAV, MLV without genomes were 4.14 (+/- 0.08), 1.54  (+/- 0.05), 

2.72 (+/- 0.04), 2.05 (+/- 0.01) and 44.23 (+/- 0.15) fold greater, respectively, than 

untreated cells. The highest increase in global methylation levels was associated with 

MLV without genomes. Global methylation however decreased between 6 hours and 3 

days for each treatment.  

To test this observation in an alternative cell line, mouse liver cells (HepG2) were 

chosen and the study was repeated. HepG2 cells showed similar results to that of 

Mcf10a. Global methylation levels increased significantly (P <0.5) above control 

untreated cells (excluding MLV).  Interestingly, the highest global methylation 

increases were observed in FIV samples which reached a maximum of 4.25 (+/- 0.11) 

fold greater than untreated cells.  

The 53BP1-/- mouse embryonic fibroblast cell line lacks the NHEJ DNA damage repair 

pathway and is, therefore, useful to investigate whether the DDR pathway may be 

associated with genome methylation. Cells infected with each vector showed very little 

change in global methylation.  Interestingly, only a small change in global methylation 

levels was seen in cells infected by the EIAV vector 6 hours post infection (P <0.5). 

Hence, this preliminary work suggests the DNA damage response may be associated 

with genome methylation and to possible influence gene expression in infected cells.  

Alongside this investigation DNMT expression was examined as the possible cause of 

elevated global methylation levels. 
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Table 37. DNA methyltransferase gene expression in Mcf10a cells 

following RV and LV infection. 

 

DNMT 1, 3a and 3b expression levels were measured in MCF10a cells infected with 

MLV, HIV, IN-, EIAV, and MLV without genome vectors. RNA was extracted 6 hours 

and 24hours post infection. Expression levels shown represent 2-ΔΔCT values. All final 2-

ΔΔCT values were normalised against the values obtained for the untreated cells. 

Standard errors of the means were calculated from quadruplet readings.   

 

 

 

 

 

 

 

 

 

 

Sample 
Time 

(hours) 
DNMT1 (+/- 

SEM) 
DNMT3a (+/- 

SEM) 
DNMT3b (+/- 

SEM) 

          
Un-

infected  
6 1 (0.06) 1 (0.06) 1 (0.03) 

24 1 (0.05) 1 (0.11) 1 (0.19) 
          

HIV 
6 0.03 (0.26) 1.3 (0.14) 0 ( 0.0) 

24 0.20 ( 0.04) 0.28 (0.25) 0 ( 0.0) 
          

IN- 
6 0.29 (0.43) 0.78 (0.12) 0.18 (0.09) 

24 0.99 (0.09) 1.94 (0.43) 0.43 (0.15) 
    

 
    

MLV 
6 0.14 (0.01) 0.11 (0.06) 0.09 (0.13) 

24 1.43 (0.09) 1.74 (0.18) 2.11 (0.05) 
    

 
    

EIAV 
6 0.25  (0.09) 0.19 (0.08) 0.36 (0.12) 

24 0.39 (0.06) 0.24 (0.06) 1.36 (0.23) 
    

 
    

Empty 
Vector 

6 0.47 (0.27) 3.48 (1.73) 2.74 (0.39) 
24 0.59 (0.04) 1.62 (0.15) 0.54 (0.64) 
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Figure 36. DNMT 1 3a and 3b expression in Mcf10a cells following RV and 

LV infection.  
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Q-RT-PCR was performed using DNMT1, 3a and 3b specific primer probes on 

untreated cells and cells infected with HIV, IN-, MLV, EIAV, and MLV without genome 

vectors.  

To calculate RQ levels in experimental samples several steps were carried out: 

DNMT values were normalized against 18sRNA CT values. All samples were 

measured in triplicate.  ΔCT values were used for calculations.  ΔCT values from 

experimental samples were subtracted from ΔCT values produced from controls 

samples. Each bar represents the relative gene expression levels (RQ) - 2-ΔΔCT 

calculated for each sample. The RQ levels for controls were set a value of 1. Error 

bars, depict the standard error of the means taken from quadruplet readings.  P.values 

was derived using replicate CT values for T-tests.  
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Table 38. DNA methyltransferase gene expression in HepG2 cells 

following RV and LV infection. 

 

 

DNMT 1, 3a and 3b expression levels were measured in HepG2 cells infected with 

MLV, IN-, EIAV, FIV and MLV without genome vectors. RNA was extracted 6 hours 

and 24hours post infection. Expression levels shown represent 2-ΔΔCT values. All final 2-

ΔΔCT values were normalised against the values obtained for the untreated cells. 

Standard errors of the means were calculated from quadruplet readings.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 
Time 

(hours) 
DNMT1 (+/- 

SEM) 
DNMT3a (+/- 

SEM) 
DNMT3b (+/- 

SEM) 

          
Un-

infected  
6 1 (0.46) 1 (0.08) 1 (0.04) 

24 1 (0.50) 1 (0.05) 1 (0.26) 
          

IN- 
6 0 (0.11) 0 (0.03) 0 (0.07) 

24 0.09 (0.06) 0.11 (0.16) 0 (0.06) 
          

MLV 
6 0.1 (0.15) 0.13 (0.05) 0.18 (0.15) 

24 0.05 (0.14) 0.02 (0.09) 0.03 (0.07) 
          

EIAV 
6 0.74  (0.33) 0.22 (0.05) 0.17 (0.12) 

24 0.17 (0.25) 0.07 (0.13) 0.8 (0.15) 
          

Empty 
Vector 

6 0 (0.08) 0.01 (0.03) 0.01 (0.06) 
24 0.69 (0.06) 1.52 (0.01) 0.19 (0.02) 

          

FIV 
6 0.05 (0.11) 0.6 (0.10) 0.12 (0.01) 

24 0.77 (0.04) 33.13 (0.21) 8.22 (0.10) 
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Figure 37. DNMT 1 3a and 3b expression in HepG2 cells following RV and 

LV infection.  

* 

      ** 
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Q-RT-PCR was performed using DNMT1, 3a and 3b specific primer probes on 

untreated cells and cells infected with FIV, IN-, MLV, EIAV, and MLV without genome 

vectors.  

To calculate RQ levels in experimental samples several steps were carried out: 

DNMT values were normalized against 18sRNA CT values. All samples were 

measured in triplicate.  ΔCT values were used for calculations.  ΔCT values from 

experimental samples were subtracted from ΔCT values produced from controls 

samples. Each bar represents the relative gene expression levels (RQ) - 2-ΔΔCT 

calculated for each sample. The RQ levels for controls were set a value of 1. Error 

bars, depict the standard error of the means taken from quadruplet readings.  P.values 

was derived using replicate CT values for T-tests.  

*Denotes the DNMT3a level that exceeded the y-axis chart value measured at 33.13 

fold greater. 

** Denotes the DNMT3b level that exceeded the y-axis chart value measured at 8.22 

fold greater. 
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Table 39. DNA methyltransferase gene expression in 53BP1-/- cells 

following RV and LV infection. 

 

Sample 
Time 

(hours) 
Dnmt1 (+/- 

SEM) 
Dnmt3a (+/- 

SEM) 

        
Un-

infected  
6 1 (0.46) 1 (0.48) 

24 1 (0.17) 1 (0.13) 
        

HIV 
6 4.18 (0.07) 3.1 (0.44) 

24 0 (0.00) 0.04 (0.16) 
        

IN- 
6 0.96 (0.25) 0.88 (0.18) 

24 0.79 (0.38) 0.83 (0.20) 
        

MLV 
6 0.9 (0.42) 1.48 (0.38) 

24 1.24 (0.10) 0.42 (0.29) 
        

EIAV 
6 0.65 (0.05) 0.77 (0.21) 

24 0.7 (0.25) 0.47 (0.11) 

        

Empty 
Vector 

6 1.59 (0.10) 1.08 (0.03) 

24 0.62 (0.09) 0.16 (0.16) 

        

 

Dnmt 1 and 3a expression levels were measured in 53Bp1 -/- cells infected with MLV, 

IN-, EIAV, HIV and MLV without genome vectors. RNA was extracted 6 hours and 

24hours post infection. Expression levels shown represent 2-ΔΔCT values. All final 2-ΔΔCT 

values were normalised against the values obtained for the untreated cells. Standard 

errors of the means were calculated from quadruplet readings.   
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Figure 38. Dnmt 1 and 3a expression in 53BP1-/- cells following RV and LV 
infection 
 
Q-RT-PCR was performed using Dnmt1 and 3a specific primer probes on untreated 

cells and cells infected with IN-, MLV, EIAV, HIV and MLV without genome vectors.  

To calculate RQ levels in experimental samples several steps were carried out: 

DNMT values were normalized against 18sRNA CT values. All samples were 

measured in triplicate.  ΔCT values were used for calculations.  ΔCT values from 

experimental samples were subtracted from ΔCT values produced from controls 
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samples. Each bar represents the relative gene expression levels (RQ) - 2-ΔΔCT 

calculated for each sample. The RQ levels for controls were set a value of 1. Error 

bars, depict the standard error of the means taken from quadruplet readings.  P.values 

was derived using replicate CT values for T-tests.  

 

 

Results showed DNMT1 expression levels to be low in Mcf10a cells infected with HIV, 

IN- vector, MLV, EIAV and MLV without genome (empty vector). The only elevated 

levels of DNMT1 expression was at 24 hour post infection with MLV (1.43, SEM +/-

0.09, p<0.01). DNMT3a expression levels were elevated for HIV 6 hours, HIV 

integrase negative 24 hours and MLV 24 hours. Interestingly, MLV without a genome 

showed increased levels of DNMT3a expression at both 6 hours and 24 hours (3.48, +/-

1.73 and 1.62, +/-0.15 respectively, p<0.05). DNMT3b expression was elevated in just 

HIV integrase negative, MLV 24 hours and EIAV 24 hours. Elevated expression levels 

for DNMT1, 3a and 3b were seen in MLV infected Mcf10a cells at 24 hours.  

Q-PCR showed low levels of DNMT1, 3a and 3b expression in HepG2 cells infected 

with the IN- vector, MLV, EIAV, MLV without genome and FIV. Interestingly, the 

elevated levels of expression were shown in DNMT3a and 3b in HepG2 cells on 

infection with the FIV vector at 24 hours (33.13, +/- 0.21 and 8.22, +/-0.10 respectively, 

p<0.01). These results were compared with to data obtained from un-infected HepG2 

cells. MLV vector containing no genome showed elevated DNMT3a levels at 24 hours 

(1.52, +/-0.01, p<0.01). 

Q-PCR results for 53BP1-/- cells showed elevated expression levels for both Dnmt1 and 

3a in HIV at 6 hours (4.18, +/-0.07 and 3.1, +/-0.44 respectively, p<0.01) Interestingly 

MLV without genome showed elevated levels in both Dnmt1 and 3a at 6 hours (1.59, 

+/-0.10) and 1.08, +/- 0.03 respectively, p<0.01). Dnmt1 levels rose for MLV at 6 hours 

and 24 hours with Dnmt3a.   
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Microarray analysis of cells infected with RV and LV vectors  

 

In Chapters 4 and 5 on DNA damage and elevated methylation associated with RV and 

LV infection were investigated. This suggested these processes linked where 

comparisons were made in cells with or without 53BP1 related, DDR pathways. To 

examine in detail pathways relating to DDR following infection, comparison was made 

between infected and uninfected cells for differential gene expression. Significantly 

differentially expressed genes (p<0.05) were then assigned to gene networks to 

associate RV and LV infection with genes in pathways of DDR and methylation. 

For this, Mcf10a cells were infected with MLV, EIAV and MLV without viral genome 

vectors that provided the most obvious DDR and altered methylation status. Total RNA 

was collected 6 hours post infection for cDNA synthesis and subsequent microarray 

analysis. Gene expression analysis involved measurement of gene expression in infected 

Mcf10a cells compared to normal uninfected Mcf10a cells. 

Genes with gene ontology (GO) terms of “DNA repair”, “DNA damage” and “DNA 

methylation” were selected from the microarray data. Then from these lists, genes with 

differential expression of 1.2 fold or more were divided into sets that were up and down 

regulated to create 6 sublists of genes for each of the 3 vectors.  
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Table 40.  Genes up-regulated by 1.2 following infection of Mcf10a cells by 
MLV, EIAV and MLV without viral genome vectors. 
 

 

Sample DNA Repair DNA Damage 
DNA 

Methylation 

        

MLV 
 

CDT-2526A2.1 Hipk1 Trmt11 
Eya3 Hmox1   
Rpain Cdc14b   

Upf1 Men1   
Xrcc4     

Cdc14b     
Men1     

        

EIAV 
 

Apex2 Bcl6 Tdrd9 
Fgf10 Hmox1 Atrx 
Pole Nipbl   
Atrx Pml   

  Psma8   
  Sgk1   

  Vav3   
        

MLV without 
genomes 

Apex2 Hmox1   
Eya2     

        

 

The genes indicated are those whose ontologies belong to pathways involved in DNA 

damage, repair and methylation. Genes highlighted in red indicate co-membership of 

pathways. Fold changes in expression were calculated and those with statistically 

significant fold changes in expression (Log2 1.5, with P<0.05) compared to control 

untreated cells are shown. 
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Table 41 Genes down-regulated by 1.2 following infection of Mcf10a cells 
by MLV, EIAV and MLV without viral genome vectors. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample DNA Repair DNA Damage DNA Methylation 
        

 
MLV 

Clorf124 Ccna2 Tdrd9 
Eme1 Cdk1   
Pcna Psma8   
pttg1 Rpa3   

Pttg3p     
Rad51ap1     

Tyms     
  Znf319     
  Rpa3     

        

EIAV 

Ac091565.1 Bcl6 Tdrd1 
Herc2 Ccna2   

Herc2p3 Cdk1   
Herc2p9 Ctla4   

Pttg1 Foxn3   
Pttg3p Foxo1   

Rp11-959f10.4 Rp5-1100e15.2   
  Zmat3   

        

MLV without 
genomes  

Amac1 Brip1 Dnmt1 
Amac1l1 Ccna2 Hells 
Amac1l3 Cdk1 Tdrd1 
Cdkn2d Gtse1   
Chaf1a Map2k6   
Fanci Plk1   
Lig1 Timeless   

Pttg1 Ac010894.4   
Pttg3p Apitd1   

rad51ap1 Apitd1-cort   
Rp11-959f10.4 Brca1   

Tyms Cdc14b   
Ube2t Fancd2   

Ac010894.4 Rpa3   
Apitd1 Top2a   

Apitd1-cort Usp28   
Brca1     

Cdc14b     
Fancd2     
Rpa3     

Top2a     
Usp28     
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The genes indicated are those whose ontologies belong to pathways involved in DNA 

damage, repair and methylation. Genes in red indicate co-membership of pathways. 

Fold changes in expression were calculated and those with statistically significant fold 

changes in expression (Log2 1.5, with P<0.05) compared to control untreated cells are 

shown. 

 

 

 

Analysis of differential expression of target genes associated with the E2F 

transcription factor 

 

The E2F transcription factor has been found to be closely associated with oncogenesis 

and is also known to control the expression of several genes in this process. E2F control 

of its targets is also known to be closely controlled by methylation. Hence, the 

microarray data generated in this study was also examined for differential expression of 

E2F and its target genes. All genes differentially expression by Log2 1.2 fold or more 

(up or down) with GO terms relating to pathways associated with DNA damage, repair 

and methylation were analysed, using Opossum software  

http://opossum.cisreg.ca/oPOSSUM3/ to carry predicted binding sites for the E2F 

family of transcription factors. These genes are listed in Table 42. From the human 

genome the number of genes that bind E2F was calculated to be 32.77%. From the 

microarray the number of genes identified differentially expressed and binding E2F was 

59%, which is significantly above the background. 

http://opossum.cisreg.ca/oPOSSUM3/
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Table 42 Genes associated with E2F binding from virus treated Mcf10a cells 
 

Name Function 

EIAV MLV MLV without genomes 

P-value 
Differential 
expression P-value 

Differential 
expression P-value 

Differential 
expression 

C1orf124 DNA repair 0.593754 0.166 0.464841 0.198 0.819603 0.055 
BRCA1 DNA repair, DNA damage 0.679369 0.400 0.901237 0.103 0.679565 -0.272 
FOXN3 DNA damage 0.197869 -0.497 0.273247 -0.374 0.821102 -0.058 
EYA2 DNA repair 0.673374 0.324 0.851833 0.430 0.429063 1.179 
FGF10 DNA repair 0.123058 1.692 0.943362 -0.050 0.229637 1.038 
ATRX DNA methylation 0.020665 1.171 0.210453 0.442 0.407759 0.511 
TDRD1 DNA methylation 0.361696 -1.388 0.680574 -0.467 0.296241 -2.252 
LIG1 DNA repair 0.750754 -0.102 0.027018 -1.046 0.00024 -1.814 
MAP2K6 DNA damage 0.078655 -0.955 0.156164 -0.604 0.007363 -1.165 
RAD51AP1 DNA repair 0.4863 -0.265 0.027787 -0.586 0.009958 0.027 
TIMELESS DNA damage 0.159691 -0.763 0.057118 -0.940 0.000786 -1.639 
BCL6 DNA damage 0.004255 1.278 0.052734 0.255 0.960462 -0.009 
HELLS DNA methylation 0.227824 -0.645 0.245671 -0.328 0.004707 -1.026 
CDKN2D DNA repair 0.528424 -0.285 0.064288 -0.735 0.003066 -1.178 
DNMT1 DNA methylation 0.700485 -0.170 0.056385 -0.922 0.002446 -1.385 
PCNA DNA repair 0.090303 -0.948 0.022073 -1.353 0.016983 -0.992 
VAV3 DNA damage 0.568429 1.667 0.263471 0.548 0.973223 0.323 
BRIP1 DNA damage 0.331419 0.547 0.602064 0.291 0.011866 -1.806 
FANCD2 DNA repair, DNA damage 0.247943 -0.589 0.966359 0.017 0.001998 -1.348 
FOXO1 DNA damage 0.000345 -1.772 0.117376 -0.474 0.475278 -0.203 
EME1 DNA repair 0.364587 -0.478 0.058038 -1.204 0.070106 -0.717 
TDRD9 DNA methylation 0.920135 1.877 0.993967 0.003 0.198465 0.461 
EYA3 DNA repair 0.707922 0.904 0.271913 1.953 0.658206 0.608 
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HIPK1 DNA damage 0.006986 0.930 0.001852 1.194 0.007403 1.063 
CTLA4 DNA damage 0.409349 -0.325 0.954332 0.099 0.549172 0.932 
NIPBL DNA damage 0.406258 1.984 0.556546 -0.265 0.929151 0.027 
CHAF1A DNA repair 0.326786 0.269 0.805402 0.077 0.072468 -1.031 
APEX2 DNA repair 0.032328 1.229 0.113473 0.845 0.006691 1.272 
CDK1 DNA damage 0.058512 -1.553 0.022671 -2.118 0.015603 -1.892 
ZMAT3 DNA damage 0.096393 -0.520 0.486877 0.235 0.816517 0.401 
APITD1 DNA repair, DNA damage 0.294114 0.583 0.339019 -0.423 0.071054 -0.594 
POLE DNA repair, DNA damage 0.889581 1.866 0.87434 0.443 0.905337 0.956 
HERC2P3 DNA repair 0.062007 -1.657 0.24794 -0.346 0.822555 -0.077 

 

 

 
Table 42. Genes associated with E2F binding from virus treated cells. The number of genes, with any of the 3 GO terms, predicted to bind E2F 

transcription factors was determined using OPossum software http://opossum.cisreg.ca/oPOSSUM3/ single site analysis using the default 

parameters for human gene analysis. The analysis was carried out using sequence 5000bp up and downstream of the annotated start and stop 

positions of the genes. In humans the number of background genes predicted to bind E2F transcription factors is 8113 out of 24752 genes or 

32.77%. In our list of aberrantly regulated genes 33 out of 56 or 59% are predicted to bind. This is a significant increase above background. Genes 

highlighted in green are those with P values<0.05. 

 

Those genes identified (highlighted in green) as binding E2F and associated with DNA repair, damage and methylation appeared, in the main to be 

down regulated. Very few genes were identified up regulated.  

 

 

 

https://cas.brunel.ac.uk/owa/redir.aspx?C=mCwjVUWhL0qB9tbtPk5sgehA3javcNBIKGomMrFgT7Upa5VHJ534bxABpNula-yonyaYXDx8dUw.&URL=http%3a%2f%2fopossum.cisreg.ca%2foPOSSUM3%2f
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6.1        Discussion 

 

RV and LV gene therapy vectors deliver therapeutic genes to mammalian cells by 

integrating their genome into host chromosome to provide the potential for permanent 

therapeutic gene expression. However, this integration can be oncogenic as shown by 

RV transduction of haematopoietic stem cells that led to leukaemia in animal models 

and in several patients in gene therapy trials for the correction of X-SCID (Cavazzana-

Calvo, M. and Hacein-Bey-Abina, S., 2001; Cavazzana-Calvo et al., 2000)  and caused 

myelodysplasia in patients treated for chronic granulomatous disease (CGD) (Stein et 

al., 2010; Malech et al., 1997; Bjorgvinsdottir et al., 1997). LV with SIN configuration 

has been used successfully in the clinic for metachromic leukodystrophy and Wiskott-

Aldrich syndrome, however clonal dominance has been identified in patients following 

transplantation of bone marrow in a patient with β-thalassemia (Cavazzana-Calvo, M. 

and Hacein-Bey-Abina, S., 2010). In animal studies used to develop models for 

genotoxicity, tumours have been associated with RV and LV delivery in a tumour prone 

mouse and following non-primate LV administration in utero and neonatally to outbred 

immune-competent mice. Transformation in vitro has also been documented in murine 

stem cells. In the gene therapy trials for X-SCID performed by M. Cavazzana-Calvo in 

France and A. Thrasher in the UK, the ex-vivo gene transfer protocol using MLV 

transduction of hematopoietic stem cells (HSC) and re-infusion back to patients led to 

intense research into the cause of the leukaemias in 5 patients from these trials. This 

work enabled identification of RV integration into the LMO-2 gene and that this gene, 

which is already known involved in childhood leukaemia, was dysregulated due to 

active promoters and enhancers in the vector LTR(Cavazzana-Calvo et al, 2000; 

Hacein-Bey-Abina et al, 2002; Gaspar  and Thrasher, 2009).  

The phenomenon of insertional mutagenesis (IM) has been studied for several years and 

it is not entirely surprising this occurred in the gene therapy trials using RV vectors. IM 

is clearly a genotoxic risk to the host as genes that are considered cancer associated are 

potential targets for dysregulation. Down regulated gene expression has been 

demonstrated following retrovirus insertion within genes and gene control regions or by 

chromatin remodelling effects (Lazo and Tsichlis, 1988). This has resulted in tumour 

suppressor gene inactivation (Ben-David et al., 1990). The genotoxic effects can occur 

at some distance from the affected locus and furthermore, provirus can undergo 
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homologous recombination to elicit chromosomal rearrangements that could lead to 

tumour development (Lazo and Tsichlis, 1988).  

As a result of the findings of IM in gene therapy clinical trials, several groups including 

that of Dr Michael Themis developed the highly sensitive in utero model to test the 

safety of LV. In this genotoxicity model, lentiviral vectors were shown associated, at 

high frequency, with the development of clonal liver tumours that have been 

characterized as hepatocellular carcinoma (HCC). Both in adult KO mice for factor IX 

(FIX) with haemophilia B and wild-type outbred, fully MF-1 immune-competent adult 

mice, tumours were found to develop following administration of the EIAV (SMART2) 

non-primate vector at day 16 gestation. Conversely, no tumours developed in mice 

treated with primate HIV (HR’SIN-cPPT-S-FIX-W) vector carrying the human FIX 

gene that enabled correction of the KO mouse model (Themis et al., 2005). These 

findings were the origin of the fetal genotoxicity model and led to the proposal that gene 

transfer in utero could be used as a valuable tool to evaluate LV genotoxicity and 

discover genes involved in liver oncogenesis.  

The development of liver tumours in mice treated with LV is suspected most likely due 

to IM. However, tumour development varied with age in this model and some of the 

clonal tumours had single virus insertions making difficult the assignment of 

oncogenesis due only to IM but possibly due to alternative events supporting clonal 

evolution either influenced and initiated by IM or completely independent to IM that are 

synergistic to oncogenesis. Hence, oncogenesis may be due to provirus insertions within 

or near to cancer genes on genes related to pathways of cancer and/or alternatively 

events associated with virus infection. 

 

6.1.1        Investigation of mouse tumour DNA compared to non-tumour                                   

liver using CGH 

 

Recently, Themis et al (2013) published two sets of findings using the in utero model. 

In the first study they showed LV insertion is highly influenced by gene density and the 

level of gene transcription, which they showed to be high in the foetal mouse. Also 

these phenomena appear dependant on the vector where non-primate LV appears to 

prefer highly transcribed genes whereas primate vector integration is less influenced by 

this (Nowrouzi et al., 2012). In the second study, the group, in collaboration with Eithan 
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Galun at Haddassah Hospital, Jerusalem showed that genome instability is associated 

with LV integration. This was demonstrated using comparative genome hybridisation 

(CGH) that found amplifications and deletions of chromosomes following foetal 

infection of mice and in cells in vitro with an alternative non-primate feline leukaemia 

virus vector (Condiotti et al., 2013). Hence, in the work presented in this thesis CGH 

was applied to 3 tumours isolated from the EIAV and HIV in utero treated mice of the 

Themis model. Fortuitously, a spontaneous liver tumour that developed in an MF-1 

mouse was also available for CGH. The CGH work out that was carried out in 

collaboration with Dr Nathalie Conte of the Wellcome Trust indeed showed 

amplifications and deletions in the non-primate treated tumours. Interestingly, in 

Tumour 1 the entire chromosome 2 was amplified. In Tumour 2, a specific region 

between 4559357 and 147876573 was amplified also and hence, further investigation of 

this region was performed. Interestingly, in the region of amplification in Tumour 2, 

near to the breakpoint, were the transcription factors Hnf4α and Foxa2. Foxa2 and 

Hnf4a are closely related transcription factors and Hnf4a is also known to control 

Hnf1a. Hnf4a and Hnf1a are known to be critical to the development and function of the 

mouse liver (Wederell et al., 2008) and Foxa2 expression is also critical for hepatocyte 

function (Wederell et al., 2008) . To test whether these genes were dysregulated RT-

PCR was applied to Tumour 1 and Tumour 2 compared with the normal livers of each 

respective mouse.  

In Tumour 1, Hnf4α and Hnf1α levels were found reduced by 0.62 log
2
 and 0.55 log

2
 

fold respectively (p<0.05) and Foxa2 was found increased in expression by 1.57 log
2
 

fold (p<0.05). In Tumour 2, Hnf4α and Hnf1α and Foxa2 levels of expression were all 

reduced by 0.18, 0.20 and 0.75 log
2
 fold (p<0.05), respectively. Hence, the CGH data 

correlated with changes in gene expression. To further explore the possibility that 

oncogenesis could involve IM and the genes identified by CGH of chromosome 2 in 

Tumours 1 and 2, the provirus inserted genes in Tumour 2, described by Themis et al 

(2005), were examined with Hnf4α and Hnf1α and Foxa2 for involvement in common 

pathways relating to HCC.  

Proviral insertions sites were retrieved from Tumour 2 mouse samples using LAM-PCR 

retrieval. This resulted in the identification of insertions in the Pah and Acvr2a genes. 

Acvr2a has not been found associated with HCC, however, the Pah gene that codes for 

the enzyme phenylalanine hydroxylase has been found down-regulated when mutated in 
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individuals with phenylketonuria (PKU) who cannot process pheylalanine effectively 

(Konecki and Lichter-Konecki, 1991) and has also been found down-regulated in HCC 

(Lazarevich and Fleishman, 2008). As a result of this change in expression amino acids 

build up to toxic levels in the blood and tissues. In Tumour 2, RT-PCR showed Pah 

gene expression down regulated by 65.3%. To find a relationship between Pah and its 

associated genes, Pah was investigated using the STRING (http;//string-db.org/) 

database that finds predicted protein interactions that are directly (physical) and/or 

indirectly (functional) associated in pathways between genes. From this analysis Pah 

was found linked to Hnf4α and Hnf1α and Foxa2 along with several other genes that 

were found differentially expressed in the microarray of Tumour 2. Unfortunately, the 

microarray did not appear to show differential expression of Hnf1α and Foxa2 or Pah 

but did identify reduced expression of Hnf4α. 

Pah expression is linked to reduced expression of Hnf4α and Hnf4α, a master regulator 

of hepatocyte transcription and as mentioned is linked to HCC. A study by Jixuan Li et 

al showed that steady state levels of Pah could be seen in Hnf4α +/+ embryonic stem 

cells derived from mouse livers and in the absence of Pah expression, Hnf4α expression 

was found to be almost undetectable (Li et al., 2000).  

Pcbd1 is known to be the stimulator of Pah in the phenylalanine hydroxylation pathway 

with its co-factor hepatocyte nuclear factor (Hnf1α) a ubiquitous gene promoter 

activator (Lockwood et al., 2003). It was therefore not surprising that Pcbd1 levels were 

increased (0.343 log‾
2
, p-value 0.01) in Tumour 2. However, as Hnf4α, which is known 

to activate Hnf1α was reduced in expression this may be the reason why it was not 

possible to identify increased levels of Hnf1α in the microarray of this tumour. Indeed, 

RT-PCR revealed Hnf1α levels reduced by 0.2 log
2
. In addition, reduced levels of Pah 

is also linked to a reduced expression of Hnf1α. Disruption of the Hnf1α transcription 

factor causes methylaton of the Pah promoter region, blocking hepatic chromatin 

remodelling of the Pah locus and thereby results in undetectable levels of Pah gene 

(Pontoglio et al., 1997). Hnf1α is also known to bind to Slc01α4 (Lockwood et al., 

2003) and since Hnf1α expression was reduced it therefore was not surprising that a 

reduction in Slc01α4 expression was also identified  (-0.113 log‾
2
, p=0.017). 

The gene expression changes in Tumour 2 of the closely related transcription factors 

Foxa2, Hnf1a and Hnf4a that are critical to the development and function of the mouse 

liver appear to coincide with that expected for development of liver cancer (Wederell et 
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al., 2008). These changes also appear in line with altered Pah expression believed 

caused by IM. This is also the case in Tumour 1 except for Foxa2, which was found 

increased in expression by RT-PCR.  

In conclusion, from these analyses, possible pathways to tumour development were 

identified and the related genes that were found associated with genes identified using 

CGH or by IM in the STRING data base support future research into mechanisms of 

liver cell oncogenesis. However, it is well known that pathways to HCC are complex 

and several pathways may exist for solid tumour development. Hence, the CGH and IM 

data must be considered highly speculative before more detailed studies are applied to 

the tumours found by the in utero genotoxicity model. What was evident from this work 

was that vectors with the potential for genotoxicity exist and they differ in their 

genotoxic potential.  

Further study using Ingenuity Pathway analysis (IPA) of the microarray and RT-PCR of 

these tumours revealed gene ontologies of genes in pathways of oxidative reduction and 

DNA damage and repair (Nowrouzi et al., 2012). As already mentioned, cancer 

development usually requires multiple genetic events beginning with cell 

immortalization then progressing to malignancy and the hypothesis that IM alone cause 

oncogenesis is hard to reconcile. Therefore, although the initial work using CGH and 

IM inserted genes was useful, this study was directed towards investigating alternative 

routes other than IM that contribute to oncogenesis. One such route was to investigate in 

more detail the role of virus infection on genome instability. This choice of study was 

based on the findings of genome instability by the Bushman laboratory that showed 

virus integration to causes double strand breaks (Bushman et al., 2001). As this was 

difficult to perform using the in utero model, assays to determine genome instability 

involved the development of a cell culture model. 

 

6.1.2        Investigation of vector associated genotoxicity in cells following in 

vitro delivery of RV and LV 

 

Four cell lines were used in the study. Two of which exhibited normal DNA repair 

(Mcf10a and Mrc5) and two that are known to be repair deficient (At5biva and 

Xp14br).  
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Most importantly, the level of infection of each cell line was first established. Each of 

the four cell lines was found to be infectable albeit at different levels with RV and LV 

vectors. At high titre, infection by MLV appeared highest for each cell line (98-100%) 

followed by HIV (21-62%), EIAV (9-68%) and IN- (5-72%). These levels of infection 

were assessed 24 hours post infection and the variation observed would also be 

expected due to the survival of cells just after infection. Indeed, RV and LV DNA 

integration is already known to cause damage to the host cell chromosome with DSB 

being known to be highly pro-apoptotic, with as little as one DNA DSB sufficient to 

arrest the cell cycle in G1 that then leads to cell death.  

High concentrations of un integrated virus DNA which have free ends, may be sensed 

as irreparable DNA damage in the cell, hence, the NHEJ pathway suppresses an 

apoptotic response by joining ends to form circles. Where un-integrated viral DNA 

accumulates cell death may occur. Indeed, At5biva and Xp14br cells showed low cell 

survival after infection again suggesting virus infection causes cell death where DNA 

damage repair is not present or inefficient. Interestingly, cell survival appeared lowest 

in these cells compared to Mcf10a and Mrc5 cells when infected by most vectors, even 

more so than when these cells were subject to 1Gy irradiation. Irradiation appeared to 

cause little cell death in Mcf10a and Mrc5 cells compared to infection by virus vectors 

suggesting the DNA damage caused by infection if not repaired is greater than when 

cells are subjected to 1Gy irradiation. Levels of infection by the IN- vector were 

measured after 72 hours using microscopy for GFP gene expression. Why this vector 

infected cells to a greater level in cells with intact DNA repair pathways again points to 

the requirement for DNA damage repair of RT converted virus genomes to circles 

before gene expression can take place which is at a low level in At5biva and Xp14br 

cells. Thus, high concentrations of unintegrated DNA may be toxic to cells as suggested 

by Temim et al (1980) who showed un-integrated RV cDNA in infected cell correlates 

with extent of the cytopathic effect observed after RV infection (Joy and Temin., 1980). 

RV integration is catalyzed by the viral integrase protein which is required for the 

insertion of virus DNA into the chromatin of host cells. Insertion of a 3-10kb vector into 

the host DNA is likely to be sensed as a major assault on the genomic integrity of the 

cell.  Recruitment of DNA damage signaling and repair proteins to integration sites is 

known to be essential for survival of the host cell and of the virus. In this respect 

attenuated virus act in a similar manner to wild type replication competent virus. A 
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stable integrated provirus need not generally cause deleterious effects in the host cell, 

however, if the DNA damage caused by the virus integrase in the host chromosome is 

repaired and that unintegrated linear viral DNA is somehow protected so it is not 

recognized by the DNA repair mechanism. The IN- vector showed a small decrease in 

cell viability in all cell lines infected, however, it was far less so than the integrase 

competent RV and LV. Therefore, if the IN- vector did induce apoptosis it was at low 

levels. The fact that much lower cell survival was associated with the integrase 

competent vector, especially in At5biva and Xp14br cells suggests that NHEJ activity 

may be required for repair of DSB and possibly DNA gaps in integration intermediates 

for cell survival. The requirement for cells to complete repair of DNA damage was also 

demonstrated following irradiation of cells. The conclusion from these data is, therefore 

that RV and LV infection is a DNA damage event that must be repaired for cell 

survival. What is not known is how much repair is not completed and whether 

incomplete repair leaves cell with mutations. Importantly, the fact that MLV without 

genomes causes the highest DNA damage response suggests that vector production 

should aim to reduce the number of active integrase enzyme molecules carried in virus 

particles for gene transfer to reduce potential cell death or mutagenesis.   

To quantify the DNA damage response to DSB in Mcf10a and Mrc5 that have been 

previously shown with intact DNA repair pathways and Xp14br and At5biva cells 

which do not have these pathways immunoflourescence of the DNA damage protein 

53BP1 was used at 3 time points post infection or irradiation. 

In Mcf10a and Mrc5 cells a typical, rapid recognition of DSB by 53BP1 was observed 

and predictable induction of foci detected at 30 minutes post irradiation and at 6 hours 

post RV and LV infection which was followed by repair of the DSB and reduction DSB 

positive foci. The identification of DSB 6 hours post infection suggests this is the time 

taken for the virus integrase to reach the nucleus and generate DSB. DSB is also known 

to occur during DNA replication and cell division and also believed due to endogenous 

agents such a reactive oxygen species from cellular metabolism within cells reactions 

resulting in 1-2 foci being observable as ‘background’ DSB. This was observed in this 

study as 53BP1 positive foci in the uninfected control cells. Positive controls for 53BP1 

foci were irradiated cells (at 1Gy). The emergence of 53BP1 positive foci in the 

irradiated cells were at a maximum level 30 minutes after irradiation where 13 foci per 

nucleus was observed compared to 1-2 foci in the un-infected cells. Although not 
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examined for in this study, DSB are known to develop after 5 minutes following 

irradiation (Schultz et al., 2000). Conversely, as mentioned, the number of DSB peaked 

6 hours following infection as RV and LV need to cross the cell plasma membrane, 

traverse the cytoplasm, penetrate the nuclear membrane and reach the genome for 

insertion.  

In the At5biva cell line derived from a classical ataxia telangiectasia patient, there was a 

predictable induction of DSB. However due to the defect in the ATM gene which 

results in a defective DSB repair there is a persistence of 53BP1 positive foci in the 

cells 24 hour post irradiation and infection. In the Xp14br cells exposed to irradiation 

and infection gave a similar observation. However, these cells have been shown 

previously to be able to partially repair DSB following irradiation (Bourton et al., 2012). 

This is believed due to the splicing defect in the DNA-Pkcs gene not eradicating all 

active DNA-PKcs molecules enabling the remaining functional DNA-PKcs to support 

the NHEJ repair pathway (Bourton et al., 2012). In the infected Xp14br cells, unlike 

irradiation, infection may continue and cause further DSB. This was clearly observed by 

the increase in DSB 6 hours post infection.  

By using an IN- HIV derived defective vector, unlike the integrase positive vector a 

similar number of 53BP1 positive foci to uninfected cells was found. Although the 

extent of mutagenesis or lack of repair was not quantified in this study following 

infection of cells, this would suggest once again the difference in the potential to cause 

genotoxicity by each vector. This could be further tested using IN- and IN positive 

vectors in the in utero mouse model where IN- would be expected not to be associated 

with induction of HCC. Most importantly and as previously mentioned, the fact that the 

vector not carrying genome caused such a high DSB response suggests this vector may 

induce HCC in the in utero model if DSB induction is indeed involved in oncogenesis.  

The study of virus integration being associated with DSB presented in this work 

suggests a relationship between vector-related features and cell-intrinsic properties that 

may be involved in oncogenesis. The outcome of infection and DSB repair is unknown. 

One possible outcome is chromosomal instability and, therefore, it is tempting to 

hypothesize that viral integration may induce tumour formation by this process acting 

independently or synergistically with IM. DSB induced by treatment with irradiation or 

genotoxic drugs has been suggested as a considerable pathway to oncogenesis 

previously (Skalka and Katz 2005). By showing this also to be the cause during virus 
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infection, albeit at a lower level, suggests this mechanism of oncogenesis to be feasible 

and should not be overlooked when infecting cells at high titre as is often performed 

during ex-vivo gene therapy.  

Several genes involved in cell division, growth and differentiation that are also known 

involved in tumour development once mutated and classed as oncogenes or tumour 

suppressor genes are potential targets for integration. If these genes are being ‘hit’ by 

the virus integration leading to DSB and then repair, then any mistakes in this repair 

will lead to mutagenesis. How much virus that recruits the DNA repair pathway 

machinery is unknown. This could in turn reduce the ability of the cell to repair DSB 

especially where infection involved high titre virus. Clearly, further examination of this 

potential is required.  

It is also natural to question whether the DSB breaks observed in vitro following 

infection was the cause of genome instability leading to amplifications and deletions 

identified by the CGH assay of the tumours harvested from the mice treated in utero by 

EIAV LV. It would not be possible to determine this from the mouse tumours because 

these evolved over several month’s time making it impossible to associate virus 

infection and integration changes in DNA structure.  

 

6.1.3        Investigation of chromosome integrity using mFISH and G-

banding following infection 

 

To assign genome instability to virus integration, in vitro analysis of Mcf10a cells for 

karyotypic chromosome changes was performed in collaboration with Ruby Banerjee at 

the Welcome Trust, Hinxton, UK. This work involved multi-colour fluorescence in situ 

hybridisation (mFISH). Mcf10a cells were infected with each of the MLV, HIV and 

EIAV vectors and 2 weeks later cells were compared karyotypically with un-infected 

Mcf10a cells. Because no rearrangements were observed in the infected cells no gross 

chromosomal changes could be assigned to infection. However, it would be interesting 

to perform this in a time course from 2 weeks to 6 weeks in case instability takes time to 

manifest itself. Also, although not performed in this study, CGH of infected cells versus 

uninfected controls would highlight amplifications or deletions that could have occurred 

that would not be identified by mFISH. 
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Incoming retrovirus-like elements to the cell genome have been closely associated with 

the innate immune response of the cell. This response, in the form of methylation has 

evolved to protect the host genome from invasion by switching off gene expression 

from the incoming invading element. This element can be bacterial or a virus and is 

well documented for endogenous retrovirus particles and intracisternal A-type particles 

(Rowe et al., 2013). DNA damage has been also been associated with the enzymes 

involved in methylation and DNMT1 has also recently been found associated with DNA 

repair (Palii et al., 2008). DNMT1 deficient MESCs were found to have a 10 fold 

increase in de novo mutation of the hrpt locus (Chen et al., 1998)  suggesting the increase 

in the rate of mutation to be linked to a role by DNMT1 in the DNA repair pathway.  

(Armstrong et al., 2012). DNMT1 is also known to be involved in maintaining genome 

integrity as it has been shown to accumulate at sites of DNA damage. Cells deficient in 

DNMT1 showed severe defects in the activation of key DSB responses such as lack of 

gH2AX induction and reduced phosphorylation of p53 and CHK1 (Palii et al., 2008).  

 

6.1.4        Epigenetic modifications and E2F regulation of host genes 

following RV and LV vector delivery  

 

Therefore this study also investigated the effects of RV and LV infection on global 

methylation in Mcf10a, and HepG2 cells. MEF 53BP1 -/- cells were also used in this 

analysis to determine whether a block in the repair of DSB restricts an increase in 

methylation levels as opposed to that found in Mcf10a and HepG2 cells that have intact 

DNA repair pathways. Also, to determine whether methylation changes were associated 

only with integration, the IN- defective vector was used. A MLV vector containing no 

genome (empty vector) was also used to identify whether infection alone without the 

virus genome initiates methylation.  

Global methylation levels in Mcf10a, HepG2 and MEF 53BP1 -/- cell genomes were 

investigated to indicate whether host methylation had occurred following infection.  In 

Mcf10a cells global methylation levels increased significantly (P<0.05) at virtually all 

time points for each vector (excluding the EIAV LV at 24 and 72 hours). Although 

these increases were not consistent for all time points, the general trend was that 

methylation increased following infection. This was found even more pronounced 

following infection with the MLV empty vector and only partially with the IN- vector 
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that was consistent for each time point post infection. This observation appeared 

repeated for HepG2 cells except that for these cells IN- at 24 and 72 hours, MLV at 72 

hours and the alternative non-primate FIV vector all showed levels of global 

methylation increase. Interestingly, the FIV vector that also were shown by the Themis 

group in collaboration with the research group of Dr Eithan Galun at Haddassah 

university, Jerusalem, to be associated with high frequency HCC (Condiotti et al., 2013) 

caused the greatest increase of global methylation 4.25 (+/- 0.11) fold greater than un-

infected HeG2 samples. Interestingly, the IN- vector in this cells line appeared more 

strongly associated with increased methylation suggesting that integration may add to 

the cell’s methylation response to the incoming virus and that the presence of non-

integrating genomes can independently initiate a host innate immune response. 

Importantly, though MLV empty particles induce a larger response in both Mcf10a and 

HepG2 cells than IN- vector. 

To associate the methylation response by cells to DNA damage, global methylation was 

then measured in the MEF 53BP1-/- cell line. Only the EIAV vector appeared to 

increase global methylation in these cells. As the rest of the vectors used on MEF 

53BP1-/- cells did not cause elevated global methylation levels the EIAV observation 

may be an anomaly and warrants repeating. Most importantly, very little or no increase 

in methylation was found in this cell line following infection by the remaining RV and 

LV strongly indicating DNA damage to be associated with the innate cells methylation 

response. This is consistent with studies by Palii et al in 2008 that showed cells 

deficient in DNMT1 resulted in defects in the activation of key DSB responses  (Palii et 

al., 2008).  

 

DNA methyl transferase (DNMTs) contributes to the maintenance (DNMT1) of 

methylation patterns in the mammalian genome and plays a key role in de novo 

methylation (DNMT 3a and 3b). A number of studies have highlighted the role of viral 

infection on stimulating the cellular methylation machinery. Leonard et al (2011) 

showed an up regulation of DNMT3a and a down regulation of DNMT3b and DNMT1 

following EBV infection of B cells  (Leonard et al., 2011). Thus it was of significance 

to show that the observed changes in the in global methylation found in RV and LV 

infected cells correlated with changes in DNMT expression.  Q-PCR analysis was used 
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to measure the expression of DNMT1, 3a and 3b in Mcf10a, HepG2 and 53BP1 -/- cell 

types.  

Analysis of DSB in Mcf10a cells infected with the MLV vector identified levels of 

53BP1 foci increase at 6 hours and subsequently decrease at 24 hours, presumably due 

to DNA repair. At this time point global methylation levels increased albeit slightly (1.4 

fold) and then further at 24 hours (2.72 fold) and remained similar to this level after 72 

hours. This follows the DNMT1 expression levels observed which although found 

decreased at 6 hours (0.14 fold) increased at 24 hours (1.43 fold).  

The MEF 53BP1-/-cell line that is NHEJ deficient showed no increases in DNA global 

methylation at 6 and 24 hours post infection with MLV vectors suggesting 53BP1 may 

be involved in initiation of host methylation. This appears accompanied by levels of 

DNMT1 decreasing at 6 hours post infection with MLV followed by a very slight 

increase at 24 hours (1.24 fold). For the cell lines that have DNA repair pathways, DSB 

appear at 6 hours followed by repair at 24 hours onwards after infection except At5biva 

and Xp14br cell lines where DSB continue to increase at 24 hours as no repair in taking 

place. It would be interesting to measure global methylation and DNMT1 levels in 

At5biva and Xp14br cell lines following infection to determine whether induction of 

DNMT1 occurs and if this is truly dependent on the 53BP1 protein alone. Collectively, 

these data suggests that DNA methylation may require DNMT1 for DNA repair.  

Mcf10a cells infected with MLV vector containing no genome had a more pronounced 

increase in numbers of 53BP1 foci at 6 hours post infection followed by repair at 24 

hours shown by the decrease in 53BP1 foci at this time point. Global methylation levels 

for this vector increased to the highest level compared to any of the other vectors used 

(44.23 fold) at 6 hours. Once again, global methylation then decreased after 24 hours 

and further at 72 hours (12.62 and 7.12 fold, respectively). However, DNMT1 

expression levels were found decreased at 6 and 24 hours post infection. This was also 

supported by microarray of Mcf10a cells with a decrease in DNMT1 levels at 6 hours 

post infection for cells infected with the MLV without genome. This suggests 

methylation does not require DNMT1. Also, where there is MLV genome but no 

integrase (IN-) there is increasing global methylation and levels of DNMT1 increase. It 

is impossible to reconcile this data because the IN- vector is HIV based and different 

genomes or integrase molecules may have different effects on the host response to these 

factors as found by the variation in DSB levels, global meathylation and DNMT levels 
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between treated cells. What is clearly evident is that lack of DNMT 1 coincides with 

absence of global methylation. Ideally, focussing on MLV vectors alone with and 

without genomes and with IN- would be beneficial to understanding the relationship 

between DNA damage and methylation. 

HIV vector infection of Mcf10a is followed by an increase in global methylation levels 

at 6 hours (2.86 fold) then a decrease (1.21 fold) followed by an increase at 72 hours 

(4.14 fold). DNMT1 levels were found to decrease at 6 hours (0.03 fold) and 24 hours 

(0.20 fold) post infection. These results are inconsistent with the findings of Fang et al 

(2000) (Fang et al., 2001) where cells infected with attenuated HIV vectors show an 

increase in DNMT1 expression. Their DNMT1 measurements were, however, 

performed at 3-5 days post infection and levels of DNMT1 in this study may have 

increased in line with the increase in global methylation identified if measurements of 

DNMT1 were taken at this time point. Surprisingly, DNMT1 rose markedly in MEF 

53BP-/- cells infected with the HIV vector at 6 hours and slightly for EIAV.  

Increases in DNMT 3a and 3b (the DNA methyltransferases required to establish DNA 

methylation) levels in cells increased in Mcf10 cells for most vectors except IN- 

suggesting the integrase is required to induce these methyltransferases. The requirement 

for the vector genome to induce DNMT 3a and b expression is questionable since 

infection with the MLV vector without genome appeared to be associated with the 

highest DNMT 3a and b level increase. In HepG2 cells, no such increase in DNMT 3a 

and b was observed except for when FIV vector was used, however, global methylation 

increases did occur in these cells when infected by all vectors. This made the results 

obtained in HepG2 difficult to explain and this work requires repeating.  

It is obvious from the study presented here that different vectors appear to be associated 

with different responses by the host. Not only were these differences found for MLV 

and HIV vectors but even the FIV vector which is an alternative non-primate vector to 

EIAV showed a markedly different host global methylation response to infection in 

HepG2 cells. Indeed, in vivo the HIV vector was not associated with oncogenesis but 

the EIAV and FIV vectors were. Although, analysis of DNMTs was not performed in 

cells infected with the FIV vector, the lack of global methylation increase in MEF 

53BP1-/- cells infected with this vector agrees with this finding for each of the other 

vectors used in this study. 
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Our results from our methylation assay suggested infection to be related to DNA 

damage and elevated methylation levels. To examine this is detail differential gene 

expression in pathways for DNA damage, DNA repair and DNA methylation were 

studied in Mcf10a cells. Gene expression was measured in all infected samples and 

compared to normal un-infected Mcf10a samples. Mcf10a samples were infected with 

the EIAV, MLV and MLV vector without genome (empty vector). Genes with gene 

ontology terms of “DNA repair”, “DNA damage” and “DNA methylation” were 

selected from the microarray data. Genes with 1.2 fold or more increase or decrease 

difference were selected. Out of the 61 genes found to be up-regulated 62.3% were 

found to be associated with the DNA damage pathway, 46% involved in the DNA repair 

pathway and 8.2% in the DNA methylation pathway. 25 genes were found down 

regulated. Out of these genes 52% were associated with DNA repair, 48% involved in 

the DNA repair pathway and 12% in the DNA methylation pathway.   

 

E2F control of its target genes is known to be controlled by methylation of CpG regions 

of target gene promoters. It was suspected that the increased global methylation could 

potentially lead to changes in the expression of these transcription factor target genes 

some of which are oncogenes or tumour suppressor genes and known to be involved in 

several cancers. E2F target genes are also genes involved in DNA damage and repair 

mechanisms. This was shown by Polager et al (2002) who demonstrated E2F1 and 

E2F3 actively up regulates DNA repair gene expression (Polager et al., 2002). Frame et 

al (2006) also showed that following dysregulation of E2F1 that the MRN complex, 

which is required NHEJ DNA repair cannot localise 53BP1 and γH2AX to sites of 

DNA damage (Frame et al., 2006). Hence E2F transcription factors are closely linked to 

DNA damage and this process is controlled by methylation which if altered could have 

a role in cancer development.   

Using Opossum software http://opossum.cisreg.ca/oPOSSUM3/, the number of genes in 

the human genome with predicted motifs for E2F binding and are thus potential E2F 

targets equates to 32.7%. The number of genes that have E2F binding motifs found 

deregulated by microarray analysis (p<0.05) after infection of Mcf10a cells with EIAV, 

MLV and MLV without genome was 59%. Hence, there were significant changes in 

E2F targets differentially expressed in infected cells compared with un-infected cells. 

Of the E2F target genes analysed 28.6% was found to be involved in DNA damage, 

http://opossum.cisreg.ca/oPOSSUM3/
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28.6% were known to be involved in DNA repair and 9% were found to be involved in 

DNA methylation. Interestingly of the 56 genes found aberrantly expressed the number 

of genes most significantly changed in expression levels (p<0.05) were in cells infected 

by the MLV vector without genome and the majority of these genes are involved in the 

DDR pathway. This also agrees with the DSB identified by 53BP1 immunofluorescence 

in nuclei of Mcf10a cells infected with this vector.  

 

6.1  Conclusion 

 

The findings described in this thesis although preliminary suggest an alternative 

pathway of genotoxicity related to virus infection whereby infection followed by 

integration leads to DNA damage. This then provokes the host innate immune system to 

methylate its own genome and this leads to changes in E2F target gene expression. As 

these targets are known involved in cell proliferation, division, differentiation, control 

of homeostasis and have a role in cancer, this suggests such changes in expression 

would be detrimental to cells. We can hypothesize that this may be linked or 

independent to insertional mutagenesis and may potentially be mechanistic to the HCC 

found in mice treated with EIAV and FIV vectors. Although it was not shown here in 

vitro that genome instability occurred after incomplete DNA damage repair this should 

be further investigated.   
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Genotoxicity models are extremely important to assess 

retroviral vector biosafety before gene therapy. We have 

developed an in utero model that demonstrates that 

hepatocellular carcinoma (HCC) development is restricted 

to mice receiving nonprimate (np) lentiviral vectors (LV) 

and does not occur when a primate (p) LV is used regard-

less of woodchuck post-translation regulatory element 

(WPRE) mutations to prevent truncated X gene expres-

sion. Analysis of 839 npLV and 244 pLV integrations in the 

liver genomes of vector-treated mice revealed clear dif-

ferences between vector insertions in gene dense regions 

and highly expressed genes, suggestive of vector prefer-

ence for insertion or clonal outgrowth. In npLV-associated 

clonal tumors, 56% of insertions occurred in oncogenes or 

genes associated with oncogenesis or tumor suppres-sion 

and surprisingly, most genes examined (11/12) had 

reduced expression as compared with control livers and 

tumors. Two examples of vector-inserted genes were the 

Park 7 oncogene and Uvrag tumor suppressor gene. Both 

these genes and their known interactive partners had 

differential expression profiles. Interactive partners were 

assigned to networks specific to liver disease and HCC via 

ingenuity pathway analysis. The fetal mouse model not 

only exposes the genotoxic potential of vectors intended 

for gene therapy but can also reveal genes associated 

with liver oncogenesis. 
 
Received 9 February 2012; accepted 26 September 2012; advance 

online publication 00 Month 2012. doi:10.1038/mt.2012.224 

 
 
Introduction  
Stable integration into the host genome by retrovirus vectors (RV) 

has rendered these vehicles as ideal candidates for permanent thera-

peutic gene delivery. Because active genes in the host are 

considered targets for insertion, RV infection carries the risk of 

mutation lead-ing to oncogenesis, as demonstrated in preclinical 

models and gene therapy clinical trials.
1–3

 In vitro clonal assays and 

in vivo models have been adapted to assess the genotoxic potential 

of individual viral vectors.
4,5

 Those models that include a tumor 

prone mouse model have been successfully used to target oncogenes 

and tumor-suppressor genes on RV or transposon integration and 

have been demonstrated to be capable of revealing vector-related 

genotoxic factors that include vector insertion preferences, vector 

dose, and configuration and possible transgene involvement in 

oncogenesis.
6–9

 Although self-inactivating (SIN) lentiviral vectors 

(LV) are gener-ally considered safer than γ-RV for gene therapy
10,11

 

recently, clonal expansion has been associated with LV following 

integration into the HMGA2 gene accompanied by highly elevated 

HMGA2 expres-sion in a patient treated for β-thalassaemia.
12  

Currently, little is known about the potential for presumably 

subtle RV or LV-mediated side effects on the host following 

non-targeted, somatic gene transfer where several unperturbed 

cell types with differing spatial and temporal gene expression 

profiles are exposed to the risk of insertional mutagenesis. 

Hence, there is an important need for models to predict the side 

effects of gene therapy application directly in vivo.  
In a previous report, we described our unexpected finding that 

MF-1 outbred mice treated in utero at the E16 fetal stage of devel-

opment with SIN configuration nonprimate equine infectious 
 
A.N. and W.T.C. contributed equally to this research. 

M.S. and M.T. are equally contributing senior authors. 
Correspondence: Michael Themis, Division of Biosciences, Gene Therapy and Genotoxicity Group, Heinz Wolff Building, Brunel University, 

idge, Middlesex, UK. Email: Michael.themis@brunel.ac.uk 



  

     
 

The fetal mouse and liver oncogenesis © The American Society of Gene & Cell Therapy 
 

 
 

 
 
 
anemia virus (EIAV) LVs developed hepatocellular carcinomas 

(HCCs) at high frequency, whereas mice treated in a compara-tive 

setting with a SIN primate HIV-1-based vector did not. These mice 

have a normal genetic background and are not predisposed to tumor 

development. As the majority of the HCCs found were clonal 

derived with provirus insertions in or close to RefSeq genes that 

were mostly associated with cancer, we suspected insertional 

mutagenesis to have caused liver disease.
13

 This was suspected 

because during development genes involved in cell cycle, differ-

entiation, metabolism, and defense are in a highly transcriptional 

and proliferative state; so, we hypothesized that RV and LV inser-

tion may have occurred in such genes that control these processes 

that are known to be involved in oncogenesis.
14  

It was, however, suggested that differences between the trun-

cated X gene sequences included in the woodchuck post-transla-

tion regulatory element (WPRE) that would allow X expression 

from the nonprimate (np) LV vector but not the primate (p) LV 

vector could be the cause of the different outcomes in the fetally 

treated adult mice because the X gene in its wild-type form is 

known to be involved in HCC development.
15

  
The findings presented here, follow on from our previous work 

and describe the usefulness of the MF-1 mouse that is a fully 

immunocompetent outbred strain that is not predisposed to tumor 

development as genotoxicity model. In this study, we first address 

the question of possible vector-associated WPRE involve-ment in 

HCC and report that even with WPRE mutations in the npLV 

similar to those used in the pLV to abolish X gene expres-sion, 

HCC still develops at high frequency.  
We next profile the insertion sites of the npLV and pLV-

based vectors and relate these to the genes that are 

transcriptionally active in the fetus to find clues as to the cause 

of oncogenesis restricted to the npLV. We also show that tumor 

development is not only associated with the EIAV LV used but 

also with an alternative npLV based on the feline 

immunodeficiency virus (FIV) gene therapy vector. Our data 

suggest that LV application to the mouse fetus in utero can be 

valuable to identify gene ther-apy vectors with genotoxic 

potential before clinical application and useful to discover genes 

involved in complex liver disease pathways. 
 
Results  
Tumor development in fetal mice treated 
with nonprimate LV  
We investigated the involvement of the truncated X (tX) gene in the 

WPRE sequence to cause oncogenesis in the in utero treated mice 

by using LVs with and without mutations in the promoter and start 

codon of the tX gene to prevent tX expression. The hypothesis that 

tX was the cause of oncogenesis was based on the previously shown 

fact that EIAV SMART npLVs without these mutations were 

associated with HCC, whereas the HIV HR’SIN-cPPT-S-FIX-W 

pLV with these mutations was not. Hence, a modified-SMART 

vector, SMART 2ZW with X promoter, and start codon mutations 

were tested alongside the original non-tX– mutated SMART 2Z 

vector in fetal mice. In addition, we used the original pLV HIV-

based vector HR’SIN-cPPT-S-FIX-W and a pLV HIV-based vector 

RRL.SIN-CMV-FIX without the tX mutations. In addition, to 

determine whether oncogenesis was restricted to 
 

 

 

2   

 
 
 
the EIAV SMART 2 npLV, we introduced a FIV-derived vector 

pLION11-hAAT-eGFP into our study as an alternative npLV that 

had tX mutations identical to those described previously HR’SIN-

cPPT-S-FIX-W.
16

 Each vector was injected into E16 gestation fetal 

mice at similar doses shown in Table 1. Vector configura-tions are 

shown in Figure 1. All animals were palpated weekly to determine 

tumor development, and those suspected to be tumor positive were 

subjected to internal examination by laparotomy. Liver tumors 

were found only in SMART 2Z (n = 4/6), SMART 2ZW (n = 4/10), 

and pLionII-hAAT-eGFP (n = 3/8)-treated ani-mals from 127 to 715 

days of age and not in the HIV pLV-treated mice (n = 31) (Table 1 

and Figure 2). One of the FIV-treated mice developed an ovarian 

tumor without sign of a liver tumor and was killed at day 715. No 

tumors developed in the vector buffer treated control animals (n = 

3). Only one mouse at an age of 568 days of >500 untreated MF-1 

mice ranging from 3 months to 2 years of age was identified with a 

spontaneously occurring HCC in our laboratory. Survival data for 

mice used in this study are shown in Supplementary Figure S1 and 

includes mice treated with SMART 2hFIX previously described that 

developed HCCs.
13 

 
Histological examination of tumors and vector 
gene expression  
Mouse tumors, their respective normal livers, and control unin-

fected mouse livers were subjected to histological examination to 

characterize their liver architecture. Each of the liver tumors was 

identified as a HCC represented by trabecular architecture, cellu-lar 

polymorphism, and abnormal mitosis (Figure 2i–n). Normal liver 

staining for β-galactosidase expression by the CMV promoter in 

SMART 2Z and SMART 2ZW closely matched our previously 

reported findings using the SMART 2Z vector after in utero injec-

tion with 10% of hepatocytes showing positive for β-galactosidase 

expression.
17

 GFP expression driven by the hAAT promoter in 

pLionII-hAAT-eGFP and the CMV promoter in RRL.SIN-CMV-

GFP provided obvious GFP fluorescence, in 50% and 20% of 

hepatocytes, respectively, in the mice treated with these vec-tors 

(measured at 3.5 and 5 months, respectively) (Figure 2g,h). Human 

factor IX gene expression in the blood of mice treated with HR’SIN-

cPPT-S-FIX-W ranged between 2.1–23.7% (week 1 bleed) and 2.1–

39.75% (week 71 bleed) of the hFIX levels found in normal human 

plasma nearly matched our findings by enzyme-linked 

immunosorbent assay in mice treated with this vector.
18

 Although 

we found high-hFIX levels driven by RRL.SIN-CMV-FIX in D17 

cells infected in vitro with this LV, in mice fetally treated with this 

vector, low levels of hFIX gene expression was found by enzyme-

linked immunosorbent assay in two of six mice at 0.3% and 0.4% of 

normal human FIX levels at 1 month and no expression was found 

at the 6-month time point. Immunostaining of hepatocytes for hFIX 

expression by RRL.SIN-CMV-FIX found ~10% hepatocyte 

transduction (data not shown). 
 
HCCs are composed of clonally derived cells 
mixed with polyclonal cells  
To determine vector clonality in HCCs, Southern analysis of pro-

virus integration was performed that resulted in distinct bands for 

the SMART 2 vectors representative of clonally derived genomic 

DNA (Supplementary Figure S2). No bands were identified in 
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Table 1  Details of mice injected with lentivirus vectors 
 
Vector/mouse Titer Age at Liver  

identification (per fetus) killing tumor VCN 
     

Control buffers     

A N/A 819 No N/A 

B N/A 810 No N/A 

C N/A 715 No N/A 
a
SMART 2hFIX     

1 2.7 × 10
7 348 Y Tumors T1+T2 (5 each) 

2 2.7 × 10
7 231 Y 4 

3 2.7 × 10
7 230 Y 2 

4 2.7 × 10
7 238 Y 5 

5 2.7 × 10
7 154 Y 13 

6 2.7 × 10
7 376 Y N/D 

7 2.7 × 10
7 355 Y N/D 

8 2.7 × 10
7 299 Y 3 

9 2.7 × 10
7 239 N N/D 

10 2.7 × 10
7 406 N N/D 

SMART 2Z     

1 3.8 × 10
7 487 Y 9 

2 1.2 × 10
7 369 N N/A 

3 1.2 × 10
7 573 Y 6 

4 1.2 × 10
7 531 Y 3 

5 1.2 × 10
7 712 N N/D 

6 1.2 ×x 10
7 644 Y Tumors T1+T2 (3 each) 

NL 1.2 × 10
7 N/A N 8.7 ± SE 0.23 (n = 4) 

SMART 2ZW (mutated tX)    

7 4.2 × 10
7 127 Y Tumors T1+T2 (7 each) 

8 1.4 × 10
7 162 N N/A 

9 1.4 × 10
7 279 Y Tumors T1 (9)+T2 (10) 

10 1.4 × 10
7 369 Y 2 

11 4.2 × 10
7 714 N N/D 

12 1.4 × 10
7 537 Y Tumors T1+T2(3 each) 

13 1.4 × 10
7 627 N N/D 

14 1.4 × 10
7 502 N N/D 

15 1.4 × 10
7 640 N N/D 

16 1.4 × 10
7 447 N N/D 

NL 1.2 × 10
7 N/A N 14.5 ± SE 2.3 (n = 4) 

pLionII-hAAT-eGFP (mutated tX)   

17 1.0 × 10
7 484 Y Tumors T1 (8)+ T2 (9) 

18 1.0 × 10
7 433 Y Tumors T1 (1)+T2 (6) 

19 1.0 × 10
7 273 Y Tumors T1 (2)+T2 (10) 

20 1.0 × 10
7 341 N N/D 

21 1.0 × 10
7 622 N N/D 

22 1.0 × 10
7 715 bN 2 

23 1.0 × 10
7 715 N N/D 

24 1.0 × 10
7 677 N N/D 

NL 1.0 × 10
7 N/A N 5.5 ± SE 0.31 (n = 4) 
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Table 1 (Continued) 
 
Vector/mouse Titer Age at Liver 
identification (per fetus) killing tumor  VCN 
 
HR’SIN-cPPT-S-FIX-W (mutated tX)   

25–50 (NL) 1.0 × 10
7 >666 N 0.9 ± SE 0.15 (n = 6) 

RRL.SIN-CMV/-FIX    

56 (NL) 1.0 × 10
7 >666 N 0.6 ± SE 0.22 (n = 6)  

MF-1 fetal mice were injected on day 16 (E16) of gestation with VSV-G 

pseudotyped lentiviral vectors vectors after titration, or with vector buffer only. 

Survival to birth of mice treated with these vectors routinely exceeded 90%. 

Treated mice were examined by palpation and those with suspected tumors 

underwent laparotomy. Those bearing tumors were killed for further analysis. 
Tumors that were found positive for distinct provirus bands following Southern 

analysis are listed as clonal and VCNs are shown. No tumors were found in 

mice treated with the vector buffer only (n = 3) or with HR’SIN-cPPT-S-FIX-W (n 

= 25), and RRL.SIN-CMV-FIX (n = 6). 
Q-PCR analysis of VCNs in tumor DNAs agreed with those determined by Southern 

analysis. VCNs with SEM were also determined using Q-PCR on normal livers (NL) of 

SMART 2Z (n = 4), SMART 2ZW (n = 4), pLION11-hAAT-eGFP (n = 4), HR’SIN-

cPPT-S-FIX-W (n = 6), and RRL.SIN-CMV-FIX (n = 6) infected mice. Animals were 

allowed to reach 666 or above days of age before killing 
based on the maximum age of tumor onset that we reported previously.

13
  All  

 

mice were monitored on a daily basis as per Home Office regulations and per  
 

license stipulations. EIAV vector preparations were generated and titered by  
 

Oxford BioMedica. Vectors with mutated truncated X (tX) are shown.  
 

EIAV, equine infectious anemia virus; N/A, not applicable; N/D, not determined;  
 

SIN, self-inactivating; VCN, vector copy numbers.  
 

a
Mice shown from original study.

13  b
Mouse developed a clonal ovarian tumor 

[Q6] 
 

and no liver tumor. 
 

 
the DNA of the suspected bone tumor that developed in a SMART 

2ZW -treated animal (mouse 15) (Supplementary Figure S2), and 

we suspected the bone tumors in this mouse either to have arisen 

spontaneously or may have had lost vector sequences during 

development. Each of the liver tumors in the pLionII-hAAT-eGFP 

FIV-treated mice were also found to be clonal (data not shown) as 

was the ovarian tumor that developed in the pLionII-hAAT-eGFP-

treated mouse where no liver tumor was identified (mouse 22). By 

this analysis, we found vector copy numbers (VCN) in the EIAV 

and FIV-derived tumors were between 1–6 and 1–5, respectively.  
Despite loading equal amounts of SMART 2 vector-derived tumor 

DNAs (10 µg) to agarose gels before Southern analysis and repeating 

several times (n = 5), band intensities differed significantly after 

hybridization. This suggested the tumors were composed of clonal cells 

mixed with heterogeneous polyclonal cell populations present in the 

tumor masses (Supplementary Figure S2). This was also obvious by 

the speckled β-galactosidase expression identified macroscopically in 

these tumors (Figure 2). In contrast, tumors that developed in FIV-

treated mice had clear banding patterns after Southern analysis with no 

variations in band intensities (data not shown). GFP expression in these 

tumors was also highly intense and uniform throughout each tumor (data 

not shown).  
The animals treated in this study received similar vector doses 

(between 1 × 10
7
–4.2 × 10

7
 vector particles); however, only EIAV 

and FIV vector-treated mice developed tumors (Table 1). VCN 

averages were measured using real-time PCR. VCNs with SEM for 

SMART 2Z were found to be 8.7 ± SE 0.23 (n = 4), SMART 2ZW 

14.5 ± SE 2.3 (n = 4), pLION11- hAAT-eGFP 5.5 ± SE 0.31 (n = 4), 

HR’SIN-cPPT-S-FIX-W 0.9 ± SE 0.15 (n = 6), and for RRL.SIN-

CMV-FIX 0.6 ± SE 0.22 (n = 6). The VCNs found in the HIV LV-

treated animals closely matched those in our previous studies;
13,18

 

however, the SMART 2 VCNs found 
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Figure 1  Schematic representation of lentivirus vectors. Equine infectious anemia virus (EIAV) SMART 2Z, and SMART 2ZW , HIV HR’SIN-cPPT-

S-FIX-W and RRL.SIN-CMV-FIX/GFP and FIV pLION11-hAAT-GFP vector genomes. Each vector has been previously described.
13,18,33

 SMART 2ZW is 

identical to SMART 2Z except that it carries mutations in the X gene promoter and start codon present in the woodchuck post-translation regulatory 

element to abrogate tX gene expression. The pLION11-hAAT-eGFP vector is based on the FIV and carries identical mutations in the X gene promoter 

and start codon in HR’SIN-cPPT-S-FIX-W as previously described.
16

 The RRL.SIN-CMV/-FIX or GFP vectors like SMART 2Z do not have mutations in 

the X gene to prevent tX expression. Each vector contains SIN LTR configuration and cPPT. An internal SFFV promoter in HR’SIN-cPPT-S-FIX-W drives 

human factor IX (hFIX) gene expression; SMART 2Z and SMART 2ZW use the CMV promoter to drive β-galactosidase gene expression; pLION11-

hAAT-GFP drives GFP expression using the human α1 antitrypsin promoter; and in RRL.SIN-CMV/-FIX or GFP the CMV promoter drives hFIX  
[Q8] expression. FIV, feline immune-deficiency virus; SIN, self-inactivating. 

 
in this study appeared significantly higher than in our previous 

study where we first described oncogenesis with these vectors. 

These findings demonstrate the difficulties we experienced in 

controlling vector dose to the liver following vector administra-

tion at this gestation. VCNs in the tumors of the npLV-treated 

 

4

 
mice were in good agreement with those found by Southern 

analysis. The ages of the mice that developed tumors are pro-

vided in Table 1. Using this data and that from our original 

study no correlation was found between VCN and age of liver 

tumor onset. Measurement of the clonality of these tumors is 
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Figure 2  Macroscopic and microscopic analysis. Representative photomicrographs of tumors that developed in the fetally treated adult mice.These appear to 

closely match those described in our previous study as solid masses surrounded by normal liver tissue. (a) SMART 2ZW -treated mouse 10 liver with tumor (killed at 

369 days) (original magnification ×10); (b) β-galactosidase expression in EIAV mouse 10 tumor (original magnification ×40); (c) SMART 2ZW infected mouse 9 

(killed at day 279) tumor with speckled staining of cells in foci positively expressing β-galactosidase (original mag-nification ×40); (d) SMART 2ZW -infected mouse 7 

(killed at day 127) tumor also with speckled β-galactosidase expression (original magnification ×40); (e) EIAV mouse 7 normal liver stained for β-galactosidase 

expression (original magnification ×40). (f) Representative liver tumors that developed in mouse 18 treated with feline immunodeficiency virus vector pLION11-

hAAT-eGFP (original magnification ×10); (g) Anti-GFP immunostaining of mouse 18 hepatocytes infected by pLION11-hAAT-eGFP. Approximately 50% of cells 

appear positively for GFP expression (original magnification ×100); (h) Immunostaining for GFP in RRL.SIN-CMV-GFP infected cells shows ~20% express GFP 

(original magnification ×100). Histological analysis; (i) Representative normal liver tissue of a vector buffer only treated mouse at 715 days with fatty degeneration 

and normal hepatocyte morphol-ogy (hematoxylin and eosin staining, original magnification ×100); (j) Liver of EIAV SMART 2Z-treated mouse 4 killed at 531 days 

also with normal hepatocyte morphology and fatty degeneration (hematoxylin and eosin staining, original magnification ×100); (k) Mouse 4 hepatocellular carcinoma 

(HCC) showing a trabecular architecture of tumor cells (hematoxylin and eosin staining, original magnification ×100); (l) High-power magnification of EIAV SMART 

2Z mouse 1, killed at 487 days, HCC with abnormal mitosis and dysplastic cells around central vein (hematoxylin and eosin staining, original magnification ×200); 

(m) EIAV SMART 2Z W-treated mouse 7 killed at 127 days with HCC showing a cross-section of the liver with a border between normal liver and tumor 

(hematoxylin and eosin staining, original magnification ×40); (n) Mouse 7 HCC with widespread polymorphic tumor cells (hematoxylin and eosin staining, original 

magnification ×100). All livers of HIV HR’SIN-cPPT-S-FIX-W and RRL.SIN-CMV-FIX pLV HIV-treated mice appeared normal morphologically and histologically. 

EIAV, equine infectious anemia virus; LV, lentiviral vectors; SIN, self-inactivating. 
 

 
provided below that followed the identification of SMART 2 

insertions in genes in tumors by linear amplification-mediated 

(LAM) PCR and DNA sequencing. 
 
Tumor insertions occur in cancer-associated 
genes at high frequency  
Then, we examined tumor clonality in greater detail by identify-

ing the positions of virus insertions with respect to RefSeq genes 

in the mouse genome using LAM PCR and DNA sequencing. In 

total, provirus-genomic DNA junctions were sequenced from 

five EIAV-derived tumors; two by Sanger and Coulson 

sequencing, two by 454 pyrosequencing, and one by both 

methods. Insertion sites were also retrieved from six FIV-derived 

tumors and sequenced by the Sanger and Coulson method only. 
 
Molecular Therapy  

To generate sets of provirus integrants from the normal liv-ers of 
EIAV and HIV-treated mice, we used LAM PCR and 454 
pyrosequencing on the normal livers of the three SMART 2-
treated mice (from which we had retrieved vector insertions from 
their tumors) and on two normal livers from HR’SIN-cPPT-S-
FIX-W-treated animals. These data were then used for 
comparative analy-sis of the insertion profiles between EIAV and 
HIV vectors in the fetal mouse genome. Of note, this data were 
generated at the end of the study at the time of killing and may be 
influenced by clonal outgrowth in the liver caused by vector 
genotoxicity.  

To obtain vector insertions, all LAM-PCR amplicon 

sequences were aligned to the mouse genome using BLAST 

(http://www. ncbi.nlm.nih.gov/genome/seq/MmBlast.html) 

and BLAT searches [Q9] (http://genome.ucsc.edu). Using a 

100 kb insertion site interval, 
5 
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integration site sequencing confirmed the clonal nature of the 

developed HCCs mixed with nonclonal cells. As deep sequenc-

ing efficiently retrieves integration sites from polyclonal cell 

populations not involved in tumor formation in addition to those 

involved in tumorigenesis, we subtracted tumor versus nontumor 

relevant integrants by using the retrieval frequency of each inte-

grant. The higher the identical sequence count for each 

integrant, the higher the likelihood of it being clonal and tumor 

associated. Using sequence count data we were then able to 

calculate the per-centage of cells with clonal insertions in the 

three deep sequenced tumors relative to all infected cell 

populations in each tumor. For the three tumors examined, these 

percentages were 25.7, 49.9, and 3.9. These values, however, do 

not include untransduced cells recruited to the tumors.  
Using each sequencing method, from the five EIAV and six 

FIV-associated tumors, we obtained a total of 16 and 23 clonal 

integrations in RefSeq genes, respectively. Of these, 56% were 

either in known oncogenes, associated with oncogenes, or 

involved in tumor suppression. We next identified the molecular 

function and role in biological processes for each gene using the 

gene ontology (GO) database. Each gene was also examined for 

inclusion in the Mouse Retroviral Tagged Cancer Gene 

Database (RTCGD, http://RTCGD.ncifcrf.gov) and for its 

relationship to oncogenesis (Supplementary Table S1). A total 

of 25 genes were found with known involvement in cancer and 

13 specifically with HCC. Seven of these genes or family 

members were also found listed in the RTCGD.  
Using both sequencing methods after LAM PCR on one of 

the tumors examined (mouse 1T2 from our previous study), both 

agreed that Park 7, Uvrag, and Rabgef genes were the clonal 

integra-tion sites in this tumor (these genes were represented 

with closely matching sequence count by the 454 method). It is 

worth noting that Park7 is an oncogene and known to be 

involved in HCC;
19,20

 and Uvrag is a tumor suppressor 

important to autophagy
21

 and also involved in liver cancer.  
We used locus-specific Q-PCR to measure the levels of clonal-

ity in two of the three tumors where LAM PCR followed by 454 

sequencing had provided the identification of genes with EIAV LV 

insertions with high-sequence counts. From tumor 6T1 with 

insertions in Pah, loc382044, and Acvr2a, we measured the abun-

dance of DNA-containing SMART 2Z in Pah; and from tumor 1T2 

with insertions in Rabgef, Rnf 13, Uvrag, and Park 7, we mea-sured 

the abundance of DNA-containing SMART 2Z in Uvrag. These 

genes were chosen due to their proximity of the vector to the gene 

that provided ideal conditions to design primer/probe  
[Q10] sets for Q-PCR analysis. From this analysis using GAPDH as the 

gene locus which would be expected in 100% of cells, we found 

the abundance of Pah and Uvrag insertions to be 35% ± 0.33 

and 16% ± 0.23, respectively. Of note, these data reflect 

clonality in these tumors as compared with cell populations that 

are nonclonal with or without vector insertions. 
 
Comparison of EIAV and HIV vector 
integration profiles in normal livers  
At E16 to day 3 after birth, the period of time when vector inte-

gration was expected to have been completed, gene expres-sion 

in the fetus is highly complex with many genes in a highly 
 
6

 
 
 
transcriptionally active state.

14
 These genes are known to be 

involved in control of liver development and proliferation and with 

known involvement in HCC.
14

 We suspected, therefore, that 

insertion into these genes by a potentially genotoxic vector may 

initiate outgrowth of subsets of cells and lead to liver disease. We 

therefore characterized and compared the insertion profiles of EIAV 

and HIV LVs in normal livers to look at differences in inser-tion site 

selection that could have contributed to clonal outgrowth and 

oncogenesis in the EIAV-treated mice. 
A total of 839 EIAV and 244 HIV nonredundant insertions were 

retrieved. Of these, 642 (76.5%) and 193 (79%) insertions of EIAV 

and HIV, respectively, were located in or close to RefSeq genes 

(within a window of 100 kb), which is in agreement with previous 

investigations of the insertion site frequencies into RefSeq genes by 

these vectors.
10,11

,
22–24

 Using the 839 EIAV and 244 HIV 

nonredundant unique insertions, we made comparisons using the 

following parameters: (i) region within the inserted gene and 

relative to transcription start site, (ii) distance from the CpG island, 

(iii) regional CG content, (iv) chromosome preferences, and (v) 

regional gene density. Common insertions: hot spots for each vector 

were also identified. First, independent and random-ized insertion 

data sets for EIAV and HIV were created by setting each vector 

insertion site randomly across the genome.
25  

As previously described for these LV vectors, each preferably 

integrated into the transcription unit and not near the transcrip-tion 

start site or CpG islands (Supplementary Figure S3a,b).
10,11

 In 

addition, as already described, EIAV and HIV insertions posi-tively 

correlated with AT rich region selection (P < 0.001)
11,26

 with a 35–

45% GC content around insertions using windows of 100, 250, 500, 

750, and 1 kb on either side of each integrant. The 1 kb interval is 

shown as representative of every window that has iden-tical 

behavior (Supplementary Figure S3c). For both vectors, in contrast 

to the random set, we found an uneven chromosomal distribution 

that was independent of chromosome size and gene density with 

HIV insertions in regions with lower gene density (0–59 genes/5 × 

10
6
 bp) than EIAV (30–120 genes/5 × 10

6
 bp) (P < 0.0001) 

(Supplementary Figure S3d,e).  
We then tried to identify hotspots of EIAV insertions in com- 

mon insertion sites within a narrow 500 bp interval. Insertions       [Q11] 

were found in several genes located on different chromosomes one  
of which was in Uvrag that we already identified in a clonal HCC 

from our original study 13. Of note, GO assignment of the EIAV 

common insertion sites showed their gene products to be relevant to 

development, cell death, cycle, proliferation DNA replication/ 

repair, cell signaling, and cancer (http://www.ncbi.nlm.nih.gov/) 

(Supplementary Table S2). Although HIV preference for insertion 

hotspots have been previously described,
11,23

 we found no integra-

tion hotspots for the HR’SIN-cPPT-S-FIX-W HIV vector even when 

we broadened our investigation for hotspots in a 100 kb interval 

around each insertion site. Using this insertion site, window EIAV 

hotspots were found in Park7, Cyp3A11, and Mrpl23 genes in addi-

tion to the Uvrag gene that was also identified in the clonal tumors
13

 

(Supplementary Table S2). The hotspot region with most vector 

insertions (using the 500 bp interval) contained 13 EIAV insertions 

between the Ankrd17 and Alb genes clustered in a 115.3 kbp region 

on chromosome 5. In the 1 Mbp region around this region, we found 

six more EIAV insertions in the closely located Afm, Rassf6, 
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and Cxcl1 cluster of genes (Supplementary Figure S4). These 

genes are among the most highly expressed during fetal 

development
14

 suggesting the insertion hotspots may represent a 

preference for EIAV integration in highly transcriptionally 

active genes of the fetal mouse. Alternatively, the identification 

of these hotspots may be as the result of clonal outgrowth of 

cells containing these insertions promoted by EIAV integration. 
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Figure 3  Vector insertions relative to fetal gene expression. A horizon-tal 
representation was generated between gene ontologies (GOs) of RefSeq 

genes with vector integrations during the E16 to postnatal day 3 (when 
integration was expected to occur) period and GOs of genes differentially 
expressed by 1.5-fold and above or decreased by 1/1.5-fold and below the 
average of all times points from E11.5 to adulthood in our fetal develop-ment 
microarray. GOs of EIAV and HIV RefSeq insertions were obtained using the 

Babelomics platform (http://babelomics.bioinfo.cipf.es) –log
10

 P values >1.3 are 

taken as significant (P < 0.05 after Benjamini Hotchberg correction).
27

 The 

number of genes in each Ref Seq GO was plotted, with the number of genes in 
the GOs of the random data set, against the expression levels of GOs 
representing the differentially expressed genes during the E16 to day 3 period. 
The expression levels of genes within each GO are represented in percentiles 
from low to high for each time point. Significant differences were identified for 
each vector compared with the random data (P value <0.001). EIAV insertion 
appears only in genes that are highly expressed whereas HIV vector insertions 
appear not to follow this trend with a more specific gene profile. The random 
data set shows no preference for gene expression levels of GOs. EIAV LV, 
infected data set (clear bar); EIAV R, random insertion data set (gray column); 
HIV LV, infected data set (black bar); HIV R, random data set (chequered bar). 
EIAV, equine infectious anemia virus; LV, lentiviral vectors. 

 
 
 
Correlation between vector insertions and 

gene expression in the fetus  
To make comparisons between the LV gene insertion profiles and gene 

expression at the time of infection (E16 to day 3 after birth period), we 

aligned the unique 642 EIAV and 193 HIV RefSeq inser-tions with 

genes differentially expressed (either 1.5 up or 1/1.5-fold down) in the 

fetus. Using our previously reported microarrays cov-ering expression 

levels over these time points
14

 and our RefSeq inser-tion site data, we 

made horizontal representations between the GOs for each gene data set. 

GOs were obtained using http://babelomics. bioinfo.cipf.es (log 10 P 

values >1.3 are taken as significant, P value <0.05 after Benjamini 

Hotchberg correction).
27

 This was repeated with the random insertion 

data (P values set at the 95% confidence interval) to determine 

significant deviation between experimental and random data sets 

(Figure 3). In contrast to HIV insertions and the random data set (P 

value <0.001) consistently for each gestational day, EIAV insertions 

appeared in genes with high levels of expres-sion. This suggested, once 

again, that either different sets of genes were chosen for integration by 

each vector or that cells with genes carrying EIAV insertions became 

predominant in the liver possibly as a result of clonal outgrowth 

associated with vector genotoxicity.  
To determine the importance of the genes found with vector 

insertions, the GOs representing RefSeq insertions were subjected to 

Ingenuity Pathways Knowledge Base software (IPA) analysis that 

provides information on biological processes overrepresented in 

each data set. P values <10
−20

 or lower were used to select highly 

significant overrepresentation after Benjamini Hotchberg correc-

tion
27

 with a P value <0.05 cutoff and a minimum of three gene 

transcripts represented from each category (Figure 4). Importantly, 

only EIAV insertions were found with statistical significance in the 

GO categories containing genes responsible for multiple genetic 

disorders and genes associated with cellular growth and prolif-

eration, hepatic system development, and function, gene expres-

sion, and cancer. In line with the absence of tumor development in 

HR’SIN-cPPT-S-FIX-W HIV-treated mice, insertions by this vec-

tor were not found in these categories but restricted to genes that are 

associated with neuronal disorders (n = 104). 
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Figure 4  Analysis of the GO terms of RefSeq genes overrepresented in infected mouse livers by EIAV and HIV vectors. Ingenuity Pathways 

Knowledge Base software (IPA) was used to provide information on the enrichment of biological function and disease processes within given GO cat-

egories representing the inserted RefSeq genes. Fisher’s exact test was used for P values of overrepresented genes in a given GO category compared 

with a random sample gene set (P value <0.05). Statistical significance is represented as –log
10

 P value and threshold of P = 0.05 is shown. P values 

<10
−20

 or lower were used to select highly significant biological networks and GO pathways after multiple comparison error correction using the Benjamini 

Hotchberg method
27

 and three or more genes per data set. Only the EIAV vector appeared in categories associated with cellular growth and proliferation, 

cancer, hepatic system development and function, and gene expression. EIAV, clear boxes and HIV, dark boxes. EIAV, equine infectious anemia virus. 
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Finally, we aligned our EIAV and HIV-insertion data sets with a 

human HCC microarray database of 65 liver disease samples of 

disease groups representing the stepwise oncogenic process from 

preneoplastic lesions of cirrhosis and dysplasia to HCC and also 

includes 10 healthy tissue samples.
20

 Matches were found common 

to cell adhesion, DNA replication, and apoptosis (Supplementary 

Table S3). Although none of the GO matches after Benjamini 

Hotchberg correction were found to be statistically significant (P 

value 0.05 cutoff) interestingly, only EIAV and not HIV insertions 

aligned with genes known to be involved in cellular proliferation 

that are also highly expressed during fetal development and asso-

ciated with cancer. This included the Park7, Bre, and Ep300 genes 

that were identified as hotspots for insertion and of which two were 

found (Park7 and Bre) as clonal insertions in liver tumors. 
 
Characterization of gene expression in 
representative vector-associated HCCs  
We next performed microarrays on the clonal tumors of the three 

representative mice that were used for insertion site retrieval (1T2, 

6T1, and 9T1) for a comparison of global differential gene expres-

sion between each tumor and their respective normal liver tissue. 

We included in this analysis, comparison with a spontaneous HCC 

of an untreated 568-day-old mouse that served as an uninfected 

HCC control. Using the top 500 differentially expressed genes 

between these tumors and normal livers (with a negative Log 2 ratio 

fold change cutoff of 1.5 or 1/1.5, P value <0.05 after Benjamini 

Hochberg correction), we initially created heat-maps to represent 

each differential gene expression profile (Supplementary Figure 

S5). These profiles appeared quite different between each tumor and 

the spontaneous HCC. The difference between gene expressions in 

these tumors was also evident when comparing overrepresented GO 

functions. In line with HCC, genes involved mainly in oxidative 

reduction in mouse 1T2, mouse 9T1, and the spontaneous HCC 

were most significantly represented. This was not seen in mouse 

6T1 and this with other differences in enriched GOs between these 

tumors suggested the involvement of alternative biosynthetic path-

ways to oncogenesis (Supplementary Figure S5). 
 
Genes in clonal tumors carrying vector insertions 
are differentially expressed  
We examined the influence of vector insertion on gene expression 

using a representative selection of genes from the clonal tumors of 

EIAV and FIV vector-treated animals by real-time PCR of reverse 

transcribed purified mRNAs. Comparisons of gene expression 

levels were restricted to the gene with a provirus insertion in the 

tumor and the same gene in the respective normal liver tissue of the 

same animal to avoid variations in gene expression levels between 

mice of different ages and sexes. The control tumor used in this 

analysis without provirus insertion in the gene under investigation 

was also gender matched (Table 2). This selection encompassed 

known oncogenes or genes associated with cancer or specifically 

HCC (Pah, Park7, Acvr2a, Mark 3, Rabgef1, Tnfrs19, Pscd3) and a 

tumor suppressor gene (Uvrag). We found Park7, Uvrag, Pah, Bre, 

Katna1, Nek9, Coro7, and Tnfrs19 gene expression reduced relative 

to controls. The Acvr2a, Mrpl23, and Pscd3 genes were increased in 

expression relative to the normal liver but significantly lower in 

expression than their control-matched tumors suggesting that they 
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are upregulated in HCC but lower possibly as a result of vector 

insertion. Mark3 gene expression was found only slightly 

elevated and we did not find altered gene expression of Rabgef1.  
Because our profiling of EIAV insertions in normal livers showed 

vector integrations mainly in highly expressed genes in the fetus, we 

compared the normal expression levels of the vector-inserted genes, at 

E16-day3 period, we found differential expression using real-time PCR 

in clonal tumors with representative genes known to be either expressed 

at high or at low levels naturally in the mouse at this developmental 

period. As compared with the pregnancy-specific glycoprotein 19 

(Psg19) gene that is expressed at low levels during this period, the 

inserted genes are normally expressed at between 5 and 229-fold greater 

levels. As compared with the expression of the albumin (Alb) gene, 

however, which is very highly expressed dur-ing this period their 

normal expression was lower by between 5 and 206-fold. This analysis 

did not, therefore, discriminate EIAV prefer-ence for insertion only into 

very highly expressed genes. 
 
Mouse 1T2 tumor inserted genes and their related 
partners are found in networks associated with 

liver disease  
We next chose a representative tumor (mouse 1T2) to investigate 

how virus integration may be associated with oncogenesis. This 

 
Table 2  Differential expression of genes and gene pathways 
in tumors 
 

Fold change ± SEM 
 
 Tumor with Tumor without Normal 
Vector/gene insertion insertion liver 
      

EIAV      

Park7 0.70 ± 0.16 1.03 ± 0.14 1 ± 0.10 

Uvrag 0.59 ± 0.11 0.95 ± 0.14 1 ± 0.11 

Mrpl23 5.11 ± 0.22 27.53 ± 0.08 1 ± 0.26 

Pah 0.35 ± 0.18 3.7 ± 0.06 1 ± 0.06 

Acvr2 1.3 ± 0.19 10.79 ± 0.07 1 ± 0.26 

Bre 0.5 ± 0.04 0.99 ± 0.07 1 ± 0.07 

Mark3 1.44 ± 0.05 1.13 ± 0.03 1 ± 0.02 

Katna1 0.81 ± 0.06 0.57 ± 0.11 1 ± 0.03 

FIV      

Pscd3 3.88 ± 0.06 33.67 ± 0.02 1 ± 0.19 

Coro7 0.11 ± 0.19 19.48 ± 0.02 1 ± 0.07 

Nek9 0.11 ± 0.22 3.78 ± 0.11 1 ± 0.06 

Tnfrs19 N/E 2.69 ± 0.20 1 ± 0.15  
Genes transcriptionally dysregulated following vector integration are shown.  

Real-time PCR on reverse transcribed mRNAs isolated from SMART 2Z, SMART  

2ZW ,  and  pLION11-hAAT-eGFP-infected  tumors  using  primer/probe  sets  

(Applied Biosystems) specific for the gene under analysis shows altered gene  

expression levels relative to normal respective tissues and a gender-matched  

tumor without insertion in the gene of interest. Normal liver gene expression was  

set at 100% shown as 1. Relative levels of gene transcription are given for EIAV  
SMART 2hFIX insertions in Park7 and Uvrag of mouse 1T2, SMART 2Z insertions  
in Pah and Acvr2a of mouse 6T1, SMART 2ZW  insertions in Bre, Mark3, and  

Katna1 of mouse 7T1 and FIV pLION11-hAAT-eGFP insertions in Pscd3 of mouse  
19T2, Coro7 of mouse 18T2, Nek9 of mouse 18T1, and Tnfrs19 of mouse 22  

ovarian tumor. Values shown represent the mean of 3 or more measurements  

with SEM. Confidence intervals were set at 95% and P values of <0.01 or below  
were taken as statistically significant.  

EIAV, equine infectious anemia virus; FIV, feline immune-deficiency virus; N/E, [Q12] 
no expression detected.  

 

 
www.moleculartherapy.org 



  

     
 

 
© The American Society of Gene & Cell Therapy 

The fetal mouse and liver oncogenesis  

 
 

 
 
 
mouse was chosen for the analysis because first we had character-

ized its tumor with elevated expression of genes associated with 

oxidative stress, which is a hallmark of HCC and second as inser-

tions in the Park7 oncogene and Uvrag tumor suppressor gene were 

found in this tumor. Although there were additional inser-tions in 

the Mrpl23 and Rabgef1 genes, Rabgef1 was not found dif-

ferentially expressed and there is no association between Mrpl23 

and cancer. Third, we had identified Park7 in the human HCC 

database and Uvrag that is also associated with cancer. Finally, 

these genes were also identified as hotspots for insertion and were 

found reduced in expressed by real-time PCR.  
Initially, we found interactive partners to Park 7 and Uvrag genes 

using the STRING (http://string-db.org/) database that provides 

information on predicted protein–protein interactions that includes 

direct (physical) and indirect (functional) associations to identify 

interactive genes (with significant associated combined scores 0.4 

confidence level). We then collated gene expression levels from our 

microarray of this tumor according to a P value significance cut-off of 

<0.05 (after Benjamini Hochberg correction) rather than 1.5 negative 

log 2 fold cutoff to maximize our data set. We next identi-fied 

differential expression of the interactive partners of Park 7 and 

 
 
 
Uvrag in our microarray database of this tumor (Supplementary 

Figure S6 and Supplementary Table S4). 
Finally, we subjected these gene sets to IPA network analy-

sis that directly links them to pathways involved in liver disease 

and cancer of the liver. The pathways identified included apop-

tosis of hepatocytes, repair of DNA, liver tumorigenesis, hepato-

cyte proliferation, cell cycle progression, transcription, and HCC 

(Figure 5). 
 
Discussion  
The potential for RV and LV-mediated side effects following non-

targeted, somatic gene transfer is still unknown. We suspect that a 

significant genotoxic risk could be present following in vivo gene 

transfer to several cell types with different spatial and temporal 

profiles of gene expression by vectors that are known to prefer to 

integrate into gene promoters and/or active gene transcription units. 

In contrast to ex-vivo gene therapy, the in vivo approach does not 

rely on cell engraftment for survival and proliferation and therefore, 

it is possible that a significant population of cells harboring provirus 

“hits” into cancer-related genes could sur-vive after gene transfer 

which theoretically increases the risk of 
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Figure 5  Biological networks and functional pathways linking Park7 and Uvrag genes. IPA network analysis of Park7 and Uvrag from 
(mouse 1T2) found with significant differential expression in the microarray from these mice compared with their respective controls and ranked 

by fold change (−log
2
 ratio, cutoff P value <0.05 after Benjamini Hochberg correction). Networks show interactive genes linked to pathways that 

include apoptosis in the liver, DNA repair, liver tumorigenesis, hepatocyte proliferation, cell cycle progression, transcription, and hepatocellular 
carcinoma (HCC). Their detailed involvement in HCC requires further investigation. 
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insertional mutagenesis leading to oncogenesis. Genotoxicity 

models in vivo are, therefore, essential to reflect this risk 

following somatic gene therapy.  
In an earlier study, we found oncogenesis associated with 

SMART 2 and 3 EIAV-based nonprimate (np) LV vectors but 

not with the HR’SIN-cPPT-S-FIX-W HIV-1-derived primate (p) 

LV 13. Because the X gene present on the WPRE in its full-

length form is known to be involved in HCC, our initial goal 

was to determine if the tX is involved in oncogenesis. This 

suspicion was supported by differences in tX gene 

configurations between the HR’SIN-cPPT-S-FIX-W pLV vector 

with mutations to prevent tX expression and the SMART 2 

npLV without these mutations. Because we found liver tumors 

in mice treated with the mutated form of SMART 2 and also 

with an alternative npLV FIV vector, pLION11-hAAT-eGFP 

carrying mutations identical to HR’SIN-cPPT-S-FIX-W ruled 

out tX gene involvement in oncogenesis. Furthermore, mice 

treated with the RRL.SIN-CMV-FIX vector without these 

mutations did not develop tumors following fetal gene transfer.  
The fetal mouse has many highly expressed genes that con-trol 

cellular proliferation and differentiation that are also known to be 

associated with HCC.
14

 The MF-1 mouse is not genetically 

predisposed to cancer and we have found that this outbred mouse 

strain allows life-long vector presence with transgene expression. 

On the basis of our findings that EIAV and FIV npLVs but not HIV 

LVs are associated with liver cancer, we propose this model to be a 

sensitive platform to test for vector-associated genotoxic-ity. In 

addition, as high transcriptional activity is known to have a 

potentially strong influence on LV integration,
23,24

 we suspected 

that the difference in oncogenic outread between these vectors may 

be due to differences in their insertion site preferences in the mouse 

genome. It is important to note that comparisons of inser-tions sites 

were made between EIAV and HIV LVs at the end point of our 

study and would therefore include any bias in the clonal outgrowth 

of cells caused by a genotoxic vector.  
LV-insertion profiles that have been described in previous 

studies
10–11,24

 were also evident in the fetally treated mouse liver in 

this study. These included preference for the transcription unit, 

insertion away from the transcription start site, and CpG islands that 

represent gene promoter regions, and insertion into AT rich DNA. 

Of note, we found SMART 2 vector insertions appearing in gene 

dense regions to a much greater extent than HR’SIN-cPPT-S-FIX-

W and clearly different patterns of insertions in particular 

chromosomes were evident between the LVs. This is in contrast to 

previous work using different immortal cell lines that revealed 

hotspots for HIV in different human chromosomes and no hotspots 

for EIAV integration.
11,23

 In the fetus, hotspots for SMART 2 

insertion were found in several genes whereas none were found for 

HR’SIN-cPPT-S-FIX-W. These hotspots (using a 500 bp interval) 

included several unique SMART 2 integrations narrowly clustered 

on chromosome 5 in genes surrounding the albumin locus known to 

be highly expressed before birth in the mouse.
14

 This suggested, 

once again, that the EIAV vector has a preference for highly 

expressed genes or possibly that our iden-tification of these hotspots 

may be influenced by cellular prolif-eration as a result of clonal 

outgrowth mediated by SMART 2 genotoxicity. 
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Our global insertion site profile of SMART 2 integrations in 

highly expressed genes was also confirmed by our horizontal 

GO comparative analysis that showed insertion sites occurring in 

highly expressed genes around the E16 period of development. 

The fact that SMART 2 integration may have influenced cellular 

outgrowth was further supported by our IPA analysis that identi-

fied the GOs of genes with insertions of this vector and not the 

HIV vector in categories associated with cellular proliferation, 

hepatic system development and function, gene expression, and 

liver cancer. Interestingly, the Uvrag tumor suppressor gene and 

the Park 7 oncogene, Cyp3a11, and Mrpl23 genes that were 

identi-fied as hotspots for insertion at the 500 bp and 100 kb 

intervals, respectively, were also found in clonal tumors with 

SMART 2 integrations.  
Our analysis of vector copy number following in utero gene 

transfer shows that it is difficult to control vector delivery to the 

liver during in utero gene transfer as VCN varied widely between 

LVs. A potential reason for the difference in HIV and EIAV VCNs 

found, even though similar vector doses of VSV-G envelope 

pseudotyped vectors were used (10
7
 IU/fetus), may be associated 

with the required level of the epithelium-derived growth factor 

LEDGF/p75 required by each LV to tether the vector genome to its 

site of integration. High-level LEDGF/p75 expression is believed to 

influence integration into actively transcribed regions of DNA 22, 

and EIAV LV infection levels have been found significantly 

impaired by reduced levels of LEDGF/p75 as compared with HIV 

LV in murine cells depleted for LEDGF/p75 (50-fold versus five-

fold, respectively). In the fetal mouse relative to the adult LEDGF/ 

p75, expression is fivefold greater and if EIAV is more dependant 

on LEDGF/p75 than HIV, then high level LEDGF/p75 expression 

may account for high EIAV VCN. It would be interesting to deter-

mine the role of LEDGF/p75 expression also on FIV integration. 

Low HIV VCN may also be the reason for the absence of oncogen-

esis in the HIV-treated mice; however, in our previous study HIV 

VCN was similar to that found for EIAV, yet neither the HR’SIN-

cPPT-S-FIX-W nor RRL.SIN-CMV-FIX HIV vectors were associ-

ated with oncogenesis. VCN may not necessarily be very accurate in 

measuring genotoxicity as in our previous work, we found that even 

at undetectable VCN levels measured by Q-PCR, one mouse still 

developed an HCC carrying a clonal SMART 2 insertion.
13

 

Importantly, our measurement of high EIAV and FIV VCNs ver-sus 

low HIV VCN may once again be influenced by npLV driven clonal 

outgrowth of cells and only measurement of VCN at an early time 

point followed by comparison with the data presented in this work 

would address this issue. 
For our comparative real-time PCR analysis of gene expres-sion 

levels, we measured the level of gene expression of genes in tumors 

carrying provirus insertions within the gene. This was compared to 

the level of expression of each gene in the respec-tive normal liver 

of the mouse bearing a tumor and matched mouse tumors without 

insertions in the gene under investigation. Although we used gender 

and age-matched controls, we are aware that this allowed only 

limited statistical analysis of the data. To circumvent this difficulty 

to some degree, we performed real-time PCR on samples harvested 

from at least four different sites in each tumor and normal liver 

tissue. We also realize that although our microarray analysis used 

gender-matched mouse tumor controls, 
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these were not of identical ages and it is likely that in each tumor, 

different pathways may be responsible for the development of liver 

cancer. Furthermore, even though high-density microarray anal-ysis 

is believed capable to confirm altered levels of gene expres-sion 

found by real-time PCR, this is not always possible for every gene 

set under investigation
28

 and we therefore, did not expect to be able 

to achieve accurate matches between every differentially expressed 

gene examined by the two techniques as was sometimes the case 

during our analysis.  
Nonetheless, assuming our observations were mediated by 

vector genotoxicity, we linked the Park7 and Uvrag genes that 

car-ried viral insertions, showed reduced in expression by Q-

PCR, with their interactive partners using the STRING database 

in a representative tumor, and identified these genes in our 

tumor microarray. Applying this data set to IPA analysis, we 

determined which gene networks could have been involved in 

oncogenesis. Although this identified genes belonging to 

pathways involved in liver disease, cancer, and specifically 

HCC, that may have differ-ential expression influenced by 

vector integration, we cannot rule out that these genes may be 

altered in expression as a result of effects not related to vector 

integration. Hence, we are still only able to speculate that 

insertion by SMART 2 in the Park7 onco-gene and Uvrag tumor 

suppressor gene in the same tumor may have initiated neoplasia.  
A possible mechanism behind mutagenesis in the treated mice 

by SMART 2 and pLION11-hAAT-eGFP vector is the configura-

tion of splice donor and acceptor sites in these vectors. Aberrant 

splicing is known to cause altered oncogene expression as was 

shown in the tumor prone model.
9
 Interestingly, both SMART 2Z 

and pLION11-hAAT-eGFP have splice donor and acceptor sites 

some distance apart either side of the transgene and promoter as 

opposed to HR’SIN-cPPT-S-FIX-W where both splice sites are 5′ to 

the transgene and promoter. The importance of the splice acceptor 

in SMART 2 and pLION11-hAAT-eGFP just 5′ of WPRE is yet to 

be investigated. In theory, splicing of cellular genes with the vector, 

if in the appropriate orientation, could result in WPRE being 

introduced onto cellular RNA which could result in pro-longed 

RNA half live and increased gene expression. Alternatively, 

splicing could also result in nonfunctional truncated proteins 

thereby effectively reducing gene expression.  
In summary and following on from our previous report, we 

conclude in this study that the X gene is not directly involved in 

oncogenesis after in utero gene transfer. We find genes mostly 

downregulated following SMART 2 and pLION11-hAAT-eGFP 

insertion and that the EIAV vector either has a preference for highly 

expressed genes and gene dense regions or may have caused clonal 

outgrowth of cells following integration. We aim to deter-mine this 

by comparing our current insertion site profiles with those of mice 

killed at a 2-week time point following SMART 2 administration 

before clonal outgrowth could occur.  
We believe, therefore, this highly transcriptionally active and 

proliferative model with an unperturbed genetic background to be a 

particularly sensitive alternative animal system to test for genotox-

icity following in vivo gene transfer as demonstrated here by signifi-

cant differences in the genotoxic potential between the LVs tested. 

We propose this model as highly useful to screen novel therapeutic 

integrative vectors intended for safe clinical gene therapy. Due to 
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its sensitivity, this model may even be extended to nonintegrating 

vectors that are currently considered safe because they only rarely 

integrate in the genome in a more randomly manner.
29

 Although we 

have not observed oncogenesis associated with the HIV-derived 

vectors used in this study, we cannot rule out that these vectors may 

be genotoxic in an alternative model and hence we cannot assume 

them to be completely safe. As for any genotoxicity model, conclu-

sions about vector safety drawn from this fetal mouse model should 

be made with caution as it may not be capable of accurately repre-

senting the likelihood of insertional mutagenesis in humans follow-

ing LV-mediated gene transfer. However, as HCC is such a common 

disease being the fifth most common cancer in humans, we also 

propose that the fetal model may also be considered as a useful tool 

to research the cause of this disease. 
 
Materials and Methods  
Animal procedures and tissue harvests. MF1 mice were used for in 

utero injection. All animal work was carried out in accordance with UK 

Home Office regulation and was compliant with the guidelines of the 

Imperial College London ethical review committee. Details of the animal 

proce-dures and harvests used have been previously described.
13

 Sampling 

was performed by dissection of four parts of each tissue to be investigated. 
 
Vector production and titration. EIAV SMART 2 lentivectors were pro-

duced using transient transfection of human embryonic kidney 293T cells 

and titered as previously described.
30,31

 X-gal staining was performed using 

standard procedures.
17

 No replication competent virus was identified using 

the method described by Martin-Rendon et al.
32

 EIAV vector preparations  
were generated and titered by Oxford BioMedica. 

[Q13]
 Recombinant 

HR’SIN-cPPT-S-FIX-W HIV vectors were also produced  
by transient transfections of 293T cells and titered using a commercial 

immunoassay kit for p24 gag (Beckman Coulter, High Wycombe, UK) as 

previously described
18

 that routinely provided concentrations with a range 

20–40 ng/µl of p24 protein. Generation of the HR’SIN-cPPT-S-FIX-W 

vector carrying the human factor IX (hFIX) cDNA after replacement of GFP 

from pHR’SIN-cPPT-SEW has also been described.
18

 Virus titers were 

calculated using batches of HR’SIN-cPPT-S-FIX-W hFIX- and pHR’SIN-

cPPT-SEW eGFP-lentivirus prepared in parallel. Fluorescence-  
activated cell sorting analysis of cells after infection by eGFP-lentivirus [Q14] 

yielded a titer of 5 × 10
8
 infectious particles/ml.  

pLION11-hAAT-eGFP FIV particles were generated as previously 

described using the 293T packaging cell line.
33

 HR’SIN-cPPT-S-FIX-W 

and pLION11-hAAT-eGFP vector particles were concentrated 100-fold 

by ultracentrifugation at 50,000 g for 90 minutes at 4 °C. The pellet was 

resuspended in serum-free X-VIVO10 (BioWhittaker Europe, Verviers, 

Belgium) and stored at −80 °C.  
Fluorescence-activated cell sorting analysis of cells after infection by 

pLION11-hAAT-eGFP yielded a titer of 1 × 10
9
 infectious particles (TU)/ 

ml. All viruses used were pseudotyped using the VSV-G envelope. 
 
Measurement of hFIX antigen (hFIX:Ag) expression. Plasma samples 

con-taining hFIX:Ag after collection of 100 µl of mouse blood in Na Citrate 

and centrifugation was measured using a specific hFIX:Ag enzyme-linked 

immunosorbent assay as directed by the manufacturer (Roche Diagnostics, 

Mannheim, Germany). Human FIX reference supplied with the kit was used 

to create standard curve measurements of diluted hFIX:Ag for direct 

comparability. Mouse plasma samples were assayed at 50-fold dilution. 
 
Immunohistochemistry. Liver tissue fixed in 25% formalin overnight, 

transferred to 70% ethanol, and processed into paraffin was used to 

detect GFP expression. GFP was detected after microwaving in citrate 

buffer then incubation with rabbit anti-eGFP (A-6455, Molecular 

Probes, Eugene, Oregon) as previously described.
18 
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Quantitative of VCN by real-time PCR. Lentiviral copy number in DNA 

samples was also determined using primer/probe sets designed to recog-nize 

the human FIX cDNA (for HR’SIN-cPPT-S-FIX-W) or the EIAV and FIV 

packaging signals in SMART 2 and pLION11-hAAT-eGFP, respec-tively. 

Quantitative PCR was performed using an ABI PrismR7900HT sequence 

detector (Applied Biosystems, Warrington, UK) as previously described.
13

 

Absolute quantification was used to mathematically deter-mine the viral load 

by comparing a range of standards concentrations. The range of standards 

was derived from a reliable tumor sample with a known copy number via 

Southern blot analysis. The genomic DNA was diluted twofold from a 

starting concentration of 500 ng to provide a range of 500–15.625 ng. CT 

values were obtained using probes specific to the  
[Q15]

 GAPDH housekeeping gene, the WPRE virus vector sequences common to 

HR’SIN-cPPT-S-FIX-W and pLION11-hAAT-eGFP and the packaging 

signal (Ψ) of the SMART 2 vector. Raw CT values from tumors and normal 

livers were normalized against those of the standard curve.  
The amplification was carried out in a final volume of 20 µl in which each 

reaction contained 18 µl of TaqMan Universal PCR Master Mix (Amperase 

UNG, AmpliTaq Gold polymerase, dNTP, Applied Biosystems), [Q16] 

100 mmol/l of each primer and probe, and 31.25 ng of genomic DNA. All 

samples were tested in triplicate and the variation between the CT of each 

duplicate was ≤0.5 Ct. The total number of genomes was recorded for each 

concentration in the dilution series. A standard curve was constructed with 

Log10 genome values plotted against CT values for each concentration and a 

linear regression equation plotted. For unknown samples, VCNs were 

interpolated from the standard curve. For each unknown sample, the number 

of vector copies per genome (diploid) was calculated using the average CT 

values (per concentration) and linear regression values  
(slope and intercept) from the standard curve. 

 
Real-time PCR to determine the effects of LV provirus insertion on 

inserted genes. RNAs were extracted using TRI reagent (Sigma Aldrich, 

Gillingham, UK) on tissue samples followed by chloroform extraction and 

isopropanol precipitation. RNAs were purified before cDNA syn-thesis 

using an Agilent Technology Company kit (Agilent technologies, 

Stratagene, Stockport, UK) as per the manufacturers instructions. Purified 

RNA was prepared using a High Capacity cDNA reverse transcription kit 

(Applied Biosystems). A reverse transcriptase master mix was prepared with 

RT buffer, dNTP mix, RT random primers, MultiScribe Reverse 

transcriptase, RNase inhibitor, and nuclease-free distilled water accord-ing 

to manufacturer’s instructions (Applied Biosystems) was used for cDNA 

synthesis using 125 ng of total RNA. cDNA of 2 μl was used with PCR 

Mastermix and TaqMan Assays (Amperase UNG, AmpliTaq Gold 

polymerase, dNTP, Applied Biosystems). All reactions were carried out in 

triplicate on an ABI Prism7900HT real-time PCR instrument (Applied 

Biosystems) using primer/probe sets designed for each gene under exami-

nation obtained from Applied Biosystems. Absolute Quantification (stan-

dard curve) reactions were used to optimize the TaqMan reactions using 

serially diluted cDNA samples (500–15.625 ng/µl). Relative quantification 

was performed on quadruplicate PCR reactions using the Ct method.
34

 Data 

were analyzed with SDS software and cycle thresholds obtained were 

normalized ribosomal 18S expression (control) and calibrated to normal 

tissue and a gender-matched tumor control for relative quantification.  
Locus-specific PCR was performed on two genes from two tumors which 

were identified by LAM PCR/454 and Sanger and Coulson sequencing methods. 

Primer/probe sets for Pah and Uvrag genes and the 5′ LTR of the SMART 2 

vector were as follows: 1. Uvrag, Forward 5′-G TACCTTGCAGGC 

TTTAATTGTCC-3′, Reverse 5′-AAGGTTATGAGAGCATCAGCAAC-3′. 

Product 293 bp. Probe FAM 5′-CGCCTGGCTCCAGCGGCACC-3′ Tamra. Pah, 

Forward 5′-CCTAGATAGAATCTTTCAGTTTGG-3′, Reverse 5′- CC 

TTTGGGTTATACAAGGTT ATG-3′. Product 266 bp. Probe 5′-CCTCA 

GTGCCACAAATTCAGGCTGC-3′. 5′ FAM, 3′ Tamra. EIAV-5′ LTR primer 5′-

GTTATACAAGGTTATGAGAGC-3′. PCR products were tested to identify the  
correct product sizes before Q-PCR. Genomic DNAs were subjected  
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to amplifications as described above. CT values using primer/probes specific 

to the GAPDH  housekeeping gene were used to calculate the presence of a 

gene in 100% of the genomes of cells in each tumor. The CTs of each gene 

under investigation was compared with that of GAPDH to obtain the 

percentage of the locus-specific virus/gene representing clonally derived 

cells. All samples were tested in quadruplicate and CT SDs were used to 

represent SEMs. DNA from normal livers from each mouse and an 

uninfected mouse were used as negative controls to show no amplifications. 
 
Amplification of vector-genomic DNA junctions. Genomic DNA 

was extracted from tumors as previously described.
13

 LAM-PCR: linear 

amplification for the SMART 2 EIAV vector was performed as 

previously described.
35,36  

LAM-PCR of genomic DNA adjacent to the pLION11-hAAT-eGFP vector 

was also performed using 100 ng of genomic DNA and 2.5 U Taq polymerase 

using the following two biotinylated primers of sequences found in the 5′ LTR: 5′-

GTT CTC GGC CCG GAT TCC-3′ and 5′-CCC GGA TTC CGA GAC CTC-3′ 

(50 µl final volume). Cycle parameters of 95 °C for 5 minutes (single cycle) 

followed by 95 °C for 60 seconds, 60 °C for 45 seconds, 72 °C 90 seconds for 50 

cycles, 72 °C for 10 minutes. 2.5 U additional Taq polymerase was added and the 

PCR run for another 50 cycles. PCR products were captured using the Dynabeads 

kilobase binder kit (Dynal, Oslo, Norway) and the second DNA strand was 

synthesized using Klenow (Invitrogen, Carlsbad, CA) with random 

hexanucleotides (Invitrogen, Paisley, UK) (20 µl reaction mixture) at 37 °C for 1 

hour. The double stranded DNA was digested with Tsp509I and a linker 

oligonucleotide added (5′-GAC CCG GGA GAT CTG AAT TCA GTG GCA 

CAG CAG TTA GG-3′ and 5′-AAT TCC TAA CTG CTG TGC CAC TGA ATT 

CAG ATC-3′) followed by ligation with Fast Link DNA Ligase kit (Epicentre 

Technologies, Madison, Wisconsin) for 15 minutes at room temperature. The 

DNA was denatured with 0.1 mol/l NaOH before two rounds of PCR using the 

same conditions as the linear amplification with primers: FIV LTR 5′-CTC GAC 

AGG GTT CAA TCT C-3′ and linker 5′- GAC CCG GGA GAT CTG AAT TC-3′ 

followed by nested PCR primers: FIV LTR 5′-CTC AAA AGT CCT CAA CAA 

AG-3′ and linker 5′ GAT CTG AAT TCA GTG GCA CAG-3′. PCR products 

were separated on 3% agarose gels and DNA fragments were isolated using a 

Quiex II gel extraction kit (Qiagen, Crawley, UK) and cloned into a TOPO TA 

plasmid cloning kit (Invitrogen) as per the manufacturer’s instructions. Bacterial 

colonies containing DNA fragments corresponding to those seen in the second 

round PCR were sequenced using the FIV-specific nested primer (Leicester 

University, Leicester, UK). EIAV and HIV-insertion sites cloned by LAM PCR 

and nonrestrictive PCR techniques obtained using 100–300 ng of sample genomic 

DNA were sequenced by deep parallel pyrosequencing (GS FLX/454: Roche, 

Mannheim, Germany) then subjected to Blas2Seq and the Smith-Waterman 

algorithm as previously described.
37 

 
Sequences were aligned with the mouse genome (Mus musculus 

genome) assembly July 2007 (NCBI37/mm9, UCSC M. musculus genome 

version 8) using UCSC BLAT genome browser (http://genome.ucsc.edu) or 

BLAST (http://www.ncbi.nlm.nih.gov/genome/seq/MmBlast.html). The 

molecular function and role in biological processes of each integration near 

to or within a RefSeq gene (within a 100 kb window) was determined using 

the Gene Ontology database and identified with potential to be a candidate 

gene involved in tumorigenesis. Candidate genes were searched against the 

Mouse Retroviral Tagged Cancer Gene Database (RTCGD; 

http://RTCGD.ncifcrf.gov). 
 
Determination of lentivirus copy number by Southern analysis. Southern 

analysis of genomic tumor DNA was carried out as previously described.
13

 

Briefly, 10 µg of genomic DNAs were digested with Hind III that allows the 

EIAV provirus and adjacent mouse 3′ genomic DNA to be identified after 

separation in 0.6% agarose gels and hybridization with a 625 bp WPRE probe 

excised from the pSMART 2Z plasmid. The FIV vector was probed with a 700 bp 

GFP probe. Probes were routinely produced using a random primed labeling kit 

(Mega-prime system Amersham, UK) with a-32P-CTP. 
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Autoradiographs were used to visualize provirus bands on 

Hybond N+ nylon membranes (Amersham). 
 

Microarrays. Total RNA was isolated from liver tissues using Trizol 

reagent (Invitrogen) then subjected to gene expression profiling using 

an Illumina mouse sentrix-8 microarray chip from Illumina 

recognizing 25,000 sequences to provide a measurement of genes 

whose expression had been up or downregulated with high sensitivity. 

The gene expression values were extracted using the GenomeStudio 

software and filtered according to fluorescence above chip 

background. Data were quantile normalized(82) and analyzed using 

the bioconductor http://www.bioconductor.org/, 

http://www.bioconductor.org/packages/2.0/bioc/html/lumi.html lumi 

and limma packages(83). Data were P value adjusted(40) to yield a 

sorted list  
[Q17] of differentially expression genes. 
 

GO function analysis of microarrays. The Gene Ontology file 

(version: 1.513; Date: 09/29/2009) and the mouse annotation file 

(gene_associa-tion.mgi. version: 1.806; Date: 01/15/2010) were 

downloaded from http:// www.geneontology.org. We selected the top 

500 significantly differen-tially expressed genes and ranked these by 

fold change (log2 ratio, P value <0.05). Hypergeometric distributions 

were used to detect overrepresented or underrepresented biological 

process terms in the study set compared with the population set. Here, 

the population set was constructed using all genes in the microarray of 

mouse 1T2 13, mouse 6T1, and mouse 9T1 tumors and a spontaneous 

HCC that occurred in a 568-days-old mouse. Probabilities obtained by 

hypergeometric distributions were subject to Benjamini Hotchburg 

correction.
27  

Randomized data set generation. To assess whether insertion sites 

where assigned to chromosomes randomly, randomization was carried 

out 100-times to yield 100 randomized counts of vector inserts per 

chromosomes. A t-test (95% confidence) was performed between the 

single observed count of sites per chromosome and the randomized 

population of 100 counts. Similarly, for CG content and gene density 

statistics, randomized data were generated across the genome. To 

determine the nature of vector insertion distances from transcription 

start site and regions within genes, t-tests were performed between 

observed data and those data generated from sites assigned to random 

locations, 100-times, within the gene. 
 

Analysis of biological networks by Ingenuity Pathway Analysis 
(IPA).  
Network analysis was performed on lists of genes generated from the 

earlier analyses described above as being differentially expressed. 

IPA (Ingenuity Systems, Redwood City, CA) that contains data of 

individually curated relationships between gene objects (e.g., genes, 

mRNAs, and proteins) was used for the identification of the biological 

processes that are significantly overrepresented to generate significant 

biological networks and pathways. Statistical significance of the 

biological overrepresentation was determined using Fisher’s exact P 

value based on the relative overrepresentation of a minimum of three 

genes in the particular pathway as compared with a random sample of 

genes (P value cutoff of <0.05). Scores corresponding to P < 10−20 

or lower after Benjamini Hotchburg correction were used to select 

highly significant biological networks. 
 

SUPPLEMENTARY MATERIAL  
Figure  S1.  Survival of cohorts treated with lentivirus vectors. 

Figure  S2.  Representative Southern analysis of tumors and 

respective 
normal livers. 

[Q18]
 Figure  S3.  
Figure  S4.  Linear representation of the regional hotspot for 

EIAV SMART 2 vector insertion in chromosome 5.  
Figure  S5.  Global analysis of tumor gene expression.  
Figure  S6.  Gene pathways associated with provirus-integrated 
genes  
Park 7 and Uvrag  
Table  S1.  Vector integration sites in tumors.  
Table  S2.  Hotspots for EIAV integration using 500 bp and 

100 kb intervals. 
 

 
 
Table  S3.  Alignment of RefSeq insertions with human HCC samples.  

Table  S4.  Microarray of differentially expressed genes belonging to 

pathways associated with genes with altered expression identified by 

real-time PCR. 
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