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Summary.

The basic building block of a gene regulatory network consists of a gene encoding a tran-

scription factor and the gene(s) it regulates. Considerable efforts have been directed recently at

devising experiments and algorithms to determine transcription factors and their corresponding

target genes using gene expression and other types of data. The underlying problem is that the

expression of a gene coding for the transcription factor provides only limited information about

the activity of the transcription factor, which can also be controlled post-transcriptionally. In

the absence of a reliable technology to routinely measure the activity of regulators, it is of

great importance to understand whether this activity can be inferred from gene expression

data. We here develop a statistical framework to reconstruct the activity of a transcription

factor from gene expression data of the target genes in its regulatory module. The novelty of

our approach is that we embed the deterministic Michaelis-Menten model of gene regulation

in this statistical framework. The kinetic parameters of the gene regulation model are inferred

together with the profile of the transcription factor regulator. We also obtain a goodness-of-fit

test to verify the fit of the model. The model is applied to a time series involving the Strep-

tomyces coelicolor bacterium. We focus on the transcriptional activator cdaR, which is partly

responsible for the production of a particular type of antibiotic. The aim is to reconstruct
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the activity profile of this regulator. Our approach can be extended to include more complex

regulatory relationships, such as multiple regulatory factors, competition and cooperativity.

Key words: Gene regulation, Michaelis-Menten kinetics, maximum likelihood estimation,

Streptomyces coelicolor

1. Introduction

Linking transcription factors (TFs) to their targets is a central problem in post-genomic biol-

ogy. While genes regulated by the same TFs tend to be co-expressed, the relationship between

the gene expression profiles of the TFs and their regulated genes can be quite complicated,

often exhibiting time-shifted or inverted behaviour (Yu et al., 2003). This could be due to

the fact that changes in the expression of a TF are subtle and its activity is often controlled

at levels other than expression, e.g. via post-transcriptional modifications. Therefore, the

expression of a gene coding for TF generally provides only limited information on the true

transcription factor activity (TFA). The situation becomes even more complex in the presence

of cooperativity or competition between two or more TFs that regulate a target gene.

New computational methods have been proposed to infer TFAs from the gene expression

data under the assumption that the two are not necessarily the same. Zhou et al. (2005)

propose to validate TFA through cross-platform integration of expression data. Kao et al.

(2004) and Boulesteix and Strimmer (2005) estimate the TFAs by setting the problem in a

(partial) least squares framework and by using algebraic matrix decomposition to deal with

the high-dimensionality issue. Both assume a linear additive model of gene regulation. Gao,

Foat and Bussemaker (2004) suggested a multivariate regression analysis, using the ChIP

occupancy log-ratios for the TFs as a response and the genes as predictors. The coefficients of

the regression express the changes in TFA. Regulated genes are those that are correlated with

the TFA profile. In all of the above models, the data on the connectivity comes from outside

sources, like ChIP-chip data or a priori knowledge.

In this paper we develop a statistical framework to model regulatory pairs of TFs and

their target-genes using Michaelis-Menten kinetics for gene regulation. The Michaelis-Menten
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(MM) model has been successfully used in various biological applications, including the reg-

ulation of a gene by a TF (Bolouri and Davidson, 2002; Mangan and Alon, 2003). Nachman

et al. (2004) were the first to incorporate the quantitative MM regulation model into the

generative Bayesian probabilistic model. These authors attempted to estimate simultaneously

the structure of regulatory modules as well as the kinetic parameters of the MM regulation

model and the levels of ideal regulators that control them. They considered multiple TFs and

multiple targets in their model, as well as a dynamic temporal behaviour. They applied their

Bayesian learning algorithms to yeast cell cycle expression datasets. In contrast, we develop

a frequentist approach to find the parameters of the MM model of regulation by embedding

this model in the statistical framework.

In Section 2 we introduce a model for observed gene expressions within a general network

motif. Then in Section 3 we focus on the special case of a single input motif, for which we

can obtain an explicit expression of the MM ordinary differential equation. In Section 4, we

show how conjugate gradient methods can be used to estimate the kinetic MM parameters

and the TFA of the regulator can be estimated via maximum likelihood. Finally, in Section

5 our statistical framework is applied to a 10-point time-course datasets for a wild type and

mutant type Streptomyces coelicolor. We obtain some interesting biologically results and show

that the model we propose has good fit to the data.

2. Model for TF-initiated gene transcription

In this section, we present a general gene expression model that takes into account (i) tran-

scription rate, (ii) decay rate, (iii) network structure and (iv) stochastic effects.

2.1 Kinetic model of gene transcription

The gene expression of a regulated gene, µ(t), defined as the number of transcribed RNA

molecules present at time t, changes due to gene transcription and the decay of RNA molecules.

The average rate of change in expression of a target gene, µ̇(t), is therefore described by the

number of RNA molecules transcribed per unit of time and the number of decaying molecules
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per unit time:

µ̇(t) = p(t)− δµ(t), (1)

where p(t) is a production term, i.e. the rate of gene transcription, and δ is a linear degradation

rate. Here µ(t) stands for the underlying expression of the regulated gene at time t. The general

solution of the above linear differential equation is given by

µ(t) = µ0e
−δt +

∫ t

0

e−δ(t−τ)p(τ)dτ. (2)

Gene regulation is usually controlled by one or more TFs. The rate of gene transcription,

p(t), depends on the type of regulation, i.e. activation or repression, and on the type of

regulation control, namely a single TF or multiple TFs. The transcription rate depends also

on the so-called gate type in the case of multiple TF regulators. For example, the “AND” gate

means that all TFs are required for regulation, while the “OR” gate implies that either of the

TFs is sufficient to regulate the transcription of the target gene(s). In addition, the production

term, p(t), depends on gene-specific kinetics of regulation, θ. For example, the target genes

can have different values for the maximal production rate. Also, the transcription of different

targets could saturate at different levels of the TF regulator.

Gene regulation has commonly been described using a linear model: either the transcription

rate of a target gene or its expression is assumed proportional to the level of the TFs that

regulate this gene (Kao et al., 2004; Boulesteix and Strimmer, 2005). In this paper we model

gene transcription with the so-called Michaelis-Menten (MM) kinetics. The MM kinetics have

been used in modelling enzyme-mediated reactions and have also been applied to TF-initiated

transcription (Bolouri and Davidson, 2002; Nachman et al., 2004). The MM kinetic model,

unlike a linear model, is able to describe saturation effects, which are biologically plausible.

It is worth noting that the proposed statistical framework is by no means limited to a

specific microarray platform. The model can equally be applied to both cDNA and oligonu-

cleotide microarrays, as well as gene expression profiles obtained by other technologies, such

as quantitative real-time PCR.
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2.2 Network motif

The term network motif, coined by Milo et al. (2002), is defined as patterns of interconnec-

tions that recur in different parts of a network at frequencies much higher than those found in

random networks. Several basic network motifs have been found in biological networks. Each

network motif consists of several target genes regulated by one (single input motif) or several

(multiple input motif, feed forward loop) TFs.

Within a network motif, the gene expression of a gene k at time t, µk(t), depends on the

decay rate-constant δk and on the transcription rate, pk(t), as defined by equation (2). The

transcription rate pk(t) depends on several gene-specific kinetic parameters, θk, as well as on

the activity of its TF regulator(s), whose activity levels are denoted by η1(t), . . . ηM(t) (M ≥ 1).

The TFs are the common regulators to all the target genes, µk, k = 1 . . . K in the network

motif, while the kinetic parameters of gene regulation are likely to be target-dependent:

µk(t) ≡ µk(t; θk, η1, . . . , ηM), k = 1, . . . K.

It is biologically compelling to assume that the gene-specific parameters of the gene kinetic

equation, θk, are the same between the different biological conditions, such as wild type and

mutant. The only exception is the initial amount of gene expression, µk
0, which can be different

due all sorts of external factors that affect gene transcription. In Section 3 we consider a

Michaelis-Menten model implementation of the case of a Single Input motif, (SIM), i.e. one

regulator and many targets.

2.3 Noise model

As the MM kinetic model requires that we model the intensities on the original rather than

log-transformed scale, it is important to find a suitable distribution for the noise process. In

particular, it is unlikely if not impossible to have merely additive noise. As log-transformed

intensity ratios have been found to be approximately normal (Lee et al., 2000), we use the log-

normal distribution for the ratios of the intensities. Moreover, as every microarray measures

the gene expression of a different biological sample due to destructive sampling, it is reasonable

to assume that all observations are independent.
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Let us denote by gk
cr(t) the observed gene expression of gene k at a time-point t for the

replicate r under condition c. The condition c stands, for example, for wild type or mutant. We

assume that the observed gene expressions of a target gene k are independent and log-normally

distributed with location parameter mk
c (t) and scale parameter σ2

k. This distribution takes

into account the different variances associated with different amplitudes. The log-likelihood

contribution of a single observation gk
cr(t) is given by

l(mk
c (t), σ

2
k|gk

cr(t))=−1

2

(
log[gk

cr(t)]−mk
c (t)

σk

)2

− log(
√

2πgk
cr(t))− log(σk). (3)

Given the expectation of a log-normal distribution E[gk
cr(t)] = emk

c (t)+ 1
2
σ2

k , the relationship

between the true gene expression under condition c, µk
c (t), and the location parameter of the

log-normal distribution, mk
c (t), is given by

mk
c (t) ≡ log[µk

c (t)]−
1

2
σ2

k. (4)

Therefore, the location parameter mk
c (t) ≡ mk

c (t; θ
k
c , σ

2
k, η1 . . . ηM) implicitly depends on the

kinetic parameters θk
c of the gene regulation model and on the TFs levels η1 . . . ηM . The likeli-

hood contribution in equation (3) can then be written as a function of the kinetic parameters

of the gene regulation model as well as activities of TFs, namely l(θk
c , σ

2
k, η1 . . . ηM |gk

cr(t)).

3. Michaelis-Menten model of a single input motif

3.1 Single Input Motif

We now apply our general methodology to a simple network architecture, called the Single

Input Motif (SIM). It consists of a set of genes that are controlled by a single TF (Shen-Orr

et al., 2002). All of the genes are under the same type of regulation (either all activated or

all repressed), which presumably happen under a specific set of circumstances. None of these

genes have additional transcriptional regulation. SIMs are potentially useful for coordinating

a discrete unit of some biological function, such as a set of genes that code for the subunits of a

biosynthesis apparatus or enzymes of a metabolic pathway (Lee et al., 2002). SIM is probably

the simplest logical unit of a transcriptional regulatory network architecture that could serve

as a starting point for the reconstruction of TFA.
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There is compelling experimental evidence that SIMs frequently occur in biological systems

(Lee et al., 2002; Shen-Orr et al., 2002). It is partly an open question as how to identify new

SIMs, verify the targets and infer the activity of the regulators. The first source of information

for SIMs is in databases such as RegulonDB, that were used by Shen-Orr et al. (2002) in their

original study of network motifs. There is an increasing amount of ChIP-chip data, pioneered

by Lee et al. (2002), which identify TF-and-target pairs. The use of such data together with

statistical models such as (Bar-Joseph et al., 2003; Yu, 2004) helps to identify and verify SIMs.

Another rich source of data for identifying SIMs is contained in microarrays studies. For

example, an experiment comparing a wild-type and a mutant, wherein the TF of interest is

knocked out, yields a list of differentially expressed genes, which are potential targets of this

TF. To identify whether these targets are primary or secondary, further experiments, such as

data on binding sites, or a priori knowledge is required. In this paper, we identify a SIM

for Streptomyces coelicolor by finding differentially expressed genes between a wild type and

a mutant type (where the TF has been knocked-out) combined with biological knowledge on

specific location of the TF and targets within the genome.

3.2 Michaelis-Menten model

When a gene is regulated by a single TF that binds to the promoter region of the regulated

gene, the transcription rate p(t) depends on the level of this TF, η and gene specific kinetic

parameters. The Michaelis-Menten model of gene transcription activated by some TF states

that production occurs in a saturating manner:

p(t) = β
η(t)

γ + η(t)
+ α. (5)

Here β is the rate of production, γ is the half-saturation constant and α is the basal level of

gene expression production. The general solution of the transcription equation (2) takes the

form

µ(t)=(µ0−α

δ
)e−δt+

α

δ
+β

∫ t

0

e−δ(t−τ) η(τ)

γ+η(τ)
dτ. (6)
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In a SIM, the same TF regulates more than one gene. The gene expression profile of gene k,

µk(t), depends on several kinetic parameters that are gene specific, αk, βk, γk, δk, µk
0, as well as

the activity of the regulator, η, that is common for all targets in the SIM regulated by it. We

use the following notation µk(t) ≡ µk(t; θk, η) and θk ≡ (αk, βk, γk, δk, µk
0).

4. Parameter estimation

4.1 Likelihood

The kinetic parameters of the MM model, θk, and the variance of the log-normal distri-

bution, σ2
k, for a single gene, k, can be estimated by an approximate maximum likelihood

procedure. The likelihood for a gene k, regulated by one TF, ηc, given all observations, gk
cr(t),

across all time-points, t, conditions, c, and replicates, r, is given by

lk(g
k(t); θk, σ

2
k, η) =

∑
ctr

l(θk
c , σ

2
k, ηc|gk

cr(t)). (7)

The likelihood of the whole SIM, wherein the TF with activity level η(t), regulates several

target-genes, can be written as

lSIM(Θ, Σ2, η|G) =
K∑

k=1

lk(θ
k, σ2

k, η|gk(t)). (8)

Here G = {g1, . . . , gK} is the set of K target genes; Θ represents all the kinetic parameters of

the MM model, θk, for all genes in the SIM and Σ2 stands for all the scale-parameters of the

log-normal distribution, σ2
k, that are also assumed to be gene-specific.

4.2 Transcription Factor Activity

A common approach (Bar-Joseph et al., 2003; Qian et al., 2003; Segal et al., 2003) assumes

that the transcription of the gene coding for the TF represents its activity reasonably well.

Therefore, the observed gene expression values for the TF (TFX) are used as a proxy for TFA.

A biologically more plausible model suggests that the TFA is not equal or not necessarily even

correlated with the TFX (Gao et al., 2004; Nachman et al., 2004) due to the processes of

translation and post-translational modifications. In this case, the TFA, η(t), can be thought

of as an unknown parameter. The idea is that η(t) can be reconstructed from the expression

data of the genes that are known to be regulated by it. In a SIM, where a given TF regulates
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several gene-targets, the TFA profile, ηc(t), is the same for all target-genes in the regulatory

module as all target genes become activated (or repressed) by the master TF regulator under

a specific set of conditions, c ∈ C. The kinetic parameters of regulation are gene-specific for

each of the K genes with profiles µ1(t), . . . , µK(t). These kinetic parameters as well as the

TFA profile can be found by maximizing the likelihood (8) for a given set of genes.

4.3 MM model constraint

The true expression of a target gene k at time t depends on a continuous integral of the TFA

values (6). Without any further constraints, it is clear that the function η(t) is unidentifiable.

We therefore assume that the TFA can be approximated by a piecewise constant step-function

η̄ on the intervals (tj, tj+1), where tj are the sampling points (j = 0, . . . , N − 2). Given this

constraint, the integral in (6) can be approximated by a sum,

∫ t

0

e−δ(t−τ) η(τ)

γ + η(τ)
≈ e−δt 1

δ

N−2∑
j=0

(eδtj+1 − eδtj)
η̄j

γ + η̄j

.

yielding the full general solution of the gene transcription equation (6)

µ(t) = (µ0 − α

δ
)e−δt +

α

δ
+ βe−δt 1

δ

N−2∑
j=0

(eδtj+1 − eδtj)
η̄j

γ + η̄j

. (9)

This approximation is used for each of the target k = 1, . . . , K in the SIM. The parameter

η̄ = (η̄0, . . . , η̄N−2) is N − 1 dimensional, but due to its collinearity of β on the one hand

and γ on the other in equation (9), it can only be identified up to a multiplicative constant.

Therefore, without loss of generality we can fix η̄0 = 1. Computational details on maximizing

likelihood by conjugate gradient are given in supplementary materials.

5. Application

The model described above has been applied to two 10-point time-series of two Streptomyces

coelicolor strains grown on solid medium, one wild type and one mutant type for which a

transcriptional regulator cdaR (SCO3217) has been knocked-out. Each time-point of the two

time-courses is replicated twice using independent biological samples, as the sampling mecha-

nism is destructive.
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The importance of the genus Streptomyces results from the bacterium’s production of over

two-thirds of naturally derived antibiotics in current use, as well as many anti-tumour agents

and immunosuppressants. Streptomyces coelicolor produces at least four chemically distinct

antibiotics (Bibb, 1996). The genes responsible for the synthesis of each of the four antibiotics

have been found to be clustered in distinct locations (Bentley et al., 2002). Here we study

genes in the cluster responsible for the production of calcium-dependent antibiotics (CDA)

(Hojati et al., 2002). This cluster of 40 genes (SCO3210-SCO3249) contains at least two genes

encoding the transcriptional regulators, CdaR and AbsA2, whose specific roles in the regulation

of antibiotic biosynthesis have not been characterized in detail. Only 34 genes from the 40-gene

cdaR cluster are present on the arrays, so only these genes have been considered in the current

study. The cdaR gene product is known to positively regulate genes for CDA biosynthesis

(A.E., Hayes, P.P. Chong, Z. Hojati, V. Mersinias, F. Flett, C.P. Smith, unpublished results),

while AbsA2 acts as an inhibitor, repressing CDA promoters, perhaps in competition with

CdaR (Ryding et al., 2002; Sheeler et al., 2005). At the same time, the cdaR gene appears to be

expressed independently of absA (Ryding et al., 2002). The current experimental and modelling

study focusses on analyzing the role of the cdaR gene product in regulating the expression of

the cdaR gene cluster. The details on data preprocessing can be found in supplementary

materials.

5.1 Identification of cdaR regulatory module

As there is not much a priori biological knowledge available, we use the data to inform

us about which of the 34 available gene targets might be directly regulated by cdaR. We

implement this by means of an ANOVA and checking the significance of the knock-out effect

κc, gctr = µ + κc + τt + εctr for each gene in the cdaR cluster separately (c = mutant, wild-

type; t = 1, . . . 10 time; r = 1, 2 replicates) accounting for a possible time effect. Apart from

cdaR gene itself, another 17 genes within the cdaR cluster have been identified (with p-values

< 0.01) as being differentially expressed between the two strains. Although performing 34

tests simultaneously, a p-value of 0.01 guarantees that it is unlikely that more than one of the
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17 genes is falsely discovered. These 17 genes are therefore assumed to be activated directly

by the transcriptional activator CdaR. Ten of these genes, SCO3235-39 (with SCO3238 absent

from the array) and SCO3244-49, form two stretches of co-regulated genes probably belonging

to the same operons, the latter extending from the fab operon (with known members SCO3245-

49) that encodes the biosynthesis of the fatty acid moiety of CDA (Hojati et al., 2002). We

further assume that this TF and its 17 target-genes constitute a SIM.

5.2 Reconstruction of CdaR activity

To reconstruct the activity profile of the CdaR regulator, the profiles of all 17 differentially

expressed genes within this regulatory module are used. In other words, we consider a SIM

with CdaR as its master regulator and the 17 genes as its targets. The maximum likelihood

estimate of the activity profile η̄(t) for CdaR found by the conjugate gradient method using

gene expression data for all 17 targets for wild type organism is shown in Figure 1.

[Figure 1 about here.]

The confidence bounds for η̄-component were obtained via a classical Wilks procedure. Let

L∗ be the value of the maximum likelihood found with respect to all parameters, including η̄j.

By perturbing each η̄j +4j, we obtain a value of likelihood L∗j = L(η̄0, . . . , η̄j +4j, . . . , η̄N−2).

The 95% confidence bound for η̄j is found by finding 4j such that (L∗ − L∗j)/2 = χ2
1,0.95.

Figure 1a shows the reconstructed CdaR activity profile as a piece-wise constant function

(solid line). Dashed lines show upper and lower 95% Wilks confidence bounds for each η̄j. A

CdaR profile smoothed over the reconstructed piece-wise profile is shown on Figure 1b (solid

line). Smoothed profile was obtained by the cubic spline function (R-function pspline). Points

(connected with dashed lines) represent the observed data for cdaR gene expression for the

two independent biological replicates.

Because of the arbitrary scale of the expression data, the shapes of reconstructed η̄ and

the expression data for cdaR are of interest to us, rather than their absolute values. The

Pearson correlation between inferred activity profile and the average expression profile is 0.45,

suggesting that the regulator CdaR is modified post-translationally. Indeed, it is highly likely
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that the activity of CdaR protein is influenced by its phosphorylation state. The deduced

CdaR protein sequence has a putative ATP-binding site and it is known that the activity

of related streptomycete antibiotic regulatory proteins, such as AfsR, is governed by protein

phosphorylation. The data presented here would be consistent with such post-transcriptional

modification. This indicates that it is not safe to substitute the activity of the regulator by

the measured gene expression in the models of gene regulation.

Expression profiles of all 17 differentially expressed genes between wild-type and mutant has

been used in the reconstruction of the transcription activity profile of their common regulator.

To evaluate how sensitive the result is to the false positives among the targets, we performed

the same analysis by iteratively leaving one of the putative targets out. The TFA profiles

found for each of the 17 SIMs with 16 targets were compared to the TFA profile found for the

original SIM with 17 targets. The results are shown in Figure 2.

[Figure 2 about here.]

The mean correlation between the original TFA and the ones found for SIMS with 16

targets is 0.872. It is clear from Figure 2 that some difference is noticeable on the first and

last time intervals. However, in each case the reconstructed profile of the gene target that has

been left out shows excellent fit with the expression data for this gene (not shown). This is

not surprising, as each of the inferred TFA profiles has a high correlation with the original

inferred profile.

5.3 Kinetic profiles of target genes

For each of the 17 target DE genes, the mean gene expression profiles µk(t) and kinetic

parameters θk, k = 1 . . . 17 of the MM model (6) were estimated given the reconstructed profile

of the TF, η̄(t). Two representative gene profiles within the regulatory module for wild type

are shown in Figure 3.

[Figure 3 about here.]
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It is difficult to evaluate the estimates of the kinetic parameters, θk, as quantitative biolog-

ical knowledge on gene transcription in general, and for Streptomyces coelicolor in particular,

is very limited. It is nevertheless worthwhile mentioning some details about the kinetic pa-

rameters (see Web Appendix D).

5.4 Goodness-of-fit

As the observed gene expression data, gk
cr(t), are assumed to be log-normally distributed (??),

log[gk
cr(t)] is normally distributed. Therefore,

log[gk
cr(t)]−mk

c (t)

σk

∼ N(0, 1),

where the location parameter mk
c is given by formula (4). Whether the inferred data truly

comes from a normal distribution can be tested by a Kolmogorov-Smirnov test by using, for

example, the R-function ks.test.

Figure 4 shows a QQ-plot of the p-values from the Kolmogorov-Smirnov test for all 17

differentially expressed genes between wild type and cdaR mutant. This figure shows that

the MM model combined with log-normal deviations displays a very good fit to the observed

time-course gene expression data. The dashed line stands for an ideal fit of the data to the

model. If the p-values fall below this line, the fit is poor. P -values above the line indicate

some overfit of the model. However, the 95% confidence bounds of the uniform distribution

(dotted line) show how most of the p-values might be higher than the line simply by chance,

as they fall within the upper confidence bound.

[Figure 4 about here.]

To address concerns of overfitting, we compare the current model with gene-specific vari-

ances σ2
k, with a model, wherein a common variance σ2 is used for all genes. The maximum

likelihood estimate for common σ2 has been found by a grid-search between the smallest and

largest values of σ2
k. The likelihoods of the two models are compared using a χ2-test with 16

degrees of freedom, i.e. the difference in the number of parameters. This yields a statistic of

153.17, which far exceeds the 95% cut-off of χ2
16,0.95 = 26.3. This suggests that the model with
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a gene-specific variance gives the best trade-off between the goodness-of-fit and the number of

parameters in the model.

6. Discussion

In this paper we developed a statistical framework that embeds the deterministic Michaelis-

Menten kinetics of gene regulation within a stochastic model of microarray measurement noise.

As an alternative for direct experimental measurement of the activity profile of the TF, the

model reconstructs this profile using the gene expression profiles of its targets within a Single

Input Motif regulatory module. In addition, estimates of gene specific kinetic parameters

of the gene regulation are found. We have shown that in the case of post-transcriptional

modifications, such as is the case in the cdaR gene in Streptomyces coelicolor, the amount of

mRNA of a regulator is not a good approximation for its protein activity levels and one cannot

be substituted for the other in quantitative models of gene regulation.

Our statistical framework requires some knowledge of the structure of the regulatory mod-

ule, which can be determined by experimental methods (ChIP technology), analytical (e.g. by

finding differentially expressed genes) and available biological knowledge. Currently, in the

absence of a reliable technology to routinely measure the TFA of regulators, it is of great

importance to understand whether TFA can be inferred from the expression of its targets.

A straightforward experimental verification of the results is to measure the phosphorylation

profile of CdaR and compare it with the TFA, inferred by our model.

The statistical framework developed in this paper can be extended to include cooperativity

and competitive regulation by two or more TFs with both AND and OR gate-types. It can

be used to reconstruct the activity of TFs in known regulatory modules and to discriminate

between the types of regulation (activation/inhibition; gate types) by using likelihood ratio

and goodness-of-fit tests. The model can also be extended to search for the TFA and gene-

specific kinetic parameters of regulation by combining different microarray datasets. Other

types of data as well as available knowledge can be incorporated in the model.
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7. Supplementary Materials

R-code and other supplementary materials are available under the Paper information link at

the Biometrics website: http://www.tibs.org/biometrics.
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Figure 1. Transcription Factor Activity of CdaR inferred from gene expression data. (a)
the TFA is the piece-wise constant step function (solid line) together with its 95% confidence
bounds (dashed lines). The inferred profile is re-scaled between zero and one. Corresponding
confidence bounds are rescaled accordingly. (b) TFA vs TFX of cdaR for wild-type time-course.
The TFA profile is smoothed using R spline function (solid line) from inferred piece-wise
constant function. Points represent the observed data for two biological replicates for TFX
(wild type) (dashed lines). Smoothed profile has been re-scaled between zero and one; data
points have also been re-scaled independently to be between zero and one.
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Figure 2. Sensitivity of the TFA to possible false positives among the targets. The TFA
reconstructed from an original SIM with 17 targets (solid line); TFAs reconstructed for SIMs
with 16 targets (leave-one-out) (dotted lines); 95% confidence bounds (dashed lines).
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Figure 3. Two representative profiles of target genes within the SIM regulatory module. The
points connected by dotted lines stand for the observed data for the wild type (2 replicates).
The solid line is for a gene profile fitted with the inferred TFA of CdaR regulator η̄. (a) Gene
SCO3230. ML estimates of kinetic parameters are β = 168, γ = 569, δ = 48, α = 0.55,
σ = 0.14. (b) Gene SCO3235. ML estimates of kinetic parameters are β = 265, γ = 516,
δ = 9.4, α = 0.000001, σ = 0.31.
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Figure 4. Fit of MM-kinetics with lognormal noise and ML estimate of ηA for 17 genes
identified as differentially expressed between the wild type and the cdaR-mutant. The p-values
from Kolmogorov-Smirnov test are shown versus the quantiles of the uniform distribution.
Dashed line stands for an ideal fit of the data to the model.
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